Ordinary least squares

Introduction

A system of linear equations is considered overdetermined if there are more equations than unknown
variables. If all equations of an overdetermined system are linearly independent, the system has no exact
solution.

A linear least-squares problem is the problem of finding an approximate solution to an overdetermined
linear system. It often arises in applications where a theoretical model is fitted to experimental data.

Linear least-squares problem
Consider a linear system

Ac=b, (1)

where A is an n X m matrix, c is an m-component vector of unknown variables and b is an n-component
vector of the right-hand side terms. If the number of equations n is larger than the number of unknowns
m, the system is overdetermined and generally has no solution.

However, it is still possible to find an approximate solution—the one where Ac is only approximately
equal b—in the sence that the Euclidean norm of the difference between Ac and b is minimized,

c: minHAc—bH2 . (2)
C

The problem (2) is called the ordinary least-squares problem and the vector ¢ that minimizes ||Ac — b||?
is called the least-squares solution.

Solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The matrix A is factorized as
A = QR, where Q is n x m matrix with orthogonal columns, Q”Q = 1, and R is an m x m upper
triangular matrix. The Euclidean norm ||Ac — b||? can then be rewritten as
[Ac —b|* = |QRe — b|?
= [Re—Q"b|” + [[(1-QQT)b|> > [|(1 — QQT)b|*. (3)
The term ||(1 — QQ®)b||? is independent of the variables ¢ and can not be reduced by their variations.

However, the term |Rc — Q7b||? can be reduced down to zero by solving the m x m system of linear
equations

Rc=Q"b. (4)
The system is right-triangular and can be readily solved by back-substitution. Thus the solution to the
ordinary least-squares problem (2) is given by the solution of the triangular system (4).
Ordinary least-squares curve fitting

Ordinary least-squares curve fitting is a problem of fitting n (experimental) data points {z;,y; &= Ay;},

where Ay; are experimental errors, by a linear combination, F', of m functions {fx(z) |k =1,...,m},
Fe(x) = crful(x) . (5)
k=1

The objective of the least-squares fit is to minimize the square deviation, called x?2, between the fitting
function F(z) and the experimental data,
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Individual deviations from experimental points are weighted with their inverse errors in order to promote
contributions from the more precise measurements.



Minimization of x? with respect to the coefficiendt ¢ in (5) is apparently equivalent to the least-
squares problem (2) where
Jr(s) Yi
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If QR = A is the QR-decomposition of the matrix A, the formal least-squares solution to the fitting
problem is

c=R1'Q"b. (8)

However, in practice one has to back-substitute the system Rc = Q”b.

Variances and correlations of fitting parameters

Suppose dy; is a small deviation of the measured value of the physical observable at hand from its exact
value. The corresponding deviation dcy of the fitting coefficient is then given as

0
dey, = Z aiykﬁyi . 9)

In a good experiment the deviations dy; are statistically independent and distributed normally with the
standard deviations Ay;. The deviations (9) are then also distributed normally with variances

(Serder) = > (Z—Z:Ayif = (ZZ’:)Q . (10)
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The standard errors in the fitting coefficients are then given as the square roots of variances,

dex\ 2
Acg = \/(Scpder) = Z (azf) . (11)
The variances are diagonal elements of the covariance matriz, ¥, made of covariances,
(9Ck 80
Tiq = (Ocxdcq) = b, abj . (12)

Covariances (dcidcq) are measures of to what extent the coefficients ¢, and ¢, change together if the
measured values y; are varied. The normalized covariances,

(0ckdcq) (13)
(dcrdcy)(0cqdeq)
are called correlations.
Using (12) and (8) the covariance matrix can be calculated as
no (%) (2 : =R YR Y =(R"R)'=(4TA)! (14)
0b /) \ 0b '

The square roots of the diagonal elements of this matrix provide the estimates of the errors Ac of the

fitting coefficients,
Ac, = /g ‘k_l ; (15)

and the (normalized) off-diagonal elements provide the estimates of their correlations.
A C implementation of the ordinary least squares fit with QR-decomposition is shown in Table (1).
An illustration of a fit is shown on Figure (1) where a polynomial is fitted to a set of data.



Table 1: C implementation of ordinary least squares fit with QR-decomposition.

#include <matrix.h>
#include <gc.h> // garbage collector
#include <qr.h> // gqr—decomposition
typedef struct {vectorxc; matrix*S;} Isfit;
Isfit* Isfit_alloc (vector*x,vectorsy, vectorxdy,
int nf,double f(int k,double x))
{ int n=x—>size , m=nf;
matrix *A = matrix_alloc(n,m), *R = matrix_alloc (m,m);
vector xb = vector_copy(y); vector._div(b,dy);
for (int i=0;i<n;i++)
{ double xi=vector_get(x,i), dyi=vector_get (dy,i);
for (int k=0;k<m;k++) matrix_set (A,i,k,f(k,xi)/dyi);

qrdec(A,R);

Isfit* fit = (1lsfit*)GCMALLOC(sizeof(1lsfit ));
fit —>c = qrback(A,R,b);

fit —S = qrinverse (matrixT_times_matrix (R,R));
return fit;

Figure 1: Ordinary least squares fit of F.(x) = ¢1 + coz + c32? to a set of data. Shown are fits with
optimal coefficiens ¢ as well as with ¢ + Ac and ¢ — Ac.



