
Systems of linear equations

Introduction

A system of linear equations (or linear system) is a collection of linear equations involving the same set
of unknown variables. A general system of n linear equations with m unknowns can be written as



















A11x1 + A12x2 + · · · + A1mxm = b1

A21x1 + A22x2 + · · · + A2mxm = b2

...
...

...
...

An1x1 + An2x2 + · · · + Anmxm = bn

, (1)

where x1, x2, . . . , xm are the unknown variables, A11, A12, . . . , Anm are the (constant) coefficients of the
system, and b1, b2, . . . , bn are the (constant) right-hand side terms.

The system can be equivalently written in the matrix form,

Ax = b , (2)

where A
.
= {Aij} is the n ×m matrix of the coefficients, x

.
= {xj} is the size-m column-vector of the

unknown variables, and b
.
= {bi} is the size-n column-vector of right-hand side terms.

A solution to a linear system is a set of values for the variables x which satisfies all equations.
Systems of linear equations occur quite regularly in applied mathematics. Therefore computational

algorithms for finding solutions of linear systems are an important part of numerical methods.
A system of non-linear equations can often be approximated by a linear system – a helpful technique

(called linearization) in creating a mathematical model of an otherwise a more complex system.
If m = n, the matrix A is called square. A square system has a unique solution if A is invertible.

Triangular systems

An efficient algorithm to solve a square system of linear equations numerically is to transform the original
system into an equivalent triangular system,

Ty = c , (3)

where T is a triangular matrix – a special kind of square matrix where the matrix elements either below
(lower triangular) or above (upper triangular) the main diagonal are zero.

Indeed, an upper triangular system Uy = c can be easily solved by back-substitution,

yi =
1

Uii

(

ci −
n
∑

k=i+1

Uikyk

)

, i = n, n− 1, . . . , 1 , (4)

where one first computes yn = bn/Unn, then substitutes back into the previous equation to solve for
yn−1, and repeats through y1.

Here is a C-function implementing in-place1 back-substitution2:

#include <matrix . h>

#include <a s s e r t . h>

void backsub (const matrix∗ U, vector ∗ b){
int n=b−>s i z e ; a s s e r t (U−>s i z e 1 == U−>s i z e 2 && U−>s i z e 1 == n) ;
for (int i = n−1; i >=0; i −−){

double sum=vec to r g e t (b , i) ;
for (int k=i +1;k<n ; k++) sum −= matr ix get (U, i , k)∗ vec to r g e t (b , k) ;
v e c t o r s e t (b , i , sum/ matr ix get (U, i , i)) ; } }

For a lower triangular system Ly = c the equivalent procedure is called forward-substitution,

yi =
1

Lii

(

ci −
i−1
∑

k=1

Uikyk

)

, i = 1, 2, . . . , n . (5)

1here in-place means the right-hand side c is replaced by the solution y.
2the functions vector get, vector set, and matrix get are assumed to implement fetching and setting the vector

and matrix elements.

1

Reduction to triangular form

Popular algorithms for reducing a square system of linear equations to a triangular form are LU-

decomposition and QR-decomposition.

QR-decomposition

QR-decomposition is a factorization of a matrix into a product of an orthogonal matrix Q, such that
Q⊺Q = 1, where ⊺ denotes transposition, and a right triangular matrix R,

A = QR . (6)

QR-decomposition can be used to convert a linear system Ax = b into the triangular form (by multiplying
with Q⊺ from the left),

Rx = Q⊺b , (7)

which can be solved directly by back-substitution.
QR-decomposition can also be performed on non-square matrices with few long columns. Generally

speaking a rectangular n × m matrix A can be represented as a product, A = QR, of an orthogonal
n×m matrix Q, Q⊺Q = 1, and a right-triangular m×m matrix R.

QR-decomposition of a matrix can be computed using several methods, such as Gram-Schmidt or-
thogonalization, Householder transformation [?], or Givens rotation [?].

Gram-Schmidt orthogonalization Gram-Schmidt orthogonalization is an algorithm for orthogonal-
ization of a set of vectors in a given inner product space. It takes a linearly independent set of vectors
A = {a1, . . . ,am} and generates an orthogonal set Q = {q1, . . . ,qm} which spans the same subspace as
A. The algorithm is given as

for i = 1 to m :

qi ← ai/‖ai‖
for j = i + 1 to m : aj ← aj − 〈qi|aj〉qi

where 〈a|b〉 is the inner product of two vectors, and ‖a‖
.
=
√

〈a|a〉 is the vector’s norm. This variant
of the algorithm, where all remaining vectors aj are made orthogonal to qi as soon as the latter is
calculated, is considered to be numerically stable and is referred to as stabilized or modified.

Stabilized Gram-Schmidt orthogonalization can be used to compute QR-decomposition of a matrix
A by orthogonalization of its column-vectors ai with the inner product

〈a|b〉 = a⊺b ≡

n
∑

k=1

(a)k(b)k , (8)

where n is the length of column-vectors a and b, and (a)k is the kth element of the column-vector,

for i = 1 to m :

Rii =

q

a
⊺

i
ai ; qi = ai/Rii

for j = i + 1 to m :

Rij = q
⊺

i
aj ; aj = aj − qiRij .

After orthogonalization the matrices Q = {q1 . . .qm} and R are the sought orthogonal and right-
triangular factors of matrix A.

The factorization is unique under requirement that the diagonal elements of R are positive. For a
n×m matrix the complexity of the algorithm is O(m2n).

Table (1) shows a C implementation of the stabilized Gram-Schmidt orthogonalization. The corre-
sponding function to solve the equation

QRx = b (9)

are shown in Table (2).

2

Table 1: QR-decomposition in C using stabilized Gram-Schmidt orthogonalization.

#include <math . h>

#include <matrix . h>

void qrdec (matrix∗ A, matrix∗ R) { // A i s rep laced with Q
for (int i =0; i<A−>s i z e 2 ; i++) {

vector ∗ a i = matr ix get column (A, i) ;
double r = vec to r do t (ai , a i) ;
mat r i x s e t (R, i , i , s q r t (r)) ;
v e c t o r s c a l e (ai , 1/ s q r t (r)) ;
for (int j=i +1; j<A−>s i z e 2 ; j++) {

vector ∗ a j = matr ix get column (A, j) ;
double s = vec to r do t (ai , a j) ;
vector add (aj , −s , a i) ;
mat r i x s e t (R, i , j , s) ; } } }

Table 2: C-functions to perform QR-backsubstitution of equation (9)

#include <matrix . h>

#include <a s s e r t . h>

void backsub (const matrix∗ U, vector ∗ b) ;

vector ∗ qrback (const matrix∗ Q, const matrix∗ R, const vector ∗ b)
{ vector ∗ x = matr ixT t imes vector (Q, b) ;

backsub (R, x) ; return x ;
}
void q rback i np l a c e (const matrix∗ Q, const matrix∗ R, vector ∗ b)
{ vector ∗x = matr ixT t imes vector (Q, b) ;

backsub (R, x) ;
for (int i =0; i<x−>s i z e ; i++)v e c t o r s e t (b , i , v e c to r g e t (x , i)) ;

}

Householder transformation A square matrix H of the form

H = 1−
2

u⊺u
uu⊺ (10)

is called Householder matrix, where the vector u is called a Householder vector. Householder matrices
are symmetric and orthogonal,

H⊺ = H , H⊺H = 1 . (11)

The transformation induced by the Householder matrix on a given vector a,

a→ Ha , (12)

is called a Householder transformation or Householder reflection. The transformation changes the sign
of the affected vector’s component in the u direction, or, in other words, makes a reflection of the vector
about the hyperplane perpendicular to u, hence the name.

Householder transformation can be used to zero selected components of a given vector a. For example,
one can zero all components but the first one, such that

Ha = γe1 , (13)

where γ is a number and e1 is the unit vector in the first direction. The factor γ can be easily calculated,

‖a‖2
.
= a⊺a = a⊺H⊺Ha = (γe1)

⊺(γe1) = γ2 , (14)

⇒ γ = ±‖a‖ . (15)

To find the Householder vector, we notice that

a = H⊺Ha = H⊺γe1 = γe1 −
2(u)1
u⊺u

u , (16)

3

⇒
2(u)1
u⊺u

u = γe1 − a , (17)

where (u)1 is the first component of the vector u. One usually chooses (u)1 = 1 (for the sake of the
possibility to store the other components of the Householder vector in the zeroed elements of the vector
a) and stores the factor

2

u⊺u
≡ τ (18)

separately. With this convention one readily finds τ from the first component of equation (17),

τ = γ − (a)1 . (19)

where (a)1 is the first element of the vector a. For the sake of numerical stability the sign of γ has to be
chosen opposite to the sign of (a)1,

γ = −sign ((a)1) ‖a‖ . (20)

Finally, the Householder reflection, which zeroes all component of a vector a but the first, is given as

H = 1− τuu⊺ , τ = −sign((a)1)‖a‖ − (a)1 , (u)1 = 1 , (u)i>1 = −
1

τ
(a)i . (21)

Now, a QR-decomposition of an n× n matrix A by Householder transformations can be performed
in the following way:

1. Build the size-n Householder vector u1 which zeroes the sub-diagonal elements of the first column
of matrix A, such that

H1A =











⋆ ⋆ . . . ⋆
0
... A1

0











, (22)

where H1 = 1− τ1u1u
⊺

1
and where ⋆ denotes (generally) non-zero matrix elements. In practice one

does not build the matrix H1 explicitly, but rather calculates the matrix H1A in-place, consecu-
tively applying the Householder reflection to columns the matrix A, thus avoiding computationally
expensive matrix-matrix operations. The zeroed sub-diagonal elements of the first column of the
matrix A can be used to store the elements of the Householder vector u1 while the factor τ1 has
to be stored separately in a special array. This is the storage scheme used by LAPACK and GSL.

2. Similarly, build the size-(n− 1) Householder vector u2 which zeroes the sub-diagonal elements of
the first column of matrix A1 from eq. (22). With the transformation matrix H2 defined as

H2 =











1 0 · · · 0
0
... 1− τ2u2u

⊺

2

0











. (23)

the two transformations together zero the sub-diagonal elements of the two first columns of matrix
A,

H2H1A =















⋆ ⋆ ⋆ · · · ⋆
0 ⋆ ⋆ · · · ⋆
0 0
...

... A3

0 0















, (24)

3. Repeating the process zero the sub-diagonal elements of the remaining columns. For column k the
corresponding Householder matrix is

Hk =









Ik−1 0

0 1− τkuku
⊺

k









, (25)

4

where Ik−1 is a unity matrix of size k−1, uk is the size-(n-k+1) Householder vector that zeroes the
sub-diagonal elements of matrix Ak−1 from the previous step. The corresponding transformation
step is

Hk . . .H2H1A =

[

Rk ⋆
0 Ak

]

, (26)

where Rk is a size-k right-triangular matrix.

After n− 1 steps the matrix A will be transformed into a right triangular matrix,

Hn−1 · · ·H2H1A = R . (27)

4. Finally, introducing an orthogonal matrix Q = H
⊺

1
H

⊺

2
. . .H⊺

n−1
and multiplying eq. (27) by Q from

the left, we get the sought QR-decomposition,

A = QR . (28)

In practice one does not explicitly builds the Q matrix but rather applies the successive Householder
reflections stored during the decomposition.

Givens rotations A Givens rotation is a transformation in the form

A→ G(p, q, θ)A , (29)

where A is the transformed object—matrix of vector—and G(p, q, θ) is the Givens rotation matrix (also
known as Jacobi rotation matrix): an orthogonal matrix in the form

G(p, q, θ) =



























1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · cos θ · · · sin θ · · · 0
...

...
. . .

...
...

0 · · · − sin θ · · · cos θ · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1



























← row p

← row q
. (30)

When a Givens rotation matrix G(p, q, θ) multiplies a vector, only elements with indices p and q are
affected. Restricting our attention to these two elements, say a and b, the Givens rotation is given
explicitely as

[

cos θ sin θ
− sin θ cos θ

] [

a
b

]

=

[

a cos θ + b sin θ
−a sin θ + b cos θ

]

. (31)

Apparently, the rotation can zero the lowest element, if the angle θ is chosen as

tan θ =
b

a
⇒ θ = atan2(b, a) . (32)

A sequence of Givens rotations can zero all elements of a matrix below the main diagonal. Which
obviously amounts to QR-decomposition of the matrix with Q being the product of all the applied Givens
matrices.

Since each Givens rotation only affects two rows of the matrix it is possible to apply a set of rotations
in parallel. Givens rotations are also more efficient on sparse matrices.

LU-decomposition

LU-decomposition is a factorization of a square matrix A into a product of a lower triangular matrix L

and an upper triangular matrix U,
A = LU . (33)

5

The linear system Ax = b after LU-decomposition of the matrix A becomes LUx = b and can be
solved by first solving Ly = b for y and then Ux = y for x with two runs of forward and backward
substitutions.

If A is an n× n matrix, the condition (33) is a set of n2 equations,

n
∑

k=1

LikUkj = Aij

∣

∣

i,j=1...n
, (34)

for n2 +n unknown elements of the triangular matrices L and U. The decomposition is thus not unique.
Usually the decomposition is made unique by providing extra n conditions e.g. by the requirement

that the elements of the main diagonal of the matrix L are equal one,

Lii = 1 , i = 1 . . . n . (35)

The system (34) with the extra conditions (35) can then be easily solved row after row using the
Doolittle’s algorithm,

for i = 1 . . . n :

Lii = 1

for j = i . . . n : Uij = Aij −
P

k<i
LikUkj

for j = i + 1 . . . n : Lji = 1

Uii

“

Aji −
P

k<j
LjkUki

”

In a slightly different Crout’s algorithm it is the matrix U that has unit diagonal elements,

for i = 1 . . . n :

Uii = 1

for j = i . . . n : Lji = Aji −
P

k<i LjkUki

for j = i + 1 . . . n : Uij =
1

Lii

“

Aji −
P

k<j LjkUki

”

Without a proper ordering (permutations) in the matrix, the factorization may fail. For example,
it is easy to verify that A11 = L11U11. If A11 = 0, then at least one of L11 and U11 has to be zero,
which implies either L or U is singular, which is impossible if A is non-singular. This is however only a
procedural problem. It can be removed by simply reordering the rows of A so that the first element of
the permuted matrix is nonzero (or, even better, the largest in absolute value among all elements of the
column below the diagonal). The same problem in subsequent factorization steps can be removed in a
similar way. Such algorithm is refered to as partial pivoting. It requires an extra integer array to keep
track of row permutations.

Determinant of a matrix

LU- and QR-decompositions allow O(n3) calculation of the determinant of a square matrix. Indeed, for
the LU-decomposition,

detA = detLU = detLdetU = detU =
n
∏

i=1

Uii . (36)

For the QR-decomposition
detA = detQR = detQ detR . (37)

Since Q is an orthogonal matrix (detQ)2 = 1 and therefore

| detA| = | detR| =

∣

∣

∣

∣

∣

n
∏

i=1

Rii

∣

∣

∣

∣

∣

. (38)

Matrix inverse

The inverse A−1 of a square n× n matrix A can be calculated by solving n linear equations

Axi = ei

∣

∣

∣

i=1...n
, (39)

where ei is a column where all elements are equal zero except for the element number i, which is equal
one; that is, columns ei form a unity matrix. The matrix made of columns xi is apparently the inverse
of A.

A C implementation of this algorithm using QR-decomposition is shown in Table (3).

6

Table 3: Matrix inverse with QR-decomposition in C

#include <matrix . h>

#include <a s s e r t . h>

void qrdec (matrix∗A, matrix∗R) ;
void q rback i np l a c e (const matrix∗Q, const matrix∗R, vector ∗b) ;
matr ix∗ q r i nve r s e (const matrix∗ A)
{ int n=A−>s i z e 1 ; a s s e r t (n==A−>s i z e 2) ;

matr ix ∗R = matr i x a l l o c (n , n) , ∗Q=matr ix copy (A) ; qrdec (Q,R) ;
matr ix ∗ I = uni t matr i x (n) ;
for (int i =0; i<n ; i++) q rback i np l a c e (Q,R, matr ix get column (I , i)) ;
return I ;

}

7

