

Magiske tal – nu så magiske at de forsvinder

Karsten Riisager IFA, AU

Skaller:

- Ekstra stabilitet
- Grundsten for strukturforklaringer
- Oprindelse i "niveau-bundter"

Kernetilstande ifølge skalmodellen

mean-field

Ændrede magiske tal...

No shell closure for N=8 and 20 for drip-line nuclei; new shells at 14, 16, 32...

R. Casten

"Island of inversion"

P. Reiter

Changing Magic Numbers

Magic closed-shell numbers (N or Z = 2,8,20,28,50,82 and 126) are well established for nuclei near the region of β -stability. They are predicted by the spherical shell model that approximates the nuclear potential by a self-consistent mean field as derived microscopically from Hartree-Fock Bogoliubov theory (see left part of the figure below which is drawn for a harmonic oscillator potential). The ordering of proton (neutron) energies will strongly depend on the filling of neutron (proton) orbitals through the self-energy Hartree-Fock correction based on the monopole part of the interaction.

When approaching the neutron-drip line, a more gradual decrease of the neutron average potential towards large radial values might occur. This can have drastic effects on the nuclear shell structure, even changing magic numbers (see right part of the figure below).

The monopole part of the effective force induces drastic changes in the single-particle energies resulting in changes in the magic numbers far from the line of stability. By studying, e.g., shifts in single-particle energies in light nuclei, it was shown that the neutron magic numbers at N=8 and N=20 can change into N=6 and N=16 for neutron-rich nuclei. As protons are added, i.e. moving towards the valley of stability, the strong attractive proton-neutron interaction brings the standard magic numbers back. This particular mechanism hints to an overall modification of standard values of closed shells for exotic nuclei.

The figure compares the stable isotope ³⁰Si with the exotic nucleus ²⁴O. The former nucleus has 6 protons outside the closed Z=8 shell, while the latter has a closed proton-shell configuration. Due to the monopole part of the effective $\pi 1d_{5/2}$ - $v1d_{3/2}$ interaction, the well known N=20 gap is reduced and a new gap appears at N=16.

To måder at lave radioactive beams:

... to måder at post-accelerere

B. Jonson

CERN accelerator kompleks

Targets

Produced via

- spallation, fragmentation or fission
- in foils, powders, liquids

ISOLDE

Converter Target

Standard

E. Siesling

GPS Distance to Target: 20m Laser System Target Ion Source Unit 60 kV Proton beam Target Extraction Electrode <u>≺+</u> Laser + Ionizer cavity Target - some V +

40R FY	SIK OC 75TRO													ISC	DLDE analysing	target - ion source proton beam (1 GeV) magnet
Est	Non X				12	² ² ³ ⁴ ⁴ ⁴ ⁶ ²	M083	Mo84 0+	Mo85	Mo86 19.6 s 0+	Mo87 13.4 s (7/2+)	Mo88 8.0 m 0+	Mo89 2.04 m (9/2+)	Mo90 5.67 h 0+	Mo91 15.49 m 9/2+	Mo92 0+
	FO	170	0	2		95.94 8.3×10 ⁻⁹ %	NLO2	NILO2	NLOA	EC	ECp	EC	EC *	EC	EC *	14.84
	-DU (ana Z=2	8	$41^{\frac{18}{12}}$	ND 4744 +3+5 92.90638 2.28×10 ⁻⁹ %	• ND81	ND82	1ND83 4.1 s (5/2+) EC	ND84 12 s (3+) ECp	1ND85 20.9 s (9/2+) EC	IND80 88 s (5+) EC	EC	14.5 m (8+) EC	ND89 1.9 h (9/2+) * EC	14.60 h 8+ EC	1ND91 680 y 9/2+ *
				Zr ^{1855°} 4409° +4 91.224	Zr79	Zr80 0+	Zr81 15 s	Zr82 32 s 0+	Zr83 44 s (1/2-)	Zr84 25.9 m 0+	Zr85 7.86 m 7/2+	Zr86 16.5 h 0+	Zr87 1.68 h (9/2)+ *	Zr88 83.4 d 0+	Zr89 78.41 h 9/2+	Zr90 ⁰⁺ *
				3.72×10*%	¥78	Y79 14.8 s (5/2+)	ECp Y80 35 s (3,4,5)	EC Y81 70.4 s (5/2+)	ECp Y82 9.5 s 1+	EC Y83 7.08 m (9/2+)	EC Y84 4.6 s 1+	EC Y85 2.68 h (1/2)-	EC Y86 14.74 h 4-	EC Y87 79.8 h 1/2-	EC Y88 106.65 d 4-	51.45 Y89
				Sr76	Sr77	ECp	EC Sr79	EC Sr80	EC Sr81	EC TEC	EC T	EC Sr84	EC T	EC Sr86	EC Sr87	100 Sr88
			Sr	8.9 s 0+	9.0 s (5/2+,7/2+)	2.5 m 0+	2.25 m 3/2(-)	106.3 m 0+	22.3 m 1/2-	25.55 d 0+	32.41 h 7/2+	0+	64.84 d 9/2+	0+	9/2+	0+
				EC Rb75	ECp Rb76	EC Rb77	EC Rb78	EC Rb79	EC Rb80	EC Rb81	EC Rb82	0.56 Rb83	EC Rb84	9.86 Rb85	7.00 Rb86	82.58 Rb87
				19.0 s (3/2-,5/2-)	36.5 s 1(-)	3.75 m 3/2-	17.66 m 0(+) *	22.9 m 5/2+	34 s 1+	4.576 h 3/2- *	1.273 m 1+ *	86.2 d 5/2-	32.77 d 2- *	5/2-	18.631 d 2-	4.75E10 y 3/2- β ⁻
	50	50		EC Kr74	EC Kr75	EC Kr76	EC Kr77	EC Kr78	EC Kr79	EC Kr80	EC Kr81	EC Kr82	EC,β- Kr83	72.165 Kr84	EC,β Kr85	27.835 Kr86
	50	50	Kr	0+	4.3 m (5/2)+	0+	5/2+	0+	35.04 n 1/2- *	0+	2.29E+5 y 7/2+ *	0+	9/2+ *	0+	9/2+	0+
$1a_{0/2}$				Br73	Br74	Br75	Br76	0.35 Br77	Br78	2.25 Br79	Br80	11.6 Br81	Br82	57.0 Br83	Br84	Br85
-39/2		10		1/2-	(0-) *	3/2-	1- *	3/2- *	1+	3/2- *	1+ *	3/2-	5- *	3/2-	2-	3/2-
	40	40	6	Se72 8.40 d	Se73	Se74	Se75	Se76	Se77	Se78	Se79 1.13E6 y	49.31 Se80	Se81 18.45 m	Se82 1.08E+20 v	Se83 22.3 m	Se84
$2p_{1/2}$			Se	0+ FC	9/2+ *	0+ 0.80	5/2+	0+ 0.36	1/2- *	0+	7/2+ *	0+ 40.61	1/2- *	0+ β-β-	9/2+	0+ ß-
11/2				As71 65.28 h	As72 26.0 h	As73 80.30 d	As74	As75	As76	As77 38.83 h	As78 90.7 m	As79 9.01 m	As80 15.2 s	As81 33.3 s	As82	As83 13.4 s
11 _{5/2}				5/2- EC	2- EC	3/2- EC	2- ЕС.8-	3/2- *	2- 6-	3/2- B-	2- B-	3/2- B-	1+ 6-	3/2- ß-	(1+) ß	(5/2-,3/2-) B
$2p_{3/2}$			•	Ge70	Ge71 11.43 d	Ge72	Ge73	Ge74	Ge75 82.78 m	Ge76	Ge77 11.30 h	Ge78 88.0 m	Ge79 18.98 s	Ge80 29.5 s	Ge81 7.6 s	Ge82 4.60 s
	28	28	Ge	0+ 21.23	1/2- * EC	0+ 27.66	9/2+ *	0+ 35.94	1/2- * β-	0+ 7.44	7/2+ * β-	0+ β-	(1/2)- * β-	0+ β-	(9/2+) , β-	0+ β-
4.5				Ga69	Ga70 21.14 m	Ga71	Ga72 14.10 h	Ga73 4.86 h	Ga74 8.12 m	Ga75 126 s	Ga76 32.6 s	Ga77 13.2 s	Ga78 5.09 s	Ca79 2.847 s	Ga80 1.697 s	Ga81 1.217 s
1† _{7/2}				3/2- 60.108	1+ ΕC,β [.]	3/2- 39.892	3- β-	3/2- β-	(3-) β-	3/2- β-	(2+,3+) β-	(3/2-) β-	(3+) β-	(3/2-) β ⁻ n	(3) β-n	(5/2-) β⁻n
	sd-shel	sd-shell	7 n	Zn68	Zn69 56.4 m	Zn70 5E+14 y	Zn71 2.45 m	Zn72 46.5 h	Zn73 23.5 s	Zn74 95.6 s	Zn75 10.2 s	Zn76 5.7 s	Zn77 2.08 s	Zn78 1.47 s	Zn79 995 ms	Zn80 0.545 s
				0+ 18.8	1/2- * β-	0+ 0.6	1/2- * β-	0+ β-	(1/2)- * β-	0+ β-	(7/2+)	0+ β-	(7/2+) [*] β ⁻	0+ β-	(9/2+) β-n	0+ β-n
	π	\mathbf{v}		Cu67 61.83 h 3/2-	Cu68 31.1 s 1+	Cu69 2.85 m 3/2-	Cu70 4.5 s (1+)	Cu71 19.5 s (3/2-)	Cu72 6.6 s (1+)	Cu73 3.9 s	Cu74 1.594 s (1+3+)	Cu75 1.224 s	Cu76 0.641 s	Cu77 469 ms	Cu78 342 ms	Cu79 188 ms
				β-	β-	β-	β- (1+) *	β-	β-	β-	β-	β- n	* β-n	β- n	β-	β-n
			N Ii	Ni66 54.6 h 0+	Ni67 21 s (1/2-)	Ni68 19 s 0+	Ni69 11.4 s	Ni70 0+	Ni71 1.86 s	Ni72 2.1 s 0+	Ni73 0.90 s	Ni74 1.1 s 0+	Ni75	Ni76 0+	Ni77	Ni78 0+
			INI	β-	β-	β-	β-		β-	β-	β-	β-				

"Safe" Coulomb Excitation experiments > particle (CD) - γ correlations

-2 major shell closures-Neutron Rich Nuclei-Even-Even Isotopes

J. Van De Walle

Nuclear halo states

B. Jonson

 $^{9}Li+^{2}H\rightarrow t+^{8}Li^{*}$

Proton knock-out, ¹²Be

FIG. 1. Measured gamma-ray spectrum in the projectile rest frame in coincidence with ¹¹Be residues. The full-drawn line is the result of a fit using a simulated line shape of the 320 keV gamma ray and an exponential background, both shown as dashed lines.

NSCL/MSU (in-flight beam):

Fjerner proton pludseligt fra ¹²Be

Befolker både s- og p-tilstande i ¹¹Be

Cirka lige meget s og p i ¹²Be g.s.

²⁴O dobbelt magisk !

NSCL/MSU (in-flight beam):

Fragmentation af ²⁶F beam

Ser på neutron-²³O koincidenser (ingen bundne tilstande i ²⁴O)

Den "klassiske" dobbelt magiske kerne ²⁸O er ubundet

Fig. 4. The experimental 2_1^+ energies for the even-even isotopes of oxygen (Z = 8), including the present result at N = 16, are shown by the black squares with their errors. Also shown are the experimental 2_1^+ energies for carbon (Z = 6) (upside-down triangle, blue), neon (Z = 10) (diamond, red) and magnesium (Z = 12) (circle, green) [21,22]. Clearly noticed is the increase in the 2_1^+ energy for 24 O relative to the nearby even-even nuclei indicating the large N = 16 shell gap for Z = 8. (For

C.R. Hoffman et al, Phys.Lett. B672 (2009) 17

AU / ISOLDE gruppen:

- Karsten Riisager
- Hans Fynbo
- Solveig Hyldegaard, PhD studerende
- Oliver Kirsebom, PhD studerende
- Jacob Johansen, PhD studerende
- + grupper i Madrid, Göteborg, CERN, ...