
Interpolation

Introduction

In practice one often meets a situation where the function of interest, f(x), is only represented by a
discrete set of tabulated points,

{xi, yi = f(xi) | i = 1 . . . n},

obtained, for example, by sampling, experimentation, or extensive numerical calculations.
Interpolation means constructing a (smooth) function, called interpolating function or interpolant,

which passes exactly through the given points and hopefully approximates the tabulated function in
between the tabulated points. Interpolation is a specific case of curve fitting in which the fitting function
must go exactly through the data points.

The interpolating function can be used for different practical needs like estimating the tabulated
function between the tabulated points and estimating the derivatives and integrals involving the tabulated
function.

Polynomial interpolation

Polynomial interpolation uses a polynomial as the interpolating function. Given a table of n points,
{xi, yi}, where no two xi are the same, one can construct a polynomial P (x) of the order n − 1 which
passes exactly through the points: P (xi) = yi. This polynomial can be intuitively written in the Lagrange

form,

P (x) =

n
∑

i=1

yi

n
∏

k 6=i

x − xk

xi − xk

. (1)

The interpolating polynomial always exists and is unique.

Table 1: Polynomial interpolation in C

double po l i n t e r p ( int n , double ∗x , double ∗y , double z ) {
double s =0;
for ( int i =0; i<n ; i++) {

double p=1;
for ( int k=0;k<n ; k++) i f (k!= i ) p∗=(z−x [ k ] ) / ( x [ i ]−x [ k ] ) ;
s+=y [ i ]∗p ; }

return s ; }

Higher order interpolating polynomials are susceptible to the Runge’s phenomenon: erratic oscilla-
tions close to the end-points of the interval (see Figure 1).

Spline interpolation

Spline interpolation uses a piecewise polynomial, S(x), called spline, as the interpolating function,

S(x) = Si(x) , if x ∈ [xi, xi+1] , i = 1, . . . , n − 1 (2)

where Si(x) is a polynomial of a given order k.
The spline of the order k ≥ 1 can be made continuous at the tabulated points,

Si(xi) = yi , Si(xi+1) = yi+1 , i = 1, . . . , n − 1 , (3)

together with its k − 1 derivatives,

S′
i(xi+1) = S′

i+1(xi+1) ,
S′′

i (xi+1) = S′′
i+1(xi+1) ,

...

S
(k−1)
i (xi+1) = S

(k−1)
i+1 (xi+1) .

∣

∣

∣

∣

∣

∣

∣

∣

∣

i = 1, . . . , n − 2 (4)
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Figure 1: Lagrange interpolating polynomial, solid line, showing the Runge’s phenomenon: large oscil-
lations at the edges. For comparison the dashed line shows a cubic spline.

Continuity conditions (3) and (4) make kn+n−2k linear equations for the (n−1)(k+1) = kn+n−k−1
coefficients of n−1 polynomials (2) of the order k. The missing k−1 conditions can be chosen (reasonably)
arbitrarily.

The most popular is the cubic spline, where the polynomials Si(x) are of third order. The cubic
spline is a continuous function together with its first and second derivatives. The cubic spline has a nice
feature that it (sort of) minimizes the total curvature of the interpolating function. This makes the cubic
splines look good.

Quadratic splines—continuous with the first derivative—are not nearly as good as cubic splines in
most respects. In particular they might oscillate unpleasantly when a quick change in the tabulated
function is followed by a period where the function is nearly a constant. Cubic splines are somewhat less
susceptible to such oscillations.

Linear spline is simply a polygon drawn through the tabulated points.

Linear interpolation

Linear interpolation is a spline with linear polynomials. The continuity conditions (3) can be satisfied
by choosing the spline in the (intuitive) form

Si(x) = yi + pi(x − xi) , (5)

where

pi =
∆yi

∆xi

, ∆yi
.
= yi+1 − yi , ∆xi

.
= xi+1 − xi . (6)

Table 2: Linear interpolation in C

#include<a s s e r t . h>

double l i n t e r p ( int n , double∗ x , double∗ y , double z ){
a s s e r t ( z>=x [ 0 ] && z<=x [ n−1] && n>1);
int i =0, j=n−1; /∗ b inary search : ∗/
while ( j−i >1){ int m=( i+j )/2 ; i f ( z>x [m] ) i=m; else j=m;}
return y [ i ]+(y [ i +1]−y [ i ] ) / ( x [ i +1]−x [ i ] ) ∗ ( z−x [ i ] ) ;

}

Note that the search of the interval [xi ≤ x ≤ xi+1] in an ordered array {xi} should be done with the
binary search algoritm (also called half-interval search): the point x is compared to the middle element
of the array, if it is less than the middle element, the algorithm repeats its action on the sub-array to the
left of the middle element, if it is greater, on the sub-array to the right. When the remaining sub-array
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is reduced to two elements, the interval is found. The average number of operations for a binary search
is O(log n).

Quadratic spline

Quadratic spline is made of second order polynomials, conveniently written in the form

Si(x) = yi + pi(x − xi) + ci(x − xi)(x − xi+1)
∣

∣

∣

i=1,...,n−1
, (7)

which identically satisfies the continuity conditions

Si(xi) = yi , Si(xi+1) = yi+1

∣

∣

∣

i=1,...,n−1
. (8)

Substituting (7) into the derivative continuity condition,

S′
i(xi+1) = S′

i+1(xi+1)
∣

∣

∣

i=1,...,n−2
, (9)

gives n − 2 equations for n − 1 unknown coefficients ci,

pi + ci∆xi = pi+1 − ci+1∆xi+1

∣

∣

∣

i=1,...,n−2
. (10)

One coefficient can be chosen arbitrarily, for example c1 = 0. The other coefficients can now be
calculated recursively,

ci+1 =
1

∆xi+1
(pi+1 − pi − ci∆xi)

∣

∣

∣

i=1,...,n−2
. (11)

Alternatively, one can choose cn−1 = 0 and make the backward-recursion

ci =
1

∆xi

(pi+1 − pi − ci+1∆xi+1)
∣

∣

∣

i=n−2,...,1
. (12)

In practice, unless you know what your c1 (or cn−1) is, it is better to run both recursions and then
average the resulting c’s. This amounts to first running the forward-recursion from c1 = 0 and then the
backward recursion from 1

2cn−1.
The optimized form (7) of the quadratic spline can aslo be written in the ordinary form, suitable for

differentiation and integration

Si(x) = yi + bi(x − xi) + ci(x − xi)
2 , where bi = pi − ci∆xi . (13)

An implementation of quadratic spline in C is listed in Table

Cubic spline

Cubic splines are made of third order polynomials,

Si(x) = yi + bi(x − xi) + ci(x − xi)
2 + di(x − xi)

3 . (14)

This form automatically satisfies the first half of continuity conditions (3): Si(xi) = yi. The second half
of continuity conditions (3), Si(xi+1) = yi+1, and the continuity of the first and second derivatives (4)
give a set of equations,

yi + bihi + cih
2
i + dih

3
i = yi+1 , i = 1, . . . , n − 1

bi + 2cihi + 3dih
2
i = bi+1 , i = 1, . . . , n − 2

2ci + 6dihi = 2ci+1 , i = 1, . . . , n − 2 (15)

where
hi = xi+1 − xi . (16)
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Table 3: Quadratic spline in C

#include <s t d l i b . h>

#include <a s s e r t . h>

typedef struct { int n ; double ∗x , ∗y , ∗b , ∗c ;} qsp l i n e ;
q sp l i n e ∗ q s p l i n e a l l o c ( int n , double∗ x , double∗ y ){

// b u i l d s quadrat i c s p l i n e
qsp l i n e ∗ s = ( q sp l i n e ∗) mal loc ( s izeof ( q sp l i n e ) ) ; // s p l i n e
s−>b = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ; // b i
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ; // c i
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ; //copy of x i
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ; //copy of y i
s−>n = n ; for ( int i =0; i<n ; i++){s−>x [ i ] = x [ i ] ; s−>y [ i ] = y [ i ] ; }
double p [ n−1] , h [ n−1] ; //VLA from C99
for ( int i =0; i<n−1; i++){h [ i ]=x [ i +1]−x [ i ] ; p [ i ]=(y [ i +1]−y [ i ] ) / h [ i ] ; }
s−>c [ 0 ]=0 ; // recurs ion up :
for ( int i =0; i<n−2; i++)s−>c [ i +1]=(p [ i +1]−p [ i ]−s−>c [ i ]∗h [ i ] ) / h [ i +1] ;
s−>c [ n−2]/=2; // recurs ion down :
for ( int i=n−3; i >=0; i−−)s−>c [ i ]=(p [ i+1]−p [ i ]−s−>c [ i +1]∗h [ i +1])/h [ i ] ;
for ( int i =0; i<n−1; i++)s−>b [ i ]=p [ i ]−s−>c [ i ]∗h [ i ] ;
return s ; }

double q s p l i n e e v a l ( q sp l i n e ∗ s , double z ){ // e va l ua t e s s ( z )
a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1; // binary search :
while ( j−i >1){ int m=( i+j )/2 ; i f ( z>s−>x [m] ) i=m; else j=m;}
double h=z−s−>x [ i ] ;
return s−>y [ i ]+h∗( s−>b [ i ]+h∗ s−>c [ i ] ) ; }// i n e r po l a t i n g polynomial

void q s p l i n e f r e e ( q sp l i n e ∗ s ){ // f r e e the a l l o c a t e d memory
f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s ) ; }

The set of equations (15) is a set of 3n − 5 linear equations for the 3(n − 1) unknown coefficients
{ai, bi, ci | i = 1, . . . , n − 1}. Therefore two more equations should be added to the set to find the
coefficients. If the two extra equations are also linear, the total system is linear and can be easily solved.

The spline is called natural if the extra conditions are given as vanishing second derivative at the
end-points,

S′′(x1) = S′′(xn) = 0 , (17)

which gives

c1 = 0 ,

cn−1 + 3dn−1hn−1 = 0 . (18)

Solving the first two equations in (15) for ci and di gives1

cihi = −2bi − bi+1 + 3pi ,

dih
2
i = bi + bi+1 − 2pi , (19)

where pi
.
= ∆yi

hi

. The natural conditions (18) and the third equation in (15) then produce the following
tridiagonal system of n linear equations for the n coefficients bi,

2b1 + b2 = 3p1 ,

bi + (2
hi

hi+1
+ 2)bi+1 +

hi

hi+1
bi+2 = 3(pi + pi+1

hi

hi+1
)

∣

∣

∣

i=1,...,n−2
,

bn−1 + 2bn = 3pn−1 , (20)

or, in the matrix form,














D1 Q1 0 0 . . .
1 D2 Q2 0 . . .
0 1 D3 Q3 . . .
...

...
. . .

. . .
. . .

. . . . . . 0 1 Dn



























b1

...

...
bn













=













B1

...

...
Bn













(21)

1introducing an auxiliary coefficient bn.
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where the elements Di at the main diagonal are

D1 = 2 , Di+1 = 2
hi

hi+1
+ 2

∣

∣

∣

i=1,...,n−2
, Dn = 2 , (22)

the elements Qi at the above-main diagonal are

Q1 = 1 , Qi+1 =
hi

hi+1

∣

∣

∣

i=1,...,n−2
, (23)

and the right-hand side terms Bi are

B1 = 3p1 , Bi+1 = 3

(

pi + pi+1
hi

hi+1

)

∣

∣

∣

i=1,...,n−2
, Bn = 3pn−1 . (24)

This system can be solved by one run of Gauss elimination and then a run of back-substitution. After
a run of Gaussian elimination the system becomes















D̃1 Q1 0 0 . . .

0 D̃2 Q2 0 . . .

0 0 D̃3 Q3 . . .
...

...
. . .

. . .
. . .

. . . . . . 0 0 D̃n



























b1

...

...
bn













=













B̃1

...

...

B̃n













, (25)

where
D̃1 = D1 , D̃i = Di − Qi−1/D̃i−1

∣

∣

∣

i=2,...,n
, (26)

and
B̃1 = B1 , B̃i = Bi − B̃i−1/D̃i−1

∣

∣

∣

i=2,...,n
. (27)

The triangular system (25) can be solved by a run of back-substitution,

bn =
1

D̃n

B̃n , bi =
1

D̃i

(B̃i − Qibi+1)
∣

∣

∣

i=n−1,...,1
. (28)

An implementation of quadratic spline in C is listed in Table

Akima sub-spline interpolation

Akima sub-spline is an interpolating function in the form of a piecewise cubic polynomial [?], similar to
a cubic spline,

A(x)
∣

∣

∣

x∈[xi,xi+1]
= ai + bi(x − xi) + ci(x − xi)

2 + di(x − xi)
3 .

= Ai(x) . (29)

However, unlike the cubic spline, Akima sub-spline dispenses with the demand of maximal differentiability
of the spline—in this case, the continuity of the second derivative—hence the name sub-spline. Instead
of achieving maximal differentiability Akima sub-splines try to reduce the wiggling the ordinary splines
are typically prone to (see figure 2).

First let us note that the coefficients {ai, bi, ci, di} in eq. (29) are determined by the values of the
derivatives A′

i

.
= A′(xi) of the sub-spline through the continuity conditions for the sub-spline and its

first derivative,
Ai(xi) = yi, A′

i(xi) = A′
i, Ai(xi+1) = yi+1, A′

i(xi+1) = A′
i+1. (30)

Inserting (29) into (30) and solving for the coefficients gives

ai = yi, bi = A′
i, ci =

3pi − 2A′
i −A′

i+1

∆xi

, di =
A′

i + A′
i+1 − 2pi

(∆xi)2
, (31)

where pi
.
= ∆yi/∆xi, ∆yi

.
= yi+1 − yi, ∆xi

.
= xi+1 − xi.
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Table 4: Cubic spline in C

#include<s t d l i b . h>

#include<a s s e r t . h>

typedef struct { int n ; double ∗x ,∗y ,∗b ,∗ c ,∗d ;} c s p l i n e ;
c s p l i n e ∗ c s p l i n e a l l o c ( int n , double ∗x , double ∗y )
{// b u i l d s natura l cub i c s p l i n e

c s p l i n e ∗ s = ( c s p l i n e ∗) mal loc ( s izeof ( c s p l i n e ) ) ;
s−>x = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>y = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>b = (double∗) mal loc (n∗ s izeof (double ) ) ;
s−>c = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>d = (double∗) mal loc ( ( n−1)∗ s izeof (double ) ) ;
s−>n = n ; for ( int i =0; i<n ; i++){s−>x [ i ]=x [ i ] ; s−>y [ i ]=y [ i ] ; }
double h [ n−1] ,p [ n−1] ; // VLA
for ( int i =0; i<n−1; i++) h [ i ]=x [ i +1]−x [ i ] ;
for ( int i =0; i<n−1; i++) p [ i ]=(y [ i+1]−y [ i ] ) / h [ i ] ;
double D[ n ] , Q[ n−1] , B[ n ] ; // b u i l d i n g the t r i d i a g ona l system :
D[0 ]=2 ; for ( int i =0; i<n−2; i++)D[ i +1]=2∗h [ i ] / h [ i +1]+2; D[ n−1]=2;
Q[ 0 ]=1 ; for ( int i =0; i<n−2; i++)Q[ i +1]=h [ i ] / h [ i +1] ;
for ( int i =0; i<n−2; i++)B[ i +1]=3∗(p [ i ]+p [ i +1]∗h [ i ] / h [ i +1 ] ) ;
B[0 ]=3∗p [ 0 ] ; B[ n−1]=3∗p [ n−2] ; //Gauss e l im ina t i on :
for ( int i =1; i<n ; i++){ D[ i ]−=Q[ i −1]/D[ i −1] ; B[ i ]−=B[ i −1]/D[ i −1] ; }
s−>b [ n−1]=B[ n−1]/D[ n−1] ; // back−s u b s t i t u t i o n :
for ( int i=n−2; i >=0; i−−) s−>b [ i ]=(B[ i ]−Q[ i ]∗ s−>b [ i +1])/D[ i ] ;
for ( int i =0; i<n−1; i++){

s−>c [ i ]=(−2∗ s−>b [ i ]−s−>b [ i +1]+3∗p [ i ] ) / h [ i ] ;
s−>d [ i ]=( s−>b [ i ]+s−>b [ i +1]−2∗p [ i ] ) / h [ i ] / h [ i ] ;

}
return s ;

}
double c s p l i n e e v a l ( c s p l i n e ∗s , double z ){ // e va l ua t i on of s p l i n e

a s s e r t ( z>=s−>x [ 0 ] && z<=s−>x [ s−>n−1 ] ) ;
int i =0, j=s−>n−1;// binary search f o r the i n t e r v a l f o r z :
while ( j−i >1){ int m=( i+j )/2 ; i f ( z>s−>x [m] ) i=m; else j=m; }
double h=z−s−>x [ i ] ; // c a l c u l a t e the i n e r po l a t i n g s p l i n e :
return s−>y [ i ]+h∗( s−>b [ i ]+h∗( s−>c [ i ]+h∗ s−>d [ i ] ) ) ;

}
void c s p l i n e f r e e ( c s p l i n e ∗ s ){ // f r e e the a l l o c a t e d memory

f r e e ( s−>x ) ; f r e e ( s−>y ) ; f r e e ( s−>b ) ; f r e e ( s−>c ) ; f r e e ( s−>d ) ; f r e e ( s ) ; }

In the ordinary qubic spline the derivatives A′
i are determined by the continuity condition of the

second derivative of the spline. Sub-splines do without this continuity condition and can instead use the
derivatives as free parameters to be chosen to satisfy some other condition.

Akima suggested to minimize the wiggling by choosing the derivatives as linear combinations of the
nearest slopes,

A′
i =

wi+1pi−1 + wi−1pi

wi+1 + wi−1
, if wi+1 + wi−1 6= 0 , (32)

A′
i =

pi−1 + pi

2
, if wi+1 + wi−1 = 0 , (33)

where the weights wi are given as
wi = |pi − pi−1| . (34)

The idea is that if three points lie close to a line, the sub-spline in this vicinity has to be close to this
line. In other words, if |pi − pi−1| is small, the nearby derivatives must be close to pi.

The first two and the last two points need a special prescription, for example (naively) one can simply
use

A′
1 = p1, A

′
1 =

1

2
p1 +

1

2
p2, A′

n = pn−1, A
′
n−1 =

1

2
pn−1 +

1

2
pn−2. (35)

Table (5) shows a javascript implementation of this algorithm.
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Figure 2: A cubic spline (solid line) showing the typical wiggles, compared to the Akima sub-spline
(dashed line) where the wiggles are essentially removed.

Other forms of interpolation

Other forms of interpolation can be constructed by choosing different classes of interpolating functions,
for example, rational function interpolation, trigonometric interpolation, wavelet interpolation etc.

Sometimes not only the values of the function are tabulated but also the values of its derivative. This
extra information can be taken advantage of when constructing the interpolation function.

Multivariate interpolation

Interpolation of a function in more than one varibale is called multivariate interpolation. The function
of interest is represented as a set of discrete points in a multidimentional space. The points may or may
not lie on a regular grid.

Nearest-neighbor interpolation

Nearest-neighbor interpolation approximates the value of the function at a non-tabulated point by the
value at the nearest tabulated point, yielding a piecewise-constant interpolating function. It can be used
for both regular and irregular grids.

Piecewise-linear interpolation

Piecewise-linear interpolation is used to interpolate functions of two variables tabulated on irregular
grids. The tabulated 2D region is triangulated – subdivided into a set of non-intersecting triangles
whose union is the original region. Inside each triangle the interpolating function S(x, y) is taken in the
linear form,

S(x, y) = a + bx + cy , (36)

where the three constants are determined by the three conditions that the interpolating function is equal
the tabulated values at the three vertices of the triangle.

Bi-linear interpolation

Bi-linear interpolation is used to interpolate functions of two variables tabulated on regular rectilinear
2D grids.

The interpolating function B(x, y) inside each of the grid rectangles is taken as a product of two
linear functions of x and y respectively,

B(x, y) = (α + βx)(γ + δy)
.
= a + bx + cy + dxy , (37)
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Table 5: Javascript implementation of Akima sub-spline.

Array . prototype . i t e r a t o r =func t i on ( )
{ for ( var i =0; i<t h i s . l ength ; i++)y i e l d i }

f unc t i on akima (x , y ){
var n=x . l ength ;
var h=[(x [ i +1]−x [ i ] ) for ( i i n x ) i f ( i<n−1) ] ;
var p=[(y [ i +1]−y [ i ] ) / h [ i ] for ( i i n h ) ] ;
var A=new Array (n ) , c=new Array (n−1) , d=new Array (n−1);

A[0]=p [ 0 ] ; A[1 ]=(p [0 ]+p [ 1 ] ) / 2 ;
A[ n−1]=p [ n−2] ; A[ n−2]=(p [ n−2]+p [ n−3 ] )/2 ;
for ( var i =2; i<n−2; i++)
{ w1=Math . abs (p [ i+1]−p [ i ] ) ; w2=Math . abs (p [ i −1]−p [ i −2 ] ) ;

i f (w1+w2==0) A[ i ]=(p [ i −1]+p [ i ] ) / 2 ;
else A[ i ]=(w1∗p [ i −1]+w2∗p [ i ] ) / (w1+w2 ) ;

}

for ( var i =0; i<n−1; i++)
{ c [ i ]=(3∗p [ i ]−2∗A[ i ]−A[ i +1])/h [ i ] ;

d [ i ]=(A[ i +1]+A[ i ]−2∗p [ i ] ) / h [ i ] / h [ i ] ;
}

var s p l i n e=func t i on ( z )
{ i f ( z<x [ 0 ] | | z>x [ n−1]) throw ” s p l i n e : out o f range ” ;

var i =0, j=n−1;
while ( j−i >1){

var mid=Math . round ( ( i+j )/2 ) ;
i f ( z>x [ mid ] ) i=mid ; else j=mid ;}

var dx=z−x [ i ] ;
return y [ i ]+dx∗(A[ i ]+dx ∗( c [ i ]+dx∗d [ i ] ) ) ;

}
return s p l i n e ;

}

where the four constants a, b, c, d are obtained from the four conditions that the interpolating function is
equal the tabulated values at the four nearest tabulated points (which are the vertices of the given grid
rectangle).
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