Exercises

- 1. Find the finite rotation matrix for a 2×2 representation of the rotation group¹.
- 2. Find the additive parameter φ of the velocity boost matrix (along the *x*-axis) and the corresponding generator².
- 3. Using the additive parameter $\varphi = \frac{1}{2} \ln \frac{1+v}{1-v}$ find the velocity-boost matrices for the $(\frac{1}{2}, 0)$ and $(0, \frac{1}{2})$ representations of the Lorentz group.
- 4. (Extra) Prove that generators of a Lie group have a Lie algebra

$$[I_l, I_m] \equiv I_l I_m - I_m I_l = i C_{lm}^k I_k ,$$

where C_{lm}^k are some (structure) constants³.

²Hint: $v = \tanh \varphi$

 $g(\beta') = g(\alpha)g(\beta)g^{-1}(\alpha)$

in the limit $\beta \to 0$ and $\alpha \to 0$, namely:

$$\lim_{\beta \to 0} \beta'_k = f_{kl}(\alpha)\beta_l \; ,$$

where $f_{kl}(\alpha)$ are some functions with

$$\lim_{\alpha \to 0} f_{kl}(\alpha) = \delta_{kl} + C_{lm}^k \alpha_m \; .$$

¹Hint: $\vec{I} = \frac{1}{2}\vec{\sigma}$, and $(\vec{\sigma}\vec{n})^2 = 1$, where $\vec{\sigma}$ are Pauli matrices.

³Hint: consider a group element