Minimization
Introduction

Minimization is a problem of finding the minimum (or the maximum) of a given, generally non-linear,
real valued function f(x) of an n-dimensional argument x = {x1,...,2,}.
Minimization is a simple case of a more general poblem—optimization—which includes finding best
available values of some objective function within a given domain and subject to given constrains.
Minimization is related to root-finding as at the minimum all partial derivatives of the objective
function vanish,
of

axi

One can alternatively solve this system of non-linear equations.

0. (1)

Newton’s methods

Newton’s method is based on the quadratic approxiamtion of the objective function f in the vicinity of
the suspected minimum,

f(x+Ax) ~ f(x) + Vix)TAx + %AXTH(X)AX , (2)

where the vector V f(x) is the gradient of the objective function at the point x,

v = [2E] ®)

.....

and H(x) is the Hessian matriz— a square matrix made of second-order partial derivatives of the objective
function at the point x,

- [22

The minimum of this quadratic form as function of Ax is found at the point where its gradient with
respect to Ax vanishes,

(4)

L,j@,...,n '
Vix)+Hx)Ax=0. (5)
This gives an approximate step towards the minimum, called the Newton’s step,
Ax = —H(x)'Vf(x). (6)
The original Newton’s method is simply the iteration,
Xp+1 = X — H(x) TV f (%) (7)

where at each iteration the full Newton’s step is taken and the Hessian matrix is recalculated. In practice,
instead of calculating H™! one rather solves the linear equation (5).

Usually Newton’s method is modified to include a smaller step size, AAx, with 0 < A < 1. The step-
size A can be found by a backtracking algoritm similar to that in the Newton’s method for root-finding.
One starts with A = 1 and than backtracks, A « /2, until the Armijo condition,

f(x+ AAX) < f(x) + aVf(x)\Ax, (8)

is satisfied. The parameter o can be chosen as small as 1074,

Quasi-Newton methods

Quasi-Newton methods are variations of the Newton’s method which attempt to avoid recalculation of
the Hessian matrix at each iteration, trying instead certain updates based on the analysis of the gradient
vectors. The update 0H is usually chosen to satisfy the condition

Vix+6x)=Vf(x)+ (H+ H)ox, 9)

called secant equation, which is the Taylor expansion of the gradient. This secant condition is under-
determined in more than one dimension as it consists of only n equations for the n? unknown elements
of the update dH. Various quasi-Newton methods use different choices for the form of the solution of
the secant equation.

In quasi-Newton methods one often starts with a unity matrix as the zeroth approximation for the
Hessian matrix and then applies the updates. In this case one can actually use the inverse Hessian
matrix—thus avoiding the need to solve the linear equation at each iteration—and apply the updates
directly to the inverse matrix.

Broydens’s update

The Broyden’s update is chosen in the form
§H = cox” . (10)
Substituting this ansatz into (9) leads to the Broyden’s update,
d— Hoéx

H — H+ ————xT 11
oA oxTéox X (11)
where d = Vf(x + dx) — Vf(x). The update for the inverse matrix is given as
5x — H-'d)dTH!
H'—-Hg! (12
- + dTH-16x (12)
SR1 update
The symmetric-rank-1 update (SR1) in chosen in the form
6H = ssT | (13)
where the vector s is found from the condition (9). The resulting update is
(d — Héx)(d — Héx)T
H H 14
- (d— Héx)Tox (14)
And for the inverse matrix
ox — H1d)(6x — H~'d)T
H—l —)H_l + (X)(X) (15)

(0x— H-'d)Td

Downhill simplex method

The downhill simplex method (also called Nelder-Mead method or amoeba method) is a commonnly
used minimization algorithm, where the minimum of a function in an n-dimensional space is found by
transforming a simplex—a polytope with n+1 vertexes—according to the function values at the vertexes,
moving it downhill until it converges towards the minimum.

The advantages of the downhill simplex method is its stability and the lack of use of derivatives.
However, the convergence is realtively slow as compared to Newton’s methods.

In order to introduce the algorithm we need the following definitions:

e Simplex: a figure (polytope) represented by n+1 points, called vertexes, {pi,...,Pn+1} (where
each point py is an n-dimensional vector).

Method 0H SH-1
DFP
BFGS
SR1 | R | e
Table 1: Downhill simplex (Nelder-Mead) algorithm
REPEAT :

find highest , lowest, and centroid points of the simplex
try reflection
IF f(reflected) < f(lowest) :
try expansion
IF f(expanded) < f(reflected) :
accept expansion
ELSE :
accept reflection
ELSE :
IF f(reflected) < f(highest) :
accept reflection
ELSE :
try contraction
IF f(contracted) < f(highest)
accept contraction
ELSE
do reduction
UNTIL converged (e.g. size(simplex)<tolerance)

e Highest point: the vertex, ppi, with the largest value of the function: f(pni) = max() f(px)-

e Lowest point: the vertex, pi,, with the smallest value of the function: f(pi,) = minyy f(px)-

e Centroid: the center of gravity of all points, except for the highest: pc. = % Z(k 4hi) Pk
The simplex is moved downhill by a combination of the following elementary operations:
1. Reflection: the highest point is reflected against the centroid, pn;i — Pre = Pce + (Pce — Phi)-

2. Expansion: the highest point reflects and then doubles its distance from the centroid, pp; — Pex =
Pce + 2(pce - phi)-

3. Contraction: the highest point halves its distance from the centroid, py; — peo = pce+%(phi—pce).

4. Reduction: all points, except for the lowest, move towards the lowest points halving the distance.
Pk#lo — %(pk + Plo)-

Finally, Table 1 shows one possible algorithm for the downhill simplex method.

#include<armadillo>
#include<vector>
#include<functional>
using namespace std;
using namespace arma;

struct amoebaf{
int d,hi,lo; vector<vec> p; vec p-ce; vec values;
std :: function<double(vec)> f;
amoeba(function<double(vec)> fun, vector<vec> simplex);
void update (); double size (); void downhill (double simplex_size_goal);};

)

void amoeba:: update (){
hi=0; for(int i=1;i<d+1;i++) if(values|[i]>values[hi]) hi=i;
lo=0; for(int i=1;i<d+1;i++) if(values[i]<values[lo]) lo=i;
p-ce = zeros<vec>(d);
for (int i=0;i<d+1;i++)if (i!=hi) p-ce += p[i];
p-ce /= d;}

amoeba : : amoeba(function<double(vec)> fun, vector<vec> simplex)
:d(simplex.size()—1), f(fun), values(zeros<vec>(d+1)), p-ce(zeros<vec>(d)){
for (int i=0;i<d+1;i++) p.push_back(simplex[i]);
for (int i=0;i<d+1;i4++) values[i] = f(p[i]);
update (); }

double amoeba:: size (){
double s=0;
for (int i=0;i<d+1;i++)if (i!=1o){
double n = norm(p[i]—-p[lo],2); if(n>s) s=n;}
return s; }

void amoeba:: downhill (double simplex_size_goal){
while(size()>simplex_size_goal){
vec p-re = p_ce + (p-ce — plhi]); // try reflection
double f_re = f(p-re);
if(f_re < values[lo])
{
vec p-ex = p-ce + 2x(p-ce — p[hi]); // try ezpansion
double f_ex = f(p-ex);
if (fiex<f_re)

values [hi]|=f_ex; p|hi]=p-ex;// accept ezpansion
update (); continue;

}

if(f_re < values[hi])

values [hi]=f_re; p[hi]=p-re; // accept reflection
update (); continue;

vec p-co = p_ce+0.5%(p[hi]—p-ce); // try contraction
double f_co = f(p-co);

if (f_co < values[hi])

values [hi]=f_co; p[hi]=p_co; // accept contraction
update (); continue;

for (int i=0;i<d+1;i++)if(il=lo)

p[i]=0.5%(p[i]+p[lo]); // do reduction
values [i]=f(p[i]);

update (); continue;
}Y// end while
Y// end downhill

