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Preface

The present thesis is based on my work during the last four and a half years in the Ion
Trap Group at the Institute of Physics and Astronomy, University of Aarhus, under the
supervision of Michael Drewsen. The work has given me the opportunity to explore
the fascinating field of quantum optics with trapped ions, to work with lasers, vacuum
technology and electronics as well as doing earth bound things like drilling a hole in a
piece of metal. All these aspects has made the work very varied and exciting.

Based on the previous work and experience in the Ion Trap Group, the work has
focussed on setting up an experiment for quantum optics studies involving few trapped
ions. There are many different parts in the experimental setup and many people has
given their contribution to the project. We have now seen the first results of this work,
but there is more work to do and hopefully many more results to come.

In the thesis I attempt to give an overview of the project as a whole. Some sections
may be very basic knowledge for the experienced ion trap physicist or quantum optician.
These parts will hopefully be appreciated by students who will work on the project in
the future. Other chapters are very detailed, reflecting which parts of the project the
author mainly has been involved in.

During my years at the institute I have met and co-operated with several people,
who deserves a few words.

First of all, Michael Drewsen is acknowledged for initiating this very interesting
project, for competently guiding the work, teaching me ion trap physics and much
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Liv Hornekær, Niels Kjærgaard, Anne Marie Thommesen and Kristian Mølhave, who
all helped me find my way in the lab, and with Zelinda Videsen, Kristian Støchkel and
Andy Brøner. More recently, I have had the pleasure of working together with fellow
PhD student Anders Mortensen, who is acknowledged for proof-reading this thesis, and
with Randi Martinussen, Inger Jensen, Jens Lindballe, Frank Jensen and Niels Nissen.
Dirk Voigt spend two years with us as a PostDoc and deserves credit for his important
contributions to the project, especially for building lasers. More recently, Jens Lykke
Sørensen has joined the group and contributed to the present work. Randi, Inger and
Jens are all acknowledged for keeping the good mood during the numerous late night
hours in the lab. Finally, I would like to thank Grete Flarup for proof-reading this
thesis.

The technical staff at the Institute has been very important for this project. The peo-
ple in the workshop managed by Uffe Simonsen are acknowledged for their contributions
and Torben Thomsen is acknowledged for his invaluable advice when I was trying to
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and for always being approachable. From the scientific staff, I would like to thank Klaus
Mølmer for answering my questions when the theory became too tough and for a fruitful
collaboration on some of the work presented in Chap. 6. Thanks also to Erik Lægsgaard
for revealing his secrets about all sorts of ultrahigh vacuum compatible materials.

During all the years I have also met many friendly people at the institute with whom
I have talked about everything but physics (and physics of course) – thank you all!
Especially though, I should mention Peter Arnborg, Thomas Laustsen, Brian Julsgaard
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than 8 years.
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my years of studying physics and to Astrid for proof-reading this thesis and for her
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Chapter 1

Introduction

1.1 Quantum optics with cold trapped ions

One of the fathers of quantum mechanics, Erwin Schrödinger, once said 1

” . . . we never experiment with just one electron or atom or (small) molecule.”

-E. Schrödinger, 1952.

Today the situation is, however, quite different, because single or several ions or
atoms can be trapped, e.g., by various combinations of electric and/or magnetic fields,
and used in experiments. Moreover, the development of so-called laser cooling methods,
which started about 30 years ago, has enabled experimentalists to routinely cool trapped
ions or atoms to temperatures only a fraction of a degree above absolute zero. Owing to
this level of experimental control, cold and trapped ions and atoms have become unique
test cases for the study of many effects within the field of quantum optics.

In parallel with the development in laser cooling and in quantum optics in general,
computer chips have become smaller and smaller and faster and faster. Despite this,
one never finds them fast enough! This is particularly true for computer simulations
of large quantum systems, because the size of the computational task, i.e., the number
of variables to keep track of, grows exponentially with the number of particles in the
quantum system.

To overcome this problem, Richard Feynman put forward the idea of performing such
simulations by the use of another quantum system - or a quantum simulator. This was
in 1982 and only a few years later, in 1985, David Deutsch came up with the notion of
a quantum computer, i.e., a computing device based on quantum mechanical principles,
which can simulate any physical system in a time which only grows polynomially with
the size of the system. In addition to simulating quantum systems, a quantum computer
can also solve computational tasks, which are intractable on a classical computer. This
was demonstrated by the quantum algorithms constructed by Peter Shor [2] and Lov

1As quoted in Ref. [1].
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Figure 1.1: Simple illustration of the Cirac-Zoller proposal [4]. A string of ions trapped
in a harmonic potential is illuminated by laser beams which can address the ions indi-
vidually. Internal states of the ions define the qubit states |↓〉 and |↑〉.

Grover [3], which can factorize large numbers and search an unordered database 2,
respectively, faster than any classical algorithm.

Now, what does a quantum computer look like? Recall first, that a classical computer
performs logic operations on binary numbers, where each binary digit, a bit, can assume
the value 0 or 1. In quantum logic the basic unit is the quantum bit, or qubit, i.e., a two-
level quantum system, which can be in a superposition of states, |↓〉 and |↑〉, representing
the values 0 and 1. A physical realization of a quantum computer consists of several
qubits, on which elementary quantum logic operations, so-called quantum gates, can be
performed. Owing to the high degree of experimental control over trapped and laser-
cooled ions, they are very attractive candidates for implementation of quantum logic.
Specifically, it was proposed by Ignacio Cirac and Peter Zoller in 1995 [4] to use a string
of trapped ions, cooled to their motional ground-state in the trap, as a physical system,
on which quantum gates can be performed by manipulating the quantum states of the
ions with laser pulses (see Fig. 1.1). Although many studies involving cold trapped
ions had already been done before the Cirac-Zoller proposal, it is probably fair to say
that there has been a growing interest in the field of quantum optics with cold trapped
ions ever since. In addition to the relevance for quantum computation, this interest
is motivated by the fact that a string of cold trapped ions is highly relevant for the
creation of so-called entangled states, which are interesting for fundamental studies of
quantum mechanics, but also useful in connection with spectroscopy [5] and in quantum
information [6].

An entangled state can be defined as a quantum state of two or more quantum sys-
tems, whose common wavefunction cannot be separated into a product of wavefunctions
for any subset of the systems 3. One example of an entangled state of two two-level
quantum systems with internal states |↓〉 and |↑〉, e.g., two ions, is the following:

Φ =
|↓〉 |↓〉 + |↑〉 |↑〉√

2
. (1.1.1)

According to the probability interpretation of quantum mechanics, this state has the
property that if we measure the state of one particle to be |↓〉 (|↑〉), then the quan-
tum state of the other particle will collapse onto |↓〉 (|↑〉), even if the particles are

2An example of an unordered database is the phone-numbers in a phone book. Suppose a hot-

looking girl gives a young man her phone number, but he doesn’t know her name and desperately

wants to find out by searching through the phone numbers in his phone book. If there are N entries

in the phone book, it would on average take him N/2 steps. With Grovers algorithm he can do it in a

number of steps proportional to
√

N - if only he had a quantum computer.
3This definition is appropriate for a pure state, not for a mixed state [7].
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non-interacting and arbitrarily far apart! In their famous paper from 1935, Einstein,
Podolsky and Rosen (EPR) [8] considered this to be a paradox and concluded that
the theory of quantum mechanics was incomplete. To determine from experiments if
quantum mechanics really was incomplete or not, was considered impossible until John
Bell proved a certain inequality, which relates a set of quantum mechanical observables.
This inequality (and a class of other so-called Bell inequalities) can be violated by an
entangled state if quantum mechanics is complete but will be obeyed by the so-called
‘hidden variable’ theories, which originated from the EPR-paper. This fact has trig-
gered the fundamental interest in entangled states, which today have been created of
trapped ions [9] as well as photons [10], atoms [11] and even macroscopic samples of
atoms [12].

The possibilities of implementing quantum logic and creating entangled states with
trapped ions, make quantum optics with trapped ions a very interesting field of physics.
It is also a rapidly evolving field where impressive experimental achievements have been
reached in the past few years, especially by the groups of Dave Wineland at NIST in
Boulder, USA, and of Rainer Blatt in Innsbruck, Austria, with the first demonstrations
of two-ion quantum gates [13, 14], a quantum algorithm [15], creation of entangled states
of two and four particles [9, 16] and violation of a Bell inequality [17]. The possibilities
within the field are, however, by no means exhausted and other groups are also working
hard to explore these possibilities.

More information about quantum computing and quantum optics with trapped ions
can, e.g., be found in Refs. [1, 18, 19] 4 and - of course - the rest of this thesis.

1.2 Quantum optics with Ca+ ions in Aarhus

The project presented in this thesis is aiming at the creation of entangled states and
demonstration of quantum gates along the lines of the Cirac-Zoller proposal. In the
project we have chosen to work with the alkaline earth Ca+ ion, or more specifically
40Ca+, since this is the naturally most abundant of the calcium isotopes. The 40Ca+

ion is well suited for quantum optics studies because it has only a single optically active
electron outside a closed shell, which makes the level scheme sufficiently simple that
the ion can be laser-cooled using only a few laser sources. Yet, it has metastable states
which are useful, e.g., for quantum state detection. The ground state is a 2S1/2 state,
and we define our qubit by the two Zeeman sublevels of the ground state as

|↓〉 = 2S1/2(mJ = −1/2) (1.2.1)

|↑〉 = 2S1/2(mJ = +1/2). (1.2.2)

Most alkaline earth ions have properties similar to Ca+, and the specific choice
of Ca+ was mainly motivated by practical reasons. First, laser light at the relevant
wavelengths is available, e.g., using standard infrared diode lasers and a frequency
doubled Titanium-Sapphire laser. Second, a Titanium-Sapphire laser, which is the
most expensive of the mentioned laser sources, was already present in the lab at the
start-up of the project. When the author of this thesis entered the group, lasers for so-
called Doppler laser cooling were running and the first laser-cooling experiments with

4Ref. [18] was used as a reference for some of the history above.
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Ca+ were started. Furthermore, there was a large expertise in building and running
so-called linear Paul traps.

For the work presented in this thesis, we started out by designing and building a
relatively small linear Paul trap, suitable for trapped-ion quantum logic experiments.
Other crucial ingredients in the project are the ability to detect the internal state of an
ion and to cool ions to near their motional ground state in the trap. A ground state
cooling scheme has been studied theoretically and is discussed in the thesis. In order
to eventually demonstrate this cooling scheme, demonstrate internal state detection
and to perform quantum logic operations, additional diode laser systems have been
introduced, and improvements of the level of laser-control have been necessary, both in
terms of power-stability, frequency-stability and the shaping of laser-pulses.

1.3 Outline of the thesis

The thesis is organized as follows. Chapters 2–6 are mainly theoretical, describing the
theoretical background for the project, some general issues in trapped-ion quantum logic
and some further theoretical work. Chapters 7–10 are mainly experimental, presenting
the experimental details of the project and experimental results. Chap. 11 gives a
summary and an outlook.

Chapter 2: An introduction to the basic concepts of light-atom (or light-ion) in-
teractions for free as well as trapped atoms.

Chapter 3: A short introduction to the Doppler laser cooling technique is followed
by a more detailed description of the sideband-cooling technique to be used for cooling
40Ca+ ions to (near) their motional ground state and a presentation of the results of a
numerical study using quantum Monte Carlo simulations.

Chapter 4: Here, detection of the internal state of a 40Ca+ ion is discussed, par-
ticularly for a scheme based on two so-called Stimulated Raman Adiabatic Passage
(STIRAP) processes.

Chapter 5: This chapter gives a general discussion of quantum gates and of some
of the many proposals for performing quantum gates with cold trapped ions.

Chapter 6: This chapter contains two theoretical proposals involving optical dipole
potentials, one for performing a two-ion quantum gate and one for individual addressing
of trapped ions on a string. The gate proposal will be published in Ref. [VI] and the
individual addressing proposal has been published in Ref. [I].

Chapter 7: In this chapter the theory of confinement of charged particles in a linear
Paul trap is described, and the design and construction of the new trap is presented.

Chapter 8: Here the additional experimental equipment and experimental methods
are described.

Chapter 9: This chapter concerns a series of experiments performed in order to
characterize the trap. Furthermore, some preliminary experiments on ion mass measure-
ments are presented. Results from the latter experiments will be published in Ref. [V].

Chapter 10: In this chapter a lifetime measurement of a metastable state in the
40Ca+ ion is presented, and its relevance for the detection scheme presented in Chap. 4
is discussed. The lifetime measurement is published in Ref.[III].

Chapter 11: Summary and outlook.
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Chapter 2

Atom-light interactions

In this chapter some basic concepts in the description of a two-level atom interact-
ing with a monochromatic travelling-wave light-field are introduced, since they will be
necessary for understanding the following chapters. The case of a free two-level atom
is considered in Sec. 2.1 1, where important notions, such as Rabi-frequency, Rabi-
oscillations, saturation intensity, power broadening and pulse-area are introduced. In
Sec. 2.2, we consider first a single two-level atom confined in a harmonic potential and
describe the atom-light interaction in the so-called Lamb-Dicke limit. Following that,
the treatment is extended to multiple mutually interacting ions and described in terms
of the motional eigenmodes of the ions.

2.1 A free two-level atom

In this section we consider the two-level atom illustrated in Fig. 2.1, with ground state
|g〉 and excited state |e〉, which are eigenstates of the atomic Hamiltonian Hatom, i.e.,

Hatom |g〉 = Eg |g〉 and Hatom |e〉 = Ee |e〉 , (2.1.1)

where Eg and Ee are the eigenenergies of the two states. In general the atomic wave-
function ψ can be written as a superposition of the two eigenstates,

Ψ(r, t) = cg |g〉 + ce |e〉 , (2.1.2)

where the coefficients cg and ce in general are complex numbers. The transition fre-
quency between |g〉 and |e〉 is

ωeg =
Ee − Eg

�
, (2.1.3)

and the natural decay rate from the exited state to the ground state is denoted by Γ.
In the following we consider the time-evolution of the atomic wavefunction when

the atom interacts with a travelling-wave light-field which is monochromatic and near-
resonant with the atomic transition. In Sec. 2.1.1, we consider only the interaction with
the light-field, neglecting spontaneous emission. In Sec. 2.1.2 spontaneous emission is
included in the description.

1The given treatment is somewhat linked to Refs. [20, 21].
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Figure 2.1: A two-level atom with ground state |g〉 and excited state |e〉 at energies Eg

and Ee, respectively. The natural decay rate from the excited state to the ground state
is denoted by Γ.

2.1.1 Interaction with a travelling-wave light-field

We consider a monochromatic travelling-wave light-field characterized by the electric
field

E(r, t) = E0ε̂ cos(k · r − ωLt + φ) (2.1.4)

having amplitude E0, wave-vector k, frequency ωL, a constant phase φ and where ε̂
is a unit vector describing the polarization of the light-field. The interaction with the
two-level atom is described by the Hamiltonian [22]

H ′ = −eE(r, t) · r, (2.1.5)

and the time evolution of the atomic wavefunction ψ is governed by the time-dependent
Schrödinger equation

i�
∂Ψ
∂t

= (Hatom + H ′)Ψ. (2.1.6)

Introducing the wavefunction in the form of Eq. (2.1.2), the Schrödinger equation trans-
lates to the following coupled differential equation for the coefficients cg and ce:

i�ċg = H ′
gece (Eg ≡ 0) (2.1.7)

i�ċe = �ωegce + H ′
egcg, (2.1.8)

where

H ′
eg = 〈e|H ′ |g〉 = (H ′

ge)
∗ (2.1.9)

and dots denote derivatives with respect to time. By introducing c̃e = cee
iωegt, Eqs. (2.1.7)

and (2.1.8) can be transformed into

i�ċg = H ′
gec̃ee

−iωegt (2.1.10)

i� ˙̃ce = H ′
egcge

iωegt, (2.1.11)

which will be solved in the following. If we make the so-called dipole approximation,
i.e., we neglect the spatial variation of the light-field over the atomic wavefunction, and
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use Eqs. (2.1.4) and (2.1.5), the matrix elements in Eqs. (2.1.10) and (2.1.11) can be
written as

H ′
eg = −eE0 〈e| ε̂ · r cos(k · r − ωLt + φ) |g〉 (2.1.12)

= −eE0 〈e| r |g〉 cos(k · r − ωLt + φ) = �Ω cos(k · r − ωLt + φ)
H ′

ge = �Ω∗ cos(k · r − ωLt + φ), (2.1.13)

where

Ω = −eE0 〈e| r |g〉
�

(2.1.14)

is the so-called Rabi-frequency and r = ε̂ · r.
Inserting Eqs. (2.1.12) and (2.1.13) into Eqs. (2.1.10) and (2.1.11), introducing the

detuning δ = ωL − ωeg and assuming |δ| � ωeg, it can be found that

i�ċg =
�Ω∗

2
c̃e

[
ei(k·r−δt−2ωegt+φ) + e−(k·r−δt+φ)

]
≈ �Ω∗

2
c̃ee

−i(k·r−δt+φ) (2.1.15)

i� ˙̃ce =
�Ω
2

cg

[
ei(k·r−δt+φ) + e−i(k·r−δt−2ωegt+φ)

]
≈ �Ω

2
cge

i(k·r−δt+φ), (2.1.16)

where we have made the rotating-wave approximation (RWA) in neglecting the quickly
oscillating terms. For later application we note that the approximate expressions on
the right hand side (r.h.s.) could have been derived by using the Hamiltonian

HRWA =
�Ω
2

ei(kr−ωLt+φ) |e〉 〈g| + �Ω∗

2
e−i(kr−ωLt+φ) |g〉 〈e| (2.1.17)

instead of H ′.
Eqs. (2.1.15) and (2.1.16) can be transformed into two uncoupled second-order dif-

ferential equations for cg and c̃e, which readily can be solved. With initial conditions
cg(t = 0) = 1 and c̃e(t = 0) = 0, and choosing r = 0, the solutions are

cg(t) =
[
cos

(
χt

2

)
− iδ

χ
sin

(
χt

2

)]
eiδt/2 (2.1.18)

c̃e(t) = − iΩ
χ

sin
(

χt

2

)
e−i(δt/2−φ), (2.1.19)

where χ =
√
|Ω|2 + δ2 will be called the off-resonant Rabi-frequency. From these equa-

tions, it follows that the population in the ground state and in the excited state oscillates
at the off-resonant Rabi-frequency according to the following equations:

|cg(t)|2 = cos2
(

χt

2

)
+

δ2

χ2
sin2

(
χt

2

)
(2.1.20)

|ce(t)|2 = 1 − |cg(t)|2 =
|Ω|2
χ2

sin2

(
χt

2

)
. (2.1.21)

The oscillations, which are called Rabi-oscillations, are illustrated for the excited state
population in Fig. 2.2 for different values of δ.
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Figure 2.2: Rabi-oscillations of the excited state population for a two-level atom inter-
acting with a travelling-wave light-field [see Eq. (2.1.21)].

In the following chapters we shall consider the time evolution of general superposition
states as in Eq. (2.1.2) in the presence of a resonant light-field (δ = 0). In this case the
evolution from time zero of the ground state part of the wave-function can be found
from Eqs. (2.1.18) and (2.1.19) by setting δ = 0. Since a phase factor on Ω can be
absorbed in the coefficients, we assume Ω to be real and positive, and hence it follows
that χ = Ω. Thus, |g〉 evolves as

|g〉 
→ cos
(

Ωt

2

)
|g〉 − ieiφ sin

(
Ωt

2

)
|e〉 , (2.1.22)

and similarly it can be found that |e〉 evolves as

|e〉 
→ −ie−iφ sin
(

Ωt

2

)
|g〉 + cos

(
Ωt

2

)
|e〉 . (2.1.23)

In the following chapters we shall also consider light pulses, meaning that Ω varies in
time. Until now we have tacitly assumed that Ω is constant, but the time-dependence
can be incorporated as follows. If the light pulse is resonant with the atomic transition
(δ = 0), and Ω varies so slowly that the rotating wave approximation still can be made,
then the evolution of the system is the same as in Eqs. (2.1.22) and (2.1.23) above, but
with Ωt replaced by the rotation-angle [21, 23]

Θ(t) =
∫ t

−∞
|Ω(t′)| dt′. (2.1.24)

For a (finite) pulse, the area under the function |Ω(t)| is finite and equal to Θ(∞). This
so-called pulse-area names some special pulses according to their pulse-area, namely
π/2-pulses, π-pulses and 2π-pulses. A 2π-pulse, having Θ(∞) = 2π, changes the sign
of the coefficients cg and ce, but it has no effect on the population in the states |g〉
and |e〉. A π-pulse makes a population inversion, taking all population in |g〉 to |e〉 and
vice versa. A π/2-pulse will, e.g., starting from the ground state |g〉 create an equal
superposition of the ground state and the excited state.
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2.1.2 Inclusion of spontaneous emission

In order to include spontaneous emission in the description of a two-level atom inter-
acting with a travelling-wave light-field, we turn to a density-matrix description. The
density matrix ρ for the two-level atom is given by

ρ =
[
ρee ρeg

ρge ρgg

]
=
[
cec

∗
e cec

∗
g

cgc
∗
e cgc

∗
g

]
, (2.1.25)

where the time evolution of the matrix elements is given by the optical Bloch equa-
tions [20]:

dρgg

dt
= Γρee +

i

2
(Ω∗e−iδtρeg − Ωeiδtρge) (2.1.26)

dρee

dt
= −Γρee − i

2
(Ω∗e−iδtρeg − Ωeiδtρge)

dρge

dt
= −

(
Γ
2

+ iδ

)
ρge +

i

2
Ω∗e−iδt(ρee − ρgg)

dρeg

dt
= −

(
Γ
2
− iδ

)
ρeg − i

2
Ωeiδt(ρee − ρgg).

The optical Bloch equations can be solved numerically [20]. Qualitatively, one finds
that the ground and excited state populations, ρgg and ρee, perform damped Rabi-
oscillations with damping coefficient Γ (see, e.g., Ref. [21] p. 206). In the limit t � 1/Γ
the populations reach their steady-state values, which can be found analytically from
the steady-state equations [time-derivatives equal to zero in Eq. (2.1.26)] [20]. In steady
state the population in the excited state is

ρee =
|Ω|2 /4

δ2 + |Ω|2 /2 + Γ2/4
=

1
2

s

1 + s
, (2.1.27)

where

s =
|Ω|2 /2

δ2 + Γ2/4
(2.1.28)

is the so-called saturation parameter. Thus, the excited state population is at most 1/2,
which is only approached in the saturation limit (s � 1). From Eq. (2.1.28) we can
introduce the on-resonance saturation parameter

s0 = s(δ = 0) = 2
|Ω|2
Γ2

=
I

Isat
, (2.1.29)

where

Isat =
�Γω3

eg

12πc2
(2.1.30)

is the saturation intensity, I = ε0E
2
0/2 is the intensity of the travelling-wave light-field,

and Γ = ω3
ege

2 |〈g| r |e〉|2 /(3πε0�c3) [22].
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Figure 2.3: Scattering rate γ in units of Γ (steady-state population ρee of the excited
state |e〉) versus detuning for different on-resonance saturation parameters s0.

In the steady state, the decay rate from the excited state, Γρee, is equal to the
excitation rate from the ground state, which is called the scattering rate and denoted
by γ:

γ = Γρee = Γ
|Ω|2 /4

δ2 + |Ω|2 /2 + Γ2/4
, (2.1.31)

which is plotted in Fig 2.3 for different values of s0. The curves are Lorentzian 2 in

shape with power-broadened width
√

2 |Ω|2 + Γ2.

2.2 Trapped two-level atoms interacting with a light-

field

The confining potential in a linear Paul trap is to a good approximation harmonic in all
three spatial dimensions. For an atom confined in a harmonic potential, the interaction
with light is in general quite different from that for a free atom. To describe the light-
atom interaction in this case, we consider an atom moving in one dimension, confined
in a harmonic potential of the form

U1d−harm =
1
2
mω2

zz2, (2.2.1)

where m is the atom mass, ωz is the (angular) oscillation frequency of an atom in the
harmonic potential and z is the position coordinate.

In the following, we consider first a single atom and extend the treatment to multiple
(interacting) ions after that.

2Formally, a normalized Lorentz distribution function L with width Γ is given by L = Γ/[2π(δ2 +

Γ2/4)].
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Figure 2.4: Energy-levels of a two-level atom trapped in a 1-dimensional harmonic
potential interacting with a light-field of frequency ωL.

2.2.1 A single trapped atom

In order to give a quantum mechanical description, we introduce the Hamiltonian Htrap

for the harmonically confining potential of the trap,

Htrap = �ωz

(
a†a +

1
2

)
, (2.2.2)

where a† and a are the harmonic oscillator creation and annihilation operators, respec-
tively. The corresponding motional eigenstates of the atom are denoted by |n〉, where n
is the vibrational quantum number. The total Hamiltonian for the atom in the harmonic
potential is

H = Htrap + Hatom, (2.2.3)

and the atomic eigenstates are combined eigenstates of the form |g〉 ⊗ |n〉 ≡ |g, n〉 and
|e〉 ⊗ |n〉 ≡ |e, n〉. The corresponding energy levels are illustrated in Fig. 2.4.

In the rotating wave approximation, the interaction with a travelling-wave light-field
is described by HRWA in Eq. (2.1.17) with r replaced by z in this one-dimensional case.
The matrix element for a transition between the states |g, n〉 and |e, n′〉 is

〈e, n′|HRWA |g, n〉 =
�Ω
2

e−iωegt 〈n′| eik·z |n〉 . (2.2.4)

Introducing z = z0(a + a†), where z0 = z0ẑ with z0 =
√

�/(2mωz) being the size of
the harmonic oscillator ground state, the z-dependent matrix element in the equation
above can be written as

〈n′| eik·z |n〉 = 〈n′| eiηeg(a+a†) |n〉 ≡ Un′n(ηeg), (2.2.5)

where ηeg = k ·z0 is the so-called Lamb-Dicke parameter. ηeg determines the transition
probability between the harmonic oscillator eigenstates. From Eq. (2.2.4) it can be seen
that the effective Rabi-frequency Ωn′n for a |g, n〉 → |e, n′〉 transition is

Ωn′n = ΩUn′n(ηeg). (2.2.6)
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Figure 2.5: Absorption spectrum of a two-level atom trapped in a one-dimensional
harmonic potential interacting with a light-field of frequency ωL in the Lamb-Dicke
limit.

If the states |g, n〉 and |e, n′〉 are coupled by a resonant light-field, we can therefore write
the time evolution of the states as

|g, n〉 
→ cos(Ωn′nt) |g, n〉 − ieiφ sin(Ωn′nt) |e, n′〉 (2.2.7)

|e, n′〉 
→ −ie−iφ sin(Ωn′nt) |g, n〉 + cos(Ωn′nt) |e, n′〉 ,

in analogy with Eqs. (2.1.22) and (2.1.23).
The matrix element Un′n(ηeg) can be evaluated in terms of generalized Laguerre

polynomials Lα
n [24]:

Un′n(ηeg) = e−η2
eg/2

√
n<!
n>!

η
|n′−n|
eg L

|n′−n|
n< (η2

eg), (2.2.8)

where n< = min(n, n′) and n> = max(n, n′). Thus, Ωn′n is generally n-dependent and
different from Ω, even for an |n〉 → |n〉 transition, where Ωnn = e−η2

eg/2L0
n(η2

eg)Ω.
In the following chapters we shall focus on the so-called Lamb-Dicke limit where√

n + 1 ηeg � 1. In this limit Un′n(ηeg) can be expanded as follows:

Un′n(ηeg) (2.2.9)

= 〈n′| 1 − η2
eg

(
a†a + 1/2

)
+ iηeg

(
a + a†)− η2

eg

(
a2 + a†2

)
/2 |n〉 + O [

(
√

nηeg)3
]

=
[
1 − η2

eg (n + 1/2)
]
δn′,n + iηeg

[√
nδn′,n+1 +

√
n + 1δn′,n−1

]
− η2

eg/2
[√

n(n − 1)δn′,n+2 +
√

(n + 1)(n + 2)δn′,n−2

]
+ O [

(
√

nηeg)3
]
.

Hence in the Lamb-Dicke limit, the transition strength for a |g, n〉 → |e, n′〉 transition
is roughly proportional to (nη2

eg)|n
′−n| , which is illustrated in Fig. 2.5. The central

transition at ωL = ωeg, where ∆n = n′ − n = 0, is usually referred to as the carrier-
transition. Transitions with ∆n > 0 are called blue sideband transitions, and transitions
with ∆n < 0 are called red sideband transitions. Since n′ ≥ 0, there is only a finite
number of red sideband transitions from a given state |n〉.
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2.2.2 Multiple ions

Until now we have not distinguished between (neutral) atoms or ions since the charge
of the ion was irrelevant. In this section we shall consider multiple ions which are
interacting via the Coulomb interaction, so from here on we must specialize to ions.

Looking at the special case of two singly-charged ions trapped in a one-dimensional
harmonic potential, the potential energy is

U(z1, z2) =
1
2
mω2

z(z2
1 + z2

2) +
e2

4πε0(z2 − z1)
(z2 > z1), (2.2.10)

where z1 and z2 denote the position of the ions along the z-axis. The equilibrium
positions of the ions are given by the analytical expression

z2,eq = −z1,eq =
(

e2

16πε0mω2
z

)1/3

= 4−1/3l, (2.2.11)

where

l =
(

e2

4πε0mω2
z

)1/3

(2.2.12)

is chosen as a length unit. The equilibrium distance is ∆z = z2,eq − z1,eq = 21/3l. For
three ions the equilibrium positions can also be found analytically, but for more than
three ions the problem must be solved numerically. For up to ten ions the equilibrium
positions are given in the work by James [25] and depicted in Fig. 2.6(a).

It is well known, e.g., from solid-state and molecular physics, that a system of inter-
acting particles has a set of motional eigenmodes with corresponding eigenfrequencies,
and that the motion of the particles can be described in terms of these eigenmodes.
The same holds for a string of N ions in a harmonic potential, which in the one-
dimensional case has N mutually perpendicular motional modes with distinct eigenfre-
quencies. These eigenmodes and eigenfrequencies are also calculated in Ref. [25] for up
to ten ions. The eigenfrequencies are depicted in Fig. 2.6(b) and given for two and three
ions in Table 2.1. All the eigenmodes for two and three ions are illustrated in Fig. 2.7.
The first mode 3 is the so-called center-of-mass mode, where the ions move together
at the trap frequency ωz as a rigid body. The second mode is the so-called breathing
mode at frequency

√
3ωz, where the ions move with an amplitude proportional to their

equilibrium distance from the center, and where ions on either side of the center move
with opposite phase. In general the N eigenmodes for an N ion string can be described
by normalized eigenvectors b(p) (p = 1−N), where the m’th coordinate b

(p)
m (m = 1−N)

in b(p) is the relative oscillation amplitude of the m’th ion in the string and the sign of
the coordinates indicates their relative phase. The vectors b(p) are given in the third
column in Table 2.1 for N = 2 and 3.

The theory for a single ion in a harmonic potential interacting with a travelling-wave
light-field, which was presented in the previous section, can be generalized to describe
the interaction with a single ion in an N -ion string in a given motional mode. This can

3With modes numbered in order of increasing eigenfrequency.
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(a) (b)

Figure 2.6: (a) Equilibrium positions in units of l [see Eq. (2.2.12)] for N = 1− 10 ions.
(b) Mode frequencies in units of ωz for N = 1 − 10 ions.

Figure 2.7: Eigenmodes for two and three ions. The uppermost mode is the center-of-
mass mode and the mode illustrated below is the breathing mode.

be done by introducing an effective Lamb-Dicke parameter ηeff,m (m = 1−N) for each
of the N ions, which according to James [25] is given by

ηeff,m = ηeg
b
(p)
m√

ω(p)/ωz

, (2.2.13)

where ω(p) is the eigenfrequency for the mode. In Table 2.1 the vector ηeff is given for
all modes of two and three ions.

N p bp ω(p)/ωz ηeff/ηeg

2 1 1√
2
(1, 1) 1 1√

2
(1, 1)

2 1√
2
(−1, 1)

√
3 1

4√12
(−1, 1)

3 1 1√
3
(1, 1, 1) 1 1√

3
(1, 1, 1)

2 1√
2
(−1, 0, 1)

√
3 1

4√12
(−1, 0, 1)

3 1√
6
(1,−2, 1)

√
29/5 4

√
5

1044 (1,−2, 1)

Table 2.1: Normalized mode eigenvectors b(p), mode frequencies ω(p) in units of ωz and
effective Lamb-Dicke parameter vectors with coordinates given in units of ηeg for 2 and
3 ions.
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Chapter 3

Laser cooling of trapped ions

For more than a decade, laser cooling has played a very significant role in physics 1,
and laser cooling techniques are today widely used, for example in the production and
study of Bose-Einstein condensates of atomic gases 2. Here we shall focus on laser
cooling of trapped ions, where it is possible to cool a single ion or a string of ions to
the motional ground state of the trapping potential with a very large probability. In all
schemes for performing quantum gates and creating entangled states with trapped ions
(see Chap. 5), the starting point is indeed a string of ions cooled to near its motional
ground state and hence obtaining this is a crucial step for the present project.

Laser cooling of ions to their motional ground state starts with the most frequently
encountered type of laser cooling, namely Doppler cooling, which was first proposed by
Hänsch and Schawlow [27]. Doppler cooling brings the ions to a temperature of about
1mK, which only for very strongly confining traps corresponds to the ion being near the
motional ground state. In the trap relevant for the present work, an additional cooling
step is necessary to cool the ions to their motional ground state. This cooling step uses
the so-called sideband-cooling technique, as first proposed by Wineland and Dehmelt
in 1975 [28].

For the specific sideband-cooling scheme, which we intend to use, a numerical study
has been performed in order to investigate how well the scheme performs, at least
theoretically, and to determine suitable values for the relevant parameters, e.g., laser
intensities.

The chapter is organized as follows. In Sec. 3.1, we first consider Doppler cooling of
a two-level ion in order to introduce some general concepts, then the internal levels of
the 40Ca+ ion is presented and Doppler cooling of the 40Ca+ ion is described. Sec. 3.2
is a small digression, where motional modes and stability of ion strings in a three-
dimensional harmonic potential briefly are discussed before we come to the general
theory of sideband cooling in Sec. 3.3, where a rate equation description of sideband
cooling is given. In Sec. 3.4 our sideband-cooling scheme is described. In Sec. 3.5, the
results of the numerical study using quantum Monte Carlo simulations are presented

1The Nobel Prize in Physics for 1997 was awarded to Claude Cohen-Tannoudji, Steven Chu and

William D. Phillips ”for development of methods to cool and trap atoms with laser light” [26].
2The Nobel Prize in Physics for 2001 was awarded to Eric A. Cornell, Wolfgang Ketterlee and Carl

E. Wieman ”for the achievement of Bose-Einstein condensation in dilute gases of alkali atoms, and

for early fundamental studies of the properties of the condensates” [26].
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and compared to a simple rate equation model. Finally, a discussion of how to actually
measure the distribution of population in the motional quantum states of the trapping
potential is given in Sec. 3.6.

3.1 Doppler cooling of trapped ions

In Doppler cooling of atoms or ions, the Doppler effect is exploited together with mo-
mentum conservation in the absorption of photons to cool a sample of atoms or ions. In
the cooling process scattering of photons is an essential part, which for a two-level ion in
a harmonic potential can be described by the same formalism as for a free ion, provided
that the oscillation frequency ωz is much smaller than the transition linewidth Γ [29].
Intuitively, this is understandable since, at least for a saturated transition, scattering
of photons takes place on a timescale of Γ−1, which is much faster than the timescale
on which an ion changes its potential energy (ω−1

z ), i.e., the ion appears to be free.
One may also think of it as the linewidth being much larger than the spacing between
the vibrational sidebands in Fig. 2.5, such that the sidebands which result from the
oscillation in the trapping potential are unresolved. For the present work, the natural
linewidth of the (dipole-allowed) transition relevant for Doppler cooling of the 40Ca+

ion is 2π × 22MHz, which should be compared to a typical trap frequency of the order
of 2π × 1MHz, thus making it sufficient to treat Doppler cooling of free ions.

3.1.1 Doppler cooling of a free two-level ion

Consider a two-level ion moving in one dimension irradiated by two counter-propagating
laser-beams, both having frequency ωL < ωeg. When the ion moves towards (away from)
one laser, the light appears to be shifted into (out of) resonance due to the Doppler
effect, and hence the atom preferentially scatters photons, which slows down the atom
(see Fig. 3.1). Since the photon momentum typically is much smaller than the ion
momentum, an equilibrium state can only be reached after many scattering events.
Therefore, Doppler cooling requires a closed system of internal levels, as for the two-
level ion considered here. The equilibrium kinetic energy of the ion has a lower bound,
the so-called Doppler cooling limit, which is set by ‘recoil-kicks’ due to the continuous
absorption and spontaneous emission of photons.

Figure 3.1: Doppler cooling in one dimension of a free ion.

In the following, Doppler cooling in one spatial dimension (z) is described quantita-
tively. Consider first the force F+ exerted by a travelling-wave laser beam, propagating
in the direction of positive z and having wave-number kz, on an ion moving with veloc-
ity vz. Recoil-kicks due to spontaneous emission are neglected for the time being since,
owing to the spatial symmetry of the radiation pattern, the corresponding net force
averaged over many scattering events is zero. The force due to absorption of photons is
equal to the photon momentum �kz times the scattering rate γ defined in Eq. (2.1.31),
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with δ replaced by (δ − kzvz) in order to take the Doppler effect into account. Using
the notation of Chap. 2, F+ can be written as

F+ = �kzΓ
|Ω|2 /4

(δ − kzvz)2 + |Ω|2 /2 + Γ2/4
. (3.1.1)

In order to counteract the radiation pressure from this laser and hence to cool the ion
along the z-axis, a counter-propagating laser beam must be introduced, as illustrated
in Fig. 3.1. Provided that the saturation parameter s is small, the forces from the two
laser beams can be added [30] yielding a total force, Fz, which can be written as

Fz =F+ + F− (3.1.2)

=
�kzΓ |Ω|2

4

[
1

(δ − kzvz)2 + |Ω|2 /2 + Γ2/4
− 1

(δ + kzvz)2 + |Ω|2 /2 + Γ2/4

]
.

F+, F− and Fz are illustrated in Fig. 3.2 for δ = −Γ/2 and s = 0.1. Fz is zero when
vz = 0 and varies linearly with a negative slope (for δ < 0) near vz = 0, which means
that it acts as a frictional force for small vz. Expanding Fz, we find indeed that

Fz = − αvz + O(v3
z), (3.1.3)

where

α = − ∂Fz

∂vz
(vz = 0) = −�k2

z

δΓ |Ω|2
[δ2 + |Ω|2 /2 + Γ2/4]2

(3.1.4)

= − 2�k2
z

s

(1 + s)2
δΓ

δ2 + Γ2/4

is the friction coefficient. The friction coefficient is positive for δ < 0 and negative for
δ > 0, in which case the force is not a frictional force, but rather a heating force which
speeds up the ion. By maximizing α with respect to δ, it can easily be found that the
friction coefficient is maximal (and positive) for δ = −Γ/2 with a maximal value of

αmax =
2s

(1 + s)2
�k2

z . (3.1.5)

In Fig. 3.2, where the optimal detuning δ = −Γ/2 is used, the straight dash-dotted line
is the linear approximation of the cooling force with slope αmax for s = 0.1.

The frictional cooling force gives rise to a decrease in the kinetic energy of the ion
with the cooling rate Rcool = − < Fzvz >= α < v2

z >. As already mentioned, the
ultimate temperature is, however, limited by heating processes due to absorption and
spontaneous emission of photons.

Let us consider heating due to spontaneous emission first. The average of the recoil
momenta, < precoil >, is zero, however, since the direction of each recoil is random, the
ion makes a random walk in momentum space, which means that < p2

recoil > increases
linearly with the number of scattered photons, due to momentum diffusion [20]. The
exact value of the heating rate depends on the transition and the laser configuration in
question, but it is of the order of Rheat = γ(�kz)2/m, where m is the ion mass [20].
In absorption of photons, there is essentially no preferred direction of absorption, when



18 Chapter 3 - Laser cooling of trapped ions

Figure 3.2: Forces exerted by two counter-propagating laser beams, with detuning −Γ/2
and saturation parameter s = 0.1, on an ion moving with velocity vz. The various curves
are discussed in the text.

the ion speed is small (kzvz � Γ). Hence each time a photon is absorbed, the ion gets
a random momentum kick along the z-axis, which leads to momentum diffusion along
the z-axis. The associated heating rate is also of the order of Rheat [20]. In equilib-
rium Rcool = 2Rheat, which for the optimal choice of detuning, δ = −Γ/2, yields an
equilibrium kinetic energy of �Γ/4. Defining the temperature T of an ion through its
kinetic energy, using the relation kBT/2 = m < v2

z > /2, where kB is Boltzmann’s con-
stant, we find that the equilibrium kinetic energy corresponds to the so-called Doppler
temperature

TD ≡ �Γ
2kB

, (3.1.6)

which characterizes the Doppler cooling limit.
Cooling of a free particle in three dimensions would require six pairwise counter-

propagating laser beams. In an ion trap it is not strictly necessary to use counter-
propagating laser beams since the radiation pressure exerted by a laser beam is coun-
teracted by the trapping potential. Furthermore, cooling in three dimensions can be
accomplished using only a single cooling laser beam if it has a component of its wave-
vector along each of three principal axes, which is defined by the trapping potential,
as discussed in more detail in Chap. 7. In the experiments with single ions or strings
of ions described in this thesis, the ions were normally Doppler laser cooled using two
beams counter-propagating parallel to the ion string and one laser beam propagating
perpendicular to the ion string.

3.1.2 The 40Ca+ ion

Before a description of Doppler cooling of the 40Ca+ ion, the relevant internal levels
has to be introduced, which is done in the following.
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Figure 3.3: Partial level scheme for the 40Ca+ ion, showing the five lowest lying energy
levels. Solid arrows indicate dipole-allowed transitions, with the fat arrows indicating
the Doppler cooling transitions discussed in the text. Dotted arrows indicate electric
quadrupole transitions. Transition wavelengths are given together with the inverse of
the respective transition rates.

The 40Ca+ ion has only a single optically active electron outside a closed shell, and
hence for most purposes it can be considered as a one-electron atom. The lowest lying
energy levels of the 40Ca+ ion are shown in Fig. 3.3. The 4s 2S1/2 ground state is
coupled to the 4p 2P1/2 state and the 4p 2P3/2 state by dipole-allowed transitions at
397 nm and 393 nm, respectively, as indicated by the arrows. These P -states are in turn
coupled by dipole-allowed transitions at 850 nm, 854 nm and 866 nm to the 3d 2D3/2

state and the 3d 2D5/2 state. The D-states are metastable, with a natural lifetime of a
little more than a second, since they are only coupled to the ground state by an electric
quadrupole transition.

Apart from the wavelengths, the inverse of the transition rate has been indicated
for each transition in Fig. 3.3. The transition rates from the P -states to the D-states
will be denoted by Γ850, Γ854 and Γ866, where the indices are the transition wavelength
in nanometers. The transition rates from the 2P1/2 state and the 2P3/2 state to the
ground state will be denoted Γ1/2 and Γ3/2, respectively. The natural lifetime of the
2P1/2 state is equal to (Γ1/2 + Γ866)−1 = 7.1 ns, and the natural linewidth of the 2P3/2

state is equal to (Γ3/2 + Γ850 + Γ854)−1 = 6.8 ns.
Saturation parameters and saturation intensities for each transition can be defined

as in Eq. (2.1.29) and Eq. (2.1.30) using the relevant transition strength and frequency
instead of Γ and ωeg.

An overview of the transition wavelengths, transition rates and saturation intensities
for the S–P and D–P transitions in 40Ca+ is given in App. B.

3.1.3 Doppler cooling of the 40Ca+ ion

From the level scheme in Fig. 3.3, it is clear that the 40Ca+ ion does not contain a
closed transition between two levels, for which Doppler cooling was described above.
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Nevertheless, Doppler cooling of the 40Ca+ ion is possible, e.g., using a laser at 397 nm
and one at 866 nm 3. The main cooling transition for this configuration is the 397 nm
4s 2S1/2–4p 2P1/2 transition. From the 2P1/2 state the ion will not always decay back
to the 2S1/2 state, but sometimes decay to the 2D3/2 state, from which it is pumped
back to the 2P1/2 state by the laser at 866 nm.

Since the described Doppler cooling process involves three levels and two laser
sources, we cannot immediately use the theory for a two-level system. However, since
Γ1/2/Γ866 ≈ 12, and the momentum of a 397 nm photon is about twice as large as that
of a 866 nm photon, the cooling limit is expected to be given by the Doppler cooling
limit for the 397 nm transition, assuming that the 2D3/2– 2P1/2 transition is saturated.
The Doppler cooling limit for the 397 nm transition is

TD = 0.5mK. (3.1.7)

This intuitive argument is supported by a numerical study of laser cooling of 138Ba+ [31],
which has a level structure similar to 40Ca+, showing that the cooling limit mainly is
set by the laser parameters for the 2S1/2– 2P1/2 transition and is of the order of the
Doppler cooling limit, although the picture is more complicated than for a simple two-
level system.

In practice, the magnetic sublevels of the states involved in the Doppler cooling
process have to be considered. For the blue cooling transition, optical pumping into
one of the magnetic sublevels of the 2S1/2 state has to be avoided, which can be done
using light which is linearly polarized (π) with respect to a quantization axis defined by
an applied magnetic bias field, or using any combination of π-, σ+- and σ−-polarized
light. For the 2D3/2– 2P1/2 transition, optical pumping into dark states [32] or magnetic
sublevels of the 2D3/2 state has to be avoided, which can be done by choosing the red
cooling laser light to be linearly polarized perpendicular to the magnetic bias field. This
method has been employed in the experiments described in this thesis, however, usage
of a (large) magnetic field introduces an unwanted Zeeman-splitting, which will be a
drawback in later experiments. Using a small magnetic field, the repumping rate would
be limited by the corresponding Larmor frequency, but this limitation can fortunately
be circumvented by (fast) rotation of the red cooling laser light polarization using an
electrooptic modulator (see Chap. 8).

Finally, we note that the 397 nm photons emitted during the Doppler cooling process
are very important since they allow us to observe the ions using an imaging system,
which is described in Chap. 8.

3.2 Ion strings in a three-dimensional harmonic po-

tential

When a few ions are Doppler laser-cooled to a sufficiently low temperature and trapped
in a linear Paul trap with appropriate trap parameters, they can form a string of ions,
having the properties discussed in Sec. 2.2.2. In the following, we first consider the
requirements on the trapping parameters for obtaining a string of N ions, assuming

3In the following, the cooling lasers driving the 397 nm transition and the 866 nm transition will often

be referred to as the blue cooling laser and the red cooling laser or the repumper laser, respectively.
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that the Doppler cooling process described above makes the ions sufficiently cold. Then
we briefly discuss motional modes in a three-dimensional harmonic potential.

The three-dimensional trapping potential of a linear Paul trap is to a good approx-
imation harmonic of the form

U3d−harm =
1
2
m(ω2

xx2 + ω2
yy2 + ω2

zz2), (3.2.1)

where ωz is called the axial trap frequency, and ωx and ωy are called the radial trap
frequencies. Normally, we have ωx ≈ ωy > ωz. For simplicity we assume in the following
that ωx = ωy ≡ ωr. If ωr/ωz is sufficiently large, the N ions will be squeezed onto a
string along the z-axis. More quantitatively, the inequality 2ω2

r + ω2
z > (ωN

max)2, where
ωN

max is the highest modefrequency for the N -ion string, must be fulfilled [33], which
can be expressed as (

ωr

ωz

)2

> (µN − 1)/2, (3.2.2)

where µN = (ωN
max/ωz)2. To find an approximate expression for (µN−1)/2 as a function

of N , the numerically calculated values [25] of (µN − 1)/2 are fitted to the expression
aN b over the range N = 2 − 10, which roughly is the relevant range in the context of
this thesis. Using Eq. (3.2.2) and the fitted values of a and b, the following requirement
for obtaining an N -ion string is found:

ωr

ωz
> 0.60N0.89. (3.2.3)

In general, this inequality must be fulfilled separately by ωx and ωy, instead of ωr, for
an ion string to be stable.

For an N -ion string in a three-dimensional potential, there are 3N motional modes.
N of these modes are the axial modes described in Chap. 2. In addition there are radial
center-of-mass modes at frequency ωx and ωy and modes at eigenfrequencies which are
combinations of ωx, ωy and ωz [34]. All modes can in principle be cooled to near the
motional ground state by sideband cooling, but only one axial mode is relevant for
quantum logic operations.

3.3 Sideband cooling

In the regime where the linewidth Γ of an internal transition in a trapped ion is much
smaller than the trap frequencies, i.e. Γ � ωx, ωy, ωz, the absorption profile for the
transition exhibits well-resolved sidebands. This regime is known as the strong-binding
regime or the resolved-sideband limit. For a dipole-transition, Γ is typically several
MHz, and getting into the resolved-sideband limit in this case requires a very strongly
confining trap. What is more feasible in order to get into the resolved-sideband limit, is
to utilize a narrow transition, such as a Raman transition [35] or an electric quadrupole-
transition [36, 37] in combination with trap frequencies around a few MHz. In this case
it becomes possible to resolve the sideband transitions, which is exploited in sideband
cooling to cool a single ion or several ions to near their motional ground state in the
trap.
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As mentioned, sideband cooling of trapped ions was first suggested by Wineland and
Dehmelt in 1975 [28]. The first experimental demonstration was reported for a single ion
in 1989 by Diedrich et al. [36] and has been followed by other demonstrations [35, 37, 38],
also for multiple ions (up to four) [9, 34, 39]. The sideband-cooling technique has also
been used for cooling of atoms in optical lattices [40, 41, 42] and in an optical dipole-
trap [43].

The principle of sideband cooling of a two-level ion is illustrated in Fig. 3.4(a). A
laser resonant with a red sideband transition excites the ion from |g, n〉 → |e, n − 1〉,
which reduces the vibrational quantum number by one. In the Lamb-Dicke limit, the
spontaneous decay from |e〉 back to |g〉 is preferentially on the carrier, which completes
a cooling cycle, |g, n〉 → |e, n − 1〉 → |g, n − 1〉, removing one vibrational quantum from
the system but leaving it in its initial internal state. After additional cooling cycles, the
ion eventually ends up in the ground state |g, 0〉, where no more excitations can occur.

Note that the Lamb-Dicke parameter must be non-zero since vibrational state chang-
ing transitions has to be allowed. On the other hand, it should be sufficiently small that
the Lamb-Dicke limit is fulfilled, such that spontaneous decay preferentially happens
on the carrier-transition. For this work a Lamb-Dicke parameter of η = 0.2 is a typical
value. Note also that in order to remain in the resolved-sideband limit, the power-
broadened linewidth of the sideband-cooling transition should also be much smaller
than the trap frequency, which requires that the Rabi-frequency of the sideband-cooling
laser is much smaller than ωx, ωy and ωz.

Before going on with a more detailed description of sideband cooling, we should
mention the so-called electromagnetically induced transparency (EIT) cooling technique
which also allows cooling to near the motional ground state. The technique was proposed
by Morigi et al. in Ref. [44] and demonstrated by the Innsbruck group for 40Ca+ [45, 46].

3.3.1 Rate equation description in the Lamb-Dicke limit

In the following, we give a rate equation description of sideband cooling of a two-level
ion, which will be useful for describing the scheme we intend to use in 40Ca+ (Sec. 3.4),
and in connection with the quantum Monte Carlo simulations of this cooling scheme
(Sec. 3.5).

Here we consider for simplicity only sideband cooling of the axial motion of a single
two-level ion. Sideband cooling of a two-level ion can conveniently be described in
terms of transitions within the ground state manifold of vibrational levels {|g, n〉}, i.e.,
transitions from |g, n〉 to |g, n′′〉 via an excited state |e, n′〉. Here we assume the Lamb-
Dicke limit, considering only the cases where n′ = n, n ± 1 and n′′ = n ± 1. The
corresponding ground state manifold transitions which involve |g, n〉 are illustrated in
Fig. 3.4(b). The transition rate for a |g, n〉 → |g, n − 1〉 (cooling) transition can be
written as η2

egnA−, where the factor of η2
egn originates from the transition between

vibrational levels [see Eq. (2.2.9)], and A− is a rate which accounts for the internal
dynamics of the ion due to the interaction with the sideband-cooling laser. Similarly,
the transition rate for a |g, n〉 → |g, n + 1〉 (heating) transition can be written as η2

eg(n+
1)A+. Expressions for A± will be given below. These transition rates lead to the
following rate equation for the occupation probability P (n) of the state |g, n〉 [47]:

Ṗ (n) = η2
eg

[
(n + 1) A−P (n + 1) − [(n + 1) A+ + nA−] P (n) + nA+P (n − 1)

]
. (3.3.1)
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From this equation, a differential equation for the average population n can be derived:

(a) (b)

Figure 3.4: (a) Sideband cooling of a two-level ion. Through successive red sideband
excitations and spontaneous emission events, the ion ends up in its motional ground
state |g, 0〉. (b) Cooling and heating transitions within the ground state manifold of
vibrational levels.

Figure 3.5: Illustration of the terms contained in A− and A+. n can change in the
optical excitation process (left) or in the spontaneous emission process (right). The fat
arrows indicate the intended sideband-cooling cycle, also shown in Fig. 3.4(a).

ṅ =
∞∑

n=0

nṖ (n) = −η2
eg(A− − A+)n + η2

egA+, (3.3.2)

which has the solution

n(t) =
(
n0 − n

(1)
SS

)
e−W (1)t + n

(1)
SS , (3.3.3)

where

W (1) = η2
eg (A− − A+) (3.3.4)

is the cooling rate,

n
(1)
SS =

A+

A− − A+
(3.3.5)
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is the steady-state value n(t → ∞) and n0 = n(t = 0). The superscript (1) indicates
that the expressions are valid to first order in η2

eg. The solution to n(t) is only stable
when the cooling rate is positive, i.e., when A− > A+, which also was anticipated from
Fig. 3.4(b).

When the Rabi-frequency Ω of the sideband-cooling laser is much less than the
transition linewidth Γ, the rates A± have two contributions each, which are illustrated
in Fig. 3.5 [48]. Each rate has a contribution from events where n changes in the optical
excitation process, |g, n〉 → |e, n ± 1〉 → |g, n ± 1〉, and one from events where n changes
in the spontaneous emission process, |g, n〉 → |e, n〉 → |g, n ± 1〉. In particular, A−
contains a term for the cooling cycle |g, n〉 → |e, n − 1〉 → |g, n − 1〉, where the optical
excitation is driven resonantly on the red sideband, whereas A+ only contains terms
from off-resonant excitations due to the cooling laser. When the cooling laser is tuned
to the red sideband, A± can be expressed quantitatively in the following way [47, 48]

A± =Γ[αR(ωz) + R(ωz ± ωz)], (3.3.6)

where

R(δ) =
Ω2/4

δ2 + Γ2/4
. (3.3.7)

α is a factor of the order of unity, which accounts for the direction of the spontaneously
emitted photon and is given by

α =
∫ π

0

sin θ dθ cos2θ W (θ), (3.3.8)

where θ is the angle between the emitted photon and the z-axis, and W (θ) is a nor-
malized distribution-function for the radiation pattern of the transition. Using Γ � ωz

(resolved sideband-limit), the following simple expressions for A− and A+ can be found:

A− ≈ Ω2/Γ and A+ ≈ ΓΩ2

4ω2
z

(α + 1/4) . (3.3.9)

Inserting A± into the expressions for W (1) and n
(1)
SS , we find

W (1) ≈ η2
egΩ

2/Γ (3.3.10)

and

n
(1)
SS ≈

(
Γ

2ωz

)2

(α + 1/4). (3.3.11)

Note that since a change of vibrational state is necessary for cooling, W (1) is proportional
to η2

eg. The steady-state value, n
(1)
SS , is limited by off-resonant carrier or blue sideband

excitations and approaches zero when they become negligible, i.e., when Γ/ωz → 0.
In Eq. (3.3.6) it was assumed that Ω � Γ. This restriction can be circumvented in

a more detailed calculation (still assuming Ω, Γ � ωz) of the rates A±, using a density
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matrix approach. This has been done in Ref. [49] and yields the following multi-line
formula

A−(ωz) = −2ΓΓcohRcoh(δ)(1 − α)
Γ + 4ΓcohRcoh(δ)

+
Ω2/2

Γ + 4ΓcohRcoh(δ)
(3.3.12)

×Re
{

(ωz + iΓ)
[
ωz + iΓ +

Ω2

2

(
1

δ − ωz − iΓcoh
− 1

δ + ωz + iΓcoh

)]−1

× i

[
Γ
(

1
δ + iΓcoh

− 1
δ − ωz − iΓcoh

)
− 2(1 + iΓ/ωz)ΓcohRcoh(δ)

(
1

δ − ωz − iΓcoh
− 1

δ + ωz + iΓcoh

)]}
and

A+(ωz) = A−(−ωz), (3.3.13)

where

Rcoh(δ) =
Ω2/4

δ2 + Γ2
coh

. (3.3.14)

Tuning to the red sideband for optimal sideband-cooling conditions corresponds to δ =
ωz. A coherence decay rate, Γcoh, has been introduced, which is equal to Γ/2 for a
true two-level ion if external decoherence effects are neglected 4, but in general it may
deviate from Γ/2. Using the expressions for A± above with δ = ωz, it has been shown
that the more general expression for n

(1)
SS is [50, 51]

n
(1)
SS =

(
Γcoh

ωz

)2

(α + 1/4) +
(

Ω
2ωz

)2(2Γcoh

Γ
− 1

)
+ O [

(Γcoh/ωz)4, (Ω/ωz)4
]
.

(3.3.15)

When Γcoh = Γ/2, the result in Eq. (3.3.5) is recovered since the second term above
cancels exactly.

For the cooling rate, we find from Eq. (3.3.12) to zeroth order in Γ/ωz, Γcoh/ωz and
Ω/ωz that

W (1) = η2
eg [A−(ωz) − A+(ωz)] = η2

eg

Ω2

2Γcoh
, (3.3.16)

again using δ = ωz in A±. For Γcoh = Γ/2 this expression for the cooling rate is identical
to Eq. (3.3.10).

The theory above was described with the axial motion of a single ion in mind, but
it applies equally well to motion along the x-axis or the y-axis if the axial frequency
ωz is replaced by the corresponding radial frequency ωx or ωy. Furthermore, cooling of
the various motional modes of an N -ion string is described by the same theory, if ωz is
replaced by the relevant mode frequency, although an effective Lamb-Dicke parameter,
as given in Eq. (2.2.13) for the one-dimensional case, should be taken into account.

4Corresponding to the decay rate Γ/2 of ρge and ρeg in Eq. (2.1.26).
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3.3.2 Rate equation with second-order contributions

Since Doppler cooling normally is performed prior to sideband cooling, the temperature
reached after Doppler cooling defines the starting point for the sideband-cooling process.
By equating kBTD with (n + 1/2)�ωz, it follows that the average axial vibrational
quantum number after Doppler cooling is n ≈ 10 for ωz = 2π × 1.0MHz, assuming
that the Doppler cooling limit of TD ≈ 0.5mK for 40Ca+ is reached. Hence, for this
experimentally relevant case, there is initially an appreciable population over a large
range of vibrational levels. With a Lamb-Dicke parameter of the order of 0.2, the Lamb-
Dicke criterion

√
n + 1ηeg � 1 is not well fulfilled, and even the Lamb-Dicke parameter

itself cannot be said to be much smaller than one. These facts suggest that contributions
of second order in η2

eg could be important in describing n(t) in sideband cooling. In order
to investigate this in the limit where

√
n + 1ηeg < 1, we have extended the rate equation

in Eq. (3.3.1) to contain second-order cooling and heating terms due to transitions of the
type |g, n〉 → |g, n ± 2〉 within the ground state manifold of vibrational levels. There are
three types of events which can give rise to such a transition, namely events where (i) n
changes by ±2 in the spontaneous decay (|g, n〉 → |e, n〉 → |g, n ± 2〉), (ii) n changes by
±2 in the optical excitation process (|g, n〉 → |e, n ± 2〉 → |g, n ± 2〉) or (iii) n changes
by ±1 in each of these processes (|g, n〉 → |e, n ± 1〉 → |g, n ± 2〉). In order to describe
the internal dynamics by rates analogous to A±, we introduce rates A++ and A−− for
the second-order heating and cooling transitions, respectively. Similar to Eq. (3.3.6),
A±± is written as follows in the limit Ω � ωz:

A±± =α̃R(ωz) + R(ωz ± 2ωz) + αR(ωz ± ωz), (3.3.17)

where

α̃ =
∫ π

0

sin θ dθ cos4θ W (θ) (3.3.18)

and the first, second and third terms in A±± correspond to the events (i), (ii) and (iii),
respectively. The total transition probabilities for the second-order cooling and heating
transitions are proportional to A−− and A++, respectively, to η4

eg and to an n-dependent
factor originating from transitions between the harmonic oscillator eigenstates, which
appears from the following extended rate equation 5:

Ṗ (n) =η4
eg(n + 1)(n + 2)A−−P (n + 2) + η2

eg(n + 1)A−P (n + 1) (3.3.19)

− η2
eg

[
(n + 1)A+ + nA− + η2

eg(n + 1)(n + 2)A++ + η2
egn(n − 1)A−−

]
P (n)

+ η2
egnA+P (n − 1) + η4

egn(n − 1)A++P (n − 2).

From this rate equation, the following differential equation, which involves both n and
n2, can be found:

ṅ =
∞∑

n=0

nṖ (n) = − 2η4
eg(A−− − A++)n2 − η2

eg

[
A− − A+ − 2η2

eg(A−− + 3A++)
]
n

(3.3.20)

+ η2
eg(A+ + 4η2

egA++).
5The restriction Ω � Γ � ωz concerns only the rates A±± and not the rate equation itself.

Therefore, the rate equation should be valid for Ω, Γ � ωz with properly calculated rates A±±.
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In order to get rid of the n2-term, we make the reasonable assumption that the distribu-
tion over the vibrational levels is a thermal distribution 6 such that n2 can be replaced
by 2n2 + n (see App. A.1). The resulting non-linear differential equation in n is solved
in App. A.1. The solution is

n(t) =
W (2)

W ′

[
eW (2)t

(
1 +

W (2)

W ′(n0 − n
(2)
SS)

)
− 1

]−1

+ n
(2)
SS , (3.3.21)

where

W ′ =4η4
eg(A−− − A++), (3.3.22)

W (2) =
√

(W (1) − 8η4
egA++)2 + 4η2

egW
′(A+ + 4η2

egA++) (3.3.23)

and

n
(2)
SS =

W (2) − W (1)

2W ′ +
A++

A−− − A++
. (3.3.24)

In the limit ηeg → 0, n
(2)
SS approaches n

(1)
SS , W (2) approaches W (1), and it can be verified

that the exponential decay law in Eq. (3.3.3) is recovered from Eq. (3.3.21). When
eW (2)t � 1, which is fulfilled for all but small t, we find

n(t) ≈ n0 − n
(2)
SS

1 + W ′(n0 − n
(2)
SS)/W (2)

e−W (2)t + n
(2)
SS

(
eW (2)t � 1

)
. (3.3.25)

Again the decay is exponential, however with a modified cooling rate and steady-state
value as compared to the solution in Eq. (3.3.3). Using the expressions for A±± in
Eq. (3.3.17), assuming Ω,Γ � ωz and expanding W (2) and n

(2)
SS to first order in (Γ/ωz)2,

it can be found that (see App. A.1)

W (2) =W (1)

[
1 + 2η2

eg

(
Γ
ωz

)2 [
α2 − α̃ − 1/9 + η2

egα (4α̃ + α + 4/9)
]]

(3.3.26)

n
(2)
SS =n

(1)
SS

[
1 + η2

eg

4α̃ + α + 4/9
α + 1/4

]
. (3.3.27)

Note that no expansion in the Lamb-Dicke parameter was made. The relative deviation
of W (2) from W (1) and of n

(2)
SS from n

(1)
SS scales as η2

eg. For the cooling rate the deviation
is very small due to the presence of the factor (Γ/ωz)2. To estimate the relative deviation
of n

(2)
SS from n

(1)
SS , i.e., the second term in the parentheses in Eq. (3.3.27), we have to

calculate α and α̃. Using W (θ) = 3(1 + cos2 θ)/8, which is relevant for a σ± transition
between the 2S1/2 and 2P1/2 state in 40Ca+ [52], we find α = 2/5 and α̃ = 9/35. This
yields a relative deviation of 2360η2

eg/819 ∼ 3η2
eg, which equals 11% when ηeg = 0.2.

6After the Doppler cooling process, the distribution over vibrational levels is expected to be a

thermal distribution. At least to first order in η2
eg , it can then be shown that a thermal distribution is

maintained during the sideband-cooling process [48].
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From an experimental point of view, it is comforting that for a reasonable value of
η = 0.2, the second-order contribution to the steady-state excitation is only of the order
of 10%, which is likely to be small in comparison with ‘experimental heating sources’.
On the other hand, the effect is not negligible and should be taken into account, e.g.,
in a comparison between careful numerical studies and the rate equation theory.

3.4 Sideband cooling of the 40Ca+ ion

In this section the sideband-cooling scheme, which will be implemented using the 40Ca+

ion, is described.

3.4.1 The sideband-cooling scheme

The three internal levels involved in the sideband-cooling scheme are the two ground
state sublevels 2S1/2(±1/2) (the qubit levels) and one of the sublevels of the 2P1/2 state.
The cooling scheme is illustrated in Fig. 3.6, where the notation |1〉 = 2S1/2(−1/2),
|2−〉 = 2P1/2(−1/2), |2+〉 = 2P1/2(+1/2) and |3〉 = 2S1/2(+1/2) has been introduced
(i.e., |1〉=|↓〉, |3〉=|↑〉), and the involved sublevel of the 2P1/2 state is |2−〉 (|2+〉 could
also have been chosen as discussed below). The intended cooling cycle is the following

|1, n〉 −→ |3, n − 1〉 −→ |2−, n − 1〉 −→ |1, n − 1〉 . (3.4.1)

The first step is a resolved sideband two-photon Raman transition driven by the lasers
with indices ‘12’ and ‘32’ (Raman lasers in the following) on the red sideband of the |1〉–
|3〉 transition (assuming δ = 0 in Fig. 3.6). In the second step, a pumping laser (index
‘pump’) excites the ion from |3〉 to |2−〉 on the carrier (the sidebands are unresolved,
but in the Lamb-Dicke limit the transition is mainly via the carrier). A spontaneous
decay on the carrier from |2−〉 to |1〉 completes the cooling cycle (in the Lamb-Dicke
limit the spontaneous decay is also mainly on the carrier).

From the excited state |2−〉 the ion may also decay back to |3〉 or to the 2D3/2 state
(dashed wavy arrows in Fig. 3.6). In the former case, the ion will eventually be pumped
back to |2−〉, whereas the latter possibility necessitates a repumper laser on the 866 nm
2D3/2– 2P1/2 transition as in Doppler cooling. The scheme works in principle the same
way if |2+〉 is chosen as the excited state, however, there are some differences for the
two choices, which will be discussed below. When the specific excited state is irrelevant
for the discussion, we will use the notation |2〉, meaning either |2−〉 or |2+〉.

The lasers are supposed to be applied continuously to the ion, so the picture one
should have in mind is that the population is making Rabi-oscillations within the fam-
ily of states {|1, n〉, |3, n − 1〉, |2, n − 1〉} rather than being transferred stepwise from
one state to the next. Occasionally, a change of family takes place, mainly by sponta-
neous decay from |2, n − 1〉 to the state |1, n − 1〉 in the family {|1, n − 1〉, |3, n − 2〉,
|2, n − 2〉}. Eventually, the ion ends up in |1, 0〉 which ideally is a dark state. Only due
to excitations on the carrier or a blue sideband of the Raman transition, a fraction of
the total population will be found outside the |1, 0〉 state, mainly oscillating within the
{|1, 1〉, |3, 0〉, |2, 0〉} family.

In the following, the Raman transition, the pumping transition and the spontaneous
decay are discussed in a little more detail together with the Zeeman-splitting of the
ground state sublevels indicated in Fig. 3.6, which turns out to be necessary.
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Figure 3.6: The sideband-cooling scheme, illustrated here for a |1, 2〉 → |3, 1〉 →
|2−, 1〉 → |1, 1〉 cooling cycle. For the respective laser beams, ω denotes laser fre-
quencies, Ω denotes Rabi-frequencies, and k denotes wave-numbers. ∆ and δ are the
one- and two-photon detunings defined in Eq. (3.4.2) and Eq. (3.4.3), ∆Zeeman is the
Zeeman-splitting of the ground state sublevels, and ∆ � ∆Zeeman, ωz is assumed.
In a cooling cycle the Raman lasers (blue) drive red sideband transitions from |1, n〉
to |3, n − 1〉, ideally with δ = 0. The pumping laser (violet) pumps population from
|3, n − 1〉 to |2−, n − 1〉, and a subsequent spontaneous decay to |1, n − 1〉 completes
the cooling cycle. Spontaneous decays back to |3〉 or to the 2D3/2 state (dashed wavy
arrows) are also allowed, which in the latter case necessitates a repumper laser (red).
The top right inset shows the geometry for implementing the sideband-cooling scheme.
The magnetic field B defines the quantization axis of the ion.

Raman transition: |1, n〉 → |3, n′′〉

The Raman transition is a two-photon transition between the two ground state sublevels,
|1〉 and |3〉, with one (both) of the excited states |2±〉 as intermediate state(s). The
sidebands on the |1, n〉–|3, n′′〉 transition are resolved. Referring to Fig. 3.6, the Raman
laser beams are characterized by frequency ωi2, Rabi-frequency Ωi2 and wave-number



30 Chapter 3 - Laser cooling of trapped ions

ki2 (i=1,3). The one-photon detuning, ∆, and the two-photon detuning, δ, are defined
as

∆ = (E2 − E1)/� − ω12 − ωz, (3.4.2)

δ = ∆Zeeman + ωz + (ω12 − ω32), (3.4.3)

where E1, E2 and E3 are the energies of the states |1〉, |2〉 and |3〉, respectively, in
the presence of the magnetic field B, which gives rise to a Zeeman-splitting of the two
ground state sublevels of ∆Zeeman = (E3 − E1)/�.

The effective Rabi-frequency for the Raman transition is given by

ΩRaman =
Ω12Ω∗

32

∆
. (3.4.4)

In order to avoid excitation on a one-photon transition from |1〉 or |3〉 to |2〉, ∆ is
supposed to be much larger than the natural transition linewidth Γ1/2. In this case the
scattering rate on the |i〉–|2〉 transition (i = 1, 3) is of the order of Γ12Ω2

i2/∆2. Since this
rate scales as ∆−2 and ΩRaman ∝ ∆−1, we can essentially avoid one-photon scattering
events by choosing ∆ large enough (∆/Γ1/2 � 50 − 100) and with the accessible laser-
power still obtain an appreciable Raman Rabi-frequency 7.

For driving sideband transitions between |1〉 and |3〉, the individual laser frequencies
ω12 and ω32 are in principle irrelevant (assuming ∆ � Γ1/2); the relevant parameter
is the frequency difference ω12 − ω32. This fact is exploited in reaching the resolved
sideband limit for the Raman transition by deriving the two beams from the same
laser, such that fluctuations in the laser frequency, which are responsible for the laser
linewidth, cancel out in taking the frequency difference. A frequency difference between
the Raman beams will be generated and changed in a controlled way using two acousto-
optic modulators (AOM’s). The effective linewidth of the Raman transition has a
contribution from the width and stability of the AOM-drivers (∼ 20 kHz, full width at
−40 dB). The effective linewidth also has contributions from magnetic field fluctuations
leading to fluctuations in ∆Zeeman and from drifts/fluctuations of the trap frequencies.

Finally, we note that for the Raman transition the relevant wave-vector, which, e.g.,
enters in the Lamb-Dicke parameter, is the difference between the wave-vectors of the
Raman beams. Thus the geometry shown in the inset of Fig. 3.6 allows cooling along
the trap axis as well as in the radial plane (along both principal axes in the radial plane,
although it is not seen from Fig. 3.6).

Pumping-transition: |3, n′′〉 → |2±, n′〉
The pumping laser with frequency ωpump, Rabi-frequency Ωpump and wave-number
kpump is supposed to couple the state |3〉 to the excited state |2−〉, as indicated in
Fig. 3.6, or alternatively to |2+〉. Sidebands are unresolved for the pumping transition.
|2−〉 or |2+〉 can be selected as the excited state by choosing the pumping laser to be
σ−- or π-polarized, respectively, with respect to the quantization axis defined by the
magnetic field B shown in Fig. 3.6.

As for the optimal choice of excited state, we note that if we choose |2〉=|2+〉 (π-
polarized pumping beam), excitation from the state |1〉 to |2−〉 would be possible due

7∆ should not be much larger than the fine-structure splitting of the P -states, since that would

almost cancel the total transition-amplitude [53]. With ∆/Γ1/2 � 50 − 100 this is no problem.
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to the pumping laser, which would lead to heating as illustrated in Fig. 3.7(a). The
|1〉–|2−〉 transition can be suppressed as compared to the |3〉–|2+〉 transition if a Zeeman-
splitting much larger than Γ1/2 can be obtained. By choosing |2〉 = |2−〉 instead (σ−-
polarized pumping beam), excitation from |1〉 would be avoided (to the extent that the
polarization is pure σ−).

Finally, we note that when the pumping laser propagates parallel to the z-axis as
in Fig. 3.6 (for σ−-polarization), it can induce changes in the state of the axial motion,
which gives rise to a small heating contribution. If the pumping beam propagates
perpendicular to the z-axis (for π-polarization), it cannot change the vibrational state
along the z-axis.

(a) (b)

Figure 3.7: The excited state for the pumping transition can be selected through polar-
ization of the pumping beam. (a) Selecting |2〉=|2+〉 by using a π-polarized pumping
beam, a heating cycle is introduced due to excitations from |1〉 to |2−〉. Here the
|3, n = 0〉 → |1, n = 1〉 → |2−, n = 1〉 → |3, n = 1〉 heating cycle is shown. (b) Branch-
ing ratios for spontaneous decay from sublevels of the 2P1/2 state to sublevels of the
2S1/2 ground state.

Spontaneous decay: |2±, n′〉 → |1, n〉 , |3, n′′〉
If decay to the 2D3/2 state is neglected, the spontaneous decay from the 2P1/2(±1/2)
states can happen to either of the ground state sublevels with the probabilities shown
in Fig. 3.7(b). A decay (on the carrier) to the state |1〉 is good in terms of cooling, since
it completes a cooling cycle. A decay back to the state |3〉 is bad, since it introduces an
extra step of pumping and decay before a cooling cycle can be completed, which hence
slows down the cooling process and gives rise to additional possibilities for heating events
to take place. Hence, from that point of view, it would be desirable to optimize the
probability for a decay to |1〉 by choosing |2〉=|2+〉 [see Fig. 3.7(b)]. Unfortunately, this
choice introduces the heating cycle in Fig. 3.7(a), and therefore we have to be content
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(a) (b)

Figure 3.8: Non-perfect polarization of the Raman beams gives rise to unwanted Raman
transitions (black thin arrows) which can be suppressed, using a Zeeman-splitting of
the ground state sublevels. (a) Without Zeeman-splitting, ∆n = 1 for the unwanted
transitions, so that the transition strength is proportional to η2. (b) With the Zeeman-
splitting ∆Zeeman � ωz, we have |∆n| = m ≈ 2∆Zeeman/ωz − 1 � 1 for the unwanted
transitions, such that the transition strength is suppressed by the factor η2m � 1.

with the choice |2〉=|2−〉, unless a very large Zeeman-splitting, ∆Zeeman � Γ1/2, can
be obtained.

Zeeman-splitting

Finally, we shall argue that the Zeeman-splitting is necessary even for a σ−-polarized
pumping beam, where the heating cycle in Fig. 3.7(a) would be absent.

Consider the situation in Fig. 3.6, where the |3〉–|2〉 Raman beam is σ−-polarized,
and the |1〉–|2〉 Raman beam is π-polarized, such that |2−〉 is the intermediate level
for the Raman transition. If ∆Zeeman = 0, and the Raman beams are non-perfectly
polarized such that the |3〉–|2〉 Raman beam contains a component of σ+-polarized light
(∼ 1% is not unlikely), then the |1, n〉–|3, n + 1〉 blue sideband transition illustrated in
Fig. 3.8(a) would be driven, which leads to heating.

By using a Zeeman-splitting, ∆Zeeman � ωz [see Fig. 3.8(b)], the unwanted Raman
transitions due to the σ+-polarized light will be of the type |1, n〉 − |3, n − m〉, where
m ≈ 2∆Zeeman/ωz −1 � 1 (if n−m ≥ 0). Hence there will be no such transitions from
|1, 0〉, and in the Lamb-Dicke limit any allowed transitions would be suppressed by the
factor η2m � 1.

An alternative possibility would be to choose ∆Zeeman = ωz, such that the states
|1, n〉 and |3, n − 1〉 are degenerate [42]. In this case ω12=ω32 for red sideband transi-
tions, meaning that the previously ‘unwanted’ transitions would be red sideband tran-
sitions as well. However, when we later on shall be concerned with carrier and blue
sideband transitions for performing gate operations, there would be some unwanted
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transitions again.

3.4.2 Discussion

In order to achieve a good starting point for performing quantum logic operations,
we are aiming at a steady-state value of nSS � 1% in all 3 spatial dimensions using
the sideband-cooling scheme described above. Moreover, the duration of the sideband-
cooling process should not be longer than a few milliseconds in order to compete with
external heating mechanisms. Thus, assuming a starting point of n0 ≈ 10, the cooling
rate W should be a few kHz or more.

In the description of the sideband-cooling scheme given above, we made the qualita-
tive observations that some heating effects can be avoided by choosing a σ−-polarized
pumping beam, i.e., choosing |2−〉 as the excited state for the pumping transition. On
the other hand, choosing |2+〉 could potentially speed up the cooling process, as dis-
cussed in connection with the spontaneous decay. Furthermore, it is experimentally
advantageous to employ a Zeeman-splitting much larger than the trap frequency in
order to avoid heating due to non-perfect polarization of the Raman beams.

Before initiating any experiments, it would, however, be desirable to obtain more
quantitative knowledge. Particularly, it would be useful to know if reasonable values
for W and nSS can be obtained at all, and if so, what an appropriate choice of Rabi-
frequencies, ΩRaman and Ωpump, would be. Furthermore, since the two-photon detun-
ing δ experimentally only can be controlled to a certain extent, quantitative knowledge
about the influence of a non-zero two-photon detuning on W and nSS would be valu-
able. Finally, differences between the two choices of pumping laser polarization are also
relevant.

Although some knowledge can be gained from the literature, as discussed below, none
of the studies in the literature, which are known to the author, are directly applicable or
sufficiently general to answer the questions about all the above-mentioned parameters.
In order to investigate these questions, the study presented in the next section has
therefore been carried out using quantum Monte Carlo simulations.

A few theoretical discussions of sideband-cooling schemes for three-level ions can
be found in the literature. Marzoli et al. [54] describe some special cases of sideband
cooling of a three-level ion, of which one case is equivalent to our scheme, however, the
description is only valid under the assumption of a low-intensity pumping laser, a small
two-photon detuning δ and the Lamb-Dicke limit. Lindberg and Javanainen [55] discuss
a scheme in which the cooling mechanism in principle is the same as for our scheme
presented above. In their scheme, a pair of Raman beams is also utilized for driving
a red sideband transition, but no pumping laser is used. The necessary pumping of
population is instead mediated by off-resonant one-photon excitations due to one of the
Raman lasers. This requires a rather small one-photon detuning, which unfortunately
gives rise to excitation out of the otherwise dark state |1, 0〉, and hence leads to a
quite high steady-state temperature. The scheme has been tested experimentally in
Innsbruck, showing a ground state occupation probability of ∼ 85% [56]. Finally, Cirac
et al. discuss laser cooling of a trapped three-level ion in a standing wave light-field in
Ref. [57].

Experimentally, the sideband-cooling scheme presented in the previous section has
been shown to work using cesium atoms in optical lattices and optical dipole traps [40,
41, 42, 43, 58]. Values of n down to 0.024 have been obtained in 2 dimensions with
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Lamb-Dicke parameter ∼ 0.2 and trap frequencies ∼ 2π × 40 kHz [40]. In the optical
lattice/dipole trap experiments, the trap frequency is generally of the order of 2π ×
100 kHz in one or two dimensions but much weaker (∼ 2π × 100Hz) in at least one
dimension. Only in the work by Vuletic et al. [42] was the trap frequency as high as
2π × 3.2MHz in one dimension. These results are, however, hard to transfer or scale
to our case with a different atomic system in a linear Paul trap, where trap frequencies
of 1MHz or more can be achieved in all three spatial dimensions. Owing to the high
trap frequencies in ion traps, the sideband-cooling scheme should work even better here
than in optical lattices or dipole traps.

3.5 Quantum Monte Carlo simulations of the sideband-

cooling scheme

The simulations of the sideband-cooling scheme presented in this section are based on the
Monte Carlo wavefunction method developed by Mølmer, Castin and Dalibard [59, 60].

In the simulations three internal levels and the vibrational levels from n = 0 up to
an upper limit, nmax, are included. Vibrational state changing transitions with ∆n =
0,±1 ± 2 are allowed. The one-photon detuning, ∆, is assumed to be so large that the
excited state, |2〉, can be adiabatically eliminated with respect to the Raman transition.
Decay and repumping involving the 2D3/2 state are neglected. No assumption is made
about the intensity of the pumping laser.

3.5.1 Theory

The wavefunction of a three-level ion (internal states |1〉, |2〉 and |3〉) confined in a
harmonic potential, is written as

|ψ(t)〉 =
3∑

i=1

nmax∑
n=0

Cn
i (t) |i, n〉 . (3.5.1)

Following the Monte Carlo wavefunction method, this wavefunction is evolved in time
according to a set of equations [Eqs. (3.5.6)–(3.5.8) below], interrupted by collapses of
the wavefunction at times chosen stochastically according to a probability-distribution
for a collapse given by the current wavefunction. One such stochastic evolution of the
wavefunction is called a ‘history’. A true description of the time-evolution of the system
is obtained by averaging over a (large) number of histories.

The wavefunction, or rather the coefficients Cn
i , are evolved using the computer

program described in App. C. The included coefficients Cn
i (n = 0−nmax) are initialized

such that Cn
2 = 0 and Cn

1 = Cn
3 =

√
P (n)/2, where P (n) =

∑
i |Cn

i |2 is the population
in the vibrational level |n〉, which is chosen to follow a thermal distribution with average
excitation n0, i.e., P (n) = n0

n/(n0+1)n+1. Since the coefficients Cn
i in this case become

small for large n and P (n) is expected to follow a thermal distribution during the cooling
process [48], it is a good approximation to neglect coefficients with n larger than some
appropriately chosen number nmax. In the simulations n0 ∼ 1 was chosen, meaning
that only the final part of the cooling process is simulated, which is sufficient to extract
a cooling rate W and a steady-state value nSS . In most simulations it was sufficient to
choose nmax = 5, but in some cases, where nSS was high nmax = 20 was used.
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The time-evolution of the coefficients is governed by the Hamiltonian for the trapped
three-level ion interacting with the Raman lasers and the pumping laser, which is

H = Htrap + Hion + HRaman + Hpump, (3.5.2)

where

Htrap + Hion = �ωza
†a + E2 |2〉 〈2| + E3 |3〉 〈3|

(
1
2

�ωz + E1 ≡ 0
)

(3.5.3)

and, in the rotating-wave approximation,

HRaman = �Ω12e
i(k12z−ω12t) |2〉 〈1| + �Ω32e

i(k32z−ω32t) |2〉 〈3| + h.c. (3.5.4)

Hpump = �Ωpumpe
i(kpumpz−ωpumpt) |2〉 〈3| + h.c., (3.5.5)

where any constant phases of the laser-fields are assumed to be included in the defi-
nition of the Rabi-frequencies. In the simulation-program, the coefficients have to be
propagated in timesteps which are smaller than any relevant timescale for the evolution
of the system. Due to the large one-photon detuning ∆ for the Raman transition, the
fastest evolution happens on a timescale of ∆−1, which is much faster than any other
process. In order to allow timesteps larger than ∆−1, the state |2〉 is therefore adia-
batically eliminated with respect to the Raman transition. The details of the adiabatic
elimination are given in App. C, where it turns out to be useful to define a new set
of coefficients, C̃n

1 = Cn
1 eiδt, C̃n′

2 = Cn′
2 ei(E2/�+δ)t and C̃n′′

3 = Cn′′
3 ei(E3/�+ωz)t, which

obey the following ‘equations of motion’:

˙̃
Cn

1 = − i

[
(n − 1)ωz − |Ω12|2

4∆

]
C̃n

1 + i
Ω∗

Raman

4

∑
n′′

C̃n′′
3 Unn′′(−η) (3.5.6)

˙̃
C

n′

2 = − i (n′ωz − δ) C̃n′
2 − Γ1/2

2
C̃n′

2 − i
Ωpump

2

∑
n′′

C̃n′′
3 Un′n′′(ηpump) (3.5.7)

˙̃
C

n′′

3 = − i

[
n′′ωz − |Ω32|2

4∆
− δ

]
C̃n′′

3 − i
Ω∗

pump

2

∑
n′

C̃n′
2 Un′′n′(−ηpump) (3.5.8)

+ i
ΩRaman

4

∑
n

C̃n
1 Un′′n(η).

Here ηpump = kpump · z0 is the Lamb-Dicke parameter for the pumping transition,
ω = ω12 − ω32 and η = (k12 − k32) · z0 = η12 − η32 is the Lamb-Dicke parameter
for the Raman transition, which depends on the difference wave vector of the Raman
beams. The Raman Rabi-frequency defined in Eq. (3.4.4) enters naturally in the terms
which couple C̃n

1 and C̃n′′
3 . The terms |Ωi2|2 /(4∆) (i = 1, 3) in Eqs. (3.5.6) and (3.5.8)

correspond to the Stark shift of |1〉 and |3〉 induced by the respective Raman beams,
however, these shifts are unimportant here since they can be removed by redefining
E1 and E3. The non-Hermitian term, −Γ1/2C̃

n′
2 /2, in Eq. (3.5.7) accounts for the

spontaneous decay from |2〉 [59, 60].

3.5.2 Simulation results

For all simulations presented below we consider cooling of the axial motion and take
ωz = 2π × 0.8MHz (and Γ1/2 = 2π × 20.7MHz for 40Ca+). ΩRaman, Ωpump and δ can
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(a) (b)

Figure 3.9: Time-evolution of the vibrational state population in a ‘typical’ quantum
Monte Carlo-simulation, averaged over 100 histories with nmax = 5. σ−-polarized
pumping laser, ΩRaman = 0.004Γ1/2 = 0.104ωz, Ωpump = 0.04Γ1/2 = 1.04ωz and δ = 0.
(a) Solid line: n(t). Dashed lines: n(t)±σ(t), where σ(t) is the standard deviation of n(t)
found from the 100 histories. (b) Time-evolution of the population in the vibrational
levels, illustrating how the system is driven towards |n = 0〉.

be varied freely. For the Raman transition the laser configuration shown in Fig. 3.6
is assumed, which means that |η| = k32z0 = 0.199. The excited state |2−〉 or |2+〉
is chosen by the polarization of the pumping laser. For σ−-polarization (|2−〉) the
pumping laser is assumed to propagate parallel to the z-axis, as in Fig. 3.6 such that
ηpump = kpumpz0 = 0.199. For π-polarization (|2+〉) the pumping laser is assumed
to propagate perpendicular to the z-axis, such that ηpump = 0. The technical details
of evolving the wavefunction according to the Monte Carlo wavefunction method are
discussed in App. C.

A typical result from a simulation is shown in Fig. 3.9, where n(t) and P (n) are
obtained from averaging over 100 histories. The increase in n(t) seen in Fig. 3.9(a)
for times t � 3000Γ−1

1/2 originates from a coherent transfer of population from |3, n〉 to
|1, n + 1〉 on the Raman transition. For times later than t ∼ 3000Γ−1

1/2, the coherence
appears to be lost, and n(t) can be fitted by an exponential decay law as in Eq. (3.3.3) or
Eq. (3.3.20), which yields an estimate of the cooling rate W and the steady-state value
nSS

8. Alternatively, the steady-state value can be estimated by averaging over n(t) in
the steady-state limit of a single history, which provides a more accurate determination
of nSS than the value obtained from a fit to n(t) since only relatively few histories were
simulated. Fig. 3.9(b) clearly shows how the population initially distributed over six
vibrational levels is driven towards |n = 0〉 during the sideband-cooling process.

From several simulations of this kind for different values of the pump Rabi-frequency
and the Raman Rabi-frequency, both for a σ−-polarized pumping beam (|2〉=|2−〉) and a
π-polarized pumping beam (|2〉=|2+〉), we have obtained the results for the cooling rate
and the steady-state population plotted in Figs. 3.10 and 3.11 (plotted as symbols, the
curves are discussed below). The simulations are quite time-consuming, so in scanning

8Even though three internal levels are involved in the present scheme, a rate equation description

of n(t) is still valid and leads in general to a well-defined cooling rate and steady-state value [57].
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(a)

(b)

Figure 3.10: Monte Carlo simulation results for a π-polarized pumping beam (|2〉=|2+〉).
Solid (open) symbols are based on an average over 100 (25) histories with nmax = 5 (20).
The curves are based on the rate equation model described in Sec. 3.5.3. (a) Wπ. The
green dotted curve is a fit to Eq. (3.5.17). All other curves are plotted according to
Eq. (3.5.17) with a and b scaled by Ω2

Raman. (b) nSS,π. The curves are plotted according
to Eq. (3.5.26).

over a large parameter space, only relatively few histories were simulated for each set
of parameters. Due to the statistical nature of the Monte Carlo wavefunction method
and the low number of simulations, the cooling rates are only true within a factor of
two, whereas the uncertainties of the steady-state values are below 10%. The results
plotted as solid symbols are based on an average over 100 histories with nmax = 5.



38 Chapter 3 - Laser cooling of trapped ions

(a)

(b)

Figure 3.11: Same as Fig. 3.10, but for a σ−-polarized pumping beam (|2〉=|2−〉). (a)
Wσ. All curves are plots of Wσ = Wπ/2, with Wπ given by Eq. (3.5.17) using a and b

from Eqs. (3.5.18) and (3.5.19) scaled by Ω2
Raman. (b) nSS,σ. The curves are plotted

according to Eq. (3.5.26) with απ replaced by 1 + ασ.

The results plotted as open symbols are based on an average over 25 histories with
nmax = 20. Except for the simulations with ΩRaman = 0.08Γ1/2 or Ωpump = 0.2Γ1/2,
nSS was obtained by averaging over n(t) in the steady-state of a single history.

From the cooling rate results in Fig. 3.10(a) and Fig. 3.11(a), we first observe (per-
haps with the eye guided by the curves) that the cooling rate approaches zero in the
limits of small and large Ωpump. Consequently, for a given Rabi-frequency there is a
value of Ωpump for which the cooling rate is maximized. Furthermore, the higher the
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Raman Rabi-frequency, the higher is the maximal cooling rate, which could be antici-
pated, since high Rabi-frequencies imply a fast evolution towards steady-state. On the
other hand, high Rabi-frequencies give rise to relatively high values of nSS , as it can be
observed from Fig. 3.10(b) and Fig. 3.11(b), which is due to increased heating from off-
resonant excitations on the carrier and the blue sideband. For a π-polarized pumping
laser, the cooling rates are generally larger and the steady-state values lower than for a
σ-polarized pumping laser. This was anticipated from the discussion of the spontaneous
decay in Sec. 3.4.1. However, since a π-polarized pumping laser gives rise to the heating
cycle illustrated in Fig. 3.7(a), which is unaccounted for in the simulations, the results
for a π-polarized pumping laser are only valid when ∆Zeeman � Γ1/2. If this is not
the case, the results should be considered as upper and lower limits for Wπ and nSS,π,
respectively.

Figure 3.12: Sideband cooling for different values of the two-photon detuning δ using a
σ−-polarized pumping laser, ΩRaman = 0.004Γ1/2 = 0.104ωz and Ωpump = 0.04Γ1/2 =
1.04ωz as in Fig. 3.9. All curves represent averages over 100 histories with nmax = 5.

Finally, a few simulations have been carried out in order to investigate the influence
of the two-photon detuning, δ. The time-evolution of n(t) is shown in Fig. 3.12 for
various values of |δ| in the range [0.01ωz; 0.1ωz], using a σ−-polarized pumping laser,
Ωpump = 0.04Γ1/2 and ΩRaman = 0.004Γ1/2 as in Fig. 3.9. Simulations with even
smaller detunings, δ = ±0.0005ωz,±0.002ωz,±0.005ωz, were also carried out, but the
curves (not shown) were essentially coincident with the curve where δ = 0. For the
considered relatively small Rabi-frequencies, the cooling rate is significantly smaller for
|δ| ≥ 0.05ωz (≥ 2π × 40 kHz) than for the case with δ = 0. Presumably, nSS,σ is
also larger. For larger Rabi-frequencies, δ is expected to be less critical due to power
broadening effects.

3.5.3 Comparison to a rate equation model

In the following, the results of the Monte Carlo simulations will be compared to a rate
equation model. There are two reasons for doing this: First, to check if the results of the
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Monte Carlo simulations are reasonable. Second, because some simple formulas which
describe the main features of W and nSS versus Ωpump and ΩRaman would be very
useful for making a quick estimate of the performance of the sideband-cooling scheme
for a given set of parameters. Especially, a formula predicting a relation between Ωpump

and ΩRaman for which the cooling rate is maximized would be useful. The model will
be kept simple since having done the simulations, it would be somewhat redundant to
develop a detailed model. In trying to grasp the main behaviour of the cooling rate
W and the state value nSS , some approximations will be made, which make the model
more or less empirical.

As a first model, it would be tempting to apply the (first-order) rate equation theory
for a two-level system, presented in Sec. 3.3 above, by describing the three-level 40Ca+

ion in terms of parameters for a two-level ion. As illustrated in Fig. 3.13, we can think
of the state |1〉 as the ground state of a two-level ion with |3〉 being the excited state.
Transitions between these states are driven by the Raman lasers, while ‘spontaneous
decay’ is mediated by pumping from |3〉 to |2〉 followed by a real spontaneous decay
to |1〉. Intuitively, it would be reasonable to assume that the ‘spontaneous decay rate’
is equal to the steady-state population in |2〉, resulting from driving of the pumping
transition, times the real spontaneous decay rate from |2〉 to |1〉. Indeed this is the
result obtained in Ref. [54] in the limit where Ωpump � Γ1/2. For an on-resonance
pumping laser, we find in our case the ‘spontaneous decay rates’

Γπ =
2Ω2

pump

3Γ1/2
and Γσ =

Ω2
pump

3Γ1/2
(3.5.9)

for a π-polarized pumping laser (|2〉=|2+〉) and a σ−-polarized pumping laser (|2〉=|2−〉),
respectively. The coherence decay rate, which appears in Eq. (3.3.15) and Eq. (3.3.16),
is given by [54]

Γcoh =
Ω2

pump

2Γ1/2
. (3.5.10)

Figure 3.13: The three-level system {|1〉,|2〉,|3〉} represented as a two-level system with
ground state |1〉 and excited state |3〉.

Having established these decay rates, we can immediately obtain expressions for W
and nSS from the rate equation theory for a two-level system by inserting Ω = ΩRaman,
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Γ = Γπ or Γ = Γσ and the above expression for Γcoh. In the rate equation theory, the
resolved sideband limit was assumed, which translates to ΩRaman,Γπ,σ � ωz in this
model and is reasonably fulfilled in all the simulations. The low-intensity requirement
ΩRaman � Γπ,σ is, however, only fulfilled for very few of the simulations, i.e., for the
cooling rate we have to use Eq. (3.3.16) (essentially identical to the low-intensity result).
For nSS we would have to use Eq. (3.3.15). Using Eq. (3.3.16), we find that the cooling
rate is given by

W = η2

(
ΩRaman

Ωpump

)2

Γ1/2, (3.5.11)

from which we realize that the cooling rate becomes infinitely large when Ωpump → 0.
This is unphysical! Instead, we expect the cooling rate to approach zero when Ωpump →
0 (as we also found in the simulations) because if there is no pumping to the excited
state, cooling cannot take place. We note that the divergence is not just a result of
keeping only the lowest order term in Eq. (3.3.16). It appears in this artificial two-level
ion because the excitation and the spontaneous decay go via different paths such that
it is possible to keep Ω2 (Ω2

Raman) fixed while decreasing Γ (∼ Ω2
pumpΓ

−1
1/2), which is

impossible in a real two-level ion, where Ω2 is proportional to Γ. The divergence would
disappear if a ‘power-broadening term’ proportional to Ω2 and independent of Γ and
Γcoh, was inserted in the denominator of Rcoh(δ) [see Eq. (3.3.14)]. There is, however,
no justification for inserting such a term since the result quoted in Eq. (3.3.12) [49] is
sufficiently general (no restriction on Ω with respect to Γ; Ω � ωz still required) that
such a ‘power-broadening’ term already should have appeared if it should be present.

Now, instead of directly applying the two-level rate equation theory as above, we
shall try to develop a model which takes more of the three-level features into account 9.
To this end, we divide a cooling or heating cycle of the type |1, n〉 → |3, n′′〉 → |2, n′〉 →
|1, n′′′〉 into two steps: (i) |1, n〉 → |3, n′′〉 and (ii) |3, n′′〉 → |2, n′〉 → |1, n′′′〉, of which
step (ii) already has been discussed/solved above in the limit where Ωpump � Γ1/2. Step
(i) is in the following considered as a two-level transition with linewidth 2Γcoh, driven
by the Raman lasers with Rabi-frequency Ωn′′n = ΩRaman |Un′′n(η)|. In this case the
steady-state population of the ‘excited’ state |3, n′′〉, which will be denoted ρ3(n → n′′),
is [compare Eq. (2.1.27)]

ρ3(n → n′′) =
Ω2

n′′n/4
Γ2

coh + δ2
n′′,n + Ω2

n′′n/2
, (3.5.12)

where

δn′′,n =(n − n′′ − 1)ωz (3.5.13)

when the Raman lasers are tuned to the red sideband of the transition.
To describe steps (i) and (ii) by independent rates, i.e., to neglect any coherent effects

in this three-level system, we have to assume that the Rabi-frequencies are small. For
step (i), this means ΩRaman � Γcoh ∼ Ω2

pump/Γ1/2. For step (ii), we have already made
the assumption Ωpump � Γ1/2, and hence the relation ΩRaman � Ω2

pump/Γ1/2 � Γ1/2

should be fulfilled for the model to be valid. Under these assumptions, the rate by
9Klaus Mølmer is acknowledged for fruitful discussions about this model.
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which we run through the above cycle is approximately the steady-state population of
|3, n′′〉 times the ‘decay rate’ from |3, n′′〉 to |1, n′′′〉, i.e., ρ3(n → n′′)Γπ,σ.

To estimate the cooling rate, we note that the cooling cycle |1, n〉 → |3, n − 1〉 →
|2, n − 1〉 → |1, n − 1〉 by far is stronger than any other cooling or heating cycles, and we
shall therefore only consider this cycle. The rate by which we run through this cooling
cycle is given by ρ3(n → n−1)Γπ,σ such that the population P (n) in a vibrational state
|n〉 changes as follows

Ṗ (n) = [ρ3(n + 1 → n)P (n + 1) − ρ3(n → n − 1)P (n)] Γπ,σ, (3.5.14)

which in the Lamb-Dicke limit yields

ṅ =
∞∑

n=0

nṖ (n) = −η2Γπ,σΩ2
Raman

4

∞∑
n=0

nP (n)
Γ2

coh + nη2Ω2
Raman/2

. (3.5.15)

If the denominator in the sum was n-independent, n(t) would be described by an ex-
ponential decay law with a well-defined cooling rate. Since this is not the case, we
assume instead that we can use some sort of (constant) average value for the n in the
denominator. This value is denoted by ñ. Under this assumption, the cooling rate for
a π-polarized pumping beam is

Wπ =
1
4

η2Ω2
Raman

Γ2
coh + ñη2Ω2

Raman/2
Γπ =

2
3

η2(ΩRaman

Γ1/2
)2(Ωpump

Γ1/2
)2

(Ωpump

Γ1/2
)4 + 2ñη2(ΩRaman

Γ1/2
)2

Γ1/2 (3.5.16)

and for a σ−-polarized pumping beam Wσ = Wπ/2, since Γσ = Γπ/2. These expressions
for the cooling rate are finite when Ωpump → 0. Even better, the functions approach
zero both for small and large values of Ωpump, which also is the case for the Monte
Carlo simulation results in Fig. 3.10(a) and Fig. 3.11(a). Comparing with these results,
we find indeed a reasonable agreement for ñ ∼ 1 which is a typical value of n in the
simulations. To describe the results even better, we replace 2η2(ΩRaman/Γ1/2)2/3 and
2ñη2(ΩRaman/Γ1/2)2 in Eq. (3.5.16) by two free parameters a and b, respectively, which
yields the following empirical formula:

Wπ =
a(Ωpump

Γ1/2
)2

(Ωpump

Γ1/2
)4 + b

Γ1/2, (3.5.17)

and again Wσ = Wπ/2.
Using this expression the results for Wπ with ΩRaman = 0.008Γ1/2 have been fitted

[green dotted line in Fig. 3.10(a)], which yields the following values for a and b

a =6.7 · 10−7 = 1.0 · 10−2

(
ΩRaman

Γ1/2

)2

(3.5.18)

and

b =4.0 · 10−6 = 6.3 · 10−2

(
ΩRaman

Γ1/2

)2

. (3.5.19)
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These numbers should be compared to the quantities which were replaced by a and b, i.e.,
2η2(ΩRaman/Γ1/2)2/3 = 1.7 · 10−6 and 2ñη2(ΩRaman/Γ1/2)2 = 5.1 · 10−6ñ, respectively,
which agree with the fitted values of a and b within a factor of 3 (for ñ ≈ 1). The
other curves in Fig. 3.10(a) are not fitted 10; they are plotted according to Eq. (3.5.17)
with the values for a and b given above scaled by Ω2

Raman. For ΩRaman = 0.04Γ1/2

and ΩRaman = 0.08Γ1/2 no curves are plotted since the model breaks down for large
values of ΩRaman. Taking the crudeness of the model into account and the fact that
the criterion ΩRaman � Ω2

pump/Γ1/2 � Γ1/2 only is fulfilled for the largest values of
Ωpump, all the curves fit the cooling rates fairly well. In order to compare to the results
for Wσ, the curves in Fig. 3.11(a) are plotted using Wσ = Wπ/2 and the values of a
and b given above scaled by Ω2

Raman. Again the model agrees reasonably well with the
simulations 11. From Eq. (3.5.17) and the fitted value of b, we find that the cooling rate
is maximized for

Ωpump = 0.4
√

ΩRamanΓ1/2, (3.5.20)

for which Wπ = 2Wσ ≈ 0.02ΩRaman.
In order to estimate nSS from our simple model, we consider only the two lowest

vibrational levels where n = 0, 1. This is a valid approximation if nSS is so low that
all population essentially is piled up in the state |n = 0〉. In the following the cooling
rate for going through steps (i) and (ii) above, starting from |1, 1〉 and ending in |1, 0〉,
is denoted by γ(1 → 0). Similarly, the heating rate for going from |1, 0〉 to |1, 1〉 is
denoted by γ(0 → 1). In equilibrium γ(1 → 0)P (1) = γ(0 → 1)P (0), which yields
nSS ≈ P (1) ≈ γ(0 → 1)/γ(1 → 0) when nSS � 1. The dominating contribution to the
cooling rate originates from the cycle |1, 1〉 → |3, 0〉 → |2, 0〉 → |1, 0〉, which yields the
cooling rate

γ(1 → 0)π,σ = ρ3(1 → 0)Γπ,σ. (3.5.21)

The heating rate γ(0 → 1) has three contributions, namely from events where the
vibrational quantum number increases in one of the three transitions in the cycle |1, 0〉 →
|3, n′′〉 → |2, n′〉 → |1, 1〉. Heating on the Raman transition gives the contribution
ρ3(0 → 1)Γπ,σ. For a π-polarized pumping beam, the pumping step does not give rise
to heating since ηpump = 0 is assumed in this case. For a σ−-polarized pumping beam,
the contribution from the pumping transition to the heating rate is ρ3(0 → 0)η2Γσ.
The heating contribution due to the spontaneous decay is ρ3(0 → 0)η2απ,σΓπ,σ, where
the values of απ,σ are given by

απ =2/5 and ασ = 1/5, (3.5.22)

which follows from Eq. (3.3.8) and the distribution-functions [52]

Wπ =
3
8
(1 + cos2 θ) and Wσ =

3
4
(1 − cos2 θ), (3.5.23)

10Above, the data with ΩRaman = 0.008Γ1/2 were used for the fit since these are the data with the

smallest Raman Rabi-frequency where the number of simulated data points is maximal (four), thus

optimizing the validity of the model and the number of data points.
11A fit to Eq. (3.5.17) with a new set of parameters, a and b, does not give a significantly better

agreement for Wσ .
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where the indices π and σ still denote the polarization of the pumping laser (not the
polarization of the emitted photon). In total we find

γ(0 → 1)π =ρ3(0 → 1)Γπ + ρ3(0 → 0)η2απΓπ (3.5.24)

and

γ(0 → 1)σ =ρ3(0 → 1)Γσ + ρ3(0 → 0)η2(ασ + 1)Γσ. (3.5.25)

Thus, we find for a π-polarized pumping beam the steady-state population

nSS,π =
γ(0 → 1)π

γ(1 → 0)π
(3.5.26)

=
απ

[
Ω4

pump + 2η2Ω2
RamanΓ2

1/2

]
Ω4

pump + 4ω2
zΓ2

1/2 + 2Ω2
RamanΓ2

1/2

+
Ω4

pump + 2η2Ω2
RamanΓ2

1/2

Ω4
pump + 16ω2

zΓ2
1/2 + 2η2Ω2

RamanΓ2
1/2

.

nSS,σ can be obtained from nSS,π by replacing απ with 1+ασ. The curves in Fig. 3.10(b)
and Fig. 3.11(b) are plotted according to these expressions for the steady-state values.
Clearly, the quantitative agreement with the simulations is poor, and fitting the results
of the simulations to an empirical expression, with the same dependence on Ωpump as in
Eq. (3.5.26), does not lead to a significantly better agreement. We note, however, that
the model, strictly speaking, is only valid for the largest values of Ωpump, where the
assumption nSS � 1 is only poorly fulfilled. Taking this into account and the fact that
the simulated steady-state values vary by as much as six orders of magnitude over the
considered range of Ωpump, it is not surprising that the quantitative agreement with the
model is doubtful. Qualitatively, the simulations and the rate equation model agree in
the sense that nSS increases with increasing Ωpump and ΩRaman and that the variation
of nSS with Ωpump is largest for small values of ΩRaman. Going into more detail, it
is furthermore found that in the limit Ωpump → 0, both the simulation results and
the curves based on the rate equation model level off to constant values. For the rate
equation model, it follows from Eq. (3.5.26), when ΩRaman � ωz, that the limiting value
for nSS when Ωpump → 0 is proportional to Ω2

Raman. This proportionality is well fulfilled
by the simulated values of Wπ and Wσ at the lowest used value of Ωpump = 0.02Γ1/2

for values of ΩRaman up to ΩRaman = 0.02Γ1/2 = 0.52ωz (with the exception of Wσ at
ΩRaman = 0.002Γ1/2).

Now, instead of trying to obtain a better agreement with the simulations by improv-
ing the rate equation model for nSS , we shall take a practical standpoint: It is quite
clear that a low value of nSS only can be obtained for low values of the Rabi-frequencies.
Whether the theoretical value is 10−4 or 10−5 does not matter too much since experi-
mentally this is anyway very hard to reach and to measure. The cooling rates are well
described by Eq. (3.5.17) for small values of ΩRaman, and in this case we have a good
rule of thumb [Eq. (3.5.20)] for obtaining the maximal possible cooling rate. Time will
show what the corresponding steady-state value turns out to be in experiments.

3.5.4 Conclusion

In conclusion, the simulations show that cooling to near the motional ground state is
feasible. Values of nSS below 1% are attainable in theory. Cooling rates of some tens
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of kHz can be obtained, which is acceptable, since heating from external sources is ex-
pected to take place on a time-scale of ∼ 100ms (see the discussion in Chap. 7). The
cooling rates and nSS vary significantly with the Rabi-frequencies, generally with high
Rabi-frequencies yielding high cooling rates and large steady-state values. Thus, the
fastest way to reach a low steady-state value is to start out with large Rabi-frequencies
and lower the Rabi-frequencies according to Eq. (3.5.20), until a sufficiently low steady-
state value can be reached. These conclusions hold for both polarizations of the pump-
ing beam, although cooling is more efficient for a π-polarized pumping beam, when
∆Zeeman � Γ1/2 is fulfilled. To avoid creating the large magnetic field needed to fulfill
this criterion, we will use a σ−-polarized pumping in the experiments, but keep in mind
that the performance of the scheme can be improved.

Finally, from the results in Fig. 3.12, we learned that the frequency of the Raman
transition must be precisely controlled on the level of a few tens of kHz at least for
relatively low Rabi-frequencies.

3.6 Measuring the population of motional states

In order to experimentally characterize the performance of the sideband-cooling scheme,
i.e., to measure W and nSS , we need to be able to measure the average vibrational
excitation n or, even better, the population P (n) in a range of vibrational levels.

Here we describe two well-known methods, one for measuring n [35, 37] and one
method for determining P (n) over a range of vibrational levels [61]. We assume that
it can be determined with 100% efficiency, if the ion is in the internal state |1〉 or |3〉.
Furthermore, we assume that all population initially is in the internal state |1〉. Most
of the population should already be in |1, 0〉 after sideband cooling, and the rest can be
optically pumped to |1〉 without significantly changing the distribution over vibrational
levels, by leaving a σ−-polarized pumping laser on for a period after the sideband-cooling
process.

Now, for measuring n, assume that the distribution over the vibrational levels is a
thermal distribution. Starting out with all population in |1〉 and applying the Raman
lasers for a time T on the blue sideband (BSB), the population in |3〉 will be

PBSB =
∞∑

n=1

n(n−1)

(n + 1)n
sin2 (|Ωn,n−1|T/2) , (3.6.1)

where Ωn′n = ΩRamanUn′n(η). By applying several such BSB-pulses and detecting
the internal state (starting with all population in |1〉 before each pulse), PBSB can be
measured as the probability for a transfer to |3〉. A pulse of the same duration on the
red sideband (RSB) will result in a population in state |3〉 of

PRSB =
∞∑

n=0

n(n+1)

(n + 1)n+2
sin2 (|Ωn,n+1|T/2) , (3.6.2)

which can be measured similarly. From Eqs. (3.6.1) and (3.6.2), it follows that

PRSB

PBSB
=

n

n + 1
⇐⇒ n =

PRSB

PBSB − PRSB
. (3.6.3)
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In practice, T ≈ π/(ηΩRaman) should be chosen since this choice maximizes the
values of PBSB and PRSB when n � 1, and hence it minimizes the uncertainty on n.
To avoid errors from being slightly off-resonant with the RSB or the BSB, one should
measure sideband absorption spectra as in Refs. [35, 37], by varying the two-photon
detuning δ around the sideband frequencies.

More detailed information about the population of the vibrational states can be
obtained, e.g., by applying a BSB-pulse for a time T and measuring the population
in |3〉 versus T , i.e., measuring Rabi-oscillations of the population. Since the effective
BSB Rabi-frequency is n-dependent, the oscillation of the population in |3〉 will contain
many n-dependent frequency components, each with weight P (n). The weight functions
P (n) can then be determined from a fit to the measured data (or a Fourier transform),
possibly assuming some relation between the weight functions, e.g., that of a thermal
state [37, 61].
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Chapter 4

Internal state detection

In this chapter we turn to the issue of detection of the internal state of an ion, i.e.,
discrimination between the qubit states |↓〉 = 2S1/2(mJ = −1/2) and |↑〉 = 2S1/2(mJ =
+1/2). As discussed in the previous chapter (where we used the notation |1〉=|↓〉and
|3〉=|↑〉), discrimination between these two states is a prerequisite for gaining knowledge
about the vibrational state of the ions. Furthermore, it is necessary for determining the
outcome of a quantum logic operation.

The chapter is organized as follows. In Sec. 4.1, we discuss in general terms how
to detect the internal state of an ion. In Sec. 4.2 we present the scheme we are pur-
suing, which is based on two so-called stimulated Raman adiabatic passage (STIRAP)
processes [62]. The theory behind STIRAP is presented in Sec. 4.2.1, some realistic
parameters for the process to work in 40Ca+ is given in Sec. 4.2.2, and in Sec. 4.2.3 it
is shown how the two STIRAP processes can be turned into a single (fast) process. In
Sec. 4.3 an alternative scheme is briefly discussed. A conclusion is given in Sec. 4.4.

4.1 Internal state detection using shelving

To discriminate between the two qubit states, we want to obtain a situation where the
ion scatters light only if it initially is in |↑〉, and not if it initially is in |↓〉. As mentioned
in the description of Doppler cooling, a 40Ca+ ion can be observed by detecting 397 nm
light emitted during Doppler cooling. If we somehow could take the ion from |↓〉 to
a state where it does not scatter light, while leaving it untouched if it is in |↑〉, and
subsequently apply the cooling lasers and detect fluorescence light, the desired situation
will be achieved. From the 40Ca+-level scheme in Fig. 3.3, it appears that the non-
scattering state of choice is the metastable 2D5/2 state. When the ion is in the 2D5/2

state, the optically active electron of the ion is said to be shelved [63] and remains
in this state until it decays to the ground state by an electric quadrupole transition.
Owing to the lifetime of the 2D5/2 state of more than a second, it is possible to apply
the cooling lasers and collect fluorescence light in a sufficiently long period that an
unequivocal distinction between the ion being initially in |↓〉 or |↑〉 can be made. This
is demonstrated in Chap. 10.

The states |↓〉 and |↑〉 only differ with respect to the projection of the ions’ total
spin on the quantization axis (mJ = ±1/2). Hence a method which state-selectively



48 Chapter 4 - Internal state detection

takes the ion to the 2D5/2 state must exploit this difference. One possible method is to
break the degeneracy of the energy levels by applying a (large) magnetic field, followed
by a resonant excitation from |↓〉 to the 2D5/2 state, the last step being off-resonant
with respect to |↑〉 [64, 65]. We shall not discuss this possibility any further, but instead
turn to the possibility of discriminating between |↓〉 and |↑〉 by exploiting the fact that
the interaction between the ion and circularly polarized light depends on the internal
state |↓〉 or |↑〉.

4.2 State-selective shelving using STIRAP

One method for transferring population between two quantum states is by adiabatic
population transfer using STIRAP. In STIRAP, population transfer is achieved through
the interaction of two laser-pulses with an atomic or molecular quantum system. Ex-
perimentally STIRAP has been demonstrated by several groups (see the review article
by Bergmann et al. [62] and references therein). In most experiments, the laser pulses
have effectively been created by letting atomic or molecular beams pass through two
displaced laser beams with constant intensity. With cold trapped ions the laser pulses
can instead be created using acoustooptic modulators (see Chap. 8).

4.2.1 STIRAP – general theory

In its simplest form, STIRAP takes place in a three-level Λ-system as illustrated in
Fig. 4.1(a), with the levels denoted by |1〉, |2〉 and |3〉. Adiabatic population transfer
is supposed to take place from |1〉 to |3〉, which both are assumed to be long-lived
on the timescale of the entire STIRAP process. The three-level system interacts with
two laser-fields, which act on the |1〉–|2〉 and the |2〉–|3〉 transition, respectively, having
detunings ∆i2 (i = 1, 3) with respect to the transition frequencies and time-dependent
Rabi-frequencies Ωi2(t) as indicated in Fig. 4.1(a). From the excited state |2〉, coherence
can be lost by spontaneous decay to |1〉 or |3〉, or population can be lost from the three-
level system by spontaneous decay to states outside the system.

The pulse sequence used for STIRAP is shown in Fig. 4.1(b). It is often referred to
as being counter-intuitive in the sense that the first applied pulse, Ω32(t), couples the
final state |3〉 and the intermediate state |2〉. This coupling creates, however, a new set
of eigenstates of the system in such a way that by applying a second pulse, Ω12(t), on
the |1〉–|2〉 transition which partly overlaps in time with the first pulse, it is possible to
transfer all population from |1〉 to |3〉.

In the rotating-wave approximation and assuming real Rabi-frequencies (without loss
of generality), the interaction of the laser-fields with the three-level system is described
by the Hamiltonian [62]

H =
�

2

 0 Ω12(t) 0
Ω12(t) 2∆12 Ω32(t)

0 Ω32(t) 2(∆12 − ∆32)

 (4.2.1)

in the basis {|1〉, |2〉, |3〉}. When ∆12 − ∆32 = 0, the (time-dependent) eigenstates
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(a) (b)

Figure 4.1: STIRAP in a three-level system. (a) The three levels, |1〉, |2〉 and |3〉,
and lasers with detuning ∆12 and ∆32 and time-dependent Rabi-frequencies Ω12(t) and
Ω32(t). (b) The counter-intuitive pulse sequence, here a set of Gaussian pulses which
transfers all population from |1〉 to |3〉.

belonging to this Hamiltonian are [66]

|ψ+〉 = sin Θ sin Φ |1〉 + cos Φ |2〉 + cos Θ sin Φ |3〉 (4.2.2)
|ψ0〉 = cos Θ |1〉 − sin Θ |3〉 (4.2.3)
|ψ−〉 = sin Θ cos Φ |1〉 − sin Φ |2〉 + cos Θ cos Φ |3〉 , (4.2.4)

where

tan Θ =
Ω12

Ω32
and tan Φ =

√
Ω2

12 + Ω2
32

∆12 +
√

∆2
12 + Ω2

12 + Ω2
32

=
√

−ω−
ω+

, (4.2.5)

with ω± being defined by the energy eigenvalues

�ω± =�

(
∆12 ±

√
∆2

12 + Ω2
12 + Ω2

32

)
and �ω0 = 0. (4.2.6)

In order to transfer population from |1〉 to |3〉 in a coherent way and without pop-
ulation loss due to spontaneous decay, it is desirable not to excite state |2〉. Of the
three eigenstates above, the state |ψ0〉 is therefore particularly interesting, since it is
a coherent superposition of only state |1〉 and |3〉. Starting out with all population
in |1〉 and assuming Ω32 � Ω12 (Θ = 0), it can be observed that |〈ψ0|1〉| = 1, and
|〈ψ±|1〉| = 0, i.e., in terms of the new eigenstates, the system is in the state |ψ0〉. Then,
by lowering Ω32 while increasing Ω12 until Ω12 � Ω32, the angle Θ changes from 0 to
π/2, i.e., the state |ψ0〉 is rotated from |1〉 to |3〉. At the same time |ψ±〉 is being rotated
as well. Now, if this change of Rabi-frequencies is performed in such a way that the
quantum state of the system adiabatically follows |ψ0〉, while all three eigenstates are
being rotated, then population will be transferred from |1〉 to |3〉. Adiabatic following



50 Chapter 4 - Internal state detection

requires that [67] ∣∣∣∣dΘ
dt

∣∣∣∣ =

∣∣∣∣∣ Ω̇12Ω32 − Ω12Ω̇32

Ω2
12 + Ω2

32

∣∣∣∣∣� |ω± − ω0| . (4.2.7)

For the r.h.s of this inequality always to be large, we have to assume that ∆12 = ∆32 �
Ω12,Ω32, which implies |ω± − ω0| =

√
Ω2

12 + Ω2
32. If the Rabi-frequencies vary smoothly

in time over the duration T of the STIRAP process, then, since Θ changes by π/2, the
average value of |dΘ/dt| is π/(2T ). Inserting this average value in the adiabaticity
criterion Eq. (4.2.7) the condition√

Ω2
12 + Ω2

32 T � 1 (4.2.8)

is obtained.
The Rabi-frequencies can be varied in many different ways, while fulfilling the adia-

baticity criterion [68], however, the most frequently encountered time-dependence of the
Rabi-frequencies is a Gaussian pulse, having its origin in the beam-experiments where
the time-dependence is defined by the usual Gaussian profile of the laser-beams. In the
following it is assumed that the pulses are Gaussian, as shown in Fig. 4.1(b), of the
form

Ω12(t) =Ω0
12 exp

[
−
(

t − ∆t/2
τ

)2
]

(4.2.9)

Ω32(t) =Ω0
32 exp

[
−
(

t + ∆t/2
τ

)2
]

, (4.2.10)

with a characteristic width τ and a delay ∆t between the pulses. With this choice of
pulses, it can be shown that the optimal choice of delay with respect to the adiabaticity
criterion is ∆t = τ ≡ ∆tad [67]. In practice, the pulses are truncated at positive and
negative times where the value of the exponential functions is negligible.

4.2.2 State-selective shelving in 40Ca+ using STIRAP

A state-selective transfer of population from |↓〉 to the 2D5/2 state can be achieved
using two STIRAP processes as illustrated in Fig. 4.2. The first STIRAP process
takes population from the 2S1/2 state to the 2D3/2 state, using the 2P1/2 state as the
excited state in the STIRAP process. By using a σ+-polarized laser, |↓〉 is coupled to the
2P1/2(mJ = +1/2) level, while |↑〉 is unaffected, thus making this STIRAP process state-
selective. By a second STIRAP process, population is transferred from the 2D3/2 state
to the 2D5/2 state 1. This step need not take place between any particular sublevels,
however, in order to optimize the coupling between the various sublevels and hence
to obtain the largest Rabi-frequencies at a given laser-intensity, the entire STIRAP
process should take place as follows: |↓〉– 2P1/2(mJ = +1/2)– 2D3/2(mJ = +3/2)–
2P3/2(mJ = +3/2)– 2D5/2(mJ = +5/2).

In the theory described above, STIRAP works with 100% efficiency if the adiabaticity
criterion is fulfilled. In real life there are of course a range of practical problems, which
will be addressed in the following.

1Note that a single STIRAP process from the ground state to the 2D5/2 state with the 2P3/2 state

as the excited state cannot be state-selective.
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Figure 4.2: The double STIRAP-process in 40Ca+. The first STIRAP process (thick
arrows) from |↓〉 to the 2D3/2 state is state-selective since |↑〉 is unaffected by the
σ+-polarized beam on the 2S1/2- 2P1/2 transition. The second STIRAP process (thin
arrows) goes from the 2D3/2 state to the 2D5/2 state.

Non-zero two-photon detuning

To what extent can we keep the two-photon detuning δ ≡ ∆12 − ∆32 equal to zero,
and what are the implications if it is non-zero? The answer to the first part of the
question is ‘a few MHz’, having its origin in laser frequency drifts (see Chap. 8). The
implications of a non-zero two-photon detuning are discussed in Refs. [69, 70], where
it is shown that a non-zero two-photon detuning results in an admixture of the excited
state |2〉 in ψ0. In particular, the loss mechanism presented by spontaneous decay from
|2〉 and out of the system is considered. In the limit where |δ| , |∆i2| � Ω0 ≡ Ω0

12 = Ω0
32

(i = 1, 3) the transfer efficiency, i.e., the probability by which population is transferred
from |1〉 to |3〉, is roughly equal to exp[−CΓ2τδ2/(Ω0)2], where C is a constant which
depends on the specific pulse sequence and Γ2 is the decay rate from |2〉 [70].

In order to determine suitable parameters for the Rabi-frequency Ω0, the pulse width
τ , the delay ∆t and an average one-photon detuning ∆ = (∆12 + ∆32)/2 for a real-
istic non-zero two-photon detuning, some numerical simulations have been performed
by Frank K. Jensen [71] using the formalism of Ref. [70]. The simulations were per-
formed with the 2D3/2- 2P3/2- 2D5/2 STIRAP process in mind, using Γ2 = Γ3/2 =
2π × 21.5MHz, i.e., the spontaneous decay rate from the 2P3/2 state to the ground
state, but, as discussed below, the results can almost directly be applied to the other
STIRAP process. First we consider the variation in transfer efficiency with the delay
∆t. With the Rabi-frequency varied in the range Ω0/2π = 80 − 800MHz, and with
fixed ∆ = 2π × 5MHz and δ = 2π × 5MHz, which is believed to be a worst-case sce-
nario for the two-photon detuning, it was found that the transfer efficiency only varied
weakly with the delay, but having a maximum around ∆t = 1.3τ ≡ ∆tsp. Although
the optimum with respect to non-adiabatic losses (which is not taken into account in
the simulations) is ∆tad = τ , it should be easy to keep both types of losses small,
since the dependence on ∆t was found to be weak in the simulations. In all further
simulations ∆t = 1.3τ was used. It was then found that the transfer efficiency is rel-
atively insensitive to the one-photon detuning over the range ∆/2π = 0 − 500MHz,
when |δ| /2π < 10MHz and with the Rabi-frequency Ω0/2π = 150MHz and the pulse
width τ = 5µs fixed. In accordance with the expression exp[−CΓ2τδ2/(Ω0)2] for the
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transfer efficiency, the simulations also showed that large Rabi-frequencies, small τ and,
of course, a small two-photon detuning gave a high transfer efficiency. With a realistic
set of parameters of

τ = 5µs, ∆t = 6.5µs, Ω0 = 2π × 300MHz (4.2.11)

and, say, ∆ = 2π × 20MHz, the transfer efficiency is ∼ 97% for the worst-case two-
photon detuning of |δ| /2π = 5MHz. If the two-photon detuning is halved to |δ| /2π =
2.5MHz, the transfer efficiency would be ∼ 99%. The adiabaticity criterion is well
fulfilled by the parameters above. The stated Rabi-frequency requires intensities of
about 3 · 105 mW/cm2 and 3 · 104 mW/cm2 for the 850 nm 2D3/2- 2P3/2 transition and
the 854 nm 2D5/2- 2P3/2 transition, respectively, which in both cases is realistic.

To a large extent the results of the simulations also apply to the |↓〉– 2P1/2(mJ =
+1/2)– 2D3/2 STIRAP process since the spontaneous decay rate from the 2P1/2 state is
almost the same as for the 2P3/2 state. The transfer efficiency may even be larger for this
first STIRAP process since the spontaneous decay from 2P1/2(mJ = +1/2) goes back
to |↓〉 in ∼ 2/3 of the cases. Thus population remains within the three-level system and
has another chance of being transferred to the 2D3/2 state. Using Ω0 = 2π × 300MHz
again, intensities of 3 · 104 mW/cm2 are required on both transitions, which once again
is realistic.

Finite ion-velocity

The initial tests of the STIRAP-scheme will be performed on a Doppler laser-cooled
ion. Since the effective power-broadened linewidths of the transitions are larger than
the trap frequency, the ion can to a good approximation be treated as a free particle with
respect to both two-photon STIRAP transitions. If the Doppler cooling limit is reached,
the root-mean-square velocity is vrms ≈ 0.6m/s, which results in a Doppler-shift of
2π × 0.7MHz of the 850 nm and the 854 nm D–P transitions and in general a non-zero
two-photon detuning in the STIRAP process. If the 850 nm and the 854 nm beams
are co-propagating, the first-order Doppler-shift cancels to within 0.5% and hence it is
not expected to cause any problems. For the |↓〉– 2P1/2(mJ = +1/2)– 2D3/2 STIRAP
process involving the 397 nm transition and the 866 nm transition, the same trick does
not work very well due to the larger wavelength difference, and we end up with a
Doppler-shift of 2π × 0.8MHz using co-propagating beams and the same value for vrms

as above. According to the simulations discussed above, a two-photon detuning of
this order of magnitude would still allow population transfer with > 99% probability,
however, since the ion sometimes moves faster than vrms and the Doppler cooling limit
is not necessarily reached, a larger two-photon detuning cannot be ruled out. If the
two-photon detuning turns out to be critical for this STIRAP process, it can be made
less sensitive to the two-photon detuning by increasing the Rabi-frequency on one or
both of the transitions.

After sideband cooling the Doppler-shift is not expected to present any problem.

Other effects

In the theory section we considered a pure three-level system, however, both STIRAP
processes in 40Ca+ could in principle involve several Zeeman sublevels, for example up to
14 magnetic sublevels for the 2D3/2- 2P3/2- 2D5/2 STIRAP process. If the polarization
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(a) (b)

Figure 4.3: STIRAP in a five-level system. (a) The five levels and lasers with detunings
∆12, ∆32, ∆34, and ∆54 and Rabi-frequencies Ω12(t), Ω32(t), Ω34(t) and Ω54(t). (b)
Two STIRAP pulse sequences, with delay D between them, which transfer all population
from |1〉 to |5〉.

of the laser-fields is chosen right, it all comes down to three relevant levels again. If
not, one may end up with a very rich multi-level system, where adiabatic transfer in
some cases is blocked. This is discussed further in Ref. [62] and in a series of papers on
STIRAP in multi-level systems [72, 73, 74].

Varying Zeeman-shifts induced by fluctuating magnetic fields will contribute to a
non-zero two-photon detuning, hence any such fields should be shielded to the necessary
extent.

Furthermore, any residual so-called micromotion, which is a fast quiver motion at
the same frequency as the oscillation frequency of a voltage applied to the trap elec-
trodes (see Chap. 7 and Chap. 9), will contribute to the two-photon detuning. Hence
micromotion must be minimized.

Since the STIRAP process relies on maintaining a coherence between two internal
states of the ion, the laser sources should have a coherence time longer than the duration
of the STIRAP process, and jumps of the laser light phase should be avoided.

4.2.3 STIRAP in a five-level system

To be able to consider the two STIRAP processes as separate processes, as we did
above, the two sets of pulses need to be separated in time. One might wonder if it
is possible to describe the two processes as one and possibly also reduce the duration
of the double STIRAP process by overlapping the two sets of STIRAP pulses in time
instead of running them as individual processes.

In order to describe this situation, we consider the five-level system shown in Fig. 4.3(a)
interacting with four laser beams having the indicated Rabi-frequencies and one-photon
detunings. For each of the two three-level systems, |1〉-|2〉-|3〉 and |3〉-|4〉-|5〉, we can
write down a Hamiltonian as in Eq. (4.2.1). The full Hamiltonian for the five-level
system is the sum of the two three-level Hamiltonians in the basis {|1〉,|2〉,|3〉,|4〉,|5〉}
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and looks as follows:

H =
�

2


0 Ω12 0 0 0

Ω12 2∆12 Ω32 0 0
0 Ω32 2(∆12 − ∆32) Ω34 0
0 0 Ω34 2∆34 Ω
0 0 0 Ω54 2(∆34 − ∆54)

 . (4.2.12)

Assuming two-photon resonance in each of the three-level systems, i.e., ∆12 − ∆32 =
∆34 − ∆54 = 0, we find an eigenstate |Ψ〉 =

∑5
i=1 ci |i〉 with eigenvalue 0 if and only if

c2 = c4 = 0, namely

|Ψ0〉 =N [cos φ cos Θ |1〉 − cos φ sin Θ |3〉 + sinφ sin Θ |5〉], (4.2.13)

where N is a normalization factor, Θ is defined as before and

tan φ =
Ω34

Ω54
. (4.2.14)

In this case it is possible to adiabatically transfer population from |1〉 to |5〉 by changing
both Θ and φ from 0 to π/2. Consider Gaussian pulses as shown in Fig. 4.3(b), with
Ω12(t) and Ω32(t) defined by Eqs. (4.2.9)–(4.2.10), and

Ω34(t) =Ω0
34 exp

[
−
(

t − ∆t/2 − D

τ

)2
]

(4.2.15)

Ω54(t) =Ω0
54 exp

[
−
(

t + ∆t/2 − D

τ

)2
]

, (4.2.16)

i.e, Ω34(t) and Ω54(t) are delayed by D with respect to Ω12(t) and Ω32(t), respectively.
For D � τ population is transferred step-wise, first from |1〉 to |3〉 and then to |5〉, as
in the previously considered situation of two independent sets of pulses. The interesting
regime in this context is therefore |D| � τ . In Fig. 4.4 the population Pi in state |i〉
(i = 1, 3, 5) is plotted for delays D = τ and D = −τ . In both cases the transfer from
|1〉 to |5〉 is completed in a time which is of the order of the pulse width τ . In fact,
the process is faster with a negative delay - a double counter-intuitive pulse sequence.
Similar ideas of population transfer in a multi-level system were put forward in Ref. [62],
and in Ref. [75] where the particular case D = 0 was considered, and demonstrated
experimentally in Ref. [76].

From Fig. 4.4 we also note that the state |3〉 is not fully populated before the
population is transferred further on to |5〉; especially for D = −τ , very little population
is found in state |3〉. In our case the states |3〉 and |5〉, which corresponds to the 2D3/2

state and the 2D5/2 state, respectively, have almost equal natural lifetimes of more than
a second. Thus, we do not suffer from any appreciable decay from the intermediate state
|3〉. However, one could imagine a similar double STIRAP process in another atomic
or molecular system, where the initial and final states (|1〉 and |5〉) have a long lifetime
of, say, a second, but the intermediate state |3〉 has a lifetime of only, say, 100µs. In
this case there can be a non-negligible probability of spontaneous decay from |3〉 during
a double STIRAP process of some microseconds duration. Denoting the spontaneous
decay rate from |3〉 by Γ3 and defining I3 =

∫∞
−∞ P3(t/τ)d(t/τ), the decay probability



4.3. State-selective shelving in 40Ca+ using a Raman transition 55

(a) (b)

Figure 4.4: (a) Population transfer in a five-level system with delay D = τ between the
two sets of STIRAP pulses. (b) Same as (a), but with negative delay D = −τ .

from |3〉 is given by [1− exp(−Γ3τI3)] ≈ Γ3τI3, when Γ3τI3 � 1. In Fig. 4.5, the value
of the integral I3 is plotted as a function of the delay, showing that a negative delay
reduces the decay probability significantly.

Figure 4.5: Value of I3 =
∫∞
−∞ P3(t/τ)d(t/τ) versus delay D. For ΓτI3 � 1, I3 is equal

to the probability of a decay from state |3〉 in units of Γτ .

4.3 State-selective shelving in 40Ca+ using a Raman

transition

Transfer of population from the ground state to the 2D5/2 state can also take place
using a Raman transition between the two states via the 2P3/2 state. State-selectivity
can be obtained as described in the following.

For a given laser polarization on the 2S1/2– 2P3/2 and the 2D5/2– 2P3/2 transitions,
the Raman transition will involve certain Zeeman sublevels of the three states. The
Rabi-frequency depends on the coupling strengths between these Zeeman sublevels (see
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the tabulated Clebsch-Gordan coefficients in App. B). By choosing appropriate polar-
izations of the two laser beams, it is possible to obtain different Raman Rabi-frequencies,
Ω↓ and Ω↑, for a Raman transition from |↓〉 and |↑〉, respectively, to the 2D5/2 state.
Thus, by driving the Raman transition for a time T , such that Ω↓T/2 = mπ, where m is
(close to) an odd integer, and Ω↑T/2 = nπ, where n is (close to) an even integer, popu-
lation initially in |↓〉 will effectively experience a π-pulse and end up in the 2D5/2 state,
whereas population in |↑〉 will experience multiple 2π-pulses and end up in |↑〉, where it
started 2. By going through Table B.3 and B.5 in App. B, it can be found that there ex-
ist two non-equivalent polarization configurations, where Ω↑ and Ω↓ are different. One
configuration is a σ−–π configuration, meaning that the 2S1/2– 2P3/2 ( 2D5/2– 2P3/2)
laser is σ−-polarized (π-polarized), for which the ratio Ω↓/Ω↑ =

√
2. Noting that

12
√

2 = 16.97... ≈ 17, we can use m = 17 and n = 12 to obtain the desired effective
π- and 2π-pulses to a good precision, or similarly exploit that 70

√
2 = 98.995... ≈ 99.

The other configuration is a σ−–σ+ configuration for which Ω↓/Ω↑ =
√

5, in which case
we, for example, can exploit that 17

√
5 = 38.013... ≈ 38 or 72

√
5 = 160.996... ≈ 161. If

requested, the ratio Ω↓/Ω↑ can be changed to 1/
√

2 and 1/
√

5 in the two cases by using
a σ+ − π configuration and a σ+ − σ− configuration, respectively, instead.

4.4 Conclusion

Each of the two methods for state-selective shelving presented above has its own ad-
vantages and drawbacks.

The STIRAP technique has the advantage of being quite robust with respect to the
pulse-area of the applied laser pulses [62]. It has the drawback of involving four different
laser wavelengths. Fortunately, two of them (397 nm and 866 nm) are the same as for
Doppler cooling and the other two (850 nm and 854 nm) can be supplied in a relatively
cheap and easy way by diode lasers.

The technique based on the Raman transition is attractive in the sense that it
requires only a single step involving only two laser sources. Unfortunately, the technique
requires good control of the pulse-area and furthermore the requirement of a 393 nm
laser is a bit unattractive 3.

As stated in the introduction of this chapter, the scheme we are pursuing is the STI-
RAP based scheme mainly due to the robustness of the STIRAP technique and the good
availability of laser sources. Furthermore, we saw that although the scheme in principle
involves two STIRAP processes, they can be turned into a single five-level STIRAP
process, which in itself will be interesting to study. The experimental equipment and
setup for implementing the STIRAP processes are presented in Chap. 8. Some progress
towards a demonstration of STIRAP is presented and discussed in Chap. 10.

2For m even and n odd, the roles of |↓〉 and |↑〉 are just interchanged.
3It could, e.g., be supplied by a blue laser diode, which can be hard to get, or by a frequency-doubled

Ti:Sa laser, which is expensive.
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Chapter 5

Quantum logic with trapped
ions

In continuation of the general introduction to quantum computation and quantum optics
with trapped ions given in Chap. 1, we shall here give a short overview of quantum gates
and discuss their implementation in a system of cold trapped ions. Furthermore, we shall
establish the relation to our choice of qubit states in 40Ca+, using Raman transitions
for quantum logic operations.

Quantum gates are briefly discussed in Sec. 5.1. Sec. 5.2 is devoted to the dis-
cussion of specific proposals involving strings of cold trapped ions with focus on the
original proposal by Cirac and Zoller [4] and a proposal by Klaus Mølmer and Anders
Sørensen [77, 78]. Furthermore, a short discussion of large-scale quantum computation
is given. In Sec. 5.3 we discuss the relation to our own choice of qubit states.

5.1 Quantum gates

As mentioned in Chap. 1, a quantum bit, or qubit, is a two-level quantum system.
Denoting the two levels by |↓〉 and |↑〉, a superposition of these states can in general be
written as

cos(θ/2) |↓〉 + eiφ sin(θ/2) |↑〉 , (5.1.1)

where the angles θ and φ are real numbers. Any global phase factor is irrelevant and
therefore ignored. The potential strength of a quantum computer partly has its origin
in the fact that a qubit, as opposed to a classical bit, can be in a superposition state. To
illustrate the strength in this, we suppose we have N qubits, each in the superposition
state (|↓〉 + |↑〉)/√2. Then the product state made up of the N superposition states is

1
2N/2

[|↓〉 + |↑〉]1 ⊗ [|↓〉 + |↑〉]2 ⊗ · · · ⊗ [|↓〉 + |↑〉]N =
1

2N/2

2N−1∑
i=0

|i〉 , (5.1.2)

where i is understood to be the binary representation of the number i with 0’s and 1’s
represented by |↓〉 and |↑〉, respectively. Thus, with N qubits we can have a quantum
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register containing 2N numbers at the same time, on which quantum logic operations
can be performed 1.

Any quantum logic operation on such a quantum register is a unitary operation,
which can be constructed from a specific set of unitary operations, often referred to as a
a universal set of gate operations [79]. This set simply consists of all unitary operations
on single qubits and a so-called Controlled-NOT (CNOT) gate. The CNOT gate is a
gate between two qubits, and it must be possible to perform this gate between any two
qubits in a quantum register [79]. In practical applications one may, of course, wish to
make use of a larger set of gate operations.

5.1.1 Single-qubit gates

Any single-qubit gate corresponds to a transformation of the type

cos(θ/2) |↓〉 + eiφ sin(θ/2) |↑〉 
−→ cos(θ′/2) |↓〉 + eiφ′
sin(θ′/2) |↑〉 . (5.1.3)

Recalling the discussion in Chap. 2 of the time evolution of a trapped two-level atom
interacting with a light-field, especially Eq. (2.2.7), it is clear that for a trapped ion θ
can be changed in a controlled way by applying laser-pulses with a suitable pulse-area,
and the relative phase φ can conveniently be controlled by the phase of the light-field.
Thus single-qubit gates can readily be implemented if individual access to the qubits is
available.

One example of a single qubit gate-operation, which will be used below, is a ‘rotation
gate’ given by the matrix representation

R(δθ) =
[
cos(δθ/2) − sin(δθ/2)
sin(δθ/2) cos(δθ/2)

]
(5.1.4)

in the basis {|↓〉, |↑〉}.

5.1.2 Two-qubit gates

The CNOT gate involves two qubits, and hence it acts in general on a superposition
state of the form

α |↓〉 |↓〉 + β |↓〉 |↑〉 + γ |↑〉 |↓〉 + δ |↑〉 |↑〉 , α, β, γ, δ ε C. (5.1.5)

In Table 5.1 the truth table of the CNOT gate is given with the two qubits named the
‘control’ qubit and the ‘target’ qubit, respectively. The gate flips the state (a NOT
operation) of the target qubit only if the control qubit is in state |↑〉. Thus, applying
the CNOT gate to the superposition state above would swap γ and δ. Sometimes it
is more convenient to consider the so-called Controlled-Z gate [18], which changes the
sign of the coefficient on |↑〉 |↑〉, but does nothing to the other three coefficients. The
CNOT-gate and the Controlled-Z gate are equivalent up to two rotations of the target

1The state in Eq. (5.1.2) is in fact the starting point in Grovers algorithm for searching an unordered

database [3].
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Input Output
Control Target Control Target

↓ ↓ ↓ ↓
↓ ↑ ↓ ↑
↑ ↓ ↑ ↑
↑ ↑ ↑ ↓

Table 5.1: Truth table for CNOT gate.

qubit, as the following matrix identity shows
1 0
0 1 0

0 0 1
1 0


︸ ︷︷ ︸

CNOT

=


1√
2

−1√
2

1√
2

1√
2

0

0
1√
2

−1√
2

1√
2

1√
2


︸ ︷︷ ︸

R( π
2 ), target qubit

·


1 0
0 1 0

0 1 0
0 −1


︸ ︷︷ ︸

Controlled-Z

·


1√
2

1√
2−1√

2
1√
2

0

0
1√
2

1√
2−1√

2
1√
2


︸ ︷︷ ︸

R(−π
2 ), target qubit

(5.1.6)

where the matrix representations of the gates are written in the basis {|↓↓〉, |↓↑〉, |↑↓〉,
|↑↑〉}.

In the introduction in Chap. 1, the importance of entangled states was underlined 2.
Quantum gates and the preparation of entangled states are related issues since, with
the ability to make a CNOT gate, one is also able to prepare entangled states from a
product state. For example

CNOT
{ [

cos(θ/2) |↓〉 + eiφ sin(θ/2) |↑〉]⊗ |↓〉
}

= cos(θ/2) |↓〉 |↓〉 + eiφ sin(θ/2) |↑〉 |↑〉
(5.1.7)

is an entangled state for a suitably chosen θ. Preparation of entangled states of trapped
ions is discussed a little further in the following section.

5.2 Quantum gates using trapped ions

There are numerous proposals for implementation of quantum gates using a string of
cold trapped ions, and a detailed discussion of all of them would be to go too far. The
Cirac-Zoller proposal [4], which was the first of these proposals, is discussed in some
detail below since it nicely illustrates some general ideas and problems and has been
demonstrated successfully by the Innsbruck group [13]. The so-called Mølmer-Sørensen
gate proposal [77, 78] is also discussed in some detail since, unlike the Cirac-Zoller
proposal, it does not require ground state cooling, and individual addressing of ions is
not necessary for two-qubit gate operations. Moreover, the proposal was successfully
used in the demonstration by the NIST group of two- and four-particle entangled states
of trapped ions [9], and it is possible that our first experiments on entangled states and

2Recall that an entangled state of two or more particles is a quantum state whose common wave-

function cannot be separated into a product of wavefunctions for any subset of the system.
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quantum gates will use this approach as well (some other gate proposal). The present
section concludes with a short overview of a few other gate proposals, each with their
own advantages and disadvantages, followed by an outlook towards large-scale ion trap
computing.

5.2.1 The Cirac-Zoller proposal

In the Cirac-Zoller proposal a string of ions confined in the harmonic potential of a linear
Paul trap as illustrated by the simple illustration in Fig. 1.1. The ions are assumed to
be cooled to their motional ground state in the trap, and can be addressed individually
by laser beams with a spectral resolution much better than the trap frequency ωz. The
Lamb-Dicke limit is assumed, and hence the most relevant transitions for performing
gate operations are carrier transitions and transitions on the first red sideband (RSB)
and the first blue sideband (BSB).

To get a feeling for such gate operations, consider the following example, which
creates an entangled state starting from two ions being in the internal state |↓〉 and in
the motional ground state |0〉:

|↓〉 |↓〉 |0〉 (5.2.1)

⇓ BSB π/2-pulse, Ion 2

|↓〉 [ |↓〉 |0〉 − i |↑〉 |1〉 ]︸ ︷︷ ︸
entangled state

⇓ RSB π-pulse, Ion 1

[ |↓〉 |↓〉 − |↑〉 |↑〉 ]︸ ︷︷ ︸
entangled state

|0〉 .

First, a BSB π/2-pulse on Ion 2 [compare Eq. (2.2.7) with φ = 0] creates an entangled
state between the internal state of Ion 2 and the common motional state of the ions.
Then a RSB π-pulse on Ion 1, which has no effect on the |↓〉|↓〉|0〉 part of the wavefunc-
tion, rotates the |↓〉 |↑〉|1〉 part such that the entangled state is mapped onto the internal
states of the ions. In this example excitation and de-excitation of the motional state
on the BSB and the RSB, respectively, provide a way of ‘communicating’ between the
qubits. This sort of communication is also required for a two-qubit gate, which there-
fore also involves sideband-pulses. Two essential points in the example were individual
addressing of the ions and the assumption that the ions were cooled to their motional
ground state (any other Fock state would also work).

The Rabi-frequencies applied on sideband transitions and hence the duration T of
a two-qubit gate operation must be limited if off-resonant excitations on the carrier are
to be avoided. In other words, the power-broadened linewidth should be much smaller
than the spacing, ωz, between the vibrational levels. In the resolved-sideband limit, the
power-broadened linewidth is essentially given by the Rabi-frequency, and hence the
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following restriction on the duration T of a π/2 sideband-pulse applies

T =
π

ηΩ
� π

ηωz
, (5.2.2)

where η is the Lamb-Dicke parameter, and Ω is the free-ion Rabi-frequency. For single-
qubit gates there is no need to excite the motional state, and hence they can be im-
plemented by a carrier pulse for which the restriction on the duration of a π/2-pulse is
T � π/ωz. Thus single-ion gates are not only relatively easy to implement, they are
also much faster than two-qubit gates.

In the original proposal of Cirac and Zoller for making a CNOT-gate operation, the
key step is a π phase-shift of one of the four combined eigenstates in Eq. (5.1.5), which
is obtained by applying a 2π-pulse on an auxiliary transition. In 40Ca+, as well as
many other ion species, such an auxiliary transition is, however, not readily available.
Fortunately, Childs and Chuang [80] have shown how to get around this requirement by
using so-called composite pulses, which indeed was the technique used by the Innsbruck
group in their demonstration of the Cirac-Zoller CNOT-gate [13].

5.2.2 The Mølmer-Sørensen proposal

The Mølmer-Sørensen proposal is illustrated for two ions in Fig. 5.1 [77, 78]. Here, the
ions are illuminated by two laser-fields characterized by the same Rabi-frequency Ω and
frequencies ω± = ω↑↓±δ, where ±δ is the detuning from the carrier resonance frequency
ω↑↓. The Lamb-Dicke limit, η

√
n + 1 � 1, is assumed. Now, if 0 < δ < ωz and the

applied fields are so weak that ηΩ � ωz − δ, no one-photon transitions are allowed,
however, two-photon transitions of the type |↓〉 |↓〉|n〉–|↑〉 |↑〉|n〉 via the intermediate
states |↓〉 |↑〉|m〉 and |↑〉 |↓〉|m〉 (m = n− 1, n, n + 1) are perfectly allowed. By including
the transition paths via the intermediate states in a second-order perturbation theory
calculation, it can be found that the Rabi-frequency for the two-photon transitions
is [78]

Ω̃ = −2ωz(ηΩ)2

ω2
z − δ2

, (5.2.3)

which remarkably enough is independent of n! The n-dependence of the effective
Rabi-frequencies on the individual transition paths simply cancels out. Also |↓〉 |↑〉|n〉–
|↑〉 |↓〉|n〉 two-photon transitions via the intermediate states |↓〉 |↓〉|m〉 and |↑〉 |↑〉|m〉
(m = n − 1, n, n + 1) are allowed, and the corresponding two-photon Rabi-frequency
is −Ω̃. Thus, using a bichromatic laser pulse, coherent dynamics involving all four
combined eigenstates |↓〉 |↓〉, |↓〉 |↑〉, |↑〉 |↓〉 and |↑〉 |↑〉 is possible. Since the two-photon
Rabi-frequency is n-independent, the dynamics is insensitive to heating during gate
operations and ground state cooling is not required. Furthermore, since both ions are
illuminated by the same laser beams, individual addressing is not required.

Using this scheme an entangled state can be created, for example the state (|↓〉 |↓〉+
|↑〉 |↑〉)/√2, which can be created from the state |↓〉 |↓〉 by applying a bichromatic π/2-
pulse on the |↓〉 |↓〉–|↑〉 |↑〉 transition. A CNOT-gate can be implemented by combining
suitable bichromatic pulses with single-qubit operations. The Mølmer-Sørensen scheme
has been generalized to the case where ηΩ ∼ ωz−δ, under the assumption that Ω2 � ω2

z

and η2 � 1 [81]. In this case the gate-operations are faster, however, the motional state
is excited during the gate-operations and only at specific points in time it returns to its
initial state, thus making the scheme sensitive to heating during the gate operations.
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Figure 5.1: The Mølmer-Sørensen proposal. Two trapped ions are illuminated by two
laser beams with frequency ω+ and ω−, respectively. The indicated transition paths
interfere to give a n-independent two-photon Rabi-frequency Ω̃, see Eq. (5.2.3).

5.2.3 Other gate proposals

Geometric quantum gates [81] is a class of gates, where the ions are motionally excited by
a suitable driving force, which takes them on a round-trip in position-momentum phase
space. If the driving force is internal-state dependent, then so is the phase acquired
during the round trip, which in turn enables the implementation of a Controlled-Z gate,
as demonstrated by the NIST group [14]. In geometric gates the internal states of the
ions are unchanged during the gate-operations, which results in a fidelity superior to
that of gates where the internal states are directly involved in the gate-operations [14].
Furthermore, ground state cooling is not required. Our own gate proposal, which is
presented in Chap. 6, is one example of a geometric gate.

Mintert and Wunderlich [82] have proposed to use micro-wave radiation for quantum
logic operations on qubits represented by ground state hyperfine levels or Zeeman-
splitted sublevels of an ion, the advantage being that well known NMR pulse-techniques
can be applied in making gate-operations. The Lamb-Dicke parameter is extremely
small for micro-wave radiation, however, by applying a magnetic field gradient along
an ion string, it is possible to obtain an effective Lamb-Dicke parameter of a suitable
magnitude. Owing to the differential Zeeman shift of the individual ions imposed by
the magnetic field gradient, the scheme also allows individual addressing of the ions in
frequency-space. Currently, work is ongoing at Hamburg University to implement these
ideas [83].

Monroe et al. have suggested a ‘Magic Lamb-Dicke parameter’ method for making
a CNOT gate [84]. The method has been demonstrated experimentally on a single ion,
with one qubit stored in the internal states of the ion (|↓〉 and |↑〉) and another qubit
stored in two motional states (|n = 0〉, |n = 2〉) [85]. By using a ‘magic’ ratio of 4/3
between the two effective carrier Rabi-frequencies Ω0,0 and Ω2,2, which are governed by
the Lamb-Dicke parameter, it was possible to flip the internal state of the ion dependent
on its motional state. This is indeed a CNOT-operation. The method can be applied
to two or more ions, if the motional state is mapped onto the internal state, as in the
example given in Eq. (5.2.1).

Jonathan, Plenio and Knight have presented a scheme where the ac Stark shift
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induced by a strong laser field [86] is utilized. When a strong laser field is applied to
an ion, the system can conveniently be described in terms of combined eigenstates of
the laser field and the internal states of the ion, i.e., the so-called dressed states [87].
The frequency splitting between the dressed states depends on the Rabi-frequency of
the applied field. When the laser field is applied to a single ion in a string and the
splitting between two relevant dressed states is equal to the trap frequency, coherent
dynamics involving the motional state occurs in such a way that it is possible to perform
a CNOT gate-operation between two ions. The gate time T ∼ ω−1

z is not limited by the
condition in Eq. (5.2.2). The proposal was later combined with the Mølmer-Sørensen
proposal [88], such that individual addressing is not required and the scheme becomes
heating insensitive.

5.2.4 Practical large-scale quantum computation with trapped

ions?

If problems intractable on classical computers have to be tackled by future large-scale
quantum computation, it will involve very long sequences of quantum gates and hun-
dreds or even thousands of qubits [19]. Whether this will become possible is, however,
yet unknown. One thing is certain, large-scale quantum computation, with its longer
gate operation times and more qubits (ions), will inevitably increase the importance of
problems, which are small or even negligible in the demonstration of single quantum
gates in smaller systems. In trying to get around these problems it is likely that some
of the ideas, which briefly are discussed below, will be important.

Getting to the point of having hundreds of qubits simply by filling more ions into a
linear Paul trap does not seem like a passable road, since keeping the ions on a string
at reasonably high axial trap frequencies, requires very large radial trap frequencies
[see Eq. (3.2.3)]. In contrast, large-scale quantum computation with trapped ions using
the quantum computer architecture envisaged by Wineland and co-workers seems to be
more viable [89]. Here, several ion traps are combined in a large array, where ions can
be shuttled between the various trap regions. In some regions the actual gate operations
are performed, while in other regions the ions are stored or sympathetically cooled by
the Coulomb interaction with other laser cooled ion species. At NIST, the possibility of
realizing such a large scale system is presently being explored, with the fabrication of
micro-traps, demonstration of ion-transfer between two traps and of sympathetic cooling
to be used for quantum computing purposes [90, 91, 92]. See also Refs. [34, 93, 94] for
work concerning sympathetic cooling of trapped ions.

Longer pulse sequences and hence longer gate-operation times means, all other things
being equal, more errors and decoherence than in the demonstrations of single quantum
gates. Errors in the gate-operations can be reduced if NMR composite-pulse tech-
niques [95] are used. Decoherence rates can be reduced by encoding the information
stored in a single qubit, into a so-called decoherence-free subspace of two qubits, which
is less sensitive to perturbations from the environment than a single qubit [96]. If (or
when) errors after all do occur, they can be corrected using quantum error correction
techniques [97, 98]. With these techniques, the information stored in a single qubit can
be encoded into several qubits, such that if an error occurs within one of these qubits,
it can be corrected from a measurement of the state of the other qubits. It can be
shown, that once the ‘error’ per qubit per quantum gate during a gate operation (see
Ref. [98] for a precise definition) is below a certain threshold value, then arbitrarily long
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quantum computations can be made robust [98]. This threshold value is of the order of
10−4 [98].

5.3 Quantum logic operations in the 40Ca+ ion

In our envisaged implementation of quantum logic operations in the 40Ca+ ion, gate
operations involving the qubit states |↓〉 = 2S1/2(mJ = −1/2) and |↑〉 = 2S1/2(mJ =
+1/2) are performed on the Raman transition which was used in the sideband-cooling
scheme. The requirements for using the Raman transition for quantum logic operations
are the same as for sideband cooling, except that the Raman lasers have to be intensity
modulated in order to create laser pulses.

After sideband cooling, population is mainly in the state |↓, 0〉 (should be more than
99%), which hence defines the starting point for quantum logic operations. For the two-
photon Raman transition, the relevant Rabi-frequency is the Raman Rabi-frequency
ΩRaman [see Eq. (3.4.4)], the relevant Lamb-Dicke parameter is η = η12 − η32 and the
relative phase φ between the qubit states can be controlled by the phase-difference
φ12 − φ32 between the Raman beams.

The apparatus for making laser pulses and controlling the phase is described in
Chap. 8.
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Chapter 6

Applications of optical dipole
potentials in trapped-ion
quantum logic

In this chapter we consider the possibilities which arise when ions on a string are subject
to a potential whose strength depends on the internal state of the ions. The potential to
be considered is the optical dipole potential, or the ac Stark shift, due to a laser beam
which is far-off resonant with respect to all internal transitions in the ions. If the beam
is propagating perpendicular to the ion-string and its transverse intensity-profile varies
over the ion-string, the dipole potential for each ion will be position-dependent and a
force will in general be exerted on the ions. Both of these aspects will be exploited in
the following.

The chapter starts out with a short introduction to optical dipole potentials in
Sec. 6.1. In Sec. 6.2 follows a proposal for realizing a Controlled-Z gate, using the force
which originates from a spatial variation in the dipole potential. This work will be
published as Ref. [VI]. Finally, in Sec. 6.3 the difficulties of individual addressing of
single ions on a string are discussed and a proposal for achieving individual addressing,
as well as selective addressing of any pair of ions, which utilizes the position dependence
of the optical dipole potential, is presented. The bulk of the work presented in Sec. 6.3
has been published in Ref. [I].

6.1 Trapped ions and optical dipole potentials

When an atom or ion is irradiated by a laser beam, the electric field E of the laser beam
induces an atomic dipole moment p, which oscillates at the laser frequency ωL. The
interaction potential of the induced dipole moment in the electric field, time-averaged
over quickly oscillating terms, is given by [99]

Udip = −1
2

< pE >time, (6.1.1)
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Figure 6.1: Intensity distribution for a Gaussian dipole beam [see Eq. (6.1.4)] with
respect to the position of a two-ion string centered at z = 0.

which will be referred to as the (optical) dipole potential in the following. For the two-
level atom considered in Sec. 2.1, the dipole potential at a position r is given by [99]

Udip(r) = −3πc2

2ω3
eg

(
Γ

ωeg − ωL
+

Γ
ωeg + ωL

)
I(r) (6.1.2)

in the regime where the detuning ∆ = ωL − ωeg is much larger than the linewidth
Γ. The dipole potential is proportional to the intensity I(r), since the induced dipole
moment p is proportional to E and I ∝ |E|2.

The oscillating dipole can absorb power from the electric field and reemit it as dipole
radiation, which in a photon-atom picture corresponds to photons being scattered by
the atom. For the two-level atom the scattering rate is given by [99]

Γsc(r) =
3πc2

2�ω3
eg

(
ωL

ωeg

)3( Γ
ωeg − ωL

+
Γ

ωeg + ωL

)2

I(r), (6.1.3)

which is proportional to the intensity for the same reasons as for the dipole potential.
Note that when the detuning fulfills |∆| � ωeg + ωL = ∆ + 2ωeg, the scattering rate
drops off as ∆−2, whereas the dipole potential only drops off as ∆−1. Note also that
for negative detuning, the scattering rate drops off as (ωL/ωeg)3. In the following we
consider a string of trapped ions illuminated by a far-off resonant laser beam, called the
dipole beam, which propagates perpendicular to the ion-string. The axis defined by the
ion-string is the z-axis and z = 0 is chosen to be at the center of the ion-string. The
transverse intensity distribution of the dipole beam, which is denoted by I(z), could,
e.g., be Gaussian, such that

I(z) = I0e
−2(z−z0)

2/W 2
, (6.1.4)

where z0 is the center of the dipole beam, W is the beam waist and I0 is the peak inten-
sity. This situation is illustrated in Fig. 6.1. Since the dipole potential is proportional
to the intensity, it has the same variation along the z-axis as the intensity of the dipole
beam. If the length scale over which the intensity varies [i.e., W in Eq. (6.1.4)] is much
larger than the excursion of an ion from its equilibrium position, zeq, it is meaningful
to linearize the dipole potential around this equilibrium position:

Udip(z) = Udip(zeq) − Fdip(zeq)(z − zeq), (6.1.5)
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where

Fdip(zeq) = −∂Udip(z)
∂z

∣∣∣∣
z=zeq

(6.1.6)

is the dipole force exerted on the ion along the trap axis due to the spatial variation of
the dipole potential.

In the context of this thesis, where we generally consider multilevel ions, with two
of the levels being the qubit states |↓〉 and |↑〉, the dipole potential and the scattering
rate are not simply given by Eqs. (6.1.2) and (6.1.3), rather they are a sum over such
terms originating from all relevant transitions. Since the strength of transitions from
|↓〉 and |↑〉 to other internal levels depends on the polarization and the wavelength of
the dipole beam, the dipole potential in general differs for the two qubit states.

For an ion-string illuminated by a dipole beam its potential energy, U , is the sum of
the dipole potential for each ion, the potential energy of the ions in the trap and their
Coulomb energy. Specifically for two ions, numbered by indices 1 and 2, we have

U(z1, z2, α1, α2) =
1
2
mω2

z(z2
1 + z2

2) +
e2

4πε0(z2 − z1)
+ Udip(z1,eq, α1) + Udip(z2,eq, α2)

(6.1.7)

− Fdip(z1,eq, α1)(z1 − z1,eq) − Fdip(z2,eq, α2)(z2 − z2,eq),

if the linear expansion of the dipole potential is valid. α1 and α2 denote the internal
states of the two ions and z2 > z1 is assumed.

This equation exhibits the mentioned properties of the optical dipole potential, which
will be exploited in the following. The terms Udip(z1,eq, α1) and Udip(z2,eq, α2) contains
the position-dependence to be utilized for achieving individual and selective address-
ing of ions on a string. The other four terms enables implementation of a geometric
Controlled-Z gate, as we shall see now.

6.2 A geometric Controlled-Z gate using optical dipole

forces

We consider two trapped ions having qubit levels |↓〉 and |↑〉 in the situation described
above, where the potential energy is given by Eq. (6.1.7). The implementation of a
geometric Controlled-Z gate between the two ions relies on the fact that the dipole
force is internal state dependent. The idea is that when the ions are subject to a dipole
force, which takes them away from their equilibrium positions, the resulting change
in Coulomb energy gives rise to a phase-shift, which depends on the internal states
of the ions. By choosing a suitable temporal and spatial profile of the dipole beam,
the obtained phaseshifts of |↓〉|↓〉, |↓〉 |↑〉, |↑〉 |↓〉 and |↑〉 |↑〉 can be made equivalent to
a Controlled-Z gate. In the following, the displacement of the ions and the acquired
phase are calculated for these combinations of the internal states in a full quantum
mechanical description of the motion of the ions. Using these results, we shall then
discuss a specific implementation in alkaline earth ions and find suitable parameters for
the dipole beam intensity, its waist and position with respect to the ion-string and for
the trap frequency ωz.
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To describe the motion of the ions, we first rewrite Eq. (6.1.7) as follows

U(z1,eq, z2,eq, α1, α2, t) =
3
4
mω2

z∆z2 +
1
2
mω2

z

(
z2
+ + 3z2

−
)

+ Udip(z1,eq, α1, t) (6.2.1)

+ Udip(z2,eq, α2, t) − 1√
2

[Fdip(z1,eq, α1, t) + Fdip(z2,eq, α2, t)] z+

− 1√
2

[Fdip(z2,eq, α2, t) − Fdip(z1,eq, α1, t)] z−

where

z+ =
1√
2
(z2 + z1) and z− =

1√
2
(z2 − z1 − ∆z) (6.2.2)

are the motional mode coordinates for the center-of-mass mode and the breathing mode,
respectively, and ∆z = z2,eq − z1,eq denotes the equilibrium distance between the ions.
Since the dipole beam intensity is supposed to vary over time, the dipole potentials
and dipole forces are now explicitly time-dependent. Turning to a quantum mechanical
description, we introduce lowering (raising) operators a (a†) and b (b†) for the mode

coordinates, i.e., z+ =
√

�/(4mωz)(a + a†) and z− =
√

�/(4m
√

3ωz)(b + b†). Inserting
z+ and z− in the above expression for U , yields the Hamiltonian

H =�ωza
†a +

√
3�ωzb

†b + Udip(z1,eq, α1, t) + Udip(z2,eq, α2, t) (6.2.3)

+ f+(α1, α2, t)(a + a†) + f−(α1, α2, t)(b + b†),

where

f+(α1, α2, t) = −
√

�

8mωz
[Fdip(z1,eq, α1, t) + Fdip(z2,eq, α2, t)] (6.2.4)

and

f−(α1, α2, t) = −
√

�

8m
√

3ωz

[Fdip(z2,eq, α2, t) − Fdip(z1,eq, α1, t)] (6.2.5)

are responsible for excitation of the center-of-mass mode and the breathing mode,
respectively. The time-evolution of the system can be described by a unitary time-
evolution operator U which fulfills the time-dependent Schrödinger equation and evolves
a wave-function Ψ in time according to Ψ(t) = UΨ(t = 0) [100] 1. For the Hamiltonian
above, U can be expressed as a product

U = exp
[
− i

�

∫
dt [Udip(z1,eq, α1, t) + Udip(z2,eq, α2, t)]

]
U+U−, (6.2.6)

where U+ and U− are time-evolution operators corresponding to the Hamiltonians

H+ =�ωza
†a + f+(α1, α2, t)(a + a†) (6.2.7)

1The time-evolution operator also describes the time evolution of a density-matrix ρ: ρ(t) =

Uρ(t = 0)U†.
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and

H− =
√

3�ωzb
†b + f−(α1, α2, t)(b + b†), (6.2.8)

respectively. Since H+ and H− have an identical structure, the solutions U+ and U− can
be found in an identical way. Furthermore, if more than two ions were considered, the
resulting additional modes would just give rise to additional terms in the Hamiltonian
H and hence to additional factors in the time-evolution operator U , which would be of
the same form as U+ and U−. Thus, the generalization to an arbitrary number of ions
is in principle straightforward. In the following we solve for U+ with the understanding
that the solution U− can be obtained from U+ simply by replacing f+ with f− and
ωz with

√
3ωz. To this end, we switch to the interaction picture with respect to the

Hamiltonian of the free harmonic oscillator [100, 101]

Hint,+ =eiωzta†af+(α1, α2, t)(a† + a)e−iωzta†a = f+(α1, α2, t)(ae−iωzt + a†eiωzt)
(6.2.9)

and make the Ansatz that

Uint,+ =eiωzta†aU+ = e−|β+|2/2eiφ+eiβ∗
+a†

eiβ+a, (6.2.10)

where β+ = β+(α1, α2, t) = p+/
√

m�ωz − iz+/
√

�/(mωz) is a displacement in the
harmonic oscillator phase space, and where p+ is the center-of-mass mode momentum.
φ+ = φ+(α1, α2, t) is the phase acquired due to excitation by the force term f+. From
the time-dependent Schrödinger equation for Uint,+ it can then be shown that

β+(α1, α2, t) = − 1
�

∫ t

0

dt′f+(α1, α2, t
′)e−iωzt′ (6.2.11)

and

φ+(α1, α2, t) = − 1
�2

Im

[∫ t

0

dt′f+(α1, α2, t
′)e−iωzt′

(∫ t′

0

dt′′f+(α1, α2, t
′′)eiωzt′′

)
︸ ︷︷ ︸

−�β∗
+(α1,α2,t′)

]
.

(6.2.12)

The displacement of the ions is in general internal state dependent, which leads to
coupling (or entanglement) between the internal and the motional states. For the gate
operation, this is an undesired effect and we shall therefore request the displacement to
be zero at the end of the gate operation, such that Uint,+ = eiφ+ . In the implementation
of the Controlled-Z gate described below, we will take the dipole-potential to be of the
form Udip(zi,eq, αi, t) = Uconst(zi,eq) + Uosc(zi,eq, αi)g(t) (i = 1, 2) in a time interval
[0, T ] and zero otherwise. Mathematically, we assume below that g(t) and fconst vanish
outside [0, T ]. From this specific form of the dipole potential, it follows that f+ can be
written as f+(α1, α2, t) = fconst(z1,eq, z2,eq)+fosc(z1,eq, z2,eq, α1, α2)g(t), which together
with Eq. (6.2.11) implies that the center-of-mass mode displacement at the end of the
gate operation is

β+(T ) = i
fconst

�ωz
(1 − e−iωzT ) − i

fosc

�

∫ T

0

dtg(t)e−iωzt. (6.2.13)
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For this expression to be zero, T should be equal to an integer number, n, of oscillation
periods, T = 2πn/ωz, and the integral in the last term should be zero, which in fact is
equivalent to saying that the Fourier transform of g(t), g̃(ω), is zero at ω = ωz, since,
using that g(t) is zero outside [0, T ], it follows that

1√
2π

∫ T

0

dtg(t)e−iωzt =
1√
2π

∫ ∞

−∞
dtg(t)e−iωzt = g̃(ωz). (6.2.14)

The phase φ+ in Eq. (6.2.12), which is equal to the area of the (z+, p+) phase-space
trajectory in units of �, depends on the internal state of both ions, as needed for the
Controlled-Z gate. From Eq. (6.2.12) it can be shown that the phase acquired during
the gate operation can be expressed as

φ+(T ) =
1
�2

∫ ∞

−∞
dω′

∣∣∣f̃+(ω′)
∣∣∣2

ω′ − ωz
= C1f

2
const + C2fconstfoscg̃(0) +

1
�2

∫ ∞

−∞
dω′ |g̃(ω′)|2

ω′ − ωz
,

(6.2.15)

where f̃+(ω) is the Fourier transform of f+(t) and C1 and C2 are constants. The first
term on the r.h.s. is irrelevant, since it is independent of the internal state of the ions
and the second term disappears if we require g̃(0) = 0, which we shall do for reasons
discussed below. Thus, the only interesting term is the last one, from which we observe
that the closer the characteristic frequencies of the function g(t) are to the oscillation
frequency ωz (or

√
3ωz for the breathing mode), the larger is the accumulated phase.

The total phase acquired during the gate operation, however, also has a contribution
from the internal state dependent Stark shifts appearing in the first factor in Eq. (6.2.6).
This contribution can totally scramble the desired gate operation, since it is of first order
in the dipole beam intensity, whereas φ+ only is of second order in the intensity. With
the specific form of the dipole potential assumed above, the first term, Uconst(zi,eq),
gives rise to a Stark-shift induced phase-shift, which is independent of the internal state
and hence uncritical to the gate operation. The Stark-shift induced phase-shift due to
the term Uoscg(t) cancels if

∫ T

0
g(t)dt = 0, or equivalently if g̃(0) = 0.

For the displacement of the breathing mode to be zero at the end of the gate oper-
ation, g̃(

√
3ωz) = 0 and T = 2πm/(

√
3ωz) with m integer, should be fulfilled. Thus we

have in total three conditions on g̃(ω): g̃(0) = g̃(ωz) = g̃(
√

3ωz) = 0. These conditions
can be fulfilled by a proper choice of g(t). Conversely, a function g̃(ω) which vanishes
at 0, ωz and

√
3ωz can be constructed and Fourier-transformed to yield g(t). The con-

ditions on T can be fulfilled approximately for special values of n; for example we have(
n,m,

∣∣√3n − m
∣∣) = (15, 26, 2%); (56, 97, 0.5%); (209, 362, 0.1%).

6.2.1 Implementation in alkaline earth ions

An experimental realization of the Controlled-Z gate is possible using the alkaline earth
40Ca+, 88Sr+ or 138Ba+ ions, which all have a similar internal structure, making our
‘favorite’ choice of qubit states |↓〉 = n 2S1/2(−1/2) and |↑〉 = n 2S1/2(+1/2). Below,
results are presented for 40Ca+ and 138Ba+. We assume in the following that the dipole
beam frequency ωL is close to or below the transition frequencies ω1/2 and ω3/2 of the
n 2S1/2–n 2P1/2 and the n 2S1/2–n 2P3/2 transitions, respectively, such that we only need
to consider contributions to the dipole potential from these two transitions (assuming
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that ωL is not in the immediate vicinity of the transition frequencies of the weak n 2S1/2–
(n−1) 2D3/2,5/2 electric quadrupole transitions). We consider a dipole beam containing
only σ+- and σ−-polarized light components with respect to the quantization axis for
the ions (the propagation direction of the dipole beam), in which case the contributions
to the dipole potential in the two states |↓〉 and |↑〉 are illustrated in Fig. 6.2. The
respective dipole potentials can therefore be written as

U↓ = ψ+I+ + ψ−I− and U↑ = ψ−I+ + ψ+I−, (6.2.16)

where I± is the intensity of the σ+- and σ−-polarized components, respectively, and
where

ψ+ =
3πc2

2

[
2Γ1/2

3ω3
1/2

(
1

ω1/2 − ωL
+

1
ω1/2 + ωL

)
+

Γ3/2

3ω3
3/2

(
1

ω3/2 − ωL
+

1
ω3/2 + ωL

)]
(6.2.17)

and

ψ− =
3πc2

2
Γ3/2

ω3
3/2

(
1

ω3/2 − ωL
+

1
ω3/2 + ωL

)
(6.2.18)

depend only on the properties of the ion and the dipole laser frequency. Here, Γ1/2

and Γ3/2 are the transition strengths of the n 2S1/2–n 2P1/2 and the n 2S1/2–n 2P3/2

transitions 2, respectively. Now, to make the force derived from the dipole potential
depend upon the qubit state, the intensities of the two polarization components have to
differ. This does, however, give rise to an internal state dependent Stark-shift induced
phase. In order to get rid of the internal state dependence, we choose to vary the
intensity of the polarization components in time, such that after the gate operation the
integrated Stark-shift induced phase is equal for |↓〉 and |↑〉 in each ion. Meanwhile, the
dipole force is still present to enable a non-trivial quantum logic operation. Choosing
the intensity of the polarization components to vary sinusoidally with frequency Ω, the
temporal variation of the intensity is given by

I±(z, t) =
1
2
I(z)[1 ± sin(Ωt)] (6.2.19)

in the time interval [0, T ] and zero outside this interval. Such a variation in time can eas-
ily be realized using an electrooptic modulator. With the intensity given by Eq. (6.2.19)
the dipole potential has the form asserted in the previous section, making the identifica-
tion g(t) = sin(Ωt). As for the choice of Ω, we recall the requirements T = 2πn/ωz with
n integer, g̃(0) = g̃(ωz) = g̃(

√
3ωz) = 0 and that the characteristic frequency of g(t),

i.e., Ω, should be close to ωz. A good choice is therefore Ω = (1 − 1/n)ωz with n � 1,
such that in the time interval [0, T ] the ions experience an integer number (n − 1) of
polarization rotation periods and undergo an integer number (n) of oscillations in the
trap. The Fourier transform of g(t) on the interval [0, T ] [see Eq. (6.2.14)] contains two
terms, which are proportional to sin[(ω−Ω)T/2]/(ω−Ω) and sin[(ω +Ω)T/2]/(ω +Ω),
respectively. These sinc-functions peak at ω = Ω and ω = −Ω, but they have exact
zeros at ω = 0 and ω = ωz, are suppressed at ω =

√
3ωz and are even further suppressed

if
√

3n is close to an integer.
2The same notation was introduced in Chap. 3 for these quantities in 40Ca+. In this chapter, the

notation applies for the relevant ion species.
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Figure 6.2: Relevant energy-levels and transitions in alkaline earth ions (e.g.,40Ca+,
88Sr+, and 138Ba+) for calculating the dipole potential for the qubit states |↓〉 =
2S1/2(−1/2) (solid lines) and |↑〉 = 2S1/2(+1/2) (dashed lines) due to a dipole beam
containing σ+– and σ−–polarized components with intensities I+ and I−, respectively.
ψ+ and ψ− are defined in the text.

In order to calculate the displacement and the acquired phase for the center-of-mass
mode and the breathing mode for the specific intensity variation in Eq. (6.2.19), the
f -function entering in the integrals in Eqs. (6.2.11) and (6.2.12) has to be determined
using the definitions in Eqs. (6.2.4) or (6.2.5). For f+, which is responsible for excitation
of the center-of-mass mode, we find

f+(↓↓) = − [f0+ + f1+ sin(Ωt)] , (6.2.20)
f+(↓↑) = − [f0+ + f2+ sin(Ωt)] , (6.2.21)
f+(↑↓) = − [f0+ − f2+ sin(Ωt)] , (6.2.22)
f+(↑↑) = − [f0+ − f1+ sin(Ωt)] , (6.2.23)

where

f0+ =
√

�

8mωz
(F̃1 + F̃2)(ψ+ + ψ−), (6.2.24)

f1+ =
√

�

8mωz
(F̃1 + F̃2)(ψ+ − ψ−), (6.2.25)

f2+ =
√

�

8mωz
(F̃1 − F̃2)(ψ+ − ψ−) (6.2.26)

and

F̃i = − 1
2

∂I(z)
∂z

∣∣∣∣
z=zi,eq

(i = 1, 2). (6.2.27)

The full time-dependent expressions β(t) and φ(t), which can be obtained by carrying
out the integrals in Eqs. (6.2.11) and (6.2.12), are given in App. A, both for the center-
of-mass mode and the breathing mode. Here we only state the acquired phases at the
end of the gate operation, which for the center-of-mass mode are given by

φ+(↓↓, T ) =φ+(↑↑, T ) =
f2
1+

(2�)2
2ωzT

ω2
z − Ω2

≈ f2
1+

(�ωz)2
n2π

2
(6.2.28)
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and

φ+(↓↑, T ) =φ+(↑↓, T ) =
f2
2+

(2�)2
2ωzT

ω2
z − Ω2

≈ f2
2+

(�ωz)2
n2π

2
, (6.2.29)

where an internal state independent term has been neglected and the approximation
is good for large n. These phases scale quadratically with n, with one factor of n
originating from the gate time T and the other one originating from the denominator,
owing to the fact that Ω was chosen to be near-resonant with ωz. The phases acquired
due to excitation of the breathing mode are given by the following expressions

φ−(↓↓, T ) =φ−(↑↑, T ) =
f2
1−

(2�)2
2
√

3ωzT

3ω2
z − Ω2

≈ f2
1−

(�ωz)2

√
3nπ

2
(6.2.30)

and

φ−(↓↑, T ) =φ−(↑↓, T ) =
f2
2−

(2�)2
2
√

3ωzT

3ω2
z − Ω2

≈ f2
2−

(�ωz)2

√
3nπ

2
, (6.2.31)

where

f1− =f1+
F̃2 − F̃1

4
√

3(F̃2 + F̃1)
and f2− = f2+

F̃2 + F̃1
4
√

3(F̃2 − F̃1)
. (6.2.32)

These phases scale only linearly with n, since the rotation frequency Ω is off-resonant
with the breathing mode frequency of

√
3ωz. In Eqs. (6.2.30) and (6.2.31) some terms

have been neglected, which are smaller than the stated terms by a factor of n and
further suppressed if

√
3n is close to an integer.

The combined effect of the above phaseshifts is equivalent to a single phaseshift of
φ± = φ±(↓↓)−φ±(↓↑)−φ±(↑↓)+φ±(↑↑) = 2[φ±(↓↓)−φ±(↓↑)] for the |↑〉 |↑〉 state [102].
Thus, to make a Controlled-Z gate, we require that

π =2 [φ+(↓↓, T ) + φ−(↓↓, T ) − φ+(↓↑, T ) − φ−(↓↑, T )] (6.2.33)

≈ πn2

(�ωz)2

[
f2
1+ − f2

2+ +
√

3
n

(
f2
1− − f2

2−
)]

.

For an experimental realization of the considered gate, two highly relevant parame-
ters are the required peak intensity I0 and the fidelity loss due to off-resonant scattering
events. The required peak intensity enters in Eq. (6.2.33) through the f -functions. Once
a choice of beam profile and position of the dipole beam with respect to the ion-string
is made, the intensity can therefore be determined as a function of the dipole beam
wavelength λL. Since the intensity is set by the requirement that an effective phase-
shift of π should be obtained, an inherently small effect of the optical dipole forces will
lead to the requirement of a large intensity. The intensity in turn sets the scattering
rate [see Eq. (6.1.3)] and hence the probability for off-resonant scattering events during
the gate operation time T . In the following we shall find these parameters for specific
configurations of the dipole beam.
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We consider first the configuration depicted in Fig. 6.1 choosing z0 = W/2, i.e., the
two ions are centered at a distance of W/2 from the center of the dipole beam, which
is where the intensity gradient and hence the dipole force is maximal. The equilibrium
distance between the ions is assumed to be much smaller than the waist, such that
the linearization of the dipole potential in Eq. (6.1.5) is a good approximation and
the dipole force is almost equal for the two ions. To find the required intensity, we
first find the f -functions for the considered beam configuration using the definitions in
Eqs. (6.2.25)–(6.2.27) and (6.2.32), which yields F̃1 ≈ F̃2 ≈ e−1/2I0/W , f2+ ≈ f1− ≈ 0
and non-zero expressions for f1+ and f2−. From the expressions for f1+ and f2− and
Eq. (6.2.33) it follows that the required peak intensity

I0 ≈
√

2e1�ω3
zmW 2

n2(ψ+ − ψ−)2
, (6.2.34)

where only the leading term in n has been retained. We note that large n leads to a
large phase pick-up and hence a low intensity requirement and the same holds for the
difference ψ+ − ψ−, since it determines the dipole potential difference between |↓〉 and
|↑〉. Furthermore, for a small waist the dipole force is large, which in turn reduces the
required intensity. Note also that the required laser power (∼ I0W

2) is proportional to
W 3, which makes a small waist very attractive.

Knowing the required intensity, we can now determine the scattering rate Γsc and
hence the probability for a scattering event during the gate operation, which is equal
to 1 − exp[−ΓscT ] ≈ ΓscT , if ΓscT � 1. In calculating Γsc, we sum the scattering
contributions due to the coupling of |↓〉 and |↑〉 to the n 2P1/2- and the n 2P3/2-state
for both ions. Assuming an equal average population in the two internal states and an
intensity of e−1/2I0 at the position of the ions, we find

ΓscT ≈ Γ̃sc

ψ+ − ψ−

√
8π2�ωzmW 2, (6.2.35)

where

Γ̃sc =
3πc2ω3

L

2�
(6.2.36)

×
[

Γ2
1/2

ω6
1/2

(
1

ω1/2 − ωL
+

1
ω1/2 + ωL

)2

+
Γ2

3/2

ω6
3/2

(
1

ω3/2 − ωL
+

1
ω3/2 + ωL

)2
]

.

The front factor of Γ̃sc/(ψ+−ψ−) in Eq. (6.2.35) contains the entire dependence of ΓscT
on the internal structure of the ion and the wavelength of the dipole beam, showing that
ΓscT can be minimized either by making Γ̃sc small or ψ+−ψ− large. Γ̃sc becomes small
in the limit ωL � ω1/2, ω3/2 due to the factor of ω3

L, however, in the same limit ψ+−ψ−
is proportional to the difference Γ1/2ω

−4
1/2 −Γ3/2ω

−4
3/2, which also is small. Alternatively,

if ω1/2 < ωL < ω3/2, ψ+ − ψ− can become a sum of two terms, however, for Γ̃sc to be
small in this case, a large fine-structure splitting is required. Both in the far-off resonant
case and when the dipole laser is tuned in between the fine-structure levels, the 138Ba+

ion turns out to be more attractive than the 40Ca+ and the 88Sr+ ions.
Now, to get some numbers out for the intensity and the scattering probability, we

take a typical trap frequency of ωz = 2π × 1MHz, for which the equilibrium distance is
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(a) (b)

Figure 6.3: (a) Two ions positioned at a distance of ±W/2 from the center of a Gaussian
laser beam. (b) Two ions, each positioned at a distance of W/2 from the center of a
tightly focussed Gaussian laser beam.

5.6µm between two 40Ca+ ions and 3.7µm between two 138Ba+ ions. The waist is taken
to be 30µm, which is larger than the equilibrium distance between the ions as assumed
above. Finally, choosing n = 15 (

√
3n ≈ 26) the intensity and the scattering rate can

be calculated. For 40Ca+ and 138Ba+ with the dipole laser tuned in between the fine-
structure levels or far red detuned (where ψ+ and ψ−, and hence the required power,
approaches a constant), we find the following values for (Power, ΓscT , λL). 40Ca+: (8W,
30%, 395.1 nm) and (∼0.5MW, < 4%, >1500 nm). 138Ba+: (86W, 6%, 474.5 nm) and
(∼33 kW, < 1.2%, >1000 nm). Clearly, this is not very promising for an experimental
realization. Since a smaller waist would decrease the required power as well as the
scattering probability, it would be attractive to employ a beam configuration where the
waist which is of the order of or smaller than ∆z. In such cases the equations derived
above are still valid, as long as the excursion of the ions from their equilibrium position is
smaller than the waist. For example, one could choose W = ∆z and position the ions on
either side of the center of the dipole beam (z0 = 0, z1,eq = −W/2, z2,eq = W/2) as shown
in Fig. 6.3(a). Taking ωz = 2π × 200 kHz, it follows that ∆z = 16.4µm for 40Ca+ and
∆z = 10.9µm for 138Ba+. Using n = 15 (T = 75µs), the following values for (Power,
ΓscT , λL) can be obtained. 40Ca+: (120mW, 8%, 395.1 nm) and (∼6.5 kW, < 0.9%,
>1500 nm). 138Ba+: (360mW, 1%, 474.5 nm) and (∼140W, < 0.2%, >1000 nm). The
required power is relatively high, but it can be reduced, e.g., by a factor of 14 by choosing
n = 209 (

√
3n ≈ 362), which leaves the scattering probability unchanged but increases

the gate time by a factor of 14 to 1ms. Except for 40Ca+ in the long wavelength limit,
this would be realistic for a first demonstration of the present gate proposal, using one
of the laser sources discussed below.

Before the discussion of laser sources, we consider a more favourable dipole beam
configuration shown Fig. 6.3(b), where two tightly focussed beams with an equally large
waist, which is smaller than the equilibrium distance between the ions, are directed onto
one ion each and centered at a distance of W/2 from the ion, such that the dipole force
is equal and maximal for both ions. Using Eqs. (6.2.34)–(6.2.36) above and choosing
ωz = 2π × 200 kHz and W = 5µm, we have plotted the required laser power and ΓscT
versus the dipole beam wavelength for 40Ca+ and 138Ba+ in Fig. 6.4, both in the far
red detuned case [Fig. 6.4(a,c)] and in the case where the dipole beam is tuned in
between the fine-structure levels [Fig. 6.4(b,d)]. In all cases n = 15, which yields a very
reasonable gate time of T = 75µs. The plots in Fig. 6.4(a,c) extends to a wavelength
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of 5µm in order to show the long-wavelength behaviour, however, one should keep in
mind that for wavelengths of the order of or larger than the waist of 5µm, diffraction
will be a limiting factor.

For 40Ca+, we see from Fig. 6.4(a) that a high power of ∼ 200W is required in
the long wavelength limit for the considered parameters. By choosing n = 209 instead
of 15, the required power drops by a factor of ∼ 14, yielding a much more reasonable
required power of ∼ 15W in the long wavelength limit, i.e., roughly for wavelength
above 2000 nm. When taking diffraction into account, a wavelength around 2000 nm
therefore seems to be an optimal choice. At or near this wavelength, 15W can easily
be obtained from a commercially available Thulium Fiber Laser operating in the range
1750-2200 nm 3 and hence quantum gates for which ΓscT � 10−3 should be feasible using
40Ca+. In addition, a wavelength around 395 nm is attractive for 40Ca+ [see Fig. 6.4(b)],
since only 3mW is required at this wavelength, which easily can be obtained. The
scattering rate of a few percent is acceptable for a first demonstration, but not for
implementation of error correcting schemes. By a reduction of the beam waist, e.g.,
using a dedicated lens system placed inside the vacuum chamber where the ion trap
is situated, it should be possible to focus to below 1µm [103] and hence reduce the
scattering rate by a factor of 5–10.

Due to the larger fine-structure splitting of 138Ba+, the scattering probability is
already below 1% for a wavelength around 475 nm, i.e., between the fine-structure
levels [see Fig. 6.4(d)]. The required power of ∼ 35mW can easily be provided by
frequency-doubled diode laser systems. Note also that light from an Argon-ion laser
at a wavelength of 488 nm could be a reasonable possibility. However, as for 40Ca+ a
commercially available Thulium Fiber Laser operating around a wavelength of 2000 nm
seems to be most ideal. In this case the scattering probability is as low as ∼ 10−4, which
is comparable to the threshold value for fault-tolerant quantum computation [98]. In
the long wavelength limit, the 1064 nm wavelength of a Nd:YAG laser would also be
quite attractive with a scattering probability below 10−3 at a required power of ∼ 7W.

Note that in all cases discussed above the required power, the scattering probability
and the gate time can be adjusted by changing n, ωz and W .

It should be noted, that the gate proposal is not limited to the case where g(t) =
sin(Ωt). It would for example also work with g(t) = sin[M sin(Ωt)], which occurs if a
sinusoidally varying voltage is applied to an electrooptic modulator (modulation index
M), with the polarization of the input beam oriented at 45◦ with respect to the principal
axes of the modulator crystal. However, the calculations are more cumbersome than
for the present case and will not be reproduced here.

Finally, in order to illustrate the time-development of the phase-space displacement
and the acquired phase, we have plotted these quantities in Fig. 6.5. The plots are for
40Ca+ with λL = 395.1 nm and n = 15. The trap frequency and the waist are irrelevant
for these plots, when the intensity is set such that an effective phase-shift of π is obtained.
Fig. 6.5(a) is a parametric plot of the real and imaginary parts of the displacement β+(t)
of the center-of-mass mode, i.e., p+/

√
�mωz and −z+/

√
�/(mωz), respectively, when

the ions are in the |↓〉 |↓〉 state. Fig. 6.5(b) is a similar plot for the breathing mode, when
the ions are in the |↓〉 |↑〉 state. Note that the center-of-mass mode is more strongly
excited than the breathing mode [the scale in Fig. 6.5(a) is about ten times larger than
in Fig. 6.5(b)], since the driving force is near-resonant with the center-of-mass mode

3IPG Photonics, TLR-series, capable of delivering up to 150 W. http://www.ipgphotonics.com.



6.2. A geometric Controlled-Z gate using optical dipole forces 77
(a

)
(b

)

(c
)

(d
)

F
ig

ur
e

6.
4:

R
eq

ui
re

d
po

w
er

an
d

Γ
s
c
T

vs
.

di
po

le
be

am
w

av
el

en
gt

h
fo

r
4
0
C

a+
an

d
1
3
8
B

a+
.

In
al

lp
lo

ts
ω

z
=

2π
×

20
0

kH
z,

W
=

5
µ
m

,
n

=
15

an
d

T
=

75
µ
s.

N
ot

e:
In

(a
)

an
d

(c
)

di
ffr

ac
ti

on
is

a
lim

it
in

g
fa

ct
or

fo
r

lo
ng

w
av

el
en

gt
hs

.
(a

)
4
0
C

a+
,
fa

r
re

d
de

tu
ne

d
di

po
le

la
se

r.
T

he
di

ve
rg

en
ce

s
ne

ar
90

0
nm

ar
e

du
e

to
a

ca
nc

el
la

ti
on

of
ψ

+
−

ψ
−

.
(b

)
4
0
C

a+
,
di

po
le

la
se

r
tu

ne
d

in
be

tw
ee

n
th

e
n

2
P

1
/
2

an
d

n
2
P

3
/
2

fin
e-

st
ru

ct
ur

e
le

ve
ls

.
(c

)
1
3
8
B

a+
,

fa
r

re
d

de
tu

ne
d

di
po

le
la

se
r.

(d
)

1
3
8
B

a+
,

di
po

le
la

se
r

tu
ne

d
in

be
tw

ee
n

th
e

n
2
P

1
/
2

an
d

n
2
P

3
/
2

fin
e-

st
ru

ct
ur

e
le

ve
ls

.



78 Chapter 6 - Applications of optical dipole potentials . . .

frequency. The excitation of the center-of-mass mode at a frequency slightly below its
eigenfrequency, leads to an increasing distance from the phase-space origin until the
turning point near Re[β+] ∼ 1, where the relative phase between the motion of the ions
and the driving force makes the driving force have a damping effect on the motion of the
ions, taking them back to the phase-space origin after 15 trap oscillation periods. For
the breathing mode, the off-resonant driving force is unable to excite the ions to a large
amplitude, so in this case the phase-space trajectory is in the vicinity of the phase-
space origin, where it (almost) ends up right at the time, where the center-of-mass
mode trajectory is back at the phase-space origin. The acquired phase, which is just
the encircled phase-space area in units of �, is plotted in Fig. 6.5(c). More precisely, the
effective phase-shift of the |↑〉 |↑〉 state, i.e., 2[φ+(↓↓, t) − φ−(↓↑, t)], is plotted together
with the center-of-mass mode contribution of 2φ+(↓↓, t), showing that the breathing
mode contribution is small. Note, that the acquired phase increases with the largest
rate in the middle of the gate operation, corresponding to the part of the trajectory in
Fig. 6.5(a) where Re[β+] ∼ 1, where the area swept per unit time is largest. In contrast,
at the beginning and at the end of the gate-operation, there are only small ‘wiggles’
on the curves, which to some extent makes the acquired phase robust against timing
errors.

6.2.2 Error sources

Apart from the fidelity loss due to scattering induced by the dipole beam, there are many
other potential error sources, which are relevant for the fidelity of the gate operation.
A key element in the present gate proposal is the polarization rotation, which removes
the internal state dependency of the Stark-shift induced phase. Since the Stark shift
is of first order in intensity and the phase acquired by the change in Coulomb energy
originates from second order effects, even small errors in the polarization rotation may
be very critical to the actual gate operation. In the following, the influence on the
polarization rotation from polarization errors, timing errors and power-, position- and
frequency-fluctuations of the dipole laser is discussed.

Polarization errors

In case there is an imbalance of the intensity in the two polarization components, such
that

I±(z, t) =
1
2
I(z)(1 ± εp)[1 ± sin(Ωt)], (6.2.37)

where εp accounts for the imbalance, there will be two extra terms in the dipole potential.
One term [∝ εp sin(Ωt)] enters with the same sign in U↓ and U↑ and hence it does not
give rise to any Stark-shift induced phase-difference between |↓〉 and |↑〉. The other
term, εpI(z)(ψ+ − ψ−)/2, enters with a different sign in U↓ and U↑, which leads to a
phase-difference of ∆φ = εpI(z)(ψ+ − ψ−)T/� between |↓〉 and |↑〉 in each ion at the
end of the gate operation. This difference should be much smaller than the desired
phase-shift of π. Using the expression for ∆φ, Eqs. (6.1.4), (6.2.34) and T = 2πn/ωz,
we obtain the condition

εp �
√

�

8ωzmW 2
. (6.2.38)
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(a)

(b)

(c)

Figure 6.5: Real and imaginary parts of the center-of-mass mode and the breathing
mode displacement β±(t) and the acquired phase for 40Ca+ with n = 15 and a dipole
beam wavelength of 395.1 nm. The trap frequency, the waist and the intensity are set
to obtain an effective phaseshift equal to π of the |↑〉 |↑〉 state. (a) Parametric plot
showing (Re[β+(t)], Im[β+(t)]) = (p+/

√
�mωz,−z+/

√
�/mωz) for the center-of-mass

mode, when the ions are in |↓〉 |↓〉. (b) Parametric plot showing (Re[β−(t)], Im[β−(t)]) =

(p−/
√

�m
√

3ωz,−z−/
√

�/m
√

3ωz) for the breathing mode, when the ions are in |↓〉 |↑〉.
In both (a) and (b) the phase-space trajectory starts out from the origin and goes
clockwise as time elapses. (c) Acquired phase. The solid line is the total effective phase
of 2[φ+(↓↓, t) − φ−(↓↑, t)]. The dashed line is the center-of-mass mode contribution of
2φ+(↓↓, t). The dotted lines indicate phases of 0 and π.
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In the situation considered above with W = 5µm and ωz = 2π × 200 kHz this means
εp � 1/400 for 40Ca+ and εp � 1/700 for 138Ba+. Fulfilling these criteria is not
very realistic, but fortunately the undesired phase-difference can be cancelled using
the spin-echo technique [23]. Instead of generating the full effective phase-shift of π
in a single operation, the gate-operation can be performed in four steps: (1) Run the
gate at half the intensity, to get an effective phase-shift of π/2 on |↑〉 |↑〉. (2) Swap
the population between |↓〉 and |↑〉 by applying single-qubit π-pulses to both ions. (3)
Same as (1). (4) Same as (2). The trick is that the undesired phase-differences due
to an intensity imbalance, which are obtained in step (1) and (3), are of the same
magnitude but have opposite signs (due to the population swapping) and therefore
cancel out. The gate operations in (1) and (3) both give an effective phase-shift of
π/2, even though the population is swapped in (2), because φ±(↓↓, T ) = φ±(↑↑, T ) and
φ±(↓↑, T ) = φ±(↑↓, T ). The final π-pulse just swaps the population back. In making
this spin-echo trick, the gate time is doubled (neglecting the duration of the relatively
fast π-pulses) while the required intensity is halved. Since the required intensity is
proportional to n−1 and the gate time T ∝ n, these parameters can be re-adjusted if
an appropriate value for n is available.

Finally, the imbalance also gives rise to errors in the gate operation, which the spin-
echo trick does not cancel. These errors are of the order ε2p or εp/n and hence they are
suppressed to the 10−4 level at a small but realistic value of εp ∼ 1%.

Timing errors

In case the gate time differs from the duration of a full number of polarization rotation
periods, an undesired phase-difference will again build up. Assuming T = δT + 2π(n−
1)/Ω and ΩδT � 1, the phase-difference is equal to ∆φ above, with the replacement
εp 
→ δT 2Ω/(2T ). Again using W = 5µm and ωz = 2π×200 kHz and considering 40Ca+

with n = 15, Eq. (6.2.38) translates to δT � 0.5µs, with a more relaxed limit for larger
n (the limit is proportional to

√
n). Using electrooptic modulators to control the laser

pulse length, this condition on δT is not very severe. Moreover, if step (1) and step (3)
are subject to the same relative timing error as the entire gate operation, i.e., if they are
of duration [δT + 2π(n − 1)/Ω]/2, the spin-echo trick will cancel the phase-difference.

Power fluctuations

If the total laser power fluctuates at a frequency ωf , such that the total intensity is
given by I0(t) = I0[1+εf sin(ωf t)], then the resulting fluctuations in the dipole potential
integrated over the gate time T will give rise to a phase difference between |↓〉 and |↑〉.
If the intensity fluctuations are random, they can in general not be expected to cancel
using the spin-echo trick. When ωf ∼ Ω the phase difference ∆φ ∼ εfI(z)(ψ+ −ψ−)/2,
i.e., the same phase-difference as above, just with εp replaced by εf , which means that
εf � 1/400 is required for 40Ca+. When ωf � Ω the phase-difference is smaller by
a factor of 2πn and even smaller if ωf � Ω. Intensity stabilization fulfilling εf �
1/400 should not be unrealistic, in fact a commercially available Laser Power Controller
already offers a power-stability of 3 · 10−4 within certain limits 4.

4Laser power controller from Brockton Electro Optics, http://www.brocktoneo.com. LPC-model:

Power stability of 3·10−4 over 8 hours, DC to 5 kHz, optical power up to 15 W, 425-1100 nm. LS-model:

Same stability, DC to 2 MHz, optical power up to 4W, 400-740 nm.
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Position fluctuations

Fluctuations in the position of the dipole laser gives rise to intensity fluctuations, which
leads to imperfect cancellation of the Stark-shift induced phase and an unwanted varia-
tion in the dipole force exerted on the ions. When ions are placed at a distance of W/2
from the center of a dipole beam, a displacement of the dipole beam along the trap axis
of δz, will lead to a relative change in intensity and dipole force of the order of (δz/W )2.
Thus, for the errors associated with position fluctuations to be at the 10−4 level, the
position fluctuations should be smaller than 1% of the waist size, which amounts to
50 nm in the case where W = 5µm. Although demanding, it is possible to reach this
level of stability.

Frequency fluctuations

As for the power fluctuations, laser frequency fluctuations will lead to fluctuations in the
dipole potential and hence to an imperfect cancellation of the Stark-shift induced phase.
Since laser frequencies can be very accurately controlled and frequency fluctuations
anyway are expected to be small as compared to the detuning from any of the two
fine-structure levels, this is not expected to play any significant role.

6.2.3 Discussion

The gate proposal presented above has some similarities with the gate recently demon-
strated by the NIST group [14]; in fact the physical mechanism which gives rise to
the desired phase shift is the same. There are, however, also some essential differences
between the two schemes.

In the NIST experiment, a dipole force along a given trap axis was provided by the
intensity-gradient of a standing-wave light-field. The wavelength of the light-field and
hence the period of the standing wave is set by the requirement that the Stark-shift
induced phase shift of the two qubit levels is zero (corresponding to ψ+ + ψ− = 0 in
our case), which can be fulfilled by tuning the laser in between two fine-structure levels.
This can, however, give rise to a significant amount of scattering events. Moreover,
since the spatial variation of the dipole force in a standing wave takes place on a length
scale given by the wavelength of the light-field and since the ions must be well localized
on this scale, the ions should be cooled to the Lamb-Dicke limit with respect to this
wavelength. In Ref. [14] this is also the Lamb-Dicke limit for the qubit operations.
Finally, in the NIST experiment, an equal dipole force on the two ions was obtained
by adjusting their equilibrium distance to an integer number of standing wave periods,
which may be difficult to generalize for performing a gate between any two ions in a
multi-ion string.

In the proposal presented here, where the dipole force is provided by a variation in
the beam-profile, the excursion of the ions from their equilibrium position should only
be smaller than the beam waist, which is adjustable, but typically up to ten times larger
than a relevant transition wavelength. This means that except for very tightly focussed
laser beams, the Lamb-Dicke limit criterion need not be fulfilled. Furthermore, since the
dipole beam propagates perpendicular to the ion-string in our proposal, addressing of
specific ions for implementation of gates in a multi-ion string should be possible. A the-
oretical description of this situation should also be quite straightforward, as mentioned
after Eq. (6.2.6). Finally, owing to the polarization rotation method, the dipole beam is
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allowed to be far-off resonant with respect to the relevant internal transitions, such that
a scattering probability below the asymptotic threshold value required for fault-tolerant
quantum computation [98] in principle can be obtained in the long wavelength limit.

It should be mentioned, that quantum gates using optical dipole forces also was
considered by Sasura and Steane [102] for an array of very small ion traps with a single
ion in each trap.

In a very recent proposal, Garcia-Ripoll, Cirac and Zoller [104] present a geometric
gate, where the momenta of the involved ions are controlled by absorption of photons
from a discrete set of laser pulses. In this case requirements on the pulses naturally arise
for having zero displacement and for obtaining the desired phase shift. It can be shown
that these requirements are discrete versions of those expressed through g̃(ω) above.

6.3 Individual addressing of trapped ions

Apart from the ability to make gate-operations between any pair of ions, a key require-
ments for the implementation of a universal set of gate operations with trapped ions
is individual addressing of ions for single-qubit operations, as discussed in Chap. 5.
Individual addressing is, however, experimentally quite challenging due to the need for
high trap frequencies, to ensure efficient sideband cooling and high gate-speeds, which
leads to a small spatial separation of the ions (see also Ref. [24] for a discussion). For
the present project as well as for the work in the Innsbruck group, a typical trap fre-
quency is ωz = 2π × 1.0MHz, for which the equilibrium distance between two 40Ca+

ions is 5.6µm. At NIST, some of the more recent experiments have been conducted
at roughly 2π × 3MHz trap-frequency [14], but previously trap frequencies as high as
ωz = 2π×10MHz [105] have been used, in which case the spacing between two 9Be+-ions
is only 3.2µm. For experiments with more than two ions the minimum ion separation
becomes even smaller, decreasing as N−0.56 in an N-ion string [25].

The most obvious method for individual addressing is simply to focus a laser beam
onto a single ion, which for ion-ion distances of ∼ 5µm typically requires waist sizes
only a few times larger than the addressing beam wavelength, i.e., diffraction becomes
a limiting factor. The method was demonstrated by the Innsbruck-group [106] and
used in their demonstration of the Cirac-Zoller CNOT gate using a two-ion string [13].
In the latter experiment the ion-ion distance was 5.3µm and the addressing laser of
729 nm wavelength was focussed to 2.5 µm (FWHM). When addressing one ion, the
small fraction (2.5 · 10−3) of light incident on the second ion, gave rise to an estimated
fidelity loss in the gate-operations of 3% [13]. With the stronger traps used at NIST or
when more ions are involved, an even tighter focus is required to reduce the fidelity loss
to a few percent, thus making the method even more demanding [24]. A possible solution
to the problem is once again a dedicated lens system inside the vacuum chamber [103],
but it seems nevertheless to be relevant to consider other methods.

Some alternative methods for individual addressing of ions have been presented,
which use position-dependent micromotion [16, 107], but they are either hard to gen-
eralize beyond two ions or technically demanding. The gate-proposal by Mintert and
Wunderlich [82] using a strong magnetic field-gradient also allows individual addressing
of the ions, however, it is technically demanding to obtain the required field-gradient.
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Figure 6.6: The basic idea of individual addressing. When a string of trapped ions is
illuminated by a far-off resonant laser beam propagating perpendicular to the ion string,
as in Fig. 6.1, the energy levels of the ions are ac Stark-shifted. The figure shows the
qubit levels |↓〉 and |↑〉 of two ions confined in a harmonic trapping potential of oscillation
frequency ωz (external states |0〉, |1〉, etc..). Individual addressing is considered in two
cases. Case A: �ωz > E1,2 � �γres, and Case B: E1,2 � �ωz � �γres. Note: For
convenience, the energy-levels are shifted, such that the |↓〉 state has the same energy
for both ions.

6.3.1 Trapped-ion quantum logic utilizing position-dependent

ac Stark shifts

We have proposed [I] to use a position-dependent optical dipole potential, or ac Stark
shift, due to a far-off resonant laser beam to obtain a unique resonance-frequency of
each ion, which allows individual addressing of ions on a string just by tuning the
frequency of a laser beam illuminating the whole ion string. For the two-ion case the
position-dependent dipole potential corresponds to the third and the fourth term in
Eq. (6.1.7). In addition to individual addressing, the position-dependent ac Stark shift
can be used for selecting any pair of ions in a multi-ion string for implementing a two-
ion quantum gate, e.g., a Mølmer-Sørensen gate [78, 77], as we shall see below. With
respect to focussing of the ac Stark-shifting laser beam, the scheme is technically not
very demanding, since the beam is only supposed to be focussed to a spot size larger
than the ion spacing, which makes the scheme applicable even in experiments with very
tightly confining traps (ωz/2π ∼ 10MHz).

First, we consider the criteria for performing single qubit operations between states
of the type |↓, n〉 and |↑, n′〉. To selectively manipulate such two states of a single ion
in a string, the spectral resolution γres of the laser performing the qubit operation
must first of all fulfill the criterion for the resolved sideband-limit, i.e., γres � ωz.
Furthermore, the resolution must be sufficiently high that transitions in any other ion
are prohibited. For simplicity, we consider in the following a two-ion string, with one
motional mode having the oscillation frequency ωz, and with the ac Stark shift induced
energy difference between the two ions being E1,2 (see Fig. 6.6). First, we treat the
situation where �ωz > E1,2 � �γres as sketched in Fig. 6.6 (Case A). In this case,
E1,2 = �ωz/2 is the optimum choice, since a laser resonant with a specific transition
|↓, n〉–|↑, n′〉 in one ion, is maximally off-resonant with all the transitions of the type
|↓, n〉–|↑, n′〉, |↓, n〉–|↑, n′ + 1〉, or |↓, n〉–|↑, n′ − 1〉 in the other ion, leading to the highest
possible gate-speed. In the case E1,2 � �ωz � �γres (Case B in Fig. 6.6), a laser
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Figure 6.7: Relevant energy-levels and transitions in alkaline earth ions (e.g.,40Ca+,
88Sr+, and 138Ba+) for calculating the ac Stark-shifts of the qubit states [|↓〉 =
2S1/2(mJ = +1/2) and |↑〉 = 2D5/2(mJ = +5/2)] in the case of a linearly polar-
ized, far-off-resonant laser beam. The Stark-shifting laser beam is assumed to be so far
red detuned that the fine-structure splitting of the P- and F-levels can be neglected.

resonant with a transition |↓, n〉–|↑, n′〉 in one ion, is only resonant (or near-resonant)
with a transition |↓, n〉–|↑, n′ + m〉 in the other ion, where |m| � 1. In the Lamb-Dicke
limit such a transition is strongly suppressed. Case B is particularly interesting when
more than two ions are present, since even in such cases the gate-time will only be
limited by the vibrational frequency ωz instead of a fraction thereof as in Case A.

An experimental realization of the above situation can be achieved, e.g., by using
a string of two 40Ca+-, 88Sr+- or 138Ba+-ions. The qubit states |↓〉 and |↑〉 can be
represented by the two Zeeman sublevels of the 2S1/2 ground state as we do in 40Ca+,
or for instance by one sublevel of the ground state and one sublevel of the metastable
2D5/2 state, as the Innsbruck group does. Here, we postpone the discussion of our
own choice of qubit states and discuss first the case where |↓〉 = 2S1/2(mJ = +1/2)
and |↑〉 = 2D5/2(mJ = +5/2), since this turns out to be more favorable. The far-off-
resonant Stark-shifting laser beam is assumed to propagate perpendicular to the ion
string and its polarization is assumed to be linear along the axis defined by the ions.
The relevant internal levels of the considered ions, with respect to the Stark-shifting
laser beam, are shown in Fig. 6.7. For simplicity, we assume that the Stark-shifting laser
beam is so far red detuned from any transition-frequency that fine-structure splitting
can be neglected. The ac Stark shift ε↑−ε↓ of the |↑〉− |↓〉 transition of a single ion can
be calculated by summing the contributions from all relevant dipole-allowed couplings.
The dominant shift of |↓〉 is from the nS − nP coupling, whereas the shift of |↑〉 is
composed of contributions from a series of (n− 1)D − n′F couplings. This gives rise to
the following approximate expression for the ac Stark shift:

ε↑ − ε↓ =
3πc2

2

[
1

ω3
P

(
ΓP

ωP − ωL
+

ΓP

ωP + ωL

)
(6.3.1)

−
∑
n′

1
ω3

n′F

(
Γn′F

ωn′F − ωL
+

Γn′F

ωn′F + ωL

)]
Iion ≡ ψ × Iion,

where ω is the laser-frequency, ωP and ωn′F are the nS − nP and (n − 1)D − n′F
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transition-frequencies, ΓP and Γn′F are the corresponding spontaneous decay rates,
Iion is the intensity of the Stark-shifting laser beam at the position of the ion and ψ
accounts for the properties of the ion and the laser-frequency [99]. Assuming a Gaussian
transverse intensity profile as given by Eq. (6.1.4), a maximum difference in the ac Stark
shift of the ions is obtained by displacing the laser beam by W/2 with respect to the
center of the ion string, i.e., with z0 = W/2 in Fig. 6.1, z1 = −∆z/2 and z2 = ∆z/2.
In this case Eqs. (6.1.4) and (6.3.1) lead to the following difference in the transition-
frequency of the ions:

E1,2 = κ (ε↑ − ε↓) = κψI0, (6.3.2)

where

κ = 2 sinh(∆z/W ) exp
{
−1

2
[
1 + (∆z/W )2

]}
. (6.3.3)

In Fig. 6.8(a), the laser power required to achieve an ac Stark shift difference E1,2 =
�ωz/2 in the case of ωz = 2π × 1MHz is presented for 40Ca+, 88Sr+, and 138Ba+ as a
function of the laser wavelength 5. The waist of the laser beam is taken to be 30µm,
which is much larger than the equilibrium spacing of 5.6µm, 4.3µm and 3.7µm for the
40Ca+-, 88Sr+-, and 138Ba+-ions, respectively. The required power, which approaches
a constant in the long-wavelength limit, is well within reach of commercial lasers, e.g.,
a CO2 laser (λ = 10.6µm), a Nd:YAG laser (λ = 1064 nm), or a frequency-doubled
Nd:YAG laser (λ = 532 nm).

As in the gate-proposal in Sec. 6.2, an important parameter to consider is the spon-
taneous scattering rate, Γsc, of light from the Stark-shifting laser beam, since it will
limit the ultimate coherence time. Under the assumptions made above in calculating
the ac Stark shifts and assuming an equal average population in the two internal states,
the sum of the scattering rates for both ions can be expressed as:

Γsc =
E1,2

κψ

e−1/23πc2ω3

2�

×
[

1
ω6

P

(
ΓP

ωP − ωL
+

ΓP

ωP + ωL

)2

+
∑
n′

1
ω6

n′F

(
Γn′F

ωn′F − ωL
+

Γn′F

ωn′F + ωL

)2
]
,

(6.3.4)

where ∆z/W � 1, as obeyed by the parameters used in Fig. 6.8, is assumed.
In Fig. 6.8(b), the coherence time (or rather Γ−1

sc ) is plotted as a function of laser
wavelength, and we see that in the long-wavelength limit, the coherence time grows as
the wavelength to the third power, which is also readily deduced from Eq. (6.3.4). Hence,
at first, a CO2-laser seems to be favorable. However, since the lifetime of the 2D5/2

level is only 1.1 s, 345ms, and 47 s for 40Ca+, 88Sr+, and 138Ba+, respectively, the use of
the fundamental wavelength of a Nd:YAG laser might be more attractive, since this will
be much easier to focus to the required spot size. Actually, since the maximal coherence
time is limited by heating of the ions on a timescale of 1−100ms in current experimental

5In Fig. 6.8 we do take the fine-structure splitting and the different couplings to the fine-structure

levels into account. For the (n − 1)D − n′F transitions we sum over n′ = 4 − 10. The data used are

from Ref. [108] (40Ca+) and Refs. [109, 110, 111] (88Sr+ and 138Ba+).
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(a) (b)

Figure 6.8: (a) The required laser power as a function of wavelength for obtaining an
ac Stark shift difference E1,2 = �ωz/2, when ωz = 2π × 1.0MHz and W = 30µm for
40Ca+, 88Sr+, and 138Ba+. (b) The corresponding coherence time (Γ−1

sc ).

setups [37, 92, 105] even a continuously operated frequency-doubled Nd:YAG laser can
be used without introducing significant additional decoherence.

Once again, it is advantageous not to choose the waist W overly large as compared
to ∆z, since the power required to achieve a certain energy difference E1,2 grows as W 3

and since the total scattering rate for a fixed E1,2 also increases with W (Γsc ∝ W ).
Furthermore, it should be noted that although a large E1,2 implies a short coherence
time, it also allows a high gate-speed.

The effect of the (internal state dependent) dipole-force exerted on the ions by the
Stark-shifting laser beam has to be considered, since it is unwanted in this context of
individual addressing. Fortunately, with the relatively large waist and the low intensity
level used here (as compared to the gate proposal above), the effect of the dipole force
is small, as the following estimate shows. The maximal optical dipole force will be on
the order of Fdip = −∂ε↓/∂z ≈ E1,2/∆z. Taking the example of 40Ca+, and using the
same parameters as above, the maximal dipole force will be ∼ 105 times smaller than
the confining force exerted by the trap, and the associated change in the equilibrium
distance between the ions, δz, is ∼ 300 times smaller than the spread of the vibrational
wavefunction. This displacement is totally negligible. Nevertheless, when the Stark-
shifting laser beam is turned on, an ion obtains a speed v ≈ δz/trise, where trise is
the “rise-time” of the Stark-shifting laser beam. The associated kinetic energy must be
much smaller than �ωz, which is fulfilled if trise � 1 ns. In practice, this is no limitation.

The different ionic transition-frequencies, while applying the Stark-shifting laser
beam, leads to a differential phase-development of the various ions, which in the case of
two ions amounts to a phase-difference of ∆φ = E1,2T/�, when the Stark-shifting beam
has been applied for a gate-time T . Since the frequency-differences are known, this can
be accounted for by controlling the phase of the addressing light-field. Power fluctua-
tions of the Stark-shifting beam will, however, also in this scheme give a contribution to
the phase-difference which cannot easily be corrected for. To estimate this difference,
suppose the intensity of the Stark shifting beam varies as I(t) = I0[1+ εf cos(ωf t+ϕ)].
After a gate time T and having corrected by ∆φ, there will be a remaining phase-
difference between two ions of εfE1,2[sin(ωfT + ϕ)− sin(ϕ)]/(�ωf ). Thus, the most se-
vere frequency components are those fulfilling ωfT � 1, for which the phase-difference
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is ∼ εE1,2T/�. Using E1,2/� ∼ ωz, the condition εωzT � 1 must therefore be fulfilled
to keep the phase-difference small. Combining this with the condition ωzT � 1 for
avoiding off-resonant sideband excitations, we find

εfωzT � 1 � ωzT, (6.3.5)

which, e.g, can be fulfilled with εf = 10−4 and ωzT = 100. As mentioned in Sec. 6.2,
εf = 10−4 can almost be provided by a commercially available Laser Power Controller 6.

Above, we considered in detail the simple case of two ions and one motional mode.
If we take both motional modes, i.e., the center-of-mass mode at frequency ωz and the
stretch mode at frequency

√
3 ωz, into account, the optimal value of E1,2 is changed to

(
√

3−1)/2�ωz = 0.366�ωz, but our conclusions remain valid. Further, we can generalize
Case A and Case B of Fig. 6.6 up to at least five ions, which is sufficient for applying
our proposal in combination with the proposal for large scale quantum computation in
an array of ion traps mentioned in Chap. 5 [89]. To go much beyond five ions is difficult
in Case A due to the additional energy levels, while in Case B the only limit is that
E1,2/� should not coincide with the frequency of one of the higher motional modes.

In addition to individual addressing, a Stark-shifting laser beam can be used for
realizing two-ion quantum logic operations using the Mølmer-Sørensen scheme [77, 78],
between any two ions in a string. As an example, we show in Fig. 6.9, how one can
make two ions in a three-ion string have the same unique resonance-frequency, needed
for making a Mølmer-Sørensen gate between these two ions. Two neighbouring ions,
e.g., Ion 1 and Ion 2 in Fig. 6.9 can have the same resonance-frequency, if the center of
the Stark-shifting beam is positioned halfway between Ion 1 and Ion 2.

Figure 6.9: A Stark-shifting laser beam making two ions have the same unique
resonance-frequency. This allows for selective addressing of any pair of ions for two-qubit
operations.

Above we made the choice |↑〉 = 2D5/2(mJ = +5/2), but we could also have chosen
|↑〉 = 2D5/2(mJ = +1/2), which has been used in the most recent experiments with
40Ca+ by the Innsbruck group [13]. In this case there is an additional contribution to
ε↑ − ε↓ in Eq. (6.3.1) from the 3d 2D5/2–4p 2P3/2 transition at 854 nm, which increases
(decreases) ε↑ − ε↓ for wavelengths above (below) 854 nm.

Now, turning to our own choice of qubit states in 40Ca+, we consider the case where
|↓〉 = 2S1/2(mJ = −1/2), |↑〉 = 2S1/2(mJ = +1/2), which also can be realized using
88Sr+ or 138Ba+. Here we present results for 40Ca+ and 138Ba+. An ac Stark shift can be
induced by a circularly polarized Stark-shifting laser beam with wavelength λL tuned in
between the two fine-structure levels of the P -states, as shown in Fig. 6.10. In this case

6Brockton Electro Optics.
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Figure 6.10: Relevant energy-levels and transitions (dashed lines) in alkaline earth ions
(e.g.,40Ca+, 88Sr+, and 138Ba+) for calculating the ac Stark-shifts of the qubit states
[|↓〉 = 2S1/2(mJ = −1/2) and |↑〉 = 2S1/2(mJ = +1/2)] using a circularly polarized
Stark-shifting laser beam.

the required power follows from Eq. (6.3.2) using ψ+−ψ− [see Eqs. (6.2.17) and (6.2.18)]
for ψ and the off-resonant scattering rate is given by e−1/2E1,2Γ̃sc/[κ(ψ+ −ψ−)] [Γ̃sc is
defined in Eq. (6.2.36)]. The required power and the scattering rate are plotted for 40Ca+

in Fig. 6.11(a) using the same parameters as above, i.e., ωz = 2π×1MHz, E1,2 = �ωz/2
and W = 30µm. For the optimal choice of laser parameters (λL = 395.1 nm and 64mW
laser power) the scattering rate is approximately 80Hz. Unfortunately, this scattering
rate allows only for a limited number of gate-operations, even if the Stark-shifting laser
beam only is present during the quantum logic operations. For 88Sr+ and 138Ba+

somewhat lower scattering rates can be obtained, owing to their larger fine-structure
splitting. Specifically for 138Ba+ the graph in Fig. 6.11(b) shows a scattering rate of
8Hz at the optimal choice of 474.5 nm wavelength and 540mW laser power. Once again,
an interesting alternative is a wavelength of 488 nm, which is directly available from an
Argon-ion laser. Applying the same approach to 25Mg+ or 9Be+ (with hyperfine-levels
of the ground state as qubit-levels [9]) is impracticable, due to their relatively small
fine-structure splitting. Going to the long wavelength limit for 40Ca+, 88Sr+ or 138Ba+

is not very feasible for 40Ca+ and 88Sr+ with the parameters used above, since the
required laser power is about 960W and 170W, respectively. For 138Ba+ the required
power is about 30W in the long wavelength limit, which is feasible, but maybe not very
attractive.

6.3.2 Discussion

In conclusion, individual or selective addressing of trapped ions can be achieved by
utilizing a Stark-shifting laser beam with modest focusing- and power-requirements.
The performance of the scheme is good with the qubit states defined by sublevels of
the 2S1/2 ground state and the 2D5/2 state, respectively, in 40Ca+, 88Sr+ or 138Ba+,
in which case decoherence due off-resonant scattering events can be made negligible.
Furthermore, the possibility of selective addressing of two distant ions in a string seems
to be very attractive. By combining our proposal with the NIST trap-array proposal
Ref. [89], it should even be applicable in large scale quantum computation.

For the present project, where the qubit states are represented by the Zeeman sub-
levels of the ground state, the Stark-shifting method scheme gives rise to a relatively
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(a) (b)

Figure 6.11: The required laser power and the scattering rate as a function of wavelength
for obtaining an ac Stark shift difference E1,2 = �ωz/2, when ωz = 2π × 1.0MHz and
W = 30µm with the choice |↓〉 = 2S1/2(mJ = −1/2) and |↑〉 = 2S1/2(mJ = +1/2) in
(a) 40Ca+ and (b) 138Ba+.

high off-resonant scattering rate or requires a very large power in the long wavelength
limit. Thus, in our case the most relevant method for individual addressing seems to
be focussing of a laser beam onto a single ion. In combination with the relatively large
ion-ion distances, which can be used in connection with the gate presented in Sec. 6.2,
the focussing method would even be relatively simple to employ.
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Chapter 7

The linear Paul trap

With the present chapter, we come to the experimental part of this thesis, which we
shall enter encouraged by the following quotation 1:

” . . . quantum phenomena do not occur in a Hilbert space, they occur in a laboratory.”

-Asher Peres.

To make quantum phenomena such as sideband cooling and quantum logic occur
in our lab, a linear Paul trap suitable for such experiments has been designed and
constructed. This trap is presented in the present chapter.

In Sec. 7.1 the theory of confinement of charged particles in a linear Paul trap is
introduced. In Sec. 7.2, we present the trap and discuss the design considerations, which
are based on the specific requirements to the trap frequencies discussed in previous
chapters.

7.1 Linear Paul trap theory

The realization of a linear Paul trap, which we shall consider here, is illustrated in
Fig. 7.1. It consists of four plate electrodes in a quadrupole configuration, where two
diagonally opposite electrodes (dark blue in Fig. 7.1) each are sectioned into a center
piece and two equally wide end-pieces. By applying a suitable combination of alternat-
ing and static voltages to the electrodes, it is possible to trap charged particles near the
center of the trap, as indicated by the three ions (red dots) in a string configuration in
Fig. 7.1. Confinement in the x–y plane (the radial plane) is obtained by applying a si-
nusoidally oscillating voltage (in the following named the RF-voltage) to two diagonally
opposite electrodes while keeping the other two electrodes on ground with respect to
the RF-voltage. This gives rise to an oscillating saddle potential, which, for a suitable
RF-voltage and oscillation frequency, leads to an effectively confining potential in the
radial plane. Axial confinement along the z-axis is obtained by applying a DC so-called
endcap voltage, Uend, to the four electrode end-pieces.

For a quantitative description of the confinement of a charged particle, consider first
the radial confinement due to an RF-voltage, URF cos(ΩRF t), applied to the two light

1As quoted in Ref. [18].
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blue electrodes in the y–z plane in Fig. 7.1. In order to give a more general description,
which will be useful later on, we also take into account a DC-voltage, Ua, applied to
the six dark blue electrode pieces in the x–z plane in Fig. 7.1. The resulting electric
potential in the radial plane is, to second order in the spatial coordinates, given by

Φ(x, y, t) = [Ua − URF cos(ΩRF t)]
x2 − y2

2Lr2
0

+
1

2L
[Ua + URF cos(ΩRF t)] , (7.1.1)

taking the origin of the coordinate system to be at the symmetry-center of the trap.
r0 denotes the distance from the trap center to the surface of the electrodes and L
is a number of the order of unity. For electrodes of a hyperbolic cross-section L = 1,
whereas for the plate electrodes shown in Fig. 7.1, the potential is comparatively weaker,
meaning that L > 1. Therefore L is named ‘the loss factor’ in the following [112].

For a single charged particle, the equations of motion in the radial plane can be put
onto the Mathieu form [113]:

∂2x

∂τ2
+ [a − 2q cos(2τ)] x = 0 (7.1.2)

∂2y

∂τ2
+ [−a + 2q cos(2τ)] y = 0, (7.1.3)

where we have introduced the dimensionless parameters

q =
2QURF

mLr2
0Ω

2
RF

, a =
4QUa

mLr2
0Ω

2
RF

and τ =
ΩRF t

2
. (7.1.4)

Q and m are the charge and the mass of the trapped particle, respectively. Each of
these so-called Mathieu equations has stable solutions in certain regions of the a–q plane,
which implies that the radial motion of the charged particle is stable in certain stability
regions, where both Mathieu equations have stable solutions. There are in principle an
infinite number of such stability regions (see, e.g., Refs. [114] or [115]), but in practice
the trap is only operated within the largest one, which is shown in Fig. 7.2. For a, q � 1,
the radial motion is described by the equations [114, 115]

x(t) = x0

[
1 − q

2
cos(ΩRF t)

]
cos(ωsec,xt) (7.1.5)

y(t) = y0

[
1 +

q

2
cos(ΩRF t)

]
cos(ωsec,yt), (7.1.6)

where

ωsec,x =
1
2

√
q2

2
+ aΩRF and ωsec,y =

1
2

√
q2

2
− a ΩRF . (7.1.7)

This means that the particle performs a so-called secular motion along the x-axis and
the y-axis with amplitudes x0 and y0 at the secular frequencies ωsec,x and ωsec,y, re-
spectively. Superimposed on the secular motion is a fast, small-amplitude so-called
micromotion at the RF-frequency, ΩRF . Note, that the amplitude of the micromotion
[i.e., qx0 cos(ωsec,xt)/2 for the x-coordinate] is proportional to the distance from the
trap center. Particularly, there is no micromotion on the trap axis, which is essential
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Figure 7.1: Geometry of the linear Paul trap presented in this chapter. An alternating
voltage is applied to two diagonally opposite electrodes (light blue), which provides
confinement in the x–y plane (the radial plane), as described in the text. Ua and the
axially confining endcap voltage, Uend, are DC-voltages applied to the other electrodes
as indicated.

Figure 7.2: The largest stability region in the a− q plane for a charged particle moving
in the x–y plane subject to the potential of Eq. (7.1.1).

for the idea of using a string of trapped ions in a linear Paul trap for quantum logic
operations. We shall return to the discussion of micromotion in Chap. 9.

Axial confinement of the charged particle is accomplished by applying the endcap
voltage, Uend, to the four end-pieces of the dark blue electrodes in Fig. 7.1. Near the
trap center this gives rise to the potential

Φend(x, y, z) = κUend

[
z2 − 1

2
(1 − χ)x2 − 1

2
(1 + χ)y2

]
, (7.1.8)

where κ is a geometrical factor of the order of (2z0)−2, where 2z0 is the width of the
electrode center-pieces. The parameter χ accounts for the fact that the endcap voltage
acts asymmetrically in the radial plane. From Eq. (7.1.8) it follows that the motion of
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the charged particle along the z-axis is harmonic at frequency

ωz =

√
2QκUend

m
. (7.1.9)

Since Φend contains x- and y-dependent terms (to fulfill the Laplace equation), the
application of the endcap voltage gives rise to a modified set of Mathieu equations for
the radial motion:

∂2x

∂τ2
+ [a + az(1 − χ) − 2q cos(2τ)] x = 0 (7.1.10)

∂2y

∂τ2
+ [−a + az(1 + χ) + 2q cos(2τ)] y = 0, (7.1.11)

where

az = −2
(

ωz

ΩRF

)2

(7.1.12)

always is negative. This results in a modification of the stability regions in the a–q
plane [116] and a change of the radial trap frequencies:

ωsec,x 
→ ωx =
1
2

√
q2

2
+ a + az(1 − χ) ΩRF (7.1.13)

ωsec,y 
→ ωy =
1
2

√
q2

2
− a + az(1 + χ) ΩRF . (7.1.14)

Thus, for χ < 1 the endcap voltage has a defocussing effect in the radial plane.
Neglecting micromotion, the potential energy of the ion can be written as that of a

three-dimensional harmonic oscillator

U(x, y, z) =
1
2
m
(
ω2

xx2 + ω2
yy2 + ω2

zz2
)
, (7.1.15)

with the radial trap frequencies, ωx and ωy, and the axial, ωz, determined by the trap
geometry, the applied voltages and the charge and the mass of the ion.

7.2 Trap design and construction

7.2.1 Design considerations

In previous chapters we have seen that the different aspects of trapped-ion quantum
logic experiments, e.g., sideband cooling and gate operations, only works efficiently,
if the trapping potential meets certain criteria. First of all, the potential should be
harmonic to a very good approximation, since the vibrational energy levels must be
equidistantly spaced. Second, the trap frequencies should have a certain magnitude.
Since quantum logic operations involves the axial modes, the magnitude of the axial
oscillation frequency, ωz, is subject to several conditions. ωz sets in turn a lower bound
on the radial trap frequencies due to the stability condition for an N -ion string given
by Eq. (3.2.3). In the following, we consider first the most important conditions on ωz

and argue that the previously used ‘typical’ value of ωz ∼ 2π × 1MHz is a reasonable
choice. After that we consider the implications for the radial trap frequencies.

The axial trap frequency is important in, at least, the following connections:
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• It defines the frequency spacing between vibrational levels, which must be much
larger than the spectral resolution of the Raman transition between the qubit
states, in order to fulfill the condition for the resolved sideband-limit.

• In most schemes for quantum logic operations, the ‘clock-frequency’ of the gate-
operations scales linearly with ωz [see, e.g., Eq. (5.2.2)].

• The Lamb-Dicke parameter η (∝ √
1/ωz) should be small enough to fulfill the

condition of the Lamb-Dicke limit, i.e. η
√

n + 1 � 1. On the other hand it
should be sufficiently large that first-order vibrational state changing transitions
are not too strongly suppressed.

• To have a good starting point for sideband cooling, the average axial vibrational
quantum number after Doppler cooling, n ∼ kBTD/(�ωz), should be small.

• For individual addressing of ions on a string, ωz should not be too large, since the
equilibrium distance between the ions scales as ω

−2/3
z .

In addition to the items on this list, the size of the trap is an important parameter, both
for practical reasons and due to heating of the ion motion as discussed below. The trap
size is indirectly set by the desired trap frequencies, since if large trap frequencies, i.e.,
large electric field gradients, are needed, the trap must necessarily be small in order to
avoid unreasonably large voltages. The size of the trap, or rather r0, can be estimated
as follows. For a given value of ωz the string stability condition given by Eq. (3.2.3)
puts a lower bound on ωx and ωy, which for small a and az roughly are equal to
qΩRF /

√
8 ≡ ωr. With ωr fixed to a value fulfilling the string stability condition and

assuming q fixed (within the stability region in Fig. 7.2), ΩRF is therefore fixed. Using
ωr = qΩRF /

√
8 and the definition of the q-parameter [Eq. 7.1.4], we find that

URF

Lr2
0

=
4mω2

r

Qq
. (7.2.1)

Taking ωz = 2π×1MHz and requiring four ions on a string as a reasonable benchmark,
ωr > 2π × 2MHz is required due to Eq. (3.2.3). Using q = 0.3 2, we arrive at ΩRF =√

8ωr/q ≈ 2π × 20MHz and

URF

Lr2
0

∼ 1 kV/mm2 (7.2.2)

for 40Ca+. Since we cannot expect URF to be much larger than 1 kV at ΩRF ≈ 2π ×
20MHz without getting into technical difficulties, we arrive at a quantitative limit to
the trap size of r0 � 1mm for L � 1.

Concerning heating of the motion of ions, there are at least two known relevant
effects, namely the effect of thermal voltage fluctuations in the electrodes (Johnson
noise) [105, 117] and fluctuations of so-called patch potentials [118], i.e., unwanted po-
tentials which arise if regions on the surfaces of the electrodes are covered with some
material, e.g., calcium in our case [105]. The heating rate due to Johnson noise is
proportional to R(ω = ωz)r−2

0 ω−1
z , where R(ω) is the frequency-dependent resistance

2Larger q is an option, but it does increase the effect of any micromotion, which in practice is

present.
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between two electrodes in a lumped-circuit model [117]. The heating rate due to fluc-
tuating patch potentials is proportional to S(ω = ωz)r−4

0 ω−1
z , where S(ω) is the power

noise spectral density [105]. Experimentally, heating rates have been measured by the
NIST group to be of the order of 1 phonon per 1–10ms [92, 105] in traps of a few hun-
dred µm size at trap frequencies of ωz ∼ 2π× 3− 10MHz. In Ref. [105], a survey of the
heating rates in traps of various sizes shows consistency with a r−4

0 -scaling, thus sug-
gesting that the major heating source is fluctuating patch potentials. In Refs. [34, 37]
from the Innsbruck group, heating rates of the order of 1 phonon per 100ms are quoted
for trap sizes of 2r0 ∼ 1mm with ωz ∼ 2π× 1MHz, i.e., similar to the trap size and the
axial trap frequency in the example above.

In conclusion there are several good reasons on the list to make ωz as large as
possible, but there are upper limits given by the desired Lamb-Dicke parameter, the
need for individual addressing and indirectly by the size of the trap, for which the factor
of r−4

0 in the patch-potential heating rate is particularly severe.
With this in mind, ωz ∼ 2π × 1MHz seems to be a good compromise, since the

resolved-sideband limit can be reached, sideband cooling works efficiently (Chap. 3)
and it gives a reasonable value for the Lamb-Dicke parameter (∼ 0.2). According to
Eq. (7.2.2) and the discussion following it, a reasonable characteristic trap size would be
r0 � 1mm for this choice of axial trap frequency. At least in the Innsbruck experiments,
the heating rate for a trap of this size is roughly 1 phonon per 100ms [34, 37], which
seems to be acceptable.

7.2.2 Electrode shape and dimensions

Apart from the above considerations, the experience gained from construction of other
linear Paul traps in our group [119] has naturally played an important role for the
design of the trap presented here. However, since this trap is smaller than the other
traps (r0 = 1.75mm and r0 = 3.50mm have been used [120]), some changes of the
design have been necessary.

In the other traps, the electrodes are cylindric with a diameter around 2.3r0, since
this leads to a harmonic radial potential to a very good approximation [121]. For the
present small trap, thin plates were chosen as electrodes in order to have a better
optical access to the trap center than it would be the case with cylindrical electrodes
of diameter 2.3r0. Using plate electrodes, the potential can still be made harmonic to
a good approximation, as shown by the numerical calculations presented below.

In the previously constructed traps, all four electrodes are sectioned into three pieces.
RF-voltages are applied to all four electrodes [+URF cos(ΩRF t)/2 applied to two diag-
onally opposite electrodes and −URF cos(ΩRF t)/2 applied to the other two electrodes].
DC-voltages can be applied to all twelve electrode pieces, with the endcap voltage being
applied to the eight end-pieces. The RF-voltage and the DC-voltage can be adjusted
on all twelve electrode pieces, which gives the possibility of adjusting the equilibrium
position of the trapped ions as well as the shape of the potential. In an attempt to
carry these possibilities along to the new trap, it was therefore designed and build with
all four electrodes sectioned into three parts, as it can be seen from Fig. 7.4(b) be-
low. The voltages are, however, effectively applied as in Fig. 7.1. It turned out that
with the higher RF-frequency used for the present trap 3, the RF-voltage adjustment

3Previous traps: ΩRF /2π ∼ 5MHz.
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on the individual electrode pieces was hampered by a significant ‘cross-talk’ between
them, meaning that when the RF-voltage was supposed to be changed on a single elec-
trode, the other electrode voltages were essentially changed by the same amount. This
‘cross-talk’ has been attributed to stray capacitance and/or inductance between the
electrodes, between wires connected to the electrodes and the surroundings, and the
fact that electronic components are non-ideal at high frequencies. Eventually, it was
therefore decided to reduce the effective number of electrode pieces by applying the
RF-voltage only to six diagonally opposite electrode pieces, with the electrode pieces
being shortcut three by three. Consequently, the endcap voltage can only be applied to
four electrode pieces. This reduction of the effective number of electrode pieces dimin-
ishes the possibilities of cross-talk at the cost of a reduced flexibility. The remaining
adjustment possibilities and suppression of noise originating from the RF-voltage will
be discussed in more detail in Chap. 8. The mechanical construction of the trap will
be described below, after an account of the numerical calculations for determining the
dimensions of the electrodes.

Numerical calculations of the trapping potential

Under the condition that r0 should be around 1mm or less and that the electrodes should
be thin plates (thickness < r0), the trap dimensions was determined from numerical
calculations of the trapping potential with the goals of minimizing anharmonic terms in
the potential and minimizing the loss factor L. First the 2D electrode configuration in
the radial plane, i.e., the parameters r0, the electrode thickness and the electrode length
was determined. Following that, the 3D electrode configuration, i.e., the width and
the sectioning of the electrodes, was determined. For a given electrode configuration,
the static potential due to voltages applied to the electrodes was calculated using the
program ‘Simion’, which solves the Laplace equation on a grid of points. The spatial
resolution of the grid was 5µm for 2D-calculations and 42µm for 3D-calculations.

For the configuration in the radial plane, we chose a distance between the electrodes
of r0 ≈ 0.75mm, as a compromise between having a small trap (not too large voltages)
and good access to the central region of the trap. The electrodes are chosen to be
much longer than r0, such that their exact length does not influence the potential in
the trap center. Thus, for the configuration in the radial plane the only free parameter
left is the thickness of the electrodes, which hence should be optimized with respect to
minimization of the anharmonic terms and L. To this end, the static potential in the
radial plane, Φ(x, y), was calculated, when a voltage, URF , was applied to two diagonally
opposite electrodes and the other two electrodes were on ground. r0 = 0.71mm was
used. Then the potential along the x-axis (by symmetry equivalent to the y-axis) was
fitted to the even terms, C2ix

2i (i = 0 − 4), of an eight order polynomial. From this
fit, the loss factor L = URF /(2r2

0C2) and the anharmonicity of the potential along the
x-axis, defined as [112]

fx(x) =
Φ(x, y = 0) − C0 − C2x

2

C2x2
(7.2.3)

could be determined. For values of x, which are relevant for a cold ion-string, we have
fx(x) ≈ C4x

2/C2. Calculations were made for three different values of the electrode
thickness: 0.15mm, 0.25mm and 0.35mm. The obtained values of C4/C2 ≈ fx(x)/x2

and L are presented in Table 7.1, showing that a thickness of 0.25mm or 0.35mm is most
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Thickness[mm] L C4/C2

0.15 1.31 1.7 · 10−5

0.25 1.23 6.3 · 10−6

0.35 1.18 7.1 · 10−6

Table 7.1: The loss factor L and C4/C2 ≈ fx(x)/x2 (x in units of the spatial resolution
of 5µm) for three different values of the electrode thickness.

favorable. Since there is no significant difference between the two, 0.25mm thickness
was chosen, since various metals are available in this thickness as a standard.

Figure 7.3: C4,z/C2,z ≈ fz(z)/z2 (z in units of the spatial resolution of 42µm) vs. width
of the central electrode pieces. The zero crossing is around 2z0 = 1.35mm.

The sectioning of the electrodes was determined from 3D-calculations of the poten-
tial. The eight end-pieces are chosen so wide that their exact width is irrelevant for the
potential near the trap center. The spacing between the central electrode pieces and the
end-pieces was fixed to 0.12mm in the calculations and the distance between diagonally
opposite electrodes was 2r0 = 1.50mm, almost as above. Thus, the width of the four
central electrode pieces, 2z0, is the only free parameter left. This width was optimized
with respect to the anharmonicity along the z-axis, fz(z), defined analogously to fx(x).
Once again, the anharmonicity is essentially given by C4,zz

2/C2,z for all relevant values
of z, where C2,z and C4,z are the coefficients of the second and the fourth order term,
respectively, in the potential along the z–axis. The values obtained for C4,z/C2,z, with
z in units of the spatial resolution of 42µm, are shown in Fig. 7.3 for different values of
2z0. We observe that the anharmonicity, or at least the leading anharmonic term, is zero
around a width of 2z0 = 1.35mm and approaches zero at large values of 2z0. A width of
2z0 ≈ 1.35mm was chosen, since the alternative of rather wide central electrode pieces
(� 10mm) would require large endcap voltages.

Numerical calculations using r0 = 0.75mm, 2z0 = 1.33mm, an electrode thickness
of 0.25mm and a spacing between the central electrode pieces and the end-pieces of
0.12mm yields the following trap parameters for a single 40Ca+ ion in the trap:
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ωz = 2π × 177 kHz ×
√

Uend[V] (7.2.4)

az = − 0.0627 × Uend[V] ×
(

ΩRF [MHz]
2π

)−2

(7.2.5)

a = 0.367 × Ua[V] ×
(

ΩRF [MHz]
2π

)−2

(7.2.6)

q = 0.184 × URF [V] ×
(

ΩRF [MHz]
2π

)−2

(7.2.7)

χ = 0.269 (7.2.8)

7.2.3 Trap construction

Pictures of the trap are shown in Fig. 7.4. The electrodes are made of molybdenum,
which is a suitable material, since it has a large conductivity (∼ 1/3 of the conductivity
of copper), is non-magnetic and sufficiently stiff that the thin plates do not bend. The
electrodes were cut and polished 4 in the chemistry-lab at the institute, to final dimen-
sions (thickness×width×length) of (0.25± 0.01)mm× (5.0± 0.1)mm× (20.0± 0.3)mm
for the end electrode pieces and (0.25± 0.01)mm× (1.30± 0.01)mm× (20.0± 0.3)mm
for the central electrode pieces. The distance between diagonally opposite electrodes
is 2r0 = (1.44±0.02

0.00)mm and the spacing between the central electrode pieces and the
end-pieces is

(
0.10±0.02

0.00

)
mm. For technical reasons, the dimensions are not exactly

the same as in the numerical calculations, but after a proper rescaling they are still
‘optimal’ within the spatial resolution of the calculations.

The electrodes are mounted in four slits in the Macor-block 5 seen in Fig. 7.4, and
fixed using UHV-compatible, non-conducting glue 6. The Macor-holder has a ∅6-hole
for optical access along the trap axis and 3mm wide slits for optical access perpendicular
to the trap axis, both horizontally and vertically. The holder is fixed to a stainless steel
mounting [can be seen in Fig. 7.4(b)], which in turn is fixed to a stainless steel base 7.
The base is mounted in the center of a vacuum chamber, which will be described in
more detail in the next chapter. For feeding in voltages to the electrodes, short pieces
of ∅0.25 tantalum wires are spot-welded onto the electrodes and connected either to ∅1
copper-wire or to electronic components, which will be described in the next chapter.
The thin wire seen below the trap in Fig. 7.4(a) is a ∅0.2 tungsten-wire, which is placed
immediately beneath the trap center. Serving as a glow lamp, it can mark the trap
center, when adjusting an imaging system, which also is described in the next chapter.
Since it never has been necessary to use the lamp for this purpose and it probably
contaminates the electrodes when glowing, it could be left out in future traps of this
type.

4Polished using a 1 µm diamond polishing paste.
5Macor� is a machinable glass-ceramic material, which is ultrahigh vacuum (UHV) compatible and

non-conducting.
6Epotek H74F, two-component epoxy-glue.
7Since the mounting is close to the trap center, it is made of essentially non-magnetic stainless steel,

grade 316, in contrast to the standard grade 304 used for the base.
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(a) (b)

Figure 7.4: Pictures of the linear Paul trap. The thin metal plates are the molybdenum
electrodes and the white block holding the electrodes is made of Macor. The precise
trap dimensions are given in the text. (a) Front view, the Macor block is 15mm wide.
(b) Side view, the Macor block is 15mm long.
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Chapter 8

Experimental equipment and
methods

In this chapter, we describe the experimental equipment and methods which have been
used in the experiments described in Chap. 9 and Chap. 10, as well as equipment for
controlling laser frequencies and making laser pulses (Sec. 8.5), which will be used for
the future trapped-ion quantum logic experiments.

8.1 Vacuum chamber

The trap presented in the preceding chapter is mounted in the vacuum chamber shown
in Fig. 8.1. The vacuum chamber is made of stainless steel and has an inner diameter
of 30 cm. It is mounted in a hole in an optical table, from here on referred to as
the trap table. An ion pump and a sublimation pump are permanently connected to
the vacuum chamber and a turbo molecular pump can be connected via a roughing
valve 1. To reach ultrahigh vacuum (UHV) conditions the turbo pump is used for
initial evacuation during a bakeout of the system to about 150◦C lasting two to three
days. This brings the chamber pressure down to the working pressure of the ion pump
and by lowering the chamber temperature to room temperature and using the ion pump
and the sublimation pump a chamber pressure of roughly 4 · 10−11 Torr can eventually
be obtained. The pressure is monitored by an ion gauge 2 and the restgas content in
the chamber can be determined using a restgas-analyzer (RGA) 3.

In the vacuum chamber, a plate with threaded holes is mounted, which enables
easy mounting of various parts in the chamber. The following parts are mounted in
connection with the vacuum chamber:

• The trap is mounted on a stainless steel base in the center of the vacuum cham-
ber. The tantalum wires, which are spot-welded onto the electrodes, are con-
nected either to ∅1 copper-wire or to a resistor and a capacitor as illustrated

1The ion pump is a Varian VacIon Plus 300 Starcell pump (240 L/s) with a Midivac 929-5002

controller; the sublimation pump is constructed at the institute; the turbo pump is a Leybold Trivac

pump.
2A Bayard-Alpert gauge, model AIG17G from Arun Microelectronics Ltd..
3Spectra restgas analyzer with LM61 satellite, LM502 analyzer and LM9 RF-head.
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in Fig. 8.2(a) below. In order to avoid mechanical stress on the tantalum wires,
the copper-wires/resistors are fixed in in-line connectors mounted in two Macor-
blocks. The in-line connectors are connected by ∅1 copper-wire to the pins of
a vacuum feedthrough 4. Two of these wires carry the RF-voltage and they are
shielded by grounded copper stockings.

• A pair of coils, for creating a Zeeman-splitting of the ground state sublevels of
the 40Ca+ ion, are mounted on either side of the trap, parallel to the trap axis.
The coils, which are described in more detail below, are connected to ∅2.5 copper-
wire (thick wire, for good heat-transport and low resistance), which in turn are
connected to the pins of a high-current vacuum feedthrough 5.

• Two ovens for producing an effusive beam of calcium and magnesium (not used
in this work) atoms, from which ions are produced as described in Sec. 8.6 and
loaded into the trap. Each oven consists of a hollow graphite cylinder surrounded
by a tungsten-wire wound as a coil. These parts are mounted in a hollow ceramic
cylinder (for thermal and electric isolation) which in turn is mounted in a stainless
steel housing. The graphite cylinder contains calcium (or magnesium) in metallic
form and when heated, by passing a current through the tungsten-wire, an effusive
atomic calcium beam passes through a hole and propagates towards the trap
center. The oven temperature can be monitored by a thermosensor. The Ca-oven
is normally operated at 470◦C.

• An aperture and several skimmers made of stainless steel plates, which colli-
mates the atomic beam(s) from the oven(s).

• An oven shutter, which can block the atomic beam(s). It consists of a stainless
steel plate mounted on an axle, which can be rotated from outside the vacuum
chamber.

• A small piece of an optical fiber of 125µm diameter which can be placed in
the trap center using a translation stage. When laser light impinges upon the
fiber, it can be observed by using the imaging system described in Sec. 8.7. This
is useful for calibrating the magnification of the imaging system as well as for a
crude alignment of the various laser beams.

• An electron gun (not used in this work) enables ion production by electron im-
pact ionization of the calcium or the magnesium atoms in the atomic beams. The
electron beam can be steered through the trap center by two sets of deflection
plates.

• Six viewports (anti-reflection coated fused silica windows) allow for laser access
parallel and perpendicular to the trap axis as well as in a 45◦ angle. In a top flange
(not shown in Fig. 8.1) another window is mounted, through which the ion fluo-
rescence and scattered light from the fiber can be viewed by the imaging system.
These windows can, at the very most, withstand a temperature of 200◦C, thus,
keeping a reasonable safety margin, the above-mentioned bakeout temperature of
the vacuum system is limited to about 150◦C.

4Caburn-MDC HV3-10Q-20-C40.
5Caburn-MDC HV5-25C-6-C40.
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• A Variable Leak Valve 6 is mounted on a flange for letting various gasses into
the vacuum chamber via a copper tube (not used in this work).

As indicated above, some parts have not been used for the present work; these parts
were mounted in connection with previous experiments.

Figure 8.1: Overview of the vacuum chamber. The coloured arrows indicate laser beams;
the colour coding is the same as in Fig. 8.5 below. For a length scale, we note that the
distance between nearest neighbour holes in the base plate is 1 cm.

8.2 Trap voltage supplies

Two voltage supplies are used for operating the trap, one RF-supply, which generates
the high-voltage RF-signal, and one DC-supply, which delivers DC-voltages to the ef-
fectively eight electrode pieces. These supplies have been constructed in the electronics
department at the institute. Referring to Fig. 7.1, the two electrodes, to which the
RF-voltage is applied, are named the RF-electrodes in the following and the other elec-
trodes, to which only DC-voltages are applied, are named the DC-electrodes. Apart
from the voltages indicated in Fig. 7.1, DC-voltages for adjusting the equilibrium posi-
tion of captured ions can be applied to all electrodes.

The DC-voltage on a DC-electrode is equal to UDC = Ua +Uadj (+Uend for endcap-
electrodes), where Uadj is the adjustment voltage on the considered electrode. UDC is

6Brechtel Manufacturing Inc..
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(a) (b)

Figure 8.2: (a) In-coupling of DC-voltage to a DC-electrode. UDC = Ua + Uadj (+Uend

for endcap-electrodes). (b) In-coupling of RF- and DC-voltage to an RF-electrode.

applied as shown in Fig. 8.2(a). The capacitor and the resistor ensures that any RF-
noise picked up between the DC-supply output and the resistor is strongly suppressed
at the electrode. Therefore, the resistor and the capacitor are mounted as close to the
electrode as practically feasible inside the vacuum chamber. The resistor is rated as
UHV-compatible and the capacitor is a porcelain (high-frequency, high-voltage) capaci-
tor 7, which proved to be UHV-compatible. The two components are soldered together
using UHV-compatible solder wire 8 and connected to the electrodes via the above-
mentioned tantalum wires.

For each of the RF-electrodes (consisting of three electrode pieces) the RF-voltage
and a DC adjustment voltage is combined as shown in Fig. 8.2(b), ensuring that the RF-
voltage is heavily damped at the output of the DC-supply 9. The adjustable capacitor
(1.5-40 pF) enables adjustment of the RF-voltage on the electrode but can also be used
for adjustment of the RF-frequency as discussed below.

8.2.1 RF-supplies

In the past years two types of RF-supplies have been used with the present trap 10.
The first RF-supply which was used is a self-oscillating source [122]. The main

components are two radio tubes 11, where the anode of each tube is connected to the
cathode of the other. The anode-anode voltage can be brought to oscillate by feeding
a sufficiently large DC-voltage to the anodes (through a coil), thus providing us an
RF-voltage, which in turn is coupled inductively to the trap. The oscillation frequency
depends on the load of the system, which mainly is presented by the capacitance and
inductance of the trap, the cables/wires connected to the trap and the two adjustment
capacitors [1.5-40 pF, only one is shown in Fig. 8.2(b)]. Using the two adjustable ca-
pacitors, the oscillation frequency can be varied roughly over the range 14-18MHz 12.

7Temex 102CLE222JP.
8Johnson-Matthey metal joining, LM10A.
9Some of the components are non-standard high-frequency, high-voltage components. 2.2 nF: Temex

102CLE222JP. 5.1 nF: American Technical Ceramics, 100E512KW 500X. 1.5-40 pF: Voltronics corpo-

ration, AP40HV/1500 V.
10At this point extra credit should be given to people in the electronics department, who have worked

hard to solve the non-trivial task of generating an RF-signal around 18MHz with ∼ 1 kV amplitude.
11http://tdsl.duncanamps.com, model 6146.
12In fact the system is bi-stable, meaning that under extreme conditions it can be brought to oscillate



8.2. Trap voltage supplies 105

The amplitude of the RF-voltage is controlled by the DC-voltage fed to the anodes
and is limited to approximately 1 kV amplitude. Higher harmonics in the output are
suppressed by at least 30dB, with third and fourth overtone being the most prominent
ones. The RF-voltage output can be monitored via a calibrated signal from a pick-up
coil. This RF-supply was used in initial tests of the trap and in some of the experi-
ments described in the next chapter. It has, however, been discarded for now due to the
fact that the RF-frequency is set by the load and not an external frequency source, as
for the supplies described below. Since the load is temperature dependent, this means
that after a change of the RF-voltage, which changes the equilibrium temperature of
the system, the RF-frequency and hence the radial trap frequencies can drift. On one
occasion we observed, that after having changed URF from 300V to 500V, one of the
radial trap frequencies dropped 13 by 13 kHz before settling within 1-2 kHz of a new
equilibrium value after 25 minutes. The RF-frequency actually settled faster than the
observed radial trap frequency, which means that the amplitude of the RF-voltage, not
unexpectedly, also was drifting. Although drifts of the radial trap frequencies on the
level of 10 kHz may not be very critical (the power broadened linewidth of the Raman
transition is 10 kHz or more in sideband cooling), it is an unsatisfactory situation that
the radial trap frequencies drift, since they are the most important trap parameters for
sideband cooling of the radial motion.

The currently used type of supply is a fixed-frequency supply. A sinusoidal signal
from a function generator 14 is amplified 15 and coupled inductively to the trap electrodes
using a ferrite core with a single winding on the primary side and 10-15 windings on the
secondary side, depending on the desired RF-frequency. The windings, the ion trap and
the adjustable capacitors in Fig. 8.2 constitute an LCR resonant circuit and the trap is
operated at the resonance frequency of this circuit. Naturally, the resonance frequency
of the LCR-circuit also varies with temperature, which will lead to a variation in the
output-voltage if the RF-frequency is kept fixed, however, the problem seems to be
smaller than with the self-oscillating source. The output-voltage is measured using a
capacitive voltage-divider on the secondary side, which provides a monitoring signal
(varies between 1:100 and 1:125 of the output voltage for the different supplies). For
reasons discussed in Chap. 9, this type of supply has been used in the following three
different versions having different resonance frequencies of the LCR-circuit.

1. Supply with resonance frequency adjustable over the range 14.0− 19.4MHz, usu-
ally operated near 18.0MHz for comparison with the self-oscillating supply.

2. Same supply as number 1, but with a resonance frequency in the range 10.4 −
14.5MHz. Usually operated near 11.0MHz for comparison to an early version of
the same supply and for reasons discussed in the next chapter.

3. An RF-supply constructed for the larger linear Paul traps used in our group,
operated at 5.6MHz.

around 100 MHz, however, with a rather small amplitude.
13Measurements of trap frequencies are described in detail in Chap. 9.
14Hewlett-Packard 8656B signal generator 0.1-990 MHz.
15Using either the 100 W amplifier unit in an Intraaction Frequency Synthesizer (VFE-30100A5) or

a 4W amplifier, 4W1000, from Amplifier Research.
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Control # Electrode # Purpose Voltage [V]
1 4,6,7,9 Endcap voltage 0 . . . 100
2 4,5,6,7,8,9 a-parameter −10 . . . 10
3 4,7 Axial equilibrium position −10 . . . 10
4 6,9 Axial equilibrium position −10 . . . 10
5 4,5,6 Radial equilibrium position, x-axis −10 . . . 10
6 2 Radial equilibrium position, y-axis −10 . . . 10

Table 8.1: Overview of the control buttons on the DC-voltage control unit.

8.2.2 DC-supply

The necessary DC-voltages, Uend, Ua and Uadj , are provided by a DC control unit. The
numbered outputs of this unit are connected to the electrodes as shown in Fig. 8.3 and
controlled in six groups as summarized in Table 8.1. As the ‘Purpose’ column in the
table indicates, the voltage on each group of electrodes controls either a trap parameter
(a or ωz) or the equilibrium position of the ions along a given axis.

(a) (b)

Figure 8.3: Overview of the electrode numbering. Electrodes 2 and 11 are RF-electrodes
and electrodes 4-9 are DC-electrodes. (a) Front view. (b) Side view.

8.3 Magnetic field coils

As discussed in Chap. 3 (see particularly Fig. 3.8) a Zeeman-splitting of the ground
state sublevels in 40Ca+, which is much larger than the trap frequencies, is necessary.
We will aim for a splitting of 2π × 15MHz, which requires a magnetic field of 5.4Gauss
(see App. B). The coils for producing this field are the ones mentioned above, which are
placed inside the vacuum chamber for two reasons. First, to avoid using large currents
it is advantageous to place the coils close to the trap. Second, to have the possibility of
quickly switching on and off the magnetic field, the coils should not be placed outside
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the chamber, since this would require large coils (large inductance) and eddy currents
would be induced, e.g., in the vacuum chamber. The coils are shown in Fig. 8.4. Since
they have to be UHV-compatible, they are made of unisolated ∅1 copper-wire wound
on a Macor-cylinder with grooves which keep the windings separated. The coils are
mounted symmetrically around the trap center (see Fig. 8.1) such that an approximately
homogenous magnetic field parallel to the trap axis can be produced. A ∅6 hole in each
Macor-cylinder allows for passage of lasers beams parallel to the trap axis.

When a current I pass through the coils, the magnetic field strength B in the trap
center is

B[Gauss] = 1.2(1) · I[A]. (8.3.1)

Figure 8.4: The magnetic field coils. The coils are wound on grooved Macor-cylinders
of 21mm length. The inner diameter of the 13 windings is 20mm. A ∅6 hole in each
Macor-cylinder allows for passage of laser beams.

The current is supplied by a stable current-controlled power-supply16. The magnetic
field can be switched quickly on and off using a fast current-switch constructed at the
institute, which can switch the current from the supply between going through the coils
and a series-connected 1Ω high-power dummy-resistor or through another 1Ω high-power
resistor. The current can be switched on to within 1 permille of the supplied current
in approximately 200µs, which is limited by the settling time of the supply. When
switching off the current, it drops approximately exponentially with a time constant of
∼ 5µs, consistent with L/R, where L is the inductance and R is the resistance of the
coils and the dummy-resistor, respectively .

Since the coils are placed inside the vacuum chamber, the heat deposited in the coils
can only be removed through the wires themselves or via blackbody-radiation. This
can give rise to an elevated equilibrium temperature of the coils, which can lead to an
increase in the chamber pressure. To reduce this problem, the coils have been smeared
in glue 17, which improves the heat-conductance between the windings. The coils have
been tested under UHV-conditions to 6A with no observable increase in the chamber
pressure. At a later stage of the experiments it might become relevant with a Zeeman-
splitting of 2π×30MHz, which would require a current of 9A. It can be estimated that
the temperature of the coils will increase by about 40K in this case, which would be
below the bakeout temperature and hence it should not increase the chamber pressure.

16Toellner, TOE8851-16, 20 A. Stability within 8 hours: 0.1%. Residual ripple: 500 µA (rms).

Relative temperature sensitivity: 10−4/K.
17EPOTEK H74F, also used for gluing the trap electrodes to the Macor block.
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In order to compensate for earth-fields and stray magnetic fields, five coils are
mounted outside the vacuum chamber, which enables compensation in all three spa-
tial dimensions. Two sets of coils are mounted pairwise symmetric around the trap
center, providing relatively homogenous compensation fields in the horizontal plane,
respectively parallel and perpendicular to the trap axis. Another coil mounted above
the vacuum chamber (no counterpart below the chamber) can provide a vertical com-
pensation field. The power supplies are identical to the one used for the Zeeman coils.

Finally, a coil mounted close to the chamber can provide a vertically directed mag-
netic field in order to define a vertical quantization axis for the ions (see Sec. 3.1.).

8.4 Laser light sources for Ca+ ions

The laser systems providing light at 397 nm, 850 nm, 854 nm and 866 nm are placed on
two separate optical tables. Light from these lasers are brought to the trap table through
polarization-maintaining optical fibers. Alternatively, the 397 nm light is brought to the
trap table via mirrors through air.

8.4.1 397 nm sources

For sideband cooling, quantum logic operations (Raman transition) and Doppler cool-
ing, 397 nm light is provided by a frequency-doubled Titanium:Sapphire (Ti:Sa) laser 18.
The Ti:Sa laser is normally pumped by 6W of optical power at 532 nm from a Coherent
Verdi V8 laser, which usually results in 400-500mW of 794 nm light from the Ti:Sa
laser. This light is frequency-doubled in a 12mm long LBO crystal placed in an exter-
nal bow-tie cavity, which is locked using a Hänsch-Couillaud lock [123, 124], typically
yielding 25-35mW of 397 nm blue light 19. The blue light is passed through a series
of cylindrical and spherical lenses in order to obtain an approximately Gaussian, colli-
mated beam. The light can be transported to the trap table through air with negligible
losses or through an optical fiber with 70-75% incoupling/transmission losses resulting
in ∼ 8mW available at the trap table. The advantage of using the fiber instead of the
air-beam is the good pointing stability and the relatively well-defined spatial mode after
the fiber. The drawback is the power loss and non-perfect polarization maintenance in
the fiber.

The frequency of the Ti:Sa laser has until recently been locked to a passively
temperature-stabilized commercial cavity 20, but is now locked to a home-built ac-
tively temperature-stabilized cavity using a Pound-Drever-Hall lock [71, 125]. A typical
long-term frequency drift is 1MHz at 794 nm over one hour [71].

In order to stabilize the output power from the frequency doubling cavity, a power
stabilization system based on an acoustooptic modulator (AOM) has recently been build
up [126]. The undeflected zeroth diffraction order from the AOM is send to the trap
table, with the power kept constant to a chosen level by feedback-controlled deflection
of (surplus) power out of the zeroth order beam. The system provides a power-stability
at the level of a few percent from DC to 5 kHz, which particularly is an improvement

18Coherent 899 ring laser.
19With a mode matched input beam and a new crystal, 150 mW blue light at 500 mW input power

has been obtained [123].
20From Coherent.
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for the long-term stability of the output from the doubling cavity. Above 5 kHz there is
only little noise in the output from the doubling cavity, although one should be aware
of noise somewhere in the range 20-30 kHz generated by the cavity-lock itself, which
can be removed by adjusting the feedback voltage in the cavity-lock. For the present
experiment, this power-stabilization system may in the future be complemented, or
replaced, by a cavity placed on the trap table with the cavity length being locked to
keep the transmitted power constant. This may seem superfluous, but the cavity has
the additional advantage of providing a well-defined spatial mode and direction of the
transmitted beam, when the direction of the input beam is properly optimized. This
would render the optical fiber superfluous.

The wavelength of the Ti:Sa laser beam can be measured down to seven digits relative
precision using a wave-meter. Alternatively, the resonance frequency of the 2S1/2– 2P1/2

transition can be found by optogalvanic spectroscopy using a hollow-cathode discharge
lamp [127, 128].

In the lab, another laser source at 397 nm is available, namely a home built diode
laser system 21 capable of delivering about 5mW of 397 nm light. Currently, it is,
however, not planned to use this laser in connection with the project presented here.

8.4.2 Infrared sources

The three infrared transitions in the 40Ca+ ion, near 850 nm, 854 nm and 866 nm, are
all covered by diode lasers built from anti-reflection (AR)-coated laser diodes 22, which
provides tunability over a broad wavelength range. Two of the lasers (850 nm and
866 nm) are entirely home built and the third one (854 nm) is partly home built, in that
the AR-coated diode has replaced the diode in a commercial diode laser 23. In each of
the home-built lasers, the laser-cavity is constituted by the back-side of the laser diode
and an external grating (1800 lines/mm) mounted in the Littrow configuration. The
laser light is out-coupled via the grating and send through a Faraday isolator and a set
of anamorphic prisms; the latter in order to make the elliptically shaped beam from the
diode laser circular. The laser light is then coupled into an optical fiber and brought to
the trap table (60-80% transmitted).

The frequency of the 850 nm and the 854 nm lasers can be locked to the same actively
temperature-stabilized cavity, identical to the one used for the Ti:Sa laser. Thus, the
relative drift of the two laser frequencies, which is the important quantity for STIRAP, is
much smaller than the drift of the cavity resonance (∼ 1MHz/hour). The 866 nm laser
can be frequency-locked to another actively temperature-stabilized cavity, also identical
to the one used for the Ti:Sa laser.

The wave-meter and optogalvanic spectroscopy can also be used at the infrared
wavelengths of these three lasers.

8.5 Laser light control

To implement the sideband-cooling scheme, the STIRAP detection scheme and to per-
form quantum logic operations, the frequency and the intensity of the involved laser

21Laser diode from the Nichia Corporation.
22From the Ferdinand-Braun Institute, Berlin.
23SDL-TC10.



110 Chapter 8 - Experimental equipment and methods

beams must be accurately controlled on the timescales relevant for these processes.
Furthermore, the phase-difference between the Raman beams has to be controlled (see
Sec. 5.3).

The frequency should first of all be controlled to better than 20 kHz or so for efficient
sideband cooling (see Fig. 3.12) and for reliably performing gate operations. Moreover,
it should be possible to change the frequency-difference between the Raman beams
for sideband cooling of the various motional modes and for gate operations on the
carrier and the red and blue sidebands. The fastest frequency changes needed are on
the timescale of the shortest frequently used pulses, i.e., carrier π/2-pulses, for which a
reasonable duration would be 50µs (much larger than π/ωz ∼ 0.5µs, see Chap. 5). With
respect to fast control of the intensity (pulse shaping), the duration of the π/2 carrier
pulses sets the most stringent requirements for the Raman transition. Furthermore, it
is required that all the STIRAP pulses of duration 5–10µs are smooth.

The laser frequencies can be changed and hence controlled by exploiting the fre-
quency shift of light deflected by AOM’s. Likewise, pulse-shaping can be done using
the deflected light from AOM’s, since the amount of deflected power depends on the
RF-power applied to the AOM. The phase-difference between the Raman beams can be
controlled using an electrooptic modulator (EOM) inserted in one of the Raman beams.

Analog and digital control signals to the AOM’s and the EOM’s will be provided by
four boards from National Instruments 24, which also will be used for data acquisition,
with everything being controlled by Labview 25-based programs. One board (PCI-DIO-
32-HS) will control the timing, providing up to 16 · 106 updates of 16 digital output
channels, e.g., at a rate of 100 kHz. For the STIRAP pulses, a much higher resolution is
needed and therefore the control voltages for creating these pulses are generated using
a 4-channel 40MHz arbitrary waveform generator 26.

The entire setup involves nine AOM’s and two EOM’s, for which details are given
below. An overview of the setup on the trap table is given in Fig. 8.5, of the involved
AOM’s and EOM’s in Table 8.2 and of the frequency shifts from the many AOM’s in
the blue beamline in Fig. 8.6. At present, the AOM’s numbered 1-6 below and the EOM
numbered 1 have not yet been set up.

8.5.1 397 nm sources

At the trap table, light from the frequency-doubled Ti:Sa laser is split in frequency as
shown in Fig. 8.6 and spatially as shown in Fig. 8.5 27.

Considering the light for the Raman transition first, the −1. diffraction order from
AOM1 provides light at a large detuning with respect to the 2S1/2– 2P1/2 transition
frequency. AOM2 enables pulse-shaping and AOM3 and AOM4 controls the frequency
difference between the Raman beams. The 15MHz difference between the center-
frequencies for AOM3 and AOM4 corresponds to the projected Zeeman-splitting. From
AOM2, AOM3 and AOM4, the −1. diffraction order is used in order to get the largest
possible detuning of the Raman beams (as opposed to using the +1. diffraction order).
For simplicity, the AOM’s are intended to be used in single-pass, but an even larger de-

24National Instruments PCI-6704, PCI-6713, PCI-6071E, PCI-6533 (PCI-DIO-32-HS).
25National Instruments.
26Thurlby Thandar Instruments TGA1244.
27In Fig. 8.5 blue light is brought to the trap table through the fiber, but the ‘air-beam’ can be used

just as well.
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Device Type Purpose
AOM1 Brimrose TEF-600-100-.397 Raman, detuning
AOM2 Brimrose TEF-80-20-.397 Raman, pulse-shaping
AOM3 Brimrose TEF-225-50-.397 Raman, frequency control
AOM4 Brimrose TEF-240-50-.397 Raman, frequency control
AOM5 Intraaction ASM-702B8 STIRAP-pulse/frequency shift
AOM6 Intraaction ASM-702B8 Frequency shift
AOM7 Intraaction AOM-40N STIRAP-pulse
AOM8 Intraaction AOM-40N STIRAP-pulse
AOM9 Brimrose TEF-80-10-.866 STIRAP-pulse
EOM1 Linos LM 0202 Phas VIS 0.1W Raman, phase control
EOM2 Linos LM 0202 IR 0.1W Repumping, polarization rotation

Table 8.2: Overview of AOM’s and EOM’s involved in the setup in Fig. 8.5.

tuning can be obtained if some, or all of them, are used in double-pass. For AOM3 and
AOM4, this would also cancel a small change in deflection angle which occurs whenever
the frequency is changed. For doing this, a Zeeman-splitting of about 2π × 30MHz
would be needed.

For all processes which are near-resonant with the 2S1/2– 2P1/2 transition, i.e.,
Doppler-cooling, STIRAP, pumping in the sideband-cooling scheme and optical pump-
ing to one of the sublevels of the ground state, the zeroth diffraction order from AOM1
is used. The STIRAP-pulse needed at 397 nm is made using AOM5. AOM6 is necessary
for shifting the light into resonance (or close to) with the 2S1/2– 2P1/2 transition.

The drivers for AOM1, AOM2, AOM 5 and AOM 6 are standard fixed-frequency
drivers from Brimrose. The drivers for AOM3 and AOM4 have been developed at
the institute. They are based on a direct digital synthesizer 28, which can generate
a frequency in the range 200 − 265MHz from a 400MHz reference signal. The width
of the reference signal sets the width of the output signal, which is about 20 kHz (full
width at -40 dB). Up to 1024 frequencies can be defined in a table, whose entries can
be addressed by a digital or an analog signal. Frequencies can be scanned by scanning
through the entries in the table in various modes at a max. frequency of 10 kHz. A faster
scan rate can be obtained by employing internal ramp-functions of the synthesizer.

Changes of the phase-difference between the Raman beams will be made by EOM1.
The voltage supply for this EOM is a fast linear amplifier constructed at the institute,
which can switch from zero voltage to the EOM half-wave voltage of 150V (within 1%)
in ∼ 2µs. In Fig. 8.5 the two beam paths from the polarizing beamsplitter after AOM2
to the trap center are made equally long, with the purpose of cancelling some drifts
of the phase-difference between the Raman-beams. For example drifts due to thermal
expansion of the trap table, which would lead to a change in the beam path lengths.

8.5.2 Infrared sources

STIRAP pulses at 850 nm, 854 nm and 866 nm are produced using AOM7, AOM8 and
AOM9, respectively. The AOM-drivers are standard fixed-frequency drivers from the

28AD9954 from Analog Devices.
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Figure 8.5: Setup of optical components on the trap table with signatures given in the
upper left box. See text for details. The white space around the chamber is occupied by
compensation coils and other parts as indicated on the drawing. Dots indicate threaded
holes with a distance of 2.5 cm between nearest neighbours. The entire drawing is
rotated 90◦ counter-clockwise with respect to the picture in Fig. 8.1.
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Figure 8.6: Schematic overview of the AOM’s and approximate frequencies along the
blue beamline given as the detuning with respect to the resonance frequency of the
2S1/2– 2P1/2 transition. The numbers in parentheses indicate the used diffraction order.

manufacturer of the AOM’s (see Table 8.2).
As mentioned in Sec. 3.1, the efficiency of repumping from the 2D3/2 state to the

2P1/2 state is reduced, when the applied magnetic bias field is small, which it should
be to avoid a large Zeeman-splitting. In this case, the repumping efficiency can be
improved by quickly rotating the polarization of the repumper light, which is done
using EOM2 with an applied sinusoidal voltage of ∼ 4MHz frequency and ∼ 300V
peak-peak amplitude (the half-wave voltage of the EOM). The voltage supply, which is
constructed at the institute, is able to switch ‘on’ in ∼ 40µs and ‘off’ in ∼ 2µs within
1% of the peak-peak voltage and zero, respectively. A preliminary test has shown that
Doppler cooling works well using polarization rotation of the repumper light.

8.6 Ion production

For loading ions into the trap, ions are produced in or near the trap center by ionization
of atoms in the atomic beam from the calcium oven. Previously, ions have been produced
by electron impact ionization using the electron gun, however, this method has not
been used for the present work. Instead, a resonance-enhanced two-photon ionization
technique developed within the last few years has been used [129], [IV]. In contrast to
electron impact ionization, this technique is very clean, meaning that no background
gas atoms or molecules are ionized and no doubly-charged calcium ions are produced.
Furthermore, the trap electrodes are not charged by electrons, as it often would be the
case if the electron gun was used.

In our scheme for resonance-enhanced two-photon ionization illustrated in Fig. 8.7,
calcium atoms are ionized using 272 nm light from a frequency-doubled dye laser de-
scribed below. From the 4s2 1S0 ground state, the atoms are resonantly excited to the
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Figure 8.7: Resonance enhanced two-photon ionization of neutral calcium. The hatched
area indicates the continuum. Further details are given in the text.

4s5p 1P1 state, from which they can be ionized by absorption of another 272 nm photon
or a 397 nm photon from the laser cooling light. Alternatively, the atoms can decay to
the 4s3d 1D2 state, from which they can be ionized by absorption of a 272 nm photon.
Light at 272 nm is produced by frequency doubling of 544 nm light from a dye laser 29

pumped by an Argon-ion laser 30. Frequency doubling takes place in a 7mm long BBO
crystal placed in an external bow-tie cavity, which is locked using a Hänsch-Couillaud
lock [124, 130]. The light is brought to the trap table through air and focussed to a
beam waist of approximately 100µm in the trap center. With this waist, a few mW
of 272 nm light, which easily can be produced, is sufficient for producing the needed
number of ions.

The spectral linewidth of the 272 nm light is sufficiently small, that we can load
all the naturally abundant isotopes of calcium (see App. B) selectively and resolve the
hyperfine structure of the 4s5p 1P1 state in the 43Ca isotope. This was recently exploited
to measure the isotope shifts of the 4s2 1S0–4s5p 1P1 transition in neutral calcium and
the hyperfine splitting of the 4s5p 1P1 state in 43Ca [IV].

8.7 Imaging system

The imaging system used for observing the 397 nm fluorescence light from the ions,
as well as scattered light from the optical fiber, is placed above the trap, as illus-
trated in Fig. 8.8. A Nikon objective lens for MM40/60 measuring microscopes (10x
magnification, f -number ∼ 1.7) placed about 5 cm above the trap center collects the
fluorescence/scattered light, which subsequently is amplified by an image intensifier and
imaged onto a CCD-camera, resulting in an all over magnification of about 20 for the
entire imaging system 31. The image-intensifier consists of a photo-cathode, a pair of
micro-channel plates and a phosphor screen. When photons impinge on the photocath-
ode, electrons are produced, which are accelerated through the microchannel plates and

29Coherent CR-699 ring laser. Laser dye: Pyrromethene 556.
30Spectra Physics Beamlok laser, 20 W.
31The image intensifier is from Proxitronic, model BV 2581 BY-V 1N. The CCD-camera is a SensiCam

system from PCO.
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hence multiplied. When the electrons hit the phosphor screen, light is produced, which
is imaged onto the CCD-chip. The CCD-images are digital images with 12 bit resolu-
tion, which can be viewed on a personal computer while they (optionally) are recorded
to the RAM of the computer. The image-intensifier as well as the CCD-chip has a linear
response to the intensity of the incoming light.

The image intensifier can be gated by quickly switching on and off the acceleration
voltage for the microchannel plates. Gating is possible in two modes: a ‘normal’ mode,
where the opening time of the image intensifier is adjustable down to approximately
40 ns (max. gating frequency 5MHz) and a ‘needle’ mode, where the opening time
of the image intensifier is fixed to about 20 ns (max. gating frequency 2MHz). The
acceleration voltage can be measured via a monitoring output (approximately 1:100 of
the acceleration voltage).

Figure 8.8: Schematic drawing of the imaging system. PMT: Photo-multiplier tube.

The CCD-images provide spatially resolved images of the ions as well as a measure of
the ion fluorescence. The ion fluorescence can additionally be counted using a recently
installed photo-multiplier tube 32, for which light is tapped off by a (removable) 1mm
thick 50/50 beamsplitter inserted between the objective lens and the image intensifier.

32Hamamatsu H5783P-06.
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Chapter 9

Trap characterization and ion
mass measurements

In sideband cooling and trapped-ion quantum logic experiments, the axial and radial
trap frequencies play an important role, as described in previous chapters. Thus, it
is an important step towards such experiments to measure the trap frequencies and
determine experimentally how they behave as a function of various parameters, i.e., to
characterize the trap. In this chapter we present the results of a series of experiments
initiated with the goal of characterizing the trap by measuring the trap parameters
introduced in Chap. 7. Some of the results were quite unexpected, which has led us to
perform a rather extensive series of measurements. The trap characterization experi-
ments and the interpretation of the results are described in Sec. 9.1. To conclude the
trap characterization, a brief discussion of micromotion and patch potential problems
is given in Sec. 9.2.

The technique used for measuring the trap parameters is applicable for measuring ion
masses, allowing a clear distinction between ions with different atomic masses. Using a
refined technique, it should even be possible to discriminate between ions with the same
number of nucleons, which only differ in mass due to their different nuclear binding
energies. Since this would be a valuable tool for an ongoing research project in our
group concerning molecular ions, these possibilities for mass measurements have been
investigated. The theory for the mass measurements and preliminary experimental
results are presented in Sec. 9.3.

9.1 Measuring the trap parameters

In order to characterize the trap, we have measured the characteristic axial and radial
trap oscillation frequencies of an ion, while systematically varying the RF-voltage or the
applied DC-voltages. Assuming that the 3-dimensional trap potential is harmonic, such
that a single laser cooled ion behaves as a classical damped harmonic oscillator (but a
very expensive one!), an axial or radial trap frequency can be measured by determining
the frequency at which a sinusoidally varying force resonantly excites the oscillatory
motion of the ion.
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9.1.1 Experimental setup

The experimental setup is in principle as described in Chap. 8, particularly as illustrated
in Fig. 8.5, although the equipment for STIRAP and for the Raman transitions was not
used. A single ion (or several ions) is (are) loaded into the trap using the photoionization
technique described in Chap. 8 and Doppler laser cooled by the blue 397 nm and the red
866 nm cooling lasers focussed to waist sizes of ∼ 100µm and ∼ 200µm, respectively, in
the trap center. Three blue cooling beams were used, two beams counter-propagating
parallel to the trap axis and one beam propagating perpendicular to the trap axis, thus
allowing cooling of the axial as well as the radial degrees of freedom and balancing
of the radiation pressure forces along the trap axis. The ions were viewed using the
CCD-camera, typically with 50-100ms exposure time for each image.

A sinusoidally varying force for exciting the ion motion was obtained in two different
ways. Either by applying a (small) oscillating voltage to the trap electrodes, which
excites the ions due to the resulting oscillating Coulomb force [131], or by intensity-
modulation of the laser cooling light, leading to a modulation of the laser cooling force,
which enables motional excitation of the ions. In the following these methods are named
voltage-modulation and intensity-modulation, respectively. Intensity-modulation is in
a sense more ‘clean’ than voltage-modulation, since no voltages are added to those
necessary for trapping ions and hence the trap potential is not perturbed. As discussed
below, intensity-modulation is, however, only suitable for measuring the axial trap
frequencies. In contrast, voltage-modulation can be used for measuring both axial
and radial trap frequencies. As we shall see below, measurements of the axial trap
frequencies fortunately yield identical results within the experimental uncertainty for
the two methods.

Voltage-modulation

The modulation voltage is applied to an electrode as shown in Fig. 9.1. A voltage of
the form V0 cos(ωmodt) (in the following named the input modulation voltage) is fed to
the DC-input of one of the in-coupling circuits (to a DC- or an RF-electrode) shown
in Fig. 8.2. Since the in-coupling circuits are designed with the purpose of damping
RF-signals from the electrode side at the DC-input, only a small fraction of the input
modulation voltage reaches the electrode from the DC-input. This fraction is the actual
modulation voltage, Vmod cos(ωmodt). The amplitude Vmod depends on ωmod and the
damping effect of the in-coupling circuit, which is different for the RF- and DC-electrode
in-coupling circuits (see Fig. 8.2). The DC-voltage, UDC , applied to an electrode (see
Fig. 8.2) is added to the input modulation voltage as shown in Fig. 9.1 and fed to the
electrode as usual.

For studying the motion of an ion along a specific trap axis, the modulation voltage is
applied to a corresponding set of electrodes. For the axial motion (z-axis, trap frequency
ωz) the modulation voltage is applied to the endcap-electrodes 4 and 7 in Fig. 8.3. For
the radial motion along the diagonal between the DC-electrodes (x-axis, trap frequency
ωx), a modulation voltage is applied to the DC-electrodes 4-5-6. For the radial motion
along the diagonal between the RF-electrodes (y-axis, trap frequency ωy), a modulation
voltage is applied to the RF-electrode numbered 11.

Images showing an unexcited ion and an ion which is motionally excited along the
trap axis are shown in Fig. 9.2(a). V0, the power and the detuning of the cooling laser
beams, particularly the blue axial beams, have been adjusted to control the amplitude
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of the motionally excited ions motion. The degree of excitation can be quantified

Figure 9.1: Incoupling of modulation voltage to an electrode. The input modulation
voltage V0 cos(ωmodt) is added to the DC-voltage, UDC , supplied by the DC control
unit described in Chap. 8 and fed to the DC-input of one of the in-coupling circuits
shown in Fig. 8.2. The DC-input is marked by a cross on this figure and in Fig. 8.2.
The resulting modulation voltage on the electrode is Vmod cos(ωmodt). No RF-voltage
is indicated on this figure.

(a) (b)

Figure 9.2: (a) Top: An unexcited, Doppler laser cooled 40Ca+ ion. Bottom: The same
ion excited along the trap axis (horizontal) using voltage-modulation. The width of
the pictures corresponds to a distance of 47µm in the trap center. (b) Projection of
the signal from the unexcited ion onto the trap axis. The curve is a fit to a Gaussian
distribution. The full-width at half-maximum (FWHM) is 6.0µm.

by projecting the signal from the ion onto the z-axis [horizontal in Fig. 9.2(a)], i.e.,
to sum the pixel values in each vertical column of pixels. For the unexcited ion in
Fig. 9.2(a), the distribution of the projected signal is approximately Gaussian, as shown
in Fig. 9.2(b), where the full-width at half-maximum (FWHM) in this example is 6.0µm.
For measuring the degree of excitation versus modulation frequency, a whole sequence
of images is recorded while synchronously sweeping the modulation frequency over a
frequency range of interest. By projecting the signal from the ion onto the z-axis
for each image, the projected signal as a function of axial position z and modulation
frequency ωmod is obtained. The function describing this projected signal is called the
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Figure 9.3: Contour plot of SP (ωmod, z) for a scan of the modulation frequency across
a frequency range containing the axial trap frequency ωz.

projected signal function and denoted by SP (ωmod, z) in the following. An example of
a contour plot of SP (ωmod, z) near a resonance of the axial motion is shown in Fig. 9.3,
clearly showing a resonant structure, which will be discussed in more detail below.
Experimental details of recording such image sequences and obtaining the projected
signal function are discussed in connection with the mass measurements described in
Sec. 9.3.

Intensity-modulation

Intensity-modulation was only used for excitation of the axial motion (for reasons dis-
cussed below). One of the blue cooling laser beams propagating parallel to the trap
axis was intensity-modulated using an EOM followed by a polarizer. By applying a
variable voltage to the EOM, the polarization of the light passing through the EOM
and hence the amount of light transmitted by the polarizer can be varied. Using a
pulse-amplifier 1, a square wave intensity-modulation at frequencies ranging from DC
to roughly 1.3MHz could be generated. The low and high intensity level in the modu-
lated signal was usually adjusted to minimum and maximum transmission, respectively,
in order to obtain maximal modulation. The fraction of a modulation-period where the
intensity level is high could be varied from zero to one.

Since fluorescence light from an ion only is emitted when laser cooling light is applied,
the intensity-modulated cooling light effectively acts a strobed light source. If the
intensity-modulated cooling beam is the main source of blue cooling light, a scan across
a resonance therefore looks quite different from Fig. 9.3. Examples of this and further
details follow below in the section on mass measurements.

1Pulse amplifier with similar properties as the Linos LAV 400 analog amplifier, amplifying the signal

from a Hewlett-Packard 33120A function generator.
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9.1.2 Theory: The driven damped harmonic oscillator

To give a quantitative description of the motional excitation, it is natural to consider
a classical driven, damped harmonic oscillator. We consider the one dimensional case,
which describes the axial motion or the radial motion along one principal axis if micro-
motion is neglected. Assuming the laser cooling force is linear in the ion-velocity, the
equation of motion for a single ion is

z̈ + γż + ω2
zz =

Fmod

m
cos(ωmodt), (9.1.1)

where the position coordinate is denoted by z, dots denote time derivatives, m is the
ion mass, Fmod and ωmod are the amplitude and the frequency of the modulation force,
respectively, and γ = α/m, where α is the friction coefficient of the laser cooling force
defined in Eq. (3.1.4). For the square wave intensity-modulation, it is assumed that the
frequency of a single component in its Fourier-series is close to the resonance frequency
ωz such that the modulation force to a good approximation can be described by a single
sinusoidally varying component. As mentioned, the validity of the above equation is
limited to the regime where the damping force is linear in the ion velocity, which for the
2S1/2– 2P1/2 transition in 40Ca+ is the case when ż = vz � Γ1/2/k1/2 = 8m/s (k1/2

is the wave-number for the transition). For a trap frequency of ωz = 2π × 1MHz, the
maximum ion speed is about 60m/s for an excursion from the equilibrium position of
only 1µm, which actually is less than a typical excitation amplitude. Having stated
this warning, we will for simplicity assume that Eq. (9.1.1) is valid, or at least that
it describes the motional excitation well. The steady-state solution, zion(ωmod,t), to
Eq. (9.1.1) is [132]

zion(ωmod, t) =
Fmod

m
√

(ω2
mod − ω2

z)2 + γ2ω2
mod

cos(ωmodt + ϕ) ≡ z0(ωmod) cos(ωmodt + ϕ),

(9.1.2)

where

tan(ϕ) =
γωmod

ω2
mod − ω2

z

. (9.1.3)

The amplitude z0(ωmod) is maximal at ωmod =
√

ω2
z − γ2/2 ≡ ωmax, which is close to

ωz, since for the 2S1/2– 2P1/2 transition in 40Ca+, γ is much smaller than typical trap
frequencies [according to Eq. (3.1.5) γ < 2π × 32 kHz]. In the trap characterization
measurements presented below, ωmax has been used for the axial and radial trap fre-
quencies, since it is relatively simple to determine manually, i.e., by manually scanning
the modulation frequency across the resonance and estimating the modulation frequency
where the amplitude is maximal. If Eq. (9.1.1) is invalid, due to a large ion velocity
outside the linear regime of the laser cooling force and/or if micromotion is present, we
will in practice also find a trap frequency close to the real resonance frequency [133].
Typically, ωmax can be determined with an uncertainty of a few hundred Hz for the
axial motion and about 1 kHz for the radial motion.

9.1.3 Axial trap frequencies

As a first investigation of the trap properties, we measured the axial trap frequency ωz

versus the endcap voltage Uend, using ωmax for ωz. A typical data set (obtained using
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intensity-modulation) is plotted in Fig. 9.4. Error bars are smaller than the size of the
squares in Fig. 9.4. A fit to the expected square root dependence [see Eq. (7.1.9)] with an
offset of the endcap voltage included, yields ωz/2π = 180.36(5) kHz

√
Uend[V] − 0.251(11).

The front factor of about 180 kHz is in good agreement with the factor of 177 kHz ex-
pected from numerical calculations of the trapping potential [see Eq. (7.2.4)]. The small
deviation of about 2% can be explained by the fact that the actual width of the center
electrode pieces (2z0) is about 2% smaller than the value used for 2z0 in the simula-
tions and recalling that ωz is proportional to (2z0)−1 [see Eq. (7.1.9)]. Note that axial
trap frequencies larger than 1MHz, which we probably need for successfully performing
sideband cooling and quantum logic experiments, have been obtained.

Figure 9.4: Measurement of ωz vs. Uend. The solid line is a fit to the data points
yielding ωz/2π = 180.36(5) kHz

√
Uend[V] − 0.251(11).

To check whether the two excitation methods yield consistent results and hence
to check indirectly if any of the methods affect the measured axial oscillation fre-
quency, ωz vs. Uend was measured using both excitation methods. At each value of
Uend, ωz was measured for both methods before changing to a new value of Uend.
The results are plotted in Fig. 9.5(a), from which we observe that the two meth-
ods agree fairly well. More quantitatively, fits to the two data sets yield ωz/2π =
180.54(5) kHz

√
Uend[V] − 0.265(12) and ωz/2π = 180.55(4) kHz

√
Uend[V] − 0.272(10)

for voltage-modulation and intensity-modulation, respectively, showing a very good
agreement between the two methods. Measurements of ωz vs. Uend have been per-
formed on different days, using one or the other excitation method, different RF-supplies
and RF-voltages, always with the front factor being between 180.1 kHz and 180.6 kHz.
This variation is much smaller than our level of sensitivity for resolved sideband Raman
transitions which, amongst other things, is set by the width of the AOM-drivers for
AOM3 and AOM4 (∼ 20 kHz, see Chap. 8).

According to the discussion of the axial motional modes in a harmonic potential
given in Chap. 2, the center-of-mass mode oscillation frequency of two ions is expected
to be equal to the axial oscillation frequency of a single ion. However, if the trap
potential contains axial anharmonicities, this is not necessarily the case. To investigate
this, a measurement of ωz vs. Uend was performed with one and two 40Ca+ ions in the
trap. To avoid repeated emptying/loading of the trap, measurements of ωz vs. Uend
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(a) (b)

Figure 9.5: (a) Measurement of ωz vs. Uend using voltage-modulation and intensity-
modulation. Fits to the data yields ωz/2π = 180.54(5) kHz

√
Uend[V] − 0.265(12)

(voltage-modulation, shown as solid curve) and ωz/2π = 180.55(4) kHz ×√
Uend[V] − 0.272(10) (intensity-modulation, not shown). (b) ωz vs. Uend for one and

two 40Ca+ ions. Fits to the data yields ωz/2π = 180.41(4) kHz
√

Uend[V] − 0.312(10)
(one ion, shown as solid curve) and ωz/2π = 179.98(5) kHz

√
Uend[V] − 0.301(11) (two

ions, not shown).

was done for one ion first and then for two ions. The results are shown in Fig. 9.5(b)
and fits to the two data sets yield ωz/2π = 180.41(4) kHz

√
Uend[V] − 0.312(10) and

ωz/2π = 179.98(5) kHz
√

Uend[V] − 0.301(11) for one and two ions, respectively, showing
a deviation between the front-factors of a few permille. In another experiment, where
the axial oscillation frequency/center-of-mass mode frequency was measured for one to
eight ions (see Fig. 9.6) by loading ions while keeping the trap parameters fixed, the
measured trap frequencies were 437.8(1) kHz for the single ion and 437.7(1) kHz for two
to eight ions, thus showing a much better agreement than for the results in Fig. 9.5(b).
The measurement with one to eight ions is expected to be the most accurate, since the
trap parameters were held fixed. In any case, the frequency differences are much smaller
than our resolution for resolved sideband Raman transitions.

In conclusion, the axial trap frequencies behave as we expect, they are stable and
predictable to better than our sensitivity for resolved sideband Raman transitions and
we have measured axial trap frequencies above 1MHz, which is important for future
sideband cooling and quantum logic experiments.

9.1.4 Radial trap frequencies

The radial trap frequencies are important for sideband cooling of the radial motion. Due
to the dynamical confinement in the radial plane, the dynamics of the radial motion
is more complex than for the axial motion, and the radial trap frequencies depend on
several independent variable parameters, q, a and az, with respect to which the trap
should be characterized.

The radial trap frequencies were measured by determing ωmax manually for the mo-
tion along the x-axis as well as the y-axis, using voltage-modulation to excite the ions.
Although this method is identical to the one used for measuring axial trap frequen-
cies, it is in practice more difficult to employ. It appears that when the modulation
frequency is near-resonant with one of the radial motional modes, the oscillation am-
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Figure 9.6: Pictures of one to eight ions on a string at identical trap parameters. Left:
Unexcited ions. Right: The axial motion is excited. The width of the pictures corre-
sponds to a distance of 75µm. The pictures are produced from the average of the pixel
values of 100 individual CCD-images recorded with 100ms exposure time.

plitude depends very critically on the modulation force as well as the detuning and
the power of the cooling lasers, meaning that the amplitude easily can become as large
as shown by the rightmost picture in Fig. 9.7 or even larger than that, in which case
the ion essentially is invisible on the CCD-images. The criticality of these parameters
mainly has its origin in the fact that when the ion is excited, micromotion becomes very
significant, which leads to large velocities and hence inefficient Doppler laser cooling.
Since the motion is driven, the ion is never significantly slowed down by the Doppler
cooling, which therefore remains inefficient [134]. For the same reason, excitation by
intensity-modulation of the laser cooling light is problematic, which is the reason for
measuring the radial trap frequencies using voltage-modulation. When the amplitude
of the modulation voltage and the cooling laser parameters were adjusted such that the
ions oscillation amplitude was reasonably controllable, we could as mentioned deter-
mine ωmax approximately within 1 kHz, which is around 1 permille of a typical radial
frequency and sufficiently accurate for determining the relevant trap parameters to a
good precision.

The first measurements of radial trap frequencies were performed using the self-
oscillating RF-supply operated approximately at 18MHz. The results were quite unex-
pected, showing indications of what we now believe is a complex non-linear dynamics.
At first we suspected, however, that the self-oscillation principle of the RF-supply could
be the cause of the strange results. This possibility was, however, ruled out by measure-
ments using the fixed-frequency 18MHz supply (supply number 1 in Chap. 8) which
yielded similar results as for the self-oscillating supply. Further measurements using
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Figure 9.7: Different amplitudes of the radial motion of a single 40Ca+ ion around a
frequency of 2420 kHz. On the leftmost picture the ion is unexcited. The height of
the pictures corresponds to a distance of 175µm. Note: The images do not to show
a variation with respect to a specific parameter, they are only meant to illustrate the
different, sometimes very large, amplitudes.

supplies number 2 and 3 (see Chap. 8) at the lower RF-frequencies of 11MHz and
5.6MHz yielded results, which are explainable by a model which extends the theory
presented in Chap. 7. The results of a series of measurements at 11MHz RF-frequency
and an explanation of the results are presented in the following. Subsequently, the re-
sults at 18MHz are described and a qualitative explanation for the observations at this
RF-frequency is given.

Measurements for ΩRF = 2π × 11.05MHz

For the measurements obtained with the trap operated near an RF-frequency of 11MHz,
we first consider measurements of the radial trap frequencies ωx and ωy vs. the ampli-
tude of the RF-voltage, URF . Instead of plotting ωx and ωy, we plot in Fig. 9.8 the

quantity (2/ΩRF )
√

ω2
x + ω2

y + ω2
z , which according to the theory presented in Chap. 7

is equal to the q-parameter. For the model presented below, the plotted quantity is
still equal to q. As seen from Fig. 9.8, q is proportional to URF as expected, however,
the proportionality factor deviates significantly from the results of the numerical cal-
culations 2. This deviation is probably due to a difference between the actual voltage
on the trap electrodes and the RF-voltage at the output of the RF-supply, where the
RF-voltage is measured. Such a difference could, e.g., occur due to the influence of
stray capacitances and inductances. Additionally, there is roughly a 10% uncertainty
on the calibration of the monitoring signal used for measuring the RF-voltage. From
the measurements discussed in the following, we shall argue that a difference between
the measured RF-voltage and the actual voltage most likely is present and introduce
a recalibrated value of URF , which brings the measured values of q (Fig. 9.8) and the
numerically calculated values in good agreement.

2Using the more accurate expression q =
√

[2 sin(πωx/ΩRF )/π]2 + [2 sin(πωy/ΩRF )/π]2 + (ωz/ΩRF )2

does not change this conclusion [135].
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Figure 9.8: q vs. URF , obtained from measurements of ωx and ωy as discussed in the
text (solid squares). A fit (solid line) to the data yields q = 0.00219(1)URF . The
four data points represented as circles have been obtained from the data in Figs. 9.9
and 9.10 as discussed in the text. A constant has been subtracted from the originally
recorded values of URF to correct for a voltage offset on a ‘measure function’ on the
digital oscilloscope which was used. The dashed line represents the expectation from
the numerical calculations of the trapping potential, see Eq. (7.2.7).

The measurements to be considered are measurements of the radial trap frequencies
versus Ua, at four different values of URF with constant ωz. The data are presented
in Figs. 9.9 and 9.10 (the designation ω± and the curves are explained below). These
results were at first surprising since the radial trap frequencies were expected to be equal
when a − χaz = 0 [see Eqs. (7.1.13) and (7.1.14)], i.e., at a small negative value of Ua.
Instead, we observe two branches of trap frequencies with a minimum frequency splitting
of some tens of kHz. All data points are recorded with a modulation-voltage applied to
the DC-electrodes numbered 4-5-6 in Fig. 8.3. For the upper branch, it was qualitatively
observed that only a small modulation voltage was required to excite the radial motion
at large positive values of Ua, while the required modulation voltage gradually became
larger as Ua was decreased, until we eventually were unable to excite the radial motion.
Similarly for the lower branch, a small modulation voltage was required at negative
values of Ua and a large one was required at positive values of Ua. Near Ua = 0V the
radial motion could be excited by an approximately equally large modulation voltage
for the two branches.

With modulation on an RF-electrode (number 11 in Fig. 8.3) it was generally hard
to excite the radial motion due to a strong damping of the input modulation voltage
through the in-coupling circuit. It was checked that the points which are ‘missing’ at
large positive (negative) values of Ua on the lower (upper) branch could not be detected
by applying modulation on an RF-electrode.

The fact that we observe a splitting between the two branches, instead of a crossing,
hints that the radial potential contains a term which couples the two radial modes.
Such a term could for example be present due to misalignments of the trap electrodes
or due to patch potentials.
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(a)

(b)

Figure 9.9: Radial trap frequencies vs. Ua at ΩRF /2π = 11.05MHz and ωz/2π =
403 kHz. (a) URF = 79.5V. (b) URF = 109V.

Coupling term model To describe such effects, we assume that the radial potential
contains a constant term of the form

Φc(x, y, t) = −Uc
xy

2Lr2
0

, (9.1.4)

which is the coupling term of the lowest possible order in x and y. Uc is a voltage
describing the strength of the coupling term 3. The model will be named the ‘coupling
term model’ or CT-model for short. In the following, the radial oscillation frequencies
and principal axes of oscillation following from the addition of the coupling term are

3In Ref. [136] a coupling term due to the magnetic field in a combined linear Paul trap/Penning

trap was considered.
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(a)

(b)

Figure 9.10: Same as Fig. 9.9, but with URF = 130V (a) and URF = 185V (b).

derived.
The coupling term immediately gives rise to a coupled set of Mathieu equations:

∂2

∂τ2

(
x
y

)
=
[−a − az(1 − χ) + 2q cos(2τ) qUc/URF

qUc/URF a − az(1 + χ) − 2q cos(2τ)

](
x
y

)
. (9.1.5)

To solve them, we make the Ansatz that x(τ) = x̃(τ)[1 − q cos(2τ)/2] and y(τ) =
ỹ(τ)[1+q cos(2τ)/2] in analogy with Eqs. (7.1.5) and (7.1.6). Inserting these expressions
in Eq. (9.1.5) and averaging over an RF-period, i.e., cos2(2τ) is replaced by 1/2 and
terms proportional to cos(2τ) drop out, a set of coupled differential equations for the
supposedly slowly varying functions x̃(τ) and ỹ(τ) can be obtained:

∂2

∂τ2

(
x̃
ỹ

)
=
[−a − az(1 − χ) − q2/2 qUc/URF

qUc/URF a − az(1 + χ) − q2/2]

](
x̃
ỹ

)
. (9.1.6)
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URF [V] URF,recal[V] q g χ Uc,recal [V]
79.5 105 0.17545(2) 0.00332(< 1) 0.257(2) 0.45
105 138 0.22982(2) 0.00336(< 1) 0.252(2) 0.43
130 172 0.28392(2) 0.00340(< 1) 0.235(3) 0.49
185 245 0.40573(2) 0.00356(< 1) 0.202(4) 0.46

Chap. 7: 0.00301 0.269

Table 9.1: Fitting parameters and derived values from the measurements of radial
frequencies vs. Ua presented in Figs. 9.9 and 9.10. The bottom line is the predictions
from Chap. 7.

The eigenvalues λ± of the matrix on the r.h.s. are

λ± = −
(

q2

2
± a′ + az

)
, (9.1.7)

where

a′ =
√

(a − χaz)2 + (qUc/URF )2, (9.1.8)

which corresponds to secular oscillation frequencies

ω± =
1
2

√
q2

2
± a′ + az ΩRF (9.1.9)

of a harmonic motion along the principal axes given by the eigenvectors corresponding
to the eigenvalues λ±. These principal axes will be discussed below. When Uc = 0, the
eigenfrequencies ω+ and ω− reduce to ωx and ωy, respectively, as given by Eqs. (7.1.13)
and (7.1.14).

The curves in Figs. 9.9 and 9.10 are fits of the data points on the upper and lower
branches to the expressions for ω+ and ω−, respectively, using q, χ, α = Uc/URF and
g = a/Ua = 4Q/(mLr2

0Ω
2
RF ) as fitting parameters in a common fit to the two branches.

az is fixed by a direct measurement of ωz = 2π × 403 kHz and ΩRF = 2π × 11.05MHz.
Clearly, the data points are fitted very well by this model. The values found for q, χ
and g are summarized in Table 9.1 together with the quantities URF,recal and Uc,recal

discussed below. The fitted values of the constants g and χ are reasonably consistent at
the two lowest q-values. At larger q-values, g increases and χ decreases, which probably
can be ascribed to the fact that Eqs. (7.1.5) and (7.1.6), on which the Ansatz for x(τ)
and y(τ) was based, only are valid for q, a � 1. At low q-values, g and χ deviate
roughly by 10% and 5%, respectively, from the numerical calculations in Chap. 7. For
g, the deviation can essentially be explained by the fact that the real value of r0 is
about 4% smaller than the value used in the numerical calculations, thus leading to
a value of g which is about 8% larger than the numerically calculated value, since g
is proportional to r−2

0 . χ depends on z0 as well as r0. The deviation of about 5%
between the measured and the numerically calculated value seems reasonable, since it
is comparable to the deviation found for ωz/Uend (2%, z0-dependent deviation) and the
deviation found for g (10%, r0-dependent deviation). Note also that the fitted value of
χ would be affected by an offset in Ua.



130 Chapter 9 - Trap characterization and ion mass measurements

The values listed for q in Table 9.1 are plotted as circles in Fig. 9.8, which shows
consistency with the q vs. URF data.

Now, returning to the large discrepancy between the q vs. URF data and our expec-
tations, we note that by definition of q and a, we have that g = a/Ua = 2q/URF . From
the q vs. URF data (Fig. 9.8), we find 2q/URF = 0.00438, clearly inconsistent with
the values of g in Table 9.1. To remove this inconsistency, recall first that a difference
between the actual voltage on the electrodes and the measured voltage, URF , is likely.
Furthermore, the CT-model fits the ω± vs. Ua data very well and yields values of the
URF -independent parameters g and χ, which are in good agreement with the numeri-
cally calculated values, when we take the small differences between the simulated and
the real trap dimensions into account. Therefore, we choose to believe in the value
for g obtained from the ω± vs. Ua data (we take g = 0.00332, obtained at the lowest
value of q in Table 9.1) and introduce a recalibrated value, URF,recal = 1.32URF , for the
RF-voltage, which fulfills g = 2q/URF,recal. Below, we shall check against other data if
URF,recal is, or could be, the actual amplitude of the RF-voltage on the trap electrodes.
We note that for the driver at 5.6MHz, we find that a correction of about 10% of the
RF-voltage is needed to obtain consistency between measurements of q vs. URF and
ω± vs. Ua (a lower and an upper branch of radial trap frequencies are also observed in
this case).

In the fits in Figs. 9.9 and 9.10, the coupling term strength Uc was fitted through
the parameter α = Uc/URF , and hence we should also use recalibrated values Uc,recal =
αURF,recal for the coupling strength, which are given in the rightmost column of Ta-
ble 9.1. If the coupling term is due to patch potentials, the value of Uc,recal need not be
constant, although we would expect this for the data in Figs. 9.9 and 9.10, since they
were recorded successively on the same day. Indeed, the values listed in Table 9.1 are
all close to a constant value of 0.45V 4. To see if patch potentials could be a reasonable
explanation for the coupling term, it is relevant to consider the patch potential (or con-
tact potential [118]) arising when calcium is deposited on the molybdenum electrodes,
because calcium is probably being deposited on the electrodes as discussed in Sec. 9.2
below. The patch potential is equal to the difference in the work function of calcium and
molybdenum divided by the electron charge [118], which equals ∼ 1.7V [137]. Since this
is only 3-4 times larger than Uc,recal, which describes the strength of the coupling term
rather than the patch potential on an electrode, patch potentials could be a reasonable
explanation for the presence of the coupling term.

Further measurements and checks of the CT-model Having determined all
relevant trap parameters, we can check the recalibration of the RF-voltage as well as
the CT-model against additional measurements. From now on, we will use the values
g = 0.00332 and χ = 0.257 (lowest q-value in Table 9.1), the recalibrated RF-voltage
URF,recal and assume Uc,recal = 0.45V constant. We consider first measurements of ω±
versus ωz with URF,recal = 172V (q = gURF,recal/2 = 0.286) and a ≈ 0. The data are
presented in Fig. 9.11. Making a common fit of the data to ω± given by Eq. (9.1.9)
with q as the only free parameter, the fits represented by the curves in Fig. 9.11 are
obtained, yielding q = 0.28274(1). This value of q agrees with the expected q-value
roughly within 1%, which is more than acceptable, taking the uncertainty of g and

4For a data set recorded at ΩRF /2π = 5.6 MHz, two weeks earlier than those considered here, a

coupling voltage of 0.55 V was found.
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URF,recal into account. In Fig 9.11, slight deviations between the data points and the
fit are seen at small and large values of ωz, which, however, also are present if all fitting
parameters are free.

Figure 9.11: ω± vs. ωz at ΩRF /2π = 11.05MHz, URF,recal = 172V and a ≈ 0. A
fit (solid curves) to Eq. (9.1.9) with these values and Uc,recal = 0.45V fixed, yields
q = 0.28274(1).

To provide a further check of the CT-model, we shall consider one last data set,
representing measurements of the minimum splitting, ∆ω, between the two branches
for different values of URF,recal. The splitting is found from measurements of ω± at
a few values of Ua near a − χaz = 0 where the splitting is minimal, i.e., not over a
large range as in Figs. 9.9 and 9.10. The measured minimum splittings are presented in
Fig. 9.12 of which four of the data points are derived from the data in Figs. 9.9 and 9.10.
The CT-model predicts a minimum splitting of

∆ω = ω+ − ω−
∣∣
a−χaz=0

≈ qUc,recal/URF,recal√
2q2 + 4az

ΩRF , (9.1.10)

when Uc,recal/URF,recal � 1, which indeed is the case. The curve in Fig. 9.12 is plotted
according to Eq. (9.1.10), with Uc,recal = 0.45V, q/URF,recal = g/2 = 0.00166 and az

derived from ωz = 2π × 403 kHz, and ΩRF = 2π × 11.05MHz and shows a reasonable
agreement with the data, thus giving further support to the CT-model.

Finally, we shall discuss our observation that the modulation voltage required to
excite the radial motion varies with Ua for the two branches. If there was no coupling
term, we would have two motional modes with principal axis directed along the x-axis
and the y-axis, i.e., from the trap center and towards the DC-electrodes and the RF-
electrodes, respectively. For the coupling-term model, the principal axes are defined
by eigenvectors v± corresponding to the eigenvalues λ± of the matrix on the r.h.s. of
Eq. (9.1.6). A set of eigenvectors is

v+ =
(

a′ + a − χaz

−qUc/URF

)
and v− =

(
a′ − a + χaz

qUc/URF

)
, (9.1.11)
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Figure 9.12: Measured minimum splitting between the upper and lower branch of radial
trap frequencies. ΩRF /2π = 11.05MHz and ωz/2π = 403 kHz. The error bars represent
an estimated uncertainty of 2 kHz on the measured splitting. The curve is plotted
according to Eq. (9.1.10) using the parameters given in the text.

which in general are non-parallel to the x- and the y-axis. The angles from the x-axis
to the eigenvectors v+ and v− are denoted by θ+ and θ−, respectively, and plotted in
Fig. 9.13, showing that the eigenvectors rotate as a is varied. This explains the way the
required modulation voltage varies with Ua for the two branches, since at large negative
a-values, where v− (v+) is parallel (perpendicular) to the x-axis, the coupling to the
corresponding radial mode is large (small) using modulation on the DC-electrodes and
therefore only a small (large) modulation voltage is needed to excite the mode. As
the a-parameter is increased to large positive values, the eigenvectors complete a 90◦

rotation, thus decreasing (increasing) the coupling between the modulation force and
the motional modes corresponding to the lower (upper) branch.

In practice this is very important for our sideband-cooling scheme. Since we want
to cool both radial modes, they should be coupled to at least one of the Raman beams,
i.e., a principal axis should not be perpendicular to the propagation directions of both
Raman beams. In our setup this will, however, be the case near a − χaz = 0 for one of
the modes and hence we need to apply a bias voltage Ua when doing sideband cooling.

Conclusion In conclusion, we have observed that the behaviour of the radial modes
differs significantly from the predictions based on the theory presented in Chap. 7. By
introducing a coupling term in the radial potential, which physically can be justified
by patch potentials or small misalignments of the electrodes, the measurements can
be explained very well. Within the CT-model, good agreement with the numerical
calculations from Chap. 7 was found, although the RF-voltage had to be recalibrated by
a rather large (but qualitatively explainable) amount. The deviation from the standard
theory from Chap. 7 underlines the importance of this experimental characterization.
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Figure 9.13: Angles between the x-axis and the principal axes given by the eigen-
vectors in Eq. (9.1.11). The range of the parameter 2(a − χaz)/gUc, over which the
angles are plotted, corresponds roughly to Ua being in the experimentally relevant range
[−10V, 10V]. Dotted lines indicate the asymptotic limits of 0◦ and ±90◦.

Measurements for ΩRF = 2π × 18.06MHz

Measurements of the radial frequencies with the trap being operated at ΩRF /2π ≈
18MHz, either using the self-oscillating supply or fixed frequency supply number 1 (see
Chap. 8), are performed in the same way as the measurements at 11MHz RF-frequency.
The results are, however, quite different. Instead of observing two distinct resonance
frequencies for the radial motion, we observe two frequency bands within which the
radial motion can be excited. To illustrate such a frequency band, we plot in Fig. 9.14
the amplitude V0 of the input modulation voltage (see Fig. 9.1), which is found to be
required to excite the radial motion when the modulation frequency is varied across the
considered frequency band. The band edges are quite sharp, which therefore easily can
be identified within a few kHz. At, or near, each edge a ‘dip’ is observed, indicated
by arrows, where only a relatively small modulation voltage is required to excite the
radial motion and where the oscillation amplitude of the ion easily becomes very large.
Between these dips the radial motion can be excited at all frequencies using modulation
voltages at a similar level, except between 1225 kHz and 1250 kHz where a somewhat
larger modulation voltage is required to excite the radial motion. Such an increase in
required modulation voltage near the center of a band has only been observed in cases
where a ≈ 0.

In Fig. 9.15(a), the results of a measurement of the radial frequencies vs. Ua is
plotted. For each value of Ua, the points indicate the frequencies of the dips, which
define the edges of the bands. These frequencies are named the edge frequencies in
the following. The two branches are designated RF-electrode and DC-electrodes, re-
spectively, meaning that for the branch designated RF-electrode (DC-electrodes), the
voltage V0 required to excite the radial motion with modulation on the RF-electrode
(DC-electrodes) was smaller than for the other branch, indicating that the principal
axis corresponding to the branch named RF-electrode (DC-electrodes) to some extent
is aligned with the axis from the trap center to the RF-electrode (DC-electrodes), i.e.,
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Figure 9.14: Input modulation voltage V0 (applied to DC-electrodes 4-5-6) required
to excite the radial motion within one of the frequency bands described in the text.
The data points have an uncertainty of ±1V, except those at modulation frequencies
between 1300 kHz and 1315 kHz (near the rightmost arrow), which have an uncertainty
of ±0.1V. Points at V0 = 10V means that the radial motion could not be excited
with the available modulation voltage. Note the increase in required modulation volt-
age between 1225 kHz and 1250 kHz. The arrows indicate the ‘dips’ discussed in the
text. The trap was operated with the self-oscillating 18MHz RF-supply, URF = 260V,
ΩRF /2π = 18.06MHz, ωz/2π = 457 kHz and a ≈ 0. Modulation on an RF-electrode
yields a frequency band between 1100 kHz and 1375 kHz, also with an increase in re-
quired modulation voltage roughly between 1225 kHz and 1250 kHz.

the y-axis (x-axis). Near Ua = 0V, the excitation strength was roughly independent of
which set of electrodes the modulation was applied to, and here designations are given
to fit the overall behaviour of the two branches.

The explanation given in the following for the variation of the frequency bands with
Ua, as well as with other parameters, falls in two parts. First, we consider only the
center frequencies of the bands, i.e., the average values of the edge frequencies for each
band, and show that they can be described in terms of the CT-model, which indicates
that the center frequencies are the ‘true’ radial trap frequencies. Second, a possible
explanation for the observation of frequency bands centered around a ‘true’ radial trap
frequency will be given.

Center frequencies The center frequencies of the bands in Fig. 9.15(a) (crosses)
was fitted to the expressions for ω± given in Eq. (9.1.9), with the lower (upper) branch
in the CT-model describing the center frequencies of the DC(RF)-electrode branch for
negative Ua and the RF(DC)-electrode branch for positive Ua. When Ua ≈ 0V it is
hard to tell if the data points belong to the upper or lower branch and therefore the
points near a = 0 indicated by arrows in Fig. 9.15(a) and the neighbouring points
were not included in the fit. g, which determines the main variation of the radial
frequencies with Ua, was kept fixed to g = 0.00332(11.05/18.06)2 = 0.00124, i.e., the
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(a)

(b)

Figure 9.15: (a) Radial frequencies vs. Ua measured at URF = 292V, ΩRF /2π =
18.06MHz and ωz/2π = 446 kHz. The designation RF(DC)-electrode(s) is explained in
the text. The center of the bands (crosses) are fitted using Eq. (9.1.9) as explained in the
text. (b) q vs. URF measured at ΩRF /2π = 18.06MHz. Circles are plotted according
to the coupling-term model. Solid squares are plotted according to Eq. (9.1.12) and
fitted to a straight line (solid line). The dashed line represents the expectation from
Eq. (7.2.7).

value derived from the measurements near 11MHz RF-frequency, scaled by Ω−2
RF . ωz and

ΩRF are also fixed, but q, χ and α are free parameters in the fit. The considered center
frequencies are clearly well fitted by this model. The fit yields a value of q = 0.2216(2)
(at URF = 292V), which is consistent with measurements of q vs. URF presented in
Fig. 9.15(b), which will be discussed below.

Looking very carefully at Fig. 9.15(a), it can be noted that for the four data points
between the arrows, the average of the lower edge frequency of the RF-electrode band
and the upper edge frequency of the DC-electrode band falls onto the lower branch of
the fitted curves. Likewise, the average of the upper edge frequency of the RF-electrode
band and the lower edge frequency of the DC-electrode band falls onto the upper branch.
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This mixing of the DC- and the RF-electrode band could indicate that each of these
frequency pairs comprises the edge frequencies of a frequency band, where the principal
axis of the corresponding radial motional mode has a component along the x-axis as
well as the y-axis. This would be in accordance with the rotation of the principal axes
predicted by the CT-model [see Eq. (9.1.11) and Fig. 9.13].

Carrying this pairing over to the data for which the DC-electrode band is shown
in Fig. 9.14 5, we find that the lower and upper branch frequencies are approximately
1205 kHz and 1255 kHz, respectively. The small range of frequencies near the center of
the band, where an increase in the required modulation voltage is observed, is roughly
the same for the DC-electrode band and the RF-electrode band and falls in between
the lower and the upper branch frequencies. We have not systematically recorded data
as in Fig. 9.14, but on two other occasions 6 we have found a similar range, where the
required modulation voltage increases near the center of both the DC-electrode band
and the RF-electrode band, and on both occasions the range fell in between the lower
and the upper branch. A partial explanation for observing such ranges could be the
following: According to the CT-model, the principal axes are at an angle of about 45◦

with respect to the x- and y-axis near a − χaz = 0. If a modulation voltage acting
along the x-axis is applied, both radial motional modes can be excited. When the
modulation frequency ωmod fulfills ω− < ωmod < ω+, the modulation force is out of
phase with the mode at frequency ω− and in phase with the mode at frequency ω+,
which means that the resulting motion is perpendicular to the x-axis. In this situation
it is apparently difficult to excite the motion, even though the principal axes of motion
are non-perpendicular to the x-axis. Similar considerations hold for a modulation force
along the y-axis.

Measurements of the radial trap frequencies versus URF yields two bands at each
value of URF from which the q-parameter can be extracted as shown in Fig. 9.15(b)
and explained in the following. Since the measurements were performed near a = 0,
it is once again hard to determine if the bands belong to the upper or lower branch of
the CT-model. Instead we assume that the average of the center frequencies of the two
bands (denoted ω) is equal to (ω+ + ω−)/2, such that we according to the CT-model
have q = (2/ΩRF )

√
2ω2 + ω2

z , when a′/q2 � 1. Using this relation, q has been plotted
versus URF in Fig. 9.15(b) (circles). For large q, where the CT-model is expected to be
invalid, the points do not fall onto a straight line. This can be remedied by using the
more accurate expression [135]

q =
√

[2 sin(πω+/ΩRF )/π]2 + [2 sin(πω−/ΩRF )/π]2 + (ωz/ΩRF )2

≈
√

2[2 sin(πω/ΩRF )/π]2 + (ωz/ΩRF )2, (9.1.12)

for which the corresponding points are plotted as solid squares in Fig. 9.15(b), showing
that they fall nicely onto a straight line. The dashed line in Fig. 9.15(b) illustrates our
expectation from the numerical calculations, which once again deviates significantly
from the measured q-values, probably due to the same reasons as discussed above for
the measurements near 11MHz RF-frequency.

Finally, for measurements of the radial trap frequencies vs. ωz, it is also found
that the center frequency of the RF- and DC-electrode bands are well described by the

5Note: The data in Fig. 9.14 and Fig. 9.15(a) are not directly comparable, since they are recorded

at different RF- and endcap voltages.
6Where the trap actually was operated at ΩRF /2π = 14.56 MHz and ΩRF /2π = 19.47 MHz.
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CT-model.
Thus, concerning the center frequencies of the bands, we can conclude that they are

well described by the CT-model. A possible explanation for the observation of frequency
bands, instead of distinct resonance frequencies is given in the following.

Frequency bands It is well-known that under certain circumstances the dynamics
of single ions (or several ions) in Paul traps cannot be described as simply as we did
in Chap. 7 or with the CT-model. For example, non-linear resonances and instabili-
ties in anharmonic traps [138, 139] or quadrupole mass-filters [140] have been studied,
and it is known that the presence of a laser cooling force can play an important role
for the stability/instability of a trapped ion [135, 141, 142]. The latter takes us back
to Eq. (9.1.1) for the driven damped harmonic oscillator, where we assumed that the
damping force was linear in the ion velocity which, however, not necessarily is the case
when we consider large oscillation amplitudes and/or take micromotion into account.
In continuation of the present experiments, a theoretical study has been undertaken by
Jens Lykke Sørensen [133], who models the radial motion of a single ion by a driven
harmonic oscillator, taking micromotion and the full velocity dependence of the Doppler
laser cooling force for a two-level ion into account. Under certain conditions it is pre-
dicted that the ions motion is bi-stable. For modulation frequencies near the harmonic
oscillator resonance frequency and when the modulation force is below a certain level,
there are three trajectories of motion which can be characterized as follows. #1: A
small-amplitude trajectory, which roughly follows the predictions for a linear damping
force. #2: A large-amplitude trajectory, which exists when the modulation frequency
is within a certain frequency range centered around the resonance frequency. #3: A
trajectory, where the amplitude approaches infinity when the modulation frequency ap-
proaches the resonance frequency, i.e., the ion will be lost from the trap. Trajectory
#2 seems to explain our observations that the ion can be excited within a frequency
band without being lost from the trap and that the center of the band could correspond
to a normal radial trap frequency. At the boundaries of the predicted band, a con-
tinuous transition from trajectory #2 to trajectory number #3 can take place, which
explains the observed dips in required modulation voltage. At frequencies well within
the predicted band, only a discontinuous transition to trajectory #3 can take place,
which (most of the times!) are avoided in the experiment by adjusting the modulation
voltage. The width of the predicted bands is at most around 50 kHz, while the exper-
imentally observed bands typically are hundreds of kHz wide, as it can be seen from
Figs. 9.14 and 9.15(a). Although this discrepancy is yet to be resolved, a large part of our
observations seems to be explained, at least qualitatively, when the velocity-dependence
of the Doppler laser cooling force as well as micromotion is taken into account. The
model is still being developed and we shall therefore not go into further details here.
The above-mentioned non-linearities and instabilities in anharmonic trap potentials or
the intricate internal dynamics of a three-level ion [141] may also have a role to play for
a full theoretical explanation.

Further experimental studies are needed to understand why we observe frequency
bands when the trap is operated at 18MHz RF-frequency and not at 11MHz RF-
frequency. So far, frequency bands have been observed with the trap being operated at
RF-frequencies of 14.56MHz and 19.47MHz. A reasonable explanation for observing
frequency bands at high RF-frequencies (≥ 14.56MHz) and not at lower RF-frequencies
(≤ 11.05MHz) could be the larger ion velocities which are obtained at larger RF-
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frequencies due to micromotion, since by taking the full velocity dependence of the
Doppler laser cooling force (which is relevant for large velocities) and micromotion into
account, trajectories of motion are predicted, which can be interpreted as giving rise to
the observed frequency bands.

If this explanation is correct, the frequency bands appear only as an effect of mo-
tionally exciting the ions. In this case, the good understanding of the measurements at
11MHz shows that the properties of the trap are well understood.

9.2 Micromotion

To conclude the work on characterization of the trap, we shall in this section briefly dis-
cuss micromotion, the problems it implies and how to observe and reduce micromotion.
For a more detailed discussion, we refer to Ref. [134].

When the RF-field used for confinement in the radial plane has a non-zero amplitude
at the position of an ion, micromotion at the RF-frequency ΩRF will be superposed on
the ions secular motion. For a perfectly symmetric linear Paul trap, there is no RF-field
on the trap axis, and hence for an ion-string with equilibrium position on the trap axis,
micromotion only occurs as a result of the secular motion [see Eqs. (7.1.5) and (7.1.6)],
which for well-localized laser-cooled ions has a small amplitude. In reality there are,
however, other reasons for micromotion to be present. For example: (i) If the trap is
(slightly) asymmetric there need not be a straight line with zero RF-field and there
can even be micromotion along the trap axis. (ii) Due to unwanted DC electric fields,
the equilibrium position of an ion-string is not necessarily on a line with zero RF-field
(if such a line exists at all). (iii) A phase difference between the RF-voltages on two
diagonally opposite electrodes will lead to micromotion [134]. A phase difference can,
e.g., occur if the wires from the RF-supply to the electrodes are of different length 7 or
if the impedance of the electrodes is different.

Micromotion due to (iii) can to a small extent be compensated using the adjustable
capacitors (see Fig. 8.2). The effects of (i) and (ii) can at least partly be compensated
by adjusting the equilibrium position of the ions to a position where the amplitude of
the RF-field is minimal. This is normally done by adjusting the DC adjustment-voltages
(controls #5 and #6 in Table 8.1) such that the equilibrium position of the ions does not
change when the strength of the radially confining potential is varied. Unfortunately,
this adjustment cannot be done once and for all; readjustments are needed from time
to time because of changing patch potentials.

Since patch potentials also were used as a common explanation for many effects
in the previous section, it should be pointed out that we believe we do see effects of
changing patch potentials. The patch potentials are due to calcium being deposited
on the electrodes, and changes can be observed as a change in the equilibrium position
of the ions, when the oven has been on and the oven shutter open for a while (such
electrode contamination was also reported in Refs. [105, 143]). Mostly, it is just a minor
change, but a few times where the oven shutter by mistake was left open for an extended
period of time, it was subsequently hard to trap ions. By leaving the trap alone for

7For the present trap, the difference is below 1 permille of the RF-wavelength for RF-frequencies

up to 20 MHz, and hence micromotion due to a phase difference is reduced by a similar factor (see

Ref. [134]).
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1/2–1 hour (a shorter period may be sufficient), ions could normally be trapped again,
perhaps due to some redistribution of the patch potentials.

The main unwanted effect of micromotion is a modification of the absorption spec-
trum of an ion 8. In Chap. 2, we considered the absorption spectrum for an ion at rest
at the position r interacting with a travelling-wave electric field. In the presence of
micromotion with amplitude A, in a direction given by a unit vector r̂m in the radial
plane, r should be replaced by r + A cos(ΩRF t)r̂m in Eq. (2.1.4), assuming for simplic-
ity that the micromotion is in phase with the RF-field. In this case the electric field
becomes [134]

E(r, t) = E0ε̂

∞∑
n=−∞

Jn(Ak · r̂m) cos[k · r − (ωL − nΩRF )t + φ + nπ/2], (9.2.1)

where Jn is the Bessel-function of n’th order. This means that the ion ‘sees’ a laser with
carrier frequency ωL and sidebands at integer multiples of the RF-frequency above and
below the carrier frequency. For Doppler cooling in 40Ca+, where ΩRF � Γ1/2 in our
case, this leads to a broadening of the 2S1/2– 2P1/2 transition (with some structure) and
a decrease of the carrier strength due to the factor J0(Ak · r̂m). For the Raman transi-
tion, where ΩRF is larger than the effective linewidth of the transition, distinguishable
sidebands will occur [134].

For Doppler cooling, micromotion gives rise to a modulation of the ions velocity and
hence of the Doppler cooling force [see Eq. (3.1.2)] as well as the amount of fluorescence
light emitted by the ion. Micromotion can be detected by measuring the variation
of the fluorescence level with the RF-phase, which can be accomplished by collecting
fluorescence light only in time windows of width ∆t � 1/ΩRF (by gating the image-
intensifier), phase-locked to the RF-voltage, and varying the relative phase between the
time windows and the RF-voltage. More details are given below, where essentially the
same technique was used for the mass measurements.

We have done some very preliminary experiments looking for axial micromotion,
which was observed and reduced to some extent. After reduction, the fluorescence
signal was characterized by a constant level, overlayed with a sinusoidal variation at the
RF-frequency, with amplitude � 3% of the constant fluorescence level, which translates
into a maximal Doppler-shift of � 0.6MHz (� 3% of Γ1/2/2π) [134]. This may not
be critical for STIRAP, but in order to demonstrate sideband cooling it is probably
necessary to reduce axial as well as radial micromotion below this level.

9.3 Ion mass measurements

The work on mass measurements presented in this section is a spin-off from the trap
characterization measurements. It is motivated by an ongoing research project, which
aims at studying laser cooling of the rotational degrees of freedom of sympathetically
cooled molecular ions [144] as well as studying chemical reactions with laser cooled
or sympathetically cooled ions [145][II, V]. For these studies, identification of a sym-
pathetically cooled ion by a precise and non-destructive mass measurement will be a
valuable tool. To demonstrate the usefulness of this tool, there are two natural goals,
which require different levels of precision to achieve. The first goal is to discriminate

8The effects of micromotion can also be exploited for entanglement of two trapped ions [16].
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between ions with different atomic masses, which only requires a precision better than
one percent or so. The second goal is to discriminate between ions which have the same
number of nucleons, but differ in mass due to a difference in nuclear binding energy, e.g.,
25Mg+ and 24MgH+, for which the relative mass difference is 2.8 · 10−4 [146]. MgH+ is
relevant for laser cooling of the rotational degrees of freedom of molecules [144].

9.3.1 Theory

In Chap. 7 we saw that the axial trap frequency of an ion is proportional to the square
root of its charge-to-mass ratio [see Eq. (7.1.9)]. Thus, precise measurements of the ax-
ial trap frequencies for two different ion species, trapped at identical trap parameters,
immediately yields a precise relative measurement of their charge-to-mass ratio or, spec-
ifying to singly-charged ions in the following, of their relative mass. The technique for
measuring axial trap frequencies, which was demonstrated above, requires a laser-cooled
ion species. Since only a few ion species can be Doppler laser-cooled as simply as, e.g.,
40Ca+, it seems at first sight not to be a very general method. However, by using one
laser-cooled ion and one other ion, which is sympathetically cooled by the laser-cooled
ion [94], the method can be applied to all ions, including molecular ions, which can be
trapped simultaneously with the laser-cooled ion [145]. The pictures in Fig. 9.16 show
two 40Ca+ ions and a single 40Ca+ ion trapped together with a sympathetically cooled
ion. Although the sympathetically cooled ion cannot be seen in the bottom picture,
since it is not Doppler laser-cooled, it is nevertheless certain that there are two and
only two singly-charged ions in the trap, since otherwise the equilibrium position of the
40Ca+ ion would have been different from the equilibrium positions of the two 40Ca+

ions in the upper picture. The mass of the sympathetically cooled ion can be deduced
from a measurement of the mass-dependent trap oscillation frequencies for both two-ion
strings, with the measured trap frequency for the 40Ca+–40Ca+ two-ion string serving
as a reference.

Figure 9.16: Top: Two Doppler laser-cooled 40Ca+ ions. Bottom: A single Doppler
laser-cooled 40Ca+ ion trapped together with a sympathetically cooled ion (42Ca+).

For two identical ions, we know from Sec. 2.2.2 that there are two axial eigenmodes at
oscillation frequencies ωz and

√
3ωz, respectively, where ωz is the oscillation frequency

for a single ion. The mode frequencies for two ions with a different mass are derived in
the following, where we consider the case of one laser-cooled and one sympathetically
cooled ion, and therefore take into account that the laser-cooled ion can be subject to
a net light-pressure force. We consider two singly-charged ions, Ion 1 and Ion 2, with
masses m1 and m2 and position coordinates z1 and z2 (z2 > 0 > z1), respectively,
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confined in the axial harmonic potential of a linear Paul trap. Ion 1 is assumed to
be subject to a constant light pressure force, Flight, which is positive for a laser beam
propagating in the direction of positive z. The position-dependent part of the potential
energy is

U(z1, z2) =
1
2
m1ω

2
1z2

1 +
1
2
m2ω

2
2z2

2 +
e2

4πε0(z2 − z1)
− Flightz1, (9.3.1)

where ωi (i = 1, 2) is the trap frequency for a single trapped ion with mass mi. Since
the axial trap potential is independent of the ion masses, we have that

ω2
1

ω2
2

=
m2

m1
≡ µ. (9.3.2)

The presence of the light-force gives rise to a change in equilibrium positions as compared
to the situation in Sec. 2.2.2. Writing the equilibrium distance as ∆z + δz, where

∆z ≡
(

e2

2πε0m1ω2
1

)1/3

(9.3.3)

is the equilibrium distance in the absence of the light-force, and assuming δz/∆z � 1,
we find to first order in δz/∆z that the new equilibrium positions are

z1,eq = − ∆z/2 − 2δz and z2,eq = ∆z/2 − δz, (9.3.4)

where

δz = − Flight

3m1ω2
1

. (9.3.5)

In the following we will continue keeping only terms of first order in δz/∆z and justify
below that δz/∆z � 1. Following Refs. [25, 91], we write zi = zi,eq + qi (i = 1, 2),
where qi is the deviation from the equilibrium position zi,eq. For sufficiently small qi,
the Lagrangian for the coupled motion of the ions can be written as

L =
1
2
m1q̇

2
1 +

1
2
m2q̇

2
2 − 1

2
m1ω

2
1

2∑
m,n=1

qmqnAmn, (9.3.6)

where

Amn =
1

m1ω2
1

∂2U

∂zm∂zn
(z1,eq, z2,eq). (9.3.7)

The coefficients Amn are (in matrix form)

A =
[

2 − 3δz/∆z −(1 − 3δz/∆z)
−(1 − 3δz/∆z) (2 − 3δz/∆z)

]
. (9.3.8)

Introducing normalized coordinates q̃1 = q1 and q̃2 = q2/
√

µ, the Lagrangian can be
rewritten as follows

L =
m1

2

(
˙̃q
2

1 + ˙̃q
2

2 − ω2
1

2∑
m,n=1

q̃mq̃nÃmn

)
, (9.3.9)
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where

Ã =
[

2 − 3δz/∆z −(1 − 3δz/∆z)/
√

µ
−(1 − 3δz/∆z)/

√
µ (2 − 3δz/∆z)/µ

]
. (9.3.10)

The eigenvalues λ̃± of Ã are

λ̃± =
(

1 +
1
µ

)(
1 − 3δz

2∆z

)
±
√

1 − 1
µ

+
1
µ2

− 3
δz

∆z
(1 +

1
µ2

)

≈1 +
1
µ
±
√

1 − 1
µ

+
1
µ2

− 3
2

δz

∆z

(
1 +

1
µ
± 1 + 1/µ2√

1 − 1/µ + 1/µ2

)
, (9.3.11)

which yields the new motional mode frequencies ωCOM =
√

λ̃−ω1 and ωbr =
√

λ̃+ω1,
where ωCOM and ωbr are equal to the center-of-mass mode frequency ωz and the breath-
ing mode frequency

√
3ωz, respectively, in the limit where δz = 0 and µ = 1.

The δz-dependent shift of the mode frequencies, which is due to the light-force, is in
the following called the light-force shift. To estimate its magnitude, we note that for the
2S1/2– 2P1/2 transition in 40Ca+, the light-force is at most �k1/2Γ1/2/2 (see Sec. 3.1),
which implies that

δz

∆z
< �k1/2Γ1/2

(
πε0

108e2m2
1ω

4
1

)1/3

= 5.3 × 10−2 (9.3.12)

for m1 = 40AMU and ω1/2π = 100 kHz. This justifies the assumption δz/∆z � 1.
In practice δz/∆z can be made smaller than this limit by driving the 2S1/2– 2P1/2

transition below saturation and by using two counter-propagating beams to reduce the
net light-force.

The relative mass obtained from the light-force independent term in Eq. (9.3.11) is

µ =
1 − 2(λ̃± − 1)
1 − (λ̃± − 1)2

. (9.3.13)

For the center-of-mass mode [inserting λ̃− in Eq. (9.3.13)], it is a very good approxima-
tion to neglect the light-force shift, since the light-force dependent term in Eq. (9.3.11)
is proportional to

1 +
1
µ
− 1 + 1/µ2√

1 − 1/µ + 1/µ2
, (9.3.14)

which, e.g., for µ = 1.1 equals 2.1 × 10−3. Thus, for mass measurements which require
a precision on the percent level (relevant for discriminating between ions with different
atomic masses), we can, at least for the center-of-mass mode, safely neglect the light-
force shift. However, if the mode frequency, ωCOM , is determined as the modulation
frequency where the amplitude of the excited motion is maximal (ωmax), the measured
frequency will deviate from ωCOM by an amount which depends on the laser cooling force
through γ. This γ-dependent shift of the mode frequency is normally negligible on the
10−2 level and hence the relatively simple technique used for the trap characterization
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measurements, where ωmax is determined manually, is sufficient to achieve the goal of
discriminating between ions with a different atomic mass.

To achieve the goal of discriminating between ions with the same nucleon number
but with different nuclear binding energies, which requires measuring relative mass
differences at about the 10−4 level, we have to avoid the γ-dependent shift and in general
also to take the light-force shift into account. Noting that the sign of the light-force
shift depends on the sign of Flight or, equivalently, the position of the sympathetically
cooled ion with respect to the laser cooled ion (left or right in Fig. 9.16, bottom),
the light-force shift can be cancelled to first order by taking the average of two mode
frequencies measured for the two possible relative positions of the two ions (if the
net light-force is constant). To account for the γ-dependent shift, one might consider
correcting ωmax, which, however, is hard to do precisely. Instead, the γ-dependent
shift of the measured mode-frequency can be avoided by measuring the relative phase
ϕ between the modulation force and the ion motion versus modulation frequency. A
technique for doing this is described for one ion in the following and generalized to two
ions below.

By rewriting the solution in Eq. (9.1.2) as

z0(ωmod) cos(ωmodt + ϕ) = z0(ωmod)[cos(ωmodt) cos(ϕ) − sin(ωmodt) sin(ϕ)], (9.3.15)

it is clear that the motion of a single ion is composed of a component in phase with the
driving force (the cosine term) and an out-of-phase component (the sine term). The
amplitudes z0(ωmod) cos(ϕ) and z0(ωmod) sin(ϕ) of the two components are plotted in
Fig. 9.17 for typical values of ωz/2π = 100 kHz and γ/2π = 200Hz, using Eq. (9.1.2)
and [132]

cos(ϕ) =
ω2

z − ω2
mod√

(ω2
mod − ω2

z)2 + γ2ω2
mod

(9.3.16)

and

sin(ϕ) = − γωmod√
(ω2

mod − ω2
z)2 + γ2ω2

mod

. (9.3.17)

Since the amplitude of the in-phase component is zero at ωmod = ωz, a measurement
of this component would enable a determination of ωz, which is independent of γ, and
in addition relatively precise since the zero-crossing is sharp (for small γ).

To see how the in-phase component can be measured, consider the projected signal
function SP (ωmod, z) for a single ion obtained from a single CCD-image recorded during
an exposure time Texp at a constant modulation frequency ωmod. In a small time interval
dt around time t, the projected collected signal dSP is

dSP (ωmod, z, t) =dtS′
P f [zion(ωmod, t)], (9.3.18)

where S′
P is a constant and the function f describes the shape of the projected signal

from an ion at rest at the position zion(ωmod, t). We will assume a Gaussian signal distri-
bution having a characteristic width σ [σ = FWHM/(2

√
2 ln 2) = 2.5µm in Fig. 9.2(b)],

i.e.,

f [zion(ωmod, t)] =e−[z−zion(ωmod,t)]2/2σ2
. (9.3.19)
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Figure 9.17: The amplitudes z0(ωmod) cos(ϕ) and z0(ωmod) sin(ϕ) of the two components
in Eq. (9.3.15). ωz/2π = 100 kHz and γ/2π = 200Hz.

Note that f is periodic with the period of the modulation force, 2π/ωmod, which we
will assume to be much smaller than Texp. Now, assume that fluorescence light only
reaches the CCD-chip in time windows of width ∆t, centered around all times t within
the exposure time where ωmodt = n ·2π +ϕ0, where n is an integer and ϕ0 is a constant
phase. In this case, the integrated signal for a single frame is

SP (ωmod, z) = S′
P

∫ Texp

0

dtf [zion(ωmod, t)] × (9.3.20)

N∑
n=1

Θ[t − (n · 2π/ωmod + ϕ0/ωmod − ∆t/2)] × Θ[n · 2π/ωmod + ϕ0/ωmod + ∆t/2 − t],

where Θ is the Heaviside step-function, the product of step-functions defines a time-
window and N ≈ ωmodTexp/2π � 1 is the number of time windows (the number of full
modulation periods) within Texp. For ∆t � 2π/ωmod, we find

SP (ωmod, z) =S′
P Texp

ωmod∆t

2π
f [zion(ωmod, ϕ0/ωmod)] (9.3.21)

=S′
P Texp

ωmod∆t

2π
e−[z−z0(ωmod) cos(ϕ0+ϕ)]2/(2σ2),

i.e., a Gaussian distribution centered at the position

z0(ωmod) cos(ϕ0 + ϕ) = z0(ωmod)[cos(ϕ0) cos(ϕ) − sin(ϕ0) sin(ϕ)]. (9.3.22)

Thus, by choosing cos(ϕ0) = 1, the amplitude z0(ωmod) cos(ϕ) of the in-phase com-
ponent can be selected. By recording an image sequence while scanning ωmod slowly
enough that it can be considered a continuous variable, the variation of the amplitude
of the in-phase component with modulation frequency can be measured. For two 40Ca+

ions, both emitting fluorescence light, the projected signal function is a sum of two
functions of the form given in Eq. (9.3.21).
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For two identical ions in the center-of-mass mode, the phase ϕ is the same as for a
single ion. For two ions with a different mass, where only one of the ions is laser cooled,
the relative phase, ϕ1, between the laser cooled ion and the modulation force is given
by a more complicated expression than ϕ (see derivation in App. A.3). Fortunately,
cos(ϕ1) = 0 is fulfilled at ωmod = ωCOM (and ωmod = ωbr) such that the approach
described above also is valid for two different ions.

9.3.2 Experiment

The experiment presented here demonstrates the phase-sensitive technique described
above, showing that the frequency where the amplitude of the in-phase component
of motion is zero can be determined with a relative statistical uncertainty down to
∼ 2 · 10−5. For a demonstration of relative mass measurements on the 10−4 level or
better, it does, however, still remain to take care of the light-force shift and other
systematic errors, and in that sense the present experiment is only preliminary. The
experiment was performed using two ions as in the situation described theoretically
above. The Doppler laser-cooled ions are 40Ca+-ions and the sympathetically cooled
ion is a singly-charged calcium ion, ACa+, with nucleon number A �= 40. Thus, rather
than trying to measure small mass differences, we use a calcium isotope as a test mass.
The ACa+ ion is unaffected by the cooling lasers for the 40Ca+ ion due to the isotope-
shifts of the cooling transitions. The axial motion was excited by intensity-modulation,
since it naturally selects the in-phase component (strobe light effect).

(a) (b)

Figure 9.18: Experimental setup for mass measurements. (a) Ion trap, lasers and
imaging system. M: mirror, DM: dichroic mirror, PBS: polarizing beamsplitter, λ/2:
half-wave plate, Pol.: polarizer. The EOM and the polarizer are used for intensity
modulation as described in Sec. 9.1.1. (b) Schematic overview of the setup for recording
images while synchronously scanning the modulation frequency. Further details are
given in the text.

The experimental setup is shown in Fig. 9.18. For this experiment, a linear Paul
trap which is larger than the one presented in Chap. 7 was used, since it is less sensitive
to patch potentials. This larger trap consists of four cylindrical electrodes (gold-coated
stainless steel rods) arranged in a quadrupole configuration, where two diagonally op-
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posite rods are separated by 7.00mm. The rods are 8.00mm in diameter, and each
rod is sectioned into three parts, where the center piece is 5.40mm long and the two
end-pieces are 20.00mm long. An RF-voltage is applied to two diagonally opposite
rods and the same RF-voltage with the opposite phase is applied to the other two rods.
The peak-peak amplitude of the RF-voltage was typically 500V and the frequency was
3.894MHz, which results in a radial trap frequency of ωr ≈ 2π × 450 kHz. The axially
confining endcap voltage applied to the eight end-electrode pieces was chosen to about
4V, yielding an axial trap frequency of ωz ≈ 2π×130 kHz for a Ca+ ion. Additional DC-
voltages can be applied to all twelve electrode pieces for adjustment of the equilibrium
position of the ions. Otherwise, the imaging system is identical to the one described
in Chap. 8, the vacuum chamber setup is equivalent to the one described in Chap. 8
and the laser sources are the same. Two 40Ca+ ions was loaded into the trap using the
isotope-selective photoionization technique described in Chap. 8. A 40Ca+ ion and a
ACa+ ion was ‘loaded’ from two 40Ca+ ions by keeping the oven shutter open until one
of the 40Ca+ ions was exchanged with a ACa+ ion by a charge transfer process of the
type [II,IV]

40Ca+ + ACa −→ 40Ca + ACa+, (9.3.23)

after which the oven shutter was closed. Laser cooling was done as in the trap char-
acterization experiments described in Sec. 9.1, using two blue cooling beams counter-
propagating parallel to the trap axis, one blue cooling beam propagating perpendicular
to the trap axis and a red cooling beam propagating parallel to the trap axis.

One of the blue cooling beams propagating along the trap axis was intensity mod-
ulated, such that it was ‘on’ for a time ∆tlight and ‘off’ (extinction to < 1% of the
‘on’ intensity level) for the rest of a modulation period of duration 2π/ωmod. The mod-
ulation frequency ωmod was defined by the frequency of a sinusoidal signal from the
Thurlby Thandar Instruments (TTi) waveform generator mentioned in Chap. 8 [see
Fig. 9.18(b)]. The modulation frequency could be scanned across a chosen frequency-
interval of width ∆ωmod in a time Tscan. Although the in-phase component of the
motion of the ions naturally is selected using intensity-modulation, fluorescence light
can still be seen during the ‘off’-periods, due to the unmodulated blue cooling beams. To
exclude this light, the image-intensifier was gated at the modulation frequency, being
open in a time window of width ∆t. This time window was overlapped by the ‘on’-
periods of the intensity-modulated cooling beam (∆tlight > ∆t) using a variable delay
of the trigger-pulse for the image-intensifier [see Fig. 9.18(b)]. To ensure a well-defined
correspondence between picture number and modulation frequency, a frequency-scan
and recording of CCD-images was triggered by the same pulse.

In recording an image sequence for obtaining the projected signal function SP (ωmod, z),
there are three important parameters: The amount of fluorescence collected per CCD-
image (∼ S′

P Texpωmod∆t/2π), the frequency resolution (frequency/image) and the scan
time Tscan. ∆t was chosen as ∆t = 1.1µs (with ∆tlight = 1.3µs) for obtaining the
largest possible signal, while still being able to observe the in-phase component, i.e.,
fulfilling the condition ∆t � 2π/ωmod ≈ 2π/ωz ≈ 7.7µs. Having fixed ωmod∆t/2π,
the exposure time of the CCD-chip, Texp, was set between 100ms and 150ms. The
exposure time and the read-out time of the CCD-chip defines the so-called frame-rate
νframe, at which images are recorded, which is constant and ranged between 4.79Hz
and 9.20Hz. The number of images recorded during a scan, Nimage, was set as a trade-
off between having a high frequency resolution (∆ωmod/Nimage) and a low scan time
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(Nimage/νframe). The upper limit of the scan time is in practice set by the fact that the
ions change places from time to time, either as a result of the motional excitation or due
to collisions with background gas atoms or molecules. For this preliminary experiment,
laser stability was not a problem on the timescale of a scan, however, to cancel the first-
order light-force shift by averaging over measurements for the two different positions
of the ions, laser stability is important and may be a practical limit to the scan time.
In the present experiment, the frequency resolution ranged between 16Hz/image and
2Hz/image, using Nimage = 1024, ∆ωmod = 2kHz and Tscan = 163 s for the highest
resolution scans.

Having recorded a sequence of images and projecting the pixel values onto the z-
axis, a projected signal function was obtained. Examples are shown in Fig. 9.19 for a
40Ca+–40Ca+ and a 40Ca+–42Ca+ two-ion string. The center-of-mass mode resonance

(a)

(b)

Figure 9.19: (a) Contour plot of the projected signal function for a scan across the center-
of-mass mode resonance of a 40Ca+–40Ca+ two-ion string. The resonance frequency
is 132203 ± 2Hz. The frequency resolution is 2Hz/image. (b) Same as (a), but for a
40Ca+–42Ca+ two-ion string. The resonance frequency is 130572±13Hz. The frequency
resolution is 8Hz/image.
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Figure 9.20: Measured center-of-mass mode frequencies at identical trap parameters
for a 40Ca+–40Ca+, a 40Ca+–42Ca+ and a 40Ca+–44Ca+ two-ion string. The average
frequencies indicated by the dashed lines are 132218±7Hz, 130599±7Hz and 128963.5±
1.5Hz, respectively.

frequencies of 132203 ± 2Hz and 130572 ± 13Hz for the 40Ca+–40Ca+ and the 40Ca+–
42Ca+ two-ion string, respectively, are found from a fit to a function of the same form as
Eq. (9.3.21) (or a sum of two such functions) with appropriate extra fitting parameters to
account for a constant background signal and the equilibrium position(s) of the ion(s) 9.
The resonance frequencies can be determined with a relative statistical uncertainty
below 10−4, showing that with the phase-sensitive technique we can resolve relative
mass differences at the level of interest (e.g., for discriminating between 25Mg+ and
24MgH+). This is the main result of this section. The actual resonance frequencies
are subject to some systematic errors, which will be discussed below. Several scans
of the type shown in Fig. 9.19 have been recorded, also for a 40Ca+–44Ca+ two-ion
string. The resonance frequencies found from all the scans are plotted in Fig. 9.20.
Generally, the reproducibility is good, however, there are some apparently systematic
jumps, particularly for the 40Ca+–42Ca+ series.

From the average center-of-mass mode frequencies and Eq. (9.3.13), the measured
relative mass µA/40,meas between a ACa+ ion (A = 42, 44) and a 40Ca+ ion can be
extracted, yielding µ42/40,meas = 1.0493(3) and µ44/40,meas = 1.0998(2). This can be
compared to the tabulated values [146] 10 of µ42/40,tab = 1.049934 and µ44/40,tab =
1.099899, which yields a relative deviation of 6 · 10−4 and 4 · 10−5, respectively. Due to
the systematic errors of the order of 10−4 discussed below, these deviations should be
taken with a grain of salt. On the other hand it is promising, that neither of the results
shows a deviation very much larger than 10−4.

9Strictly speaking, the expression for cos(ϕ1) given in App. A.3 should be used for fitting of data

for a 40Ca+–ACa+ two-ion string.
10Electron masses are taken into account, but electron binding energies can be neglected for Ca+ at

the 10−4 level of precision.
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Systematic errors

A number of systematic errors can originate from the correspondence between pic-
ture number and modulation frequency. Using a continuous scan as above, the frame-
rate needs to be constant and precisely known. To ensure this, more care should be
taken than in this preliminary experiment. The frame-rate was only known to three
digits precision (this can easily be improved), which gives rise to a systematical uncer-
tainty roughly equal to the relative uncertainty of the frame-rate times ∆ωmod/2, which
amounts to ∼ 5Hz, or ∼ 5 · 10−5 times the resonance frequency. Furthermore, the
frame-rate may be affected if the computer starts running other processes than record-
ing images. For the 40Ca+–42Ca+ two-ion string, we note that the measured frequencies
shown in Fig. 9.20 roughly fall in two groups having a slight frequency difference. The
higher lying frequencies were obtained at a low resolution of 16Hz/image, while the last
four frequencies in this series were recorded at a resolution of 8Hz/image. Although
a change of resolution should not shift the measured resonance frequency, there seems
nevertheless to be a correlation, which could indicate some timing problems. Using the
average of the last four points in the 40Ca+–42Ca+ series to extract µ42/40,meas, the
relative deviation from the tabulated value is in fact only 1.6 ·10−4. On the other hand,
the frequencies for the 40Ca+–44Ca+ two-ion string, which yields a good agreement with
the tabulated value, were also recorded at a resolution of 16Hz/image. The reference
40Ca+–40Ca+ frequencies were recorded with a resolution of 2-8Hz/image. The safe way
of avoiding all these possible errors would be to record one image at a fixed modulation
frequency, step the modulation frequency, record another image and so on. This is not
an immediate option with the TTi waveform generator, but with some programming it
can be done.

Another systematic error is the light-force shift. In the experiment, the net light-
pressure forces of the counter-propagating blue cooling beams were balanced to some
extent, in order to control the amplitude of the motion of the excited ions, which means
that δz/∆z is somewhat lower than the limit given by Eq. (9.3.12). Together with
the reduction of the light-force shift for the center-of-mass mode [see Eq. (9.3.14)], this
means that the relative shift is below 10−4. We were not able to see any systematic
dependence on the position of the sympathetically cooled ion, which indicates that the
light-force shift indeed is small. Since the blue cooling laser was not intensity-stabilized
in this experiment, the light-force shift was not investigated any further.

Finally, in a more precise experiment, the expression for cos(ϕ1) given in App. A.3
should be used for fitting the projected signal function for a 40Ca+–ACa+ two-ion string
(A �= 40).

Conclusion

In conclusion, we have demonstrated that with the phase-sensitive technique it is possi-
ble to resolve relative mass differences at the level of 10−4. By addressing the systematic
errors discussed above, it should be possible to measure relative mass differences at this
level, which in most cases is sufficient to discriminate between ions with the same num-
ber of nucleons, only having a different mass due to their different nuclear binding
energies, e.g., 25Mg+ and 24MgH+.
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Chapter 10

Shelving in the metastable
3d 2D5/2 state

The internal state detection scheme described in Chap. 4 relies on state-selectively shelv-
ing the optically active electron in the 2D5/2 state. Subsequent collection of fluorescence
light determines if the electron has been shelved (‘non-fluorescing’ ion) or if it is cycling
within the 2S1/2– 2P1/2– 2D3/2 family of states (‘fluorescing’ ion).

To demonstrate shelving prior to any STIRAP experiments, and to do a realistic test
of our ability to make an unequivocal distinction between non-fluorescing and fluorescing
ions, we have performed shelving, as described in more detail below, by exciting ions
from the 2D3/2 state to the 2P3/2 state, from where the ions can spontaneously decay to
the 2D5/2 state. A clear distinction between non-fluorescing and fluorescing ions could
indeed be made, which has enabled a measurement of the lifetime of the (metastable)
2D5/2 state.

The lifetime experiment, which also contains a demonstration of the shelving tech-
nique, is presented in Sec. 10.1. A discussion of the relevance of the lifetime experiment
for the internal state detection scheme is given in Sec. 10.2, together with a short account
of some further progress towards the first STIRAP experiments. The work concerning
the lifetime measurement has been published in Ref.[III], to which Sec. 10.1 is closely
linked.

10.1 Lifetime measurement of the 3d 2D5/2 state

Apart from being relevant for our own internal state detection scheme, the 2D5/2 state
and its lifetime are important for several other reasons. First of all, in the work by the
Innsbruck group one of the qubit states is defined as one of the sublevels of the 2D5/2

state [147]. For atomic structure calculations, the 2D5/2 state is an important test case
for the study of valence-core interactions and core-polarization effects [148]. Moreover,
the long lifetime of the 2D5/2 state implies a sub-Hz natural linewidth of the 729 nm
electric quadrupole transition to the 2S1/2 ground state, which makes this transition an
attractive candidate for an optical frequency standard [149, 150]. Finally, in astronomy,
the 2D5/2 state has been used in a study of the β pictoris disk [151], and it is also used
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in the study of so-called Seyfert 1 galaxies and T Tauri stars [152].
Therefore, the natural lifetime of the 2D5/2 state has attracted much attention in

recent years, which has given rise to a wealth of measurements [150, 153, 154, 155, 156,
157, 158, 159, 160] and theoretical calculations [148, 152, 161, 162, 163, 164, 165]. Unfor-
tunately, these results are scattered over a rather broad range (see Fig. 1 in Ref. [153] for
an overview). Among the experimental results, the lifetime found by Barton et al. [153],
using the shelving technique on a single trapped and laser-cooled 40Ca+ ion, has the
smallest error bars, with an estimated lifetime of τ = 1168 ± 7ms.

Our measurement was performed using a string of five ions and resulted in a lifetime
of τ = 1149 ± 14(stat.) ± 4(sys.)ms.

The experimental setup and the experimental procedure for the lifetime experiment
are described in Sec. 10.1.1. In Sec. 10.1.2, we give a detailed account of the data anal-
ysis, including a description of the maximum likelihood method used for the statistical
data analysis and a discussion of systematic errors with emphasis on radiation effects
and collision effects. In Sec. 10.1.3, the estimated lifetime based on the measurements
is given and discussed.

10.1.1 Experimental setup

Figure 10.1: Experimental setup, see text for details. M: mirror, DM: dichroic mirror,
PBS: polarizing beamsplitter, λ/2: half-wave plate.

A sketch of the experimental setup is shown in Fig. 10.1. The experiment was
performed using the large linear Paul trap, which was used for the mass measurements.
Cooling lasers and the imaging system are also the same, but the 850 nm diode laser
has been added to the experimental setup. Also a long-pass filter and a grating and a
diaphragm have been inserted in the diode laser beamlines for reasons discussed below.
In this lifetime experiment, the peak-peak amplitude of the RF-voltage is 600V and the
frequency is 3.894MHz, which results in a radial trap frequency of ωr ≈ 2π · 550 kHz.
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Figure 10.2: Relevant levels and transitions in 40Ca+. Doppler laser cooling is performed
with lasers at 397 nm and 866 nm. A laser at 850 nm excites the ion from the 3d 2D3/2

state to the 4p 2P3/2 state, from where it can decay to the 3d 2D5/2 state. The dashed
line indicates the electric quadrupole transition by which the ion can decay from the
3d 2D5/2 state to the ground state.

The axially confining endcap voltage applied to all eight end electrodes is 580mV,
yielding an axial trap frequency ωz ≈ 2π · 50 kHz. The ions were loaded into the trap
using the photo-ionization technique described in Chap 8. During loading the oven was
heated to 420◦ C, under which conditions the chamber pressure was 6.0 · 10−11 Torr.
After having loaded five ions and forced them onto a string by adjusting the trap
parameters and applying Doppler laser-cooling in the usual way, the oven temperature
was reduced, and the oven shutter was closed. During a one hour measuring session,
the pressure dropped to about 3.6 · 10−11 Torr. For recording fluorescence light emitted
during the Doppler cooling process, the CCD-camera was operated with 50ms exposure
time and digital images were recorded at a frame-rate of 17.610Hz. The optically active
electron is shelved in the 2D5/2 state by exciting ions from the 2D3/2 state, where they
occasionally end up during the Doppler cooling process, to the 2P3/2 state using the
diode laser at 850 nm (see Fig. 10.2). From the 2P3/2 state the ions can spontaneously
decay to the 2D5/2 state, such that the optically active electron is shelved, and the
fluorescence on the 397 nm transition is quenched. The time spent by the ion in the
2D5/2 state before it decays back to the ground state, will in the following be called a
shelving period. By continuously applying the two cooling lasers and the shelving laser
at 850 nm, we obtain characteristic fluorescence signals like the one shown in Fig. 10.3.

10.1.2 Data analysis

Data reduction

The lifetime of the 2D5/2 state can be estimated from the distribution of the shelving
periods, since we expect it to be exponential with a time constant equal to the lifetime
τ .

The duration of a shelving period can be determined by dividing the number of
consecutive frames, where an ion is shelved, by the frame-rate of the CCD-camera. Our
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(a) (b)

Figure 10.3: (a) A sequence of CCD-images including a shelving event for the central
ion (see colour version of this figure on the front page). The white square indicates
the ’region of interest‘ (ROI) within which the fluorescence is integrated to obtain the
signal shown in (b). (b) Fluorescence signal from the central ion for an image sequence
containing the nine images above. The data points corresponding to the nine images
are indicated by open circles. The dashed line indicates the threshold level discussed in
the text.

raw data are digital images of five ions, as shown in Fig. 10.3(a), and the main data set
consists of ∼ 200000 such images taken in three one hour experimental runs. The details
of obtaining the distribution of the shelving periods from these images are described
below.

From the images in Fig. 10.3(a), it is evident that the ions are spatially well resolved,
and that a ’region of interest‘ (ROI) around each ion can be defined. The ROI is 13 x 13
pixels, corresponding to a region of 9.5µm x 9.5 µm in the trap region. In order to
establish a fluorescence data point which reflects the real ion fluorescence rate within a
given image frame, we simply integrate the pixel values within the ROI. This is a valid
measure, since the image intensifier and the CCD-chip have a linear response to the
fluorescence collected by the objective lens. In the following the ion fluorescence will be
given in integrated pixel values (IPV).

As shown in Fig. 10.4, the distribution of the fluorescence data points from a single
ion is characterized by a rather sharp peak at a low fluorescence level and a Gaussian
distribution of data points around a level of ∼ 90000 IPV, originating from cases where
the ion is scattering 397 nm light during a whole frame. In the following we define the
fluorescing level as the center of the Gaussian distribution. The standard deviation
of the Gaussian distribution is σ ∼ 7500 IPV, which is mainly set by image-intensifier
noise, but also by laser intensity and frequency drifts during the experimental run, and
by the finite ion temperature. The peak at the low fluorescence level, or the background
level, is due to data points originating from cases where the ion is shelved during a whole
frame.

In order to establish a distribution of the shelving periods, we need to introduce a
threshold level to discriminate between fluorescence data points corresponding to frames
where the ion is fluorescing (above the threshold level) or shelved (below the threshold
level). From the distribution of fluorescence data points in Fig. 10.4, it is evident
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Figure 10.4: Distribution of data points from a single ion, binned in intervals of 500 IPV.
The maximum of the narrow background peak near 4000 IPV is not shown but has a
value of 8000. From the Gaussian distribution around 90 000 IPV with a width of
σ ∼ 7500 IPV, we can define a fluorescing level as the center of this distribution. The
inset shows the intermediate points between 0 IPV and 80 000 IPV.

that we can choose a threshold level which can be used to unambiguously distinguish
between the background level and the fluorescing level of an ion, as we also need for
the internal state detection scheme. The specific choice of threshold level is discussed
in the following.

From the inset of Fig. 10.4, it can be seen that the distribution of fluorescence
data points contains some points with a value of the integrated fluorescence between
the background level and the fluorescing level. These intermediate data points arise
from images where the ion is only fluorescing during a fraction of the exposure time of
the CCD-chip. This occurs naturally when an ion is shelved or decays to the ground
state during the exposure of a single frame. Since a particular choice of threshold level
decides whether an intermediate data point is counted as belonging to a shelving period
or not, it affects the precise distribution of the shelving periods. Fortunately, the choice
of another threshold level on average only adds a constant amount to all the shelving
periods, and therefore the decay rate extracted from their distribution is not influenced
by the choice of threshold level. This fact allows us to choose a threshold level in a
broad range between the background level and the fluorescing level.

Unfortunately, intermediate fluorescence data points also occur in the following three
situations: (i) shelving followed by fast decay to the ground state, (ii) decay to the
ground state followed by fast re-shelving, (iii) a shelved and an unshelved ion change
places, e.g., due to a weak collision with a background gas atom or molecule or due to
the finite temperature of the ions. Examples of these events, all taking place within
one or two camera frames, are shown in Fig 10.5(a)-(c). Hence, before we choose the
threshold level to be used for extracting the distribution of shelving periods, we have
to consider these three types of events in some detail.

(i) When an ion is shelved at a certain instant of a frame and decays back to the
ground state within that same frame or the next, then the signal does not necessarily
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fall below the threshold level, as the example in Fig. 10.5(a) shows. Hence these events
may not even be counted as shelving events. In the data analysis we simply account
for such events by discarding all periods with a duration of one or two frames from the
shelving period distribution. Since the distribution is expected to be exponential, we
can subsequently displace the remaining distribution, so that periods originally having
a duration of n frames (n ≥ 3) are set to be periods with a duration of n − 2 frames.

(ii) If an ion decays and is quickly re-shelved, we cannot be confident that the signal
rises above the threshold level, see Fig. 10.5(b), and thus two shelving periods can appear
as one longer shelving period, which would artificially increase the extracted lifetime.
Noting that such events require a high shelving rate, it is possible to exclude them on
probability grounds. First, we set a low threshold level, T = 0.1 · (F − B) + B, where
F is the fluorescing level, and B is the background level, which means that only the
very fastest re-shelving events do not rise above the threshold level. Second, we require
that after a decay, which ends a shelving period, there must be twenty consecutive data
points above the threshold level; otherwise it is not counted as a shelving period in the
data analysis. This requirement is only likely to be fulfilled with a low shelving rate,
thus reducing the risk of accepting shelving periods where a quick re-shelving event has
happened. The probability for an event of decay and quick reshelving, with the signal
not rising above the selected threshold level, followed by a decay and twenty consecutive
data points above the threshold level, is below 2 permille regardless of the shelving rate.
Hence this method gives at most a systematic error of -2ms to the final result, and we
will take the systematic error to be −1 ± 1ms.

(iii) As mentioned, two ions may change place, e.g., due to a weak collision with a
background gas atom or molecule. Fig. 10.5(c) shows how a shelved and an unshelved
ion changing place, effectively cut one long shelving period into two shorter ones, which
artificially shortens the extracted lifetime. Therefore, in such events we restore the
position of the ions to obtain a single shelving event, as shown in Fig. 10.5(d). Positions
are only restored if the value of the fluorescence data points for the two ions involved
adds up to the fluorescing level F within ±2σ of this level. We find about 200 such
events in our main data set. Since statistically the fluorescence from the two ions does
not add up to the fluorescing level within ±2σ in all events, we estimate a systematic
error to the lifetime of +2ms. True events of one ion shelving and another decaying
within the same fraction of a frame will, however, occur, and erroneously be corrected
by this procedure. We estimate a systematic error of −10ms due to the erroneously
corrected events. All together the systematic error due to ions switching place is −8ms,
with an estimated uncertainty of ±4ms.

During data-taking it happened that the ions heated up, so the ion-string became
unstable. Such events are clearly visible on the images of the ions and were cut out of
the data set before performing the data reduction process described above. Likewise,
periods where the lasers were adjusted or unstable are not considered in the further
data analysis.

After the data reduction process described above and using a threshold level of
T = 0.1 · (F − B) + B, we extract a distribution of the shelving periods for each ion,
binned in time intervals of ∆t = 56.786ms, which is the inverse of the frame-rate.
The counts in equivalent bins for all the ions in the three experimental runs are then
added to obtain a single distribution, from which a decay rate can be determined. This
distribution is shown in a histogram in Fig. 10.6, with the bins shifted such that the
histogram has its origin at time zero.
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Figure 10.6: Histogram over the 6805 shelving events obtained after data reduction.
Note that the number of shelving events is on a logarithmic scale. The error bars
are the square root of the number of shelving events. The solid line is the maximum
likelihood estimate of τ = 1154ms.

Statistical analysis

From the histogram in Fig. 10.6, we can infer the lifetime τ of the 2D5/2 state by
assuming an exponential distribution with a decay rate given by the inverse lifetime
of the 2D5/2 state. The histogram comprises 6805 shelving events with duration up
to more than 11 s. Since, at large times, there are only a small number of events in
the distribution, a least-squares-fitting method is inappropriate, and hence we employ
a maximum likelihood estimate instead.

The probability pi of falling into column i in the histogram, i.e., having a shelving
period of duration t, which fulfills ti ≤ t < ti+1, where ti = i∆t, is

pi =
∫ ti+1

ti

1
τ

e−t/τdt = e−ti/τ
(
1 − e−∆t/τ

)
. (10.1.1)

Mathematically, the pi’s define a proper probability distribution, since
∑∞

i=0 pi = 1. The
sum starts at i = 0, corresponding to the origin of the distribution in the histogram.
Since the sum extends to infinity, we must, in principle, be able to measure infinitely
long shelving periods. In the case of real experiments, where one is only able to measure
periods up to a finite duration, Tmax, the pi’s should formally be renormalized by the
factor [1 − exp(−Tmax/τ)]−1. In our case where Tmax ∼ 1 hour and τ ∼ 1 s we can,
however, safely neglect this factor. In order to make the maximum likelihood estimate,
we now introduce the likelihood function

L = N !
∞∏

i=0

pni
i

ni!
, (10.1.2)

where ni is the number of shelving events in the i’th column of the histogram, and
N =

∑∞
i=0 ni is the total number of shelving events. By maximizing L (or rather lnL)
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with respect to τ , we find

τ =
∆t

ln( ∆t
<t> + 1)

, (10.1.3)

where < t > =
∑

niti/N is the mean duration of the shelving periods. The variance of
the lifetime is [166]

Var(τ) = −
(

∂2 ln L
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Using Eqs. (10.1.3) and (10.1.4), the lifetime and the statistical uncertainty can be
determined solely from ∆t, < t > and N , and we find τ = 1154±14ms. The exponential
distribution based on the maximum likelihood estimate is plotted as a solid line on top
of the histogram in Fig. 10.6.

As a check of the efficiency and validity of our data reduction process, we have
performed a test of goodness of fit 1. To find the goodness of fit, we employ the so-
called Kolmogorov test [167], which is based on the empirical distribution function
(EDF). A general overview of EDF statistics can be found in Ref. [168], which also
gives tables of significance levels appropriate for cases like ours, where the lifetime is
estimated from the data set. We find from our data a value for the Kolmogorov test of
0.44, clearly below the 10% significance level value of 0.995, thus showing that the fit
is good. We note for completeness that our data set is binned, whereas the values in
Ref. [168] are for continuous data. However, since we have more than 100 channels this
is not expected to play any significant role.

Radiation, collisions and other potential systematic effects

Apart from the systematic errors concerning the data reduction discussed above, there
are a few other relevant systematic errors, which will be discussed in the following.

Radiation From the level scheme of Fig. 10.2, it is obvious that any radiation which
couples the 2D5/2 state to the 2P3/2 state may deplete the 2D5/2 state by excitation
to the 2P3/2 state followed by decay to the 2S1/2 ground state or the 2D3/2 state and
result in a measured lifetime shorter than the natural lifetime. As a consequence, the
occurrence of such radiation must be considered and, if possible, reduced. Blackbody
radiation at the relevant transition wavelength is negligible at room temperature, as
also discussed by Barton et al. [153]. Other ‘thermal’ sources such as the ion gauge,
roomlight and computer screens were off during the measuring sessions, except for
the screen where we watched the images of the ions. This screen was facing away
from the vacuum chamber and is hence not expected to cause any problems. Another
class of influencing light sources is the lasers used in the experiment. In particular
the broad background of the emission spectrum of the 866 nm and the 850 nm diode
lasers contains 854 nm light resonant with the 2D5/2– 2P3/2 transition. This radiation

1Kindly assisted by Karsten Riisager.
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source was first recognized by Block et al. [154], and as noted by Barton et al. [153]
the discrepancy between their own and many of the earlier measurements is possibly
due to this previously unrecognized source of error. To reduce the level of 854 nm light
from the diode lasers as much as possible, a long-pass filter was inserted in the 866 nm
beamline and adjusted (by changing the angle of incidence) to 30% transmission at
866nm and � 5 · 10−4 at 854 nm, and a grating (1200 lines/mm) with a spectrally
selective diaphragm (0.9mm diameter, 1080mm from the grating) was inserted in the
850 nm beamline. The filter, the grating and the diaphragm are shown in Fig. 10.1.
The overall power of the lasers was reduced to ∼ 18 nW and ∼ 1.7mW at the place of
the ions, for the shelving laser and the repumping laser, respectively. The waist size of
the beams was 670 µm × 700µm for the repumping laser and 360µm × 430µm for the
shelving laser.

In order to estimate the lifetime reduction due to radiation emitted from the diode
lasers, we calculate the rate of de-shelving from the 2D5/2 state, i.e., the excitation rate
from the 2D5/2 state to the 2P3/2 state times (1− b), where b = 0.068 is the branching
ratio for decay from the 2P3/2 state back to the 2D5/2 state (see App. B).

First we consider de-shelving due to the repumping laser, which we split into two con-
tributions, one from the off-resonant 866 nm radiation and one from the near-resonant
background radiation around 854 nm. The de-shelving rate due to the 866 nm radiation
was calculated by Barton et. al. [153] to I866 · 9.4 · 10−5 s−1/(mWmm−2), where I866 is
the intensity of 866 nm radiation. With I866 = 2.3mWmm−2 we find a de-shelving rate
of 2.2 · 10−4 s−1, yielding a lifetime reduction of 0.3ms.

In order to calculate the excitation rate from the 2D5/2 state to the 2P3/2 state
due to radiation near 854 nm, we first consider the rate at a given frequency ωL, as
expressed by Eq. (2) in Ref. [153]:

R12 =
2J2 + 1
2J1 + 1

π2c3

�ω3
12

A21
I

c
g(ωL − ω12), (10.1.5)

where J1 = 5/2 and J2 = 3/2 are the total angular momenta of the involved levels,
ω12 = 2πc/854.209 nm (App. B) is the transition frequency, A21 = 7.7 ·106 s−1 [153] the
Einstein coefficient for spontaneous decay from the 2P3/2 state to the 2D5/2 state, I the
intensity of the incoming radiation, and g(ωL −ω12) a normalized Lorentz-distribution.
Assuming a flat background spectrum of the diode lasers, i.e., the intensity per frequency
interval ∆I/∆ωL is constant, we can integrate Eq. (10.1.5) over frequency ωL and find
an excitation rate of

R =
2J2 + 1
2J1 + 1

π2c2

�ω3
12

A21
∆I

∆ωL
. (10.1.6)

Using a diffraction grating we have measured ∆I/∆ωL � 0.19 nW/(mm2 · GHz)
near 854 nm at the power used in the experiment, and we then find R = 0.77 s−1.
Multiplying this rate by 1− b and the transmission of 5 · 10−4 of the long-pass filter, we
find a de-shelving rate of 3.6 · 10−4 s−1, yielding a lifetime reduction of 0.5ms.

As a check of this estimate, we performed an experiment, again with five ions, with
the cooling lasers on but without the shelving laser. Even without the shelving laser the
ions may be shelved due to radiation from the 866 nm repumping laser, which couples
the 2D3/2 state to the 2P3/2 state. From the observed shelving rate, we can then
find the excitation rate on the 850 nm 2D3/2– 2P3/2 transition and compare it to the
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calculated excitation rate for the 854 nm 2D5/2– 2P3/2 transition, taking the different
linestrengths into account. In this experiment the power of the 866 nm laser was 7.3mW,
the waist was as above, the long-pass filter was removed and the oven-shutter was open.
In about 35 minutes we observed 12 shelving events, i.e., the observed shelving-rate is
5.8 · 10−3 s−1. Taking into account the number of ions, the population of the D-state
(∼ 1/3, since both cooling transitions are saturated) and the branching ratio b, we find
the excitation rate on the 2D3/2– 2P3/2 transition: (3/5b) ·5.8 ·10−3 s−1 = 5.1 ·10−2 s−1.
By multiplying this number with the relative linestrength between the 2D5/2– 2P3/2

transition and the 2D3/2– 2P3/2 transition of 8.92 [25], we find an estimated value
of 0.45 s−1 for the excitation rate on the 2D5/2– 2P3/2 transition, which should be
compared to R = 0.77 s−1 calculated above. The two numbers are not expected to be
equal but only of the same order of magnitude, since the transition wavelengths are
different, and the diode laser background is not necessarily equally strong near 850 nm
and 854 nm. Also some of the shelving events may be due to collisions, as discussed
below. Nevertheless, the numbers agree within a factor of 2 and our calculated estimate
of the excitation rate, and hence the de-shelving rate seems to be reasonable.

Above we considered de-shelving due to the repumping laser. In exactly the same
way we could consider de-shelving due to the shelving laser. However, since the intensity
of the shelving laser is much lower than for the repumping laser, and the grating and
the diaphragm strongly reduce the level of 854 nm light, the excitation rate is expected
to be extremely small. To check this we performed additional lifetime measurements at
three different power levels of the shelving laser, 18 nW, 193 nW and 2081 nW, yielding
lifetimes of 1146 ± 24ms, 1160 ± 29ms and 1092 ± 27ms, respectively. When using
higher power, the laser was detuned from resonance to get a similar shelving rate in all
experiments. In Fig. 10.7, the linear fit to the decay rates corresponding to the lifetimes
shows that there is a weak dependence of the decay rate (or lifetime) on the 850 nm
power. However, with only 18 nW the lifetime is only reduced by 0.5ms. The results of
the two low power measurements and the crossing at zero power are in agreement with
the result obtained from our main data set. The measurement at 18 nW was in fact
performed at the same shelving laser power as the measurements for the main data set.

All together, we include a systematic error of +1 ± 1ms in our final result due to
de-shelving from the two diode lasers.

Collisions Another systematic effect which shortens the measured lifetime is collisions
with background gas atoms and molecules. There are two relevant types of collisions:
fine-structure changing (j-mixing) collisions and quenching collisions. In a j-mixing
collision the internal state can change from the 2D5/2 state to the 2D3/2 state, or vice
versa. In a quenching collision the internal state changes from the 2D5/2 state to the
2S1/2 ground state. Both types of collisions deplete the 2D5/2 state and hence shorten
the measured lifetime. j-mixing and quenching rate constants (Γj and ΓQ) in the pres-
ence of different gases are given in Ref. [169] and references therein. Quite generally
j-mixing collisions are found to be an order of magnitude stronger than quenching col-
lisions. From a restgas analysis, we know that the restgas in our vacuum chamber is
mainly composed of H2 and gas of 28 atomic mass units, i.e., N2 or CO. In the restgas
analysis it was not possible to distinguish between N2 and CO, since the chamber pres-
sure was so low that the signal from the atomic constituents of these molecules could not
be observed. Knoop et al. [169] found the following rate constants in units of cm3s−1

for collisions with H2 and N2: Γj(H2) = (3 ± 2.2) · 10−10, ΓQ(H2) = (37 ± 14) · 10−12,
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Figure 10.7: Decay rate measurements at three different power levels of the shelving
laser. A weighted least-squares linear fit to the measured decay rates yields 1/τ =
0.866(8) s−1 + 0.023(7) s−1/nW · P850.

Γj(N2) = (12.6 ± 10) · 10−10 and ΓQ(N2) = (170 ± 20) · 10−12. The measurements
were performed on a cloud of relatively hot ions, as compared to the laser cooled ions
considered in this paper. As noted in Ref. [169], other measurements of j-mixing with
H2 at different collision energies give similar results, so we may expect only a weak
energy-dependence for the j-mixing collisions, and therefore we use the values given
in Ref. [169]. On the other hand, higher quenching rates are expected at lower tem-
peratures [169], but to our knowledge there are no measurements of that for Ca+.
Unfortunately, we are not aware of any similar measurements with CO, and in our es-
timate of the collision rate below, we therefore assume that the mass 28 restgas is N2.
The relatively large rate constants of N2 found in Ref. [169] indicate that at least this
assumption probably does not lead to a large underestimate of the collision induced
de-shelving rate.

Assuming that the values given in Ref. [169] are applicable, we can estimate the
collision-induced lifetime reduction. At a pressure of 5 · 10−11 Torr, taking into account
the sensitivity to different gases of the ion gauge and using the result of the restgas
analysis, we find that the restgas is composed of 54%H2 and 46%N2, which yields a
total collision induced de-shelving rate of 2.3 · 10−3 s−1, and a systematic error to the
lifetime of +3ms with an estimated uncertainty of ±1ms.

From the measurement of 12 shelving events in 35 minutes without the shelving laser
on, described above, we can obtain an upper limit for the j-mixing collision rate if we
assume that all the observed shelving events are due to j-mixing collisions inducing a
transition from the 2D3/2 state to the 2D5/2 state (with rate γ35). Again taking the
number of ions and the population of the 2D3/2 state into account, the collision induced
shelving rate is 3.5 · 10−3 s−1. Since the oven shutter was open in that experiment, thus
allowing collisions with neutral calcium atoms as well, we expect this number to be larger
than under the conditions for the ‘real’ lifetime measurements. The transition rate, γ53,
for the 2D5/2– 2D3/2 de-shelving transition is expected to be given by γ53 = 2γ35/3,
owing to the principle of detailed balance, so the collision induced de-shelving rate is
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2.3 · 10−3 s−1. This is our upper limit for the j-mixing collision rate, which should be
compared to our estimate above of the total collision-induced de-shelving rate, which
is dominated by contributions from j-mixing collisions. Somewhat fortuitously, the
numbers are equal, and hence our calculated estimate seems to be reasonable.

Other effects When observing shelving events from a string of ions, one might con-
sider if there are any correlations in the decay of the individual ions from the 2D5/2

state to the ground state, which could influence the measured lifetime. In the experi-
ments by Block et al. [154] indications of correlated decays from the 2D5/2 state were
observed, manifested as an overrepresentation of events where several ions decay at the
same time. A later detailed experiment by Donald et al. [160] showed, however, no
such correlations. Apart from sudden bursts of 854 nm radiation, the only reasonable
physical mechanism which could lead to correlations is so-called subradiant and super-
radiant spontaneous emission due to interference in the spontaneous decay of two or
more ions [170]. In the simple case of two ions, superradiant and subradiant sponta-
neous emission is characterized by a relative change in the normal (single ion) decay
rate of the order of ± sin(kR)/kR (when kR > 10), where R is the ion-ion distance and
k = 2π/λ with λ = 729 nm in our case 2. For more ions the effect is of the same order of
magnitude. In our case 1/kR ≈ 6 · 10−3 so just from this argument the effect is small,
but not negligible. The interference effect, however, relies on creating and maintaining
a superposition state of the form |±〉 = (|S1D2〉± |D1S2〉)/

√
2, where S and D indicate

the internal state, 2S1/2 or 2D5/2, and indices 1 and 2 relate to Ion 1 and Ion 2. In our
experiment such a superposition state can only be created by a random process since
the 2D5/2 state is only populated through spontaneous emission, and consequently the
relative phase between the states |S1D2〉 and |D1S2〉 is expected to be random. This
fact would in itself average out the effect on the lifetime. In addition, if the superpo-
sition state is created, it is immediately (as compared to τ) destroyed since, from a
quantum mechanical point of view, we are constantly measuring the internal state of
the ions. So any superradiant or subradiant effect is in fact expected to be destroyed,
and we do not expect any correlation in decays from the 2D5/2 state. We have checked
our data for correlated decays, and indeed a statistical analysis shows no evidence of
correlations.

In Ref. [153] mixing of the 2D5/2 state with the 2P3/2 state due to static electric
fields was considered and found to be negligible. For our trap we also find this effect to
be negligible.

Finally, we note that the read-out time of the camera influences the measured dura-
tion of the shelving periods. As for the choice of threshold level, the read-out time has
no effect on the measured decay rate and hence on the measured lifetime.

The total effect of systematic errors Above we have identified and evaluated sys-
tematic errors originating from the data analysis and from de-shelving due to radiation
and collisions. An overview of the estimated errors and their uncertainties is given in
Table 10.1.

The effects leading to the systematic errors can be modelled by extra decay rates

2In Ref. [170] a dipole transition is considered. For an electric quadrupole transition the relative

change of the decay rate is of the same order of magnitude.
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Effect Systematic error [ms]
Quick re-shelving −1 ± 1
Ions switching place −8 ± 4
De-shelving, diode lasers +1 ± 1
De-shelving, collisions +3 ± 1
Total −5 ± 4

Table 10.1: Overview of estimated systematic errors.

added to the natural decay rate:

1
τmeas

=
1

τnat
+
∑

i

γi (10.1.7)

or

τnat ≈ τmeas +
∑

i

τ2
measγi, (10.1.8)

where τmeas is the measured lifetime as determined from the maximum likelihood es-
timate, τnat is the natural lifetime, and the γi’s are the extra decay rates, which can
attain both positive and negative values in this model. The systematic errors given in
the text and Table I correspond to τ2

measγi. Eq. (10.1.8) shows that the systematic errors
should be added linearly, yielding -5ms, and added to the result of the maximum like-
lihood estimate, giving a lifetime of 1149ms. The uncertainties of the systematic errors
are independent, and therefore they are added quadratically, yielding an uncertainty of
±4ms.

10.1.3 Result and conclusion

By correcting the maximum likelihood estimate with -5ms, as described above, we find
that our final result for the lifetime measurement is

τnat = 1149 ± 14(stat.) ± 4(sys.)ms. (10.1.9)

The largest error is the statistical, but we do have a non-negligible systematic uncer-
tainty, originating from the correction procedure when ions change places. The associ-
ated error, and hence the uncertainty, could be reduced by increasing our signal-to-noise
ratio, which would narrow the time window where real events of simultaneous decay and
shelving for two different ions could be taken for two ions changing place. The signal-to-
noise ratio can be improved by frequency locking the Ti:Sa laser and power stabilizing
the output from the doubling cavity as described in Chap. 8. This was, however, not
implemented at the time when the experiment was performed. From Eq. (10.1.4) we see
that the statistical uncertainty can only be reduced by a longer data acquisition time
(increasing N), and not simply by increasing the frame-rate, since the second term in
the expansion is already negligible in our case.

Our measurement was performed with a string of ions, unlike most other lifetime
measurements using the shelving technique. In all single-ion experiments, one has to
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Reference Lifetime [ms]
This work 1149 ± 14 ± 4
Knoop et al., 2003 [150] 1152 ± 23
Donald et al., 2000 [160] 1177 ± 10
Barton et al., 2000 [153] 1168 ± 7
Block et al., 1999 [154] 1100 ± 18
Lidberg et al., 1999 [155] 1090 ± 50

Table 10.2: Overview of recent experimental values for the lifetime of the 3d 2D5/2 state
in the 40Ca+ ion.

consider the fact that the ion may heat up, so the fluorescence level drops significantly,
and the ion can appear to be shelved, although it is not. In our experiment with five
ions on a string, we can detect and discard all events of this kind since if one ion or
several ions heat up, we would see the remaining ions move or heat up as well. Moreover,
with a string of ions, the shelved ions are sympathetically cooled by the unshelved ions,
so the number of heating events are expected to be reduced using a string of ions, as
compared to single ion experiments. The major drawback of using a string of ions is
that ions may change places, which influences the measured lifetime if this is not taken
care of in the data analysis, as demonstrated here.

In conclusion, we have measured the lifetime of the metastable 3d 2D5/2 state in the
40Ca+ ion using the shelving technique on a string of five ions. Our result agrees roughly
at the level of one standard deviation with the already mentioned result obtained by
Barton et al. [153] and with the value reported in Ref. [150], which together with other
recent results are presented in Table 10.2. On the level of two standard deviations,
our result agrees with two other measurements where de-shelving due to diode lasers
was taken into account [160, 154] and with the storage-ring measurement by Lidberg et
al. [155] (see Table 10.2). Furthermore, our result agrees with two theoretical values [162,
163]. This newly obtained level of agreement should provide valuable input to future
atomic structure calculations and astronomical studies. The importance of this result
for our internal state detection scheme is discussed below.

10.2 Internal state detection revisited

From the lifetime experiment we learn two things, which are essential for the internal
state detection scheme described in Chap. 4.

First, as already pointed out, it is absolutely necessary that we can tell with large
certainty if the ion is fluorescing or shelved in the 2D5/2 state. As Fig. 10.4 shows, this
is clearly the case using a reasonably short exposure time of 50ms.

Second, the measured lifetime is important for the efficiency of the detection scheme.
If a relatively short lifetime had been measured, as compared to other measurements,
this could indicate that we suffered from a significant depletion of the 2D5/2 state,
which would reduce the efficiency of the internal state detection scheme. As it turns
out, our result is amongst the longest lifetimes measured, and as seen from Table 10.1
depletion due to radiation and collision effects is estimated to give rise only to a 4ms
lifetime reduction, which is less than 0.4% of the lifetime. This makes us confident
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that depletion effects present no significant reduction of the efficiency of the internal
state detection scheme. The small dependence on the laser power may even be further
reduced using a recently purchased set of bandpass-filters instead of the longpass-filter,
the grating and the diaphragm. Depletion effects should be independent of which trap
is used, since the pressure is almost equal in the two vacuum chambers and the laser
sources are the same.

STIRAP between the 2D3/2 state and the 2D5/2 state involves the 850 nm diode
laser used here for shelving as well as the 854 nm diode laser. The latter diode laser has
been tested; by shelving ions as above, it can clearly be seen that when the 854 nm laser
is applied, fluorescence from the ions is regained due to excitation on the 2D5/2– 2P3/2

transition.
Moreover, the necessary STIRAP pulses can be created, which means that the first

STIRAP experiments, which will be done on Doppler laser-cooled ions, are approaching.
The first experiments will concern STIRAP from the 2D3/2 state to the 2D5/2 state,
with the ion being initialized to the 2D3/2 state by optical pumping (shutting off the
866 nm repumper laser, while leaving the blue cooling laser on). Successful transfer to
the 2D5/2 state will be detected using the same methods as for the lifetime experiment.

Next step will be experiments concerning the 2S1/2– 2D3/2 STIRAP process. After
initialization in the ground state and transfer by STIRAP to the 2D3/2 state, the 2D3/2–
2D5/2 STIRAP process will be applied. Subsequent fluorescence collection determines
if the first STIRAP step was successful.
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Chapter 11

Summary and outlook

In this thesis our work towards quantum logic experiments with trapped 40Ca+ ions is
presented.

A linear Paul trap has been specifically designed and constructed for quantum logic
experiments and characterized in a series of measurements. The measured oscillation
frequencies of ions in the trap are not explainable in terms of the standard theory for a
linear Paul trap, but can be explained by including an additional term in the trapping
potential. This deviation from the standard theory underlines the importance of our
experimental characterization. Furthermore, it has been demonstrated that a refined
version of the technique used for measuring the trap parameters should enable non-
destructive ion mass measurements, at a level of precision which allows a discrimination
between ions (atomic or molecular) having the same number of nucleons, but having
different masses due to differences in their nuclear binding energy. The ability to make
such a discrimination would be a valuable tool for other research projects within our
group.

By demonstrating the so-called shelving technique, we have made the first step
towards detection of the qubit state of an ion. Using the shelving technique we have
furthermore measured the lifetime of the metastable 3d 2D5/2 state in the 40Ca+ ion.
This lifetime is interesting in several different areas of physics, however, the many
measurements and calculations of the lifetime are scattered over a rather broad range
spanning about 25% of the lifetime. Our result is in agreement with the most recent
measured values at the level of 2%.

On the theoretical side, we have presented a study of the sideband-cooling scheme
for cooling ions to their motional ground state in the trap. This is a crucial step towards
quantum logic experiments and our study shows that ground state cooling is feasible
using the envisaged scheme.

In addition, we have presented two theoretical proposals combining optical dipole
potentials and dipole forces with trapped ions. In one proposal, we show that a high-
fidelity two-ion quantum gate can be performed in less than 100µs using realistic trap
and laser parameters. It should be possible to apply this gate proposal in our own
setup. In another proposal, we describe how individual and selective addressing of ions
on a string can be obtained utilizing a position-dependent optical dipole potential. This
proposal is also applicable in our own setup, but more attractive in other systems.
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Currently, work in the laboratory is focussed on the first demonstration of stimulated
Raman adiabatic passage (STIRAP) from the 3d 2D3/2 state to the 3d 2D5/2 state in
the 40Ca+ ion. This is one important step in our scheme for detection of the qubit state
of a 40Ca+ ion, and it will be our first experiment where the internal state of an ion is
controlled in a coherent way. By combining this with a second STIRAP process, from
the 4s 2S1/2 ground state to the 3d 2D3/2 state, it will be possible to detect the qubit
state of an ion. This will enable a demonstration of Rabi-oscillations on the Raman
transition between the two ground state sublevels of the 40Ca+ ion, and prepare the
way for sideband cooling and later quantum logic operations.
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Appendix A

Derivations

A.1 Sideband cooling with second-order contributions

to the rate equation

A.1.1 Solution to the second-order rate equation

Here we derive the solution given in Eq. (3.3.21), to the second-order rate equation in
Eq. (3.3.20).

Starting from Eq. (3.3.20) and using n2 = 2n2 + n valid for a thermal distribution
(derived below), we find

ṅ = − 4η4
eg(A−− − A++)︸ ︷︷ ︸

a

n2 − [η2
eg(A− − A+) − 8η4

egA++]︸ ︷︷ ︸
b

n (A.1.1)

+ η2
egA+ + 4η4

egA++︸ ︷︷ ︸
c

, (A.1.2)

which can be written as

d

dt
n =

d

dt
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2a
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2a
)2 +

b2

4a
+ c. (A.1.3)

Solving this differential equation for (n+b/2a), by multiplying with dt and integrat-
ing the resulting equation, it is found that

n(t) =
1
a

√
b2/4 + ac coth

[√
b2/4 + ac (t + t0)

]
− b

2a
(A.1.4)
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{
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[
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]
− 1

}
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(2)
SS

=
W (2)

W ′
[
eW (2)(t+t0) − 1

]−1

+ n
(2)
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with W ′, W (2) and n
(2)
SS defined as in Eqs. (3.3.22)–(3.3.24) and t0 a constant. From
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the initial condition

n0 ≡ n(t = 0) =
W (2)

W ′
[
eW (2)t0 − 1

]−1

+ n
(2)
SS , (A.1.5)

eW (2)t0 can be determined and inserted into Eq. (A.1.4), which yields the solution stated
in Eq. (3.3.21).

One way of establishing the relation n2 = 2n2 + n is to take a small ‘detour’ around
the two-photon correlation function for a single-mode light-field at zero delay [171]:

g(2)(0) =
< a†a†aa >

< a†a >2
=

< a†(aa† − 1)a >

< a†a >2
=

< n2 − n >

< n >2
, (A.1.6)

where, formally, a and a† are harmonic oscillator annihilation and creation operators.
For a thermal distribution g(2)(0) = 2 [171], which immediately yields n2 = 2n2 + n
(< n >≡ n, < n2 > ≡ n2) .

A.1.2 Derivation of Eqs. (3.3.26) and (3.3.27)

Here, Eqs. (3.3.26) and (3.3.27) are derived from Eqs. (3.3.22)–(3.3.24) using Eqs. (3.3.9),
(3.3.17) and Ω,Γ � ωz.

We start out by re-arranging Eq. (3.3.23) to get

W (2) = W (1)

√
1 + 16η2

eg

A+A−− − A−A++

(A− − A+)2
+ 64η4

eg

A++A−−
(A− − A+)2

. (A.1.7)

Using Eqs. (3.3.9), (3.3.17) and Ω,Γ � ωz, it can be found that

A+A−− − A−A++

(A− − A+)2
=
(

Γ
2ωz

)2

(α2 − α̃ − 1/9) (A.1.8)

and

A++A−−
(A− − A+)2

=
(

Γ
2ωz

)2

(αα̃ + α2/4 + α/9). (A.1.9)

Inserting these expression into Eq. (A.1.7) and expanding to first order in (Γ/ωz)2,
Eq. (3.3.26) then follows.

In order to find n
(2)
SS , we first calculate the second term in Eq. (3.3.24):

A++

A−− − A++
=
(

Γ
2ωz

)2

[α̃/α + 1/4 + 1/(9α)]. (A.1.10)

By inserting this expression and Eq. (3.3.26) into Eq. (3.3.24), Eq. (3.3.27) follows
immediately.
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A.2 Displacements and phases in the geometric Controlled-

Z gate

In this section the time-dependent displacements β(t) and the phases φ(t) in the gate
proposal of Sec. 6.2 are stated for the center-of-mass mode as well as the breathing mode.
Using the definitions of the f -functions in Eq. (6.2.20) for the center-of-mass mode and
carrying out the integral in Eq. (6.2.11) one arrives at the following expressions for the
displacement

β+(↓↓, t) =β0+ + β1+ (A.2.1)
β+(↓↑, t) =β0+ + β2+ (A.2.2)
β+(↑↓, t) =β0+ − β2+ (A.2.3)
β+(↑↑, t) =β0+ − β1+ (A.2.4)

where

β0+ = − i
f0+

�ωz
(1 − e−iωzt) (A.2.5)

β1+ =
f1+
2�

(
1 − e−i(ωz+Ω)t

ωz + Ω
− 1 − e−i(ωz−Ω)t

ωz − Ω

)
(A.2.6)

β2+ =
f2+

f1+
β1+. (A.2.7)

At the end of the gate operation, where t = T = 2πn/ωz, the displacement is zero
for all four combinations of qubit states, as requested. Inserting these expressions into
Eq.(6.2.12) and carrying out the integral, it can be found that

φ+(↓↓, t) =φ1+ + φ2+ + φ3+ + φ4+ (A.2.8)
φ+(↓↑, t) =φ1+ + φ5+ + φ6+ + φ7+ (A.2.9)
φ+(↑↓, t) =φ1+ − φ5+ − φ6+ + φ7+ (A.2.10)
φ+(↑↑, t) =φ1+ − φ2+ − φ3+ + φ4+, (A.2.11)

where

φ1+ =
(

f0+

�ωz

)2

[ωzt − sin(ωzt)] (A.2.12)

φ2+ =
f0+f1+

�2(ω2
z − Ω2)

[
Ω[cos(ωzt) − 1]

ωz
− ωz[cos(Ωt) − 1]

Ω

]
(A.2.13)

φ3+ =
f0+f1+

(�ωz)2

[
ωz{1 − cos[(ωz − Ω)t]}

2(ωz − Ω)
− ωz{1 − cos[(ωz + Ω)t]}

2(ωz + Ω)
− ωz[cos(Ωt) − 1]

Ω

]
(A.2.14)

φ4+ =
f2
1+

(2�)2

[
sin[(ωz + Ω)t] + sin[(ωz − Ω)t] − (ωz/Ω) sin(Ωt) + 2ωzt

ω2
z − Ω2

(A.2.15)

− sin[(ωz + Ω)t]
(ωz + Ω)2

− sin[(ωz − Ω)t]
(ωz − Ω)2

]
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and where φ5+ = (f2+/f1+)φ2+, φ6+ = (f2+/f1+)φ3+ and φ7+ = (f2+/f1+)2φ4+.
For the breathing mode, the displacement and the phase can be found in exactly

the same way as above, using the function f− defined in Eq. (6.2.5) instead of f+.
To obtain the phases φ− the following replacements should be made in Eqs. (A.2.8)-
(A.2.15): φ+ → φ−, φi+ → φi− (i = 1 − 7), ωz → √

3ωz and fj+ → fj− (j = 0 − 2),
where f0− = f0+(F̃2 − F̃1)/[ 4

√
3(F̃2 + F̃1)] and f1− and f2− are defined in Eq. (6.2.32).

A.3 The coupled motion of two trapped ions

Here we consider the situation described in Sec. 9.3, with two singly-charged ions of
different masses confined in the axial harmonic potential of a linear Paul trap, with one
ion being subject to a constant light-pressure force, a damping laser-cooling force and
a modulation force Fmod cos(ωmodt). From the coupled equations of motion for the two
ions, the relative phase between the motion of the laser-cooled ion and the modulation
force is derived. The derivation is valid to first order in δz/∆z.

Using the same notation as in Sec. 9.3, we have the following equations of motion:

z̈1 + γż1 + ω2
1z1 = − e2

4πε0m1(z2 − z1)2
+

Flight

m1
+

Fmod

m1
cos(ωmodt) (A.3.1)

z̈2 + ω2
2z2 =

e2

4πε0m2(z2 − z1)2
. (A.3.2)

To solve them, we first expand the Coulomb force on Ion 2, FCoul,2, around the equi-
librium distance, ∆z + δz, as follows

FCoul,2 =
e2

4πε0(z2 − z1)2
≈ F0 − F1

z2 − z1 − (∆z + δz)
∆z

(A.3.3)

where

F0 =
e2

4πε0(∆z + δz)2
≈ 1

2
m1ω

2
1∆z(1 − 2δz/∆z) (A.3.4)

F1 =
2e2∆z

4πε0(∆z + δz)3
≈ m1ω

2
1∆z(1 − 3δz/∆z). (A.3.5)

Inserting this linearized expression for the Coulomb force in the equation of motion for
z2, we find

z1 =
m2∆z

F1
z̈2 +

(
m2ω

2
2∆z

F1
+ 1

)
z2 − 3

2
(∆z + δz). (A.3.6)

Inserting this expression for z1 and its time derivatives in the equation of motion for z1,
we obtain after some calculations the following fourth order differential equation in z2:

¨̈z2 + γ ˙̈z2 + 2(ω2
1 + ω2

2)(1 − 3δz/2∆z)z̈2 + 2γω2
2(1 − 3δz/2∆z)ż2 + 3ω2

1ω2
2(1 − 2δz/∆z)z2

= 3ω2
1ω2

2∆z(1 − 4δz/∆z)/2 +
ω2

2Fmod

m1
(1 − 3δz/∆z) cos(ωmodt). (A.3.7)
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The first term on the r.h.s. is constant and can be removed by introducing z = z2−z2,eq

[see Eq. (9.3.4)] and writing the differential equation in terms of z. Furthermore, putting
the resulting differential equation on complex form, we obtain

¨̈z + γ ˙̈z + 2(ω2
1 + ω2

2)(1 − 3δz/2∆z)z̈ + 2γω2
2(1 − 3δz/2∆z)ż + 3ω2

1ω2
2(1 − 2δz/∆z)z

=
ω2

2Fmod

m1
(1 − 3δz/∆z) exp(iωmodt) (A.3.8)

with z being a complex variable. Now, making the Ansatz z = z0 exp(iωmodt), with z0

complex, we find

ω4
mod − iγω3

mod − 2ω2
mod(ω

2
1 + ω2

2)(1 − 3δz/2∆z) + 2iγωmodω
2
2(1 − 3δz/2∆z)

+ 3ω2
1ω2

2(1 − 2δz/∆z) =
ω2

2Fmod

m1
(1 − 3δz/∆z)z−1

0 . (A.3.9)

Writing z0 = |z0|eiϕ1 , we then have that z2 = Re[z]+z2,eq = |z0| cos(ωmodt+ϕ1)+z2,eq,
where

cos(ϕ1) =
ω4

mod − 2ω2
mod(ω

2
1 + ω2

2)(1 − 3δz/2∆z) + 3ω2
1ω2

2(1 − 2δz/∆z)
N0

, (A.3.10)

and where N0 is the norm of the l.h.s. of Eq. (A.3.9). From the expression for z2, we
could go back and find z1 (the position of the observed laser cooled ion), but all we
need to know is the phase relative to the phase of the driving force, which is the same
as for z2, i.e., ϕ1. From Eqs. (A.3.10) and (9.3.2), it follows that cos(ϕ1) = 0 exactly at
ωCOM and ωbr given in Eq. (9.3.11), thus showing that also in the case considered here,
the mode-frequencies can be determined by picking out the amplitude of the in-phase
component as described in Sec. 9.3.
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Appendix B

The Ca+ ion

B.1 Abundance of Ca-isotopes

The natural abundance of the stable isotopes of calcium is listed in Table B.1

Isotope Abundance
40 96.941%
42 0.647%
43 0.135%
44 2.086%
46 0.004%
48 0.187%

Table B.1: Abundance of the stable isotopes of calcium [146].

B.2 Transitions in the 40Ca+ ion

For the dipole-allowed transitions shown in Fig. 3.3, some relevant data are listed in
Table B.2.

The coupling strength for dipole-allowed transitions between the various sub-levels is
characterized by the values of Γ given in Table B.2 and the Clebsch-Gordan coefficients
(see, e.g., Ref. [22] for a definition), which are listed in Tables B.3–B.5.
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Transition Wavelength [nm] Γ/2π [MHz] Sat. intensity [mW/cm2]
2S1/2- 2P1/2 396.847 20.7 43.3
2S1/2- 2P3/2 393.366 21.5 46.2
2D3/2- 2P1/2 866.214 1.69 0.34
2D3/2- 2P3/2 849.802 0.177 0.038
2D5/2- 2P3/2 854.209 1.58 0.33

Table B.2: Data for dipole-allowed transitions in 40Ca+, as shown in Fig. 3.3. Transition
wavelengths are measured in air [25, 108]. Γ/2π is the transition rate [25, 108]. Satu-
ration intensities are calculated according to Eq. (2.1.30), using the relevant transition
rate and transition frequency for Γ and ωeg, respectively.

2S1/2(−1/2) 2S1/2(+1/2)
2P1/2(−1/2) −√1/3

√
2/3

2P1/2(+1/2) −√2/3
√

1/3
2P3/2(−3/2) 1 -
2P3/2(−1/2)

√
2/3

√
1/3

2P3/2(+1/2)
√

1/3
√

2/3
2P3/2(+3/2) - 1

Table B.3: Clebsch-Gordan coefficients for transitions between the 2S1/2 state and the
2P1/2 and 2P3/2 states.

2D3/2(−3/2) 2D3/2(−1/2) 2D3/2(+1/2) 2D3/2(+3/2)
2P1/2(−1/2)

√
1/2 −√1/3

√
1/6 -

2P1/2(+1/2) -
√

1/6 −√1/3
√

1/2
2P3/2(−3/2) −√3/5

√
2/5 - -

2P3/2(−1/2) −√2/5 −√1/15
√

8/15 -
2P3/2(+1/2) - −√8/15

√
1/15

√
2/5

2P3/2(+3/2) - - −√2/5
√

3/5

Table B.4: Clebsch-Gordan coefficients for transitions between the 2D3/2 state and the
2P1/2 and 2P3/2 states.

2P3/2(−3/2) 2P3/2(−1/2) 2P3/2(+1/2) 2P3/2(+3/2)
2D5/2(−5/2)

√
2/3 - - -

2D5/2(−3/2) −√4/15
√

2/5 - -
2D5/2(−1/2)

√
1/15 −√2/5

√
1/5 -

2D5/2(+1/2) -
√

1/5 −√2/5
√

1/15
2D5/2(+3/2) - -

√
2/5 −√4/15

2D5/2(+5/2) - - -
√

2/3

Table B.5: Clebsch-Gordan coefficients for transitions between the 2D5/2 state and the
2P3/2 state.
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B.3 Zeeman-splitting in the 40Ca+ ion

The Zeeman-splitting of the magnetic sublevels of 40Ca+ is given by:

∆EZeeman = mJgJµBB, (B.3.1)

where mJ is the magnetic quantum number, µB is the Bohr magneton, B is the magnetic
field strength and gJ is the Landé g-factor,

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (B.3.2)

Values of gJ are listed in Table B.6 for the lowest lying states of the 40Ca+ ion. For

State gJ
2S1/2 2
2P1/2 2/3
2P3/2 4/3
2D3/2 4/5
2D5/2 6/5

Table B.6: Values of gJ for the lowest lying levels of the 40Ca+ ion.

B = 1Gauss, the Zeeman-splitting of the ground-state sublevels is 2π × 2.8Mhz.
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Appendix C

Sideband cooling – quantum

Monte Carlo simulations

C.1 The simulation program

In the Monte Carlo simulation program, the coefficients in the wavefunction in Eq. (3.5.1)
are evolved in time according to the Monte Carlo wavefunction method [59, 60]. This
method contains two essential steps: a coherent evolution of the wavefunction and ran-
dom decisions of the outcome of stochastic processes.

The simulation program is written in the C/C++ programming language. The
coherent evolution of the wavefunction is performed according to Eqs. (3.5.6)–(3.5.8) in
timesteps of duration ∆t = (2Γ1/2)−1, using the fourth order Runge-Kutta algorithm
rk4 from Numerical Recipes in C [172]. Using smaller or a little larger timesteps did
not alter the results of the simulations significantly. Random decisions are made using
random numbers uniformly distributed between 0 and 1 with 30 bit resolution, formed
from the random numbers generated by two calls of the library function rand(). A
stochastic process taking place with probability dp, is said to happen if a (30 bit) random
number is less than dp.

In order to exploit the fact that the higher lying vibrational states become irrelevant,
when population is driven towards the lowest lying vibrational states during sideband
cooling, a dynamic cut-off was introduced in the program. This means that when it
eventually occurs during the cooling process, that the population in the uppermost
vibrational level |nupper〉 is less than some number, ε, then the coefficients C

nupper

i are
set to zero and left out of the calculation. The bottom three levels, where n = 0 − 2,
cannot be removed by the dynamic cut-off. ε = 10−4 was used in all simulations and
it was tested for each 1000 timesteps if the uppermost level could be removed. When
cooling worked poorly, a simulation of 100 histories over 105 timesteps with 6 vibrational
levels (nmax = 5) in the wavefunction, performed on a 500MHz PC 1, typically lasted
17 hours, while if the cooling was very efficient, the dynamic cut-off could reduce the
computation time to about 5 hours.

The individual steps in the simulation program are the following: First, the coeffi-

1More or less the standard at the time the simulations were made.
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cients Cn
i (n = 0 − nmax) in the wavefunction are initialized to the values Cn

2 = 0 and
Cn

1 = Cn
3 =

√
nn

0/[2(n0 + 1)n+1]. After initialization, the coefficients are normalized,
such that

∑3
i=1

∑nmax

n=0 |Cn
i |2 = 1. Following that, the program runs through steps 1-6

below in a loop, typically for 105 timesteps.

1. The probability dp for a decay from |2〉 in a timestep ∆t is calculated; dp =
Γ1/2∆t

∑
n |Cn

2 |2 is typically 10−4.

2. The coefficients are evolved according to Eqs. (3.5.6)-(3.5.8) in a timestep ∆t using
rk4 [172].

3. Based on the probability dp, calculated in step 1, it is randomly decided if a
spontaneous decay from |2〉 takes place. If ‘no’, the program jumps to step 6. If
‘yes’, it continues to step 4.

4. A series of random decisions determines if the vibrational state changes in the
decay.

(a) A random decision decides if the decay goes to |1〉, which, depending on the
choice of excited state, happens with probability 1/3 or 2/3, or if the decay
goes to |3〉 instead.

(b) The direction of the emitted photon is found randomly, with the probability
for emission in a given direction governed by the distribution-function W for
the radiation pattern, which depends on the choice of excited state [52]. See
the definitions in Eq. (3.5.23).

(c) Given the emission-direction, characterized by a wave-vector kdecay, the
Lamb-Dicke parameter ηdecay = kdecay · z0 can be calculated and from that
the probability for changing the vibrational state by ∆n = 0,±1,±2. A
random decision determines the change in the vibrational state.

5. The wavefunction is collapsed onto the internal state |i〉 (i = 1, 3) to which the
decay happened, and the distribution over the vibrational levels is shifted by ∆n,
i.e., Cn

i 
→ Cn+∆n
i and Cnmax+∆n

i = 0 (if ∆n < 0) or C0+∆n
i = 0 (if ∆n > 0).

6. The coefficients are normalized such that
∑3

i=1

∑nmax

n=0 |Cn
i |2 = 1.

C.2 Time evolution of coefficients

In this section the state |2〉 is adiabatically eliminated with respect to the Raman-
transition and Eqs. (3.5.6)–(3.5.8) are derived.

The time-dependence of the coefficients Cn
i in the wavefunction |ψ〉 in Eq. (3.5.1) is

governed by the time-dependent Schrödinger equation

i�
∂ |ψ〉
∂t

=H |ψ〉 (C.2.1)

or

i�

3∑
i=1

nmax∑
n=0

Ċn
i (t) |i, n〉 =H

3∑
i=1

nmax∑
n=0

Cn
i (t) |i, n〉 , (C.2.2)
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where

H = Htrap + Hion + HRaman + Hpump (C.2.3)

with the individual Hamiltonians defined in Eqs. (3.5.3)–(3.5.5). First we treat the case
H = Htrap + Hion + HRaman and then we consider Hpump separately.

Taking H = Htrap +Hion +HRaman and following Ref. [173], it is useful to consider
the time-dependence of the coefficients

Bn
i (t) =Cn

i (t)eiHnn
ii t/�, (C.2.4)

where

Hnn
ii = 〈i, n|H |i, n〉 = Ei + n�ωz. (C.2.5)

From Eq. (C.2.2) it follows that the coefficients Bn
i evolve in time according to

Ḃn
1 (t) = − i

Ω∗
12

2
e−i(∆+ωz)t

∑
n′

Bn′
2 (t)e−iωz(n′−n)tUnn′(−η12) (C.2.6)

Ḃn′
2 (t) = − i

Ω12

2
ei(∆+ωz)t

∑
n

Bn
1 (t)eiωz(n′−n)tUn′n(η12) (C.2.7)

− i
Ω32

2
ei(∆+δ)t

∑
n′′

Bn′′
3 (t)eiωz(n′−n′′)tUn′n′′(η32)

Ḃn′′
3 (t) = − i

Ω∗
32

2
e−i(∆+δ)t

∑
n′

Bn′
2 (t)e−iωz(n′−n′′)tUn′′n′(−η32), (C.2.8)

where

ηi2 =ki2 · z0, i = 1, 3. (C.2.9)

Assuming that the coefficients Bn
1 and Bn′′

3 change on a timescale much longer than
∆−1, we can integrate Eq. (C.2.7) with Bn

1 and Bn′′
3 constant. The expression obtained

for Bn′
2 can then be inserted into Eqs. (C.2.6) and (C.2.8), which, under the assumption

∆ � |Ω12|, |Ω32|, |δ| , ωz, (C.2.10)

yields

Ḃn
1 (t) =i

|Ω12|2
4∆

Bn
1 (t) + i

Ω∗
12Ω32

4∆
ei(δ−ωz)t

∑
n′′

Bn′′
3 (t)eiωz(n−n′′)tUnn′′(−η) (C.2.11)

Ḃn′′
3 (t)=i

Ω12Ω∗
32

4∆
e−i(δ−ωz)t

∑
n

Bn
1 (t)e−iωz(n−n′′)tUn′′n(η) + i

|Ω32|2
4∆

Bn′′
3 (t), (C.2.12)

where

η = η12 − η32. (C.2.13)
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These solutions are consistent with the assumption that Bn
1 and Bn′′

3 change much slower
than ∆−1. From the definition in Eq. (C.2.4), it follows that the original coefficients
Cn

i evolve as:

Ċn
1 (t) = − i

(
nωz − |Ω12|2

4∆

)
Cn

1 (t) + i
Ω∗

Raman

4
eiωt

∑
n′′

Cn′′
3 (t)Unn′′(−η) (C.2.14)

Ċn′
2 (t) = − i

(
E2

�
+ n′ωz

)
Cn′

2 (t) (C.2.15)

Ċn′′
3 (t) = − i

(
E3

�
+ n′′ωz − |Ω32|2

4∆

)
Cn′′

3 (t) + i
ΩRaman

4
e−iωt

∑
n

Cn
1 (t)Un′′n(η),

(C.2.16)

where

ω = ω12 − ω32. (C.2.17)

For the pumping transition, it immediately follows from the time-dependent Schrödinger
equation with H = Hpump that

Ċn′
2 (t) = −iΩpumpe

−iωpumpt
∑
n′′

Cn
3 (t)Un′n′′(ηpump) (C.2.18)

Ċn′′
3 (t) = −iΩ∗

pumpe
iωpumpt

∑
n′

Cn′
2 (t)Un′′n′(−ηpump). (C.2.19)

Now, combining Eqs. (C.2.18) and (C.2.19) with Eqs. (C.2.14)–(C.2.16), the full
coherent time development of the coefficients are obtained. Following the Monte Carlo
wavefunction method an extra term, −ΓCn′

2 /2, is added to Ċn′
2 to include spontaneous

decay. The quickly oscillating terms e±iωt and e±iωpumpt can be removed by introducing
the coefficients C̃n

1 = Cn
1 eiωzt, C̃n′

2 = Cn′
2 ei(E2/�+δ)t and C̃n′′

3 = Cn′′
3 ei(E3/�+δ)t, which

finally yields Eqs. (3.5.6)–(3.5.8).
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