Exercises

1. Find the finite rotation matrix for a 2×2 representation of the rotation group ${ }^{1}$.
2. Find the additive parameter φ of the velocity boost matrix (along the x-axis) and the corresponding generator ${ }^{2}$.
3. Using the additive parameter $\varphi=\frac{1}{2} \ln \frac{1+v}{1-v}$ find the velocity-boost matrices for the $\left(\frac{1}{2}, 0\right)$ and ($0, \frac{1}{2}$) representations of the Lorentz group.
4. (Extra) Prove that generators of a Lie group have a Lie algebra

$$
\left[I_{l}, I_{m}\right] \equiv I_{l} I_{m}-I_{m} I_{l}=i C_{l m}^{k} I_{k}
$$

where $C_{l m}^{k}$ are some (structure) constants ${ }^{3}$.

[^0]
[^0]: ${ }^{1}$ Hint: $\vec{I}=\frac{1}{2} \vec{\sigma}$, and $(\vec{\sigma} \vec{n})^{2}=1$, where $\vec{\sigma}$ are Pauli matrices.
 ${ }^{2}$ Hint: $v=\tanh \varphi$
 ${ }^{3}$ Hint: consider a group element

 $$
 g\left(\beta^{\prime}\right)=g(\alpha) g(\beta) g^{-1}(\alpha)
 $$

 in the limit $\beta \rightarrow 0$ and $\alpha \rightarrow 0$, namely:

 $$
 \lim _{\beta \rightarrow 0} \beta_{k}^{\prime}=f_{k l}(\alpha) \beta_{l},
 $$

 where $f_{k l}(\alpha)$ are some functions with

 $$
 \lim _{\alpha \rightarrow 0} f_{k l}(\alpha)=\delta_{k l}+C_{l m}^{k} \alpha_{m}
 $$

