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The behavior of a mobile impurity particle interact-
ing with a quantum-mechanical medium is of fundamen-
tal importance in physics. Due to the great flexibility of
atomic gases, our understanding of the impurity problem
has improved dramatically since it was realized exper-
imentally in a particularly pure form using degenerate
Fermi gases [1–3]. However, there has not been such a
realization of the impurity problem in a bosonic reservoir
so far. Here, we use radio frequency spectroscopy of ultra-
cold bosonic 39K atoms to experimentally demonstrate the
existence of a well-defined quasiparticle state for an im-
purity interacting with a Bose-Einstein condensate (BEC).
We measure the energy of the impurity both for attractive
and repulsive interactions with the BEC, and find excel-
lent agreement with theories that incorporate three-body
correlations, both in the weak-coupling limits and across
unitarity. Our results show that the spectral response
consists of a well-defined quasiparticle peak at weak cou-
pling and a continuum of excited many-body states. For
increasing interaction strength, the spectrum is strongly
broadened and becomes dominated by the many-body
continuum, but no significant effects of three-body decay
are observed. Our results open up intriguing prospects for
studying mobile impurities in a bosonic environment, as
well as strongly interacting Bose systems in general.

The scenario of an impurity interacting with its environ-
ment has provided deep insight into quantum many-body sys-
tems. Since Landau and Pekar first proposed that the cou-
pling between electrons and lattice phonons leads to the ex-
istence of quasiparticles termed polarons [4], this idea has
systematically been developed [5]. The concept of the po-
laron is now central to our understanding of a wide range
of materials including technologically important semiconduc-
tors [6]. The “dressing” of a particle by a bosonic reservoir
plays an important role in many other systems, such as 3He–
4He mixtures [7] and high temperature superconductors [8].
Indeed, even the elementary particles of the Standard Model
acquire their mass by coupling to the bosonic Higgs particle.
It is therefore highly desirable to understand the properties of
an impurity particle immersed in a bosonic reservoir. Sev-
eral specific cases have been investigated using atomic Bose
gases: impurities interacting with an uncondensed bosonic
medium [9], charged or fixed impurities in a BEC [10–13],
and impurities confined to a lattice [14]. However, there has
not yet been a realization of the canonical mobile impurity in
a BEC – the Bose polaron – despite intense theoretical inves-
tigation [15–23].

We investigate the Bose polaron using a harmonically
trapped BEC of 39K atoms initially prepared in the |1〉 ≡

FIG. 1. Sketch of the spectroscopic method and the impurity en-
ergy spectrum. A radio frequency pulse transfers atoms from the |1〉
to the |2〉 state. Only a small fraction is transferred, corresponding
to a rotation by a small angle on the Bloch sphere (inset) in a non-
interacting system. The solid lines show the energies of the zero-
momentum attractive (Ea) and repulsive (Er) polaron states in a uni-
form BEC as a function of the interaction parameter 1/kna (see text).
The dashed line shows the molecular binding energy Em (Methods)
on the repulsive side of the Feshbach resonance, and the gray shad-
ing denotes a continuum of many-body states. The bottom cartoon
shows impurity atoms (orange) in a BEC (blue); the intensity of the
background color indicates the change in the BEC density due to the
presence of impurity atoms.

|F = 1,mF =−1〉 state (Methods). The BEC has average
density n0 = 2.3× 1014cm−3,which we parameterize by the
wavenumber kn = (6π2n0)

1/3. The |1〉 atoms are weakly in-
teracting with scattering length aB such that knaB ≈ 0.01. To
introduce impurities, we apply a radio frequency (RF) pulse
of 100 µs duration, which transfers a small fraction of atoms
into the |2〉 ≡ |F = 1,mF = 0〉 state (Figure 1). This scheme is
advantageous since it ensures a perfect spatial overlap of im-
purities with the BEC. Furthermore, it is unique to a bosonic
system since interaction effects in a Fermi gas subjected to
a coherent RF pulse would be suppressed due to the Pauli
principle [24]. We transfer less than 10% of the atoms into
the |2〉 state, such that they can be regarded as isolated mobile
impurities (Supplementary Information).

The transition frequency ωRF between the two hyperfine
states is changed from its unperturbed value ω0 due to the
impurity-BEC interactions, as shown schematically in Fig. 1.
This interaction is characterized by the s-wave scattering
length a between |1〉 and |2〉 atoms, which is highly tunable
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FIG. 2. Spectral response of the impurity in the BEC. The false color plots show the experimentally measured spectroscopic signal (a)
and the calculated spectrum (b), for different values of detuning ∆ and the interaction parameter 1/kna. The theoretical calculation includes a
spatial average over the trapped BEC and a convolution with the Fourier width of the RF pulse (Supplementary Information). The experimental
spectrum is recorded such that its peak amplitude is constant for all values of 1/kna. Accordingly, the theoretical spectrum is normalized such
that its frequency integrated weight is the same as the experimental spectrum. In addition, the independently measured molecular binding
energy (white dots) and a fit to it (dashed line) are shown. Negative values of the experimental signal are due to shot-to-shot atom number
fluctuations (Methods). Panels (c)-(g) show the signal as a function of ∆ for various values of 1/kna (see panel). The solid lines show
the calculated signal using the truncated basis method including three-body correlations; this is in excellent agreement with the experiment,
except for 1/kna = 1.6 where the agreement is qualitative. The dashed lines, obtained excluding three-body correlations, only agree with the
experiment for weak interactions.

using a Feshbach resonance located at 113.8G [25]. Follow-
ing the RF pulse and a variable hold time, the trap is switched
off and the atom cloud is allowed to expand for 23 ms. Within
the first part of this sequence the atomic cloud suffers losses
due to three-body collisions between the |1〉 and |2〉 atoms
at high density. For a given scattering length a, we measure
the resulting atom number in the |1〉 state as a function of
detuning ∆ = ω0−ωRF and thus perform spectroscopy on the
|1〉→ |2〉 transition (Methods). The detuning is parameterized
by the energy scale of the system En = h̄2k2

n/2m where m is
the mass of 39K.

Figure 1 illustrates the behavior of the zero-momentum im-
purity in a uniform BEC of density n0. For weak interactions,
1/kna�−1 and 1/kna� 1, the impurity forms well-defined
quasiparticle states termed attractive and repulsive polaron,
respectively. These have mean-field energy 4π h̄2n0a/m plus
medium corrections which have recently been determined up
to order a3 [22]. On the attractive side of the Feshbach res-
onance, the zero-momentum attractive polaron is the ground
state. In the absence of Efimov physics [26], the attractive
polaron state exhibits an avoided crossing with the molecular

state beyond unitarity [18, 23]. Above the ground state there is
a continuum of many-body states, which in the weakly inter-
acting limit is formed by polarons and Bogoliubov excitations
with zero total momentum (Supplementary Information). On
the repulsive side 1/kna > 0, the repulsive polaron becomes
increasingly damped when approaching the Feshbach reso-
nance, since it can decay into lower lying states and is in-
herently metastable.

Figure 2 compares the measured spectroscopic signal with
that expected for a zero-momentum impurity within linear re-
sponse (Methods). The theoretical spectrum reproduces the
observed signal strikingly well, both for attractive and repul-
sive interactions. In particular, both experiment and theory
show a clear shift in the observed spectral weight due to the
interaction between the impurity and the BEC. The calculation
of the spectrum involves a restricted Hilbert space of impurity
wavefunctions such that at most two Bogoliubov excitations
of the BEC are included (Supplementary Information). Cru-
cially, this truncated basis method (TBM) [27] allows us to
include three-body correlations in the spectral function non-
perturbatively, and thus model the continuum of excited po-
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FIG. 3. Average energy of the impurity state. The average energy
Ē of the impurity spectrum is shown as a function of the interaction
parameter. The energy was obtained from Gaussian fits to the spec-
troscopic signal (blue dots) and to the full TBM spectrum (blue line).
For comparison, we display the results for a TBM spectrum with-
out three-body correlations (red line) and from perturbation theory
(dashed line) (Supplementary Information).

laron states. Figure 2(c)-(g) shows cuts through the spectrum
at fixed 1/kna, demonstrating that the inclusion of three-body
correlations in the spectrum is essential for an accurate de-
scription of the strongly interacting unitary regime.

In contrast to the Fermi polaron [1, 2], there is no sharp
transition to a molecular state and the attractive polaron quasi-
particle remains the ground state of the system for all interac-
tion strengths. However, the spectral weight of the polaron
is increasingly transferred to the continuum of higher-lying
states as the strongly interacting unitary regime is approached
from the attractive side of the Feshbach resonance. This fea-
ture is clearly apparent in both the observed and the calculated
spectral response in Fig. 2. For 1/kna > 0, the structure of
this continuum is determined by the molecular branch, and in
the theoretical spectrum we see a clear suppression of spectral
weight between the ground-state quasiparticle and the contin-
uum. This is not apparent in the experimental spectrum, po-
tentially due to atom number fluctuations or correlation effects
not included in the theory. Significantly, the theory correctly
captures the abrupt decrease in the observed signal at negative
detuning for 1/kna & 1, where the molecule becomes deeply
bound compared to En. The detailed comparison of spectro-
scopic signals in Fig. 2 (c)-(e) further highlights the excellent
agreement between theory and experiment for the attractive
branch.

To further quantify the results, Fig. 3 compares the average
impurity energy obtained from theory and experiment. For
the attractive polaron, the experimental data agrees well with
the results of the TBM. This holds even in the strongly in-
teracting unitarity regime up to and including the abrupt shift
of spectral weight to positive detuning at 1/kna ' 1. In the
case of the repulsive polaron, the agreement is good for weak
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FIG. 4. Width of the spectrum. The width σ of the impurity spec-
trum is shown as a function of the interaction parameter. The widths
were obtained from Gaussian fits to the spectroscopic signal (blue
dots), the full TBM spectrum (blue line), and the TBM without three-
body correlations (red line). The green dashed line was obtained
from a spatial average and Fourier width convolution of the result
from perturbation theory excluding the many-body continuum (Sup-
plementary Information). The inset shows the width for the entire
experimental data set compared with the full TBM spectrum.

interaction, whereas there is only qualitative agreement for
1 . 1/kna . 3. This suggests that there are important aspects
of the experiment that have not been included in the theory,
such as effects of temperature, three-body recombination to
deeply bound states, and multiple excitations of the BEC. The
last effect is likely to play a role for strong interactions near
1/kna ' 1, since the repulsive branch in this regime involves
a broad continuum of many-body states, which is challeng-
ing to model. For comparison, Fig. 3 also includes the result
of the TBM without three-body correlations, highlighting the
necessity of their inclusion.

Importantly, the perturbative result for the polaron en-
ergy [22] accurately reproduces the observed energy shift
in Fig. 3 for weak attractive and repulsive interactions. From
this we conclude that the experimental data confirms the ex-
istence of a well-defined Bose polaron quasiparticle in this
regime.

The width of the spectral response also agrees well with
theory for interaction parameters 1/kna . 1 and 1/kna & 3, as
shown in Fig. 4. For weak interactions, the spectral broaden-
ing arises mainly from the Fourier width of the RF pulse and
the density inhomogeneity of the trapped BEC. This is illus-
trated by the fact that the perturbative result assuming a per-
fect undamped polaron reproduces the observed width in this
regime (Supplementary Information). However, near unitarity
where the system is strongly correlated, the spectral weight of
the polaron is small, and the many-body continuum of states
accounts for the significant broadening of the spectrum. Im-
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portantly, this effect is captured by the TBM when three-body
correlations are included. For the strongly interacting repul-
sive branch, there is again only qualitative agreement between
theory and experiment for the reasons outlined above.

Since strongly interacting Bose systems are expected to suf-
fer from rapid three-body recombination, it is striking how
well the experimental observations are described by theories
that neglect such losses. The observed width of the spectrum
is explained by the trap inhomogeneity, Fourier broadening,
and the many-body continuum. We note that the impurity de-
cay rate, which is proportional do n2

0a4 when n0|a|3 � 1, is
ultimately limited by the average interparticle spacing in the
unitary regime. In this case the energy shift and decay rate
both scale as n2/3

0 . Our results thus imply that the ratio of
the decay rate to the energy shift at unitarity remains small, a
finding which is consistent with the recent experiment on the
unitary Bose gas [28].

Our observation of a well-defined Bose polaron opens up
the exciting opportunity to study quantum impurities in a
bosonic environment systematically and in regimes never re-
alized before. For instance, an intriguing question is how the
polaron changes when the BEC melts. The effects of such a
phase transition of the environment on an impurity particle
has never been investigated before. There is also the prospect
of observing stable Efimov trimers in a BEC for the first time.
We do not expect to observe a well-defined Efimov state in
our present experiment, since the size of the smallest Efimov
trimer is estimated to be 100 times larger than the interparticle
spacing [23]. However, the Efimovian regime can be accessed
by lowering the density or by using light impurities.

METHODS

Sample preparation. The experimental apparatus used to
produce 39K BECs was described in detail in [29]. Briefly,
a dual-species magneto-optical trap captures 87Rb and 39K
atoms and subsequently evaporative cooling is performed in
a magnetic trap. All 87Rb atoms are evaporated leading to
sympathetic cooling of 39K and the remaining 39K atoms are
loaded into an optical dipole trap consisting of two crossed
beams at a wavelength of 1064nm. Finally 39K is prepared
in the |1〉 state, and the sample is evaporatively cooled further
by lowering the dipole trap power. During this evaporation,
a Feshbach resonance at 33.6G is addressed to assure effi-
cient rethermalization. When a sufficiently low temperature
is reached, the magnetic field is ramped to the desired field
in the vicinity of the Feshbach resonance at 113.8G. During
this process, the power of the dipole trap is raised to increase
the density of the BEC, which results in trap frequencies of
νx = 158Hz, νy = 167Hz and νz = 228Hz. Prior to the cre-
ation of polarons, the 39K BEC consists of ≈ 2×104 atoms at
a temperature of 160nK corresponding to T/Tc ≈ 0.6 where
Tc is the critical temperature of Bose-Einstein condensation.

Inter-state Feshbach resonance. Our measurements of
the polaron are carried out by employing an inter-state Fes-
hbach resonance at 113.8G [25], which allows for tuning of
the interaction between atoms in the |1〉 and |2〉 states. The

Feshbach resonance was characterized by performing spec-
troscopy on the molecule state with binding energy h̄2

4mR∗2×
(
√

1+4R∗/a− 1)2 and by determining the zero-crossing of
the interaction in a rethermalization measurement of the com-
ponents |1〉 and |2〉. This allowed us to parametrize the scatter-
ing length according to a = abg(1−∆B/(B−B0)) with B0 =
113.83G, ∆B = −15.93G and abg = −45.24a0 where a0 is
the Bohr radius. Based on [25], the range parameter R∗ =
h̄2/mabgδ µ∆B is estimated to be 60a0.

Measurement procedure. To form the polaron, we use a
square RF pulse of 100 µs duration. The pulse length and ex-
perimental magnetic field precision result in a spectral FWHM
of 0.15En. A small fraction of |1〉 atoms is thus transferred
into the |2〉 state and the sample is kept in the trap for a vari-
able hold time before being released. After 5ms of expansion,
a strong magnetic field gradient is applied which separates the
|1〉 and |2〉 components before absorption imaging after a total
expansion time of 23ms .

Three-body recombination processes involving two |1〉 and
one |2〉 atom lead to a loss of atoms from the sample. Due to
the large atom number imbalance we typically do not detect
|2〉 atoms and only a decrease in |1〉 BEC atoms is observed.
Since we found that the relative number of lost atoms did not
depend on the hold time, this was set to zero for the majority
of our measurements. Hence, the three-body recombination
loss process occurs during the initial expansion time while the
sample is sufficiently dense.

Due to the three-body recombination process, the number
of lost atoms is three times larger than the number of atoms
transferred to the polaron state. To obtain a maximal polaron
fraction of 10% for each interaction strength, the power of
the RF pulse was hence chosen to provide a maximum loss of
approximately 30%.

Data evaluation. The spectroscopic signal is provided by
the loss of |1〉 atoms from the BEC after the RF pulse. To con-
vert this loss into the signal shown in Fig. 2 (a), the remaining
number of atoms in the |1〉 state as a function of ∆ was fitted
with a Gaussian function for each value of 1/kna. Based on
the background BEC atom number and the peak atom number
loss obtained from the fit, the normalized relative loss corre-
sponding to the spectroscopic signal is obtained. Shot-to-shot
atom number fluctuations can thus lead to negative values of
the spectroscopic signal.

Conventionally, the spectral weight of the polaron spectrum
is normalized to 2π . However, the integrated area of the ex-
perimentally obtained signal varies throughout the measured
range of interaction strengths. To allow for a comparison, the
theoretical spectrum in Fig. 2 (b) was normalized at each value
of 1/kna to match the integrated area of the experimental sig-
nal in Fig. 2 (a) (Supplementary Information).

The spectra in Fig. 2 allow for an excellent visual compar-
ison of the experimental signal and the calculated spectrum.
However, further analysis is required for the quantitative com-
parison in Fig. 3 and 4. Since the calculated lineshape is
unique for each value of 1/kna, the theoretical result does not
provide a general fit function that can be applied to the exper-
imental data. Hence Gaussian fits to the spectroscopic signal
and the calculated spectrum at fixed 1/kna are used to quan-
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titatively compare experiment and theory. They allow for the
comparison of the average energy and spectral width shown
in Fig. 3 and 4 respectively. In the range 0 . 1/kna . 0.5
this analysis technique fails for the TBM without three-body
correlations and has been excluded from the figures.

Theory of the RF probe and the spectral response. The
RF probe, which transfers atoms in spin state |1〉 into spin
state |2〉 is described by the operator Hrf =Ωe−iωt

∑k a†
k2ak1+

h.c. Here, Ω is the Rabi frequency determined by the cou-
pling between the spin states induced by the electromag-
netic field, and ω is the field frequency. Within linear re-
sponse, the resulting rate of transfer into state |2〉 is given
by Ṅ2 = −2Ω2ImD(ω), where D(ω) is the Fourier trans-

form of the retarded spin-flip correlation function D(t− t ′) =
−iθ(t − t ′)〈[∑k a†

k1(t)ak2(t),∑k′ a
†
k′2(t

′)ak′1(t ′)]〉. Since the
BEC of |1〉 atoms is weakly interacting, i.e., n0a3

B � 1,
it can be described up to leading order in n0a3

B, yielding
D(ω) = n0G2(k = 0,ω) for a homogenous system, where
G2(k,ω) is the Green’s function for an atom in spin-state |2〉
with momentum k and energy ω . It follows that an ideal
RF measurement directly probes the k = 0 part of the impu-
rity spectral function, defined as A(ω) =−2ImG2(k = 0,ω).
Note that we neglect vertex corrections to D(ω), which are
small for n0a3

B� 1 as long as the temperature is much smaller
than the critical temperature [30]. See Supplementary Infor-
mation for details on the evaluation of the spectral response,
including Fourier broadening and trap averaging.

SUPPLEMENTARY INFORMATION: OBSERVATION OF ATTRACTIVE AND REPULSIVE
POLARONS IN A BOSE-EINSTEIN CONDENSATE

I. EXPERIMENTAL DETAILS

A. Feshbach resonance structure

The relevant interactions in our system are determined by two s-wave scattering lengths. The internal interaction of the BEC,
which provides the bosonic medium, is governed by the scattering length aB. The properties of the polaron are determined by
the interaction between the impurity and the bosonic medium which is governed by the scattering length a.

The experiments are performed with a 39K BEC in the |1〉≡ |F = 1,mF =−1〉 state and impurities in the |2〉≡ |F = 1,mF = 0〉
state. Three Feshbach resonances contribute to the two relevant scattering lengths as shown in Fig. 5. The background scattering
length of 39K is negative, but Feshbach resonances at 33.6G and 162G create a wide window of positive scattering length which
allows stable BEC formation [29, 31]. Within this window, an interstate Feshbach resonance allows us to tune the interactions
between the impurity and the medium [25]. In the region where measurements are performed, the scattering length of the
medium aB is approximately constant at 9a0. The scattering length which characterizes the interaction between atoms in the |2〉
state is approximately −20a0 in this region.

a
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FIG. 5. Feshbach resonance structure of the relevant states in 39K. The solid blue line shows the scattering length of atoms in the |1〉 state and
the dashed green line shows the scattering length between atoms in the states |1〉 and |2〉. The shaded gray area displays the region in which
measurements are performed.
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FIG. 6. Polaron signal at various transferred fractions. Remaining number of atoms in the |1〉 state for 1/kna=−0.84 (top row) and 1/kna= 1.6
(middle row) as a function of the detuning for various RF powers. Bottom: Average energy Ē and width σ of the spectroscopic signal as a
function of transferred fraction for 1/kna =−0.84 (circles) and 1/kna = 1.6 (diamonds). The transferred fraction corresponds to a third of the
relative loss due to three-body recombination.

B. Polaron fraction

Polarons are formed by applying a RF pulse close to the transition between the |1〉 and |2〉 states. A fraction of |1〉 atoms
is transferred to the |2〉 state and, due to the interaction, polarons are formed (see Sec. II). This method breaks down for large
transferred fractions of atoms, since atoms in the |2〉 state cannot be treated as impurities in this case, and the bosonic medium
of |1〉 atoms is depleted, thus changing its properties.

To investigate possible consequences of these effects, the spectroscopic signal was recorded for various transferred fractions
at two values of the interaction parameter 1/kna =−0.84 and 1/kna = 1.6. To vary the transferred fraction, the power of the RF
pulse was changed, while keeping the pulse duration constant. The observed signal as well as the resulting average energy and
width are shown in Fig. 6.

No significant deviations of the average energy and only a minor increase in width are observed as a function of the transferred
fraction. For transferred fractions beyond 15%, a small distortion of the line shape is observed. We attribute this to a combination
of BEC depletion, power broadening effects and a non-linear response of the broad many-body continuum part of the spectrum.

Since these effects only appear at transferred fractions well above 10%, it confirms that our measurements are performed
within the linear response regime and represent a valid characterization of the polaron.
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II. THEORETICAL DESCRIPTION

In this section, we describe the theoretical framework used to interpret the experimental results. We consider the case of an
impurity in a uniform BEC with density n0 = 2.3× 1014 cm−3 at zero temperature. In the next section, we include the trap
inhomogeneity using the local density approximation. We take aB = 9a0 in all theory calculations, such that knaB ≈ 0.01 and
the BEC is weakly interacting. In the following, we set h̄ and the volume to 1.

A. Model of the Feshbach resonance in a 39K BEC

We model the interactions between the |2〉 impurity atoms and a BEC of |1〉 atoms using a two-channel Hamiltonian for the
Feshbach resonance. Within Bogoliubov mean-field theory for the condensed atoms, we have:

Ĥ =∑
k

[
Ekβ

†
k βk + εka†

k,2ak,2 +
(

ε
d
k +ν0

)
d†

kdk

]
+g
√

n0 ∑
k

(
d†

kak,2 +h.c.
)
+g∑

k,q

(
d†

qaq−k,2ak,1 +h.c.
)
. (1)

Here, akσ removes a 39K atom in spin state |σ〉 with momentum k and single-particle energy εk = k2/2m; m is the mass
of the atom, Ek =

√
εk(εk +2µ) is the Bogoliubov dispersion, and µ = 4πaBn0/m is the chemical potential of the BEC,

where aB is the scattering length between the |1〉 atoms. The annihilation operator of |1〉 atoms is related to the creation and
annihilation operators of Bogoliubov modes, β

†
k and βk respectively, through ak,1 = ukβk−vkβ

†
−k. The coherence factors, given

by u2
k = [1+(εk + µ)/Ek]/2 and v2

k = [−1+(εk + µ)/Ek]/2, are real and positive. The atoms in the two spin states interact
via a closed channel molecule. This has creation operator operator d†

k at momentum k, single particle energy εd
k = εk/2, and a

detuning ν0 from the two-atom |1〉-|2〉 threshold. The strength of the interaction is denoted g, and it is taken to be constant for
momenta |k|< Λ and is set to 0 above the momentum cutoff Λ. Renormalization of the |1〉-|2〉 two-body interaction then yields,
respectively, the scattering length and range parameter [32]:

a =
mg2

4π

1
mg2Λ

2π2 −ν0

, R∗ =
4π

m2g2 . (2)

The range parameter R∗ is necessary to fix the size of the smallest (i.e., ground-state) Efimov trimer consisting of two |1〉 atoms
and one |2〉 atom. Note that previous experimental studies of identical bosons have found that the size of the ground-state Efimov
trimer is universally related to the van der Waals range [33], an effect which was explained in Ref. [34]. Hence, it is natural to fix
the Efimov physics using two-body parameters. From an investigation of the vacuum three-body problem within the two-channel
model, we find that the scattering length at which the ground-state Efimov trimer crosses the three-atom continuum threshold is
a− '−5000R∗ [23]. Since R∗ = 60a0 in our experiment, we find that |a−|= 3×105a0, which exceeds the average interparticle
spacing by two orders of magnitude. Thus, we expect Efimov physics to play a very small role in the experimental results. We
emphasise that this conclusion is independent of the specific manner in which we include Efimov physics; indeed, calculations
using realistic interatomic potentials find a similarly large separation of scales between the van der Waals range and a− [35].

Note that we do not apply the commonly used Fröhlich approximation to the Hamiltonian for the impurity problem, as this
would not allow us to consider near resonant interactions. Indeed, the Fröhlich model already misses terms at the third order of
perturbation theory [22]. These are on the other hand correctly captured within the variational approach described in Ref. [23],
which forms the basis of our evaluation of the entire impurity spectral function.

B. Truncated basis method for the Bose polaron

To approximately model the Bose polaron across the full range of impurity-boson interactions, we apply a truncated basis
method (TBM), first introduced in Ref. [27]. This method was successfully used to model both the dynamics and the spectral
response for an impurity strongly interacting with a Fermi gas [27], and here we extend the TBM to obtain the spectral function
of the Bose polaron.

The TBM consists in truncating the Hilbert space of wavefunctions for the impurity in the BEC. In the present work, we
restrict the Hilbert space to wavefunctions containing the impurity, the BEC, and up to 2 Bogoliubov excitations of the BEC.
As we shall see, this allows us to capture the attractive and repulsive polaron peaks in the spectral function, as well as the
continuum of states in between. Variational wavefunctions with up to one [19] or two [23] Bogoliubov excitations have already
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been successfully used to determine the ground-state energy of the Bose polaron; here we extend the use of the variational
wavefunction in Ref. [23] to evaluate the entire spectral function of the impurity.

We start by considering an exact energy eigenstate of the system which satisfies the equation:

Ĥ |ψ〉= E |ψ〉 (3)

where E is the energy of the state |ψ〉. We then take truncated wavefunctions of the form: |ψ〉=∑ j α j | j〉, where {| j〉} represents
a subset of a complete orthonormal set of states. Inserting this into Eq. (3) and taking the projection with respect to | j〉 then
yields

Eα j = ∑
l
〈 j| Ĥ |l〉αl ≡∑

l
H jlαl . (4)

Diagonalising the Hamiltonian within this subspace then corresponds to determining the eigenvalues and eigenvectors of the
matrix H jl .

To determine the spectral function using the TBM, we exploit the relation between the Green’s function in time and frequency
space:

A(ω) = 2Re
∫

∞

0
dt eiωt 〈ψ0|e−iĤt |ψ0〉= 2π ∑

j

∣∣〈ψ0|φ j
〉∣∣2 ∫ ∞

−∞

dt
2π

eiωte−iE jt︸ ︷︷ ︸
δ (ω−E j)

, (5)

where |ψ0〉 is the polaron state in the absence of interactions. Here, φ j are the eigenstates of the truncated Hamiltonian, with
energies E j. In practice, the RF pulse is of finite duration in experiment, thus giving rise to a broadening of the measured
spectrum. We model this non-zero Fourier width of the RF probe by convolving the spectral function with a Gaussian:

I0(ω)≡
∫ dω ′

2π
A(ω−ω

′)
1√

2πσrf
e−ω ′2/2σ2

rf (6)

where σrf corresponds to the Fourier width. Using (6) in (5) yields

I0(ω) = ∑
j

∣∣〈ψ0|φ j
〉∣∣2 1√

2πσrf
e−(ω−E j)

2/2σ2
rf . (7)

For the specific case of an impurity in a BEC, we evaluate the spectrum using wavefunctions of the form

|ψ〉=
(

α0a†
0,2 +∑

k
αka†

−k,2β
†
k +

1
2 ∑

k1k2

αk1k2a†
−k1−k2,2

β
†
k1

β
†
k2
+ γ0d†

0 +∑
k

γkd†
−kβ

†
k

)
|Φ〉 , (8)

with |Φ〉 the wavefunction of the weakly interacting BEC. Such a wavefunction was first introduced in Ref. [23], and pro-
vided the first many-body theory that included Efimov physics in a BEC. In this work, we include three-body correlations
non-perturbatively in the impurity spectral function for the first time.

C. Weak-coupling perturbation theory

In the weak coupling limit, the polaron properties can be calculated perturbatively [22]. Assuming |a| � |a−|, the small
parameter in this perturbative expansion is a/ξ , where we have defined the BEC coherence length ξ ≡ 1/

√
8πn0aB. To third

order in a, the quasiparticle energy was calculated in Ref. [22] to be

E
En

=
4

3π
kna
[
1+

8
√

2
3π

√
4knaB

3π
kna+

(2
3
−
√

3
π

)4knaB

3π
(kna)2 ln

(√4knaB

3π
kna
)]
. (9)

When comparing perturbation theory for the polaron energy with the experimental data in Fig. 3 in the main manuscript, we plot
(9) using a kn obtained from the trap averaged density. In principle, we should average (9) over the cloud, but the difference
between the results of the two averaging procedures is negligible in the perturbative regime.

Likewise, the quasiparticle residue of the polaron to third order in a/ξ [22] is

Z−1 = 1+
2
√

2
3π

2√
3πknaB

(kna)2 +0.64× 4
3π

(kna)3. (10)
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FIG. 7. Quasiparticle residue of the attractive and repulsive polarons in a uniform BEC calculated from the perturbative expression Eq. (10).

Equations (9)-(10) together determine the quasiparticle part of the impurity spectral function, 2πZδ (ω−E), in the perturbative
regime. The quasiparticle peak is dominant when 1−Z � 1, and it follows from Eq. (10) that this condition corresponds to
requiring (kna)2/

√
knaB� 1. Since our experimental value knaB ' 0.01 is very small, this condition is, in fact, stricter than the

condition a/ξ � 1. This means that the quasiparticle residue becomes significantly smaller than one, even when a/ξ is still
small. Indeed, we see from Fig. 7, that Z ≥ 2/3 only for 1/kna <−1.8 or 1/kna > 2.

In addition to the quasiparticle peak, the perturbative calculation can also provide some insight into the broad many-body
continuum part of the spectral function. By expanding the self energy of the impurity up to second order in a, we obtain

A(ω) = 2πZδ (ω−E)+θ(ω)
2

En

2
√

2(kna)2

3π

[ω/En]
3

(4knaB/3π+ω/En)5/2

ω2

E2
n
+
(

2
√

2(kna)2

3π

[ω/En]3

(4knaB/3π+ω/En)5/2

)2 , (11)

where θ(x) is the Heaviside step function, and E is the polaron energy in Eq. (9) up to second order. This result illustrates the
typical shape of the impurity spectral function consisting of a quasiparticle peak and a many-body continuum. It furthermore
provides a simple physical interpretation of the continuum above the polaron energy for weak interactions: It consists of states
formed by a Bogoliubov mode and the impurity moving with opposite momenta. The energy threshold of this continuum is zero
within second order perturbation theory, because this is the minimum cost to create an impurity particle with momentum q and
energy q2/2m plus a Bogoliubov mode with momentum −q and energy Eq. However, on physical grounds, this continuum of
states necessarily starts instead at the polaron energy, since Bogoliubov modes can be excited with arbitrarily small energy and
momentum. For large energy ω � 4πaBn0/m, the Bogoliubov modes become ideal gas excitations with energy ∼ q2/2m, and
the weight of the continuum spectrum of A(ω) decreases as ω−3/2.

D. Comparison of spectral functions for the uniform system

In Fig. 8, we plot the spectral function, convoluted with a small Fourier width according to (6), in the weak coupling regime
1/kna = ±5. We have used three different calculations to obtain A(ω): perturbation theory given by (11), the truncated basis
method with only one Bogoliubov excitation included (TBM1), i.e., neglecting the third and fifth terms in Eq. (8), and the full
calculation including two Bogoliubov excitations (TBM2). First, we see that all three calculations agree very well concerning the
peak position, which corresponds to the energy of the polaron quasiparticle. This shows that the TBM recovers the perturbative
result in the weak-coupling limit, as desired.

For the attractive case, we also see that both the perturbative calculation and TBM1 predict essentially the same many-body
continuum, which starts at zero energy as discussed above. TBM2, on the other hand, correctly predicts the continuum to start
above the polaron peak (the transition from the polaron peak to the continuum is smoothened due to the small Fourier broaden-
ing). This is because the wavefunctions with an extra Bogoliubov mode can describe dressed impurities at finite momentum.

In Fig. 9, we plot the Fourier broadened spectral function for kna=−1 obtained again from the three different calculations. For
this fairly strong coupling, there is poor agreement between perturbation theory and the TBM, as expected. The three calculations
give different predictions for the polaron energy as well as for the many-body continuum. In this regime, perturbation theory
is not accurate and the TBM with two Bogoliubov modes is the most reliable, since it includes up to 3-body correlations non-
perturbatively.
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FIG. 8. Spectral function for the impurity in a uniform BEC with 1/kna = −5 (left) and 1/kna = 5 (right) including a small Gaussian
broadening σrf/En = 0.008. The dashed line is the result of perturbation theory, the dotted line the TBM including only one Bogoliubov
excitation, and the solid line the TBM including two Bogoliubov excitations. The inset shows the polaron peak for 1/kna =−5.
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FIG. 9. Calculated spectral function for the impurity in a uniform BEC with 1/kna = −1 and a small Gaussian broadening σrf/En = 0.020.
Lines and inset are as in Fig. 8.

III. TRAP AVERAGED SPECTRA

The preceding analysis was for an impurity in a BEC of uniform density n0. However, in the experiment, the atomic BEC is
confined in a harmonic trap, and instead has average density n0, with corresponding kn. On the scale of the trap, the RF probe is
essentially uniform, transferring atoms from the |1〉 state into the |2〉 state in all regions of the inhomogeneous BEC. This in turn
gives rise to a broadening of the observed spectral response of the impurity atom, since it is surrounded by a BEC of varying
density n(r). We take this into account using the local density approximation to average the response over the cloud:

I(ω) =
1
N

∫
d3r n(r)I0(ω,n(r)). (12)

Here I0(ω,n(r)) is the local Fourier broadened response obtained from (6) using an impurity spectral function A(ω) correspond-
ing to the density n(r) = m

4π h̄2abb
µ(r) with µ(r) = µ−Vtrap(r).

For weak interactions, the spectral function is dominated by the quasiparticle peak, such that Eq. (12) becomes

I(ω)' 1
N

∫
d3r n(rrr)

1√
2πσ2

rf

e
(ω−E(rrr))2

2σ2
rf . (13)

where E(r) is the local quasiparticle energy at position r in the trap. This is the expression used to calculate the perturbative
spectral width in Fig. 4 of the main manuscript. In the limit |kna|� 1, the width of the spectral signal is dominated by the Fourier
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FIG. 10. The experimental spectrum (a) and the trap-averaged spectral function calculated within TBM (b), both normalised so that the
frequency integrated weight is the same for each interaction strength. The experimental Fourier width is estimated to be σrf ' 0.08En.

width σrf of the RF probe, since the trap averaging only occurs over a small range of local interaction parameters. However,
for stronger coupling, the signal is averaged over an increasingly larger range of local interaction parameters and thus the trap
inhomogeneity can significantly broaden the quasiparticle peak. In this regime, the many-body continuum is also modified by
the trap.

The full trap-averaged spectral function obtained within TBM is shown in Fig. 10 together with the experimental result. The
exact same data is presented in Fig. 2 of the main text, but here we normalise so that the frequency integrated weight is the same
for each interaction strength. This illustrates more clearly how the spectral weight of the many-body continuum suppresses that
of the quasiparticle peak in the strongly interacting unitary region.
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