
Monte Carlo integration

Introduction

Monte Carlo integration is a quadrature (cubature) where the nodes are chosen randomly. Typically no
assumptions are made about the smoothness of the integrand, not even that it is continuous.

Monte Carlo algorithms are particularly suited for multi-dimensional integrations where one of the
problems is that the integration region, Ω, often has quite complicated boundary which can not be easily
described by simple functions. However, it is usually much easier to find out whether a given point lies
within the integration region or not. Therefore a popular strategy is to create an auxiliary rectangular
volume, V , which encompasses the integration volume Ω, and an auxiliary function which coincides with
the integrand inside the volume Ω and is equal zero outside. Then the integral of the auxiliary function
over the auxiliary volume is equal the original integral.

However, the auxiliary function is generally non-continuous at the boundary; thus ordinary quadra-
tures which assume continuity of the integrand are bound to have difficulties here. One the contrary the
Monte-Carlo quadratures will do just as good (or as bad) as with continuous integrands.

A typical implementation of a Monte Carlo algorithm integrates the given function over a rectangular
volume, specified by the coordinates of its ”lower-left” and ”upper-right” vertices, assuming the user has
provided the encompassing volume with the auxiliary function.

Plain Monte Carlo algorithm distributes points uniformly throughout the integration region using
uncorrelated pseudo-random sequences of points.

Adaptive algorithms, such as VEGAS and MISER, distribute points non-uniformly in an attempt to
reduce integration error using correspondingly importance and stratified sampling.

Yet another strategy to reduce the error is to use correlated quasi-random sequences.
The GNU Scientific Library, GSL, implements a plain Monte Carlo integration algorithm; a stratified

sampling algorithm, MISER; an importance sampling algorithm, VEGAS; and a number of quasi-random
generators.

Plain Monte Carlo sampling

Plain Monte Carlo is a quadrature with random abscissas and equal weights,

∫

V

f(x)dV ≈ w
N

∑

i=1

f(xi) , (1)

where x is a point in the multi-dimensional integration space. One free parameter, w, allows one condition
to be satisfied: the quadrature must integrate exactly a constant function. This gives w = V/N ,

∫

V

f(x)dV ≈ V

N

N
∑

i=1

f(xi)
.
= V 〈f〉 . (2)

Under the assumptions of the central limit theorem the error, E, of the integration can be estimated as

E = V
σ√
N

, (3)

where σ is the variance of the sample,
σ2 = 〈f2〉 − 〈f〉2 . (4)

The familiar 1/
√

N convergence of a random walk process is quite slow: to reduce the error by a factor
10 requires 100-fold increase in the number of sample points.

Expression (3) provides only a statistical estimate of the error, which is not a strict bound; random
sampling may not uncover all the important features of the function, resulting in an underestimate of
the error.

A simple implementation of the plain Monte Carlo algorithm is shown in Table 1.

1

Table 1: Plain Monte Carlo integrator

#include <math . h>

#include <s t d l i b . h>

#define RND ((double) rand ()/RANDMAX)
void randomx (int dim , double ∗a , double ∗b , double ∗x)
{ for (int i =0; i<dim ; i++) x [i]=a [i]+RND∗(b [i]−a [i]) ; }

void plainmc (int dim , double ∗a , double ∗b ,
double f (double∗ x) , int N, double∗ r e su l t , double∗ e r r o r)
{ double V=1; for (int i =0; i<dim ; i++) V∗=b [i]−a [i] ;

double sum=0, sum2=0, fx , x [dim] ;
for (int i =0; i<N; i++){ randomx (dim , a , b , x) ; f x=f (x) ;

sum+=fx ; sum2+=fx ∗ f x ; }
double avr = sum/N, var = sum2/N−avr∗avr ;
∗ r e s u l t = avr ∗V; ∗ e r r o r = sq r t (var /N)∗V;

}

Importance sampling

Suppose the points are distributed not uniformly but with some density ρ(x) . That is, the number of
points ∆n in the volume ∆V around point x is given as

∆n =
N

V
ρ(x)∆V, (5)

where ρ is normalised such that
∫

V
ρdV = V .

The estimate of the integral is then given as

∫

V

f(x)dV ≈
N

∑

i=1

f(xi)∆Vi =
N

∑

i=1

f(xi)
V

Nρ(xi)
= V

〈

f

ρ

〉

, (6)

where

∆Vi =
V

Nρ(xi)
(7)

is the volume-per-point at the point xi.
The corresponding variance is now given by

σ2 =

〈

(

f

ρ

)2
〉

−
〈

f

ρ

〉2

. (8)

Apparently if the ratio f/ρ is close to a constant, the variance is reduced.
It is tempting to take ρ = |f | and sample directly from the integrand. However in practice evaluations

of the integrand are typically expensive. Therefore a better strategy is to build an approximate density in
the product form, ρ(x, y, . . . , z) = ρx(x)ρy(y) . . . ρz(z), and then sample from this approximate density.
A popular routine of this sort is called VEGAS.

Stratified sampling

Stratified sampling is a generalisation of the recursive adaptive integration algorithm to random quadra-
tures in multi-dimensional spaces.

The ordinary “dividing by two” strategy does not work for multi-dimensional integrations as the
number of sub-volumes grows way too fast to keep track of. Instead one estimates along which dimension
a subdivision should bring the most dividends and only subdivides along this dimension. Such strategy
is called recursive stratified sampling. A simple variant of this algorithm is presented in Table 2.

In a stratified sample the points are concentrated in the regions where the variance of the function is
largest, see an illustration in Figure 1.

2

Table 2: Recursive stratified sampling algorithm

sample N random points with p l a i n Monte Carlo ;
e s t imate the average and the e r r o r ;
IF the e r r o r i s acceptab l e :

RETURN the average and the e r r o r ;
ELSE :

FOR EACH dimension :
subd iv ide the volume in two along the dimension ;
e s t imate the sub−va r i ance s in the two sub−volumes ;

pick the dimension with the l a r g e s t sub−var i ance ;
subd iv ide the volume in two along th i s dimension ;
d i spatch two r e cu r s i v e c a l l s to each o f the sub−volumes ;
e s t imate the grand average and grand e r r o r ;
RETURN the grand average and grand e r r o r ;

−1 −0.5 0 0.5 1

x

−1

−0.5

0

0.5

1

y

Figure 1: Stratified sample of a discontinuous function

f(x, y) =
{

1 if x2
+y2<0.92

0 otherwise

built with the algorithm in Table 2.

Quasi-random (low-discrepancy) sampling

Pseudo-random sampling has high discrepancy1: it typically creates regions with hight density of points
and other regions with low density of points, see an illustration on Figure 2 (left). With pseudo-random
sampling there is a finite probability that all the N points would fall into one half of the region and none
into the other half.

Quasi-random sequences avoid this phenomenon by distributing points in a highly correlated manner
with a specific requirement of low discrepancy, see Figure 2 for an example. Quasi-random sampling is
like a computation on a grid where the grid constant must not be known in advance as the grid is ever
gradually refined and the points are always distributed uniformly over the region. The computation can
be stopped at any time.

By placing points more evenly than at random, the quasi-random sequences try to improve on the
1/

√
N convergence rate of pseudo-random sampling.
The central limit theorem does not apply in this case as the points are not statistically independent.

Therefore the variance can not be used as an estimate of the error. The error estimation is actually
not trivial. In practice one can employ two different sequences and use the difference in the resulting
integrals as an error estimate.

1discrepancy is a measure of how unevenly the points are distributed over the region.

3

Figure 2: Typical distributions of pseudo-random points (left), and quasi-random low-discrepancy points:
lattice (center) and base-2/3 Halton (right) sequences. The first thousand points are plotted in each case.

Van der Corput and Halton sequences

A van der Corput sequence is a low-discrepancy sequence over the unit interval. It is constructed by
reversing the base-b representation of the sequence of natural numbers (1, 2, 3, . . .). For example, the
decimal van der Corput sequence begins as

0.1, 0.2, 0.3, . . . , 0.8, 0.9, 0.01, 0.11, 0.21, 0.31, . . . , 0.91, 0.02, 0.12, (9)

In a base-b representation a natural number n with s digits {di | i = 1 . . . s, 0 ≤ di < b} is given as

n =
s

∑

k=1

dkbk−1 . (10)

The corresponding base-b van der Corput number qb(n) is then given as

qb(n) =

s
∑

k=1

dkb−k . (11)

Here is a C implementation of this algorithm,

double corput (int n , int base){
double q=0, bk=(double)1/ base ;
while (n>0){ q += (n % base)∗bk ; n /= base ; bk /= base ; }
return q ; }

The van der Corput numbers of any base are uniformly distributed over the unit interval. They also
form a dense set in the unit interval: there exists a subsequence of the van der Corput sequence which
converges to any given real number in [0, 1].

The Halton sequence is a generalization of the van der Corput sequence to d-dimensional spaces.
One chooses a set of coprime bases b1, . . . , bd and then for each dimension i generates a van der Corput
sequence with its own base bi. The n-th Halton d-dimentional point x in the unit volume is then given
as

xb1,...,bd
(n) = {qb1(n), . . . , qbd

(n)} . (12)

Here is a C implementation which calls the corput function listed above,

#include<a s s e r t . h>

void hal ton (int n , int d , double ∗x){
int base []={2 ,3 , 5 , 7 , 11 , 13 , 17 , 19 , 23 , 29 , 31 , 37 , 41 , 43 , 47 , 53 , 59 , 61 , 67} ;
int maxd=19; a s s e r t (d <= maxd) ;
for (int i =0; i<d ; i++) x [i]= corput (n , base [i]) ; }

Lattice rules

In the simplest incarnation a lattice rule can be defined as follows. Let the generating vector z = {αi | i =
1, . . . , d}—where d is the dimension of the integration space—be a set of cleverly chosen irrational

4

numbers. Then the n-th point (in the unit volume) of the sequence is given as

x(n) = frac(nz) ≡ {frac(nα1), . . . , frac(nαd)} , (13)

where frac(x) is the fractional part of x.
An implementation of this algorithm in C is given in Table 3 and an illustration of such sequence is

shown on Figure 2 (center).

Table 3: Lattice low-disrepancy quasi-random sequence in C.

#include <math . h>

#include <a s s e r t . h>

#include <gc . h> // garbage c o l l e c t o r
#define f r a c l (x) ((x)− f l o o r l (x))
#define r e a l long double

void l a t t i c e (int d , double ∗x)
{ stat ic int dim=0, n ; stat ic r e a l ∗ alpha ; int i ;

i f (d<0) // d<0 i s the s i g n a l to r e s e t the l a t t i c e
{ dim=−d ; n=0; alpha=(r e a l ∗)GC MALLOC(dim∗ s izeof (r e a l)) ;

for (i =0; i<dim ; i++) alpha [i]= f r a c l (s q r t l ((r e a l)13∗(i +1))) ;
}
else

{ a s s e r t (d==dim) ; n++; for (i =0; i<dim ; i++)x [i]= f r a c l (n∗ alpha [i]) ;
}

}

5

