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Einstein equation
In this section we shall introduce the Einstein field equation: the equation that relates
the geometry of space-time with the distribution of matter within it.

In electrodynamics the field equation is given by the inhomogeneous Maxwell equation,

F ab
;a = 4πjb , (1)

which relates the (covariant derivatives of the) electromagnetic field F ab with its source, the
electric current jb. One might expect the corresponding field equation of general relativity to have
a similar form: the source of the gravitational field at the right-hand-side and some (covariant)
combination of the derivatives of the gravitational field at the left-hand-side.

The source of the gravitational field in general relativity is the stress-energy-momentum of
matter, Tab. The corresponding field equation should then have the form

Gab = κTab (2)

where κ is a constant and where Gab is a certain tensor made of the derivatives of the gravitational
field (the metric tensor). Since Tab is a symmetric divergenceless tensor, so should Gab be as well.
In the following section we shal derive the simple such tensor.

Riemann curvature tensor
In this section we shall introduce a tensor associated with the curvature of space—the Riemann
curvature tensor—and try to build a suitable Gab out of it.

The Riemann tensor is usually introduced in one of the two ways: i) as a commutator of
covariant derivatives; or ii) via a parallel transport of a vector around a small loop.

Commutator of covariant derivatives

One way to introduce the Riemann tensor is to consider the commutator of covariant derivatives,

Ab;cd −Ab;dc . (3)

It is apparently a covariant object which is identically zero in a flat space1 and is (generally) not
identically zero in a curved space.

Let us calculate it. First the double covariant derivative,

Ab;cd = (Ab;c);d = (Ab;c),d − Γe
bdAe;c − Γe

cdAb;e

= (Ab,c − Γa
bcAa),d − Γe

bd (Ae,c − Γa
ecAa)− Γe

cd (Ab,e − Γa
beAa)

= Ab,cd − Γa
bc,dAa − Γa

bcAa,d − Γe
bdAe,c + Γe

bdΓ
a
ecAa − Γe

cdAb,e + Γe
cdΓ

a
beAa . (4)

Now the commutator,

Ab;cd −Ab;dc =
(
−Γa

bc,d + Γa
bd,c − Γe

bcΓ
a
ed + Γe

bdΓ
a
ec

)
Aa . (5)

The tensor in the parentheses is called the Riemann curvature tensor Ra
bcd,

Ra
bcd ⊜ −Γa

bc,d + Γa
bd,c − Γe

bcΓ
a
ed + Γe

bdΓ
a
ec (6)

The Riemann tensor thus determines the commutator of covariant derivatives

Ab;cd −Ab;dc = Ra
bcdAa . (7)

1Indeed in a flat space we can make a global transformation to Cartesian coordinates where this commutator is
obviously zero.
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Parallel transport around infinitesimal loop

An alternative way to introduce the Riemann tensor is to consider a parallel transport of a vector
(a transport with DAa = 0). Under an infinitesimal parallel transport of a vector Aa along a path
dx, the components of the vector (generally) change,

dAa
∣∣
DAa=0

= −Γa
bcA

bdxc . (8)

The change of a vector along an infinitesimal closed contour, ∆Aa =
∮
dAa, is a covariant

quantity since it is the difference between two vectors at the same point. It must be proportional
to the vector itself and the area of the surface enclosed by the contour.

Let us calculate this change using a simple rectangular contour with sides dx and dx′. The
vector Aa after a parallel transform along dx and then dx′ turns into

Aa(x+ dx+ dx′) = Aa − Γa
bcA

bdxc −
(
Γa

bc + Γa
bc,ddx

d
) (

Ab − Γb
dfA

ddxf
)
dx′c . (9)

Similarly, after a parallel transform first along dx′ and then along dx

Aa(x+ dx′ + dx) = Aa − Γa
bcA

bdx′c −
(
Γa

bc + Γa
bc,ddx

′d) (Ab − Γb
dfA

ddx′f) dxc . (10)

Subtracting these two and leaving only the lowest order terms gives (after some index renaming)

∆Aa = Aa(x+ dx′ + dx)−Aa(x+ dx+ dx′)

=
(
Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc

)
Abdxcdx′d

⊜ Ra
bcdA

bdxcdx′d . (11)

The tensor in parentheses is called the Riemann curvature tensor Ra
bcd,

Ra
bcd ⊜ Γa

bd,c − Γa
bc,d + Γa

ecΓ
e
bd − Γa

edΓ
e
bc. (12)

It follows from (11) that if the Riemann tensor vanishes, the vector Aa does not change when
parallelly transported along an arbitrary infinitesimal closed path. Also after a parallel transport
from x to x+ δx the vector Aa(x+ δx) is independent on which path is taken. The space where
Riemann tensor vanishes everywhere is flat.

Properties of the curvature tensor

1. Antisymmetry:
Rabcd = −Rbacd = −Rabdc . (13)

2. Interchange symmetry:
Rabcd = Rcdab . (14)

3. Algebraic Bianchi identity:
Rabcd +Racdb +Radbc = 0 . (15)

4. Differential Bianchi identity:

Rabcd;e +Rabde;c +Rabec;d = 0, (16)

Ricci tensor and Ricci scalar

The Ricci tensor is obtained by a contraction of the Riemann tensor over a pair of indexes,

Rab ⊜ Rd
adb . (17)

It is symmetric,
Rab = Rba . (18)
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The Ricci scalar (or scalar curvature) is the simplest curvature scalar in a Riemannian geometry,

R ⊜ gabRab . (19)

Contraction of the differential Bianchi identity over bc and ad gives

Rb
a;b =

1

2
R,a , (20)

from which it follows, that the (Einstein) tensor

Gab ⊜ Rab −
1

2
Rgab (21)

is symmetric and divergenceless
Gab

;b = 0 . (22)
The gravitational field equations might therefore have the form

Gab = κT ab , (23)

where the constant κ is related to the used units of mass (energy) like the 4π in the Maxwell
equations in Gauss units.

In the following section we shall derive this equations from an action.

Hilbert-Einstein action and Einstein equation
The simplest action for gravitation is the Hilbert-Einstein action – the integral over the Ricci
scalar,

Sg = − 1

2κ

∫
R
√
−gdΩ, (24)

where κ is a constant (to be determined from the experiment).
Variation of R√

−g with respect to δgab gives

δ
(
R
√
−g

)
= δ

(
Rabg

ab√−g
)
= Rabδg

ab√−g +Rδ
√
−g + gab

√
−gδRab . (25)

The last term can be shown to be a divergence2 which does not contribute to variation. In the
second term we have3

δ
√
−g = −1

2

1√
−g

ggabδgab = −1

2

√
−ggabδg

ab. (31)

2The variation δRa
bcd of the Riemann tensor is given as

δRa
bcd = δΓa

bd,c − δΓa
bc,d + δΓa

fcΓ
f
bd + Γa

fcδΓ
f
bd − δΓa

fdΓ
f
bc − Γa

fdδΓ
f
bc . (26)

The difference δΓa
bc is a tensor (indeed, δDAa = δΓa

bcA
bdxc), therefore

(δΓa
bc);d = (δΓa

bc),d + Γa
edδΓ

e
bc − Γe

adδΓ
a
ec − Γe

dcδΓ
a
de . (27)

The variation of the Riemann tensor can then be written as

δRa
bcd = (δΓa

bd);c − (δΓa
bc);d . (28)

The variation of the Ricci tensor is now given as

δRbd = δRa
bad = (δΓa

bd);a − (δΓa
ba);d . (29)

Finally,
√
−ggbdδRbd =

√
−g

(
gbdδΓa

bd − gbaδΓd
bd

)
;a

=
(√

−ggbdδΓa
bd −

√
−ggbaδΓd

bd

)
,a

■ (30)

3using
dg = ggabdgab = −ggabdg

ab .
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Thus the variation of the Hilbert action is

δSg = − 1

2κ

∫ (
Rab −

1

2
Rgab

)
δgab

√
−gdΩ. (32)

As we have shown above, the variation of the matter action with respect to the metric tensor
is determined by the stress-energy-momentum tensor,

δSm =
1

2

∫
Tabδg

ab√−gdΩ .

Combining the variations of the matter action and the gravitational action into the variational
principle

δ(Sm + Sg) = 0 (33)

gives the famous Einstein’s gravitational field equation,

Rab −
1

2
Rgab = κTab . (34)

The constant κ is related to the Newtonian grafitational constant G (comparing the non-relativistic
limit of the Einstein’s equation with Newtonian theory of gravitation gives κ = 8πG/c4).

Note that the covariant divergence of the left-hand side vanishes, due to the Bianchi identity.
Therefore the covariant divergence of the right-hand side, the stress-energy-momentum tensor,
should also vanish. The latter, however, contains the equations of motion for the matter. Therefore
the Einstein equation determines simultaneously both the gravitational field created by matter
and the motion of the matter in this gravitational field.

Exercises
1. Argue that—due to the symmetry properties of the Riemann tensor—the Ricci tensor is the

only 2-index tensor that can be obtained from the Riemann tensor by contracting its indices.

2. Argue that the Einstein’s field equation can be also written as

Rab = κ(Tab −
1

2
Tgab) ,

where T is the trace of the stress-energy tensor of matter.

3. Prove4 that the Riemann tensor with lowered index, Rabcd ⊜ gaeR
e
bcd, can be written as

Rabcd = −Γabc,d + Γabd,c − ΓeacΓ
e
bd + ΓeadΓ

e
bc ,

and as

Rabcd =
1

2
(gad,bc + gbc,ad − gac,bd − gbd,ac)− ΓeacΓ

e
bd + ΓeadΓ

e
bc .

4. (Extra) We have assumed that it is always possible to make a coordinate transformation to
a frame where all inertial and gravitational forces disappear locally. Now it is time to prove

4You might want to prove the following identities first,

Γaed = −Γead + gae,d ,

and
gaeΓ

e
bc,d = Γabc,d − gae,dΓ

e
bc .
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it formally. So, prove that it is always possible to choose a coordiante system in which all
Christoffel symbols are zero at a given point.5

5. Prove that if at a given point in space the Christoffel symbols are zero, then the first (but
not necessarily the second) derivatives of the metric tensor are also zero6.

6. Prove the interchange symmetry of the Riemann tensor.

7. Prove the antisymmetry of the Riemann tensor.

8. Prove the algebraic Bianci identity.

9. Prove the differential Bianchi identity.

10. Prove that (Rab − 1
2Rgab);a = 0.

11. Compute the Riemann tensor for the space with the metric ds2 = dr2 + r2dϕ2 and discuss
the result.

12. Compute all non-vanishing components of the Riemann tensor Rabcd (where each of indices
a, b, c, d takes the values θ, ϕ) for the metric

ds2 = r2(dθ2 + sin2 θdϕ2) (35)

on a 2-dimensional sphere of radius r. Calculate also the Ricci tensor Rab and the scalar
curvature (Ricci scalar) R.
Answer:

Rθϕθϕ = r2 sin2 θ = Rϕθϕθ = −Rθϕϕθ = −Rϕθθϕ

5The transformation rule for the Christoffel symbols between a non-primed and a primed coordinate systems is
given as

Γa
bc =

∂xa

∂x′e
∂x′f

∂xb

∂x′d

∂xc
Γ′e
fd +

∂2x′e

∂xb∂xc

∂xa

∂x′e .

Consider, for simplisity, the origin and prove that the following coordinate transformation,

x′a = xa +
1

2
(Γa

bc)0 x
bxc ,

where
(
Γa
bc

)
0

is the Christoffel symbol at the origin in the non-primed system, reduces the primed Christoffel
symbols at the origin,

(
Γ′d
ef

)
0
, to zero.

6Express the derivatives of the metric tensor as linear combinations of Christoffel symbols.
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