Exercises

1. Show that if the operators

$$U = \exp\left(-i\sum_{k}J_{k}\alpha_{k}\right)$$

are unitary: $U^{\dagger}U = 1$, and the parameters α_k are real, then the generators J_k are hermitian: $J_k^{\dagger} = J_k$. Show that if $\det(U) = 1$ then $\operatorname{trace}(J_k) = 0$.

Hints: consider infinitesimal elements; show that $det(e^A) = e^{trace(A)}$ by diagonalizing matrix A.

2. Using the Lie algebra of the rotation group 1

$$[I_j, I_k] = i \sum_l \epsilon_{jkl} I_l$$

find the 2x2 representation of the rotation generators \vec{I} (assuming I_3 is diagonal and I_1 is real).

Hints: recall that $trace(I_k) = 0$ and $I_k^+ = I_k$; *I*'s must be half the Pauli's σ -matrices.

 $^{{}^{1}\}epsilon_{jkl}$ is the Levi-Civita (absolutely antisymmetric) tensor