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Motion in Schwarzschild metric

Motion in the Schwarzschild metric reveals several of the unusual consequences of general relativity:

1. Utmost relativity of measurements: it takes finite proper time for a body to fall onto the
Schwarzschild radius, yet for the outside observer it takes infinite time;

2. There exist gravitational singularities (geodesic incompleteness) in general relativity: some
trajectories cannot be extended beyond a certain point. Gravitational singularities—unlike
coordinate singularities—do not depend on the coordinate system and cannot be removed by
coordinate transformation. The gravitaional field becomes infinitely large at a gravitational
singularity.

3. There exist event horizons in general relativity – the hyper-surfaces in time-space which can
only be crossed in one direction.

Lemaitre coordinates

In the Schwarzschild metric around a body with the gravitational radius rg,

ds2 = (1− rg
r

)dt2 − dr2

1− rg
r

− r2
(
dθ2 + sin2 θdφ2

)
, (1)

there is a singularity at the gravitational radius, r = rg. Under the gravitational radius the
coordinate r becomes time-like and t becomes space-like.

However, it turns out to be not a physical singularity, but rather an artifact of the (incorrect)
assumption that a static Schwarzschild coordinates can be realized under the gravitational radius
with material bodies. The singularity at the Schwarzschild radius in Schwarzschild coordinates
can be removed by a coordinate transformation. Such removable singularities are called coordinate
singularities.

A transformation to the Lemaitre coordinates τ , ρ

dτ = dt+

√
rg
r

dr

1− rg
r

, (2)

dρ = dt+

√
r

rg

dr

1− rg
r

, (3)

leads to the Lemaitre coordinate expression for the Schwarzschild metric, where the singularity at
rg is removed1,

ds2 = dτ2 − rg
r
dρ2 − r2(dθ2 + sin2 θdφ2) , (4)

where r = [ 32 (ρ− τ)]2/3r
1/3
g . The latter is obtained by integrating

dρ− dτ =

√
r

rg
dr , (5)

which is the difference between (3) and (2).
The Lemaitre coordinates are synchronous2 and are thus realized by a system of clocks in a

free radial fall from infinity towards the origin.

1 there remains a genuine singularity at the origin.
2 the metric has the form ds2 = dτ2 + gαβdx

αdxβ .
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Radial fall towards the origin

For a free falling body dρ = 0 and equation (3) gives

dt = −
√

r

rg

1

(1− rg
r )
dr . (6)

Approaching the Schwarzschild radius, in the region r & rg, we have in the lowest order in
(r − rg)/rg,

dt = − rg
r − rg

dr , ⇒ r − rg
r1 − rg

= e
− t−t1

rg . (7)

Apparently, it takes a free falling body infinitely long t-time—the time used by the outer observer—
to reach the Schwarzschild radius.

On the contrary, a free falling Lemaitre clock moves from some radius r1 to a smaller radius
r2—which can well be the gravitational radius or even the origin—within finite τ -time ∆τ12.
Indeed, setting dρ = 0 in (5) gives

∆τ12 = −
∫ r2

r1

√
r

rg
dr =

2

3

(
r
3/2
1 − r3/22

r
1/2
g

)
. (8)

Event horizons and black holes

Along the trajectory of a radial light ray

ds2 = dτ2 − rg
r
dρ2 = 0 , (9)

which gives

dρ = ±
√

r

rg
dτ , (10)

where plus and minus describe the rays of light sent correspondingly up and down.
Isolating dρ in (5) and inserting the result into (10) shows that along the trajectory

dr =

(
±1−

√
rg
r

)
dτ . (11)

Apparently if r < rg then there is always dr < 0 and thus the light rays emitted radially
inwards and outwards both end up at the origin. In other words no signal can escape from inside
the gravitational radius. This phenomenon is called the event horizon.

Therefore a massive object with a size less than the gravitational radius, called a black hole,
is completely under the event horizon and its interior is totally invisible.

The trajectories of massive bodies and light rays inside the gravitational radius both end up
in the origin where they cannot be extended any further.

The black holes can possibly be detected through their interaction with the matter outside the
event horizon.

Exercises

1. Show that in a synchronous reference frame where the metric has the form ds2 = dτ2 +
gαβdx

αdxβ, where α, β = 1, 2, 3, the time lines are geodesics.

2. Derive the equation of motion (6),

dt = −
√

r

rg

1

(1− rg
r )
dr ,
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for a body in a radial free fall from infinity towards a black hole using the geodesic equations
in the Schwartzschild metric.

Hints: find dt/ds from the t geodesic equation; find dr/ds from the r geodesic equation
eliminating t(s) using the expression for the metric and integrating once; divide the two. 3

3. In the Schwarzschild metric a body is falling free radially toward the center. What is its
coordinate velocity dr/dt at radius r? What is its locally measured velocity at the same
place? Hints: in the Schwarzschild metric the locally measured radial length is given as
dr̂2 = (1− 2M

r )−1dr2 and the locally measured time is given as dt̂2 = (1− 2M
r )dt2.

4. A radio transmitter is free falling radially toward a black hole. When the transmitter is
approching the gravitational radius an outside observer measures its radio signal to be red-
shifted as ω = ω0e

−λt. Estimate the mass of the black hole from the measured λ. Hints:
ω0 = ω/

√
g00; r − rg = (r1 − rg)e−(t−t1)/rg (see equation (7)).

5. Calculate the proper time it takes for a Lemaitre clock to fall from the gravitational radius to
the center of a black hole. For a black hole with the solar mass specify this time in seconds.

6. Show that in Newtonian mechanics the circular planetary orbits around stars are stable
against small radial perturbations. Show that in general relativity circular orbits are stable
only if r > 6M . Hints: consider a circular orbit with a small perturbaion, u = u0 + δu;

3The radial geodesic equation, dur
ds

= 1
2
gbc,ru

buc, for the radial motion (uθ = uφ = 0) in the Schwartzschild
metric is given as

d

ds

(
−

1

1 − R
r

ṙ

)
=

1

2

(
1 −

R

r

)
,r

ṫ2 +
1

2

(
−

1

1 − R
r

)
,r

ṙ2 , (12)

where ˙denotes d
ds

and R ≡ rg is the gravitational radius of the central body. We can eliminate ṫ2 from the equation
using the expression for the metric for the radial motion,

ds2 =

(
1 −

R

r

)
dt2 −

1

1 − R
r

dr2 , (13)

or, equivalently,

ṫ2 =

1 + 1

1−R
r

ṙ2

1 − R
r

. (14)

Substituting this into the radial equation gives (after few identical transformations),

r̈ = −
1

2

R

r2
, (15)

which formally is the Newtonian equation. It can be integrated once by multiplying with ṙ, which gives

d

ds
ṙ2 =

d

ds

(
R

r

)
, (16)

and (explain)

dr

ds
= −

√
R

r
. (17)

Now, the t-equation reads
d

ds

((
1 −

R

r

)
ṫ

)
= 0 , (18)

with the first integral (
1 −

R

r

)
ṫ = E = 1 , (19)

which gives
dt

ds
=

1

1 − R
r

. (20)

Finally,

dr

dt
=

( dr
ds

)

( dt
ds

)
= −

√
R

r

(
1 −

R

r

)
. (21)
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derive the equation for δu in the lowest order; investigate whether the perturbation remains
small or increases.

7. Show that equatorial orbits in the Schwarzschild metric are stable. Consider for simplicity
a circular orbit. Hint: consider an equatorial orbit with a small perturbation, θ = π/2 + δθ;
derive the equation for δθ in the lowest order; show that the perturbation remains small;
interpret the solution.
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