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Motion in Schwarzschild metric
Motion in the Schwarzschild metric reveals several of the unusual consequences of general relativity:

1. Utmost relativity of measurements: it takes finite proper time for a body to fall onto the
Schwarzschild radius, yet for the outside observer it takes infinite time.

2. There exist gravitational singularities (geodesic incompleteness) in general relativity: some
trajectories cannot be extended beyond a certain point. Gravitational singularities—unlike
coordinate singularities—do not depend on the coordinate system and cannot be removed by
coordinate transformation. The gravitational field becomes infinitely large at a gravitational
singularity.

3. There exist event horizons in general relativity – the (hyper)surfaces in time-space which
can only be crossed in one direction.

Radial fall in Schwarzschild coordinates
Let us derive the equation of motion—in Schwarzschild coordinates {t, r}—for a test body falling
radially from infinity towards a black hole1 with mass M .

The radial equation can be conveniently obtained from the metric expression along the trajec-
tory of the falling body,

ds2 =

(
1− R

r

)
dt2 − dr2

1− R
r

, (1)

where R = 2M · (G/c2) is the gravitational radius and where dθ = dϕ = 0 for the radial motion.
We can get rid of ds using the geodesic equation for the time-coordinate,

d

ds

[(
1− R

r

)
dt

ds

]
= 0 , (2)

with the first integral (
1− R

r

)
dt

ds
= E . (3)

For a body that starts falling from at rest at infinity E = 1 (prove this). Therefore along the
trajectory of our body the following relation holds,

ds =

(
1− R

r

)
dt . (4)

Inserting this into (1) gives the sought equation of motion,

dr

dt
= −

√
R

r

(
1− R

r

)
. (5)

Notice that at large distances, r ≫ R, the equation turns into the corresponding Newtonian
equation. However as the body approaches the gravitational radius its radial velocity approaches
zero. Thus for the external observer the falling body never reaches the gravitational radius.

This observation (and the fact that the metric in Schwarzschild coordinates has a singularity at
the gravitational radius) makes the Schwarzschild coordinates not very useful for investigations of
the motion of the bodies close to gravitational radius. We shall therefore switch to an alternative
set of coordinates (for the same metric) – the Lemaitre coordinates named after George Lemaitre.

1A black hole is a body that is completely under the gravitational radius
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Lemaitre coordinates
In the Schwarzschild metric around a body with the gravitational radius R,

ds2 =

(
1− R

r

)
dt2 − dr2

1− R
r

− r2
(
dθ2 + sin2 θdϕ2

)
, (6)

there is a singularity at the gravitational radius, r = R. Under the gravitational radius the
coordinate r becomes time-like and t becomes space-like.

However, it turns out to be not a physical singularity, but rather an artifact of the (incorrect)
assumption that a static Schwarzschild coordinates can be realized under the gravitational radius
with material bodies. The singularity at the Schwarzschild radius in Schwarzschild coordinates
can be removed by a coordinate transformation. Such removable singularities are called coordinate
singularities.

George Lemaitre was apparently the first one to figure that out. He introduced an alternative
set of coordinates, {t, r} → {τ, ρ}, which are connected to bodies falling free radially towards
the center from infinity where they are at rest. The angular coordinates remain the same.

The transformation to the Lemaitre coordinates τ , ρ is given as

dρ = dt+

√
r

R

dr

1− R
r

, (7)

dτ = dt+

√
R

r

dr

1− R
r

. (8)

The first equation is inspired by our equation of motion (5): the body with a fixed coordinate ρ
satisfies (5) and therefore falls freely towards the center. The second equation is chosen such that
the metric expression in the new coordinates is synchronous (has a term dτ2 and no cross-term
dτdρ).

The transformation to the Lemaitre coordinate gives the expression for the Schwarzschild
metric where the singularity at r = R is removed (however there remains a genuine singularity at
the origin),

ds2 = dτ2 − R

r
dρ2 − r2(dθ2 + sin2 θdϕ2) , (9)

where r = [ 32 (ρ− τ)]2/3R1/3. The latter is obtained by integrating

dρ− dτ =

√
r

R
dr , (10)

which is the difference between (7) and (8).
The set of Lemaitre coordinates is synchronous2 and is realized by a system of clocks in a free

radial fall from infinity towards the origin.

Radial fall in Lemaitre coordinates
For a free falling body dρ = 0 and equation (7) reduces to equation (5),

dt = −
√

r

R

1

(1− R
r )

dr . (11)

Approaching the Schwarzschild radius, in the region r ≳ R, we have in the lowest order in (r −
R)/R,

dt = − R

r −R
dr , ⇒ r −R

r1 −R
= e−

t−t1
R . (12)

2 the metric has the form ds2 = dτ2 + gαβdx
αdxβ .

2



note11 [November 27, 2023]

Apparently, it takes a free falling body infinitely long t-time—the time used by the outer observer—
to reach the Schwarzschild radius.

On the contrary, a free falling Lemaitre clock moves from some radius r1 to a smaller radius
r2—which can well be the gravitational radius or even the origin—within finite τ -time ∆τ12.
Indeed, setting dρ = 0 in (10) gives

∆τ12 = −
∫ r2

r1

√
r

R
dr =

2

3

(
r
3/2
1 − r

3/2
2

R1/2

)
. (13)

Event horizons and black holes
Along the trajectory of a radial light ray the infinitesimal interval is zero,

ds2 = dτ2 − R

r
dρ2 = 0 , (14)

which gives

dρ = ±
√

r

R
dτ , (15)

where plus and minus describe the rays of light sent correspondingly up and down.
Isolating dρ in (10) and inserting the result into (15) shows that along the trajectory

dr =

(
±1−

√
R

r

)
dτ . (16)

Apparently if r < R then there is always dr < 0 and thus the light rays emitted radially
inwards and outwards both end up at the origin. In other words no signal can escape from inside
the gravitational radius. This phenomenon is called the event horizon.

Therefore a massive object with a size less than the gravitational radius, called a black hole,
is completely under the event horizon and its interior is totally invisible.

The trajectories of massive bodies and light rays inside the gravitational radius both end up
in the origin where they cannot be extended any further.

The black holes can possibly be detected through their interaction with the matter outside the
event horizon.

Exercises
1. In Newtonian mechanics derive the equation of motion for a body falling radially from infinity

towards the gravitating center of mass M . Compare with the relativistic result.

2. Show that in a synchronous reference frame, where the metric has the form

ds2 = dτ2 + gαβdx
αdxβ

∣∣
α,β=1,2,3

the time lines (where dxα = 0) are geodesics.

3. In Schwartzschild metric derive the equation of motion (11),

dt = −
√

r

R

1

(1− R
r )

dr ,

for a body in a radial free fall from infinity towards a black hole using the expression for the
metric and the geodesic equation for the time-coordinate.
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4. In Schwartzschild metric Derive the equation of motion (11),

dt = −
√

r

R

1

(1− R
r )

dr ,

for a body in a radial free fall from infinity towards a black hole using the geodesic equation
for the radial coordinate.
Hints: find dt/ds from the t geodesic equation; find dr/ds from the r geodesic equation
eliminating t(s) using the expression for the metric and integrating once; divide the two. 3

5. In the Schwarzschild metric a body is falling free radially toward the center. What is its
coordinate velocity dr/dt at radius r? What is its locally measured velocity at the same
place? Hints: in the Schwarzschild metric the locally measured radial length is given as
dr̂2 = (1− R

r )
−1dr2 and the locally measured time is given as dt̂2 = (1− R

r )dt
2.

6. A radio transmitter is free falling radially toward a black hole. When the transmitter is
approaching the gravitational radius an outside observer measures its radio signal to be
red-shifted as ω = ω0e

−λt. Estimate the mass of the black hole from the measured λ.
Hints: ω = ω0

√
g00; r −R = (r1 −R)e−(t−t1)/R (see equation (12)).

7. Calculate the proper time it takes for a Lemaitre clock to fall from the gravitational radius to
the center of a black hole. For a black hole with the solar mass specify this time in seconds.

3The radial geodesic equation, dur
ds

= 1
2
gbc,ru

buc, for the radial motion (uθ = uϕ = 0) in the Schwartzschild
metric is given as

d

ds

(
−

1

1− R
r

ṙ

)
=

1

2

(
1−

R

r

)
,r

ṫ2 +
1

2

(
−

1

1− R
r

)
,r

ṙ2 , (17)

where ˙denotes d
ds

and R ≡ R is the gravitational radius of the central body. We can eliminate ṫ2 from the equation
using the expression for the metric for the radial motion,

ds2 =

(
1−

R

r

)
dt2 −

1

1− R
r

dr2 , (18)

or, equivalently,

ṫ2 =

1 + 1

1−R
r

ṙ2

1− R
r

. (19)

Substituting this into the radial equation gives (after few identical transformations),

r̈ = −
1

2

R

r2
, (20)

which formally is the Newtonian equation. It can be integrated once by multiplying with ṙ, which gives
d

ds
ṙ2 =

d

ds

(
R

r

)
, (21)

and (explain)
dr

ds
= −

√
R

r
. (22)

Now, the t-equation reads
d

ds

((
1−

R

r

)
ṫ

)
= 0 , (23)

with the first integral (
1−

R

r

)
ṫ = E = 1 , (24)

which gives
dt

ds
=

1

1− R
r

. (25)

Finally,
dr

dt
=

( dr
ds

)

( dt
ds

)
= −

√
R

r

(
1−

R

r

)
. (26)
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8. Show that in Newtonian mechanics the circular planetary orbits around stars are stable
against small radial perturbations. Show that in general relativity circular orbits are stable
only if r > 6M . Hints: consider a circular orbit with a small perturbation, u = u0 + δu;
derive the equation for δu in the lowest order; investigate whether the perturbation remains
small or increases.

9. Show that equatorial orbits in the Schwarzschild metric are stable. Consider for simplicity
a circular orbit. Hint: consider an equatorial orbit with a small perturbation, θ = π/2 + δθ;
derive the equation for δθ in the lowest order; show that the perturbation remains small;
interpret the solution.
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