Introduction to General Relativity Examination problems 2021

- 1. Describe shortly the following concepts:
 - (a) (5%) Equivalence principle;
 - (b) (5%) Metric tensor;
 - (c) (5%) Geometric theory of gravitation;
 - (d) (5%) Geodesic;
 - (e) (5%) Einstein's equation;
 - (f) (5%) Schwarzschild metric;
 - (g) (5%) Friedman's equation;
 - (h) (5%) Cosmological red-shift;
 - (i) (5%) Gravitational wave;
 - (j) (5%) Cosmological constant;
- 2. (5%) The Schwarzschild radius is given in natural units as R = 2M where M is the mass of the central body. Estimate the Schwarzschild radius of the Earth in SI units.

Hints: $R_{\oplus} \approx 6.4$ megameters, $g \approx 9.8$ meters/second/second, $c \approx 300$ megameters/second.

3. (10%) The geodesic equation in a metric space with the metric tensor g_{ab} can be written as

$$\frac{du_c}{ds} = \frac{1}{2}g_{ab,c}u^a u^b \ .$$

For the Schwarzschild metric¹ write down (do not solve, only write down) the geodesic equation where the index c corresponds to the radial coordinate.

4. In a weak stationary gravitational field $\phi(\mathbf{r}) \ll 1$ the metric can be approximated as

$$ds^2 \approx (1+2\phi) dt^2 - d\mathbf{r}^2$$
.

- (a) (10%) Calculate the Christoffel symbols in the lowest order in ϕ .
- (b) (10%) Derive the equation of motion for a slowly ($v \ll 1$) moving massive body; compare with the Newtonian equation of motion.
- 5. (15%) Argue that a ray of light can travel around a black hole in a circular orbit much like a planet. Is this orbit stable against small radial perturbations?

 $ds^{2} = \left(1 - \frac{2M}{r}\right)dt^{2} - \frac{dr^{2}}{1 - \frac{2M}{r}} - r^{2}\left(d\theta^{2} + \sin^{2}\theta d\phi^{2}\right)$