Nonlinear equations

Introduction

Non-linear equations (or root-finding) is a problem of finding a set of n variables x = {x1,...,x,} which
satisfy a system n (generally) non-linear equations

fi(.’L'l,...,l'n) =0 ) . (1)
In matrix notation the system is written as
f(x) =0, (2)

where £ = {f1,..., fn}
In the one-dimensional case it is generally possible to plot the function in the region of interest

and see whether the graph crosses the xz-axis. One can then be sure the root exists and even learn its
approximate position to start one’s root-finding algorithm with. In multi-dimensions one generally does
not know if the root exists at all, until it is found.

The root-finding algorithms generally proceed by iteration, starting from some approximate solution
and making consecutive steps (hopefully) in the direction of the suspected root until some convergence
criterion is satisfied. The procedure is generally not even guaranteed to converge unless starting from a
point close enough to the sought root.

We shall only consider the multi-dimensional case here since i) the multi-dimensional root-finding is
more difficult, and ii) the multi-dimensional routines can also be used in a one-dimensional case.

Newton’s method

Newton’s method (also reffered to as Newton-Raphson method, after Isaac Newton and Joseph Raphson)
is a root-finding algorithm that uses the first term of the Taylor series of the functions f; to linearise the
system (1) in the vicinity of a suspected root. It is one of the oldest and best known methods and is a
basis of a number of more refined methods.

Suppose that the point x = {x1,...,x,} is close to the root. The Newton’s algorithm tries to find
the step Ax which would move the point towards the root, such that

filx+Ax) =0 (3)

1=1,...,n

The first order Taylor expansion of (3) gives a system of linear equations,

: (4)

— dfi B
fi(x) + ; Sy e =0

1=1,...,n
or, in the matrix form,
JAx = —f(x), (5)
where f(x) = {fo(x),..., fo(x)} and J is the matrix of partial derivatives?,
Ofi
Jik = , 6
L. (6)

called the Jacobian matriz.
The solution Ax to the linear system (5)—called the Newton’s step—gives the approximate direction
and the step-size towards the solution.

Lin practice if derivatives are not available analytically one uses finite differences

Ofi _ filx1, k-1, + 0T, Tp415- -, Tn) — filT1,- -, Tk, - .-, Tn)
oxy, ox

with dx < s where s is the typical scale of the problem at hand.



The Newton’s method converges quadratically if sufficiently close to the solution. Otherwise the full
Newton’s step Ax might actually diverge from the solution. Therefore in practice a more conservative
step AAx with A < 1 is usually taken. The strategy of finding the optimal ) is referred to as line search.

It is typically not worth the effort to find A which minimizes ||f(x + AAx)|| exactly, since Ax is only
an approximate direction towards the root. Instead an inexact but quick minimization strategy is usually
used, like the backtracking line search where one first attempts the full step, A = 1, and then backtracks,
A« A/2, until the condition

Ifc+ 28x)] < (1= 3) Il ™

is satisfied. If the condition is not satisfied for sufficiently small A\, the step is taken with A, simply
to step away from this diffictul place and try again. A typical algrorithm of the Newton’s method with
backtracking line search and condition (7) is shown in Table 1.

Table 1: Newton’s root-finding method with backtracking.

repeat
solve JAx = —f(x) for Ax
A=1
while [|f(x + AAx)|| > (1 — 3) If(x)|| and A > & do A =X/2
X =X + AAX
until converged (e.g. [[f(x)]| < tolerance)

A somewhat more refined backtracking linesearch is based on an approximate minimization of the
function

9(N) = 2 F(x + Adx) ®)

using interpolation. The values g(0) = 1||f(x)[|? and ¢’(0) = —||f(x)||? are already known (check this).

If the previous step with certain Ay was rejected, we also have g(Agria1). These three quantities allow
to build a quadratic approximation,

g(A\) = g(0) + g'(0)A + A, (9)
where \ 0 OW
C:g( trial)_g(2)_g( ) trial ) (10)
)\trial
The minimum of this approximation (determined by the condition g’(A) = 0),
A
Anext = 79 (0) (11)

becomes the next trial step-size.
The procedure is repeated recursively until either condition (7) is satisfied or the step becomes too
small (in which case it is taken unconditionally in order to simply get away from the difficult place).

Broyden’s quasi-Newton method

The Newton’s method requires calculation of the Jacobian matrix at every iteration. This is generally an
expensive operation. Quasi-Newton methods avoid calculation of the Jacobian matrix at the new point
x + 0%, instead trying to use certain approximations, typically rank-1 updates.

Broyden’s algorithm estimates the Jacobian J + dJ at the point x + dx using the finite-difference
approximation,

(J + 63)ox = of , (12)

where 6f = f(x 4 dx) — f(x) and J is the Jacobian at the point x.

The matrix equation (12) is under-determined in more than one dimension as it contains only n
equations to determine n? matrix elements of 6J. Broyden suggested to choose 4J as a rank-1 update,
linear in 0x,

6J = cox’, (13)



Table 2: C implementation of Newton’s method with backtracking.

#include<matrix.h>
#include<qr.h>

vector* newton (
vectorxf(vector*x),vectorkxstartx ,vector*dx,double eps)
{ vectorx x=vector_copy (startx);
int n=x—>size;
matrix *A=matrix_alloc(n,n
matrix *R=matrix_alloc(n,n
vector xDx=vector_alloc(n);
vector xy=vector_alloc(n);
vector xfx=vector_alloc(n);
vector xfy=vector_alloc(n
vector xdf=vector_alloc (n
do{
fx=f(x);
for (int j=0;j<n;j++){
vector._set (x,j,vector_get (x,j)+vector_get (dx,j));
df=vector_sum (1,f(x),—1,fx);
for (int i=0;i<n;i++)
matrix_set (A,i,j,vector_get(df,i)/vector_get (dx,j));
vector_set (x,j,vector_get (x,j)—vector_get (dx,j));

);
).

)

);
).

)

qrdec(A,R);
vector* minusfx=vector_copy (fx);vector_scale (minusfx,—1);
Dx=qrback (A,R, minusfx);

double lambda=2;

do{
lambda /=2;
y=vector_sum (1,x,lambda ,Dx);
fy=f(y);

}while (vector_norm (fy)>(1—lambda/2)* vector_norm (fx)
&& lambda >0.02);
x=y; fx=fy;
}while (vector _norm (Dx)>vector_norm (dx) && vector_norm (fx)>eps);
return x;




where the unknown vector ¢ can be found by substituting (13) into (12), which gives

of — Jox

6 = ————oxT . (14)
16|

In practice if one wonders too far from the point where J was first calculated the accuracy of the

updates may decrease significantly. In such case one might need to recalculate J anew. For example, two

successive steps with Ay, might be interpreted as a sign of accuracy loss in J and subsequently trigger
its recalculation.



