Exercises

1. Show that if the operators

$$
U=\exp \left(-i \sum_{k} J_{k} \alpha_{k}\right)
$$

are unitary: $U^{\dagger} U=1$, and the parameters α_{k} are real, then the generators J_{k} are hermitian: $J_{k}^{\dagger}=J_{k}$. Show that if $\operatorname{det}(U)=1$ then $\operatorname{trace}\left(J_{k}\right)=0$.
Hints: consider infinitesimal elements; show that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{trace}(A)}$ by diagonalizing matrix A.
2. Using the Lie algebra of the rotation group ${ }^{1}$

$$
\left[I_{j}, I_{k}\right]=i \sum_{l} \epsilon_{j k l} I_{l}
$$

find the 2 x 2 representation of the rotation generators \vec{I} (assuming I_{3} is diagonal and I_{1} is real).
Hints: recall that trace $\left(I_{k}\right)=0$ and $I_{k}^{+}=I_{k}$; I 's must be half the Pauli's σ-matrices.

[^0]
[^0]: ${ }^{1} \epsilon_{j k l}$ is the Levi-Civita (absolutely antisymmetric) tensor

