
Power iteration methods and Krylov subspaces

Introduction

Power method is an iterative method to calculate an eigenvalue and the corresponding eigenvector of a
matrix A using the power iteration

xi+1 = Axi . (1)

The iteration converges to the eigenvector with the largest eigenvalue. The eigenvalue can be estimated
using the Rayleigh quotient
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The inverse power iteration with the inverse matrix,

xi+1 = A−1xi , (3)

converges to the smallest eigenvalue of matrix A.
Alternatively, the shifted inverse iteration,

xi+1 = (A− s1)−1xi , (4)

where 1 signifies a unity matrix of the same size as A, converges to the eigenvalue closest to the given
number s.

The inverse iteration method is a refinement of the inverse power method where the trick is not to
invert the matrix in (4) but rather solve the linear system

(A− s1)xi+1 = xi (5)

using e.g. QR-decomposition.
The better approximation s to the sought eigenvalue is chosen, the faster convergence one gets.

However, incorrect choice of s can lead to slow convergence or to the convergence of a different eigenvector.
Usually in practice the method is used when good approximation for the eigenvalue is known, and hence
one needs only few (quite often just one) iteration.

One can update the estimate for the eigenvalue using the Rayleigh quotient λ[xi] after each iteration
and get faster convergence for the price of O(n3) operations per QR-decomposition; or one can instead
make more iterations (with O(n2) operations per iteration) using the same matrix (A−s1). The optimal
strategy is probably an update after several iterations.

Krylov subspaces

When calculating an eigenvalue of a matrix A using the power method, one starts with an initial random
vector b and then computes iteratively the sequence Ab,A2b, . . . ,An−1b normalising and storing the
result in b on each iteration. The sequence converges to the eigenvector of the largest eigenvalue of A.

The set of vectors
Kn =

{

b,Ab,A2b, . . . ,An−1b
}

, (6)

where n < rank(A), is called the order-n Krylov matrix, and the subspace spanned by these vectors
is called the order-n Krylov subspace. The vectors are not orthogonal but can be made so e.g. by
Gram-Schmidt orthogonalisation.

For the same reason that An−1b approximates the dominant eigenvector one can expect that the
other orthogonalised vectors approximate the eigenvectors of the n largest eigenvalues.

Krylov subspaces are the basis of several successful iterative methods in numerical linear algebra, in
particular: Arnoldi and Lanczos methods for finding one (or a few) eigenvalues of a matrix; and GMRES
(Generalised Minimum RESidual) method for solving systems of linear equations.

These methods are particularly suitable for large sparse matrices as they avoid matrix-matrix opera-
tions but rather multiply vectors by matrices and work with the resulting vectors and matrices in Krylov
subspaces of modest sizes.
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Arnoldi iteration

Arnoldi iteration is an algorithm where the order-n orthogonalised Krylov matrix Qn for a given matrix
A is built using stabilised Gram-Schmidt process:

start with a set Q = {q1} consisting of one random normalised vector q1
;

repeat for k = 2 to n :

make a new vector qk
= Aqk−1

orthogonalise qk
to all vectors qi ∈ Q storing qi†qk → hi,k−1

normalise qk
storing ‖qk‖ → hk,k−1

add qk
to the set Q

By construction the matrix Hn made of the elements hjk is an upper Hessenberg matrix,
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, (7)

which is a partial orthogonal reduction of A into Hessenberg form,

Hn = Q†
nAQn . (8)

The matrix Hn can be viewed as a representation of A in the Krylov subspace Kn. The eigenvalues
and eigenvectors of the matrix Hn approximate the largest eigenvalues of matrix A.

Since Hn is a Hessenberg matrix of modest size its eigenvalues can be relatively easily computed with
standard algorithms.

In practice if the size n of the Krylov subspace becomes too large the method is restarted.

Lanczos iteration

Lanczos iteration is Arnoldi iteration for Hermitian matrices, in which case the Hessenberg matrix Hn

of Arnoldi method becomes a tridiagonal matrix Tn.
The Lanczos algorithm thus reduces the original hermitian N × N matrix A into a smaller n × n

tridiagonal matrix Tn by an orthogonal projection onto the order-n Krylov subspace. The eigenvalues and
eigenvectors of a tridiagonal matrix of a modest size can be easily found by e.g. the QR-diagonalisation
method.

In practice the Lanczos method is not very stable due to round-off errors leading to quick loss of
orthogonality. The eigenvalues of the resulting tridiagonal matrix may then not be a good approximation
to the original matrix. Library implementations fight the stability issues by trying to prevent the loss of
orthogonality and/or to recover the orthogonality after the basis is generated.

Generalised minimum residual (GMRES)

GMRES is an iterative method for the numerical solution of a system of linear equations,

Ax = b , (9)

where the exact solution x is approximated by the vector xn ∈ Kn that minimises the residual Axn − b

in the Krylov subspace Kn of matrix A,

x ≈ xn ← min
x∈Kn

‖Ax− b‖ . (10)

The vector xn ∈ Kn can be represented as xn = Qnyn where Qn is the projector on the space Kn

and yn is an n-dimensional vector. Substituting this into (9) gives

AQnyn = b , (11)

which can be solved by least-squares method.
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