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Motion of free bodies in gravitational fields

In general relativity free test bodies—that is, bodies affected only by inertial and gravitational
forces—moves along geodesics. Massive bodies distort space-time in their vicinity causing the
geodesics to become curved.

Geodesics

In special relativity free bodies move along straight lines, that is, the curves with extremal mea-
sure1. This postulate is generally covariant and can be directly applied to curved spaces, and,
consequently, due to equivalence principle, to gravitational fields. Therefore in general relativity
free bodies2 also move along curves with extremal measure.

A curve with extremal measure is called a geodesic. Geodesic is a generalization of the notion
of a line to curved spaces. The term comes from geodesy, the science of measuring the size and
shape of Earth. In the original sense, a geodesic was the shortest route between two points on
the Earth’s surface, namely, a segment of a great circle. The term has since been generalized to
include measurements in more general mathematical spaces.

Importantly, the postulate of free motion along geodesics can be formulated as a variational
principle: the variation of the measure vanishes on the curve actually taken by the free body,

δ

∫
ds = 0 . (1)

Geodesic as constant velocity trajectory

Alternatively (but equivalently, of course) one can postulate that in special relativity a free body
moves with constant velocity,

dua = 0 , (2)

where the velocity vector ua of a moving body is defined as

ua =
dxa

ds
, (3)

where dxa is the infinitesimal movement of the body along the trajectory and ds =
√
gabdxadxb

is the invariant interval (the metric).
Apparently the velocity ua is a vector and can be directly used in curved spaces as a generally

covariant quantity. However the differential dua in equation (2) is not generally covariant and
cannot by used in the curved space of general relativity. A suitable generalization to curved
spaces would be to substitute the normal differential dua with the covariant differential Dua,

Dua = 0 . (4)

This equation is generally covariant and is actually the geodesic equation. It can be also written
as

dua

ds
+ Γabcu

buc = 0 , (5)

or
d2xa

ds2
+ Γabc

dxb

ds

dxc

ds
= 0 . (6)

One can interpret this equation as the relativistic generalization of Newton’s second law of
motion: acceleration of the body equals the force acting on the body (divided by mass). Therefore
the quantities (−)Γabcu

buc appear as forces—inertial and gravitational—acting on the body. Since
the Christoffel symbols (and hence the forces) are proportional to derivatives of the metric tensor,
one can say that the latter plays the role of the potential of gravitational forces. Thus the
gravitational field is given by the metric tensor of the time-space and is therefore a tensor field.

1The measure of a curve is given by the integral
∫
ds, where ds is the metric, taken along the curve.

2Remember though that in general relativity a free body is a body free from the influence of physical forces;
gravitational forces are equivalent to inertial forces and do not count as physical forces.
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Geodesic as extremal trajectory

The measure µ of a trajectory (of a moving body) is defined as the sum of infinitesimal intervals
ds along the trajectory,

µ =

∫
ds . (7)

The extremal trajectory is the one where the variation of the measure as function of the trajectory
vanishes,

δµ = 0 . (8)

To calculate the variation of the measure we first vary the interval ds,

δds = δ
√
gabdxadxb =

1

2

1√
gabdxadxb

δ
(
gabdx

adxb
)

=
1

2

1

ds

(
δgabdx

adxb + 2gabδdx
adxb

)
. (9)

Using δgab = gab,cδx
c and 1

dsgabdx
b = ua gives3

δds =
1

2
gab,cu

aubδxcds+ δdxcuc , (10)

where in the second term the summation index a was replaced with c.
Assuming the functions are smooth enough we can exchange the order of differentials in the

second term and integrate it by parts using

δdxcuc = dδxaua = d(δxaua)− δxcduc. (11)

The full differential does not contribute to the variation, and we finally arrive at

δµ =

∫
dsδxc

(
−duc
ds

+
1

2
gab,cu

aub
)

= 0 . (12)

Since the variation δx is arbitrary, it is the expression in parentheses that should be equal zero
identically along the trajectory, which gives the following equation for the curve with extremal
measure,

duc
ds

=
1

2
gab,cu

aub . (13)

This equation is equivalent to the no-acceleration equation (4)4. Thus the trajectory with extremal
measure is also the trajectory along which the covariant differential of the velocity of freely moving
body is zero. This is the consequence of the fact that the action S of a free body with mass m is
proportional to the measure of its trajectory,

S = −mc
∫
ds . (17)

3

f,a
.
=

∂f

∂xa
.

4Indeed, from

0 = Dgab = dgab − Γeacgebdx
c − Γebcgaedx

c = (gab,c − Γbac − Γabc)dx
c (14)

it follows that
gab,c = Γbac + Γabc . (15)

Inserting this into (13) and using the symmetry uaub = ubua gives

duc

ds
−

1

2
gab,cu

aub =
duc

ds
−

1

2

(
Γbacu

aub + Γabcu
aub
)

=
duc

ds
− Γabcu

aub =
Duc

ds
, (16)

which had to be demonstrated.
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Trajectories of rays of light

The equation (4) is not applicable to the propagation of a ray of light since the interval ds along
the ray is always zero. In this case one has to use certain parameter, λ, which varies (smoothly)
along the ray. Then one can introduce the wave-vector, ka = dxa/dλ. In special relativity the ray
of light propagates along a line where dka = 0. In a curved space in analogy with (4) this becomes

Dka = 0 , (18)

or
dka

dλ
+ Γabck

bkc = 0 . (19)

These equations, together with the condition that for the ray of light always kaka ∝ dxadxa =
ds2 = 0, also determine the parameter λ should one wish to find it.

The trajectories of the rays of light are called null geodesics.

Exercises

1. Consider a generalization of the non-relativistic Lagrangian of a free body in flat space,
L = 1

2m~v
2, to a curved space with metric dl2 = gαβx

αxβ ,

1

2
m~v2 → 1

2
mgαβv

αvβ .

Show that the corresponding Euler-Lagrange equation5 is the geodesic equation for the given
space.

2. Consider a further generalization,

S =

∫
1

2
mgαβv

αvβdt→ S = −m
∫

1

2
gabu

aubds .

Show that the corresponding Euler-Lagrange equation is the relativistic geodesic equation.

3. Show that the Euler-Lagrange equation for the action

S = −m
∫
ds = −m

∫
ds

dλ
dλ = −m

∫ √
gab

dxa

dλ

dxb

dλ
dλ $

∫
L
(
xa,

dxa

dλ

)
dλ ,

(where λ is a paramter which changes smoothly along the trajectory) is the relativistic
geodesic equation6.

4. Prove that the two postulates,
Duc = 0 ,

and

δ

∫
ds = 0 ,

for the motion of free bodies in curved spaces are equivalent7.

5The Euler-Lagrange equation is given as

d

dt

∂L
∂ẋµ

=
∂L
∂xµ

.

6Hints: ds/dλ = L, df/dλ = (df/ds)(ds/dλ) = (df/ds)L
7That is, pove that (5) and (13) are equivalent.
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5. Consider the parametric equations for a line in Cartesian coordinates x and y,

d2x

ds2
= 0 ,

d2y

ds2
= 0 . (20)

Make a coordinate transformation to polar coordinates (x = r cos θ, y = r sin θ) and derive
the corresponding equations in the r, θ coordinates. Prove that they are identical to the
geodesic equation (6).

6. Apply the generally covariant equation for the trajectory of a ray of light, Dka/dλ = 0
(where ka = dxa/dλ, where xa(λ) follows the trajectory), to a flat two-dimensional space
with polar coordinates and find the corresponding trajectories8.

7. Find the equations for geodesics on the surface of a sphere. Hint: integrate the φ-equation
once and then rewrite the θ-equation for the function u(φ) = cot (θ(φ)).9

8The first of the two geodesic equations,

d

dλ

(
r2
dφ

dλ

)
= 0 , and

d2r

dλ2
= r

(
dφ

dλ

)2

,

is easily integrated,

r2
dφ

dλ
= J ,

where J is the integration constant. The second is traditionally integrated by a substitution, r(λ) = 1/u(φ(λ)),
which transforms the second equation into

d2u

dφ2
+ u = 0

with the general solution u = u0 sin(φ− φ0) which is a general parametrization of a line in polar coordinates.
9The geodesic equations are

θ̈ = sin θ cos θφ̇2 ,
d

dt

(
sin2 θφ̇

)
= 0 ,

where dot denotes time-derivative, φ̇ $ dφ/dt. The second equation can be easily integrated,

sin2 θφ̇ = k ,

where k is the integration constant. The first equation must be rewritten for the function θ(φ(t)) instead of θ(t).
The second t-derivative of θ then becomes (using φ̇ = k/ sin2 θ),

θ̈ = −
k2

sin2 θ

(
−

θ′′

sin2 θ
+ 2

cos θ

sin3 θ
θ′

2
)

= −
k2

sin2 θ
(cot θ)′′ ,

where ptime denotes φ-derivative, θ′ $ dθ/dφ. The first geodesic equation then becomes (again using φ̇ = k/ sin2 θ)

−(cot θ)′′ = cot θ ,

with the general solution
cot θ = A sin(φ− φ0) ,

(where A and φ0 are integration constats) which is the equation for a great circle.
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