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Motion of free bodies in gravitational fields
General relativity (like the second Nordström’s theory) is a geometric theory: the gravitational field
modifies the metric tensor of the space-time, making the space-time curved. In geometric theories
free bodies (that is, bodies not affected by electromagnetic or other matter1 forces) move along
curves called geodesics which are the curved-space analogues of the of flat-space lines. Massive
bodies distort space-time in their vicinity causing the geodesics to bend.

Geodesics
Einstein’s principle of equivalence implies that a law of physics of special relativity formulated in
a generally covariant form should also be valid in general relativity. Therefore the law of motion
of free bodies in gravitational fields can be conveniently obtained by a suitable generalization of
the corresponding law of special relativity.

Geodesic as “constant” velocity trajectory

In special relativity (in an inertial frame with cartesian coordinates) a free body moves with
constant velocity, that is, the differential of the velocity along the body’s path is zero,

dua = 0 , (1)

where the velocity vector ua of a moving body is defined as

ua =
dxa

ds
, (2)

where dxa is the infinitesimal movement of the body along the trajectory and ds =
√
gabdxadxb

is the invariant interval (the metric).
The velocity ua is a vector (that is, a covariant quantity) and can be directly used to write

equations in curvilinear coordinates and/or curved spaces. However the differential dua is not
covariant and therefore equation (1) is not covariant and cannot be used in the curved spaces of
general relativity.

A suitable generalization to curved spaces would be to substitute the ordinary differential dua

with the covariant differential Dua,
Dua = 0 . (3)

This equation is generally covariant and is actually the geodesic equation. It can be also written
as

dua

ds
+ Γa

bcu
buc = 0 , (4)

or
d2xa

ds2
+ Γa

bc

dxb

ds

dxc

ds
= 0 . (5)

One can interpret this equation as the relativistic generalization of Newton’s second law of motion:
acceleration of the body equals the force acting on the body (divided by mass). Therefore the
quantities (−)Γa

bcu
buc appear as forces—inertial and gravitational—acting on the body. Since

the Christoffel symbols (and hence the forces) are proportional to derivatives of the metric tensor,
one can say that the metric tensor plays the role of the potential of gravitational forces, like
in Nordström’s theory. However unlike the Nordström’s theory in general relativity there is no
conformal restrictions on the metric tensor. The gravitational field in general relativity has all the
degrees of freedom of a (symmetric) tensor and is thus a tensor field.

1In general relativity “matter” is “everything else but gravity and inertia”.
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Geodesic as extremal trajectory

Equivalently the trajectories of free bodies in special relativity can be postulated to be the curves
with extremal measure2 (which in special relativity happen to be lines, that is, straight curves).
This postulate is generally covariant (indeed, the measure of a curve is a quantity that is invariant
under a general coordinate transformation) and can be directly applied to curvilinear coordinates
and/or gravitational fields. Therefore in general relativity free bodies3 are also postulated to move
along curves with extremal measures.

A curve with extremal measure is called a geodesic. Geodesic is a generalization of the notion
of a line to curved spaces. The term comes from geodesy, the science of measuring the size and
shape of Earth. In the original sense, a geodesic was the shortest route between two points on
the Earth’s surface, namely a segment of a great circle. The term has since been generalized to
include measurements in more general mathematical spaces.

Importantly, the postulate of free motion along geodesics can be formulated as a variational
(least action) principle: the variation of the measure vanishes on the curve actually taken by the
free body,

δ

∫
ds = 0 . (6)

The measure µ of a trajectory (of a moving body) is defined as the sum of infinitesimal intervals
ds along the trajectory,

µ =

∫
ds . (7)

The extremal trajectory is the one where the variation of the measure as function of the trajectory
vanishes,

δµ = 0 . (8)
To calculate the variation of the measure we first vary the interval ds,

δds = δ
√
gabdxadxb =

1

2

1√
gabdxadxb

δ
(
gabdx

adxb
)
=

1

2

1

ds

(
δgabdx

adxb + 2gabδdx
adxb

)
. (9)

Using δgab = gab,cδx
c and 1

dsgabdx
b = ua gives4

δds =
1

2
gab,cu

aubδxcds+ δdxcuc , (10)

where in the second term the summation index a was replaced with c.
Assuming the functions are smooth enough we can exchange the order of differentials in the

second term and integrate it by parts using

δdxcuc = dδxaua = d(δxaua)− δxcduc. (11)

The full differential does not contribute to the variation, and we finally arrive at

δµ =

∫
dsδxc

(
−duc

ds
+

1

2
gab,cu

aub

)
= 0 . (12)

Since the variation δx is arbitrary, it is the expression in parentheses that should be equal zero
identically along the trajectory, which gives the following equation for the curve with extremal
measure,

duc

ds
=

1

2
gab,cu

aub . (13)

2The measure of a curve is given by the integral
∫
ds (where ds is the metric) taken along the curve.

3In general relativity a free body is a body that is free from the influence of matter forces; gravitational and
intertial forces do not count as matter.
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f,a
.
=

∂f

∂xa
.
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This equation is equivalent to the no-acceleration equation (3)5. Thus the trajectory with extremal
measure is also the trajectory along which the covariant differential of the velocity of freely moving
body is zero. This is the consequence of the fact that the action S of a free body with mass m is
proportional to the measure of its trajectory,

S = −mc

∫
ds . (17)

Trajectories of rays of light
The equation (3) is not applicable to the propagation of a ray of light since the interval ds along
the ray is always zero. In this case one has to use some parameter, λ, which varies smoothly along
the ray. Then one can introduce the wave-vector, ka = dxa/dλ. In special relativity the ray of
light propagates along a line where dka = 0. In a curved space in analogy with (3) this becomes

Dka = 0 , (18)

or
dka

dλ
+ Γa

bck
bkc = 0 . (19)

These equations, together with the condition that for the ray of light always kaka ∝ dxadxa =
ds2 = 0, also determine the parameter λ should one wish to find it.

The trajectories of the rays of light are called null geodesics.

Exercises
1. Consider a generalization of the Galilean (non-relativistic) Lagrangian of a free body in a

Euclidean space,
L =

1

2
mv2 ,

to curvilinear coordinates with the metric dl2 = gαβx
αxβ (where α, β = 1, 2, 3),

L =
1

2
mv2 → L =

1

2
mgαβv

αvβ ,

where vα
.
= dxα/dt. Show that the corresponding Euler-Lagrange equation6 is the geodesic

equation for the given metric.
5Indeed, from

0 = Dgab = dgab − Γe
acgebdx

c − Γe
bcgaedx

c = (gab,c − Γbac − Γabc)dx
c (14)

it follows that
gab,c = Γbac + Γabc . (15)

Inserting this into (13) and using the symmetry uaub = ubua gives

duc

ds
−

1

2
gab,cu

aub =
duc

ds
−

1

2

(
Γbacu

aub + Γabcu
aub

)
=

duc

ds
− Γabcu

aub =
Duc

ds
, (16)

which had to be demonstrated.
6The Euler-Lagrange equation for the action S =

∫
dtL(xµ, vν) where vν = dxν/dt, is given as

d

dt

∂L
∂vµ

=
∂L
∂xµ

,

or, for the action S =
∫
dsL(xa, ub) where ub = dxb/ds, as

d

ds

∂L
∂ua

=
∂L
∂xa

.

3



note4 [September 26, 2023]

2. Consider a further generalization to a relativistic action,

S =

∫
1

2
mgαβv

αvβdt → S = −m

∫
gabu

aubds ,

where ua .
= dxa/ds and a, b = 0, 1, 2, 3. Show that the corresponding Euler-Lagrange equa-

tion is the relativistic geodesic equation.

3. Show that the Euler-Lagrange equation for the action

S = −m

∫
ds =

∫ (
−m

√
gabdxadxb

)
=

∫ (
−m

√
gab

dxa

ds

dxb

ds

)
ds ⊜

∫
L
(
xa,

dxa

ds

)
ds ,

is the relativistic geodesic equation.

4. (Extra) Show that the Euler-Lagrange equation for the action

S = −m

∫
dsf(gabu

aub) ,

where f is a differential function of one argument, is the geodesic equation.

5. In a scalar theory of gravitation consider the following action of a body with mass m moving
in a scalar gravitational field Φ,

S = −mc

∫ √
ηabdxadxb −mc

∫
Φ
√
ηabdxadxb . (20)

Show the the corresponding Euler-Lagrange equation is equivalent to geodesic equation for
the metric tensor gab = (1 + Φ)2ηab.

6. Prove that the two postulates,
Duc = 0 ,

and
δ

∫
ds = 0 ,

for the motion of free bodies in curved spaces are equivalent7.

7. Consider the parametric equations for a line in Cartesian coordinates x and y,

d2x

dλ2
= 0 ,

d2y

dλ2
= 0 , (21)

where λ is a parameter that smoothly changes along the curve. Make a coordinate transfor-
mation to polar coordinates (x = r cos θ, y = r sin θ) and derive the corresponding equations
in the r, θ coordinates. Prove that they are identical to the geodesic equation (5).

8. Apply the generally covariant equation for the trajectory of a ray of light, Dka/dλ = 0
(where ka = dxa/dλ, where xa(λ) follows the trajectory), to a flat two-dimensional space
with polar coordinates and find the corresponding trajectories8.

7That is, pove that the equations of motion (4) and (13) are equivalent.
8The first of the two geodesic equations,

d

dλ

(
r2

dϕ

dλ

)
= 0 , and

d2r

dλ2
= r

(
dϕ

dλ

)2

,

is easily integrated,
r2

dϕ

dλ
= J ,

where J is the integration constant. The second is traditionally integrated by a substitution, r(λ) = 1/u(ϕ(λ)),
which transforms the second equation into

d2u

dϕ2
+ u = 0

with the general solution u = u0 sin(ϕ− ϕ0) which is a general parametrization of a line in polar coordinates.
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9. (extra) Find the equations for geodesics on the surface of a sphere. Hint:9 integrate the
ϕ-equation once and then rewrite the θ-equation for the function u(ϕ) = cot (θ(ϕ)).

9The geodesic equations are
θ̈ = sin θ cos θϕ̇2 ,

d

dt

(
sin2 θϕ̇

)
= 0 ,

where dot denotes time-derivative, ϕ̇ ⊜ dϕ/dt. The second equation can be easily integrated,

sin2 θϕ̇ = k ,

where k is the integration constant. The first equation must be rewritten for the function θ(ϕ(t)) instead of θ(t).
The second t-derivative of θ then becomes (using ϕ̇ = k/ sin2 θ),

θ̈ = −
k2

sin2 θ

(
−

θ′′

sin2 θ
+ 2

cos θ

sin3 θ
θ′

2
)

= −
k2

sin2 θ
(cot θ)′′ ,

where ptime denotes ϕ-derivative, θ′ ⊜ dθ/dϕ. The first geodesic equation then becomes (again using ϕ̇ = k/ sin2 θ)

−(cot θ)′′ = cot θ ,

with the general solution
cot θ = A sin(ϕ− ϕ0) ,

(where A and ϕ0 are integration constats) which is the equation for a great circle.
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