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Introduction

The subject of quantum field theory

In the context of particle physics a Quantum Field
Theory is a theory of elementary (that is, structure-
less) particles, like electrons and photons.
Elementary particles exhibit wave-particle dual-

ity: on the one hand they diffract and interfere as
waves in certain fields; on the other hand they ap-
pear and disappear as whole entities, called quanta.
Hence the name of the theory.
A quantum field theory seeks to explain cer-

tain fundamental experimental observations (like
the existence of antiparticles; the spin-statistics
relation; the CPT symmetry), as well as predict
the results of any given experiment (like the cross-
section for the Compton scattering, or the value of
the anomalous magnetic moment of the electron).

Wave-particle duality

The whole wealth of observations in particle physics
supports the concept of wave-particle duality: the
elementary particles exhibit both wave and parti-
cle properties. On the one hand they are gener-
ated and anihilated as whole entities. On the other
hand they show diffraction patterns in the double-
slit type experiments.
There are two approaches to deal with such ob-

jects. One is the path integral formulation, where
elementary particles have the property of being able
to propogate simultaneously along all possible tra-
jectories with certain apmplitudes. In the other
approach, called quantum field theory, elementary
particles are field quanta: necessarily chunked rip-
ples in a field.
In the end, the two formulations proved to be

equivalent.
We shall pursue the second approach here and

build the quantum field theory in the canonical
way: as a classical Lagrangian field theory with the
subsequent canonical quantization1.

Principle of covariance

The principle of covariance emphasizes formulation
of physical laws using only those physical quanti-
ties the measurements of which the observers in
different frames of reference could unambiguously
correlate. Mathematically speaking, the physical
quantities must transform covariantly, that is, un-
der a certain representation of the group of coor-
dinate transformations between admissible frames
of reference of the physical theory. This group of

1sometimes unfortunately called “second quantization”.

coordinate transformations is referred to as the co-
variance group of the theory.

The principle of covariance does not require in-
variance of physical laws under the group of admis-
sible transformations although in most cases the
equations are actually invariant. Only in the the-
ory of weak interactions the equations are not in-
variant under reflections (but are, of course, still
covariant).

In canonical quantum field theory the admissible
frames of reference are the inertial frames of special
relativity. The transformations between frames are
the Lorentz velocity boosts, rotations, translations,
and reflections. Altogether they form the Poincaré
group of coordinate transformations. Boosts and
rotations together make up the Lorentz group.

The convariant quantities are four-scalars, four-
vectors etc. of the Minkowski space of special
relativity (and also more complicated objects like
bispinors and others which we shall discuss later).

Covariant vectors of special relativity

Four-coordinates

An event in an inertial frame can be specified with
four coordinates {t, r}, where t is the time of the
event, and r ≡ {x, y, z} are the three Euclidean
spatial coordinates.

The coordinates of the same event in different in-
ertial frames are connected by a linear transforma-
tion from the Poincaré group. Rotations, transla-
tions and reflections do not couple time and spatial
coordinates, but velocity boosts do. Therefore in
special relativity time and spatial coordinates are
inseparable components of one and the same ob-
ject. It is only in the non-relativistic limit that
time separates from space.

The Lorentz transformation of coordinates under
a velocity boost v along the x-axis is given as
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where primes denote coordinates in the boosted
frame, γ ≡ (1 − v2/c2)−1/2, and c is the speed of
light in vacuum2.

The four-coordinates {t, r} are customarily de-
noted as xa, where a = 0 . . . 3, such that

x0 = t, x1 = x, x2 = y, x3 = z . (2)

2in the following the notation with ~ = c = 1 shall be

mostly used.
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The Lorentz transformation (1) can then be conve-
niently written as3

x′a = Λa
bx

b . (3)

where Λa
b is the 4×4 transformation matrix in equa-

tion (1).

Invariant

A direct calculation shows that velocity boosts (to-
gether with rotations, translations, and reflections)
conserve the following form,

s2 = t2 − r2 , (4)

which is then called invariant.
In its infinitesimal incarnation,

ds2 = dt2 − dr2 , (5)

the form determines the geometry of time-space
and is called metric. The space with metric (5)
is called Minkowski space.

Dual coordinates

The invariant (4) can be conveniently written as

t2 − r2 ≡ xax
a , (6)

where xa are often called dual coordinates and are
defined as

xa ≡ {t,−r} = gabx
b , (7)

where the diagonal tensor gab with the main di-
agonal {1,−1,−1,−1} is the metric tensor of the
Minkowski space of special relativity.
Under Lorentz transformations the dual coordi-

nates apparently transform with the Lorentz matrix
where v is substituted by −v, which is actually the
inverse Lorentz matrix (prove it),

x′

a = (Λ−1)baxb , (8)

Four-gradient

The partial derivatives of a scalar with respect to
four-coordinates,
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apparently transform like dual coordinates, that is,
via the inverse Lorentz matrix,

∂

∂x′a
=

∂xb

∂x′a

∂

∂xb
= (Λ−1)ba

∂

∂xb
. (10)

3note the “implicit summation” notation,
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Covariant vectors and tensors

A contra-variant four-vector is a set of four objects,
Aa = {A0,A}, which transform from one inertial
frame to another in the same way as coordinates
in (3),

A′a = Λa
bA

b . (11)

A co-variant four-vector is a set of four objects, Aa,
which transform from one inertial frame to another
in the same way as partial derivatives in (10),

A′

a = (Λ−1)baAb . (12)

A covariant tensor F ab is a set of 4×4 objects
which transform between inertial frames as a prod-
uct of two 4-vectors,

F ′ab = Λa
cΛ

b
dF

cd . (13)

There exist other covariant objects in special rel-
ativity, like bispinors, which cannot be built out of
4-vectors. They will be discussed later.

Exercises

1. Derive the Lorentz transformation matrix,
(
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,

(14)
one way or another, for example using group
postulates and the existence of the highest
relative velocity between inertial frames (see
wikipedia).

2. Show that the interval

ds2 = c2dt2 − dr2

is invariant under Lorentz transformations, ro-
tations, translations and reflections.

3. Show that a moving clock runs slower, than
stationary. Hint: consider the transformation
of

(

dt
d = 0

)

.

4. Show that a moving rod is shorter, than sta-
tionary. Hint: consider a transformation into

(

dt′ = 0
dx′

)

.

5. Show that in the limit v ≪ c the Lorentz trans-
formation reduces to Galilean transformation.

6. Which of the following objects are covariant?

• Kronecker delta δab ≡ {a == b?1 : 0};

• Lorentz transformation matrix Λa
b in (1);

• Metric tensor gab
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