
Ordinary differential equations

Introduction

Ordinary differential equations (ODE) are generally defined as differential equations in one variable where
the highest order derivative enters linearly. Such equations invariably arise in many different contexts
throughout mathematics and science as soon as changes in the phenomena at hand are considered, usually
with respect to variations of certain parameters.

Systems of ordinary differential equations can be generally reformulated as systems of first-order
ordinary differential equations,

y′(x) = f(x,y) , (1)

where y′
.
= dy/dx, and the variables y and the right-hand side function f(x,y) are understood as

column-vectors. For example, a second order differential equation in the form

u′′ = g(x, u, u′) (2)

can be rewritten as a system of two first-order equations,
{

y′

1 = y2

y′

2 = g(x, y1, y2)
, (3)

using the variable substitution y1 = u, y2 = u′.
In practice ODEs are usually supplemented with boundary conditions which pick out a certain class

or a unique solution of the ODE. In the following we shall mostly consider initial value problems: ODE
with the boundary condition in the form of an initial condition at a given point a,

y(a) = y0 . (4)

The problem then is to find the value of the solution y at some other point b. Finding a solution to an
ODE is often referred to as integrating the ODE.

An ODE integration algorighm typically advances the solution from the initial point a to the final
point b in a number of discrete steps

{x0
.
= a, x1, . . . , xn−1, xn

.
= b}. (5)

An efficient algorithm tries to integrate an ODE using as few steps as possible under the constraint of
the given accuracy goal. For this purpose the algorthm should continuously adjust the step-size during
the integration, using few larger steps in the regions where the solution is smooth and perhaps many
smaller steps in more treacherous regions.

Typically, an adaptive step-size ODE integrator is implemented as two routines. One of them—called
driver—monitors the local errors and tolerances and adjusts the step-sizes. To actually perform a step
the driver calls a separate routine—the stepper—which advances the solution by one step, using one of the
many available algorithms, and estimates the local error. The GNU Scientific Library, GSL, implements
about a dozen of different steppers and a tunable adaptive driver.

In the following the chapter describes several of the popular driving algorithms and stepping methods
for solving initial value ODE problems.

Error estimate

In an adaptive step-size algorithm the stepping routine must provide an estimate of the integration error,
upon which the driver bases its strategy to determine the optimal step-size for a user-specified accuracy
goal.

A stepping method is generally characterized by its order : a method has order p if it can integrate
exactly an ODE where the solution is a polynomial of order p. In other words, for small h the error of
the order-p method is O(hp+1).

For sufficiently small steps the error δy of an integration step for a method of a given order p can be
estimated by comparing the solution yfull step obtained with one full-step integration with a potentially
more precise solution, ytwo half steps, obtained with two consecutive half-step integrations,

δy =
yfull step − ytwo half steps

2p+1 − 1
. (6)
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where p is the order of the algorithm used.
Indeed, if the step-size h is small, we can assume

δyfull step = Chp+1 , (7)

δytwo half steps = C

(

h

2

)p+1

, (8)

where δyfull step and δytwo half steps are the errors of the full-step and two half-steps integrations, and C
is an unknown constant. The two can be combined as

yfull step − ytwo half steps = δyfull step − δytwo half steps

= C

(

h

2

)p+1

(2p+1 − 1) , (9)

from which it immedliately follows that

C

(

h

2

)p+1

=
yfull step − ytwo half steps

2p+1 − 1
. (10)

One has, of course, to take the potentially more precise ytwo half steps as the solution y. Its error is then
given as

δy
.
= δytwo half steps = C

(

h

2

)p+1

=
yfull step − ytwo half steps

2p+1 − 1
, (11)

which had to be demonstrated. This prescription is often referred to as the Runge’s principle.
One drawback of the Runge’s principle is that the full-step and the two half-step calculations generally

do not share evaluations of the right-hand side function f(x,y), and therefore many extra evaluations
are needed to estimate the error.

An alternative prescription for error estimation is to make the same step-size integration using two
methods of different orders, with the difference between the two solutions providing the estimate of the
error. If the lower order method mostly uses the same evaluations of the right-hand side function—in
which case it is called embedded in the higher order method—the error estimate does not need additional
evaluations.

Predictor-corrector methods are naturally of embedded type: the correction—which generally in-
creases the order of the method—itself can serve as the estimate of the error.

Runge-Kutta methods

Runge-Kutta methods are one-step methods which advance the solution over the current step using only
the information gathered from withing the step itself. The solution y is advanced from the point xi to
xi+1 = xi + h, where h is the step-size, using a one-step formula,

yi+1 = yi + hk, (12)

where yi+1 is the approximation to y(xi+1), and the value k is chosen such that the method integrates
exactly an ODE whose solution is a polynomial of the highest possible order.

The Runge-Kutta methods are distinguished by their order : a method has order p if it can integrate
exactly an ODE where the solution is a polynomial of order p. In other words, for small h the error of
the order-p method is O(hp+1).

The first order Runge-Kutta method is the Euler’s method,

k = f(x0,y0) . (13)

Second order Runge-Kutta methods advance the solution by an auxiliary evaluation of the derivative,
e.g. the mid-point method,

k0 = f(x0,y0) ,

k1/2 = f(x0 + 1
2
h,y0 + 1

2
hk0) ,

k = k1/2 , (14)
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or the two-point method, also called the Heun’s method

k0 = f(x0,y0),

k1 = f(x0 + h,y0 + hk0),

k =
1

2
(k0 + k1) . (15)

These two methods can be combined into a third order method,

k =
1

6
k0 +

4

6
k1/2 +

1

6
k1 . (16)

The most commont is the fourth-order method, which is called RK4 or simply the Runge-Kutta

method,

k0 = f(x0,y0) ,

k1 = f(x0 + 1
2
h,y0 + 1

2
hk0) ,

k2 = f(x0 + 1
2
h,y0 + 1

2
hk1) ,

k3 = f(x0 + h,y0 + hk2) ,

k = 1
6
(k0 + 2k1 + 2k2 + k3) . (17)

A general Runge-Kutta method can be written as

yn+1 = yn +
s

∑

i=1

biKi , (18)

where

K1 = hf(xn,yn) ,

K2 = hf(xn + c2h,yn + a21K1) ,

K3 = hf(xn + c3h,yn + a31K1 + a32K2) , (19)

...

Ks = hf(xn + csh,yn + as1K1 + as2K2 + · · · + as,s−1Ks−1) .

The upper case Ki are simply the lower case ki multiplied by the step-size h.
To specify a particular Runge-Kutta method one needs to provide the coefficients {aij |1 ≤ j < i ≤ s},

{bi|i = 1..s} and {ci|i = 1..s}. The matrix [aij ] is called the Runge-Kutta matrix, while the coefficients
bi and ci are known as the weights and the nodes. These data are usually arranged in the so called
Butcher’s tableau,

0
c2 a21

c3 a31 a32

...
...

. . .

cs as1 as2 · · · as,s−1

b1 b2 · · · bs−1 bs

. (20)

For example, the Butcher’s tableau for the RK4 method is

0
1/2 1/2
1/2 0 1/2
1 0 0 1

1/6 1/3 1/3 1/6

. (21)
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Embeded methods with error estimates

The embedded Runge-Kutta methods—in addition to advancing the solution by one step—produce an
estimate of the local error of the step. This is done by having two methods in the tableau, one with a
certain order p and another one with order p − 1. The difference bitween the two method gives the the
estimate of the local error. The lower order method is embedded in the higher order method, that is, it
uses the same K-values. This allows a very effective estimate of the error.

The embedded lower order method is written as

y∗

n+1 = yn +

s
∑

i=1

b∗i Ki , (22)

where Ki are the same as for the higher order method. The error estimate is then given as

en = yn+1 − y∗

n+1 =

s
∑

i=1

(bi − b∗i )Ki . (23)

The Butcher’s tableau for this kind of method is extended by one row to give the values of b∗i .
The simplest embedded methods are Heun-Euler method,

0
1 1

1/2 1/2
1 0

, (24)

and midpoint-Euler method,
0

1/2 1/2
0 1
1 0

, (25)

which both combine methods of orders 2 and 1. An implementation of the midpoint-Euler method in C
is shown in Table 1.

Table 1: Embedded Runge-Kutta midpoint-Euler stepper with error estimate.

void rks tep12 (void f ( int n , double x , double∗ y , double∗ dydx ) ,
int n , double x , double∗ y , double h , double∗ yout , double∗ e r r )
{ double k1 [ n ] , k2 [ n ] , ytmp [ n ] ; //VLA: −−s td=c99

f (n , x , y , k1 ) ;
for ( int i = 0 ; i<n ; i++) ytmp [ i ]=y [ i ]+1./2∗h∗k1 [ i ] ;
f (n , x+1./2∗h , ytmp , k2 ) ;
for ( int i = 0 ; i<n ; i++){ yout [ i ]=y [ i ]+h∗k2 [ i ] ;

e r r [ i ]=h∗( k2 [ i ]−k1 [ i ] ) / 2 ; } // op t im i s t i c
}

The BogackiShampine method [?] combines methods of orders 3 and 2,

0
1/2 1/2
3/4 0 3/4
1 2/9 1/3 4/9

2/9 1/3 4/9 0
7/24 1/4 1/3 1/8

. (26)

Bogacki and Shampine argue that their method has better stability properties and actually outperforms
higher order methods at lower accuracy goal calculations. This method has the FSAL—first same as
last—property: the value k4 at one step equals k1 at the next step; thus only three function evaluations
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Table 2: Embedded Runge-Kutta Bogacki-Shampine stepper

void rks tep23 ( void f ( int n , double x , double∗ y , double∗ dydx ) ,
int n , double x , double∗ y , double h , double∗ yout , double∗ e r r )
{ double k1 [ n ] , k2 [ n ] , k3 [ n ] , k4 [ n ] , ytmp [ n ] ; //VLA: −s td=c99

f (n , x , y , k1 ) ;
for ( int i =0; i<n ; i++) ytmp [ i ]=y [ i ]+1./2∗k1 [ i ]∗h ;
f (n , x+1./2∗h , ytmp , k2 ) ;
for ( int i =0; i<n ; i++) ytmp [ i ]=y [ i ]+3./4∗k2 [ i ]∗h ;
f (n , x+3./4∗h , ytmp , k3 ) ;
for ( int i =0; i<n ; i++)

ytmp [ i ]=y [ i ]+(2./9∗ k1 [ i ]+1./3∗k2 [ i ]+4./9∗k3 [ i ] ) ∗ h ;
f (n , x+h , ytmp , k4 ) ;
for ( int i = 0 ; i<n ; i++)
{ yout [ i ]=y [ i ]+(2./9∗ k1 [ i ]+1./3∗k2 [ i ]+4./9∗k3 [ i ] ) ∗ h ;

ytmp [ i ]=y [ i ]+(7./24∗ k1 [ i ]+1./4∗k2 [ i ]+1./3∗k3 [ i ]+1./8∗k4 [ i ] ) ∗ h ;
e r r [ i ]=yout [ i ]−ytmp [ i ] ;

}
}

are needed per step. Table 2 shows a simple implementation which does not utilise this property for the
sake of presentational clarity.

The Runge-Kutta-Fehlberg method [?]—called RKF45–implemented in the renowned rkf45 Fortran
routine, has two methods of orders 5 and 4,

0
1/4 1/4
3/8 3/32 9/32

12/13 1932/2197 −7200/2197 7296/2197
1 439/216 −8 3680/513 −845/4104

1/2 −8/27 2 −3544/2565 1859/4104 −11/40
25/216 0 1408/2565 2197/4104 −1/5 0
16/135 0 6656/12825 28561/56430 −9/50 2/55

Multistep methods

Multistep methods try to use the information about the function gathered at the previous steps. They
are generally not self-starting as there are no previous points at the start of the integration. The first
step must be done with a one-step method like Runge-Kutta.

A number of multistep have been devised (and named after different mathematicians); we shall only
consider a few simple ones here to get the idea of how it works.

Two-step method

Given the previous point, (xi−1,yi−1), in addition to the current point (xi,yi), the sought function y

can be approximated in the vicinity of the point xi as

ȳ(x) = yi + y′

i · (x − xi) + c̄ · (x − xi)
2, (27)

where y′

i = f(xi,yi) and the coefficient c̄ can be found from the condition ȳ(xi−1) = yi−1, which gives

c̄ =
yi−1 − yi + y′

i · (xi − xi−1)

(xi − xi−1)2
. (28)

The value of the function at the next point, xi+1
.
= xi + h, can now be estimated as ȳ(xi+1) from (27).

The error of this second-order two-step stepper can be estimated by a comparison with the first-order
Euler’s step, which is given by the linear part of (27). The correction term c̄h2 can serve as the error
estimate,

δy = c̄h2 . (29)
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Two-step method with extra evaluation

One can further increase the order of the approximation (27) by adding a third order term,

¯̄y(x) = ȳ(x) + ¯̄d · (x − xi)
2(x − xi−1) . (30)

The coefficient ¯̄d can be found from the matching condition at a certain point inside the invervarl, for
example at half-step,

¯̄y′(x1/2) = f(x1/2, ȳ(x1/2))
.
= f̄1/2 , (31)

where x1/2
.
= xi + h/2. This gives

¯̄d =
f̄1/2 − y′

i − 2c̄ · (x1/2 − xi)

2(x1/2 − xi)(x1/2 − xi−1) + (x1/2 − xi)2
. (32)

The error estimate at the point xi+1
.
= x0 + h is again given as the difference between the higher and

the lower order methods,
δy = ¯̄y(xi+1) − ȳ(xi+1) . (33)

Predictor-corrector methods

A predictor-corrector method uses extra iterations to improve the solution. It is an algorithm that
proceeds in two steps. First, the predictor step calculates a rough approximation of y(x + h). Second,
the corrector step refines the initial approximation. Aditionally the corrector step can be repeated in
the hope that this achieves an even better approximation to the true solution.

For example, the two-point Runge-Kutta method (15) is as actually a predictor-corrector method, as
it first calculates the prediction ỹi+1 for y(xi+1),

ỹi+1 = yi + hf(xi,yi) , (34)

and then uses this prediction in a correction step,

ˇ̃yi+1 = yi + h
1

2
(f(xi,yi) + f(xi+1, ỹi+1)) . (35)

A two-step method with correction

Similarly, one can use the two-step approximation (27) as a predictor, and then improve it by one order
with a correction step, namely

ˇ̄y(x) = ȳ(x) + ď · (x − xi)
2(x − xi−1). (36)

The coefficient ď can be found from the condition ˇ̄y′(xi+1) = f̄i+1, where f̄i+1
.
= f(xi+1, ȳ(xi+1)),

ď =
f̄i+1 − y′

i − 2c̄ · (xi+1 − xi)

2(xi+1 − xi)(xi+1 − xi−1) + (xi+1 − xi)2
. (37)

Equation (36) gives a better estimate, yi+1 = ˇ̄y(xi+1), of the sought function at the point xi+1. In
this context the formula (27) serves as predictor, and (36) as corrector. The difference between the two
gives an estimate of the error.

Adaptive step-size control

Let tolerance τ be the maximal accepted error consistent with the required accuracy to be achieved in
the integration of an ODE. Suppose the inegration is done in n steps of size hi such that

∑n
i=1 hi = b−a.

Under assumption that the errors at the integration steps are random and statistically uncorrelated, the
local tolerance τi for the step i has to scale as the square root of the step-size,

τi = τ

√

hi

b − a
. (38)
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Indeed, if the local error ei on the step i is less than the local tolerance, ei ≤ τi, the total error E will
be consistent with the total tolerance τ ,

E ≈

√

√

√

√

n
∑

i=1

e2
i ≤

√

√

√

√

n
∑

i=1

τ2
i = τ

√

√

√

√

n
∑

i=1

hi

b − a
= τ . (39)

The current step hi is accepted if the local error ei is smaller than the local tolerance τi, after which the
next step is attempted with the step-size adjusted according to the following empirical prescription [?],

hi+1 = hi ×

(

τi

ei

)Power

× Safety, (40)

where Power ≈ 0.25 and Safety ≈ 0.95.
If the local error is larger than the local tolerance the step is rejected and a new step is attempted

with the step-size adjusted according to the same prescription (40).
One simple prescription for the local tolerance τi and the local error ei to be used in (40) is

τi = (ǫ‖yi‖ + δ)

√

hi

b − a
, ei = ‖δyi‖ , (41)

where δ and ǫ are the required absolute and relative precision and δyi is the estimate of the integration
error at the step i.

A more elaborate prescription considers components of the solution separately,

(τi)k =
(

ǫ|(yi)k| + δ
)

√

hi

b − a
, (ei)k = |(δyi)k| , (42)

where the index k runs over the components of the solution. In this case the step acceptence criterion
also becomes component-wise: the step is accepted, if

∀k : (ei)k < (τi)k . (43)

The factor τi/ei in the step adjustment formula (40) is then replaced by

τi

ei
→ max

k

(τi)k

(ei)k
. (44)

Yet another refinement is to include the derivatives y′ of the solution into the local tolerance estimate,
either overally,

τi =
(

ǫα‖yi‖ + ǫβ‖y′

i‖ + δ
)

√

hi

b − a
, (45)

or commponent-wise,

(τi)k =
(

ǫα|(yi)k| + ǫβ|(y′

i)k| + δ
)

√

hi

b − a
. (46)

The weights α and β are chosen by the user.
Table (3) shows a simple implementation of the described algorithm.
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Table 3: An ODE driver with adaptive step-size control in C.

#include <math . h>

#include <s t d l i b . h>

#include <s td i o . h>

int dr ive (
void f ( int n , double x , double∗ y , double∗ dydx ) , int n , double∗ x l i s t ,
double∗∗ y l i s t , double b , double h , double acc , double eps , int max ,
void s tep (void f ( int n , double x , double∗ y , double∗ dydx ) ,
int n , double x , double∗ y , double h , double∗ yout , double∗ dy )
)

{ int i =0; double a=x l i s t [ 0 ] ; // s t a r t i n g poin t
double dy [ n ] , y1 [ n ] ; // w i l l s t o r e d e l t a y and y { i+1}
while ( x l i s t [ i ]<b) // do u n t i l b i s reached
{ double x=x l i s t [ i ] ; // current x

double∗ y=y l i s t [ i ] ; // current y
i f (x+h>b) h=b−x ; // make sure we land on b
s tep ( f , n , x , y , h , y1 , dy ) ; // the s t ep
double sum=0; for ( int k=0;k<n ; k++) sum+=dy [ k ] ∗ dy [ k ] ;
double e r r=sq r t (sum ) ; // l o c a l e rror
sum=0; for ( int k=0;k<n ; k++) sum+=y1 [ k ] ∗ y1 [ k ] ;
double normy=sqr t (sum ) ;
double t o l =(normy∗ eps+acc )∗ s q r t (h/(b−a ) ) ; // l o c a l t o l e r anc e :
i f ( to l >e r r ) // then accept s t ep and s t o r e x and y
{ i ++; i f ( i==max) return − i ; // s torage f i l l e d , abor t : (

x l i s t [ i ]=x+h ; for ( int k=0;k<n ; k++) y l i s t [ i ] [ k]=y1 [ k ] ;
} // ad j u s t t he s t ep :
i f ( er r >0) h=fmin (2∗h , h∗pow( t o l / err , 0 . 2 5 ) ∗ 0 . 9 5 ) ; else h = 2∗h ;

}
return i +1;

}
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