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Covariant differentiation of vectors in curved spaces
Introduction
In our everyday life, which spatially is largely restricted to a curved two-dimensional metric space:
the surface of the Earth, a vector is a small arrow pointing in a certain direction. For example,
the arrow on a road-sign that indicates the direction toward the nearest town.

The important property of the vector is that although it might seem to point at different
direction relative to your car—depending on your driving direction—it actually always points in
the direction of the town. In mathematical words, vectors have certain useful transformational
properties when one changes ones reference frame.

Geometrically an arrow can be described by specifying the coordinates of the nock and the
head the arrow. Actually, one only needs to specify the coordinate differences between these two
points. Indeed the absolute position of the road-sign is not so important as long as you can still
see it from your car on the road.

The arrow must obviously be small compared to (at least) the relief structures on the Earth’s
surface. The smallness of the arrow in the mathematical language means that the coordinate
difference between the nock and the head of the arrow is infinitesimal. In other words,

A vector—a small arrow—is, mathematically speaking, a coordinate differential.

In physics we use vectors to describe many different physical quantities, but they are all related
to small arrows in the sense that under a change of the reference frame they all transform the
same way as do coordinate differentials.

Coordinates, vectors, tensors
Coordinates and their differentials

A set of four numbers used to specify the location of an event in space-time is called coordinates
and is denoted as {x0, x1, x2, x3}, or as xa, or simply as x. For example, on Earth one could use
time, latitude, longitude, and height above the sea level.

The coordinates themselves transform obviously non-linearly under a general non-linear co-
ordinate trasformation. However, coordinate differentials—our archetypal vectors—do transform
linearly even under a non-linear coordinate trasformation. Indeed, the set of coordinate differen-
tials dxa under a general coordinate transformation xa → x′a(xb) transforms linearly,

dx′a =

3∑
b=0

∂x′a

∂xb
dxb , (1)

via the Jacobian matrix,
Ja
b ≡ ∂x′a

∂xb
. (2)

Apart from coordinate differentials there exist another object that transforms linearly under a
general coordinate transformation: the set of partial derivatives of a scalar function ϕ(x),

∂ϕ

∂x′a =

3∑
b=0

∂ϕ

∂xb

∂xb

∂x′a , (3)

which transforms through the inverse Jacobian matrix1

J−1 =
∂xb

∂x′a . (4)
1Indeed,

JJ−1 =
3∑

b=0

∂xa

∂x′b
∂x′b

∂xc
=

∂xa

∂xc
= δac ≡


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
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Vectors

Now, a set of four quantities Aa ≡ {A0, A1, A2, A3}, is called a vector with index up2 if it transforms
similar to coordinate differentials in equation (1),

A′a =

3∑
b=0

(
∂x′a

∂xb

)
Ab . (5)

Similarly, a set of four quantities Aa is called a vector with index down if it transforms similar
to the set of partial derivatives of a scalar in equation (3),

A′
a =

3∑
b=0

(
∂xb

∂x′a

)
Ab . (6)

In the following we shall use the implicit summation notation where we drop the summation
sign and always assume a summation over the index that appears in the up and down positions
in a term, for example,

AaBa ≡
3∑

a=0

AaBa . (7)

Contraction (generalized scalar product)

The contraction AaBa is apparently a scalar (an object that transforms identically), as it is
invariant under coordinate transformations. Indeed,

AaBa =
∂xa

∂x′bA
′b ∂x

′c

∂xa
B′

c = A′bB′
b . (8)

Tensors

Objects that under a general coordinate transformation transform similar to vectors and their
products—that is, linearly via Jacobi matrix or its inverse—are said to transform covariantly.
These objects are called tensors. The number of indices is called the rank of the tensor. For
example, a scalar is a tensor of rank-0, and a vector is a tensor of rank-1. The general covariance
principle (which states that the laws of physics must have the same form in all frames) postulates
that the laws of physics must be formulated in terms of tensors.

An example of a tensor of rank-2 is the product AaBb of the components of two vectors. Indeed
it transforms linearly via Jacobian matrices as

A′aB′b =
∂x′a

∂xc

∂x′b

∂xd
AcBd . (9)

Now any quantity F ab which transforms similarly,

F ′ab =
∂x′a

∂xc

∂x′b

∂xd
F cd . (10)

is called a (rank-2, in this case) tensor.

Metric tensor
The metric tensor gab defines the metric—the invariant infinitesimal interval ds2—between two
close events in time-space separated by dxa,

ds2 = gabdx
adxb . (11)

2Also called contra-variant vector.
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Since dxa is an arbitrary index-up vector, the construction gabdx
b transforms as an index-down

vector and thus the metric tensor connects index-up and index-down vectors,

Aa = gabA
b . (12)

Covariant differentials in curvilinear coordinates
The laws of physics (for example, the Lorentz force equation or the Maxwell equations) are formu-
lated mathematically as (covariant) differential equations with tensors. A differential of a scalar
is always a tensor and can therefore be directly used in such an equation. However the differential
of a vector generally does not transform covariantly in curvilinear coordinates3 and therefore is
not a tensor.

We thus need to introduce covariant differentials of tensor which can be used to formulate laws
of physics in curvilinear coordinates (and, via the equivalence principle, also in genuinely curved
spaces with gravitational fields).

Covariant differential in flat spaces with curvilinear coordinates

Let us consider—as an example—a Euclidean space that contains a vector field A. Let us introduce
some arbitrary curvilinear coordinates (spherical, for example) with the metric tensor gab and with
certain unit vectors ea and ea such that ea · eb = δab , ea · eb = gab, ea = gabe

b. The components
Aa of the vector in these coordinates are then given as

Aa .
= ea ·A . (13)

Unfortunately, the component differentials, dAa, where

dAa = ea · dA+ dea ·A (14)

do not transform covariantly if dea ̸= 0. The first term does actually transform covariantly, as it
contains the actual change of the vector dA. Let us call it the covariant differential, DAa,

DAa = ea · dA (15)

It indeed transforms covariantly,

DA′a = e′a · dA = (e′a · eb)(eb · dA) = Ja
b DAb , (16)

where Ja
b is the Jacobian matrix4. And it is exactly the term which appears when we project a

differential vector equation, say dA = dB, on our unit vectors,

dA = dB ⇒ eadA = eadB ⇒ DAa = DBa . (17)

That is, a differential vector equation
dA = dB

in curvilinear coordinates becomes
DAa = DBa .

We can get the component expression for the covariant differential DAa from (14),

DAa = dAa − deaA = dAa − (deaeb)(e
bA) = dAa + (eaeb,c)A

bdxc . (18)
3Curvilinear coordinates are coordinates where the metric tensor is not everywhere pseudo-Euclidean.
4

dx′a = e′adx = e′aebdx
b .
= Ja

b dx
b
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where we have introduced the comma notation for partial derivatives,

f,c ≡
∂f

∂xc
. (19)

The expression in parentheses is called the Christoffel symbol,

(eaeb,c)
.
= Γa

bc . (20)

Christoffel symbols (in this case) are symmetric under exchange of the last indices,5

Γa
bc = Γa

cb . (24)

Using the equation gab = eaeb and the symmetry property we can express Christoffel symbols in
terms of the metric tensor as6,

Γabc =
1

2
(gab,c − gbc,a + gca,b) . (27)

The covariant differential in curvilinear coordinates is then given as7

DAa = dAa + Γa
bcA

bdxc . (28)

Now, using the comma-notation for partial derivatives,

dAa = Aa
,cdx

c , (29)

gives
DAa = (Aa

,c + Γa
bcA

b)dxc . (30)

The expression in parentheses is called covariant derivative and is denoted as Aa
;c,

Aa
;c

.
= Aa

,c + Γa
bcA

b . (31)

It is apparently a tensor, unlike the partial derivative.
Now, the principle of equivalence tells us that in genuinely curved spaces the formulae should

be the same.
5Let us denote the (constant) Cartesian unit vectors as Ea and the corresponding Cartesian coordinates as ξa.

The infinitesimal vector dl connecting two close points is given as

dl = Eadξ
a = Ea

∂ξa

∂xb
dxb = ebdx

b , (21)

from which we get
eb = Ea

∂ξa

∂xb
, ec = Ea

∂ξa

∂xc
, (22)

Now,

eb,c = Ea
∂2ξa

∂xb∂xc
, ec,b = Ea

∂2ξa

∂xc∂xb
. (23)

These two expressions are equal (assuming double differentiability of the coordinate transformation functions).
6The partial derivative of the metric tensor is given as

gab,c = (eaeb),c = Γbac + Γabc . (25)

Writing this expression two more times with cyclic permutation of indices and then making a linear combination
gives (taking into account the symmetry property)

gab,c − gbc,a + gca,b = 2Γabc . (26)

7In mathematics our covariant differential is referred to as metric torsion-free connection or Levi-Civita connec-
tion.
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Covariant differential in metric spaces
Let us repeat the derivations without a reference to the underlying flat space.

In a curved space the differential of vector component, dAa, is not a covariant quantity, since
generally

dAa = d(gabA
b) = gabdA

b + dgabA
b ̸= gabdA

b , (32)

if dgab ̸= 0, that is, if the metric tensor is not constant throughout the space.
In order to write covariant differential equations we need a covariant differential, denoted as

DAa, which satisfies the covariance condition,

DAa = gabDAb = DgabA
b. (33)

The covariant differential has to contain dAa and an additional term which would ensure covari-
ance. As a contribution to differential the additional term must be linear in dx. Moreover, it
must also be linear in A if we demand linearity of the operation of differentiation. The covariant
differential can then be generally written as

DAa = dAa + Γa
bcA

bdxc , (34)

where the factor Γa
bc (apparently, not itself a covariant tensor) is called the Christoffel symbol.

Differential of a scalar d(AaB
a) is already a covariant quantity, therefore

D(AaB
a) = d(AaB

a) (35)

for an arbitrary Ba. If we demand that covariant differential satisfies the Leibniz product rule8

we find9

DAa = dAa − Γb
acAbdx

c . (36)

With the comma-notation for partial derivatives,

dAa =
∂Aa

∂xc
dxc ≡ Aa

,cdx
c , (37)

the covariant differentials take the form

DAa =
(
Aa

,c + Γa
bcA

b
)
dxc , (38)

DAa =
(
Aa,c − Γb

acAb

)
dxc . (39)

The expressions in the parentheses are tensors, since when multiplied by arbitrary vector dxc they
produce vectors. These tensors are called covariant derivatives and are denoted as

Aa
;c = Aa

,c + Γa
bcA

b , (40)
Aa;c = Aa,c − Γb

acAb . (41)
8 The Leibniz product rule states that

D(AB) = ADB +BDA .

9 Applying the Leibniz product rule to (35) gives

DAaB
a +Aa(dB

a + Γa
bcB

bdxc) = dAaB
a +AadB

a .

Simplifying and exchanging a ↔ b in the Γ-term gives

DAaB
a = (dAa − Γb

acAbdx
c)Ba .

Since Ba is arbitrary, DAa = dAa − Γb
acAbdx

c.
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Christoffel symbols and the metric tensor

Although the Christoffel symbol itself is not a tensor, the linear combination

Γa
bc − Γa

cb (42)

is a tensor (called torsion tensor). Indeed, consider the difference,

φ;c;b − φ;b;c = (Γa
bc − Γa

cb)φ;a , (43)

where φ is an arbitrary scalar. The left-hand side is a tensor and φ;a is also a tensor, therefore
Γa

bc − Γa
cb is also a tensor. The latter is equal zero in a locally flat frame. Being a tensor it is

than equal zero in all other frames. Therefore Christoffel symbol is symmetric over exchange of
the two lower indexes10,

Γa
bc = Γa

cb . (44)

The covariance condition (33) is fulfilled if the covariant derivative of the metric tensor11

vanishes,
Dgab = 0 . (45)

This condition together with the symmetry (44) determines12 the Christoffel symbol through the
derivatives of the metric tensor,

Γabc =
1

2
(gab,c − gbc,a + gac,b) . (46)

Exercises
1. Prove that matrix ∂xa/∂x′b is inverse to matrix ∂x′c/∂xd.

2. Is our definition of vectors in curvilinear coordinates consistent with

• the Euclidean three-vectors of Galilean relativity?
• the Minkowski four-vectors of special relativity?

Think about velocity, momentum, (potential) force, and whatever other vectors you can
think of.

3. What is the metric tensor in the Galilean space of Newtonian kinematics? In Minkowski
space of relativistic kinematics?

4. What is the Jacobian matrix of the Galilean transformation? Of the Lorentz transformation?
10 Spaces with this property are called torsion-free.
11 The Leibniz product rule D(AaBb) = DAaBb + AaDBb gives the definition of the covariant differential of a

tensor as
DFab = dFab + Γa

cdF
cbdxd + Γb

cdF
acdxd.

12 The (vanishing) Dgab is given as

Dgab = dgab − Γd
acgdbdx

c − Γd
bcgaddx

c = 0 .

This can be written as
gab,c − Γbac − Γabc = 0 .

Exchanging indices gives two other equations,

−gbc,a + Γcba + Γbca = 0 ,

gca,b − Γacb − Γcab = 0 .

Finally, adding the last three equations gives (46).
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5. Suppose a law of physics in a certain system of coordinates is given as13

Aa = Ba .

How does this law look like after a coordinate transformation x → x′(x) into another system
of coordinates?

6. In a 2D Euclidean (flat) space with Cartesian coordinates {x, y} consider a coordinate trans-
formation

x = r cosϕ, y = r sinϕ

to polar coordinates {r, ϕ}.

• Find the metrix tensor in polar coordinates. Is it conformally flat?14

• Find the unit vectors ea and ea where a = r, ϕ.
• Check that eaeb = gab.
• Calculate the Christoffel symbols.

7. Prove that in a flat space with curvilinear coordinates the Christoffel symbols satisfy the
equation

eaeb,c =
1

2
(gab,c − gbc,a + gca,b) .

8. Using Aa
;b = Aa

,b + Γa
bcA

c and the Leibniz poduct rule prove that Aa;b = Aa,b + Γc
abA

c.

9. Using our formalism of covariant differentiation of vectors write down the 3D Cartesian
equation

∇E = 4πρ

(the Gauss law) in cylindrical and spherical coordinates. Compare with the expressions in
your textbook (or in Wikipedia). Hint: you might want first to rewrite the equation in a
generally covariant form by substituting ,a with ;a.

10. The Kronecker delta symbol δab is defined as

δab
.
=

{
1 if a = b ,
0 if a ̸= b .

(a) Show that δabX
b = Xa,

(b) Show that δabXa = Xb,
(c) Show that δab is a tensor.
(d) Evaluate δaa .
(e) Evaluate Dδab .

11. A tensor, F ab, is an object that transforms as an outer product, AaBb, of two vectors Aa and
Bb. Using the Leibniz product rule, D(AaBb) = DAaBb + AaDBb, derive the expression
for the covariant differential DF ab.

12. Argue that Christoffel symbols are not tensors.
13For example, the Maxwell equation with sources,

Fab
;a = 4πjb

.
14Let us define conformal as differing only in a factor that is a smooth function of coordinates.
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13. (extra) Prove15 that the transformation rule for Christoffel symbols is given as

Γa
bc =

∂xa

∂x′e
∂x′f

∂xb

∂x′d

∂xc
Γ′e
fd +

∂2x′e

∂xb∂xc

∂xa

∂x′e

14. Is the quantity ∂ϕ/∂xa, where ϕ is a scalar (a tensor of rank 0), a tensor? Is the quantity
∂2ϕ/∂xa∂xb a tensor?

15. Argue that if a rank-2 tensor is symmetric, T ab = T ba, in one coordinate system, it is
symmetric in all acceptable coordinate systems.

16. Argue that if Aa
bc and Ba

bc are tensors then so is their sum and difference.

17. Argue that a product of two tensors is a tensor.

18. Argue that any rank-2 tensor with both indices up (or both down) can be written as a sum
of a symmetric and an anti-symmetric tensor.

19. Argue that the metric tensor is indeed a tensor.

20. Argue that the quantity uaua = gabu
aub (where ua .

= dxa/ds is the four-velocity) is a
(covariant) scalar and calculate its value.

15Hints:
gab =

∂x′e

∂xa

∂x′f

∂xb
g′ef , gab =

∂xa

∂x′e
∂xb

∂x′f g′ef , Γu
bc =

1

2
gua

(
gab,c − gbc,a + gca,b

)
,

gab,c =
∂

∂xc

(
∂x′e

∂xa

∂x′f

∂xb
g′ef

)
=

(
∂2x′e

∂xc∂xa

∂x′f

∂xb
+

∂x′e

∂xa

∂2x′f

∂xc∂xb

)
g′ef +

∂x′e

∂xa

∂x′f

∂xb

∂x′d

∂xc
g′ef,d .
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