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Classical tests of general relativity
Einstein proposed three tests of general relativity in 1916 (subsequently called the classical tests):

• The anomalous advance of Mercury’s perihelion;

• The deflection of light by the sun;

• The gravitational red-shift of light.

Of these tests, only the perihelion advance of Mercury was known prior to Einstein’s final pub-
lication of general relativity in 1916. The subsequent experimental confirmation of his other
predictions, especially the first measurements of the deflection of light by the sun in 1919, firmly
established general relativity as a mainstream theory.

Mercury perihelion advance
In the 19th century it was discovered that interplanetary perturbations cannot account fully for
the turning rate of the Mercury’s orbit. About 43 arc-seconds per century remained unexplained.
The general theory of relativity exactly accounts for this discrepancy.

The Newtonian equation for the equatorial motion of a planet around a star with mass M is
given as

u′′ + u =
M

J2
, (1)

where u = 1/r, u′ = du/dφ, φ is the azimuth angle, and J is a constant. This equation has a
periodic elliptic solution with the angular period 2π,

u = A cos(φ− φ0) +
M

J2
, (2)

where A and φ0 are constants.
The corresponding relativistic equation,

u′′ + u =
M

J2
+ 3Mu2 , (3)

has an additional relativistic term 3Mu2 which causes the perihelion to shift as illustrated on
Figure 1.
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Figure 1: Aphelion shift of a planet orbiting a star.

The small correction, ϵ ≪ 1, to the angular frequency can be found by searching for a solution
in the form

u = A cos [(1 + ϵ)φ] +B , (4)
where A and B are constants. Setting this into equation (3) and collecting lowest order terms
with powers of cos [(1 + ϵ)φ] gives

−A2ϵ cos [(1 + ϵ)φ] = 3M2AB cos [(1 + ϵ)φ] . (5)
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The constant B has to be taken here in the lowest order, B = M/J2, which gives

ϵ = −3M2

J2
. (6)

The angular distance between two perihelia, ∆φ, is determined by the equation (1+ϵ)∆φ = 2π,
which gives (in lowest order in ϵ) ∆φ = 2π − 2πϵ. Correspondingly the shift of the orbit, δφ, is
given as

δφ = −2πϵ = 2π
3M2

J2
. (7)

This accounts precisely for the unexplained advance of the Mercury’s orbit.

Bending of light
General relativity predicts apparent bending of light rays passing through gravitational fields.
The bending was first observed in 1919 by A.S. Eddington during a total eclipse when stellar
images near the occulted disk of the Sun appeared displaced by some arc-seconds from their usual
locations in the sky. Later more precise experiments have unambiguously shown that the amount
of deflection agrees with the prediction of general relativity.

The Einstein ring is an example of the deflection of light from distant galaxies by nearby
objects.

In the Newtonian theory the light rays travel along straight lines described by the equation
u′′ + u = 0 with the (straight-line) solution u = A cos(φ − φ0). The corresponding relativistic
equation,

u′′ + u = 3Mu2 , (8)
has an additional term, 3Mu2, which causes the trajectory of light to deflect from the straight
line. Assuming the solution in the form u = A cosφ+ ϵ(φ), where ϵ(φ) is a small correction, gives

ϵ′′ + ϵ = 3MA2 cos2 φ . (9)

Assuming ϵ(φ) = C cos2 φ+D, where C and D are constants, gives

ϵ(φ) = MA2(2− cos2 φ) . (10)

The incoming and outgoing rays, where r = ∞ and u = 0, correspond to the angles φ∞ which
are the solutions to the equation u(φ∞) = 0. Searching for the solution perturbatively in the form
φ∞ = π/2 + δφ gives δφ = 2MA.

Thus, the relativistic deflection angle ∆φ between the in-going and out-going rays is

∆φ = 2δφ = 4MA =
4M

r0
= 2

rg
r0

, (11)

where r0 is the closest distance between the ray and the central body.

Gravitational red-shift
Gravitational red shift is a change of the frequency of the electro-magnetic radiation as it passes
through a gravitational field. It is a direct consequence of the equivalence principle.

The connection between the proper time interval ∆τ and the world time interval ∆t (here we
only consider stationary gravitational fields where such world time can be introduced) is

∆τ =
√
g00∆t . (12)

Since frequencies are inversely proportional to the time intervals the corresponding connection
between world frequency ω0 and the locally measured frequency ω is

ω =
ω0√
g00

. (13)
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In a weak gravitational field g00 = 1 + 2ϕ/c2 and therefore ω = ω0(1 − ϕ/c2). A photon emitted
from a point with ϕ1 and received at a point with ϕ2 will be shifted by

∆ω =
ϕ1 − ϕ2

c2
ω . (14)

The famous experiment that verified the gravitational red-shift is generally called the Pound-
Rebka-Snider experiment where the Mössbauer effect was used to accurately measure the change
of frequency of a photon travelling upwards 22 m in the Earth’s gravitational field.

Exercises
1. Derive the Kepler’s law (the relation between the orbit’s period and the radius) for a circular

orbit in Schwarzschild metric.
Answer: like in Newtonian theory, ω2 = M/r3.
Hint: the period is equal 2π/ω, where ω = dφ/dt is the angular frequency which can be
found from the geodesics Dur = 0.

2. Consider a nearly circular orbit of a planet around a star in Newtonian mechanics and in
General Relativity. Derive the equation for a small radial perturbation of the orbit and find
its angular period. Relate to the post-Newtonian perihelion precession.

3. In Newtonian mechanics consider a planet rotating around a star which is slightly non-
spherical (a bit of a pancake-like due to the centrifugal forces of the star’s rotation), such that
the classical Newtonian gravitational potential in the equatorial plane is given as (explain
the absence of the 1/r2 term)

ϕ(r) = −M

r
+

MJ2R
2

r3
, (15)

where J2 is the quadrupole moment of the star (presumed very small), and R is the (equa-
torial) radius of the star. In Newtonian mechanics calculate the precession of the perihelion
of the orbit of the planet. For simplicity you may assume that the orbit is nearly circular.
The quadrupole moment of our sun is estimated1 to be J⊙

2 ≈ 2×10−7. Can this explain the
anomalous precession of Mercury’s orbit?

1Stephany Godier and Jean-Pierre Rozelot, Quadrupole moment of the Sun: Gravitational and rotational po-
tentials, Astron. Astrophys. 350, 310–317 (1999); S. Pireaux, J.P. Rozelot, S. Godier, Solar quadrupole moment
and purely relativistic gravitation contributions to Mercury’s perihelion Advance, Astrophys.Space Sci. 284 (2003)
1159-1194 (arXiv:astro-ph/0109032).
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