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Electrodynamics in gravitational fields

In this section we shall derive—using the principle of stationary action—the Lorentz force equa-
tion and the Maxwell equations in curvilinear coordinates (and therefore, due to the equivalence
principle, in gravitational fields).

Principle of stationary action

In classical physics the equations of motion of a physical system can be conveniently derived using
the principle of stationary action1:

The path actually followed by a physical system is that for which the action, S, is
stationary, that is to say that its variation vanishes,

δS = 0 . (2)

Provided the action is written in a generally covariant form in curvilinear coordinates, the principle
is applicable to non-inertial frames and—by the equivalence principle—also to gravitational fields.

Lorentz force equation

In special relativity the action of a body with mass m and charge e, moving in a given electro-
magnetic field Aa, is given (in the units c = 1) as

S = −m
∫
ds− e

∫
dxaAa , (3)

where the integrals are taken along the trajectory of the body. In this form the action is generally
covariant and can be directly used in general relativity. One only has to remember that the metric
tensor is generally not constant throughout the space.

We shall calculate the variation of this action under a small variation of the trajectory of the
body,

xa → xa + δxa . (4)

The variation of the first term in (3) has already been calculated in the section about geodesics,

δ

(
−m

∫
ds

)
=

∫
dsδxam

(
dua
ds
− 1

2
gbc,au

buc
)
. (5)

The variation of the term dxaAa is given as

δ(dxaAa) = δdxaAa + uadsAa,bδx
b = δdxaAa + ubdsAb,aδx

a . (6)

As usual the term δdxaAa is integrated by parts,

δdxaAa = d(δxaAa)− δxadAa = d(δxaAa)− δxaAa,bu
bds . (7)

Inserting this into (6) leads to

δ(dxaAa) = d(δxaAa) + (−Aa,b +Ab,a)ubdsδxa . (8)

1Action is an attribute of the dynamics of a physical system: it is a functional that takes the trajectory of the
system (also called path or history) as its argument and returns a (covariant) real scalar as the result. If the action
is represented as an integral over time, taken along the path of the system between the initial time and the final
time of the development of the system,

S =

∫
Ldt , (1)

the integrand L is called the Lagrangian.
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The expression in parentheses is called the electromagnetic tensor,

Fab
.
= −Aa,b +Ab,a . (9)

It is apparently antisymmetric, Fab = −Fba. Although it contains non-covariant derivatives it is
actually a tensor since in a torsion free space it can be also written through covariant derivatives,

Fab = −Aa;b +Ab;a . (10)

The full differentials in (8) as usual does not contribute to the variation since δxa is zero at
the end-points of the trajectory. The variation of the action (3) then becomes

δS =

∫
dsδxa

(
m
dua
ds
−m1

2
gbc,au

buc − eFabu
b

)
. (11)

Since the variation δxa is arbitrary, δS = 0 means the expression in parentheses has to vanish
identically on physical trajectories, giving the the equation of motion of a charged body in both
gravitational and electro-magnetic fields (the generalization of the Lorentz force equation),

m
dua
ds
−m1

2
gbc,au

buc = eFabu
b . (12)

It can also be written as

m
dua
ds
−mΓbcau

buc = eFabu
b , (13)

or as

m
Dua
ds

= eFabu
b . (14)

Maxwell equations in curvilinear coordinates

In this section we shall derive the generally covariant equations for the electromagnetic field – the
Maxwell equations in curvilinear coordinates.

Homogeneous Maxwell equation

The generally covariant form of the homogeneous Maxwell equation can be deduced from its form
in Minkowski space,

Fab,c + Fbc,a + Fca,b = 0 , (15)

where
Fab

.
= −Aa,b +Ab,a (16)

is the electromagnetic tensor. Actually, due to the symmetry of Christoffel symbols, Γa
bc = Γa

cb,
and asymmetry of the electromagnetic tensor, Fba = −Fab, both the electromagnetic tensor and
the homogeneous Maxwell equation are already generally covariant and thus preserve their form
in curvilinear coordinates. Indeed,

Fab = −Aa,b +Ab,a = −Aa;b +Ab;a , (17)

where the latter expression is generally covariant. Then

Fab,c + Fbc,a + Fca,b = Fab;c + Fbc;a + Fca;b , (18)

which is also generally covariant.
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Inhomogeneous Maxwell equation

For the inhomogeneous Maxwell equation we shall first deduce the generally covariant action of
the electromagnetic field, and then derive the equation from the stationary action principle.

In Minkowski space the action of the electromagnetic field is given as an integral over the whole
space-time,

S =

∫
dΩ

(
− 1

16π
F abFab −Aaj

a

)
. (19)

Covariant volume element

The infinitesimal volume element,
dΩ

.
= d4x , (20)

in this action is not invariant under a general coordinate transformation and has to be substituted
with the generally covariant volume element,

dΩ→
√
−gdΩ , (21)

where g is the determinant of the metric tensor gab (g < 0). Indeed, the metric tensor transforms
as

gab =
∂x′c

∂xa
∂x′d

∂xb
g′cd . (22)

Taking determinant of both sides gives g = J ′2g′, or

√
−g = J ′

√
−g′ , (23)

where J ′ =
∣∣∣∂x′a

∂xb

∣∣∣ is the Jacobian determinant of the transformation. The 4-volume transforms as

dΩ =

∣∣∣∣ ∂xa∂x′b

∣∣∣∣ dΩ′ =
1

J ′
dΩ′. (24)

Apparently the combination
√
−gdΩ transforms as

√
−gdΩ = J ′

√
−g′ 1

J ′
dΩ′ =

√
−g′dΩ′, (25)

and is thus generally invariant.
The generally covariant action of the electromagnetic field is thus given as

S =

∫ √
−gdΩ

(
− 1

16π
F abFab −Aaj

a

)
. (26)

Variation of the action and the inhomogeneous Maxwell equation

The variation of the electromagnetic field, Aa → Aa + δAa, in the second term of the action
produces

−δ
∫ √

−gdΩAaj
a = −

∫
dΩ
√
−gjaδAa . (27)

The first term gives

− 1

16π
δ

∫ √
−gdΩF abFab = +

1

4π

∫
dΩ
√
−gF ab(δAa),b = − 1

4π

∫
dΩ
(√
−gF ab

)
,b
δAa (28)

Combining the two terms gives the variation of the electromagnetic action,

δS =

∫
dΩδAa

(
− 1

4π

(√
−gF ab

)
,b
−
√
−gja

)
, (29)
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from which directly follows the sought inhomogeneous Maxwell equation in curvilinear coordinates,(√
−gF ab

)
,a

= 4π
√
−gjb . (30)

It can also be written in an explicitly covariant form,

F ab
;a = 4πjb , (31)

using the identity √
−gV a

;a = (
√
−gV a),a . (32)

To prove that, we shall first need the formula for the variation δg of the determinant g of the
metric tensor (the Jacobi’s formula). Suppose we vary one element, say g23, of the metric tensor.
The contribution of this element to the determinant of the metric tensor, g, is given as

g23C23 = g23gg
23 , (33)

where C23 is the cofactor of the element g23, and g23 is the element of the inverse metric tensor.
Then, apparently2,

δg = gδgabg
ab = −gδgabgab . (34)

Now let us consider the covariant divergence of the electromagnetic tensor,

F ab
;a = F ab

,a + Γa
daF

db . (35)

The contraction Γa
da of the Christoffel symbol is given as

Γa
da =

1

2
gabgab,d =

1

2g
g,d . (36)

The divergence then becomes

F ab
;a = F ab

,a +
1

2g
g,dF

db =
1√
−g
(√
−gF ab

)
,a
, (37)

which concludes the proof.

Exercises

1. Argue that the electromagnetic tensor Fab is a generally covariant tensor by proving that

Fab
.
= −Aa,b +Ab,a = −Aa;b +Ab;a . (38)

2. (a) Argue that in Minkowski space the electromagnetic tensor Fab satisfies the homogeneous
Maxwell equation,

Fab,c + Fbc,a + Fca,b = 0 ,

where
Fab = −Aa,b +Ab,c .

(b) Argue that in curvilinear coordinates the electromagnetic tensor satisfies the generally
covariant form of this equation,

Fab;c + Fbc;a + Fca;b = 0 ,

2In matrix calculus this formula is called the Jacobi’s formula.
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3. (a) Derive the second Maxwell equation in curvilinear coordinates,(√
−gF ab

)
,a

= 4π
√
−gjb ,

from the action

S =

∫ (
− 1

16π
F abFab −Aaj

a

)√
−gdΩ .

(b) Show that the equation can also be written as

F ab
;a = 4πjb .

Hints:

i. show that Γa
ba = 1

2g g,b = (ln
√
−g),b

ii. show that F ab
;a = 1√

−g (
√
−gF ab),a

(c) Show that from this equation it follows, that(√
−gja

)
,a

= 0 = ja;a .

4. Argue that
dua
ds
− 1

2
gbc,au

buc =
dua
ds
− Γbcau

buc . (39)

5. Derive the Lorentz force equation from the action S = −m
∫
ds−e

∫
dxaAa in the Minkowski

space of special relativity. Rewrite this equation in 3-notation where

Aa = {φ, ~A} , ~E = −~∇φ− ∂ ~A

∂t
, ~H = curl ~A ≡ ~∇× ~A .

6. In Minkowski space of special relativity from the action

S = − 1

8π

∫
d4xAa,bA

a,b −
∫
d4xAaja

derive3 the Maxwell equations with sources,

Ab,a
,a = 4πjb .

Show that with the Lorenz condition,

Aa
,a = 0 ,

it is equivalent to
F ab
,a = 4πjb .

Write down the latter in 3-notation.

3For the fields the usual “integration by parts” is done using the Gauss theorem in Minkowski space,∫
Ω
d4x

∂Ba

∂xa
=

∮
∂Ω

BadSa ,

where dSa is an infinitesimal element of the hyper-surface ∂Ω of the 4-volume Ω. In Euclidean 3D space it has a
more familiar form, ∫

V
dV
(
~∇ · ~B

)
=

∫
∂V

dS
(
~B · ~n

)
.
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