
Minimization

Introduction

Minimization is a problem of finding the minimum (or the maximum) of a given, generally non-linear,
real valued function f(x) of an n-dimensional argument x

.
= {x1, . . . , xn}.

Minimization is a simple case of a more general poblem—optimization—which includes finding best
available values of some objective function within a given domain and subject to given constrains.

Minimization is related to root-finding as at the minimum all partial derivatives of the objective
function vanish,

∂f

∂xi

= 0 . (1)

One can alternatively solve this system of non-linear equations.

Newton’s methods

Newton’s method is based on the quadratic approxiamtion of the objective function f in the vicinity of
the suspected minimum,

f(x + ∆x) ≈ f(x) +∇f(x)T ∆x +
1

2
∆xT H(x)∆x , (2)

where the vector ∇f(x) is the gradient of the objective function at the point x,

∇f(x)
.
=

[

∂f(x)

∂xi

]

i=1,...,n

, (3)

and H(x) is the Hessian matrix – a square matrix made of second-order partial derivatives of the objective
function at the point x,

H(x)
.
=

[

∂2f(x)

∂xi∂xj

]

i,j∈1,...,n

. (4)

The minimum of this quadratic form as function of ∆x is found at the point where its gradient with
respect to ∆x vanishes,

∇f(x) + H(x)∆x = 0 . (5)

This gives an approximate step towards the minimum, called the Newton’s step,

∆x = −H(x)−1∇f(x) . (6)

The original Newton’s method is simply the iteration,

xk+1 = xk −H(xk)−1∇f(xk) , (7)

where at each iteration the full Newton’s step is taken and the Hessian matrix is recalculated. In practice,
instead of calculating H−1 one rather solves the linear equation (5).

Usually Newton’s method is modified to include a smaller step size, λ∆x, with 0 < λ < 1. The step-
size λ can be found by a backtracking algoritm similar to that in the Newton’s method for root-finding.
One starts with λ = 1 and than backtracks, λ← λ/2, until the Armijo condition,

f(x + λ∆x) < f(x) + α∇f(x)λ∆x , (8)

is satisfied. The parameter α can be chosen as small as 10−4.
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Quasi-Newton methods

Quasi-Newton methods are variations of the Newton’s method which attempt to avoid recalculation of
the Hessian matrix at each iteration, trying instead certain updates based on the analysis of the gradient
vectors. The update δH is usually chosen to satisfy the condition

∇f(x + δx) = ∇f(x) + (H + δH)δx , (9)

called secant equation, which is the Taylor expansion of the gradient. This secant condition is under-
determined in more than one dimension as it consists of only n equations for the n2 unknown elements
of the update δH. Various quasi-Newton methods use different choices for the form of the solution of
the secant equation.

In quasi-Newton methods one often starts with a unity matrix as the zeroth approximation for the
Hessian matrix and then applies the updates. In this case one can actually use the inverse Hessian
matrix—thus avoiding the need to solve the linear equation at each iteration—and apply the updates
directly to the inverse matrix.

Broydens’s update

The Broyden’s update is chosen in the form

δH = cδxT . (10)

Substituting this ansatz into (9) leads to the Broyden’s update,

H → H +
d−Hδx

δxT δx
δxT , (11)

where d
.
= ∇f(x + δx)−∇f(x). The update for the inverse matrix is given as

H−1 → H−1 +
(δx −H−1d)dT H−1

dT H−1δx
. (12)

SR1 update

The symmetric-rank-1 update (SR1) in chosen in the form

δH = ssT , (13)

where the vector s is found from the condition (9). The resulting update is

H → H +
(d−Hδx)(d−Hδx)T

(d−Hδx)T δx
. (14)

And for the inverse matrix

H−1 → H−1 +
(δx−H−1d)(δx −H−1d)T

(δx−H−1d)T d
. (15)

Downhill simplex method

The downhill simplex method (also called Nelder-Mead method or amoeba method) is a commonnly
used minimization algorithm, where the minimum of a function in an n-dimensional space is found by
transforming a simplex—a polytope with n+1 vertexes—according to the function values at the vertexes,
moving it downhill until it converges towards the minimum.

The advantages of the downhill simplex method is its stability and the lack of use of derivatives.
However, the convergence is realtively slow as compared to Newton’s methods.

In order to introduce the algorithm we need the following definitions:

• Simplex: a figure (polytope) represented by n+1 points, called vertexes, {p1, . . . ,pn+1} (where
each point pk is an n-dimensional vector).
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Method δH δH−1

DFP

BFGS

Broyden d−Hδx
δxT δx

δxT (δx−H−1
d)dT H−1

dT H−1δx

SR1 (d−Hδx)(d−Hδx)T

(d−Hδx)T δx

(δx−H−1
d)(δx−H−1

d)T

(δx−H−1d)T d

Table 1: Downhill simplex (Nelder-Mead) algorithm

REPEAT :
f i nd highest , lowest , and cen t r o i d po ints o f the s implex
try r e f l e c t i o n
IF f(reflected) < f(lowest) :

t ry expans ion
IF f(expanded) < f(reflected) :

accept expans ion
ELSE :

accept r e f l e c t i o n
ELSE :

IF f(reflected) < f(highest) :
accept r e f l e c t i o n

ELSE :
try con t r a c t i on
IF f(contracted) < f(highest) :

accept con t r a c t i on
ELSE :

do r educt i on
UNTIL converged ( e . g . s i z e ( s implex)< t o l e r ance )

• Highest point: the vertex, phi, with the largest value of the function: f(phi) = max(k) f(pk).

• Lowest point: the vertex, plo, with the smallest value of the function: f(plo) = min(k) f(pk).

• Centroid: the center of gravity of all points, except for the highest: pce = 1
n

∑

(k 6=hi) pk

The simplex is moved downhill by a combination of the following elementary operations:

1. Reflection: the highest point is reflected against the centroid, phi → pre = pce + (pce − phi).

2. Expansion: the highest point reflects and then doubles its distance from the centroid, phi → pex =
pce + 2(pce − phi).

3. Contraction: the highest point halves its distance from the centroid, phi → pco = pce+
1
2 (phi−pce).

4. Reduction: all points, except for the lowest, move towards the lowest points halving the distance.
pk 6=lo →

1
2 (pk + plo).

Finally, Table 1 shows one possible algorithm for the downhill simplex method.
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#include<armadi l lo >

#include<vector >

#include<f unc t i ona l>
using namespace std ;
using namespace arma ;

struct amoeba{
int d , hi , l o ; vector <vec> p ; vec p ce ; vec va lues ;
s td : : f unct i on<double( vec)> f ;
amoeba ( funct i on<double( vec)> fun , vector<vec> s implex ) ;
void update ( ) ; double s i z e ( ) ; void downhi l l (double s imp l e x s i z e g o a l ) ; } ;

void amoeba : : update ( ){
hi =0; for ( int i =1; i<d+1; i++) i f ( va lues [ i ]>va lues [ h i ] ) h i=i ;
l o =0; for ( int i =1; i<d+1; i++) i f ( va lues [ i ]<va lues [ l o ] ) l o=i ;
p ce = zeros <vec >(d ) ;
for ( int i =0; i<d+1; i++) i f ( i != h i ) p ce += p [ i ] ;
p ce /= d ;}

amoeba : : amoeba ( funct i on<double( vec)> fun , vector <vec> s implex )
: d( s implex . s i z e () −1) , f ( fun ) , va lues ( zeros <vec >(d+1)) , p ce ( zeros <vec >(d )){

for ( int i =0; i<d+1; i++) p . push back ( s implex [ i ] ) ;
for ( int i =0; i<d+1; i++) va lues [ i ] = f (p [ i ] ) ;
update ( ) ; }

double amoeba : : s i z e ( ){
double s=0;
for ( int i =0; i<d+1; i++) i f ( i != l o ){

double n = norm(p [ i ]−p [ l o ] , 2 ) ; i f (n>s ) s=n ;}
return s ; }

void amoeba : : downhi l l (double s imp l e x s i z e g o a l ){
while ( s i z e ()> s imp l e x s i z e g o a l ){

vec p r e = p ce + ( p ce − p [ h i ] ) ; // t r y r e f l e c t i o n
double f r e = f ( p r e ) ;
i f ( f r e < va lues [ l o ] )

{
vec p ex = p ce + 2∗( p ce − p [ h i ] ) ; // t r y expansion
double f e x = f ( p ex ) ;
i f ( f ex < f r e )

{
va lues [ h i ]= f e x ; p [ h i ]=p ex ; // accept expansion
update ( ) ; continue ;
}

}
i f ( f r e < va lues [ h i ] )

{
va lues [ h i ]= f r e ; p [ h i ]= p re ; // accept r e f l e c t i o n
update ( ) ; continue ;
}

vec p co = p ce +0.5∗(p [ h i ]−p ce ) ; // t r y cont rac t ion
double f c o = f ( p co ) ;
i f ( f c o < va lues [ h i ] )

{
va lues [ h i ]= f c o ; p [ h i ]=p co ; // accept cont rac t ion
update ( ) ; continue ;
}

for ( int i =0; i<d+1; i++) i f ( i != l o )
{
p [ i ]=0 .5∗ (p [ i ]+p [ l o ] ) ; // do reduc t ion
va lues [ i ]= f (p [ i ] ) ;
}

update ( ) ; continue ;
}// end whi l e

}// end downhi l l
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