
Ordinary least squares

Introduction

A system of linear equations is considered overdetermined if there are more equations than unknown
variables. If all equations of an overdetermined system are linearly independent, the system has no exact
solution.

A linear least-squares problem is the problem of finding an approximate solution to an overdetermined
linear system. It often arises in applications where a theoretical model is fitted to experimental data.

Linear least-squares problem

Consider a linear system
Ac = b , (1)

where A is an n×m matrix, c is an m-component vector of unknown variables and b is an n-component
vector of the right-hand side terms. If the number of equations n is larger than the number of unknowns
m, the system is overdetermined and generally has no solution.

However, it is still possible to find an approximate solution—the one where Ac is only approximately
equal b—in the sence that the Euclidean norm of the difference between Ac and b is minimized,

c : min
c

‖Ac− b‖2 . (2)

The problem (2) is called the ordinary least-squares problem and the vector c that minimizes ‖Ac−b‖2

is called the least-squares solution.

Solution via QR-decomposition

The linear least-squares problem can be solved by QR-decomposition. The matrix A is factorized as
A = QR, where Q is n × m matrix with orthogonal columns, QTQ = 1, and R is an m × m upper
triangular matrix. The Euclidean norm ‖Ac− b‖2 can then be rewritten as

‖Ac− b‖2 = ‖QRc− b‖2

= ‖Rc−QTb‖2 + ‖(1−QQT )b‖2 ≥ ‖(1−QQT )b‖2 . (3)

The term ‖(1−QQT )b‖2 is independent of the variables c and can not be reduced by their variations.
However, the term ‖Rc −QTb‖2 can be reduced down to zero by solving the m × m system of linear
equations

Rc = QTb . (4)

The system is right-triangular and can be readily solved by back-substitution. Thus the solution to the
ordinary least-squares problem (2) is given by the solution of the triangular system (4).

Ordinary least-squares curve fitting

Ordinary least-squares curve fitting is a problem of fitting n (experimental) data points {xi, yi ±∆yi},
where ∆yi are experimental errors, by a linear combination, F , of m functions {fk(x) | k = 1, . . . ,m},

Fc(x) =

m
∑

k=1

ckfk(x) . (5)

The objective of the least-squares fit is to minimize the square deviation, called χ2, between the fitting
function F (x) and the experimental data,

χ2 =

n
∑

i=1

(

F (xi)− yi

∆yi

)2

. (6)

Individual deviations from experimental points are weighted with their inverse errors in order to promote
contributions from the more precise measurements.
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Minimization of χ2 with respect to the coefficiendt ck in (5) is apparently equivalent to the least-
squares problem (2) where

Aik =
fk(xi)

∆yi
, bi =

yi

∆yi
. (7)

If QR = A is the QR-decomposition of the matrix A, the formal least-squares solution to the fitting
problem is

c = R−1QTb . (8)

However, in practice one has to back-substitute the system Rc = QTb.

Variances and correlations of fitting parameters

Suppose δyi is a small deviation of the measured value of the physical observable at hand from its exact
value. The corresponding deviation δck of the fitting coefficient is then given as

δck =
∑

i

∂ck

∂yi
δyi . (9)

In a good experiment the deviations δyi are statistically independent and distributed normally with the
standard deviations ∆yi. The deviations (9) are then also distributed normally with variances

〈δckδck〉 =
∑

i

(

∂ck

∂yi
∆yi

)2

=
∑

i

(

∂ck

∂bi

)2

. (10)

The standard errors in the fitting coefficients are then given as the square roots of variances,

∆ck =
√

〈δckδck〉 =

√

√

√

√

∑

i

(

∂ck

∂bi

)2

. (11)

The variances are diagonal elements of the covariance matrix, Σ, made of covariances,

Σkq ≡ 〈δckδcq〉 =
∑

i

∂ck

∂bi

∂cq

∂bi
. (12)

Covariances 〈δckδcq〉 are measures of to what extent the coefficients ck and cq change together if the
measured values yi are varied. The normalized covariances,

〈δckδcq〉
√

〈δckδck〉〈δcqδcq〉
(13)

are called correlations.
Using (12) and (8) the covariance matrix can be calculated as

Σ =

(

∂c

∂b

)(

∂c

∂b

)T

= R−1(R−1)T = (RTR)−1 = (ATA)−1 . (14)

The square roots of the diagonal elements of this matrix provide the estimates of the errors ∆c of the
fitting coefficients,

∆ck =
√

Σkk

∣

∣

∣

k=1...m
, (15)

and the (normalized) off-diagonal elements provide the estimates of their correlations.
A C implementation of the ordinary least squares fit with QR-decomposition is shown in Table (1).
An illustration of a fit is shown on Figure (1) where a polynomial is fitted to a set of data.
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Table 1: C implementation of ordinary least squares fit with QR-decomposition.

#include <matrix . h>
#include <gc . h> // garbage c o l l e c t o r
#include <qr . h> // qr−decomposi t ion
typedef struct { vector ∗c ; matr ix∗S ;} l s f i t ;
l s f i t ∗ l s f i t a l l o c ( vector ∗x , vector ∗y , vector ∗dy ,
int nf , double f ( int k ,double x ) )
{ int n=x−>s i z e , m=nf ;

matr ix ∗A = matr i x a l l o c (n ,m) , ∗R = matr i x a l l o c (m,m) ;
vector ∗b = vector copy (y ) ; v e c to r d i v (b , dy ) ;
for ( int i =0; i<n ; i++)
{ double x i=vec to r g e t (x , i ) , dyi=vec to r g e t (dy , i ) ;

for ( int k=0;k<m; k++) mat r i x s e t (A, i , k , f ( k , x i )/ dyi ) ;
}
qrdec (A,R) ;
l s f i t ∗ f i t = ( l s f i t ∗)GCMALLOC( s izeof ( l s f i t ) ) ;
f i t −>c = qrback (A,R, b ) ;
f i t −>S = qr i nve r s e ( matr ixT times matr ix (R,R) ) ;
return f i t ;

}
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Figure 1: Ordinary least squares fit of Fc(x) = c1 + c2x + c3x
2 to a set of data. Shown are fits with

optimal coefficiens c as well as with c+∆c and c−∆c.
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