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Prologue

General relativity is a classical relativistic theory of gravitation. It was introduced by Albert
Einstein in 1916. General relativity is the accepted description of gravitation in modern physics.

General relativity is a geometric theory: the gravitational field—unlike the electromagnetic
field—is not a material field but rather a curvature of space-time. In general relativity massive
bodies do not create a material field around them—Iike the chares do in electrodynamics—but
rather distort the space-time in their vicinity which affects the motion of other bodies.

General relativity satisfies the correspondence principle!: in the absence of gravitational fields
general relativity reduces to special relativity, and in the limit of weak gravitational fields and
non-relativistic velocities general relativity reduces to Newtonian gravitation.

Although not the only relativistic theory of gravitation, general relativity is the simplest theory
consistent with experimental data.

General relativity has important astrophysical implications and is the basis of the current
cosmological models of the universe.

Unlike classical electrodynamics general relativity has not been quantized — a complete and
self-consistent theory of quantum gravity does not exist yet.

A brief reminder on Special Relativity

Special relativity—formulated by Albert Einstein in 1905—is a theory of spatial and temporal
measurements in inertial frames of reference. And it is also the theory of relativistic kinematics?.
Special relativity is the basis of relativistic mechanics and electrodynamics. It establishes, in partic-
ular, the law of coordinate transformations between inertial frames—the Lorentz transformation—
as well as the formulae for the relativistic momentum and the relativistic energy of moving bodies.
In the slow motion limit special relativity reduces to Galilean relativity.

Special relativity is based on the following postulates:?

1. Existence of inertial frames of reference: in the absence of gravitational forces there
exist infinitely many ¢nertial frames of reference where the laws of physics take their simplest
form (as indeed no inertial forces are present in inertial frames). In particular, free bodies—
that is, bodies not affected by forces—move with constant velocities along straight lines. In
an inertial frame one can conveniently introduce Cartesian coordinates* where the geometry
of space-time is particularly simple (Minkowski space-time).

Inertial frames move with constant velocities with respect to each other and measurements
in one inertial frame can be converted to measurements in another by a linear transformation
(the Lorentz transformation).

2. Special principle of relativity: the laws of physics have the same form in all inertial
frames.

3. Homogeneity and isotropy of space: the space has the same properties at any place
and in any direction.

IThe correspondence principle suggests that a new theory should reproduce the results of the older well-
established theories in those domains where the old theories are applicable.

2 Kinematics deals with the motion of free bodies (bodies that not affected by forces). The study of how forces
affect the motion of bodies falls within dynamics (or kinetics, in old textbooks).

3In physics, a postulate is a physical law of a more general nature which is typically deduced from a large number
of different experiments.

4where the distance dl between two infinitesimally close points separated by {dz,dy, dz} is given as

di? = dz? + dy? + d2?
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4. Finite maximum speed of a physical object: the maximum speed with which a physical
object can travel relative to a physical observer is finite (and relatively small, 2909792458 m/s).

Equivalently, one can rather postulate—as Einstein originally did—the constancy of the
speed of light, as motivated by Maxwell’s theory of electromagnetism and the null result
of the Michelson—Morley experiment.

Lorentz transformation

Lorentz transformation relates the measurements of spatial and temporal intervals in different
inertial frames. It is a linear transformation between (Euclidean) coordinates in two frames as it
transforms a linear motion of a free body in one inertial frame to a linear motion of the the same
body in another frame.

Coordinate transformations between inertial fames form a group®.

Let us consider a linear transformation of coordinates between two inertial frames (with parallel
Cartesian coordinates) moving with relative velocity v along the z-axis®. There exist only one
form of this transformation that is consistent with isotropy of space and the group postulates. It

is given as
'\ 1 I —% t
(2 )=l 70D g
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where (t',2') are the coordinates in the frame K’ which moves relative to the frame K with
coordinates (t, z) with velocity v along the z (and z’) axis. The y- and z-coordinates, perpendicular
to the velocity boost, transform identically and are therefore omitted for brevity.

The velocity ¢ is a universal constant, the fastest possible relative velocity of two inertial
frames. It equals the speed of light in vacuum and is experimentally measured to be finite.

Transformation (1) with finite ¢ is called the Lorentz transformation. Note that time and
space in Lorentz transformations do not transform separately but rather as components of one
inseparable four-component space-time point 2% = (¢,x,y, 2).

In the non-relativistic limit, ¢ — oo, the Lorentz transformation turns into Galilean transfor-
mation,

t = t,
¥ = x—ut. (2)

Here time is absolute and does not transform at all. The time-space coordinates then separate
into invariant time and the Eucledean vector of three spatial coordinates.

Invariant space-time interval and metric

A direct calculation shows that the infinitesimal space-time interval,

ds* = Adt* — da? — dy* — dz* | (3)

5In mathematics, a group is a set of elements, G = {a,b,c,...}, together with an operation, *, that combines
any two of its elements to form a third element also in the set while satisfying four conditions called the group
axioms, namely closure,
Va,be G:axbe G,

associativity,
(a*xb)xc=ax(bxc),

identity
deG:Va:axl=a,

and invertibility
Va€GIateG:axa"t =1.

6This transformation is often called Lorentz boost, or velocity boost, or simply boost.
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is invariant under the Lorentz transformation (1). It thus defines a metric’. A space with a metric
is called metric space.

The pseudo®-Euclidean metric (3) is called Minkowski metric and a space with such metric is
called Minkowski space.

The existence of a metric allows development of a geometry of space: measurements of dis-
tances, angles, and time intervals. However, geometry in Minkowski space is sometimes different
from the everyday Euclidean geometry. In particular, distances and time intervals—unlike the
invariant space-time interval—are relative: they might take different values in different frames.

In the limit v <« ¢ Minkowski space reduces to Fuclidean space, which is the non-relativistic
world of classical mechanics with Galilean transformation where dt is itself invariant and the
Minkowski metric reduces to the Euclidean metric,

di* = da® + dy* + d=* . (4)

Four-vector notation

In special relativity the set of four space-time coordinates {¢, 7} transform linearly from one inertial
frame to another (that is, under rotations and velocity-boosts). The coordinate differentials (in-
finitesimal differences) {dt, dr} of course also transform linearly. It is then convenient to introduce
the four-vector notation,

dx® = {dt,dr}, a =0,1,2,3, (5)

where the Lorentz transformation is written in the form
3
da'® = " Ajda® (6)
b=0

where Af is the Lorentz transformation matrix (a product of rotation and velocity-boost matrices).
In special relativity not only coordinate differentials but also the coordinates themselves transform
linearly so we could just as well use 2 instead of dz®. However, in general relativity the coordinates
generally do not transform linearly, only their differentials.

Now, any set of four numbers, A% where a = 0,1, 2,3, which under Lorentz transformation
transform the same way as coordinate differential,

3
A= ApAY, (7)
b=0
is called a four-vector.
The (invariant) metric ds? = dt? — di? cannot be conveniently written with a summation (37)
formula (since there are three minuses and one plus there), therefore one needs to introduce a
metric tensor (this particular one is called Minkowski metric tensor),

10 0 0
0 -1 0 0

=10 0 -1 0 ®)
0 0 0 -1

7A metric is a function that defines a distance between two infinitesimally close points in a space. Metric can
be used to measure distances and angles which allows development a geometry of the space.
8 Buclidean metric in an n-dimensional space has the form

ds? :da:%+---+dx%,
while pseudo-FEuclidean metric has one or more negative signs,

ds2:dx%+-~~+dmi—d:c%+1—--~—d:ci.
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The metric can then be written as
3 3
ds® = dt? — di® = Z Z Az gapda® = gapda®da® . (9)
a=0 b=0

where the last term demonstrates the so called Einstein’s implicit summation notation: if there is
an index which appears in both the sub- and super-position there is implicit summation over this
index from 0 to 3.

Since the metric tensor is not a unity matrix we have two types of vectors, the vector with
index up, dz®, and the vector with index down,

dre = gapdx® = {dt, —dr} . (10)
The metric can then be written

ds? = gapdz®da® = dadx, . (11)

The inverse metric tensor, g% = (gqp) "', defined via

ab _ ca - 17a:C
s =oe={ g0 (12)

transforms an index-down vector back into index-up vector,
% = g%y . (13)

Relativistic momentum and energy of a massive body

The postulate that free bodies move along straight lines can be conveniently formulated through
the variational (also called least action or stationary action) principle’. Indeed a straight line
between two points is the curve with extremal measure. The measure i of a curve in a metric

space is given by the integral
uw= / ds (14)

taken along the curve. The free bodies thus move along curves with extremal measure or, equiv-
alently, along curves with vanishing variation of the measure,

5/ﬁs=o. (15)

The postulate about the motion of free bodies can then be reformulated as a least action
principle with the action

S:a/ds, (16)

where the constant a can be deduced from the correspondence principle: in the non-relativistic
limit the action of a free body has to take the classical form, namely the temporal integral over
the kinetic energy of the body,

2
S U= /dt% + Const , (17)

where m is the mass of the body.

9 Action is a (real scalar) function of the trajectory of a physical system. The trajectory actually taken by a
physical system gives the minimum value of the system’s action.
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Calculating the non-relativistic limit of (16),

2 v C ]- 2
_(Jg/cclzf\/l—v—2 B ac/dt(l—;;), (18)

and comparing with (17) gives o = —me,

72
S:—mc/ds:—mCQ/dt\/l—v—Q. (19)
c

The Lagrangian'® £ of a free body is thus given as

772
L=-m 1—%2. (20)

From the Lagrangian one can obtain in the usual way the momentum p|

oL mv

D _— 21
e (21)
02
and the energy &,
oL 2
c=Zp-r=—2C (22)
0 1_ 2
62
of the body.
Exercises

1. Argue that the transformations that connect the (Euclidean) coordinates of events in differ-
ent inertial frames

(a) are linear;

(b) form a group where the group operation is simply performing one transformation after
another!?

2. Argue that matrices of the Galilean velocity boost (in z-direction, for simplicity),

=2, 1] (23)

101f the action of a system can be written as a temporal integral,

S:/Edt,

the object L is called the Lagrangian of the system.
1n mathematics, a group is a set of elements, G = {a,b,c,...}, together with an operation, *, that combines
any two of its elements to form a third element also in the set while satisfying four conditions called the group
axioms, namely closure,
Va,be G:axbe G,
associativity,
(axb)xc=ax(b*c),
identity
deG:Va:axlI=a,

and invertibility
VaeGIa teG:axa l =1.
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form a mathematical group with group operation being matrix multiplication. Specifically,

G)G(vy) = Gl +1vs), (24)
(Go1G(2))Glos) = Glor)(G2)Glws)) (25)
1 = G0, (26)

G(v)™! G(-v) . (27)

Argue that it is a Lie group.

3. Argue that the matrices of the Lorentz transformation (say, in a-direction) form a group
and derive the relativistic law of addition of velocities.

4. Derive the Lorentz transformation

(a) from isotropy of space, group postulates, and finite maximum velocity;
(b) from isotropy of space and invariance of the speed of light;
(¢) any other way.

5. Show that in Minkowski space the finite interval, As? = c2At? — Ax? — Ay? — A22, is also
invariant.

6. Use the Lorentz transformation to derive i) the time dilation and ii) the length contraction
formulae. Do this by identifying the pairs of events where the time or space separations are
to be compared and then apply the Lorentz transformation.

7. A particle that follows the line x = ¢t in a given frame K moves with the speed of light
along the z-axis.

(a) Based upon that fact, what do you anticipate for the equation of that line in a frame
K’ that moves along the z-axis relative the K-frame?

(b) Verify your prediction using the Lorentz transformation.

8. Show that the action of a body in the form

S:/ﬁmmﬁ (28)

leads—through the variational principle that demands S = 0 on the actual trajectory of
the body—to the (Euler-Lagrange) equation of motion,

00L oL
== 2
otov  or (29)
9. Consider a non-relativistic body with mass m moving in a potential V(r). Show that the
Lagrangian
2
c:@}—vm

leads to the normal Newton’s equations of motions.

10. Argue that in special relativity a body with action S = —mc [ ds moves along a straight
line.

11. Momentum p'is the quantity that conserves along the trajectory of the body if the Lagrangian
does not depend explicitly on 7 (through the Noether’s Theorem). Argue that

oL

5 (30)

ﬁ:
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12. Energy £ is the quantity that conserves along the trajectory of the body if the Lagrangian
does not depend explicitly on time (through the Noether’s Theorem).

In this case the variation of the Lagrangian under the infinitesimal transformation ¢t — ¢+ 4t
is given as
oL oL
0L = =07+ —=0v. 31
o T (31)

Show that on the trajectory this can be written as the energy conservation law,

=0, (32)
with the energy
oL

13. Consider the motion of a particle with charge e and mass m in a constant uniform electric
field E which is, say, in the direction of the x-axis.

(a) Suppose that at ¢ = 0 the particle was at rest, ¥ = 0, with the coordinate ¥ = 0. Find
z(t).

(b) Suppose that at t = 0 the particle had ¥ = 0 and v, = 0, but v, # 0. Find z(t), y(¢)
and z(y).

(c) Consider the limits eEt < mc and eEt > me.
Hints:

(a) The equation of motion of a charged particle in an electro-magnetic field E , H is
dp D
— =e|FE+—-xH 34
_. ( T ) , (34)

where the (relativistic) momentum 7 and the velocity ¢ are related as

g (35)
P= V1—v2/c2
(b)
0 /14 (a7/c)? - 2a )y 14+¢
2 (at/c)?
= SVt (37)

S (ViT@E-1) )

14. A traveler starts from Earth and moves along a line with constant acceleration g for 25
traveler’s years then with constant deceleration g again for 25 traveler’s years. How far
from Earth will they reach? What was their maximum speed in the Earth’s frame (assumed
inertial)? The traveler then flies back to Earth in the same manner. How many years will
have passed on Earth since their departure when they comes back to Earth?



