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Abstract

This thesis covers experimental work conducted within two distinct fields of

cold-atom physics. The first part describes an experiment capable of spatially-

selective dispersivemeasurements of a cold-atomic system inpart or inwhole, by

virtue of a digital micromirror device (DMD). Atom clouds are trapped in opti-

cal tweezers made and controlled by an acousto-optical deflector. Two types of

high-precisionmagnetometers are realised. One is vectorial and reaches a single-

shot precision of δB = (100, 200)µG for the field components parallel and

transversal to the probe light, exceeding a previous realisation by two orders of

magnitude. The other is a scalar magnetometer based on Larmor precession

and reaches δB = 30µG, putting it on equal footing with other state-of-the-art

cold-atommagnetometers.

The second part is devoted to the characterisation and the first results of a

newquantumgasmicroscope experiment. It features a 0.69NAmicroscope ob-

jective for high-resolution fluorescence imaging of individual atoms trapped in

deep optical lattices. The imaging system is shown to perform near the diffrac-

tion limit. By means of DMD-generated off-resonant tight optical tweezers,

projected through the high-resolution optics, we can load only a few planes of

a co-propagating 1D lattice. In a single realisation of the experiment we acquire

multiple fluorescence images, where the objective is translated between images,

bringing different planes of the optical lattices in focus. In this way we can to-

mographically reconstruct the atom distribution in 3D.

iii



Resumé

Denne afhandling omhandler eksperimentelt arbejde lavet i to forskellige felter

inden for fysik med kolde atomer. Den første del beskriver et eksperiment der

kan lave en rumligselektive dispersiv måling af dele eller hele systemer af kolde

atomer ved brug af en digital lysprojektor (DMD). Atomskyer er fanget i op-

tiske pincetter, som er kontrolleret af en akustisk-optisk deflektor (AOD). To

typer af højpræcisions magnetometre er realiseret. Den ene er vektorbaseret og

opnår en præcision på δB = (100, 200)µG af feltets henholdsvis parallelle og

transversale komponenter i forhold til sonde lyset udbredelsesretning. Dette

er to størrelsesordner bedre end tidligere realiseringer. Det andet er et skalar-

magnetometer baseret på Larmor-præcession og opnår δB = 30µG, hvilket er

tilsvarende med andre avancerede magnetometre der bruger kolde atomer.

Anden del er dedikeret til karakteriseringen og de første resultater af et nyt

kvantegasmikroskop eksperiment. Dette har etmikroskop objektivmed enNA

på 0,69 til at tage fluorescens billeder med højopløsning af individuelle atomer

fanget i optiske gitre. Det bliver vist at afbildningssystemet præstere målinger

tæt på diffraktionsgrænsen. Ved brug afDMDgenererede små optiske pincetter

lavet af laserlyser med en frekvens væk fra atomets resonans der er projekteret

igennem højpræcisionsoptik, kan vi fylde få plan af et 1D gitter der propagerer

parallelt med de optiske pincetter. I en enkelt realisering af eksperimentet tager

vi adskillige billeder, hvor objektivitet er flyttet i mellem billederne, således at

forskellige plan af det optiske gitter er i fokus. På den måde kan vi tomografisk

rekonstruere atomfordelingen i 3D.
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Samantekt

Þessi ritgerð gerir grein fyrir tilraunum innan tveggja sviða eðlisfræði kaldra atóm-

skýja. Fyrri hlutinn lýsir tilraunum sem gera kleifar mælingar á köldum atóm-

skýjum að hluta eða í heild. Til þessa er beitt tvísturhluta víxlverkunar atóms og

ljóss, og ermæliljósiðmótaðmeð stafrænum ljósvarpa (e. digital micromirror de-
vice). Atómskýin fanga smáar ljóstangir sem stýrt er með mótara hljóð-ljóshrifa

(e. acousto-optical deflector). Í þessu kerfi voru útbúnar tvær gerðir návæmra

segulsviðsmæla. Annarmælir vigursvið og nær nákvæmni δB = (100, 200)µG í

einnimælilotu, á þáttum segulsviðsins samsíða oghornrétt á stefnumæliljóssins.

Þar með bætir mælirinn nákvæmni þessarar tækni um tvö stærðarþrep. Hinn

mælirinn byggir á Larmor pólveltu og mælir því aðeins stig sviðsins, en hann er

í eðli sínu hittinn. Sá nær δB = 30µG nákvæmni, til jafns við það sem náðst

hefur með öðrum segulmælum í köldum atómskýjum.

Seinni hluti ritgerðarinnar fjallar umuppbyggingu og fyrstu niðurstöður úr

nýrri smásjártilraun fyrir skammtagös. Í smásjánni er hlutgler með ljósopstölu

0,69, nýtt til myndunar í hárri upplausn á flúrljósi frá einstökum atómum, sem

fönguð eru í djúpu mætti þrívíðra ljósgrinda. Gæði flúrmyndanna eru því sem

næst eingöngu takmörkuð af öldubeygju ljóssins. Örsmáum ljóstöngum með

ljóstíðni fjarri hermu atómsins, er varpað gegnum hlutglerið með hjálp stafræns

ljósvarpa. Í þeim sitja lítil atómský sem færa má yfir örfáar sléttur einvíðrar ljós-

grindar. Í einni mælilotu eru teknar nokkrar flúrmyndir þar sem hlutglerið er

flutt milli mynda, sem færir mismunandi sléttur ljósgrindarinnar í brennipunkt

myndkerfisins. Þannig má endurskapa rúmlæga dreifingu atómanna í þrívídd.
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Preface

This thesis accounts for some of the work that has been carried out during the

past five years in the high-resolution laboratory (Hires lab), buried deep under-

neath the parking lot of the Institute for Physics and Astronomy at Århus Uni-

versity. The Hires lab has undergone many changes since I first got acquainted

with the group around the summer of 2014. At the time, there was no science

chamber present and the first Bose-Einstein condensate (BEC) had just been

created in the cube chamber earlier that year. The group was working on two

fronts: building up and planning for the first experiments of using the Faraday

interaction for probing the BEC phase transition, and for the eventual high-

resolution experiment. The main results of these first experiments were that

Faraday measurements could be used to reduce experimental fluctuations, and

narrow down the transition point from a thermal cloud to a BEC. For details

on this work I refer to ch. 5 and 6 of ref. [131] and the journal article [24].

The science chamber was added to the experiment early in the year of 2015.

Experimentally, the focus was still on Faraday imaging and trapping of atoms

in microscopic potentials, now in a dual microscope configuration in the new

chamber that allowed for simultaneous trapping and probing of small atom

clouds. That work culminated with the realisation of two kinds ofmagnetome-

ters, one vectorial and the other based on Larmor precession. The bulk of that

data were acquired during the summer of 2016, and later that made it to a pub-

lished article [84]. The first part of this thesis describes this setup and the exper-

iments in detail.
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viii

Alongside those measurements we kept on using the cube chamber for dif-

ferent experiments. Inspired bymore general work on optimisation of complex

problems ongoing in the theoretical part of the group, we dove into the control

landscape of BEC creation. There are standardways ofmaking a BEC, but there

are many knobs available in the experiment that can be turned to affect its size.

Wewanted to find out if therewere any non-trivial settings of the apparatus that

could provide us with larger BECs. To start with we inspected that landscape by

a multitude of 1D, 2D and 3D scans, as enabled by our new (home-grown) ex-

perimental control system. During this time we collaborated with theoretical

physicists from the University of Ulm in Germany, that applied state-of-the-art

algorithms to the challenge of optimising the size of the BEC. They were al-

lowed to control the intensity of two laser beams of a crossed dipole trap, and

the current in a magnetic quadrupole trap during the last cooling stage at the

end of the experimental sequence. The cherry on the top (d. rosinen i pølseen-
den) was the gamification of the challenge of making the biggest BEC: the Alice
Challenge. For a couple of weeks time in the fall of 2016, about 600 participants
from all over theworldwere allowed to take control of the experiment remotely.

This was achieved with an openly available game interface, constructed by the

developer team of ScienceAtHome. The participants could shape the intensity

of two crossed laser beams and the strength of a magnetic trap during the last

cooling stage, by dragging around curves on the screen. Afterwards they would

submit their solution, which was run immediately (depending on the queue)

in the experiment and the score (the BEC atom number) would be sent back to

the player. About 7500 such solutions were realised in the lab during this time.

The biggest BEC we ever saw in the experiment was created during these days

by someone from the general public. This studywas covered in ch. 4 of ref. [131]

and has also been presented in a scientific publication [132].

InOctober 2016we disassembled all the existing experimentalmachinery, as

the high-resolution viewport (thewindow throughwhichwe look at the atoms)

had to be replaced before any experiments with the high-resolutionmicroscope

could take place. This required another bakeout of the system. In the seasons

to come we would build up the experiment again, learn how to use the flexible
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trapping potentials projected through the objective, construct optical lattices

and use the high-resolution imaging system. We got first light through the mi-

croscope inMay 2017 but it was a full year later, during the last days ofMay 2018

when we unambiguously succeeded to collect clear fluorescent signals from in-

dividual atoms trapped in deep optical lattice potentials, and thereby realising

the 11th quantum gas microscope experiment in the world.

During the timewhen themicroscopewas finally operational our atomclouds

were plagued by heating from one of the lattice axes and after about ten weeks

of run-time a broken optical fibre halted the operation of the experiment for

a while. Soon after we were running again our main lattice laser broke down,

leaving us with almost four months of down-time. The microscope had only

been working properly for a weeks time when an interlock for the high-current

coils on the cube chamber failed with catastrophic consequences.

One Monday in early February 2019, I arrived in the morning to warm up

the BEC machine. And boy did I warm it up. I failed to turn on the cooling

water, whichwouldusually not have caused anyharmbut this time the interlock

systemdidnotwork as intended (as is accounted for in the outlookof the thesis).

Theheat stress and the fire thatmust havebeenpresent, broke the vacuumof the

chambers and they were filled with soot and dirt. Within the months to come

the experimentwould rise from the ashes like the Phoenix. To our surprisemost

elements could be cleaned and re-used, and luckily none of the critical high-

resolution components were damaged. Late summerwe got theMOTproperly

working again and in the fall all chambers were in place and under vacuum. At

the time of writing the experiment is still recovering from that incident, with a

few months of work still ahead to reach where we were before the fire.

* * *

There is more to the research group than just the experiment. It is a part of

bigger ecosystem, the ScienceAtHome team, which is an international group of
people with backgrounds in physics, social science, psychology, game develop-

ment, graphical design andmore. The aim is to create video games and interfaces

https://www.scienceathome.org/
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to involve the general public in scientific research and to develop new ways of

teaching science through such media.

The project came alive with the gameQuantum Moves, where players solve
the quantum optimal control problem of picking up an atom with an optical

tweezer and moving it to a designated target area. The game was a success both

scientifically [258] and publicly [262]. The players sought out different parts of

the solution landscape than the algorithms that had been previously put to the

task of numerically optimising the transport. In this way the players inspired

new ways of searching. This journey opened the eyes of the team to how com-

puter games can be used to study how humans solve complex problems. High-

lights since Quantum Moves are the Alice Challenge mentioned above, Skill
Lab which is a suite of mini games that explores the cognitive abilities of its

players, andQuantumMoves 2where the players are given access to an optimiser
during the gameplay. The new version also includes optimal control problems

of BECs, that obey a non-linear Schrödinger equation.

All these games engage players in citizen science and in some ways strive to

understand how people play and solve the challenges they offer. In the Alice

Challenge the behaviour of people at the top of the leader board (those that had

created the largest BECs) was notably different from that of those with lower

scores. They focussed rather on exploiting the qualities of their obtained solu-
tions by making small amendments to it, whereas those that had not reached

high score were unafraid to explore and take larger jumps. The players’ task of
creating a BEC, is by no means something we encounter in the everyday. The

method of creating an intuitive/gamified user interface and its success, empha-

sises the importance of how problems are represented [7]. As of June 2019 the

games developedby ScienceAtHomehadbeenplayedmore than8million times

by 300.000 players from all over the world. This concept will undoubtedly be a

part of the experiment and shape its future.

Apart frommyparticipation in theAlice Challengemy rolewithin the team

has beenmore related to didactic and outreach activities. Quantum Composer is
another fruit of the ScienceAtHome tree. Its a flow based computational envi-

ronment for quantum mechanics and is an ideal supplement to quantum me-

https://www.quatomic.com/
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chanics teaching at the University level. I have taken part in creating exercises

and other teaching material using Quantum Composer and carried out those

exercises with students on a graduate level at AU. Another project focuses on

building a frame around groups of high-school students from local schools that

come occasionally to visit AU and our team to learn of our hopes and dreams.

This is donewith the aim of igniting the flame of curiosity in their hearts. In ad-

dition tomy standard teaching duties which are amandatory part ofmy studies,

I have instructed many Bachelor andMasters students to a varying degree, who

have chosen to make projects in our lab.
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INTRODUCTION

Optical magnetometry

and physics with cold single atoms

The title of the thesis suggests that it deals with two topics: cold-atom magne-

tometry and the microscopy of cold atoms. Both of those topics fall under the

broader discipline of cold-atom physics, a field that has flourished since the mid

1980’s when researchers understood how to cool atoms with laser light.

In the context of this thesis atoms are either used as sensors for magnetic

fields, or they are intended for the realisation of quantum physics, that comes

within reach in atomic systems of low entropy. What follows below is an ac-

count of the origins of cold-atom physics, succeeded by the history and current

status of the field of cold-atom magnetometry. Special emphasis is placed on

technical applications that line well with our work.

Another importantpiece of technology is theoptical tweezer. Flexiblemeans

of generating them offer routes to a single-atom based architecture for quan-

tum simulation in arrays of optical tweezers. The topic of quantum simulation

is also profoundly connected to ultracold quantum gases in optical lattices. In

the past decade, new methods in microscopy of single atoms in such structures

have truly enriched the field of quantum simulation. This recent progress is the

1
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context from which the new quantum gas microscope experiment, detailed in

this thesis, arises.

I.1 Atoms brought to a halt

In 1975 two articles were independently published proposing how to cool neu-

tral atoms [141] and ions [287]with laser light. Both described schemes to utilise

the fact that the amount of near-resonant monochromatic light an atom scat-

ters depends on its velocity, due to the Doppler effect. Only three years later

the group of D. Wineland (who also authored the second paper) had observed

cooling by this method of electrostatically trapped ions [288].

The first reports on successfulDoppler cooling of neutral atoms came seven

years later. In experiments by S. Chu and co-workers the first 3D optical mo-

lasses were realised in 1985 [57], neutral atom trapping in optical tweezers was

achieved (along with A. Ashkin) in 1986 [58], and the first magneto-optical trap

was constructed in 1987 [228]. Simultaneously the group of W. D. Phillips ap-

plied a Zeeman slower to cool atoms and trap them magnetically in 1985 [226].

In 1988 they reported on unexpectedly low temperatures in optical molasses

[181], later explainedby J.Dalibard andC.Cohen-Tannoudji to be caused bypo-

larisation gradients present in the cooling light [63]. Chu, Phillips and Cohen-

Tannoudji received the Nobel Prize in 1997 for their efforts to stop atoms from

moving.

The boldest idea of early stage cold-atom physics was to cool bosonic atoms

all theway to quantumdegeneracy. The prediction of an exotic phase ofmatter,

where all the atoms in a gaseous ensemble would collapse to the same quantum

statewas presented byA. Einstein in a couple of articles in 1924 and 1925 [80, 81].

He had been inspired by S. N. Bose’s work on the statistics of photons [35],

which gave the phenomenon its name: the Bose-Einstein condensate (BEC). It

was however only in 1995 when the first BECs were created in laboratories. The

first one at JILA in the group of C. E. Wieman and E. Cornell was a conden-

sate of
87
Rb atoms [9], the second one at Rice University in the group of R.
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Hulet in
7
Li [37], and the third one at MIT in the group of W. Ketterle made

of
23
Na [66]. The lead researchers at JILA and MIT were awarded the Nobel

Prize in 2001 for the realisation and subsequent successful investigations of the

properties of this new state of matter.

The BEC brought new life to cold-atom physics and has spawned a multi-

tude of subfields that rely on its unique properties. Cold atoms and BECs are

in general ideal sensors for a range of physical phenomena, like magnetic fields,

acceleration and time [70]. The field of quantum sensing has developed rapidly
within the past decades, and out of the “quantum” fields it is probably the one

most likely to yield commercial applications in the near future.

The physics of quantum degenerate fermions has also been given more at-

tention and today experiments with fermionic cold atoms are central to the de-

velopment of our understanding of intriguing phenomena like superconduc-

tivity at high temperatures [55, 165]. Those studies also fall under a broader cat-

egory referred to as quantum simulation, that apart from cold atoms includes

studies in other platforms, such as with trapped ions, superconducting circuits,

quantum dots or photons [111]. In a quantum simulation, as originally sug-

gested by R. P. Feynman [94], one quantum system is used to simulate the

physics of another quantum system. This is advantageous because the size of

a quantum system grows exponentially with the number of entities that make

it up. This renders a calculation of the quantum properties of large systems in-

tractable on classical computers. However, all this information can be encoded

in a quantum system of the same size.
†

†
It cannot be passed over in silence, that at the time of writing there has been great fuzz

about the latest claims from Google, that their 54 qubit superconducting quantum processor

Sycamore is the first device to demonstrate quantum supremacy [16]. Theirmachine completed

an operation in 200 s, that the strongest classical supercomputer could supposedly only com-

plete in 10.000 years. Two days before the official publication IBMdeflected those claims [218],

and insisted that they could in fact be performed on their supercomputer in a matter of days.



4 INTRODUCTION: OPTICAL MAGNETOMETRY AND PHYSICS WITH COLD SINGLE ATOMS

I.2 Optical magnetometry with cold atoms

High-precision (quantum) sensing andmetrology is a topic of intense research,

of which magnetometry is an essential part [70]. The roots of cold-atom mag-

netometry lie back to a time when atoms were not cold at all. The magne-

tometers described in the thesis fall under the category of optical magnetome-

ters,
‡
of which the cold-atom kind only form a small subset. First evidence

of magneto-optical effects (the interplay of light and magnetism) date back to

the early days of electromagnetism. In 1845 Michael Faraday observed the rota-

tion of the polarisation of a linearly polarised light propagating through lead-

contaminated glass in the presence of an external magnetic field.
§
. More than a

century later, around the 1960s, new developments in the understanding of op-

tical pumping of atoms, sparked the field of optical magnetometry [47]. This

was particularly due to the work of A. Kastler, H. Dehmelt, W. E. Bell and A.

L. Bloom [27, 28, 71].

An optical magnetometer is based on the principle that the interaction of

light near-resonant to an atomic transition polarises the population in the hy-

perfine sublevels. In the presence of an external magnetic field, the spin po-

larised atomic ensemble is subject to Larmor precession around the field axis,

while the rate of the precession is proportional to the magnitude of the field.

One of the first precision magnetometers was built by J. Dupont-Roc and S.

Haroche under the supervision of C. Cohen-Tannoudji [75, 154]. It utilises the

Hanle effect where circularly polarised resonant light emitted from a vapour

lamp (not a laser) is shone through a vapour cell of
87
Rb and measured. In

the presence of a magnetic field transverse to the propagation of the light, the

‡
For a good review by D. Budker and M. V. Romalis see [47], which has by now (12 years

later) become slightly outdated. For a comprehensive treatment of the standard tricks and traits

of the field of optical magnetometry, the book by D. Budker and D. F. J. Kimball [46] is an

excellent reference.

§
Faraday accounted for the observations in his dairy that has been published [89]. For his

first observation of the Faraday effect, see diary entries 7504–7510 from the 13th of September

1845.
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vapour gains a magnetic moment, i.e. becomes spin polarised. As the strength

of the magnetisation increases the vapour becomes increasingly transparent to

the incident light. If the transverse field is swept from positive to negative a res-

onance feature is observed in the transmitted light. By exactly compensating

background fields the amplitude of a small modulated field could be precisely

measured with lock-in detection down to 300 pG!

Today’s most sensitive magnetic sensors are superconducting quantum in-

terference devices (SQUIDs) and optical magnetometers realised in alkali based

vapour-cells [70]. They are typically operated at room temperature (or even

higher for the most sensitive applications), reaching magnetic field sensitivities

< 1 fTHz
− 1
2
[64, 166].

¶
A pump laser drives a coherent precession of the spin

ensemble that is measured by another laser, typically via the Faraday effect [47].

The simplicity of optical magnetometers and their success in exploiting quan-

tum effects, like utilising entanglement in order to enhancemeasurement preci-

sion and sensitivity [93, 278], have put them in the front line of quantum sen-

sors.

Due to thediffusivemotionof atoms, hot vapourmagnetometers donot au-

tomatically offer good spatial resolution, although considerable work has been

put into the miniaturisation of vapour-cells [163]. This is where cold atoms be-

come useful to the field of optical magnetometry, simply because cold atoms

move less than hot atoms. The first implementation of a cold-atom based mag-

netometer I am aware of, dates back 20 years [145]. Here, an atom cloud is

cooled to about 10µK by polarisation gradient cooling. Subsequently the spin

state is put into Larmor precession and the Faraday signal recoded on a pho-

todiode. The single-shot precision of the determination of the magnetic field

is not reported, but judging from the width of a Fourier transformation of a

measurement trace reported in the paper, it is close to δB = 50µG. Later

¶
Roughly speaking the sensitivity is the precision normalised to the measurement band-

width. Here, we distinguish between the sensitivity calculated at the full experimental cycle,

and the single-shot sensitivity that is normalised to the measurement time. We mostly rely on

the lattermeasure as that ismore suitable for cold-atommagnetometers, see sec. 5.1 of this thesis.
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cold atom implementations measured precession of thermal atoms in optical

lattices [249], of BECs [134] (δB = 20µG), of thermal atoms in blue detuned

optical traps [90] (δB = 100µG), and of elongated clouds in an optical dipole

trap [169] (δB = 200µG). A very recent experiment reached single-shot pre-

cision of 7µG [59]. The authors claim to hold the record in terms of (single-

shot) sensitivity for non-squeezed non-degenerate cold atom magnetometers

with 330 pTHz
− 1
2
.

The recordprecision for a cold-atombasedmagnetometerwas achievedwith

an elongated spinor BEC, by imaging the phase acquired during its precession

in the magnetic field [274]. Fictitious magnetic fields (generated with a circu-

larly polarised laser light) could be measured to δB = 9 nG precision, reach-

ing a single-shot sensitivity of 0.5 pTHz
− 1
2
. By spin squeezing a BEC, two ex-

periments have achieved a measurement enhancement compared to the atomic

shot-noise limit with single-shot precision of δB = 230 nG [205] and δB =

3.1 µG [196]. The latter magnetometer was also used to measure gradients to a

precision of 200 nG/µm.

The concept of spatially-resolved detection is of importance for the magne-

tometer schemes presented in this thesis. This is closely related to the topic of

gradiometry (and measurements of higher order moments). One implementa-

tion measured the curvature of a quadrupole magnetic field that was mapped

out in multiple experimental realisations to a gradient precision of 400 nG/µm

[90]. A different approach offered 50µm resolution of thermal atoms precess-

ing in a very elongated optical trap, reaching a gradient precision of 200 nG/µm

[169]. Both of these experiments offer a 1D map of the field over a consider-

able range. Two points are however sufficient to determine gradients and better

results have been obtained with two BECs in a matter-wave Ramsey interfer-

ometry reaching 3 nG/µm [289]. Direct magnetic field imaging has also been

achieved with BECs. In a pioneering work, a BEC was used to image the com-

plex magnetic field environment on top of an atom chip [286]. The density of

the trapped cloud is very sensitive to variations in the potential induced by the

currents in the atom-chip, resulting in a gradient precision of 3µG/µm. A re-
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cent experiment employed a BEC as a sensor in a scanning microscope, where

the sample could be moved to map its entire surface [292]. The achieved mag-

netic field resolution was similar to the former implementation, 7µG/µm.

Cold-atom magnetometers have also been applied to measure more than

just one field component, within an experimental sequence. One implementa-

tion relied on sequential initiation of Larmor precession around different axes

followed by Faraday probing [25]. That enabled real-time tracking of straymag-

netic fields down to δB = 100µG. Another recent realisation reached δB =

50µG on all axes [266]. That scheme was based around the microwave tran-

sition between the hyperfine states in
87
Rb, and the only medium were single

atoms held in tight optical tweezers. Active stabilisation of stray fields has been

demonstrated in conjunction with a three-axis vectorial magnetometer [248].

A spin-echo technique was applied to measure magnetic fields to the level of

50µG in a single shot. Using these measurements feedback was applied to can-

cel those fields in the same sequence. Instead of doing active stabilisation, in-

sequence benchmarking can also be applied [172]. An in-sequence cold-atom

magnetometer was designed and applied along with the measurement of an-

other quantity that depended crucially on the field value. In post-processing

the knowledge of the magnetic field (attained to the level of δB = 50µG) was

used to improve that measurement. The method of in-situ benchmarking, was

also presented in the context of the BEC phase transition in an early-stage of

our experiment [24]. There a single dispersive Faraday measurement was used

tomeasure the in-situ density profile of the trapped cloud early in the sequence,

which was again used in post-processing to reduce experimental shot-to-shot

fluctuations in the determination of the transition point from a thermal cloud

to a BEC. The application of this method to magnetic fields offers new ways to

enhance the measurement precision of magnetic-field dependent processes in

cold atom physics.

As the discussion shows the field of cold-atommagnetometry is active. This

is especially true for direct applications to metrology, the use of non-classical

states to improve measurements [220], and for work on the fundamental limits

of magnetic field sensing [194].
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I.3 Optical tweezers for single atoms

Optical tweezers are tightly focussed optical fields, that can by virtue of the

dipole force create a three-dimensional trapping potential for particles with di-

electric properties, such as alkali atoms. Since A. Ashkin invented the optical

tweezer 50 years ago [18], for which he shared the Nobel Prize in physics 2018,

there has been a long standing tradition for their usage in biology, chemistry

and physics [19]. To make an optical tweezer, a laser beam is focussed by a

lens. To gain spatial control over the optical tweezer, the laser can either be

passed through an acousto-optical deflector (AOD) or reflected off a spatial light-
modulator (SLM). An AOD deflects the beam according to the tone of an ap-

plied radio-frequency wave, and an SLM can either be used to spatially shape

the amplitude of the laser, or its hologram. Both techniques have been used to

realise bulk atomic physics [36, 133].

The first experimentwhere single atomswere loaded into an optical tweezer

was realised in the year 2000 [97]. The way to achieve that, was simply to make

the tweezer tight enough. In the following year sub-Poissonian loading statis-

tics were observed in a similar system, where the tweezer waist was below 1µm

such that light-assisted collisions either lead to an empty trap or a single atom

with 50% probability [238]. This collisional blockade can be circumvented by

exposing the atoms to light which is blue of an atomic transition (exciting one

of the atoms to a repulsive molecular potential). In this way, single atoms can

be prepared with a fidelity up to 90% [48, 123, 180].

Recent realisations of highly flexible potentials for single atoms used SLMs

[160, 203] to generate patterns of tweezers, and typically reach potential depths

of around 1mK. To realise physics in these systems based on nearest-neighbour

interactions, the filling of an array of tweezers must be close to unity. This is

however, naturally hindered by light-assisted collisions. To achieve defect free

tweezer arrays, current implementations image the atom distribution and sub-

sequently use an AOD controlled laser beam to rearrange the atoms in the un-

derlying potentialwhich is generated separately [22, 87]. In thisway a defect free

configuration ofmore than 100 atomswas recently realisedwhile amicrolens ar-
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ray provided a static tweezer array potential [206]. Holographic beam shaping

can also be used to generate arbitrary 3D trapping potentials [23]. The genera-

tion of defect free 3D tweezer patterns is achieved by extending the AOD atom-

bus to the 3rd dimension by a tunable lens. That allows for a shift of the focus

of the AOD controlled laser beam. The same is true for the imaging procedure,

where such a scannable lens enables the readout of one layer in the array at a

time, allowing for a reconstruction of the atom distribution tomographically in

3D. The atoms in these experiments are loaded directly from amagneto-optical

trap into the tweezers leading to temperatures in the 10’s ofµK regime, far from

themotional ground state of the tweezer. The key to realise many-body physics

in such a system is through long rangeRydberg interactions [31, 161, 176]. Those

systems can for example be mapped to an Ising spin model.

Analternative route is to cool tweezer-trapped atoms to themotional ground

state with Raman sideband cooling [155, 250]. In such a system, two indis-

tinguishable bosonic atoms in a tunnel-coupled pair of optical tweezers were

shown to exhibit two-particle quantum interference, the atomic equivalent of

the photonicHong-Ou-Mandel effect [156]. In an extension of thatwork atoms

of opposite spin states were initialised in separate tweezers, and afterwards en-

tangled with each other through a spin-exchange interaction by bringing the

tweezers together [157]. This is a promising approach for scalable quantum sim-

ulationwith ground-state cooled atoms in tweezer arrays, that havebeen realised

very recently [62, 204].

I.4 Optical lattices and ultracold atoms

Another prominent platform for quantum simulation uses ultracold neutral

atoms trapped in optical lattices. Optically trapped atomic quantum states are

typically long-lived and offer long coherence times, that render manipulations

of the quantum state within experimental reach [282]. Neutral atoms in opti-

cal lattices are in particular ideal for studying quantum behaviour in periodic

potentials, which are ubiquitous in nature. The physical model that describes
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fermions in optical lattices is the Hubbard model. It was originally constructed

to describe the physics of electrons in a solid state, and reproduces correlations

andmagnetic properties accurately [138]. For bosons there exists the equivalent

Bose-Hubbard model (see ch. 4 of ref. [183]). Both models are characterised by

the competition of a hopping amplitude J between adjacent sites of the lattice

(representing the kinetic energy) and a local on-site interaction energy U be-

tween two (or more) particles. The fundamental difference in the two models

lies in the Pauli exclusion principle, that applies for fermions but not for bosons.

In this sense neutral atoms in optical lattices can be used to simulate the be-

haviour of electrons in a solid state material.

The study of such artificial matter and their phases is of great interest to-

day. The strength of the these systems is that they offer a superior degree of

control and tunability to real solid state systems, and are by far easier to mea-

sure. Still they obey the same physical laws. Their study can both enhance our

understanding of solid state systems and even guide the creation of new syn-

thesized materials with special properties [111]. For certain parameter spaces the

Hubbard model can for example be mapped to other physical models, such as

the Heisenberg model that captures the nature of quantummagnetism in crys-

tallinematter [122]. A variety of crystalline geometries can also be constructed in

the labby interfering laser beams in variousways. Scientists have for instance cre-

ated all from simple cubic lattices [118], over to honeycomb lattices [263] (mim-

icking the structure of graphene), to kagomé lattices [150] offering intrinsically

a high degree of magnetic frustration.

One of the first proof-of-principle experiments was the iconic first-ever ob-

servation of a quantum phase transition. A BEC that exhibits superfluid (SF)

properties when immersed in a lattice, was driven to a Mott insulating (MI)

phase and back again [118]. As the potential is deepened the on-site interaction

energyUdominates the kinetic energy J and site-to-site tunnelling is suppressed.

Another example of a more recently observed quantum phase transition, were

reports on the formation of a supersolid, a phase ofmatter that possesses a phase

coherence like a superfluid but at the same time exhibits periodic density mod-

ulations like a solid [184, 185].



I.5. QUANTUM GAS MICROSCOPES 11

I.5 Quantum gas microscopes

Until about a decade ago, all studies of ultracold atomic gases were done exclu-

sively in the bulk. Such studies usually limit the available measurement results

to averages, and moments of the underlying distributions, but single-particle

effects are hidden. Site-resolved detection of individual atoms in optical lattices

was first achieved in 2007, more than ten years ago, using
133

Cs in a large spac-

ing optical lattice (d = 5µm) [200]. This experiment was capable of imag-

ing atoms in different planes of the lattice, due to the short (2.8 µm) depth

of focus of the imaging objective, compared to the lattice spacing. In the fol-

lowing year researchers imaged atoms in much more tightly confined lattices

(d = 0.6 µm) [114]. Here a highly focussed electron beam (around 100 nm

in diameter) was systematically scanned across a BEC. Individual atoms were

detected with an ion detector after impact ionisation induced by the electron

beam.

The first twoquantum gasmicroscopes (QGMs) followed in 2009 and2010 [20,

243]. They operate with bosonic
87
Rb in the strongly-interacting regimewhere

short lattice spacings allow for tunnel couplingbetween adjacentpotentialwells.

The construction of a QGM enabled in-situ studies of quantummatter, where

the instantaneousmany-bodyquantumstate canbeprojectivelymeasured. This

device is able to discern individual atoms that sit side by side in an optical lattice.

The lattice spacing is naturally on the same order as the optical resolution limit,

so the performance of the imaging optics must only be limited by diffraction.

Typically only one lattice plane is populated along the line of sight, so these sys-

tems are two-dimensional. Even though it is challenging to build a QGM and

prepare in thema cold cloudof atoms, they are conceptually simple—individual

atoms placed on a grid, like pieces on a chessboard. The atoms can be arranged

for the study of physical effects and dynamics in the system. For imaging, the

atom distribution is frozen out bymaking the lattice deep. Atoms in individual

lattice sites scatter light from optical molasses that simultaneously cools them.

This light is collected by a high-resolution microscope objective and imaged

onto a camera.
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The first investigations were performed on the bosonic SF to MI quantum

phase transition [21, 243]. Images revealed how for dense degenerate samples

the filling fraction in the MI phase increased towards the denser regions in a

stepwisemanner, giving rise to a characteristic shell structure. That structure has

also been measured in a bilayer MI system, where a superlattice configuration

facilitated preparation and readout [225]. QGM studies are not only limited

to physics that depend on the occupation. The method of site-resolved spin

addressing [281] brought local manipulation of the internal state of the atom

to the experimental table. Typically the hyperfine spin state of a given atom is

changed by bringing it into resonance with an ambient microwave field. For

spatially-selective spin addressing, laser light at the magic wavelength between

the D1 and the D2 line is used. In this way, only one spin species is affected by

the AC Stark shift, and the addressed atom can be brought into resonance with

the microwave. This can also be used for state preparation of a given spatial

distribution by utilising a resonant laser pulse that blows away atoms that are

not in a given spin state. This techniquehas enabled the studyof1DHeisenberg

spin chains. Investigations have been carried out on the propagation of free and

bound spin excitations along the chain [101], the dynamics of a deterministically

created spin impurity [100], and the propagation of a spin wave imprinted on

the chain [135].

The biggest advantage of QGMs is the access to the direct study of correla-

tions,which are essential to thedescriptionofmany-bodyquantumstates. They

reveal its structure on a global level. Correlations both in the density [50, 86]

and spin sector [102] have been measured. The latter allowed for the measure-

ment of entanglement created by a single spin impurity that propagates in a

spin chain. This capability of extracting correlations portrays perhaps best the

power of the QGMs. In a different set of experiments quantum random walks

of bosons along one direction, were investigated for the case of a single walker

and two particles that were allowed to interfere [224]. Thereby fundamental

quantum phenomena like superposition were revealed on a single particle level.

Measurements of correlations have also proven to be an essential tool for a mi-

croscopic understanding of quantummagnetism. The first simulationof amag-
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netic phase transition, was performedwith bosons in a tilted lattice [246]. Here,

a two spin Ising-chain model was simulated by mapping it to the occupation

(density) of the atoms. The transition from a paramagnetic phase to an anti-

ferromagnetic (AFM) phase was realised.

Building aQGMfor fermions ismore involved as fermionic atoms aremore

difficult to cool than bosons. This is both because the available fermionic alkali

species (
6
Li and

40
K) are lighter, such that the recoil of an atom-light scattering

event is larger than that for heavier atoms, andbecause the hyperfine structure of

the excited state is too narrow for implementing standard polarisation gradient

cooling schemes [74]. To reach lowenough temperatures, newmethods of cool-

ing, such as Raman sideband cooling, had to be implemented. Three research

groups independently succeeded to construct fermionic QGMs in 2015, about

six years after the bosonic QGMs came to being [51, 127, 214]. Since then three

more fermionicQGMexperiments have seen the fluorescent light [44, 78, 208].

A systemof fermions ismore ideal than a bosonic one for the study of quan-

tum magnetism, mainly because the Pauli exclusion principle only applies for

fermions systems [208]. A spin-
1
2
system can be effectively created by using two

hyperfine states in the ground state manifold as has been realised in
6
Li [32, 44,

215] or in
40
K [52]. All these experiments report on the detection of AFM cor-

relations in the spin sector which were, however, short-ranged compared to the

system size. It is an experimental challenge to detect both spin species simulta-

neously. Onemethod simply blows out one of the two spin species by resonant

light before detection. The downside is, that it is not possible to distinguish

between removed atoms or holes in the sample [44, 52, 215]. A method intro-

duced in [32] overcomes this limitation by allowing for a greater lattice spac-

ing along one axis, and a Stern-Gerlach detection within that potential. For

observing long-range AFM correlations in a 2D fermionic system, even lower

temperatures were required [189]. To reach the temperatures needed for these

experiments a precise control over the potential landscape is necessary, which

was attained here with a digital micromirror device (DMD)
∥
. These devices have

∥
ADMD is an SLM.
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proven useful in the preparation of ultra-low entropy many-body states [54].

Reaching the AFM phase is a stepping stone towards the more far-reaching

goal, of understanding and simulating the physics of high temperature super-

conductivity, that is believed to be captured by the Hubbard model. Besides

low temperatures, another key ingredient necessary is doping. When a 1DAFM

is doped (either achieved by holons or doublons—quasi-particles formed by

holes and double occupancies respectively) a non-local (hidden) spin order is

introduced in the AFM [136]. This scenario allows for the separation of spin

and charge (density) degrees of freedom. Here the QGM demonstrates again

its power, as such correlations are hidden in the bulk, but can be revealed by

site-resolved detection. This topic has been investigated in 1D, statically [234]

as well as dynamically [275]. The effect of a dopant (impurity) in a 2D AFM

system is different from 1D, where the spin and charge degrees of freedom can

only be separated partially. In one interpretation the impurity forms amagnetic

polaron, altering the AFM correlations in its vicinity [165]. Such an impurity

leaves a trace (a “string”) as it travels through its surroundings, thereby induc-

ing entanglement in the many-body system. Advanced imaging analysis was

recently employed to unfold such traces in single snapshots of 2D atom config-

urations [55].

The usage of DMDs to shape light potentials has also played a central role

in the investigations of microscopic aspects of thermalisation in the bosonic

QGMs. One such example is the emergence of a many-body localised (MBL)

state in a 2D system, that is induced by projecting a random (disordered) poten-

tial onto a MI state [56]. The study shows that at a certain strength of the dis-

order, the many-body system fails to thermalise. That point marks the suppres-

sion of the interaction between particles in the system that otherwise facilitate

thermalisation. Another group pursued the question of how the description

of statistical physics becomes applicable in subsets of highly entangled isolated

(closed) quantum systems. Apure quantum systemwhich is fully separable, can

be partially measured and the remaining state is still pure. However, if the par-

ticles of the system are entangled, a measurement of a portion of a system will

leave the remainder in a mixed state. The big challenge is to measure the degree



I.5. QUANTUM GAS MICROSCOPES 15

of entanglement present in the system. One method utilised a beam-splitter

operation realised in a double-well potential [146], similar to the tweezer-based

method,mentionedpreviously [156]. This enabled ameasurement of the entan-

glement entropy within an isolated quantum state. Furthermore, this method

was used to highlight the equivalence of a mixed quantum state (that has a high

degree of entanglement), to a thermal state as described by classical statistical

physics [158].

Further examples of routes for investigation with QGMs include various

aspects of physics with Rydberg atoms that can be used to model Ising spin

chains [125, 236, 293], as well as studies of transport of both charge [45] and

spin [202] in a metallic fermionic gas. Two QGM experiments have also been

built working with the bosonic alkaline-earth-like
174

Yb [193, 290]. One of the

latter two experiments even implemented a dispersive detection scheme based

on the Faraday interaction [291]. The field ofQGMs has developed rapidly and

more experiments are being built in labs around the world, for example to in-

vestigate molecules and new atomic species like erbium. That species has a large

inherent electric dipole moment, suggesting the study of exotic systems with

non-isotropic long-range interactions.
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The structure of the thesis

The thesis is roughly divided in three parts. Chapters 1–3 describe theory and

machinery that is common to all experiments, withminor exceptions. Chapters

4 and 5 describe the results of measurements conducted in the magnetometry

setup, and chapters 6–10 account for the new high-resolution experiment, its

characterisation and first results.

Chapter 1 The elements of the light-matter interaction, important for the

understanding of the contents of the thesis.

Chapter 2 Methods applied for cooling towards quantum degeneracy, the

theory of the Bose-Einstein condensate, and how to image atom

clouds.

Chapter 3 The experimental apparatus, and special elements required for the

realisation of magnetometry experiments.

Chapter 4 The tools used for the magnetometry experiments: the optical

tweezers, the Faraday imaging system, and a discussion of the in-

teraction of the atoms and the probe.

Chapter 5 The realisation of two types of high precisionmagnetometers and

their performance, along with an outlook.

Chapter 6 Newexperimental equipment installed for the high-resolution ex-

periment.

Chapter 7 Acharacterisationof our optical lattices, calibrationmethods, and

the transition from the superfluid to a Mott insulating state.

Chapter 8 Acharacterisation of ourDMDgenerated optical tweezer system,

methods to load few atoms, and a demonstration of atom cloud

transport using the dynamic abilities of the DMD.

Chapter 9 The high-resolution imaging system and its performance.
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Chapter 10 High-resolution imaging of single atoms in separate lattice planes

along the line of sight, and how to tomographically reconstruct

the atom distribution in sparse atom clouds.

Other remarks

All data is processed in Matlab and images taken with different methods are

rendered with different colormaps. I chose jet for the absorption images due to
historical reasons, parula for the Faraday images and fluorescence images where
single atoms are not discernible, and our own purple rain** for the single-atom
images.

Throughout the thesis, the uncertainty in the bracket following a number

corresponds to 1 σ, unless otherwise specified.

**
This is a two color map that goes from black to purple to pink to white, and was designed

by the senior graphic designer in the ScienceAtHome team, Jonathan Satchell. Excellent work

Jonathan!





CHAPTER 1
The interaction of cold atoms and

coherent light

Sections 1.1, 1.3 and 1.4 are based on my progress report [83].

This chapter serves as a theoretical preamble for the chapters to come. The first

section discusses the general atomic properties of
87
Rb which is followed by

an account of the basic physics of a two level atom interacting with coherent

light in the second section. The dispersive light-matter interaction is central to

all our work and the origins of the AC Stark shift and the Faraday interaction

are discussed in the third and fourth sections. The chapter is concluded with

some general remarks concerning the atom-light interaction that I have found

important for the development of my understanding of the physics.

19
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1.1 The atomic properties of 87Rb

The atom used in our laboratory is rubidium-87 (
87
Rb). It is a composite bo-

son and an alkali atom, and so it has one valance electron on the outermost

shell. Bosons do not obey the Pauli exclusion principle and as a result the col-

lective properties of bosonic atom ensembles are vastly different from those of

fermionic ensembles. The interaction of the atomwith light can be understood

solely through the single valance electron. In the ground state this electron has

a principal quantum number n = 5, a spin s = 1
2
, and carries an orbital angu-

lar momentum l = 0.* In spectroscopic notation (n(2s+1)lj) it is a 5
2S 1

2
state

[252].

In the first excited angular momentum state, with l = 1, the coupling of

the electron spin and the orbital angular momentum splits the level in two.

The spin-orbit coupling gives rise to fine structure in the atomic spectra. In this

context it is useful to introduce the total electronic angular momentum vector

j = s + l, which can take two values
(
j = 1

2
, 3
2

)
in
87
Rb. The transitions be-

tween the ground state and the excited states correspond to the famousD-line

doublet, found in all alkali elements. The transitionwavelengths are 795 nm for

the D1 line (5
2S 1

2
→ 52P 1

2
) and 780 nm for the D2 line (5

2S 1
2
→ 52P 3

2
). In

our lab all laser cooling and imaging of the atoms happens through theD2 line.

The level scheme of theD2 line is reprinted in appendix A.

With commercially available narrow-band laser sources one can easily re-

solve the hyperfine structure, which arises due to the interaction of the nuclear

spin i with the total electronic angular momentum j. The total angular mo-

mentum of the atom is

f = s+ l+ i. (1.1)

The nuclear spin has a value i = 3
2
, so the 52S 1

2
has two manifolds with f = 1

and f = 2, split by roughly 6.83 GHz. The excited 52P 3
2
state has four mani-

folds corresponding to f ′ = 0, 1, 2 or 3, each split by only a few hundredMHz.

*
Small letters are used to indicate the quantum state of an individual atom, and capital

letters for the collective state of an ensemble.
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The ground state splitting is larger simply because in the ground state the elec-

tron probability density lies closer to the atomic nucleus, enhancing the inter-

action of i and j. Each of these hyperfine electronic states are degenerate in the

magnetic quantum numbermf describing the projection of f onto the quanti-

zation axis of the system, usually defined in the laboratory as the axis parallel to

an external magnetic field B (see [233], ch. 3.5). In the presence of such a field

the degeneracy of the hyperfine states is lifted by the linear Zeeman effect, intro-

ducing an energy splitting in the hyperfine states [252]

∆E = mFgFµBB, (1.2)

where µB is the Bohr magneton and gF is the Landé g-factor, a coupling con-

stant depending on the electronic state. In our experiment the atomic ensemble

is prepared in the |F = 2,mF = 2〉 hyperfine sublevel of the 52S 1
2
ground state.

1.2 Interaction of coherent light with a two level system

For a theoretical description of the interaction of a coherent light field and an

alkali atom, one must solve the time-dependent Schrödinger equation. It de-

scribes the evolution of the wavefunction |Ψ〉 (corresponding to the state of

the system) under the HamiltonianH that accounts for all the system’s energy

([233], p. 69)

i h
∂ |Ψ〉
∂t

= H |Ψ〉 . (1.3)

A typical approach to solving this equation uses the fact that the Hamiltonian

may be split up in two partsH = H0+H ′, whereH0 describes the atom in the

absence of the light field and is independent of time, andH ′ accounts for the

light field and the atom’s interaction with the laser field. This time-dependent

part of the Hamiltonian takes the form (see sec. 4.3 of ref. [43])

H ′ = − ˆd · E(r, t), (1.4)
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where the electric dipole operator is ˆd = −er̂, r̂ is the position operator for the

electron, and e is the fundamental electric charge.

The state vector |Ψ〉may then be expressed in terms of the eigenstates and
eigenvalues ofH0, that is functions that fulfil the equationH0 |φk〉 = Ek |φk〉,
such that

|Ψ(t)〉 =
∑
k

ck(t) |φk〉 e−iωkt (1.5)

with Ek =  hωk. The coefficients ck(t) are the probability amplitudes for find-

ing the atom in the state |φk〉, and by inserting the expansion of |Ψ〉 into the
Schrödinger equation, the problem can be reduced to a set of coupled differen-

tial equations for the coefficients ck. Note that this is a semi-classical approach

where the atomic energies are quantized, but the light is treated as a classical po-

larised plane wave with a wave number k = 2π
λ
(here propagating along the

spatial direction z, as ensured by the unit vector ẑ) and an amplitude E0. The

electric field component of the wave is
†

E(z, t) = E0 cos(kz−ωlt)ẑ. (1.6)

Atomsgenerally have a complex level structure and tomake the theoretical prob-

lem above tractable, one has to make some approximations. One such useful

approximation is that of the two level atom. One assumes that the light wave

has an angular frequency ωl, and interacts with the atom only through two

atomic states, the ground state |g〉 and the excited state |e〉, which are separated
by an energy Ea =  hωa. The equation set for ck(t) is now reduced to only

two equations that can be solved (see sec. 1.2 of [191]).

Under resonant driving, when the frequency of the light equals the energy

of the atomic transitionωl = ωa, the probability of finding the atom in the

excited state will oscillate between 0 and 1with the Rabi frequency

Ω = −
eE0
 h
〈e|r̂|g〉 . (1.7)

†
The amplitude of themagnetic part of the electromagnetic waveB0, is much smaller than

the electric part E0, asB0 = E0/c. As a result it can safely be ignored.
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So the problem of calculating the Rabi frequency is reduced to calculating the

matrix element of the electron position operator 〈e|r̂|g〉. Here it is useful to

keep in mind that E0 can be related to the intensity I of the laser field by the

electric permittivity ε0 and the light speed c via I = ε0c|E0|
2/2. When the

driving frequency is detuned by an amount∆ = ωl−ωa from the atomic res-

onance,Ω is increased toΩ ′ =
√
Ω2 + ∆2, while the excited state population

is reduced by a factor of
Ω2

Ω2+∆2
.

The preceding discussion includes two out of three possible radiative pro-

cesses, namely absorption and stimulated emission, but leaves out spontaneous
emission [79]. In the idealised case of the two-level atom, there is high prob-

ability of excitation under resonant driving if the atom is in the ground state.

Likewise, an excited atom will eventually emit a photon back into the mode of

the electromagnetic wave either by stimulated or spontaneous emission. In the

latter case the photon is emitted in a random direction with random polarisa-

tion, which is not captured by the Hamiltonian described above.

Modern day understanding of spontaneous emission must include a quan-

tized description of the light field as well as the atom. Consider an atom in the

excited state with no photons present in the light field. Due to quantum fluctu-

ations of the electromagnetic vacuum, i.e. fluctuations of the zero-point energy

of the light field, the systemwill eventually decay to the ground state and thereby

emit a photon. The rate of this decaymay be calculated in the framework of the

Wigner-Weisskopf theory, yielding (see sec. 2.2 of [191])

Γs =
ω3ae

2

3πε0 hc3
| 〈e|r̂|g〉 |2. (1.8)

This quantity is also routinely referred to as the natural linewidth, and for the

D2 line of 87Rb it has the numerical value of ΓD2 = 2π× 6.065MHz [252].

To include spontaneous emission in the atom-light interaction, it is custom-

ary to use the density matrix formalism. The evolution of the density matrix is

captured by the Optical Bloch equations (OBEs). Here, I will neither go into

details here with the concept of the density matrix, nor the OBEs, but instead

point to the relevant literature (see refs. [191, 253]). Steady state solutions of the
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OBEs describe the situation when the excitation due to absorption and decay

rates due to both stimulated and spontaneous emission are equal. Under those

conditions one can arrive to an expression for the total scattering rate of an atom
in a light field

Γ =
Γs

2

s0

1+ s0 +
4∆2

Γ2s

, (1.9)

where s0 = I/Isat = 2(Ω2/Γ2s ) is a parameter describing the intensity of the

driving field. Equation (1.9) is one of the central results discussed here and is

essential to understand Doppler cooling. As a function of∆, eq. (1.9) describes

a Lorentzian line profile, which for low intensities has a linewidth of Γs, de-

fined as the full width at half maximum (FWHM). As the intensity increases

the linewidth is broadened by Γ ′ = Γ
√
1+ s0.

In eq. (1.9) we defined the saturation intensity as

Isat =
πhc

3λ3τ
(1.10)

where τ = Γ−1s is the pure radiative lifetime of the atomic state due to sponta-

neous emission. The population of the excited state is simply |ce|
2 = Γ/Γs. For

an intense light field the population approaches
1
2
and the scattering rate tends

towards
Γ
2
. The value of Isat varies as well with the polarisation of the light. For

details see ref. [252].

Another useful concept in the interaction of atoms and light is that of the

scattering cross section thatmeasures the likelihood of a scattering event between
an atom and a photon. Such an event increases the atom energy because of

the recoil from the photon. The scattering cross section is the ratio of the light

power scattered by the atom ( hωΓ ) to the incoming intensity of the light I,

σ =
 hωΓ

I
=

σ0

1+ s0 +
4∆2

Γ2s

, (1.11)
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where the resonant cross section is

σ0 =
 hωΓs
2 Isat

. (1.12)

1.3 The AC Stark shift

The main method we apply for trapping atomic clouds of
87
Rb atomic clouds

is optical trapping. That was first experimentally demonstrated in the context of
neutral atoms with sodium in 1986 [58]. In the simple classical picture of the

Lorentz oscillator model, the oscillating electric field of a laser beam induces a

dipole moment in the atom which then again interacts with the field (see ch. 1

of [253] or the popular [121]). Amore advanced approach is to treat a quantum

mechanical atom in a classical electric field. The light field splits the energy levels

proportional to its intensity, ∆E ∼ I. This is the so-called AC Stark shift (or
simply the light shift). Depending on the detuning of the light fieldwith respect
to a nearby atomic transition, the interaction will either act as a repulsive (blue-

detuned) or an attractive potential (red-detuned). With a focussed red-detuned

laser field, we can obtain a three-dimensional trapping potential for the atoms.

In the following section the derivation of the conservative potential experienced

by the atoms in the presence of a laser field is outlined for the casewhere the laser

field is far detuned from the resonance of an atomic transition.

The effect of such a far detuned light field can be considered as a perturba-

tion to the atomic state. As the wavelength of the transition involved is much

larger than the size of the atom one can take the Hamiltonian in eq. (1.4) to be

the starting point. Lets assume that the electric field of the laser light can bewrit-

ten asE = E0 cos(ωlt) (as in eq. (1.6), but omitting the spatial dependence for

simplicity), withωl as the angular frequency of the trapping light. By applying

time-dependent perturbation theory the first non-zero term is the one in 2nd

order.
‡
The splitting induced in the transition between a ground state level |g〉

‡
The first order contribution to the energy is proportional to 〈g|d · E0|g〉 and as the

ground state possesses no permanent dipole moment this term yields zero.
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and an excited state level |j〉 is (see [126] and sec. 4.2. of [219])

U =
1

4

∑
j,±

| 〈g|d · E0|j〉 |2

Eg − Ej ±  hωl
, (1.13)

where the index j runs over the energy levels in the excited states, and Eg and

Ej are the energies of the unperturbed states |g〉 and |j〉. The light in our dipole
traps is far red-detuned with respect to the D-line doublet, so wemust take into

account the contribution from both lines. By summing over the terms corre-

sponding to transitions from 52S 1
2
to the 52P 1

2
and 52P 3

2
states (ignoring the

hyperfine structure of both the excited and ground states), and assuming that

the trapping light is linearly polarised we arrive at

U(r, z) =
πc2

2

(
ΓD1

˜∆D1ω
3
D1

+
2ΓD2

˜∆D2ω
3
D2

)
I(r, z). (1.14)

I(r, z) is the intensityprofile of a laser source (see below), Γj is thenatural linewidth

of transition j and 1
˜∆j

= −
(

1
ωj+ωl

+ 1
ωj−ωl

)
. Forωj−ωl > 0, the laser beam

acts as an attractive conservative potential. To simplify the form of the equation

above the dipole matrix elements are related to the linewidth of each transition

by eq. (1.8).

Single beam dipole traps
The intensity profile of laser light emanating from a single-mode optical fibre is

Gaussian, as such an optical fibre is typically constructed to support the lowest-

order TEM00 mode in the waveguide. In cylindrical coordinates, the intensity

distribution takes the form (see ch. 16 of ref. [65])

I(r, z) =
2 P

πw2(z)
e−2r

2/w2(z), (1.15)
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whereP is the total power in the laser beam andw(z) is a function that describes

how the waist of the beam evolves with the z coordinate

w(z) = w0

√
1+ (z/zR)

2
. (1.16)

This formula depends on two length scales that are important for the charac-

terisation of a focussed laser beam; the beam waist at the origin w0
§
; and the

Rayleigh range zR given by¶

zR =
πw20
λ
. (1.17)

The depth of a dipole trap is typically much larger than the temperature of

the atom cloud residing in it. In those cases one canmake a harmonic expansion

of theGaussian laser potential. In this context one candefine the trap frequency,

which corresponds to the frequency of a classical oscillation of an atom in the

potential. By settingU(0, 0) = U0, from eq. (1.14), the potential takes the form

U(r, z) ' U0
(
1

2
m(ω2rr

2 +ω2zz
2) − 1

)
(1.18)

and the radial and longitudinal (angular) trapping frequencies are (ω = 2πf)

ωr =

√
4U0

mw20
(1.19)

ωz =

√
2U0

mz2R
. (1.20)

Optical lattices
In the latter part of the thesis optical lattices play a central role. An optical lattice

is formedby two counter-propagating runningwaves of the same frequency and

§
The waist is equal to the 1/e2 radius of the beam.

¶
The cross section of a laser beam has doubled a Rayleigh range away from its focus.
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polarisation, as captured by eq. (1.6). The amplitude of such a field is [219]

E1(z, t) + E2(−z, t) = 2E0 cos(kz) cos(ωlt)ẑ. (1.21)

The potential U ∼ E2, and by taking the time average over a single period of

oscillation (as the atom is too heavy to follow) U ∼ E20 cos
2(kz). Combining

this result with eq. (1.14), the potential of a 1D optical lattice becomes

U1D(r, z) = 4U(r, z) cos
2(kz). (1.22)

The intensity of the single-beam potential U(r, z) is enhanced by a factor of

four. A factor of two comes about as there are two laser beams involved and

the other factor of two is due to the interference of the beams. The period of

the modulation function is π, so the distance between the nodes in the wave

is d = λ/2. The potential for a 3D optical lattice is obtained by combining

three 1D standing-wave potentials perpendicular to one another. For details see

appendix C of ref. [8].

1.4 The Faraday rotation

The dispersive atom-light interaction is mediated through the dipole moment

of the electric field, and the energy of the interaction is captured in eq. (1.4).

By assuming the rotating wave approximation (RWA)∥ and applying adiabatic
elimination** of the excited states, one obtains the effective interaction Hamil-

∥
In the RWA one ignores the rapidly oscillating terms in the Hamiltonian. Effectively one

will get terms that oscillate as ωa + ωl and ωa − ωl (see. eq. (1.13) as an example). If the

light is near resonant to an atomic transition, there will be an appreciable difference between

the two terms and theRWA is valid when |ωa−ωl| << ωa+ωl. This is also why theRWA is

equivalent to the two-level atomapproximation, as one takes into account only the contribution

of the nearest transition.

**
Here we assume that the population in the excited state manifold does not influence the

dynamics. This is a good approximation if the intensity of the light field is low and typical

timescales in the system dynamics are long compared to the natural linewidth of the transition

1/Γ .
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tonian [73, 113, 128, 129]

H ′ =
∑
f,f ′

E(−) αf,f ′

 h∆f,f ′
E(+), (1.23)

where the summation runs over the ground state levels f and excited states f ′,

alongwith all the respectivemagnetic sublevels. The fieldsE(+)
andE(−)

are the

positive and negative frequency components of the quantized electromagnetic

field, ∆f,f ′ = ωl − ωf,f ′ , is the detuning of the f → f ′ transition from the

frequency of the light field andαf,f ′ is the atomic polarisability tensor. That can
be decomposed with the help of theWigner- Eckhart theorem, into irreducible

scalar, vectorial and rank-2 tensorial components (we dismiss higher orders)

α = α(0) + α(1) + α(2). (1.24)

These terms describe population, orientation and alignment of the spin state.

The first term is the AC Stark shift discussed previously. The second term

causes a differential phase shift of the two circular polarisation modes of the

light passing through the atomic sample. The third term introduces ellipticity

into the polarisation state of the probe beam [113]. If the probe is sufficiently

far detuned the effect of the tensorial term can be ignored, as its effect is very

small.
††
This is a fine approximation for the experiments described in this thesis.

Dropping the last term the dispersive part of the Hamiltonian for atoms in the

hyperfine state f reads [104, 113]

Heff = g
1

3

∑
f ′

α
(0)
f,f ′

∆f,f ′
ˆNa ˆNp + g

1

2

∑
f ′

α
(1)
f,f ′

∆f,f ′
ˆFz( ˆNσ+

− ˆNσ−
), (1.25)

where the summation runs over all states in the excited state manifold f ′. The

g = ωl/2ε0V is the volume of the electromagnetic mode, withωl as the fre-

quency of the probe light andV the volumewhere the interaction takes place (if

††
This is not always the case as special measures had to be taken to cancel its effect in or-

der to achieve spin squeezing of atomic ensembles with high angular momenta as described in

ref. [168].



30 CHAPTER 1. THE INTERACTION OF COLD ATOMS AND COHERENT LIGHT

the probe is big enoughV corresponds to the volumeof the cloud). The
ˆFz is the

z-component of the collective total angularmomentum vector (which relates to

the expectation value of the individual atom component via
ˆFz = Na 〈 ˆfz〉) and

ˆNa, ˆNp, and ˆNσ+/−
are number operators for the atoms, total number of pho-

tons, and the right- and left-hand circularly polarised photons, respectively.

With the magnetisation of the atomic cloud 〈F〉 pointing along the probe
beam, the linearly polarised light can be decomposed into right- and left-hand

circular polarisations. If there is a population imbalance in the magnetic sub-

levels (as is the case here) the two polarisations will acquire different phases,

which induces a net rotation of the linear polarisation. The main advantage of

this imaging technique is that as the imaging light is off-resonant (typically some

10’s or 100’s of natural linewidths from the resonance) the interaction with the

probe light induces minimal heating. Therefore the cloud can be probed mul-

tiple times. However, as will be discussed in ch. 4, heating effects do play a role,

and at the end of the day, there is a trade-off between the signal-to-noise ratio
(SNR) and the destructivity caused by the probe. For the work presented in the

first half of the thesis, this interaction enables the whole business ofmagnetom-

etry as the rotation angle is sensitive to the magnetisation of the atomic cloud

〈Fz〉.
For our atoms prepared in the |F = 2,mF = 2〉 state, the rotation angle as a

function of the two in-plane coordinates reads [104]

θF(x, y) =
〈Fz〉 Γsλ2l
16π

1

20

(
28

∆2,3
−

5

∆2,2
−

3

∆2,1

) ∫
ρ(r)dz, (1.26)

where Γs is the natural linewidth of the transition, λl is the wavelength of the

probe and∆2,j is the detuning of the 2→ j transition from the frequency of the

probe light. Instead of using the atom numberNa, we replace it by the column

density.
‡‡

Depending on the atomic state and the intensity of the probe light, the Fara-

day effect can manifest itself in different ways. It is important to make a distinc-

‡‡
Please note that for the units to work out, either the  hmust be dropped when calculating

the 〈Fz〉 or the∆2,j’s must have a unit of energy.
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tion between the linear and the non-linear Faraday effect. In the linear regime
the intensity of the probing light is low enough such that one can assume the

atomic state to be unaltered by the probe beam [109]. This is the regime in

which we work. If the intensity of the probe is sufficient, effects like optical

pumping and the generation of coherences between the states involved can en-

hance the rotation effect. One can see the non-linear effect as a three stage pro-

cess. The light alters the atomic medium, redistributing the state populations;

these populations evolve in the probe field to change the cloud properties even

further, and finally the atomic medium changes the polarisation state of the

probe field [110]. The non-linear effect was used to achieve the magnetometer

with highest sensitivity to-date [64, 166].

1.5 QND measurements and atom-light interactions

It has been justified that Faradaymeasurements of the collective spin state canbe

considered as quantum non-demolition (QND) measurements [260]. A QND

measurement can only be performed on certain kinds of quantum observables,

namely QND observables. A QND observable Q must satisfy the condition

that [Q(t1), Q(t2)] = 0 for all times t1 and t2, under evolution in the given

quantum system [39, 40]. An example of such variables are the momentum

of a free particle and the total angular momentum (spin) of an atom. If one

can realise a measurement operator (or an interaction Hamiltonian) H ′ ∼ Q

such that [Q(t),H ′(t)] = 0, the observable Q will remain unaltered under

repeated action ofH ′. It is very popular to put Faraday measurements (where

theHamiltonian of the light-matter interaction isH = αFzSz, like in eq. (1.25))

into the context of QND measurements, as a number of examples from the

literature show [15, 24, 168, 232].
§§

I must admit that the concept of QND measurements confused me for a

while and it seems I am not the only one [195]. First, I made it synonymous

§§
Hereα is a coupling constant andSz is the z component of the Stokes vector that describes

the degree of circular polarisation of the light, see ref. [260].
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with non-destructivemeasurements [12, 104, 284] (to which it is indeed related)

and second, it seemed to me that these QNDmethods did indeed demolish the

atomic systems they were applied to. Even though our magnetometry experi-

ments are not put into the framework of QND, they could be framed as such

as the interactionHamiltonian is the same [260]. Earlier publications from our

group that I contributed to, but are not deteiled here, used the concept [24].

Therefore it influenced a great deal my understanding of atom-light interac-

tions. The following section is writtenmainly to emphasise its limitations from

the viewpoint of an experimentalist.

As is apparent from the data presented towards the end of ch. 4 (likewise in

the literature where similar data are presented), the atomic sample experiences

losses due to heating under the interaction of the Faraday probe.
¶¶
This heating

relates to the fundamental reason of why the perfect QND measurement can

never be realised with the dispersive atom-light interaction.
To see why this is the case, let us refresh some elementary scattering the-

ory (see sec. 12.2 of [43]). An incoming probe light photon, represented as a

plane wave scatters off of a potential (the atom), while the outgoing wave is de-

scribed as spherical. The waves are considered to be probability amplitudes for

the photon. The total function for the incoming (first term) and outgoing (sec-

ond term) waves has the form

ψ(r) = A

[
eik·r +

eikr

r
f(θ)

]
, (1.27)

where k is the wave vector of the wave and f(θ) is the scattering amplitude.***

It can then be shown that the differential scattering cross section (that is the

probability for the photon to be scattered into the solid angle dΩ) is dσ
dΩ

=

|f(θ)|2. The total cross section σtot is obtained by integrating over all angles. By

¶¶
In our case we also observe signal loss that cannot only be described by the heating alone,

but that must only mean that there is even more to the Hamiltonian than discussed here.

***
The angle θ is the one that the outgoing (scattered) photon makes with respect to the

incoming photon. By assuming cylindrical symmetry (which is fine for this discussion) we can

ignore other angles.
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Figure 1.1: The complex index of refraction can be split up into an absorptive part (orange) and
a dispersive part (blue). Γ is the FWHMof the Lorentzian absorption profile, that is ultimately

related to the rate of spontaneous emission, see eq. (1.8).

assuming that the number of total particles coming inmust balance those going

out, one can relate the imaginary part of the forward scattering amplitude toσtot
by

σtot =
4π

k
Im(f(θ = 0)). (1.28)

This is the optical theorem that follows from the fundamental notion of the con-

servation of the flux of probability. The Im(f(θ = 0)) can be directly related to

the phase shift imparted by the interaction onto the scattered wave (see below),

so the optical theorem tells us that one cannot have a phase shift of the scattered

wave with a non-zero σtot. As described in sec. G.2 of [128], the result of the

Faraday interaction is to impart a phase shift on the two circular components

of the Faraday probe light, resulting in the rotation of the plane of polarisation.

Hence, there cannot be any Faraday interaction without a finite σtot, which im-

plies detrimental absorptive processes causing heating. There is no dispersion

without absorption.

Perhaps this should be obvious to any veteran in atom-light interactions,

but for the newcomer it was strange to hear experienced people talk of quantum
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non-demolition measurements, where it was obvious that such a measurement
had a demolishing effect on the atom cloud under scrutiny. But the treatment

of the QND measurement of the spin is only based on the dispersive part of

the light-matter interaction [260] and the absorptive part is ignored. This can

be justified by considering the interaction in the Lorentz oscillator model (sec.

1.2. of ref. [253]). The cold atomic gas has a complex index of refraction ñ =

n+ iκ, wheren is the normal index of refraction and κ describes absorption in

themedium. The full expressions forn andκ are contained in the reference, but

we are interested in their behaviour off-resonant, i.e. large values of ∆. Then

n = 1 + a
∆
and κ = Γ

2
a
∆2
, where a is a combination of constants and Γ is

the FWHM of the Lorentzian shaped absorption profile, shown in fig. 1.1. The

wave number k is also a complex number, as k = k0ñ, where k0 = λ
2π

is the

wave number outside the refractive medium (in vacuum). In the atomic gas, an

incoming light wave eikr becomes (ignoring the vector nature of k)

eikr = eik0(n+iκ)r (1.29)

= eik0r eik0
a
∆r e−k0

Γ
2
a

∆2
r. (1.30)

As is apparent the absorptive part falls as ∼ 1/∆2 whereas the dispersive signal

behaves as ∼ 1/∆. The full expressions are plotted in fig. 1.1. The dispersive part

is responsible for imparting a phase shift to the light that passes through the gas,

as is obvious from comparison with eqns. (1.27) and (1.28) [201]. Just choose a

large enough detuning and this will suppress the destructive part of the Hamil-

tonian. But ultimately the SNR becomes unfavourable and the absorptive part

will eventually cause heating and atom loss in the cloud.

As a final rematk, lets consider the process from a more quantized point of

view. We want to find the cross section for the event of an atom being scattered

by light from a state |i〉 to a state |f〉. The states |j〉 refer to motional states of a
trapping potential, and we assume thatNj atoms occupy each state. The state

|f〉 can lie in the continuum. Following [159] (sec. 3.3) for cold bosons where
Nj atoms populate the state |j〉, the cross section can be divided into a coherent
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part and an incoherent part,
†††

dσ

dΩ
∼

∣∣∣∣∣∑
f

Ni 〈i|ei∆k·r|i〉

∣∣∣∣∣
2

+
∑
f 6=i

Ni| 〈i|ei∆k·r|f〉 |2. (1.31)

The matrix element connects the state with initial momentum ki to the one

with the final momentum kf, where ∆k = kf − ki (see [222] and sec. 1.7

of [233]). The term on the left represents coherent scattering where the atom

remains in the same state. This term gives rise to the dispersive signal that can

be recorded e.g. by Faraday imaging. As the momentum transfer to the atom

is small, this light is forward scattered into small angles [12]. The term on the

right describes traditional Rayleigh scattering which is incoherent, and the light

is isotropically scattered into space. The color of scattered photons is the same

as that of the incoming ones. In the process the atomic sample is heated by

the recoil imparted by the photons. The photons that are scattered into large

angles give rise to the missing light in absorption imaging, and in fluorescence

detection these are in fact the photons collected by the imaging system.

This picture is valid for low intensities of light where higher order effects do

not play a role. By turning up the intensity higher order transitions can occur

and the fluorescence spectrum exhibits the famous Mollow triplet which was

very recently observed (unambiguously) in cold atoms for the first time [209].

This effect usually plays no role in typical cold-atom experiments.

In conclusion, all atom-light interactions have a fundamental destructive

nature and the mechanism that causes the heating is the same one that provides

us with the blue sky, at least when it doesn’t rain.

†††
In ref. [222], the author discusses a third termdue to bosonic stimulationwhich is relevant

for the BEC. I leave that out here as the BEC as such plays no role in this discussion.





CHAPTER 2
Cooling and imaging dilute and

degenerate atomic gases

The invention of the laser in 1960 [186] is doubtless the single most impor-

tant technological step that enabled research of cold-atom physics. The nar-

row distribution in the frequency of the light emanating from a laser eased the

addressing of individual atomic transitions. In the mid-1980s the field gained

momentum as the basic machinery like the magneto-optical trap (MOT) was

developed [228]. Nowadays nobody builds a cold-atom experiment without a

MOT. It is the workhorse of the field, a device capable of bringing atoms from

room temperature down to tens of µK.

In this chapter a brief account is given of the basic physics of Doppler and

sub-Doppler cooling in section one and of the MOT in section two. That is

followed by a discussion of the methods used for forced evaporative cooling in

the third section. Section four covers the basic physics of Bose-Einstein conden-

sation, and in the fifth section absorption imaging is explained.

37
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2.1 Laser cooling

Atwo-level atom is free tomove inonedimensionbetween counter-propagating

laser beams. From the reference frame of the atom, the frequencies of the lasers

will depend on the velocity of the atom itself due to the Doppler effect. If the

atom is moving at a velocity v, the frequencies of the laser beams with wave vec-

tors k are shifted by±kv for the atommoving towards (+) and away from (−)

the laser beam. The atom can be made to preferentially scatter light from the

laser it moves toward, by adjusting the rest-frame frequency of both lasers red

of the atomic transition. The scattering rate Γ is given by eq. (1.9). An atom-

light scattering event changes the momentum of the atom by p =  hk, and thus

the light exerts a force on the atom F = dp
dt

=  hkΓ . The net force on the atom

due to the light from the two counter-propagating beams is

FD =  hk(Γ(ωl + kv) − Γ(ωl − kv)) ' −βv, (2.1)

where β is an effective damping coefficient.
*
In the approximation terms on

the order of (kv/Γ)4 have been ignored. As a result the lasers cause a velocity

dependent restoring force on the atom. This is the effect of optical molasses.
The random nature of spontaneous emission is also responsible for a heat-

ing mechanism, as the scattered photons are emitted into a random direction,

causing a diffusive motion of the atoms. The atom will on average gain two

units of the recoil energy Er per scattering event, where

Er =
 h2k2

2m
. (2.2)

By balancing the cooling rate due to the optical molasses and the recoil heating

rate
†
, the atoms will reach theDoppler temperature in steady-state

TD =
 hΓ

2kB
. (2.3)

*
The exact value of theβ is irrelevant for this discussion. For its value see sec. 7.2 of ref. [191].

†
The cooling rate is

(
dE
dt

)
c
= d
dt
1
2
mv2 = FDv, and the heating rate is

(
dE
dt

)
h
= 4ErΓ .
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For
87
Rb, TD = 146µK [252]. For further discussion see [191], ch. 3 and 7.

When the ground state energy levels are degenerate in the magnetic quan-

tum numbermF, an atommoving in laser light where a polarisation gradient is

present will experience a friction force. Early experiments with atoms in op-

tical molasses reported much lower temperatures than expected from simple

Doppler cooling [181]. The cooling mechanisms responsible are said to achieve

sub-Doppler cooling. The reasons for how such a force arises for two counter-

propagating beams with circular polarisations, traditionally named the σ+–σ−
configuration, are discussed below. The interference of the polarisations of the

two beams result in a linear polarisation at every point along the beam. This

linear polarisation rotates around the propagation direction, forming a helix.

Sub-Doppler cooling requires a minimal angular momentum of 1 in the

ground state.
‡
In

87
Rb we can envision a F = 2 → F ′ = 3 level scheme,

with a 5-fold degenerate ground state, and a 7-fold degenerate excited state. If

the atom is at rest the linear polarisation will drive a π-transition, and due to

Clebsch-Gordan coefficients
§
the population will be symmetrically distributed

in the ground state manifold with the greatest portion in themF = 0 state.

As the atom begins to move with a velocity v, the local orientation of the

linear polarisation is changed, and this changes the quantisation axis to which

the spin system at rest is referenced to. Themovement induces optical pumping

between the sublevels, but as shown in ref. [63] the steady state population of

the ground state is not symmetric as the atom starts moving. If the atommoves

in the positive (negative) direction in a red-detuned laser field, the mF < 0

(mF > 0) sublevels will be more populated thanmF > 0 (mF < 0), and the

difference in the population of the states is proportional to the quantity
kv
UAC

,

where UAC is the AC Stark shift due to the molasses beams themselves.
¶
The

‡
Our experiment operates cooling on the

87
Rb, D2 line, so the total angular momentum

of the ground state is F = 2.
§
The Clebsch-Gordan coefficients are numbers that relate different electronic states of the

total angular momentum, see. [233].

¶
Equation (1.13) is still applicable, but here it would be fine to make the RWA as we only

have a contribution from the F = 2→ F ′ = 3 transition.
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Clebsch-Gordan coefficients favour scattering of the σ− (σ+) beam it is moving

towards, and therefore the atom is cooled.
∥

In a steady state the equilibrium temperature in the σ+–σ− configuration

is

Tσ =
 hs0Γ

2
s

2kB∆

(
29

300
+
254

300

Γ2s
4∆2 + Γ2s

)
, (2.4)

where s0 is the saturation parameter, ∆ is the detuning between the laser light

and the atomic resonance and Γs is the rate of spontaneous emission, see eq. (1.8).

For typical values of ∆ and s0 the cloud temperatures are ∼ 10µK. For details

the reader is referred to ref. [63].

2.2 Magneto-optical trapping

Atoms in optical molasses will eventually diffuse out of the laser beams (even

though they are confined in 3D), as there is no spatially dependent variation in

the scattering force. One way to achieve trapping is to add an inhomogeneous

magnetic field to the light field of the molasses. In a magnetic quadrupole trap

made of a pair of coils in an anti-Helmholtz configuration, a magnetic field gra-

dient is created between the coils. In the centre themagnitude of the field is zero

and increases outwards in any direction. This spatially varying field creates a spa-

tially dependent Zeeman shift of the magnetic sublevels, according to eq. (1.2).

In this situation the scattering force does not only depend on the velocity of the

atoms in the molasses, but also on their position. As they move away from the

centre of the trap, the magnetic field shifts the energy levels closer to resonance

and the atoms will scatter more light that pushes them back to the centre. This

is themagneto-optical trap (MOT) first realised in 1987 [228].

∥
This cooling mechanism is fundamentally different from the Sisyphus mechanism that

cools atoms in the lin–⊥–lin polarisation gradient. The main difference is that the AC Stark

shift varies periodically in that case, whereas in the σ+–σ− case it is constant along the beam.
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The workings of aMOT are indeed more complicated and depend on a va-

riety of parameters. But it is good to keep in mind that the temperature distri-

bution of atoms in a MOT is typically quite broad, extending over 10’s of µK.

A 3D MOT with large atom numbers like the one in our laboratory has two

different temperature regimes. The inner regime around the centre of the trap

is governed by the sub-Doppler mechanism explained above. The outer region

takes over where the Zeeman shift becomes too great to allow for sub-Doppler

cooling, as that mechanism relies on the degeneracy of the magnetic sublevels.

This happens around the radius where the Zeeman shift equals the AC Stark

shift caused by the molasses light. For a detailed analysis of the different phases

of the MOT see ref. [272].

2.3 Forced evaporative cooling

There are otherways to cool atom clouds than by laser cooling. A thermal cloud

of atoms is described by a Maxwell-Boltzmann velocity distribution (MBD)

(see ch. 14 of ref. [162]). Forced evaporative cooling removes the hottest atoms

from an ensemble, and this corresponds to cutting off the exponential tail of the

MBD, allowing for a subsequent re-thermalisation of the atoms in the cloud.

This yields an atom cloud with a lower average temperature, so the cloud is

cooled. To ensure good thermalisation after the removal of hot atoms the rate

of elastic two-body collisions has to be high enough. The rate of such collisions

is γ2 ∼ n, where n is the density of the cloud.
**
Therefore it is bad for the ef-

ficiency of the evaporation to remove too many atoms at a time as the density

will drop and so will the collision rate for the necessary thermalisation process.

In a standard experimental sequence (see sec. 3.1) we use two types of forced
evaporative cooling. The firstmethod ismicrowave cooling carriedout in aquadru-

**
One can imagine being a lonely melancholic atom thinking about the whereabouts of fel-

low atoms: “I wonder the chance of meeting another atom in this dilute vapour.” It pauses—

and then the epiphany: “It must be proportional to the density of the vapour!” For a proper

treatment see sec. 4.6 of [219].
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pole magnetic trap. To be susceptible to magnetic trapping the atom must be

in a weak-field seeking state. For an atom to be in a weak-field seeking state, the

Zeeman splitting of eq. (1.2) must increase the energy of the particularmF state.

In the
87
Rb ground state this is true for the |F = 2,mF = (1, 2)〉 and |1,−1〉

hyperfine sublevels. The trapping potential is given by (see sec. 4.1 of ref. [219])

B(x, y, z) =
mFgFµB

4

dB

dz

√
x2 + y2 + (2z)2 (2.5)

where
dB
dz

is the magnetic field gradient along the vertical direction (through

the center of the coils). This generates a V-shaped trapping potential for our

atoms which are in the |2, 2〉 state. By bathing the atom cloud in microwave

radiation of the right frequency, the atoms with the highest velocities (that are

able to reach the outskirts of the trapwhere the Zeeman splitting is the greatest)

are transferred to the |1, 1〉 state, which is a strong-field seeking state. As a result
they are expelled from the trap.

††
As this transition requires the change of the

nuclear spin i it is not an electric dipole transition but is coupled through the

magnetic dipole moment. The microwave frequencies are typically swept from

about 6.9GHz towards the F = 1→ 2 splitting of 6.83GHz (see appendix A).

As the clouds are rather dilute at this stage, the re-thermalisation process takes

a long time so this is a slow method,
‡‡
reaching temperatures of ∼ 1µK. For

details see sec. 4.6 of ref. [219].

The secondmethod is evaporative cooling in anoptical potential (see sec. 1.3)

which we perform in a crossed optical dipole trap (CDT). In this case the atoms

are trapped regardless of their mF state. As in the previous case, the hottest

atoms reside high up in the potential, and are removed simply by lowering its

brim. This is achieved by turning down the intensities of the laser beams provid-

ing the trap light. Optical evaporation is also different from themicrowave evap-

oration in the respect that the trap shape changes during evaporation, whereas

††
The same effect could also be achieved by internal transitions in the F = 2manifold, with

RF frequencies exactly matching the Zeeman splitting.

‡‡
The whole process takes about 15 s in our experiment.
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dB
dz

is held at a fixed value inmethod explained above. A detailed analysis of how

optical evaporation is optimally achieved is presented in ref. [212]. Inspired by

the central result presented in the articlewe vary the intensity of our dipole lasers

like

I(t) = I0

(
1+

t

τ

)−β

(2.6)

where I0 is the initial value of the laser intensity and τ and β are constants that

we determine experimentally. This method allows us to reach Bose-Einstein

condensation at a temperature ∼ 100 nK. Figure 2.1 presents a series of absorp-

tion images taken in our experiment where a BEC arises from a thermal cloud as

the cloud is cooled by evaporative cooling. The implementation of this method

of cooling is discussed in greater detail in ch. 3 of [131].

2.4 Bose-Einstein condensation

A very special state of matter appears as dilute vapours of bosonic atoms are

cooled to temperatures well below the µK regime. This is the Bose-Einstein
condensate (BEC), a macroscopic quantum-wave made of matter.§§ To get an

intuitive idea about how this state of matter forms, one should consider the in-

dividual atoms as small wavepackets with a wavelength equal to the thermal de
Broglie wavelength,

λT =

√
2π h2

mkBT
, (2.7)

for particles at a temperature T and of massm. As T decreases the density of

the cloud increases and the inter-particle distance n−1/3
shrinks. When λT and

n−1/3
are comparable in size (λT n

1/3 ' 1) the individual matter-waves begin
to synchronise and form one bigmatter-wave—the BEC. The quantity λT n

1/3

is essentially the phase space density
§§
The theoretical parts in this section are based on ref. [219], chs. 1, 2, 5 and 6, respectively.

The reader is directed to that reference for more details.
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Figure 2.1: A Bose-Einstein condensate emerges from the thermal cloud of cold atoms. From

top left to bottom right the end point of the evaporation in the crossed optical dipole trap is

decreased. This particularmeasurementwas donewith amicrotrap superimposed to the crossed

dipole trap (see sec. 4.2). The colour scale is the same for all frames.

PSD = nλ3T = n

(
2π h2

mkBT

) 3
2

, (2.8)

which is a useful quantity to evaluate the efficiency of a cooling process, where

typically onedesires asmany atoms as possible at as low temperatures as possible.

Bosons are particles with integer spin and due to the spin-statistics theo-

rem [217], they obey Bose-statistics. The Bose-distribution function applies for

non-interacting bosons at a thermal equilibrium and describes the probability

of finding a particle in the state ν, given its energy Eν

f(Eν) =
1

e(Eν−µ)/kBT − 1
. (2.9)
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Here the chemical potential µ is a key quantity. For warm clouds the occupa-

tion of the low energy states is small, and the probability distribution resembles

that of a MDB, and as T → ∞, µ → −∞. When T is lowered, µ becomes

less negative and the occupation the low lying energy states, starts to rise. The

form of the Bose distribution enforces the condition that µ 6 E0. The Bose-

condensation of the atom cloud happens at the critical temperature Tc, and as

T → Tc, µ → E0, and a macroscopic fraction of the particles in the system oc-

cupies the lowest lying energy state. As we see from eq. (2.9), the probability of

occupation will rise significantly as µ→ E0.

The critical temperature for the onset of the BEC trapped in a 3Dharmonic

potential is

kBTc ' 0.94  hω̄N1/3 (2.10)

where ω̄ is the geometric mean of the trapping frequencies along the three spa-

tial coordinates, andN is the total number of particles in the system. The ratio

of the number of condensed atoms to the total number of atoms is

N0

N
= 1−

(
T

Tc

)3
. (2.11)

This formula indicates that the onset of the phase transition from a thermal

cloud to a BEC is sharp. Precision measurements of the phase transition [173],

reveal that this is not true, as a Bose gas near Tc is not non-interacting as is as-

sumed in the case of the Bose-distribution. Repulsive interactions play an im-

portant role. The effect of the interactions is both to smooth out the transition

and slow down the rise of the condensate fraction below Tc.

The dominating interaction between two cold alkali atoms in a dilute cloud

is the electric dipole-dipole interaction, also known as the van der Waals inter-

action. The interaction varies as ∼ r−6, where r is the interatomic separation.

A basic quantum mechanical treatment of scattering theory reveals that when

two cold atoms scatter, the scattered wave is essentially spherical. This is so-

called s-wave scattering. That simplifies the process a great deal and enables
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us to quantify the scattering process with a single quantity called the scatter-
ing length, denoted by a. Inter-particle separations in cold dilute gases are large,
especially when they are compared with typical distances at which two atoms

interact. Due to this, and the simple form of the atom-atom scattering, it is well

justified to describe the interaction between two particles at coordinates r and

r ′ with a contact potential

U(r, r ′) =
4π h2a

m
δ(r− r ′). (2.12)

We call the front factorU0 for convenience.

To describe the condensed state we assume that all the different atoms in the

cloud occupy the same state |φ(r)〉 and the total wavefunction of the system is

the product state of all the single particle states, |Ψ〉 =
∏
i |φ(ri)〉, where ri

is the position vector of atom i. The Hamiltonian of an interacting gas of N

particles is

H =

N∑
i=1

[
p2i
2m

+ V(ri)

]
+U0

∑
i<j

δ(ri − rj). (2.13)

The energy of the gas is simply the expectation value of the Hamiltonian, E =

〈Ψ| H |Ψ〉. By introducing the concept of the condensate wavefunction |ψ〉 that
satisfies the normalisation condition

∫
|ψ(r)|2dr = N and by applying varia-

tional calculus to minimise the energy E, one will arrive at the Gross-Pitaevskii

equation (GPE)[
−

 h2

2m
∇2 + V(r) +U0|ψ(r)|2

]
|ψ(r)〉 = µ |ψ(r)〉 . (2.14)

This is the time-independent version of the GPE, and we see that the chemical

potential µ has popped up again. The GPE resembles the time-independent

Schrödinger equation with a non-linear term U0|ψ(r)|
2
. The GPE is a mean-

field theory, and the non-linear term accounts for the mean interactions of all

the bosonic atoms in the ensemble.
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For large BECs the interaction term dominates the kinetic term, which can

as a result, be neglected. This is the so-called Thomas-Fermi approximation.

By dropping the term out of eq. (2.14), one can solve for the atomic density

n(r) = |ψ(r)|2 to yield

n(r) =
µ− V(r)

U0
, (2.15)

showing that BECs take the shape of their trapping potential. By assuming a

harmonic trap V(x, y, z) = 1
2
m(ω2xx

2 + ω2yy
2 + ω2zz

2), the radius of the

condensate Ri (along dimension i) is determined by the conditionn(r) = 0, so

Ri =

√
2µ

mω2i
. (2.16)

The chemical potential is also uniquely determined and has the form

µ =
152/5

2

(
Na

ā

)2/5
 hω̄ (2.17)

where ā =
√

 h
mω̄

is the characteristic length scale in a harmonic trap.

2.5 Absorption imaging and time-of-flight measurements

It is safe to say that resonant absorption imaging is the most widely used tech-

nique for measuring cold atom clouds. The method is precise and can also be

made accurate, although that requires a great deal of experimental work [173].

Resonant absorption imaging is preferable for dilute gases with ODs on the or-

der of 1 [159]. The signals have high contrast but due to resonant scattering the

atom cloud is heated anddestroyed, so thismethod allows for only one good im-

age of the cloud. At higher OD’s it can be difficult to obtain the correct column

densities, butmethods exist to extract correct atomnumbers forOD’s at least up
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to 10 [230]. Ultimately one is limited by the dynamic range of the camera [229].

In comparison, dispersive imaging techniques (see secs. 1.4 and 4.3) work well

for samples with high OD, but their central advantage lies in the ability to take

multiple images of the cloud in a single realisation of the experiment, enabling

single-shot measurements of cloud dynamics. All the different dispersive tech-

niques have the same SNR for small phase shifts [104]. Minimally-destructive

absorption techniques also exist where a portion of the cloud is transferred to a

different internal state and subsequently imaged absorptively [229]. This tech-

nique has a similar SNR to the dispersive techniques.

To understand how atom numbers can be acquired through light absorp-

tion, let us assume that a laser field of intensity I propagating along the z direc-

tion, is incident on an atom cloud. Its intensity will now be reduced at the rate

of
dI
dz

which equals the product of the incoming light intensity I, the density of

scatterers n(x, y, z), and the cross section of the light-matter interaction σ, of

eq. (1.11). This results in Beer’s law

dI

dz
= −σ In(x, y, z). (2.18)

The atom cloud is illuminated and images of the laser beamwith (Ia(x, y)) and

without (Ib(x, y)) the atomic cloud present are recorded.
¶¶

The density is in-

tegrated along the line of sight and the intensity correspondingly drops from Ib
to Ia, so one obtains the expression

ln

(
Ia

Ib

)
+
Ia − Ib
Isat

+

(
2∆

Γ

)2
(Ia − Ib) = −σ0

∫z
0

n(x, y, z)dz. (2.19)

The term on the right hand (apart from the minus sign) is the so-called optical
density,

OD(x, y) = σ0

∫z
0

n(x, y, z)dz (2.20)

¶¶
A third image Ic(x, y) with no light present is also taken. That measures the technical

noise level on the camera. When processing the data, Ic is subtracted from both Ia and Ib.
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Figure 2.2: Reconstructing the atom density with absorption imaging. (a) The OD of the full

field of view of the camera. The arrow indicates the direction of gravity. (b)The laser field with
the atoms present, Ia. The white square demarcates the enlarged area shown in figure (c)where
the absorption due to the atom cloud is apparent. (d) shows a reference image of the light field
Ib. (e) is the enlarged image of the atomcloud,where the colour of the image is determinedby its

OD. The BEC is the high peak in the centre. (f) and (g) show the meanOD per pixel row, along

the vertical (V) and horizontal (H) directions. The data are fit with a bimodal distribution.

which is routinely used in the field, as it comes out naturally from an absorption

measurement.

Figure 2.2 (e) shows an absorption image (and its decomposition in frames

(a)–(d)) of a BEC createdwith evaporation in the CDT, on top of a background

of thermal atoms. The cloudwas released from the trap and allowed to fall freely
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under gravity for 15ms, before the first image was taken. The optical density is

obtained by putting the images Ia and Ib into eq. (2.19).*** Here ∆ = 0 so the

third term simply drops out. The graphs in (f) and (g) represent the averageOD

along the vertical and horizontal directions. The data are fit by a function con-

sisting of an inverse parabola (representing the Thomas-Fermi approximation

for the density of theBEC in aharmonic potential) and aGaussian (representing

a cloud expanded according to a Maxwell-Boltzmann velocity distribution).
†††

The total number of atoms can be evaluated by summing the OD pixel by

pixel,
‡‡‡

giving

Nsum =
1

σ0

∑
x,y

OD(x, y). (2.22)

The value of σ0 depends on the polarisation state of the light used for imaging

(for details see ref. [252]).

Another important property that we frequently extract from absorption

imaging is the temperature. By turning off the trapping potential the cloud will

start to fall under the effect of gravity. As the confining potential is no longer

present, the cloudwill expand according to its velocity distribution. The in-trap

momentum distribution of the cloud becomes clear as it falls. This is a time-

of-flight (TOF)measurement, that effectively yields the Fourier transformation

***
Care has to be taken as the raw images are in units of bit/pixel, which indeed is a measure

of the intensity of the incoming light. This is not an issue for the first term in eq. (2.19) but

in the second term, Isat has to be converted to the same unit. For that, a measurement of how

much energy a bit count in the camera E
bit
corresponds to is needed, as well as the area of one

pixel in the image plane,Apix. The saturation intensity in units of bits/pixel is then

I
bit

= Isat
Apix

E
bit
/∆timg

(2.21)

where∆timg, is the pulse length of the imaging light.
†††
At these low temperatures, the cloud distributions are better described by the Bose func-

tion (see sec. 2.3 of ref. [219]) rather than a Gaussian. In our experiment we do not require high

accuracy for those numbers, so this has been the convention.

‡‡‡
Remember to scale the σ0 to the dimension of a pixel!
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Figure 2.3: Extracting quantities by scanning the TOF. (a) The temperature of a thermal cloud
expands linearly with the TOF. (b) A calibration measurement of the corresponding size of a

pixel in the image plane.

of the in-situ momentum distribution. Assuming a Gaussian-shaped thermal

cloud, the 1σ-width of the cloud along a direction i is given as

rσ,i =

√
kBT

m

(
t2
TOF

+
1

ω2i

)
(2.23)

whereωi is the trap frequency along the i-th direction (see sec 4.5 of [159]). For

a long tTOF, the width rσ,i becomes linear in that variable, and grows indepen-

dent of the initial trapping frequencies. An example of such a measurement is

shown in fig. 2.3 (a). Here a cold thermal cloud of atoms was held in an opti-

cal trap about 80µK deep and dropped into a TOF measurement. The TOF

is scanned (changed stepwise in multiple realisations of the experiment), and

the cloud expands as the TOF is increased. By fitting eq. (2.23) one obtains a

temperature of T = 421(8) nK.

Figure 2.3 (b) shows how to extract the corresponding size of an individ-

ual pixel in the image plane. This is a necessary calibration measurement for

correct determination of both atom numbers and temperatures. The measure-

ment procedure is identical to the one for obtaining the temperature, but here
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Figure 2.4: An overnight stability test of the BEC creation of the machine. (a) The extracted
BEC atom number as a function of the run of the experiment. (b) The BEC radius plotted

against the BEC atom number. (c) The condensate fraction is plotted with the temperature of
the thermal component. The critical temperature of the BEC is around 170 nK, as indicated by

the rise of the condensate fraction.

one uses the fact that the distance∆s the cloud has fallen follows from elemen-

tary kinematics ∆s = 1
2
gt2, where g is the acceleration due to gravity. By a

quadratic equationwith one free parameter, the size of a camera pixel ismapped

to the image plane.

To test the stability of our BEC machine, we occasionally run it overnight

and observe the fluctuations in the fitted BEC number and the thermal part

of the cloud. Figure 2.4 shows an example of such a measurement. In the (a)

panel we see that when running the experiment continuously, it exhibits quite

some fluctuations, especially in the BEC numbers. The fluctuations in the ther-

mal part are small. For reference the mean atom number and 1σ fluctuations

in the region between run 500 and 1000 are Nth = 85(2) × 103 and NBEC =

76(9) × 103. There could be many reasons for these fluctuations like thermal
drifts (although at this point the experiment had active temperature stabilisa-

tion described in sec. 6.5), drifts in the frequencies of the master cooling laser

etc. We suspect fluctuations in the laser intensity controller of the dipole laser

to be the culprit. Until now these fluctuations have not been a big issue for our

experiments, but this is why some experiments choose to actively stabilise their

atom numbers [105] or devise methods for post-selection of data [24]. How-
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ever, as the BEC sizes fluctuate they can be used to (weakly) test some of the

BEC theory presented in sec. 2.4. In (b) the BEC radius extracted from the fit is

plotted as a function of the BEC atom number. According to eqns. (2.16) and

(2.17) we expect that R ∼ N
1
5 . The data are fit by such a function, and the agree-

ment is excellent given such a rough treatment. The final image (c) shows how

the BEC arises as the temperature sinks below the critical temperature Tc.





CHAPTER 3
The experimental machinery for

cold-atommagnetometry

Sections 3.4 and 3.5 are based on my progress report [83].

The experiment has seen many changes during my time in the Hires lab. It is

not straightforward to simply list all the different parts of themachine necessary

for the context of the thesis at once. The content of the whole chapter, apart

from that of sections four and five, which are exclusively for the magnetometry

experiments, is general for all the experimental work described in the thesis.
In the first section the typical experimental sequence carried out to produce

a thermal cloudof atoms in the science chamber is described. The second section

briefly discusses the basis of microscopy as that is important for all our experi-

ments. In the third section an account is given of the two main technologies

used for the spatial shaping of laser beams: the acousto-optical deflector and the

digital micromirror device. In the fourth and fifth sections, technical details of

the microtrap system and the spatially resolved Faraday polarimeter setup are

55
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Figure 3.1: A schematic setup of the vacuum components of the experiment. Details are given

in the text.

discussed. The sixth section discusses general noise properties of the cameras

we use both for the Faradaymeasurements and the high-resolution experiment,

and finally, the seventh section is devoted to the control system used in the lab,

which is a home-built solution written in LabView.

The contents of this chapter rely on my knowledge of the experiment and

on earlier reports of it, as detailed in chs. 2 and 3 of both [199] and [131].

3.1 The cold atom machine

The components of the vacuum setup: chambers, pumps and valves are all de-

picted in fig. 3.1. The experiment consists of four vacuumchambers. OurMagneto-
Optical Trap (MOT) section, consists of a glass cell (Hellma Optics) where

we make a 2D MOT, which is attached to an octagonal chamber (Kimball

Physics) where a 3D MOT is realised. At a right angle to the MOT config-

uration a couple of tubes connect the 3DMOT chamber to a smaller vacuum
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chamber cubic in size, called the cube chamber (Kimball Physics). A spe-

cially made connection piece attaches the science chamber (Kimball Physics)
to the cube chamber. All the different chambers, viewports, tubes and flanges

are made of 316LN steel, which is a non-magnetisable alloy, with some excep-

tions (the viewports in the MOT section and the gate valve connecting the 3D

MOT and the cube). The science chamber is made out of titanium, for even

better non-magnetic performance.

There are three vacuum pumps depicted in fig. 3.1. The ion getter pump

(Varian, VacIon Plus) maintains the 3D MOT in the ultra-high vacuum
(UHV) regime, at about 2 · 10−10mbar. A differential pumping stage between

the 2D and 3D MOT chambers keeps a pressure difference of about two or-

ders of magnitude. To reach extremely-high vacuum (XHV) an ion pump with

a NEG coated getter material (SAES, NexTorr D200) is situated in an angled

tube between the cube chamber and the science chamber. This pump brought

the science part of the experiment to the mid 10−11mbar.* During a bakeout

of the experiment in the fall 2016, we added another SAES pump (SAES, Nex-

TorrD500) to the science chamber side of the experiment, along with the nec-

essary tube pieces and a valve (as a link to a turbomolecular pump to use during

bakeout). The D500 brought us safely into the XHV regime with pressures

< 10−11mbar. During the early days of the experiment, our team found out

that the SAES NexTorr pumps don’t work well with the titanium sublimation

pump that was also built in. Therefore it was never used.

Let us link these different parts of the experiment together by introducing a

typical experimental cycle. Every sequence starts off in the 2DMOTcell. Atoms

are collected from a background gas of
87
Rb that evaporate fromRb dispensers

(SAES) inside the vacuumsystemwhen current is run through them. The atoms

*
It is a bit hard to tell exactly what is the level of pressure, as there is no dedicated pressure

gauge on the setup. The display monitor for the NexTorr D200 pump, always flickered some

low numbers in the nA regime, but in private communication with technical staff at SAES we

were told rather to trust the reading of a dedicated pressure gauge then the gauge of the pump.

Later on, our experience was that the SAES pump gauges read typically slightly higher values

than a proper ion gauge.
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collected in the trap are simultaneously pushed by a dedicated push beam, via
light pressure through a differential pumping stage (a nozzle with an opening

of 2mm) into the 3D MOT chamber, where they are collected in a six-beam

3DMOT. The 3DMOT works at a detuning of ∆3D ' 4.5 ΓD2, and a total
optical power of about 200mW is distributed such that there is twice as much

power in the two beam pairs propagating in the horizontal plane compared to

the beam pair that propagates vertically. This stage takes in total 5 s. As dis-

cussed in sec. 2.2 the temperature of the entire cloud varies from ∼ 10µK in the

centre to somewhere above theDoppler limit (at 146µK) at the outskirts of the

MOT.

Subsequently the quadrupole magnetic field of the 3DMOT is turned off

and a pure optical molasses phase is initiated. This phase lasts for 8ms in order

to reach sub-Doppler temperatures in the entire cloud. During that phase the

detuning is increased from 7.1 ΓD2 → 13.5 ΓD2, in a linear fashion. As a result

of the Doppler cooling cycle, all of the atoms in the ensemble are now in the

F = 2 state of the 52S 1
2
manifold of the

87
Rb ground state (see level scheme

in appendix A). The magnetic quantum numbermF is on the other hand not

well defined for the whole cloud. As we need to magnetically trap the cloud

later on, it must be pumped to a magnetically trappable state (see discussion in

sec. 2.3). By applying a magnetic field along the vertical axis of the setup in the

3DMOT chamber, a quantization axis is now chosen for the quantumnumber

F, and a circularly polarised beam (withσ+ polarisation, see sec. 2.2 of ref. [95]),

also propagating vertically, serves as a pump for the magnetic state for a period

of 1.5ms. As a result, the atoms are pumped into themaximally stretched state,

|F = 2,mF = 2〉.
ThequadrupoleMOTcoils aremounted to a rail (Parker,Daedal401XR

600), such that they can be physically moved. Due to this they are typically re-

ferred to as the transport coils. After optical pumping the current in the trans-
port coils is rampedup in150ms, toproduce amagnetic field gradient of∇Btrans =

150G/cm. Within the next 2 s, the coils are moved over to the cube chamber.

The cube is equippedwith a pair of high-current quadrupole coils, made of hol-

low wire for efficient water cooling, shown in dark orange (coils) and light blue
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(epoxy mount) colours in fig. 3.1. The atoms are loaded from the magnetic trap

of the transport coils into the trap generated by the cube coils by relaxing one

and ramping up the other to a gradient of about ∇Bcube = 130G/cm. After

loading into the cube trap, a loop antenna mounted inside the chamber deliv-

ers microwaves in three distinct linear ramps, ranging in frequency from about

6.92GHz to about 6.85GHz. This part of the sequence is the bottleneck when

it comes to time efficiency, as it takes in total 15 s for it to run through.

At this stage the atom cloud counts about half a billion atoms, at a tempera-

ture ∼ 1µK, which is difficult to measure precisely with the imaging tools avail-

able. At this point a tightly focussed single-beamoptical dipole trappropagating

through thewhole vacuumsystemalong thenegative longitudinal direction (see

fig. 3.1), is ramped to a high power, giving a very deep trap. The light originates

from a Nufern NuAmp fibre amplifier operating at a wavelength of λDT =

1064 nm. The longitudinal dipole trap (LDT) has a waist of wLDT ' 45µm,
and at the loading power of 2.9W the trap depth amounts to about 140µK.

The focus of the LDT can be shifted with the help of a remotely-controllable

translation stage (Thorlabs DDS220/M) to the science chamber. The posi-

tion profile of the transport stage is determined by two parameters, a constant

acceleration ats and a maximum velocity vts. The total transport distance is

228.4mm and it takes 2.2 s using ats = 100mm/s2 and vts = 150mm/s.

As the cloud arrives to the science chamber, another dipole trap propagating

transversal to the LDT, the transverse dipole trap (TDT), is ramped to a value
of 6W (70 µK), generating a crossed dipole trap (CDT).† The trap power of the
LDT is subsequently ramped down to 1.75W (80µK), giving roughly equal

trap depths in the two beams. The total depth is now around 140µK, taking

into the account the effect of the gravitational sag. Up until this point the cloud

preparation takes around25 s and the atomcloud contains20–30million atoms

at a temperature of 10–20µK.This can be considered to be the starting point of

the all the different experiments described in this thesis, unless otherwise speci-

fied.

†
A detailed description of this part of our system can be found in ch. 3 of [131].
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3.2 The (very) basics of microscopy

Microscope objectives are central to both our implementation of magnetome-

try and the high-resolution setup. Although the quality of the optics and their

light-gathering capacity is very different, the same basic physics applies.
‡

Theapparent size of anobject dependson the angle it subtends in the fieldof

view. By placing a convergent lens with a focal length f between the viewer and

the object, the object can be brought closer to the viewer. If the object is placed

within a distance of f from the lens, it will create an enlarged virtual image of

the object that appears to be further away than the distance to the object itself.

This is the entity seen through a looking glass, rather than the object itself.

The closer one can place the convergent lens to the object, the more light

one can gather from it. The numerical aperture (NA) of an imaging system is

precisely a measure of that, as portrayed in fig. 3.2 (a). It is defined for the most

extreme ray that can enter a lens of a focal length f that has a free aperture d, at

an angle of θ as

NA = n sin(θ) = n sin

(
arctan

(
d

2f

))
' nd
2f

(3.1)

where n is the refractive index of the material the ray travels in. In our case this

material is air, so n = 1. Upon the assumption that θ is small, the approxima-

tion in the equation above is valid.

Thenumerical aperture of amicroscope is also related to its resolving power,

which is the level of detail that can be distinguishedwith the optic. If the system

is free of optical aberrations, its performance is limited only by the diffraction

of the light. To understand this in more detail, we must introduce the con-

cept of the point-spread function (PSF). The PSF is an imaging system’s response
to a point source—or simply the image of the point source after propagation

through the system (sec. 3.2. in ref. [124] covers the concept in details). It is

‡
The section is written with the help of ref. [34].



3.2. THE (VERY) BASICS OF MICROSCOPY 61

-1 0 1
distance [µm]

in
te

ns
ity

 [a
rb

. u
ni

ts
] (b)

-1 0 1
distance [µm]

in
te

ns
ity

 [a
rb

. u
ni

ts
]

w
0

r
min

r
min

 = 1.434 w
0

(c) PSF
Gaussian fit

Figure 3.2: Resolving an object by a lens. (a) The definition for numerical aperture of a lens

of focal length f with a free aperture d. The NA is the sine of the angle θ. Source: Wikime-

dia Commons. (b) The Rayleigh resolution limit is the distance between the two vertical black
dashed lines. See details in the text. (c) Fitting a Gaussian to an Airy disk.

convenient to represent it in coordinates (ρ, ζ) that relate to the cylindrical co-

ordinates (r, z) by

ρ =
2π

λ
NA r, (3.2)

ζ =
2π

λ
NA

2 z, (3.3)

where the image is formed at z = 0, and r is the radial coordinate in the image

plane. The PSF is the function IPSF(ρ, ζ). The radial intensity distribution of

the PSF is identical to that of an Airy disk,

IPSF(ρ, ζ = 0) = I0

(
J1(ρ)

ρ

)2
, (3.4)

where I0 is the maximum intensity and J1(ρ) is the Bessel function of the first

kind of order one (see sec. 5.2 of ref. [179]). The extent of the function axially is

given by a sinc function
§

IPSF(ρ = 0, ζ) =
I0

π2

(
sin(ζ/4)

ζ/4

)2
. (3.5)

§
The extra factor of

1
π2 that appears in the axial part of the function is hidden in the J1(ρ).



62 CHAPTER 3. THE EXPERIMENTAL MACHINERY FOR COLD-ATOM MAGNETOMETRY

Imagine that we have two such point sources side by side that we want to

image and distinguish in the image plane (ζ = 0). How closely can we space

them? The Rayleigh criterion is the distance between the images of the two

point sources where the first diffractionminima of one image lies in themaxima

of the other, as illustrated in fig. 3.2 (b). That distance is equal to

rmin = 0.61
λ

NA

. (3.6)

Other criteria for resolution limits exist, but in this textwe plead to theRayleigh

criterion as its usage is widespread in our field of research.

To determine the resolution limit of an imaging system, one ideally acquires

an image of a point source. In practice this can be approximated by an aperture

that is smaller then what can be resolved by the system. It can be problematic

to fit the Airy function directly, as the side lobes of the PSF are often not clearly

visible due to residual aberrations still present in the imaging system. Thus it is

quite common practice to fit a Gaussian function (eq. 1.15), see fig. 3.2 (c). The

Rayleigh limit can be related to the fitted waistw0 by the relation

rmin = 1.434w0. (3.7)

3.3 Shaping light

Light is central to the field of cold-atom physics. The laser provides means of

trapping, cooling andmanipulating cold atoms. Technical developments in the

generation, handling and detection of light have in the past decades expanded

the experimental horizon and brought new types of experiments within the

reach of cold-atom labs around the world. One of those aspects, on which we

put heavy emphasis in our laboratory, are some of the different ways of shap-

ing laser light spatially. We rely on two distinct pieces of technology, acousto-
optical deflectors (AODs) and spatial-light modulators (SLMs). Out of the dif-

ferent SLM technologies available we use digital micromirror devices. Generally
speaking SLMs are more flexible than AODs, as they enable spatial control over
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both the amplitude and the phase of a laser beam. Due to that they may be

employed to correct for aberrations that arise in optical systems, as they give

full control over the wavefront of the laser. However, their power efficiency is

typically worse than that of AODs, which are also more easily implemented to

optical systems.

The usage of acousto-optic devices is ubiquitous in modern optics labs as

a means of controlling and regulating intensities of laser light as well as for fast

switching of light fields, typically on the scale of 100’s or even 10’s of ns. In

recent years they have also become popular for spatially shaping light beams,

that are used to trap cold atoms. An AOD deflects a laser according to the

frequency of an applied radio-wave. Often the AOD is operated with a sin-

gle tone, only deflecting one beam at a time. This means that complex patterns

of light have to be “painted”. The first attempts to use AODs to make flexible

trapping potentials for neutral atoms were reported almost 20 years ago [98].

Later they were employed to make simple static potentials for BECs to realise

atom interferometers [245], however heating was an issue for making arbitrary

trapping potentials. The first successful application for BECs was achieved in

2009 [133]. Since then this technology has been especially popular for making

circular trapping potentials for BECs, an optimal platform for interferometric

applications [26, 77, 188]. AODshave alsobeenused to realise a cold-atomcloud

collider, a flexible systemwith a high degree of spatial control for studies of scat-

tering [231, 268]. Furthermore, they have been employed in a different context

for a multiplexed quantum memory device for writing and reading out quan-

tum states [227]. As discussed in the introduction, recent experiments relied

on AOD controlled optical tweezers to generated arrays with unity atom fill-

ing [22, 87].

In the early 00’s the power of SLMs for optical trapping was first properly

demonstrated. Since they have been used to manipulate everything from mi-

crobeads to proteins to individual atoms [119]. The first successful realisation

of an SLM based neutral atom trap dates from 2004 [29]. Here the traps were

static, and intended for single atoms, but only a couple of years later a simi-

lar device was used to split and transport a BEC [36]. These first implementa-
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tions relied on holographic beam shaping with a liquid crystal phase modula-

tor (LCPM). An alternative method is to manipulate the amplitude directly by

imaging the pattern on aDMD[42, 198]. This offers a very flexible way of creat-

ing arbitrary static potentials [108]. Recent reports also confirm thatDMDs can

be used in a dynamic mode to transport single atoms [256]. Another showcase

of their usefulness, important for our particular application in the laboratory, is

their combinationwith quantumgasmicroscopes to generatemany-body states

of ultra-low entropy [189].

The following subsections will briefly describe the technical aspects of the

two technologies for light shaping.

Acousto-optical deflectors
The first realisation of acousto-optical deflection in 1932, was due to the experi-

mental work of P.Debye and F.W. Sears [69]. A ray of lightwas passed through

a container filled with liquid. A quartz crystal connected to an RF source, was

immersed in the liquid, andby turning on theRF source, supersonicwaveswere

excited in the liquid. The light ray was then observed to diffract into multiple

orders due to the interaction with the sound waves in the liquid.

Present day AODs don’t rely any more on liquids. Instead laser beams pass

through transparent crystals and acoustic transducers create vibrational excita-

tions (sound waves) that propagate in the crystal transversely to the laser beam,

see fig. 3.3. A photon with a momentum kp in the light ray passing through the

crystal is diffracted by phonons, quantized vibrational excitations that have a

momentum ks. Momentum must be conserved so the diffracted photon mo-

mentum is ([65], sec. 19.11)

kp

′ = kp ± ks, (3.8)

where the sign depends on if the photon-phonon scattering process increases

or decreases the energy of the outgoing photon. The momentum conservation

leads to a deflection in the angle of the outgoing photon with respect to the
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Figure 3.3: A schematic figure of the function of an AOD. A laser beam enters the crystal (in

light blue) from the left. As anRF source is coupled to a transducer it excites soundwaves in the

crystal propagating in the vertical direction in the image. The laser is diffracted into multiple

orders by the density modulations generated by the sound waves.

angle of the incoming photon. The photon is diffracted into discrete diffraction

orders as shown in fig. 3.3. The frequencies of the outgoing photons are also

shifted discretely by integer multiples of the phonon frequency fs in order to

conserve energy. As a result, AODs can also be used to shift the frequency of

laser light, which makes them extremely useful in laser locking applications for

detuning the light compared to a given atomic transition.

The specificmodel used inour experiments (DTD-274HD6Mby IntraAc-

tionCorp.) consists of twoTeO2 crystals. The laser beampasses throughboth

crystals, which aremounted at right angles with respect to each other. One crys-

tal deflects the light horizontally and the other vertically. This device enables 2D

control over the angle of the outgoing laser beam.

Digital micromirror devices
A digital micromirror device is an electronic chip covered with tiny mirrors.

For all the different applications described in the thesis, we use the same DMD

model (DLP LightCrafter 6500 from Texas Instruments). The active area
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Figure 3.4: A schematic picture of a DMD. An incoming light beam (yellow) is reflected of the

micromirrors on the DMD chip. Depending on the state of the mirrors, that are tilted by an

angle θ = ±12◦, the reflected beam is guided into or away from the imaging system. The inset

is a microscope image of a DMD chip borrowed from [265].

of the chip hosts a 1080× 1920 array of square mirrors, each with a side length
of 7.56 µm[264]. When the device is off or in standbymode, themirrors lie flat

with respect to the substrate, but once turned on eachmirror is tilted±12◦, de-
pending on the whether the state of the mirror is on or o�, as shown in fig. 3.4.
The angle of the mirror is controlled by electrodes placed underneath it. The

images that can be uploaded and displayed on the DMD are binary black-and-

white images.

The DMD chip is interfaced with a computer via a USB connection to an

evaluation board that comes with the device. ADMD from our setup is shown

in fig. 3.5 (a), where the chip itself is the silvery square in the centre of the image.

It can be operated with a GUI provided by Texas Instruments or directly from

our experimental control software (see sec. 3.7), where the relevant portion of

the GUI code has been modified to fit into that framework [223].

Until now we have only used the DMD in pattern on-the-flymode. In this
mode either a static image can be uploaded for display on the DMD, or a series

of images may be uploaded and displayed as a movie. The memory buffer on
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Figure 3.5: The DMD model in our experiment. (a) The DMD chip of a DLP LightCrafter

6500, containing about 2 million tiny mirrors. This one was used for the magnetometry exper-

iments. (b)The DLP LightCrafter 6500 evaluation board, with the clock thief circuit mounted
on top.

the evaluation board limits the total number of images to 400, and they can be

swapped at a maximum rate of 9.523 kHz, corresponding to a minimum dis-

play time of a single image of 105µs. Transport of individual atoms has been

demonstrated using this feature [256].

Due to the risk of surface adhesion or deformation of the mirrors, that can

be caused by the mirrors remaining too long in a tilted state, the manufacturer

implements amirror clocking pulse (MCP). This pulse interrupts the state of the

mirrors and brings them momentarily to the flat state [140]. Within 3–5µs it

returns to the tilted state. TheMCPoperates at themaximumrate of theDMD,

9.523 kHz. These are unfortunately typical trapping frequencies one finds in

tight lattice traps or even the tight optical tweezer potentials generated in the

high-resolution setup (see ch. 6 andonwards). TheMCPmight then turnout to

be an obvious source of heating of atoms residing in these traps, as the intensity

of the light from the DMD flickers at this rate (see fig. 4.1 of ref. [223]). The

authors of ref. [140] developed an electronic circuit (nicknamed the clock thief),
that upon a TTL signal grounds the MCP and turns it momentarily off. As a
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result, they report a 47-fold increase in the lifetime of their ultracold Fermi gas

that has an energyE/h close to the flickering frequency. Having read about their

results we decided to implement the clock thief on all theDMDs that were built

in to the high-resolution setup, as shown in fig. 3.5 (b). However, the clock thief

was not implemented for the DMD controlling the Faraday signal (see sec. 3.5)

as the total interaction time with the atoms is at most 80µs during an entire

experimental cycle, rendering any heating effects due to the flickering negligible

in comparison to heating from the Faraday light itself.

3.4 Making microtraps

To enable imaging with good resolution and to make microtraps
¶
with waists

of a few µm, the science chamber was equipped with two oppositely-facing re-
entrant viewports. Two identical objectives were placed into each viewport, one

for imaging and the other for creating microtraps, see fig. 3.6. The distance

from the inner side of the window of either re-entrant viewport, to the cen-

tre of the chamber was measured to be 30.4mm. The microscope objectives

(LensOptics) were custom designed to have an NA of 0.27 and a focal length

of fobj = 36.8mm for 780 nm light. Their design is described in [5], and they

have proven useful in other experiments [2, 6]. Figure 3.6 also shows the posi-

tioning of the Helmholtz coil pairs used for stray field compensation, and for

applying the necessary fields for the magnetometry experiments.

A Toptica DLC Pro operating at a wavelength of 912 nm provided laser

light for themicrotraps. The light was amplified with a home-built tapered am-

plifier (TA) and brought to the experimental table through an optical fibre, af-

ter which the light entered the setup depicted in fig. 3.7. The first lens after the

¶
The AOD-generated optical potentials in the magnetometry experiment will be referred

to as microtraps, and the DMD-generated ones in the high-resolution experiment as optical
tweezers. Both are obviously microtraps and optical tweezers, but this is done solely to distin-
guish the two setups. I will routinely refer to both potentials as dimple traps or simply dimples
where they are used for BEC creation via the dimple trick.
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Figure 3.6: A schematic setup figure of the science chamber. Identical microscope objectives

are mounted into facing re-entrant viewports to enable mircotrapping and spatially-selective

probing of those. The relevant laser paths are shown: 1064 nm is for the CDT, 912 nm for

microtraps and 780 nm for the probing. The positioning of the compensation coils used for

background field compensation, and for sweeping the magnetic fields for the magnetometry

experiments is also shown. The figure was first printed in [84].

AODwasplaced exactly at the distance thatminimised the convergence or diver-

gence of an array of beams emerging from it. This beamwas expanded to create

a large beam that was focussed to a tight trap after the first imaging objective.

Theheart of the setupwas theAOD, that enables flexible two-axis control of

the laser beam. To control the beamweneeded a goodwayof controllingRF sig-

nals. For that purpose we used a commercially available DDS chip-based pulse

generator (PulseBlasterDDS-II-300-AWG,bySpincoreTechnologies). The

signals were amplified by RF amplifiers made by the electronic workshop in-

house, and the RF tone was delivered to each axis of the AODwith a power of

1.00(2)W.Despite the center operational frequencyof theAODbeing specified

at 27MHz, we got better diffraction efficiencies around η ' 40% by running it

at fAOD = 35.0MHz.

One of the advantages of using the AOD in combination with a flexible

RF source is the ability to create arbitrary potentials. To achieve this the (1, 1)

diffraction order emerging from the AODwas aligned to the atomic cloud, and

then the PulseBlaster was programmed to cycle through a given set of frequen-
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Figure 3.7: A schematic setup of the microtrap optics. Details are given in the text. Figure

borrowed from [131], and slightly modified.

cies, painting a pattern of light in the atomic plane. At every instance in time,

only one laser beam was actually present at the location of the atoms, but by

cycling through the frequencies quickly enough, the atoms would experience

a time-averaged potential. For the time-averaging to work, one needs the shift

frequency fsh of the AOD, to be at least an order of magnitude faster than the

typical trapping frequencies in the microtraps fmt. For an array of microtraps

with N traps we required fsh > 10 Nfmt. The PulseBlaster itself can deliver

pulses with a temporal resolution of 13.3 ns, which was more than sufficient

for time averaging of these tight traps (which typically have fmt ∼ 1 kHz). An

example of atoms trapped in time-averaged potentials recordedwith absorption

imaging is shown in fig. 3.8.

The limiting factor in terms of cycling speed in our system was actually the

AOD crystal itself. In order to change the pointing of the laser beam, the sound

wave has to travel through the diameter of the beam. This was why we chose a

beamwaist of only 800µm, even though the AOD has a full aperture of 4mm.

The access time of the AOD is tacc = 1.6 µs/mm, yielding a maximal shift rate

of about fsh,max = 500 kHz. We observed the same timescale when recording

the rise time of the beam intensity on a photodiode. Another problem arose
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Figure 3.8: A 3-by-3 array of atoms in microtraps in absorption imaging.

due to the finite propagation time of the sound wave through the crystal. If

the difference between two adjacent frequencies ∆f < 300 kHz, we observed a

modulation in the beam intensity due to beating of the two frequencies in the

crystal, an effect also reported elsewhere [87].

3.5 A setup for spatially-resolved Faraday imaging

As described in sec. 1.4, the Faraday effect manifests itself in the rotation of

the plane of polarisation of an off-resonant light beam incident on an atomic

sample. The setup described here was capable of shaping the probe light, in an

arbitrary manner with a DMD. The surface of the DMD was imaged directly

onto the atoms. The beam incident on the cloud featured clean linear polarisa-

tion and the amount of the polarisation rotationwas detected after the chamber

with a balanced homodyne polarimeter.

The probing lightwas provided by aTopticaDL100 780 nm laser. To lock

the laser off-resonance, we used a home built beat-lock system. The signal from

the Faraday laser was mixed with a reference signal from our master laser source

(used for atom cooling and absorption imaging) which was spectroscopically

locked to the F = 2 → F ′ = (2, 3) crossover transition in 87Rb. The Faraday
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Figure 3.9: A schematic setup of the probe light optics. Details are given in the text. Figure

borrowed from [131], and slightly modified.

light was always detuned blue of the atomic transition. Details on the imple-

mentation can be found in ch. 7 of [192].

The DMD setup is schematically depicted in fig. 3.9. For the initial align-

ment of the DMD system we made use of the periodic structure of the chip.

The chip works as a grating and by sending a beam backwards through the sys-

tem onto theDMDwith all themirrors in the on-state, the brightest diffraction

order was aligned into the outcoupler that brought light to the system. In this

way the grating conditions for the incoming light were matched, maximising

the efficiency of the system.

When small structures are uploaded to the DMD, it can be considered as

a point source. To align the optical system, we used the light emerging from

a single illuminated DMD pixel. All lenses were aligned with the help of a

shear plate interferometer (Thorlabs, SI035).
∥
In between the outcoupling

lens and the DMDwe installed a lens precisely at the distance of 1 focal length

∥
Doing this in practice is still very challenging as the light level coming from a single DMD

pixel is very low. Mounting a camera (IDS, UI-1240SE) directly onto the output of the interfer-

ometer enabled a good measurement.



3.5. A SETUP FOR SPATIALLY-RESOLVED FARADAY IMAGING 73

away from the collimation lens after the DMD. This was done in order to pro-

vide a curved wavefront for the collimation lens to reduce the effect of non-

isoplanatism (discussed below). The system demagnified the DMD image by a

factor ofM1 ' 1/22. Before the light entered the objective it was sent through
a polarising beam splitter cube (PBS) with a high nominal extinction ratio of

104:1 (fromLinos). This was to ensure the linearity of the light polarisation of

the Faraday imaging light. The cube rested on a tiltable mount that allowed for

a precise alignment of the balanced polarimeter.

On the outgoing port of the chamber, the second objective re-collimated

the Faraday light. Its polarisation was rotated by 45◦ with a λ/2 waveplate

(mounted in a high precision rotation mount, Thorlabs, PRM1/M), before

it passed through a Wollaston prism (custom made by Foctek). The prism

was designed to separate the orthogonal polarisations of the outgoing beams,

by θW ' 0.3◦. The co-propagating beams were imaged onto an electron multi-
plying charge-coupled device (EMCCD) camera. The magnification of the atom

image wasM2 ' 26.
It is important that the intensity distribution of the light in the Faraday im-

ages is homogeneous. As mentioned above, we took precautions to minimise

the effect of non-isoplanatism in our setup. This effect arises when a flat surface

is imaged onto another flat surface. The optical distances between the object

plane and the image plane will be slightly different for the two point sources,

so interference effects may arise (see refs. [41, 270] and ch. 6 of [197]). To rem-

edy distortions that may arise from this effect, the DMD was illuminated with

a curved wavefront such that the wavefront emerging from the collimation lens

was flat. Even though this effect was not pronounced in our system, we could

still improve the flatness of our images with the 200mm lens. We managed

to decrease the sum of the squared residuals (subtracting the mean intensity

from the image) by 40% with the lens in place. For detailed analysis see ch. 4

of ref. [170].

This lens also resolved another issue. When we imaged a single DMD pixel

for the first time, a background fieldwas prominent in thepicture. The intensity

of the field was constant regardless of how many DMD pixels were turned on
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Figure 3.10: Images showing the versatility of light shaping with the DMD. The images shown

are taken from one of the ports of the polarimeter. (a) An image of a checker-board pattern.
(b)An image of a square. (c)A sample of randomly placed spots. The compilation is borrowed

from [131].

or off, and it formed the same image as was formed when the whole chip was

turned on, albeit at lower intensity. We could also focus this background light

by moving the final imaging lens a fewmm from the image plane of the DMD.

We believe that this residual background light was due to theMCP discussed in

sec. 3.3. We hypothesised that the light was focussed because theDMDchip had

a slight curvature such that it acted as a concave mirror. With the lens in place

this focusing effect was no longer observed.

In figs. 3.10 (a)–(c) some examples of DMD-forged light patterns imaged

through the systemare shown. Thepatterns are rendered fromthe image record-

ed of a single port of the polarimeter,
**
and they show the flexibility of theDMD

in creating light patterns. The imaging system is notably not free from aberra-

tions, nor is the illumination perfectly homogeneous. However, this did not

limit the capabilities of the setup for the magnetometry experiment. We at-

tribute the imaging imperfections primarily to a long total beam path (∼ 3m)

of the probing light, necessitated by the high density of optics around the cham-

bers. To eliminate stray light from sources at other wavelengths than 780 nm in

the detection setup, wemounted two interference filters (Semrock) at an angle

with respect to the propagation of the beam into the camera, to avoid interfer-

ence effects.

**
The intensity of balanced detection is cancelled in the homodyne procedure.
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3.6 Technical sources of noise

All means of detecting atoms in our laboratory are based on measuring light.

Both the magnetometry measurements and the fluorescence detection in the

high-resolution setup rely on an EMCCD camera (Andor iXonUltra 897).

The active area of the camera is aCCDchipwith 512×512 pixels, and each pixel
is 16×16µm2. Ourmodel is also equipped with another CCD chip connected

directly to the sensing chip that can be used as a buffer for storing images.

Figure 3.11 depicts the process of converting a detected photon into an im-

age, see ref. [11]. A photon that strikes a pixel on the chip, which is made of a

semiconductor material, is converted to an electron (1). The conversion is not

perfect and the ratio between the number of incoming photons Nph and the

number of generated electronsNe is called the quantum efficiency

ε =
Ne

Nph

, (3.9)

where ε is a number between 0 and 1. ε is a characteristic of the semiconduc-

tor material used in the chip, and it depends on both the incoming wavelength

of the light and the operating temperature of the chip TCCD. For the relevant

regime of temperatures, ε is a decreasing function of TCCD. Measurements of ε

for the camera used for the Faraday measurements are presented in ref. [192].

At the typical operating temperature of TCCD = −40◦C, ε = 0.725(2), a value

we also adopt for the camera used for the fluorescence detection as the models

are identical.

As the exposure time for the image ends, it is read out. That is done by first

shifting the electrons that have accumulated in the sensor chip vertically into

the storage chip (2), and subsequently each row is shifted horizontally into the

next stage (3). Stage (3) could be the optional step of electron multiplying (EM)

amplificationwhere every electron ismultiplied by anEMgain factorGEM (4) or

it is alternatively shifted through the EMregisterwithout gain and then directed

to the analogue-to-digital converter (ADC) that converts the electrons to ADC
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Figure 3.11: How an EMCCD camera works. Image borrowed from [170], and modified.

counts with a gain factor G (5). The gain G = 1/S, where S is the sensitivity,

which is the number specified by the manufacturer.

As mentioned, the camera can both be operated in a conventional mode,
without EM gain, and in EM mode with EM gain. In the former mode the

number of ADC counts becomes

Nc,con =
εNph

S
, (3.10)

and in the latter mode

Nc,EM =
εNphGEM

S
. (3.11)

This process induces unavoidable noise in the resulting image. This noise stems

mainly from three sources, thermally activated electrons; the process of shifting

the electrons through the registers; or from the readout process in the ADC.

Thermally activated electrons accumulate over time and inducewhat is called

dark noise δdark or dark current (if viewed per unit of time). This noise term
is negligible compared to other noise sources at the operating temperature of
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TCCD = −40◦C. The shifting process induces what are called clock-induced
charges (CICs) and contribute to a noise term δCIC. This can be minimised by
adjusting the shift speed and the shift amplitude

††
in the vertical shift processes,

(2) in fig. 3.11. Generally speaking, slower shifts and larger amplitudes yieldmore

noise. Both δdark and δCIC are typically very small for normal operation, but their

effect is amplified when operating in EMmode. The readout process gives rise

to a readout noise term δread that depends on the settings of the ADC converter,

its sensitivity and the readout rate (i.e. the horizontal shift rate).

To account for the full noise budget, onemust not forget the noisy nature of

thephotons themselves. If the photons induceNe electrons, the noise associated

due to the Poissonian nature of the photons
‡‡
is δe =

√
εNph. The measured

signal using the EMregister is givenby eq. (3.11). As the different sources of noise

are all independent, their contributions are added in quadrature. Keeping in

mind that all noise is amplified in the same way as the usual signal (apart from

the readout noise term which is only amplified by 1/S) the SNR in the image

is [10]

SNR =
εNph√

F2(δ2
dark

+ δ2
CIC

+ δ2
e
) + (δread/GEM)2

. (3.12)

In the equation, F is a multiplication factor that depends on the operational

mode of the camera. F = 1 in conventional mode, but due to the stochastic

nature of the EM process the noise is enhanced by a factor of F =
√
2. The

usefulness of the EM register is apparent from the equation as it can be used

to effectively reduce δread. By equating the expressions for the SNR in the EM

and conventional modes, assuming that δ2
dark

, δ2
CIC

and δread/GEM can be made

arbitrarily small, and the EM gain high enough to minimise the readout noise

in EM mode, the break even point of the two modes is Nph,even =
δ2
read

ε
' 10

photons/pixel. This is obtained using the readout noise value (δread = 2.8 e−)

††
The amplitude controls the depth of the potential in which the electron is stored in each

pixel.

‡‡
Noise of a signal from a source of a Poissonian nature is routinely called shot noise.
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for the slowest readout rate available, as specified by the manufacturer. The use

of EM gain is then favourable for fewer photons than Nph,even. As this opera-

tion setting is horrendously slow, we typically use the fastest mode with δread =

9.7 e−, givingNph,even = 130 photons/pixel. In the ideal case, all noise sources

are small compared to δe where we retrieve the shot noise limit

SNRSN =
1√

εNph/F
. (3.13)

3.7 Alice: The experimental control system

Alice, the experimental control systemwaswritten inLabViewby a formerMas-

ters student in the group
§§
, see ref. [269]. It is a modular system where differ-

ent parts of the experimental sequence can be easily grouped together in phys-

ically relevant groups. The fundamental entity in Alice is a wave. A wave is a

command to some hardware that lasts for a defined period of time. The con-

trol system is connected to a set of analogue and digital output channels, but

special waves can be made for special experimental hardware. For example, we

have waves to communicate with the DMDs, the objective scanner of the high-

resolution microscope, the RF source for the AOD, VISA interfaced instru-

ments and the transport stage used for optical transport of the atom cloud.

Waves can be combined into blocks in order to control many channels at

once and/or sequentially. Every wave has variables that define its action and du-

ration. These variables can either be local within the wave, or defined as global

variables for theblock. In thiswayonemay construct a blockout ofmanywaves,

where the block performs a certain task but only some of the variables remain

accessible to the user.

§§
The program got its name due to the developer’s fondness for Lewis Carroll’s Alice in

Wonderland. The experiment control system is the rabbit hole thatAlice tumbles down to enter

Quantumland.
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Figure 3.12: A screenshot of the experimental control systemAlice. The particular block shown

is the one used to acquire absorption images. Two variables in this block are global, the TOF

and the frequency of the imaging light.

Let’s take an example of the task of acquiring an absorption image in time-

of-flight. As explained in sec. 2.5, one needs 3 different images under 3 different

conditions. The procedure is roughly as follows:

• Open the mechanical shutter for the imaging light and set the detuning

of the imaging light with the AOM.

• Wait for the time defined in the time-of-flight measurement.

• Pulse the AOM that enables fast control of the light and simultaneously

trigger the camera.

• Wait until the atomcloud falls out of the field of viewof the image system.

• Pulse the AOM that enables fast control of the light and simultaneously

trigger the camera.
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• Close the mechanical shutter.

• Trigger the camera.

• Set the detuning of the imaging light back to where it was.

The procedure is always the same, apart from the time-of-flight and the fre-

quency of the detuning that controls the image light. This set of waves can be

saved as a block with only these two knobs as global variables, encapsulating the

rest of the code to make it more user-friendly.

The program features a common pool for frequently used blocks, known as

public blocks (the list on the right hand side in fig. 3.12), where the imaging block
can be saved. With a simple drag-and-drop feature a public block (the list on

the left hand side in fig. 3.12) can be pulled into any sequence, which is merely

one big block in the eyes of Alice. The interface features an intuitive tree struc-

ture, where waves/blocks at the leftmost level are executed sequentially, but an

indented wave/block is executed in parallel with the one above. Figure 3.12 fea-

tures an example where two waves have been indented for execution in parallel

with the third wave. By construction, this design enforces modular thought,

which is closer to the physical intuition of the operator.

All the output variables of a block can be accessed and scanned in a series

of experimental runs. The variables are scanned in a linear manner and any

number of variables can be set to scan either simultaneously or in a different

dimension of the scan. Only the patience of the operator limits the number of

dimensions in a scan, and multiple scans can be executed in series.

As reported in [132] (and in a greater detail in [131]), Alice has also been used

to interface a remote optimisation task and a citizen science experiment, where

the general public gained control over laser intensities and quadrupole coil cur-

rents via a game interface developed in collaboration with the game developers

of ScienceAtHome. For a long time we operated Alice via LabView 2013, and

when performing long scans the program would occasionally crash. After up-

dating to LabView 2017 we experienced no longer this issue.



CHAPTER 4
Dispersive probing of atomic clouds

Sections 4.1, 4.3 and 4.4 are based on my progress report [83], but have
been edited and expanded.

This chapter describes the characterisation of the microtraps and the Faraday

probeused for themagnetometry experiments. In the first sectionwediscuss the

general properties of the microtraps, and in the second section measurements

of the loading from a reservoir into a single microtrap are accounted for. In the

third section we shift focus to the polarimeter and describe general properties

of the dual-port Faraday imaging technique employed here, and in the fourth

section the destructive nature of the Faraday probe is evaluated. The fifth sec-

tion discusses the signal-to-noise ratios of the Faraday signals and the technical

noise level of the detection system is analysed.

Beforediving into thedetails Iwant to convey the general ideaof the spatially-

selective probing technique. Figure. 4.1 features a raw Faraday image of five

atom clouds trapped in microtraps, in a configuration shaped like the number

five on a die. The fluctuations in the image give an idea of the measurement

81
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Figure 4.1: A raw Faraday image of atoms in five microtraps. The red cylinder demarcates the

minimal size of a probe beam, demonstrating the spatially-selective nature of the setup. The

image was first printed in [84].

noise of a single shot. One atom cloud is encircled with a red cylinder that rep-

resents the smallest Faraday probe beam we could make with the DMD driven

imaging system. This allows parts of a system to be weakly measured whilst the

remainder remains untouched. To our knowledge this was the only cold-atom

experiment so far, capable of making local weak measurements.

Recently a similar idea was carried out experimentally in a different context,

where AOD controlled, counter-propagating laser beams, were utilised to read

and write atomic states in an implementation of a multimode quantum mem-

ory [227]. In that case the atom cloud was freely falling, having been released

directly from a MOT, which limited coherence times τcoh only to a few µs. We

envision that by adding flexible trapping potentials to such an experiment one

could extend τcoh greatly.

The method also resembles single-atom spin addressing schemes [277, 281].

In those cases the spin addressing beam represents truly a local interaction be-

tween the light and a single atom residing in a single well of an optical lattice,
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but it is only used to alter the atomic state, not to image the atom.
*
In contrast,

our setup enables measurements of the collective spin state of an ensemble of

atoms.

4.1 Characterising a microtrap

As a first step in the characterisation of the microtrap potentials, we measured

their radial trap frequency. In order to excite the atom cloud into oscillation we

loaded a single trap from the reservoir cloud of the CDT (see sec. 4.2), and then

quickly (in 1ms) shifted the position of the potential by 5µm (about one waist

of the trap). Afterwards a series of 20 Faraday images was recorded. To capture

the in-situ dynamics the images were spaced by Taq = 100µs. For a detailed

discussion of how the probing was carried out, see sec. 4.3. From each picture

we extracted the cloud position by fitting a Gaussian function to it, and to each

series we fitted a damped sinusoidal extracting the trapping frequency as shown

in fig. 4.2 (a). By varying the power in themicrotrapwe couldmeasure the waist

of the beam using a fit with a simple square root function (see eqns. (1.14), (1.15)

and (1.19) that yield f ∼
√
P). The fit is shown in fig. 4.2 (b) as the orange curve

and it yields a waist ofwd = 4.3(1) µm, in good correspondence with what we

expected.

Another standardwayof characterising the trap is toperforma lifetimemea-

surement. Here, the given trap configuration was loaded and held for a vari-

able amount of time, followed by an absorption image. The atoms slowly leave

the trap mainly due to collisions with the background gas and recoil heating

of the atoms due to off-resonant scattering with the trap light. First we mea-

sured the lifetime of the reservoir cloud. We usually evaporated to powers of

PLDT = 150mW and PTDT = 630mW for the individual beams in the CDT,

*
Onemust be careful with language here, as the interaction between the atom and the laser

would be ameasurement of its state in the quantummeasurement sense, as it definitely collapses

the local wavefunction to a given state. The only difference here is that the observer does not

directly look on an image of the entity being probed.
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Figure 4.2: Characterising a microtrap. (a) An oscillating atom cloud probed with multi-

ple Faraday images within a single experimental realisation. The frequency is extracted by fit-

ting an exponentially damped sinusoidal to the data. The frequency of this particular trace is

f = 3.0(3) kHz. (b) The trapping frequency extracted as a function of the depth of the micro-
trap. The fitting function is a square root function. The trace in (a) is represented by the green
datapoint.

yielding a trap depth close to 5µK, taking into the account the gravitational

sag. This provided an atom cloud of about 2 · 106 atoms at a temperature of
about 700 nK, which will be our reservoir cloud in what follows. As shown in
fig. 4.3 (a) the hold time was varied while the atom number was recorded by

absorption imaging. To account for free evaporation (where hot atoms simply

escape the trapping potential), a double exponential functionwas fit to the data.

The decay constant of the slower process was taken as the measurement of the

1/e trap lifetime yielding τres = 16.4(3) s. Superimposing a single dimple onto

the reservoirwith apower ofPd = 200µWgives a dent in thepotential of about

1.5 µK in depth. This effectively halved the lifetime to τr+d = 8.7(2) s, likely

due to the enhancement of atom density in the dimple and thus an increased

rate of destructive three-body collisions, see fig. 4.3 (a). In light of the measure-

ments presented in sec. 4.2 a small BEC must have been present in the dimple

potential.

We also characterised the lifetime in the pure dimple. Loading a single dim-
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Figure 4.3: Measuring lifetime in different configurations. (a) The reservoir (blue) has τres =
16.4(3) s, and a dimple superimposed in the reservoir (orange) has τ

r+d
= 8.7(2) s. (b)A single

dimple, without the reservoir (blue) has τ1d = 450(60)ms. The inset shows the lifetime of

atoms loaded into a 5microtrap array with τ5d = 59(8)ms. The array configuration resembles

the one depicted in fig. 4.1.

ple at a depth of about 800 nK yields the lifetimemeasurement in fig. 4.3 (b), at

a τ1d = 450(60)ms. Loading 5 dimples (inset of fig. 4.3 (b)) cuts the lifetime

almost by a factor of 10, down to τ5d = 59(8)ms. To get good loading of so

many dimples and to be able to hold them for a reasonable time, the individual

intensities of the AODgenerated laser beamswere individually adjusted. When

using many dimples we did not have a controlled way of measuring the power

in the individual traps, but the loadingwas roughly homogeneous. We estimate

that each potential should have been around 8µK.

In hindsight we could have put more effort into ensuring the homogene-

ity of the loading of an array of microtraps of a given size. There are reports

in the literature of BECs held in time-averaged AOD potentials with a lifetime

exceeding 20 s [26], so there was surely room for improvement. The diffrac-

tion efficiency of the AOD varies quite strongly with the applied frequency so

effort has to be put into controlling the intensity of the applied RF field to at

least homogenise the depth of the individual traps. Such work was in fact im-

plemented in the lab (see ref. [82]), but unfortunately it was not utilised for our
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experiments, as we expected to become power-limited due to the reduction of

the maximum attainable power in the microtraps.

4.2 Loading a microtrap from a reservoir

Atrapof a small volume inside a large reservoir of cold atomswill locally increase

the PSD of the trapped cloud. To understand why this is the case one should

recall the expression for the PSD, eq. (2.8). A local deformation of the potential

will increase the density of atomsn, but as this part of the cloud remains in good

thermal contact with the reservoir (beingmuch bigger with a higher thermal ca-

pacity) its temperature remains unchanged. This is called the dimple trick and
it was used in the early days of BEC experiments to adiabatically cross the phase-

transition in a reversible manner [221], and later to realise multiple crossings in

a single realisation of an experiment [251]. The concept is illustrated in fig. 4.4.

The concept of multiple crossings was revisited and supplemented bymonitor-

ing the crossing of the phase transition with Faraday imaging [24]. This trick

was essential for the realisation of the first cesium BEC [279], because all other

traditional methods were limited by heating due to three-body recombination

processes. Since then the dimple trick has become one of the standard tools for

making BEC’s [147, 254]. Recently the loading dynamics of a dimple from a

reservoir have been studied both experimentally [106] and theoretically [76].

Our goal was in particular not to create a BEC with the dimple, but merely

to maximize our Faraday signal. Thus we set out to characterise the loading

of a dimple trap from a reservoir. As a first step we characterised the reservoir

by scanning the end point of evaporation and performing TOF measurements

to obtain atom numbers and temperatures. The result of that scan is depicted

in fig. 4.5. As expected, we see in plots (a) and (b) that the atom number and

temperature decrease as the trap is made shallower. In fig. 4.5 (c) there is a

log PSD − logN plot typically used to evaluate the quality of an evaporation
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Figure 4.4: Enhancing the PSD with the dimple trick. (a) A cold atom cloud resides in a trap

of large volume. (b)A local deformation of the potential increases the PSD in the dimple as the

atomdensity rises, but due to thermal contact with the reservoir the temperature stays the same.

If the reservoir cloud is cold enough this may bring its energy below the chemical potential µ

and condense the cloud.

ramp. The PSD of the reservoir is calculated according to the formula
†

PSD = N

(
 hω̄

kbT

)3
, (4.1)

and at the green point on the graph, we have in fact crossed the phase transition

to a BEC. The fit function is to a power law aNb, and gives a measure of the

efficiency of the ramp. The exponent obtained from the fit is b = −1.04(1),

which is low compared to [207], but the ramp still does its job.

Later the characterisation was extended and we performed large 2Dparam-

eter scans. We varied the depth of the reservoir during the loading of the dimple

and the dimple depth. We performed in total three individual scans for different

parameter ranges. The sequence was as follows: we evaporated to a variable end

point in the CDT, ramped the dimple to the loading power in 80ms, turned

off the CDT and held for 20ms, then took an absorption image after 5ms in

TOF. In all cases we also took a Faraday image prior to the absorption image.

†
Weuse eq. (2.8) andplug in the expression for the thermal deBrogliewavelength, assuming

the trap volume through
1
2
mω2iσ

2
i =

1
2
kbT .
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Figure 4.5: A characterisation of the reservoir potential. (a) TOF measurements provide the
atom number and (b) the temperature of the cloud. These can be combined to yield the PSD
(c), measuring how far we are from the transition to a BEC. The green data point represents a

condensed cloud.

The results are depicted in fig. 4.6 and the Faraday results are only shown for

one of the scans.

Panels (a) and (b) show the scan with the widest range. The depth of the

reservoir endpoint was varied from 0 → 100µK and the microtrap depth was

scanned from 8→ 110µK. In (a) the number of atoms obtained from absorp-

tion imaging is shown, whereas (b) depicts the mean Faraday rotation averaged

over a 10 × 10µm2 area, around the position of the dimple cloud. As can be
seen there is a good correspondence between the two that was also confirmed

by other measurements. The maximal atom number loaded in the dimple was

obtainedwhen the twowere equal in depth at 30µK, yieldingN = 3 ·105. The
area of good loading is more sensitive as a function of the dimple depth than as

a function of the reservoir depth. For dimple powers that were too low, there

was no good loading as the volumeof the deformationwas simply too small. For

deeper (and deeper) dimples the effective dimple volume grows andmore atoms

can be loaded. However, at some point the effective volume becomes too large

and the temperature of the whole sample will start to increase. That increase

in temperature is caused by adiabatic compression, making the dimple trick less

effective.

In fig. 4.6 (c)–(d) we have cut down the scan range of the dimple by more
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Figure 4.6: Scanning the reservoir and dimple depths for optimum loading. (a)–(b)The thermal
atom number from absorption imaging and the corresponding Faraday signal. (c)–(d)Narrow-
ing the scan range of the dimple depth reveals a region where BECs are created. (e)–(f) By scan-
ning the reservoir depth more finely we see that BECs arise for a large range of trap parameters.

Outliers (in the top row of (a), (d) and (f)) are due to poor fits to the TOF data.
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than an order of magnitude. Here we only focus on the absorption imaging

data, and apply fits of bimodal distributions in order to obtain the numbers of

thermal and condensed atoms. NoBEC is formed for higher CDTdepths as the

PSD is simply not high enough for the dimple to cross the transition. As before,

if the dimple is ramped too deep, the dimple trick becomes ineffective, so there

exists an optimum in the BEC loading landscape.

In fig. 4.6 (e)–(f) the scan range of the CDT has been narrowed. Accord-

ing to our previous characterisation of the reservoir in fig. 4.5, we know that

the phase transition to a BEC has not been crossed at a trap depth of 3µK. This

means that the vastmajority of theBECsherewere createdwith the dimple trick.

The resolution of the reservoir scan in fig. 4.5 close to the condensation was not

fine enough in order to tell the position of the threshold precisely, but from

about 3µK depth and lower in the CDT, the thermal and BEC numbers de-

crease towards lower CDT depths. The biggest BECs are obtained for a dimple

depth from 2–4, µK and a CDT depth of 5–10µK. The optimal ratio of the

dimple depth to the CDT depths is 2:5 for maximizing the BEC size, 1:1 for

maximal loading of atoms.

There are many routes one could take to further analyse this dataset to gain

better understanding of the loading dynamics. These would require more fo-

cus on the temperature of the cloud and on the PSD.As simple thermodynamic

models of the dimple trick exist [61, 244] (see also [199], sec. 5.1), a comparison

with theory should be straightforward. I will however, save this as an opportu-

nity for future work.

4.3 Dual-port Faraday imaging

ThedetectionofFaraday rotation,which emerges fromthe asymmetric response

of the magnetic sublevels to near-resonant light, has commonly been realised

with photodiodes both in applications for magnetometry [145, 166, 213], spin-

squeezing of hot [175] and cold ensembles [60, 240, 261], and in applications in-

volving teleportation of states on light onto an atomic ensemble [242]. In these
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cases spatial information about the cloud distribution is lost entirely. Disper-

sive imaging methods like phase-contrast imaging have been used in the past to

acquire spatially resolved images of BECs [12], and their minimally-destructive

nature has been used to probe dynamics in them [13, 134]. The first success-

ful implementation of spatially-resolved Faraday imaging I am aware of, dates

from 1997. There the method was used to detect the first lithium BEC [38].

Since then, the method has been used to study density-dependent effects in the

interaction of light and matter [153], in-trap dynamics of thermal clouds [104],

the BEC phase transition [24], and to realise feedback-driven atom number sta-

bilisationwith sub-Poissonian number fluctuations [105]. In addition, the tech-

niquewas recently employed for single-atomdetection in a quantum gasmicro-

scope [291].

In our experiment, we set up a dual port Faraday imaging (DPFI) system

with balanced homodyne detection. The configuration of the detection system

was essentially the same as that described in [152, 153], with one important dif-

ference. In ref. [153] the light beamwas split on a regular PBS after the chamber,

and the beams were imaged through separate optical systems on the camera. In

our case aWollaston prism splitted the beam, introducing only a small angle be-

tween the different polarisations, and the beams were propagated through the

same imaging system onto the camera. Our hope was that this configuration

would minimise the effects of fringing the other system suffered from, and ease

the alignment as beam path differences are circumvented

In our system, a linearly polarised laser beamwas guided through the cham-

ber. Afterwards, the polarisation of the light was rotated by 45◦ with a half-

wave plate before it was split into two light beams with orthogonal linear polar-

isations by the Wollaston prism. Thereafter the two light beams were imaged

onto separate regions of the camera, see fig. 4.7. The system was adjusted such

that equal amounts of light emerged from the twoports of theWollaston prism.

In this way, any rotation of the plane of polarisation by the atom cloud yielded

an increase in the light intensity of one port of the polarimeter and a decrease in

the other. As a result, the setupwas sensitive to the sign of the rotation angle. In

comparison, the method of dark field Faraday imaging (DFFI), measures only
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Figure 4.7: A schematic setup of the balanced homodyne polarimeter. Figure borrowed from

[131] and slightly modified.

the light that is rotated by the atoms [104]. Note that the SNRof the twometh-

ods (and in fact other dispersive probing methods like phase contrast imaging)

are the same for small rotation angles, as shown in [104].

A balanced homodyne Faraday detection system is considered ideal for the

detection of spin-squeezing [260], whichwas the primarymotivation for build-

ing a DPFI system, even though we realised neither projection-noise-limited

measurements [168] nor spin-squeezing of our spin ensembles.
‡
Wewere none-

theless successful in applying the system for magnetometry as detailed in ch. 5.

The light intensitymeasured in either of the ports of theDPFI system, given

an incident intensity I0 is (see [153] or [152], ch. 5 for the derivation)

IH,V =
1

2
I0 (1± sin(2θF)) , (4.2)

where θF is the Faraday rotation angle given by eq. (1.26), and IH and IV are the

intensities measured coming from the horizontal (H) and vertical (V) ports of

the polarimeter. It is straightforward to solve eq. (4.2) above to get an expression

for the measured angle

θF =
1

2
arcsin

(
IH − IV
IH + IV

)
, (4.3)

which is the expression applied to generate a Faraday image, as the one displayed

in fig. 4.8.

‡
The former point is obviously a necessary criterion for even attempting to realise the latter.
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Figure 4.8: Generating a Faraday image. (a) A raw image of the two polarisation fields as

recorded on the Andor iXon camera. (b)–(c) Enlarged versions of the regions demarcated by
the white boxes in (a). (d)An image composed according to eq. (4.3) with no atoms present in
the field. It is subtracted from an identical image with the atoms present to yield the final im-

age shown in (e). This subtraction is done in order to account for any spatial inhomogeneities
present in the imaging light. This figure has been published in [84].

The DPFI system works best when the light intensities in the two ports,

IH and IV , are equal, i.e. when the polarimeter is balanced. To produce the
best Faraday image the two light fields recorded on the camera, IH(x, y) and

IV(x, y), must be subtracted with respect to the actual centre of the light beam

in the post-processing of the raw data. A simple algorithmminimises the noise

in the subtracted field IH − IV with respect to the centre position of the sub-

traction of the two fields. The subtraction was done to the precision of a single

camera pixel. If the centres are not well determined, the resulting image will be

very noisy, especially on the edges of the light field, which will also lead to an
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artificial shape of image of the actual atom distribution. A detailed account of

the balancing procedure can be found in ch. 6 of [192].

Figure 4.8 (a) depicts the two light fields IH and IV as recorded on the cam-

era. When speedwas not a requirement we typically used a flat top beam as seen

in the image. The intensity profile of the beam varies somewhat mainly due

to imperfections of the imaging setup. In the raw images, some fringes with a

rather large spacing (∼ 5 fringes across the beam) are visible. This does not af-

fect the image of atoms in a single microtrap, but we see a spatial modulation in

images of bigger clouds. These fringesmust somehowhave been encoded in the

polarisation profile of the beam before it was split on the Wollaston. To min-

imise the effect of spatial inhomogeneities of the probe beam, a Faraday image

without the atoms was also recorded as shown in fig. 4.8 (d). This image was

then subtracted from the atom image to produce the final image in fig. 4.8 (e).

Here an image of atoms trapped in a singlemicrotrap is shown. Peak Faraday ro-

tation angles of θF ' 15◦, are reached using a probe pulse length of Tp = 2µs

and a probe detuning of ∆p = 1.130GHz. The choice of these values is ex-

plained in sec. 4.4.

Before we built in the Faraday imaging system and the microtrap setup, we

pre-aligned thedualmicroscope system. Thiswas donebyoverlapping reference

beams coming through the opposite side of the chamber. These served as a ref-

erence for the optical axis of the imaging system. During this procedurewe faced

stability issues originating from the mounts we used for the objectives. The ob-

jectives weremounted to a five-axis translation stage (x, y, z, tip and tilt), which

in turn rested on the main optical breadboard. In order to reach the viewports

they were about 35–40 cm in height. At the time there was no dedicated tem-

perature stabilisation system on the experiment (see sec. 6.5), and the alignment

drifted slightly on a day-to-day basis due to thermal instabilities. If we were to

build in such objectives again, a mount attaching them physically to the cham-

ber allowing only for the freedom of the z-translation, would be much more

preferable.

In the alignment process we found that the performance of the dual micro-

scope system would always be sub-optimal. The most severe limitation posed
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the high-resolution viewport of the chamber. Due to a manufacturing flaw

it extended almost 2mm too far into the chamber.
§
Another limitation was

that we were unsuccessful in re-collimating a collimated beam that was passed

through the microscope system. Here the main reason was that the focal length

of the objectives was around 2mm shorter than indicated by the specification

of f = 36.8mm. Due to the fixed depth of the re-entrant viewports, we simply

could not place them far enough into the chamber. This resulted in an effective

NA = 0.11 (compared to the design NA of 0.27). With the correctly manufac-

tured high-resolution viewport we should be able to achieve an NA of 0.19.

According to eq. (3.6) an NA of 0.11 gives a Rayleigh resolution limit of

rmin = 4.3 µm. To quantify the performance of the imaging system, a 2 × 2
pixel array (much smaller than the PSF of the imaging system) was displayed on

the DMD and imaged on the camera. Fitting the PSF to transversal cuts of the

recorded Airy pattern formed on the camera yielded a size of rx = 5.3(1)µm

and ry = 4.3(1)µm, corresponding to diffraction limited performance for the

usable aperture. These measurements are described in detail in [170].

4.4 The destructive nature of the Faraday probe

The Faraday interaction is a dispersive effect, and as such it does not cause any

heating or loss in the atom cloud. All our measurements however, reveal a sub-

stantial signal loss during probing, but the heating of the cloud remains low. We

find that it is important to understand the limitations of our dispersive probing

scheme as a function of detuning from the relevant atomic transition and the

intensity of the probe light. This section will describe our explorations to that

end.

To begin with we discuss the effect of the Faraday probing on the reservoir

cloud according to data obtained by absorption imaging after TOF. We per-

formed a lifetimemeasurement (varied thehold time in the reservoir trap)which

§
The high-resolution viewport was eventually replaced with a correctly manufactured one

during a bakeout in the fall 2016.
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was followed by a train of 40 Faraday pulses (taken at the rate of 50Hz, yielding

a total acquisition time of 800ms and an interaction time of 80µs), comple-

mented by an absorption image taken after TOF in the end. The Faraday pulses

were Tp = 2µs long, and the detuning was set to ∆ = 1.130GHz. The data

is presented in fig. 4.9 (a). The blue circles represent the lifetime measurement

shown earlier in fig. 4.3 (a) and the orange circles represent the data of the mea-

surement explained here. It is obvious that the Faraday light causes a signal loss.

There are immediately two possible causes: recoil heating or state transfer.

As the linearly polarised Faraday light passes through the sample, it candrive

σ+ and σ− transitions between the F = 2 and F ′ = 3manifolds due to the ab-

sorptive part of the light-matter interaction. In linewith the loss analysis in ch. 5

of ref. [103], we can start by estimating the number of recoil events per photon.

We estimate typical pulse intensities to be about 30mW/cm
2
(corresponding

to 750 photons per pixel of the camera). Adopting a value of the saturation

intensity for the σ+/− transition of Isat,σ = 1.67mW/cm
2
[252], we can calcu-

late the scattering rate from eq. (1.9) to be Γ = 2π × 400Hz. The intensity of

the σ+ component alone is half of the total intensity and during the total in-

teraction time of Ttot = 80µs, the number of recoil events per atom are only

Nrec = Ttot Γ = 0.1. Comparing the reservoir depth of 5µK to the energy gain

from a recoil event of 2Erec ' 700 nK, we see immediately that this mechanism
cannot cause all the loss in the signal. In fig. 4.9 (b) we plot the temperature of

the atom cloud. The inset (green circles) shows that the heating of the cloud due

to the Faraday light is 100–150 nK.¶ This matches the expected recoil heating

which we estimate as 2ErecNrec ' 140 nK. For comparison, it is plotted as the
purple dashed line.

By comparing the atomnumbers of the first shots of the two lifetime graphs

in (a), we see that the signal is halved due to the probe light even though the

temperature of the cloud does not rise significantly. In ref. [103] state trans-

fer induced by the σ− component is identified to be the main cause for atom

¶
It is important to note that the cloud is released into TOF directly after the pulse train is

finished. There is no subsequent time to allow for thermalisation.
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loss from their magnetic trap, due to optical pumping into an untrapped state.

That atom loss channel is not present in an optical trap, but it could still lead to

a signal loss as a portion of the atoms might be pumped into the F = 1 mani-

fold. A simulation, based on a master equation approach
∥
(see sec 2.3.3 of [167]

and 7.8 of [253]) reveals that under typical probing conditions
**
only 1% of the

population ends in the |F = 1,mF = 1〉 state. Even if one were left with some
population distribution in the magnetic sublevels of the F = 2 manifold after

the Faraday pulse trains, the absorption imaging should be in-sensitive to that.

The population very rapidly goes into steady state under the resonant linearly

polarised pulse, bearing nomemory of the state it was in after the Faraday pulse

train.

This atom loss is really puzzling as the absorptive part of the Hamiltonian

seems in no way sufficient to explain the observations. Ideally we would revisit

the experiment and set out tomeasure the heating due to one pulse (instead of a

train) and try tomeasure any fraction of atoms that could have been scattered to

the F = 1manifold, by adding repumping to the sequence. Unfortunately the

Faraday setup was removed to make way for the high-resolution setup so this

exercise must be left to other experiments. As a final remark, there is probably

some density dependence on the losses. This is in any case true for the densest

clouds, as experiments have revealed enhanced losses under dispersive probing

up to a factor of three higher for a BEC compared to a thermal cloud [33]. But

as our cloud is thermal at this stage, this enhancement should not play a vital

role.

As a next step we wanted to investigate the destructivity of the probe as a

function of its detuning ∆ and the length of the probe pulse Tp. The signal

decays exponentially during the pulse train and as an attempt to quantify the

loss, we assume that a cross section σF can be associated to this mechanism. We

∥
The simulation is made in a program that was written by a postdoc that was in our group

at the time when we did the Faraday work. As the program was not my work, its functionality

will not be explained here. Thank youMario for a nice tool!

**
Probe detuning of∆ = 1.130GHz, total interaction time of Ttot = 80µs, probe intensity

of 30mW/cm
2
and a magnetic field component Bx = 20mG (along the probe direction).
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Figure 4.9: Atom loss and heating due to the Faraday probe asmeasured by absorption imaging.

(a)Atom loss in the reservoir cloud, with (orange circles) and without (blue circles) the Faraday

pulse train. The inset shows the loss due to the Faradaypulse as a functionof time, normalised to

the atom number without the probe. (b) The temperature of the reservoir cloud with (orange
circles) and without (blue circles) the Faraday pulse train. The inset shows the temperature

difference of the two measurements, and the purple dashed line is the estimated recoil heating.

take the loss rate to be

R = ˙Nphnat(x, y)σF, (4.4)

where
˙Nph is the number of photons per unit time and nat(x, y) is the column

density of the atoms. Both quantities are evaluated within the same ROI. We

take the loss rate asR = dθF, the decrement in the Faraday signal, and recognise

that according to eq. (1.26)θ = αnat(x,y)
∆

, whereα is a proportionality constant.

From the data we naturally extract the relative drop in the signal of the Faraday

angle
dθF
θF

, scaled with the total number of photons in a pulse of a length Tp, so
˙Nph = Nph/Tp. The photon numberNph can be obtained from the raw polari-

sation fields IH and IV registered on the camera. We combine these expressions

and define α∆σF, as the destructivity

η =
Tp

Nph

∣∣∣∣dθFθF
∣∣∣∣ . (4.5)
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Figure 4.10: Quantifying the destructivity of the Faraday probe. (a)–(c) Measurements with

fixed Tp = 2µs, varying ∆. (d)–(f)Measurements with fixed ∆ = 1.130GHz, varying Tp. (a)
and (d) show the results for the reservoir potential, (b) and (e) that of a microtrap superimposed
to it, and (c) and (f) the measurements for the atoms trapped in the pure dimple potential. The
lines between the points are guides to the eyes.
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Assuming thatθF iswell describedby an exponential functionof the formae
−t/τ

,

yields the ratio

∣∣∣dθFθF ∣∣∣ = ∣∣1τ ∣∣, so in our case the destructivity becomes
η =

Tp

Nph

∣∣∣∣1τ
∣∣∣∣ . (4.6)

The quantity η has a unit of [events/photon], which is reasonable. As the ef-

fect of a single photon is very small, the plots are given in units of [events/103

photons].

For the measurements we chose to use the top-hat beam shape displayed in

fig. 4.8 that encompasses the entire reservoir cloud. The cloud was probed our

with 40 Faraday pulses and ∆ and Tp were varied. These measurements were

conducted in three different trap configurations: in the CDT reservoir prepared

at a depth of 5µK and containing about 2 ·106 atoms at a temperature 700 nK;
with a dimple potential superimposed at a depth of about 1.5 µK; and with the

dimple alone at the same depth. Keeping the pulse duration fixed at Tp = 2µs

(which is the shortest possible pulse in our system) we varied ∆ in five steps

from 0.756 to 1.503GHz, as the beat-lock allowed. At the central value of∆ =

1.130GHz, the pulse width was varied from 2µs to 20µs. Each measurement

was repeated five times.

The averaged data for each setting is displayed in fig. 4.10. The traces decay

with two apparent timescales. The first decay is about 100ms and the latter

one is slower, exceeding 1 s. The fast decay might indicate a density-dependent

loss mechanism. To quantify the losses in the Faraday signal (without knowing

their physical causes) we extract decay constants from the traces. We choose to

focus on the longer timescale so the data are fit by a single exponential, where

we exclude the first 10 points of each trace. This yields good results in terms

of fit quality. In the following analysis we leave out the system where the single

tweezer was loaded, mainly because the SNR is so poor, as is apparent from

fig. 4.10 (c) and (f).

In fig. 4.11 (a)weplot themean rotation angle in aROIof12×8µm2 around
the position of themicrotrap as a function of the probe detuning using the first
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Figure 4.11: Destructivity of the Faraday probe. (a)The Faraday angle varies as ∼ 1
∆
as expected.

(b) The mean Faraday angle for the first and second images in a pulse train. (c) Evaluating the
destructivity η as a function of the detuning. A clear reduction in η is observed. (d) Saturations
manifest themselves as more photons interact with the sample per pulse. The legends apply for

figures standing side by side.

measurement in the pulse train. The data are well fit by a function varying as

∼ 1
∆
, as expected from eq. (1.26). In fig. 4.11 (b) we plot the angle as a function of

the pulse length for two different points in the pulse train. The circles are ren-

dered from the first image in the train and the triangles from the second image.

From eq. (4.3), we would not expect any variation in the rotation angle with

higher incident photon numbers, so the reduction in the value of θF for the cir-

cles is slightly surprising. This must mean that signal loss effects are already visi-

ble on the timescale of a long pulse (∼ 10µs), slightly reducing the signal. That

effect is even more clear for the triangles, where one pulse has already caused a
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Figure 4.12: Destructivity and sample density. (a) Faraday pulse trains shown in red, taken for
after a variable hold time in the reservoir trap. (b)Destructivity η extracted from the plot on the

left is seen to fall as the cloud becomes more dilute. Details are given in the text.

significant signal loss. The reduction in the signal hints at a linear dependence

of the loss mechanism on the light intensity.

In fig. 4.11 (c), η is plotted as a function of detuning. The dashed lines are

linear fits of the form ∼ 1
∆a
, where a is a free parameter. The fits result in an

exponent around 0.8 for both traces. In the discussion above we designated

η = α∆σF, indicating that σF ∼
1

∆a
′ , where a ′ is amounts to about 1.8. From

the perspective of a simple minded experimentalist it is most likely that a ′ = 2.

Finally in fig. 4.11 (d), η is plotted as a function of the pulse length Tp. The

dashed lines are linear fits to the first three points, to emphasise how the data

deviates from linearity for longer pulse durations. These are clear saturation

effects. As the pulses grow too long there are simply more photons than the

atoms can interact with. The effect is also clear in the raw data, fig. 4.10 (d) and

(e), where the traces for Tp > 10µs all converge to the same level. The value ofη
is slightly lowerwhen the dimple is superimposed, indicating greater robustness

to the probe. This might be caused by the higher densities in the dimple, so

saturation effects might manifest themselves sooner compared to a more dilute

reservoir.

Let us now revisit the lifetime measurement discussed earlier where a train
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of Faraday pulses was set off after a variable hold time in the reservoir. The

results are depicted in fig. 4.12 (a). Here the selectedROI encapsulated thewhole

reservoir cloud, about 35 × 50µm2. The pulse trains are shown in red, with

the first point in blue and the last point in green. Single exponentials are fitted

to the first and last points in the Faraday pulse train, giving a 1/e lifetime of

τθ,i = 8.5(3) s and τθ,f = 12.2(3) s. The inset figure is the lifetime obtained

from the TOFmeasurements, yielding τTOF = 12.2(4) s, exactly matching τθ,f.

The lifetime of τθ,i can be compared to the one obtained in sec. 4.1, andwe see a

lifetime that is almost half of the value reported there. If the trace is refit with a

double exponential like the TOF data, the second exponential gives 11.0(1.5) s,

which is still shorter than the value of sec. 4.1.

Shifting the focus back to the orange pulse trains of fig. 4.12 (a), one may

observe that the slope of the individual traces decreases with the hold time. We

attribute this effect to changes in the density of the atomic sample. To each

trace a single exponential is fitted and the individual decay constants extracted,

enabling the calculation of η. In fig. 4.12 (b) η is depicted as a function of the

rotation angle obtained from the first Faraday image of each trace. In a dense

sample with higher values of θF the destructivity is greater than in amore dilute

sample.

4.5 Signal-to-noise ratio of the Faraday images

There are othermeans of judging the quality of ones signal, than those explored

in sec. 4.4. In ref. [249] a careful study of the SNR for a varying detuning of the

probewas carried out for Larmor precession signals. Using the dataset discussed

in the section above,we can also extract the SNRof theFaraday signal. Thenoise

is estimated by calculating the variance of θF on the level of a single pixel. As the

density profile of the cloudprovides an inhomogeneous background,we cannot

consider Var(θF) to be a pure measure of the noise in the signal. Therefore we

use themethoddescribed in ref. [143], that should be insensitive to curvatures in
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the underlying structure.
††
The noise in the image is taken as σθ =

√
Var(θF),

yielding

SNRθ =
θF

σθ
. (4.7)

From the dataset of the previous section we extract SNRθ and plot it in fig. 4.13

as a function of various quantities. The errorbars on SNRθ show the standard

error obtained from the five measurement repetitions. As a reminder we have

two data sets: one where Tp = 2µs and ∆ is varied, and the other where ∆ =

1.130GHz and Tp is varied. In all graphs the quantities are plotted for the first

image in the trace with andwithout the dimple superimposed (blue and orange

circles respectively), likewise for the last image in each trace (yellow and purple

triangles). In (a) the SNRθ is plotted as a function of detuning. Similarly to

fig. 4.11 (a) it seems to vary as ∼ 1/∆, albeit it levels more clearly off for ∆ >

1.130 GHz, indicating that there is not so much loss in SNR if we choose to

work at a higher detuning. The relative reduction between the 1st and last shot

is the least for the dimple system at a detuning of 1.503GHz. In (b) the SNR

exhibits a clear linear relation, but as we want to use the DPFI setup to probe

dynamics, the high SNR values are unfavourable as they come at the cost of η.

This is apparent from comparing the traces for the first and last images.

This is why it is instructive to compare the two quantities η and SNRθ. In

(c) they are plotted for the dataset where ∆ is varied. The interdependence is

apparent. Even though the datasets for the reservoir (blue points) and the reser-

voir with the dimple added (orange) are clearly separated in (a), they still have

the same η-SNRθ dependence. This plot shows the SNR-destructivity trade-

off. Finally in (d) we look for an optimum in the ratio of the two quantities.

The propagated error on the ratio becomes quite large, making it hard to dis-

tinguish an optimum. However, by comparing the first and last images in the

traces, the least reduction is yet again observed for the dimple system.

††
The method is based on the convolution of the image with a mask that represents the

Laplacian operator, which measures curvature. In the process I noticed edge effects in the con-

voluted image, so a two pixel wide frame around the image was left out in the analysis.
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Figure 4.13: SNR for a pulse train of Faraday images. (a) The SNR is seen to decrease with the

detuning as expected. It is very different for the first and last image of the trace, and the relative

change in the SNR is lower for higher detuning. (b) The SNR increases linearly with the pulse

length and drops dramatically for the last image in each trace at longer pulses. In the legend R

stands for reservoir andR+D stands for reservoir and dimple. (c)The interdependence of η and
the SNR is clear. (d) The ratio the SNR to η is plotted in order to find an optimum in that

variable. In fact the least reduction in SNR/η is observed at the highest value of∆. The legend

in (b) applies for all images.
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Ref. [104] gives a good analysis of the SNR for various dispersive methods.

All the methods have the same SNR at low angles, but DPFI in fact shows the

strongest dependence, and for the typical peak rotation angles of ∼ 15◦, DPFI

has 10–15%worse performance than the other methods. Therefore in order to

maintain a good SNR, it is preferable to work below θF ∼ 5
◦
.

The preceding analysis was only done during the writing of this thesis. At

the time of the experiments, we chose to work with Tp = 2µs long pulses as

those were the shortest we could create, having least effect on the sample. In

terms of the detuning, we continued to work with∆ = 1.130GHz. Ultimately

the choice of parameters depends on the application. In our casewe should have

looked directly at the magnetometer signals and optimised their operating con-

ditions in terms of∆ and Tp, using the measurement precision of the magnetic

field.

In the concluding part of this section we set out to determine the detec-

tion noise limit in our DPFI system. The Faraday angle is calculated accord-

ing to eq. (4.3). The argument of the arcsin function, S = IH−IV
IH+IV

, is directly

proportional to the intensity of the incoming light. The noise properties of S

are thus in line with the results of sec. 3.6, yielding Var(S) = F2

εN
ph

. Now as

S = sin(2θF) ' 2θF for small angles, we get‡‡

VarSN(θF) =
F2

4εNph

. (4.8)

Here F is a factor depending on the operational mode of the camera.

To measure the detection noise limit, we acquired a set of 100 images for

various settings of the camera (shown in the legend of fig. 4.14 (b)), and for each

setting we altered the level of illumination by varying the pulse length Tp. From

a region of 20× 20 pixels, free of obvious imaging distortions, we calculate the
variance in the noise pixel by pixel across each set of 100 images. In fig. 4.14 (a),

this is done for the homodyne signal IH − IV as a function of the number of

photons in the pulse. Each dot represents the variance calculated from single set

‡‡
Keep in mind that Var(aX) = a2Var(X).
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Figure 4.14: Measurements of the detection noise limit of the DPFI system. (a)The variance of
IH− IV strongly depends on the number of photons that hit a camera pixel. The techical noise

level of the camera is indicated by the position where the curves flatten out. (b) The focus is on
the relevant region of the photons/pixel for our mode of operation. Here the variance of θF is

directly plotted.

of pixels. The shot-noise-limited performances with and without EM gain are

graphed as a dotted line and a dashed line respectively. The coloured lines are

second-order polynomial fits to the data. For high enough photon numbers,

the detection limit is well described by photonic shot noise. For intensities of

500–1000 photons/pixel, the conventional register (no EM gain) is clearly the

best choice. The chosen setting of the conventional register, is the one with the

fastest readout rate and lowest sensitivity. It is also apparent from fig. 4.14 (a)

that it never pays off to choose a lowEMgain (GEM < 10), as those curves always

lie above the conventional gain. The break-even point betweenGEM = 20 (the

highestmeasured) and the conventional gain lies around 100 photons/pixel. At

around 200 photons/pixel the conventional gain register will always perform

better than the EM gain register. This means that it is always beneficial to work

without EM gain for DPFI, as that method typically involve intensities above

that limit.

In fig. 4.14 (b) the VarSN(θF) is shown, now in the interesting region from
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100 photons/pixel and upwards. The variance in the detected angle decreases

as a function of the number of photons used, and it is obvious that the conven-

tional gain register is always the best in terms of noise performance.

Unfortunately these noise measurements were only conducted as the very

last thing before we stopped the operation of the magnetometry experiments.

As noted earlier, we did in fact run all of ourmagnetometrymeasurements with

GEM = 5, which was a rather bad life choice. Looking closely at fig. 4.14 (a) that

setting is still close to the asymptote of the EM shot noise limit at the relevant

intensity. All in all, it seems as we could have lowered the noise by a factor of

2–4, depending on ones level of optimism, by choosing the correct mode of

operation for the camera.



CHAPTER 5
Spatially-selective optical

magnetometry with ultracold atoms

The bulk of the measurements presented in this chapter have been
published previously in [84]. The text is also based on chapter 3 of my
progress report [83] but those sections have in most cases been rewritten.

This chapter describes two implementations of spatially-resolved, single-shot,

in-situ magnetometers. The first is a vectorial magnetometer first described in
ref. [104]. In this mode of operation we can determine with high precision the
magnetic field components parallel and transversal to the direction of the probe

beam. A schematic figure of the situation is shown in fig. 5.1 (a). This mag-

netometer is realised by scanning the orientation of an external magnetic field

(indicated by the blue arrows) aligned with the probe beam, from positive to

negative. This field sweep is performed slowly enough, such that the polarisa-

tion of the spin ensemble can follow. The homodyne signal will exhibit a zero

crossing, indicating the field component along the beam, and the width of the

crossing is a measure of the transversal components.

109
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Figure 5.1: Two cold-atom magnetometers. A signal (shown in green) is recorded by a homo-

dyne detector in two situations. (a) The orientation of a magnetic field component aligned

with the probe beam is swept from positive to negative (blue arrows). Themagnetisation of the

atom cloud (F) follows (red arrows). The zero crossing of the signal (top) is a measure of the

field along the beam, and the width of the transition measures the transversal components. (b)
Themagnetic field is aligned perpendicular to the probe axis and themagnetisation of the atom

cloud. Due to that, F will precess around the direction of B at the Larmor frequencyω. The

recorded signal (bottom) oscillates at the same frequency.

Our second implementation is that of aLarmormagnetometer, basedon the
coherent precession of cold atoms in an external magnetic field. The response

of the spin ensemble is in this case proportional to themodulus of themagnetic

field componentperpendicular to theprobe axis.
*
In thismodeof operation, the

field can be measured with high accuracy. The spin ensemble precesses around
the magnetic field axis with the Larmor frequency, as shown in fig. 5.1 (b). The

rate of the precession is directly proportional to the strength of the field. The

homodyne signal will oscillate at the same frequency.

In the article this chapter is based on, an error in calculations of magnetic

fields in our experiment rendered all fields quoted in ref. [84] a factor of two

too small. This has been remedied in the following chapter.

*
In ref. [84], a similar description of the Larmor case (p. 2, par. 1) is downright wrong. The

keyword perpendicular, somehow went fishing.
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The first section is devoted to a discussion of the fundamental limits of op-

tical magnetometry. In the second and third sections the operation of the vec-

torial and Larmor magnetometry are presented in the respective order. In the

fourth section, the technique of spatially selective probing is discussed and an

outlook is given in the fifth and final section.

5.1 The limits of optical magnetometry

To compare the performance of different magnetometers, the figure of merit is

the projection-noise-limited sensitivity [47]. The projection noise is the funda-
mental uncertainty in a measurement of the collective angular momentum of

our atomic sample, caused by the quantummechanical nature of the measured

quantity. A coherent spin state is created by optically pumping a sample into a

certain hyperfine state. Due to decoherence that arises e.g. from spin-exchange

collisions or fluctuations in the backgroundmagnetic fields, the lifetime of such

states is limited to its coherence time. Assuming that we can probe the sample
for the full coherence time τcoh and achieve an uncertainty in the phase deter-

mination of a single Larmor cycle to the level of δφ ' 1,† the uncertainty in the
Larmor frequencyω becomes δω = δφ/τcoh. UsingN atoms one can improve

this by a factor of

√
N, corresponding to the atomic shot noise limit, and by re-

peating the measurement (or by measuring over many coherence times which

can be achieved by continuous optical pumping of the sample), one can effec-

tively improve the uncertainty by another factor of

√
Texp/τcoh, where Texp is

the total experimental run time. The Larmor frequency relates to the Larmor

frequency via the gyromagnetic ratio γ

ω = γB, (5.1)

†
This corresponds to the experimentalist’s ability to count the number of precession cycles

during the measurement time, that is a reasonable bound in our case.
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where γ = gFµB
 h

. According to the considerations given above the sensitivity is

δB
√
T =

1

γ

1√
NτcohTexp

. (5.2)

This quantity has the dimension
‡
of THz

− 1
2
, analogous to conventional noise

spectra. This makes very good sense for measurements that can be carried out

continuously for many coherence times with a high sampling rate. Such mea-

surements can be typically obtained at a high rate and with a duty cycle (of
measurement time vs. experiment time) close to unity. Examples of these are

refs. [64, 166], and the concept of bandwidth becomes appropriate. To incor-
porate the volume in the measure of sensitivity some quote the volumetric sen-
sitivity that is normalised to the volume of the sensor (see e.g. ref. [64]), and has
a unit of THz

− 1
2
cm

− 3
2 .
§

In the case of ultracold atomic magnetometers like the ones presented here

or in refs. [196, 274], the preparation time of the atomic sample is much longer

than the actual measurement time. These magnetometers have a very low duty

cycle rendering the concept of sensitivitynotparticularlyuseful. Therefore cold-

atombasedmagnetometerswill hardly competewith other techniques like spin-
exchange relaxation free (SERF) magnetometers or superconducting quantum-
interference devices (SQUIDs) when it comes to practical implementation and

commercialisation. The strength of cold-atom magnetometers lies inside labo-

ratorywalls, where they canbeused tomonitor and even correct for fluctuations

‡
It is a convention in the field of ultracold quantum gases (where my heart beats) to quote

magnetic fields in the non-SI unit of Gauss. This is not the conventional choice for the field of

optical magnetometry, where researchers tend to stick to the Tesla. Thus all magnetic fields are

quoted in units of Gauss, but magnetic field sensitivities are based on the Tesla in order to ease

direct comparison with the literature. For reference 1Gauss = 10−4 Tesla.
§
Having now read quite a few articles in the literature, I sometimes get the feeling that the

art of finding the unit that makes ones measurement look best, is widely practised. This work

contributes to the large pool of measures by refusing to use the commonly quoted sensitivity as

the most relevant metric.
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of stray magnetic fields (see refs. [172, 248]). In such applications the absolute

precision is more important than bandwidth.

On those grounds it is well justified to distinguish between three different

concepts: the single-shot precision, which is simply the precision of a single mag-
netic field measurement, the single-shot sensitivity, where one takes the time of
a single measurement into account Tmeas (not the full experimental cycle time

Texp), and the conventional sensitivity, which takes the full experimental cycle
time into account, enabling comparison of different types of magnetometers.

This distinction has beenmade before in the literature, see refs. [274] and [196],

although the terminology might be slightly different from what is presented

here.
¶

To understand the full capacity of one’s cold-atom magnetometer it is use-

ful to calculate the single-shot sensitivity. If we assume as before that we can

measure the accumulated angle of the Larmor signal to 1 rad within in themea-

surement time Tmeas, then the error in the frequency is δω = 1/Tmeas. For a

sample ofN atoms one gets, in analogy with eq. (5.2),

δB
√
T ss =

1

γ

1√
NTmeas

. (5.3)

This underlines a fundamental difference in the operation of cold atom mag-

netometers to those that use hot vapours, as typical pump-probe setups simply

cannot be realised with trapped cold atomic gases due to heating effects. For

such schemes to work out the cloud would have to be cooled simultaneously,

either via the interaction of the probe itself or by other means. It is rare for cold

atoms system to have interrogation times exceeding 1/10 of a typical spin coher-

¶
As an example of the necessity to impose this distinction one could read ref. [88]. The

authors claim a field sensitivity (which I would call single-shot precision) of 94 pT for an inter-

rogation time of 15ms yielding a “field sensitivity per second” of 12 pTHz
− 1

2 . This number

is flashed in the abstract and compared to the result of [274] that report 8 pTHz
− 1

2 . That re-

sult was however obtained at the full cycle time, so for a fair comparison the number reported

in [88] should be larger by a factor of 30–50 (for reasonable BEC preparation times).
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ence time (∼ 100’s ofms), as detrimental effects of theprobemanifest themselves

on much shorter timescales.

To calculate the sensitivities of ourmagnetometers (and this is alsowidespread

practice in the field), we simply multiply the obtained single-shot precision δB

either by

√
Tmeas or

√
Texp providing δB

√
T ss and δB

√
T respectively. This can

be contrasted with arrangements that allow for acquisition of many data points

in a single run where the sensitivity is often determined from the Fourier spec-

trumof the recorded oscillatory signal. Denoting∆B as thewidth of the Fourier

peak corresponding to the precession frequency and its height above the noise

floor as a measure of the SNRwe obtain (see [239])

δB
√
T ss,FFT =

∆B

SNR

. (5.4)

In the case of SERFmagnetometers δB
√
T FFT → δB

√
T as there is no prepara-

tion time involved.

Aside from the measure of sensitivity, atomic magnetometers can be built

to measure DC [166] or AC [278] components of a magnetic field; scalar or

vectorial fields [104]; or even gradients [169, 285], where the spatial resolution

of the gradiometer plays a role. With industrial demands of miniaturisation

the effective area or volume of the magnetometer is also important [196] (supp.

mat.).

5.2 Vectorial magnetometry

The method we implemented for vectorial magnetometry was first presented

in ref. [104], inspired by the Hanle-type magnetometers described in the intro-

duction. In this scheme a number of Faraday images are acquired as an external

magnetic field parallel to the probe direction is swept from positive to negative.

The operation requires the speed of the sweep to be slow compared to the in-

stantaneous Larmor frequency in the applied field, otherwise the macroscopic

spin polarisation 〈fz〉will not follow the sweep. According to eq. (1.26) the sign
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of θF depends on whether the 〈fz〉 is parallel (positive) or anti-parallel to the
probe direction (negative). In contrast to the implementation in ref. [104] that

relied on dark field Faraday imaging and was not sensitive to the sign of θF, our

DPFI setup does distinguish between the different orientations of the spin en-

semble along the probe beam.

Technical implementation
The magnetometer sequence was started by preparing a cloud of atoms in the

CDT, that had been evaporated to around 2 · 106 atoms at a temperature of
700 nK. Three pairs of orthogonally mounted coils could provide bias fields,

enabling full control over themagnetic field at the position of the atoms. Those

were used both to cancel external magnetic fields transversal to the probing di-

rection, and to maintain a field along z that kept the atoms oriented. This field

was turned on within 200ms of the end of the evaporation in the CDT. The

magnetometerwas realisedwith a train of 2µs long Faraday pulses at a detuning

of 1.130GHz where the intensity of each light pulse was about 200 pW/µm2.

Meanwhile the magnitude of the Bz magnetic field was swept from positive to

negative. In the process the resulting Faraday angle θF changed sign. The point

where it changes signmeasures theBz field and the sharpness of the sign change

was a measure of how well one had compensated the transversal external mag-

netic fields.

The compensation coils in our system were configured as shown in fig. 3.6.

The vertical coilswere very close to being in aHelmholtz configuration, whereas

the two coil pairs in the horizontal plane were quite far away from one another

relative to their radius. The direction of the bias field they produce was also at

a 45◦ angle to the probe light, making the compensation of the horizontal stray

fields and the control of the field parallel to the Faraday light slightly non-trivial.

To ease the problem we parametrised the control of those coil pairs in terms of

the sum and difference of the fields generated. Assuming a linear dependence

of the magnetic field B with the applied coil current I such that B = aI (also



116 CHAPTER 5. SPATIALLY-SELECTIVE OPTICAL MAGNETOMETRY WITH ULTRACOLD ATOMS

confirmed by measurements), where a is the gain of the coil pair,∥ we put

Bsum =
a√
2
(I1α+ I2) (5.5)

Bdiff =
a√
2
(I1α− I2). (5.6)

The factor of

√
2 comes due to the geometry of the coil setup and in the control

program we added a factor α that we determined experimentally. It accounted

for inhomogeneities in the coil setup and differences due to inconsistencies in

the gain of the different coil pairs. We found a value of α = 1.10(1).

To find suitable compensation fields, we applied themagnetometer sequence

where the Bsum (Bz) component was swept, scanning the By (vertical) field, the

Bdiff (Bx) field and then the α parameter in order to achieve the sharpest slope

on the vectorial magnetometer. As an example of the compensation procedure,

measurements from a scan of Bx are presented in fig. 5.2 (a), where the mean

rotation angle
¯θF measured in a ROI of about 20 × 40µm2 was used. In this

measurementBz was swept by∆Bz = 400mG in 800ms for values ofBx rang-

ing over a similar magnitude. The best value of the Bx compensation coil cur-

rent (Idiff) was marked with red circles, whereas worse values were indicated by

the blue traces. AsBx wasmoved away from the best value, the slope at the sign

change decreased.

During our first trials of background field compensation the Faraday im-

ages were obtained at a rate close to 100Hz. As is obvious from fig. 5.2 (b)

we observed that the zero-crossing measured by sequential realisations of the

magnetometer fluctuated. Note that even though the horizontal axis is differ-

ent from the one shown in fig. 5.2 (a), they are interchangeable as the magnetic

field was swept at a constant rate during the acquisition. By changing the rate

of acquisition to 50Hz and locking the onset of the pulse train to the phase of

∥
To begin with, the values of a1 and a2 were determined independent of the atom sig-

nal and were in fact found to be almost identical (as expected), so we adopted a single value a

for both. Their values were later made more accurate by a cross calibration with the Larmor

magnetometer.
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Figure 5.2: Adjusting the vectorialmagnetometer. (a)Compensating the transversal fields in the
operation of the vectorial magnetometer. (b) As the operation of the magnetometer was trig-
gered on the same phase of the mains line, it reduced the shot-to-shot scatter in the determined

fields.

the power line, we could eliminate these fluctuations arising from 50Hz mag-

netic field noise. The inset of fig. 5.2 (b) is enlarged around the crossing point of

the field. The spread in the blue measurements (without sync to powerline) is

considerably greater than the spread in the red curves (with sync to powerline).

Performance of the vectorial magnetometer
An optimised operation of the vectorial magnetometer is depicted in fig. 5.3 (a),

where the same ROI is used as before. In eachmeasurement the field was swept

by ∆Bz = 80mG, at a rate of 100mG/s. The linear relation between the ap-

plied magnetic field and the acquisition time is emphasised by the dual hori-

zontal axis. Focusing on the blue circles, we observe an initial decay explained

by the interaction of the Faraday probe and the atom cloud (see secs. 4.4 and

4.5). At a given value of Bz, the effect of the perpendicular field components

B⊥ =
√
B2x + B

2
y begin to influence the dynamics of the macroscopic spin po-

larisation. Eventually the signal drops quickly and changes sign when the mag-

nitude of the applied field equals the background field component Bz = Bz,0.
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Figure 5.3: The vectorial magnetometer. As the acquisition time is linearly related to the sweep
time the horizontal axes are dual, acquisition time on top and applied magnetic field on the

bottom. (a) An optimised realisation of the vectorial magnetometer is shown with blue circles
and a fit to that curve as the blue solid line. The yellow triangle traces are sweeps taken at a fixed

magnetic field showing the decay of the signal due to the interaction of the probe and the atoms

(the bottom horizontal axis does not apply here). The orange squares are a realisation of the

magnetometerwhere the background fieldswere compensated sowell that the spin polarisation

of the cloudwas lost. (b)The relative rate of change of themagnetic field for various sweep rates
are shown with the solid lines. The Larmor frequency in the corresponding field is shown as

the broken purple line. The inset shows the minimal transverse field needed to maintain the

magnetisation of the cloud. Figure (a) was printed previously in ref. [84].

The background and the applied fields point in opposite directions. As Bz is

scanned further it reaches amaximumand the decrement can again be explained

by detrimental effects in the atom-light interaction.

Based on the assumption that the Faraday signal θF follows the projection

of the z-component of the field onto the total magnetic field, we expect that

θF ∼ (Bz−Bz,0)/|B|, whereB = (Bz−Bz,0, B⊥).** Assuming an exponential

**
For more details see ref. [104], sec. III B.
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Table 5.1: Precision and sensitivities of the vectorial magnetometer. See details in the text.

δB δB
√
T δB

√
T ss

Bz,0 100µG 55 nTHz
− 1
2 9.0 nTHz

− 1
2

B⊥ 200µG 110 nTHz
− 1
2 18.0 nTHz

− 1
2

decay caused by the destructive nature of the probe we arrive at a function

¯θF = −Ae−kBz
(Bz − Bz,0)√

(Bz − Bz,0)2 + B2⊥
, (5.7)

which is fit to the trace and drawn as the solid line in fig. 5.3 (a). The fit parame-

ters are: A the amplitude of the function, k the destructivity decay constant,

and the field components Bz,0 and B⊥. This particular trace yields Bz,0 =

313.76(10)mG and B⊥ = 2.6(2)mG. The precision and sensitivities of the

two components of the magnetometer are listed in table 5.1. These results are a

significant improvement over the earlier implementation of ref. [104], by more

than two orders ofmagnitude both in terms of the obtained precision and abso-

lute sensitivity.
††
The absolute sensitivity is obtainedusing the full experimental

cycle time of Texp = 30 s, and the single-shot sensitivities take into account the

measurement time Tmeas = 800ms.

The precision of our vectorial magnetometer is comparable to other results.

Ref. [266] routinely reports precision on the level of δB = 50µG, which is the

same as the level reached in ref. [248]. That is also true for ref. [25], reporting

shot-noise limited single shot precision of δB = 100µG at the 1 kHz band-

width of themeasurement. These experiments all have their different traits, but

our results are close to a typical performance in an unshielded environment.

††
The sensitivities reported in ref. [104] are δB

√
T ss = 60 nTHz

− 1
2 , which are calculated

using only the measurement time, not the full experimental cycle time. This statement is based

on the reported uncertainty in the zero crossing δBz,0 = 13mG. Private communication the

authors, reveals a cycle time of Texp = 90 s, and thus our implementation improves δB by a

factor of 100.
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The two traces with yellow triangles in fig. 5.3 (a) are obtained by keeping

Bz at a fixed value, and depending on the orientation of the magnetic field the

atom signal is negative or positive. As expected, the blue traces asymptote to the

yellow ones, indicating that there is no other signal loss other than the one due

to the interaction of the atoms and the Faraday probe.

However if the background fields are compensated carefully enough, a sud-

den reduction in the Faraday signal is observed, as represented with the orange

squares in fig. 5.3 (a). Thismagnetometer relies on the condition that the atomic

spins can follow themagnetic field. If the relative rate of change of themagnetic

field | 1
B
dB
dt

| becomes greater than the Larmor frequency in the corresponding

field, this condition is notmet anymore and the atomic sample depolarises. This

is illustrated in fig. 5.3 (b). The solid, dotted dashed and dotted lines show | 1
B
dB
dt

|

for different sweep rates, and thepurple dashed line theLarmor frequency in the

field. If, for the rates presented here (100mG/s), the fields are compensated bet-

ter than about 0.4mG (that is, the magnetic field corresponding to the crossing

point of the orange solid line and the purple broken line) one might expect to

lose the spinpolarisation. This condition can also be viewed as defining themin-

imal transversal magnetic field remaining when the Faraday signal changes sign.

Equating the Larmor frequency at B⊥,min to
∣∣∣ 1
B⊥,min

dB
dt

∣∣∣ one gets the condition
that

B⊥,min =

√
1

γ

dB

dt
. (5.8)

This is plotted in the inset of fig. 5.3 (b).

The vectorial magnetometer was used to monitor drifts and fluctuations in

the magnetic field environment in our experiment. This was done by continu-

ally running the sequence over a period of around eight hours. The results are

shown in fig. 5.4where the instantaneous values of themeasurement are plotted

as a function of the runnumber of the experiment, referenced to themean value

of each trace∆B = B(t)− ¯B. The shaded area around the traces are 1σ errors of

the fits. The histograms to the right are rendered from the values obtained and
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Figure 5.4:Monitoring the localmagnetic field environment. The timescale of themeasurement

is close to eight hours. The histograms to the right are rendered from the whole trace. Figure

printed previously in ref. [84].

represent the drifts in the magnetic field background. The standard deviation

of the histograms amount to 0.32mG and 0.34mG for the longitudinal and

transversal field components respectively.

5.3 Larmor magnetometry

The most sensitive magnetometers are based on measurements of Larmor pre-

cession. Such amagnetometer can onlymeasure scalar fields. To get an intuitive

understanding of the basic physics of Larmor precession, let us consider a two

level spin system placed in a static external magnetic field.
‡‡
For a quantumme-

chanical treatment, we need to find the Hamiltonian that describes the energy

‡‡
Examples of how to treat such a problem can be found in refs. [120, 233].
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Figure 5.5: (a) The population dynamics of the F = 2 ground state manifold of 87Rb, under-

going precession in a magnetic field of 10mG. The numbers in the legend stand for the mF
number of the magnetic sublevel. (b) The expectation value of the 〈Fz〉 operator amounts to a
sine wave.

in the system. We take the spin state to be fully characterized by the spin opera-

torS =
 h
2
(σx, σy, σz), where theσi are the Pauli spin operators. Themagnetic

moment that captures the response of the spin system to an external magnetic

fieldB, relates to S via the gyromagnetic ratio γ, so µ = γS.

The energy of theparticle in an externalmagnetic field is givenby theHamil-

tonianH = −µ · B = −γS · B. Taking the magnetic field to point in the z
direction,H = −γ

 h
2
σzBz. By solving the time-dependent Schrödinger equa-

tion one can calculate the expectation values of the spin components (which is

the relevant atomic quantity, according to eq. (1.26)) to be

〈S〉 =

 〈Sx〉〈Sy〉
〈Sz〉

 =
 h

2

 sin(α) cos(γBzt)

− sin(α) sin(γBzt)

cos(α)

 (5.9)

where the α is the angle between the spin vector and the magnetic field. If we

apply a field along z and measure 〈Sx〉 or 〈Sx〉 those signals will be modulated
at ωL. It is evident from eq. (5.9) that ωL is related to the magnitude of the
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magnetic field via eq. (5.1), so a measurement of the Larmor frequency is also a

measurement of the magnetic field.

The atom cloud is initialised in the |F = 2,mF = 2〉 stretched state. The

gyromagnetic ratio in the 52S 1
2
state of

87
Rb is approximately 0.7MHz/G (see

[252]), which gives us an idea of the typical fields that can be measured in this

way. In the F = 2 ground state manifold, the electronic state is 5-fold degener-

ate in themF quantum number. The actual dynamics of themF-populations

during precession are in fact more complex than in the simple example out-

lined above. Figure 5.5 (a) shows a simulation of the ground state population

in the F = 2 manifold undergoing Larmor precession in a magnetic field of

Bz = 10mG. The program numerically solves a master equation (see sec. 7.8

of [253]) for the F = 2→ F ′ = 3 transition in 87Rb. Provided the populations

of the different sublevels PmF
,

〈Fz〉 =
∑
mF

mFPmF
(5.10)

wheremF = {−2, ..., 2}. This quantity is graphed in fig. 5.5 (b), and is in fact

a perfect sine wave. This is why the two level image of Larmor precession is so

useful.

Technical implementation
Our implementation of the Larmor magnetometer was as follows. After the

preparation of an atomic cloud in the CDT as described in sec. 3.1, we ramped

up a single dimple to a typical power of Pd = 200 µW, giving a trap depth of

around 1.5 µK. This locally enhanced the OD, giving a stronger Faraday signal.

The magnetometer was capable of measuring an applied magnetic field along

the y-direction (according to fig. 3.6). The transversal components to the probe

directionBy andBz, were compensated to the precision of the vectorial magne-

tometer (about 0.2mG). At this point we maintained the magnetisation of the

cloud by a small field of 10mG along the probe direction. The precession was

achieved by quickly ramping By to 600mG at an initial rate of 10mG/µs. The
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current driversweremade by the Institute’s electronicworkshopwith speed and

low noise in mind. The ramp of the By field was so fast that the collective spin

polarisation did not follow and began to precess around the y-axis. The small

applied Bz component was subsequently reduced to zero and the By field was

settled to the value intended to be measured. Exactly 1 cycle of the 50Hzmains

frequency after theBy field was turned on, the cloudwas imagedwith a train of

40 Faraday pulses§§ at a rate of faq = 44.31(2) kHz yielding a total probing time

of Tmeas = 925µs. Our procedure of acquisitionwas similar to the one reported

in ref. [134].

This fast rate of acquisition was obtained by operating the camera in fast
kinetic mode. We defined an area of 25 × 512 (height × width) camera pixels

at the top of the CCD chip onto which we imaged a very small Faraday light

patch that fitted into the crop region. This was easy to achieve using the DMD.

When an image is taken, the charges that have accumulated in the CCD device

are shifted downwards from the crop region to clear it andmake it ready for the

next pulse. As explained in sec. 3.6, our camera has a buffer chip below the image

chip that is equal in size. As a result we can fill up 1024 pixels giving 40 images in

total. The Faraday signal θF was obtained in the same manner as before where

we typically found the mean rotation in a ROI of about 5 × 5µm2 (10 × 10
pixels).

One drawback of the method of initiating the Larmor precession with a

sudden change in the magnetic field was that the phase of the oscillation was

different from shot to shot. A better procedure would have been to use optical

pumping instead, which would fix the phase of the initial Larmor precession.

An even greater improvement would be to couple this optical pumping light in

a spatially-selectiveway aswedowith theprobe light. Then theprecession could

be initiated locally, a feature which is highly desirable especially if the magnetic

sensing is to be done in conjunction with other measurements as explained in

the outlook section of this chapter.

§§
The properties of the Faraday pulses were the same as for the vectorial implementation.
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Figure 5.6: Measuring Larmor oscillations. (a)–(b) Examples of the Larmor signals obtained
in the experiment. Damped sinusoidal fits to the data provide the Larmor frequency and the

application of eq. (5.1) provides the magnetic field. For the (a) By = 24.51(3)mG and for (b)

By = 83.79(3)mG. (c)The fractional uncertainty ofBy asBy is varied from 9 to 140mG.The
red and green points in the data represent the realisations in (a) and (b). The purple dashed line

marks theNyquist aliasing criterion. The inset shows the calibration of the coils used to provide

the By field, using the atomic signal. Parts of the figure were printed previously in ref. [84].

Performance of the Larmor magnetometer
The experimental sequence described previously provides signals as shown in

fig. 5.6 (a). The data are fit with an exponentially damped sinusoidal function,

where the amplitude, damping coefficient of the exponential, frequency and

phase of the sine and an overall offset are free parameters. The magnetic field

corresponding to the frequency is calculated via eq. (5.1). As a result wemeasure

the By component to a precision of δB = 30µG. Given the total measure-

ment time Tmeas = 925µs we get δB
√
T ss = 900 pTHz

− 1
2
. Taking into ac-

count the full experimental cycle we obtain the absolute sensitivity of δB
√
T =

16 nTHz
− 1
2
.

To investigate the operational range of our implementation the applied field

was scanned fromabout3mGto70mG.The relative single-shotprecisionδBy/By
is plotted as a function of the applied field in fig. 5.6 (b). The absolute precision

is more or less constant over the range of frequencies measured so δBy/By im-
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proveswith increasingBy. TheNyquist–Shannon sampling criterion is plotted

as the dashed purple line. It is themagnetic field equivalent to
faq

2
(see ref. [241]).

The measured fields above it will suffer from aliasing, but as we can follow the

precession frequency from below
faq

2
, there is no doubt about the absolute val-

ues of the magnetic fields above
faq

2
.

The magnetic field is obtained directly from the Larmor frequency so this

magnetometer is not only precise but also accurate. With an absolute ruler for

magnetic field strength at hand we cross-calibrated the vectorial magnetometer

in order to improve its accuracy. The inset of fig. 5.6 shows the linearity of the

measured field as a function of the applied current to the coils Iy. A linear fit

describes the data very accurately, apart from the two points corresponding to

the lowest applied fields wemeasured. As the applied field is low, the transversal

components are compensated relatively poorly and so they are excluded in the

fit. The calibration yields a gain of 0.6161(6)G/A, and by virtue of this cali-

bration we can measure accurately the B⊥ component in the operation of the

vectorial magnetometer. By scanningBy we obtain different values ofB⊥ from

the fits and these values fix the calibration of Bz, the field component which is

swept in the vectorial magnetometer.

It is important to test the stability of the Larmor signal within a single trace

and see if any signs of frequency chirping are present in the oscillation. Such fea-

tures could arise from high frequency components in the magnetic field back-

ground that cannot be compensated passivelywithDC fields. As the total probe

time is close to 1ms we should be sensitive to components with frequencies

> 1 kHz. To test this hypothesis 80 Larmor traces were obtained with a con-

stant applied field of By = 24.2mG. The data are fit with a damped sinusoidal

as before to the full trace, to the first 20 points (left hand side), and to the last

20 points (right hand side). A scatter plot of the obtainedωleft andωright nor-

malised to the full trace frequencyω0 is shown in fig. 5.7 (a). The circle is the

mean of the 1σ errors of the fits, so statistically speaking, we would expect ap-

proximately 68% of the points to lie within that circle. This is in fact the case,

with18points lying outside the circle. There seems tobeno systematic variation
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Figure 5.7: Testing the stability of the Larmor oscillationwithin a single run. (a)Ascatter plot of

the left and right frequencies obtained from the fits. The circle represents the average 1σ error

of the fits. (b) A histogram of the frequencies fitted to the left and right side of the traces. The

inset shows the result of fitting the full trace. The fits are Gaussian used to extract themean and

standard deviation of the distributions.

in the frequency during the probing time.

Figure 5.7 (b) shows a histogram of the magnetic fields from the individual

runs for the left and right side of the trace. As is apparent from (a) there is no

difference between the left or right distributions. The solid lines are Gaussian

fits giving the mean value (µ) and the standard deviation (σ) of the distribu-

tion. The inset shows the histogram of fits using the full traces. The values

of µ for all distributions are identical as to the 4-th decimal place. The value

of σ is a measure of the shot-to-shot fluctuations, the residual jitter in the stray

fields. For the full trace it amounts toσ0 = 0.32mG, compatiblewith the0.32–

0.34mG obtained from the eight hour operation of the vectorial magnetome-

ter, shown in fig. 5.4. As the single-shot precision is around an order of magni-

tude better than the shot-to-shot fluctuations, themagnetometer could be used

in-sequence with other magnetic-field-sensitive measurements to improve their

precision, either by active feedback stabilisation [248] or by post-selection of

data conditioned on the field value obtained from the magnetometer [24, 172].

The single-shot precision of our Larmor magnetometer is among the best
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cold-atom optical magnetometers that have been realised. It is on pair with the

results of refs. [134, 145, 285] and exceeds that of refs. [90, 169] by an order of

magnitude. The results of the squeezed lattice magnetometer of ref. [196] at

δB = 3.1 µG, the squeezed BEC interferometer of ref. [205] at δB = 150 nG,

and thebest cold-atommagnetometer todate in ref. [274] atδB = 9 nG, remain

unprecedented.

A recent realisationof anRF-driven cold-atommagnetometer claims tohold

the record for non-degenerate, non-squeezed atom ensembles reaching single-

shot sensitivities of δB
√
T ss,FFT = 330 pTHz

− 1
2
, and single-shot determination

of magnetic fields down to δB = 7µG [59]. The operation of this magne-

tometer permits a bandwidth-based definition of the sensitivity (due to high

sampling rate), making an exact comparison to our single-shot sensitivity of

900 pTHz
− 1
2
not straightforward. In the paper they compare their result to

ours (among others) and claim that our sensitivities lie in the several nTHz
− 1
2

regime, which is true if one takes into account our absolute sensitivity. But their

notion of bandwidth does not take their full experimental cycle (around 7 s)

into account. Thus their claim of exceeding other results by an order of magni-

tude is not justified.

The supplemental material of ref. [196] gives a great overview of the perfor-

mance of magnetometer sensitivities for a great variety of platforms and plots

them as a function of volume. To place ourselves on such a plot we need to

estimate the volume of the atom cloud in the microtrap. Assuming a thermal

distribution of atoms, the volume can be taken to beV = (2π)
3
2σxσyσz where

σi =
√

kbT

mω2i
(see sec. 2.3 of [219]). Using the expressions for the trapping fre-

quenciesωi in eqns. (1.19) and (1.20), we get that for a single microtrap

V =
π

2

(
πkbT

U

) 3
2 w4d
λ
, (5.11)

where T is the temperature of the atoms, U is the trap depth and wd is the

beam waist. Assuming that the kinetic energy πkbT = U, which is a good
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Figure 5.8: Precision and area of evaluation. The graphs (a)–(c) represent the magnetometry
traces as obtained from slicing up the Faraday image of the cloud as indicated by the red dashed

lines to the left of the curves. The plot in (d) shows the change in the precision as the number
of slices is increased. Figure printed previously in ref. [84].

approximation for the atoms in the microtrap,
¶¶
and using the measured value

ofwd = 4.3 µmwe arrive at Vdim ' 600µm3, and that places us very close to
ref. [286].

As a concluding point of this section it is worth estimating how far we are

from shot-noise-limited performance according to eq. (5.3). Given that ∼ 1000

atoms reside in the dimple potential
***
and the measurement time is ∼ 1ms, we

get δB
√
T ss = 1

γTmeas
√
N

= 20µG. This indicates that we cannot be very far

from shot-noise-limited performance, given the atom number and the probing

time of the realisation. During operation, there may well be more atoms along

the line of sight than ∼ 1000, which would pull down the limit. But as stated in

the concluding remarks of sec. 4.5 we had tried and failed to confirm projection-

noise-limited performance of the detection system. In any case we could have

lowered the technical noise level by using the proper mode of the camera.

¶¶
In any case the usual rule of thumb that the energy is about 1/10 of the depth hardly holds

here, as new reservoir atoms constantly flow in as old ones are removed from the potential.

***
This is justified according to fig. 4.6 (bottom) with aUres = 5µK andU

dim
= 1.5 µK.
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5.4 Spatially-selective probing and detection

There are two spatial aspects of our measurement setup. Due to the CCD cam-

era we have spatially-resolved detection and by using the DMD to shape the

probe it can be made spatially-selective.
The operation of ourmagnetometers does not rely on the spatial resolution

of the camera. As one reduces the ROI for integration of the signal the SNR is

usually reduced. To test this trade-off we analyse a single realisation of the vec-

torial magnetometer, a set containing in total 40 Faraday images. The ROI is

chosen to be 20×60µm2 in size (40×120 pixels) capturing the entire reservoir
cloud, as shown in the leftmost image of fig. 5.8. The image is now split intoN

slices along its longer side. For each slice the average Faraday angle
¯θF is calcu-

lated for thewhole series ofmeasurements, and amagnetometer traces like those

in the figs. 5.8 (a)–(c) are fitted. The precision of the zero crossing of the mag-

netic field is obtained by fitting eq. (5.7) for each of the N slices giving δBz,0,i
(where i = 1, ...,N) and so the mean value and the standard deviation of the

δBz,0,i’s can be determined for eachN. The result is graphed in fig. 5.8 (d). As

expected, the precision of Bz,0 is reduced for smaller ROIs.

By dissecting the image into N regions, the setup can measure N-th order

variations in the magnetic field. This is perhaps not so useful in the middle of

a vacuum chamber, far from all sources of magnetic fields, but it is much more

relevant close to the surface of microscopic circuits. Such an ability has been

demonstrated before, where a BEC on an atom chip was used as a sensor of the

complex structure of electric and magnetic fields close to its surface [286]. It

is however realistic to have a gradient present at the location of the atoms in a

large vacuum chamber, and the vectorial magnetometer achieves gradiometric

precision of 3.0 µG/µm.

The main advantage of the flexible control over the shape of the Faraday

light provided by the DMD is that parts of the atomic system can be measured,

leaving the rest unaffected by the probe light. To test if this is indeed the case

we prepared an atom cloud in a single trap and obtained two Faraday images.

The size of the probe was as small as we could make it: a patch with a waist of
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Figure 5.9: Spatially-selective probing. (a) Establishing the locality of the Faraday probe. (b)—
(d) Simultaneous Larmor oscillation in a triple microtrap system. Figure printed previously in
ref. [84].

3.8 µm. In the first image of each run the probe was at a distance s from the po-

sition of the atoms in the trap (marked with a red broken circle in the top panel

of fig. 5.9 (a)) and in the second image the probe measures the cloud. The dis-

tance swas scanned across the cloud in multiple realisations of the experiment.

The Faraday angle obtained from the second image is plotted as a function of

the distance s in fig. 5.9 (a). The first probe clearly has a detrimental effect on the

signal if the beam overlaps with the cloud. The solid line in the figure is a Gaus-

sian fit, fromwhich we extract the 1/e2 radius of 3.8(3)µm in accordance with

what is expected from the size of the probe beam. This eliminates the need to

screen stray light which might originate from the probe source, which is often

achieved with a razor blade properly placed in the intermediate imaging plane.

The final measurement utilises most of the capabilities of the experiment.

Three microtraps are generated in a row spaced by 13µm, and superimposed

to the reservoir. The system is shown in the image to the far right in fig. 5.9.

The atomswere put into Larmor precession and probedwith a train of 14 Fara-

day pulses spanning 570µs. The size of the probe encompassed all three clouds.

The spatially-resolved detection was employed to extract the angle from a 10×
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10µm2ROI around each atom cloud and the result is shown in figs. 5.9 (b)–(d).

This experiment shows the potential of the spatially-selective probing scheme,

where the twoouter clouds couldbeused formagnetic fieldmeasurementswhile

some magnetic-field-sensitive process takes place in the centre cloud.

As a result we can put an upper bound on any residual magnetic field gra-

dient, that must be
dBy
dy

< 3.0 µG/µm. This number could be improved by

a factor of 2–3 by separating them only by one waist of the microtrap. State-

of-the-art cold atom gradient magnetometers are at least one order of magni-

tude better, reaching gradient precision of about 100 nG/µm [169, 196, 285].

The best result I found in the literature is that of ref. [289] where two BECs

were used in a Ramsey type interferometer to reach gradiometric precision of

3 nG/µm.

5.5 Outlook

In this chapter, two high-precision cold-atom optical magnetometers have been

presented. Their sensitivity is orders of magnitude from competing with state-

of-the-art cell-basedhot-vapourmagnetometers, but their real potential lies else-

where. The small diffusion of cold-atom cloudsmakes them excellent for spatial

imaging of magnetic field environments. We have shown our method’s poten-

tial to measure gradients in 1D, but by trapping atoms in a grid of microtraps,

gradients could be measured in 2D. With improvements of the machinery en-

abling micro-trapping in 3D, as was achieved recently in ref. [53], the magnetic

field environment could be mapped in full 3D.

An even more interesting route to take is to use the magnetometers in con-

junction with other measurements of quantities that depend strongly on the

local magnetic field. Such a methodology was demonstrated recently in our ex-

periment, where an in-sequence Faraday measurement of the phase space den-

sity was used to reduce shot-to-shot fluctuations in the determination of the

transition from a thermal cloud to a BEC [24]. In another recent example a

microwave-based magnetometry scheme was used to reduce measurement fluc-
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Figure 5.10: Spatially-selective Faradaymeasurements could enablemagnetometry in simultane-
ity with other magnetic field sensitive measurements. Here an atom ensemble has been sepa-

rated into a sensor region, in the four corners of the illustration (twoofwhich are being probed),

and an interaction region in the centrewhere quantum spin dynamics take place. That process is

prone to error in the presence of fluctuating magnetic fields. The figure was printed previously

in ref. [84].

tuations of magnetic field sensitive variables [172], so the research community

has interest in such techniques.

The spatially-selective nature of our probing scheme enables a refinement

of this idea as the fluctuating magnetic fields could be measured in portions of

the system, whereas the rest remains unharmed by the measurement. This con-

cept is captured in fig. 5.10 where small atomic clouds in the four corners of the

illustration form sensor regions and the atoms in the egg-tray potential make up
an interaction region where magnetic field sensitive dynamics takes place, such
as quantum simulation of spin physics [246]. This interaction region is inten-

tionally drawn as such for the reader to make mental connections to atoms in

optical lattices which are the topic of the second half of the thesis.

Apart fromthese avenues, the spatially-selectiveprobingholds otherpromises.

The original purpose of the experimentwas to realise spin-squeezing in the style

of ref. [240]. Due to high levels of technical noise, we did not reach the atom
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shot noise limit. I am sure the story would be different had we operated the

detector in the right regime and worked some more on the matter. With high

enoughODs in themicrotraps the achievement of spin-squeezing should be fea-

sible. Shaping of the probe light could allow for local squeezing of atoms in a

microtrap array.

Weak measurements also allow for experiments with active feedback. Such

implementations require fast acquisition, readout and analysis that canbe achieved

on an FPGA on a timescale close to 1ms. One could imagine extracting the

atom number and temperature on the fly to get an estimate of the PSD as was

done in [24] and feed back on the system to stabilise that quantity. That could

prove useful for experiments that require stable atom numbers and tempera-

ture, e.g. for deterministic preparation of the filling fraction in an optical lattice

for a subsequent quantum simulation. Recently Faraday imaging was used to

achieve number stability of atom clouds at the atom shot noise limit [104, 173].

Finally spatially-selective probing could be used to measure parts of a cou-

pled atomic system like a Bose-Josephson junction [3, 247]. Such a two-level

tunnel-coupled system exhibits two distinct phases; an oscillatory phase where

the atompopulationoscillates between thewells and a self-trappingphase,where

the self-energy (the interaction energy due to the U0|Ψ|
2
term in the Gross-

Pitaevskii equation) is so high that the oscillatory phase is prohibited by energy

conservation. With the help of a local probe onemight remove atoms from one

of the wells, either to cross from the self-trapping to the oscillatory phase or

vice-versa. Due to heating effects such an experiment might be difficult. I still

believe that local probing would be of interest to extract information of parts of

a quantum system [232, 276], or to induce dynamics in portions of a system.

This technique has a great potential in field of cold-atom physics; both if

employed for themeasurement of typical error-inducing quantities in-sequence

with other measurements; and for the purpose of inducing and controlling dy-

namics and quantum states [259].



CHAPTER 6
Newmachinery for the

high-resolution experiment

The vision for the high-resolution experiment at Århus University is to be a

state-of-the-art quantum simulator for bosons. Themachinewill be able to pre-

pare atoms in a single layer of a 3D optical lattice with unity filling and image

them through a microscope with a resolution to the level of a single site of the

optical lattice [243]. The novelty of the machine will lie in the combination

of arbitrary far off-resonant optical potentials and local spin addressing of indi-

vidual atoms. Static and dynamic potential landscapes can be realised with the

ability of theDMDfor cycling through amultitude of images that could beused

for the purpose of atom transport and quantum optimal control. The address-

ing scheme is realised on the F = 1→ 2 hyperfine transition in the ground state

manifold, using a combination of near-resonant light and microwaves [281].

* * *

In October 2016 we stopped doing experiments with the magnetometry setup

and started to incorporateparts for thehigh-resolution experiment. As explained

below this required a bakeout of the science chamber. Naturally we had to strip

135



136 CHAPTER 6. NEW MACHINERY FOR THE HIGH-RESOLUTION EXPERIMENT

the setupof all optics in the vicinity of theparts tobebakedout. The912 nmmi-

crotrap system and the DPFI imaging setup were permanently removed and so

was the transverse dipole beam in the cube chamber we used to create a crossed

dipole trap for the Alice Challenge [132].

The chapter below describes all modifications that have been made to our

experiment for the high-resolution experiment and supplements the descrip-

tion provided in refs. [131, 199]. The first section covers changes made to the sci-

ence chamber, and the second section describes our microwave system in that

chamber. The third section describes the laser setup around the science cham-

ber, and the fourth section that of the high-resolution optical breadboard. The

fifth section describes the climate system constructed around the experiment

table to stabilise the temperature on the experiment table.

6.1 The viewports of the science chamber

A top view of the science chamber is depicted in fig. 6.1 (a) and its viewports

are marked with letters A–E. The original design of the science chamber had to

include access for many different optical setups: the high-resolution part from

below (A), the re-entrant viewports used in themagnetometry experiments (B),

and the viewports on the lattice axes (C and D). To begin with the experiment

was designed to support superlattices for qubit manipulation, like is described

in ref. [151]. Soon after we started building the optical lattices we quickly di-

verted from the plan of leaving space for those optics. This was both because

space is really scarce around our main chamber, and it seemed like the DMDs

could be used instead of superlattices to realise collisional qubit gates by shut-

tling atoms around [282]. This is however, the reason why one of the lattice

axes is equipped with a re-entrant viewport for internal reflection (D) that re-

flects 1064 nm light (and transmits 780 nm), ensuring the stability required for

precise phase control of the different coloured standing waves. As explained in

sec. 7.5 this design is a limiting factor for the achievable depths of our lattices.

All lattice viewports, apart from the retro-reflections at (A) and (D), have an an-



6.1. THE VIEWPORTS OF THE SCIENCE CHAMBER 137

Figure 6.1: The science chamber. (a)The different viewports are marked with letters A-E. (b)A
cross sectional view of the science chamber. The objective enters on the bottom. The red blob

marks the position of an atom cloud.

gledwindow (seen to the left in fig. 6.1 (b)) tilted by 15◦ to avoid standingwaves

between the windows. The longitudinal dipole beam enters at (E) and is a nor-

mal flat AR coated window.
*
A cross section of the science chamber (along the

internally reflected lattice axis) is shown in fig. 6.1 (b). Here the top viewport,

with its 15◦ tilt, is also visible.

The old high-resolution viewport was flawed in two ways. As discussed in

sec. 4.3 it was more than 2 mm too high, which is not a problem for the high-

resolution imaging itself but limited the achievable NA of the objectives used

for magnetometry. The other flaw was more serious. The optical coating on

the viewport is in fact quite complex. It is designed to be reflective in the near-

infrared (from 700–1100 nm) apart from two transmission windows at∆λ1 =

760–850 nm and ∆λ2 = 930–1020 nm (see appendix D of ref. [199]). In this

way the viewport is transmissive at 780 nm (for the fluorescence light from the

atoms), and at940 nm(for creationof arbitrarypotentials). It is highly reflecting

*
As seen in fig. 6.5 the window itself is a bit further away, as there is a T-piece connector

that enables access for a vacuum pump.
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at 912 nm (for superlattice purposes), and at 1064 nm (for internal reflection of

the vertical lattice beam).

As the high-resolution objective has very high NA, it can accept light from

high angles of incidence. The issue with the old coating was that the transmis-

sion windows only worked well at 0◦ angle of incidence, severely limiting the

achievable NA. This had to be remedied with a new viewport and a new coat-

ing. The new piece (MPF, custom design) was also 2.4mm lower than the

old one so the surface of the viewport is now about 7mm below the centre of

the vacuum chamber. In other respects it is identical to the old one. It has a

glass window (Corning 7980, grade A) with a diameter of about 56mm,

and a thickness of 5.923mm. Its flatness is greater than λ/4, good enough for

diffraction-limited performance.

6.2 Microwave system and quadrupole coils

To perform spin addressing, a source for microwave radiation must be present

in the science chamber. Asmicrowave evaporation is routinely performed in the

cube chamber there was a system at hand we could build upon. Themicrowave

source is a Marconi 2024 controlled via a GPIB interface. The source is op-

erated in the vicinity of 980MHz. To reach the 6.8GHz required for driving

transitions between the F = 1 and F = 2 hyperfine states, the signal is sent

through a diode (Herotek, GC1000RC) that creates harmonics of the main

frequency. With low-pass (Mini-Circuits, VLF-6400+, DC–6.4GHz) and

high-pass (Mini-Circuits, VHF-7150+, 7.8–11GHz) filters we select out the

7th harmonic. Afterwards the signal is amplified in several stages before it is

guided to the atoms.

The spin addressing scheme requires a greater degree of control over the

microwave radiation than the current system has to offer. Tomeet the demands

the old system was upgraded with a versatile RF signal generator (Photon-

ics Technologies, VFG-150). The RF signal from the VFG is mixed (Mini-

Circuits, ZMX-7GR) with the microwave signal from the Marconi to pull it
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Figure 6.2: Aschematic setupof themicrowave systemused in the cube and the science chamber.

Figure borrowed from [178].

into the right frequency range. The schematic of the microwave setup is shown

in fig. 6.2. With a switch (Mini-Circuits, ZFSWA2-63DR+) we select which

branch (the cube or the science chamber) the signal is sent to. In both stages the

signal goes through pre-amplification (Mini-Circuits, ZVE-8G+)
†
and am-

plification (Kuhne electronic, KU PA 640720-10A) delivering more than

1.5W of power to the antenna. Due to imperfect impedance matching with

the antennas, a big portion of the wave is reflected. To protect the final ampli-

fier, its outgoing port is protected with a circulator (MTC, H119FFF) guiding

the reflected wave to the terminator.

One of the central goals of the newmachine is to achieve the ability to load

atoms into a single plane of an optical lattice. This is quite challenging as the

spacing between the nodes in our lattices is only 532 nm. A discussion of our

plans to that end are included in theoutlook. Oneof thoseoptions is themethod

of magnetic field slicing [280]. For that to be viable we built in a pair of gradi-

ent coils of the same design as for the coils attached to the cube chamber. Each

coil has 4 × 4 windings of a square shaped copper wire (obtained from Dan-

fysik with a side length of 2mm) with a hollow core enabling efficient water

cooling (for details on the coils and the water cooling see sec. 2.1.3 and app. A

of ref. [199]). The coils are cast in epoxy and mounted directly on the flanges

†
On the cube branch there are twopre-amplifiers, first aMini-Circuits, ZX60-8008E-S+

and the second mentioned in the text.
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on the top and bottom of the chamber. Due to the design of the system, the

bottom coils had to be built in at the same time as the high-resolution objective.

6.3 Optical systems for the science chamber

The high-resolution experiment required new optical setups. Most notably we

built in the high-resolution breadboard (covered in the next section), a 3Dopti-

cal lattice system, and opticalmolasses around the science chamber. A schematic

picture of the laser setup in the horizontal plane around the chamber is shown

in fig. 6.3.

The crossed dipole trap is depicted in green and is similar to the earlier setup.

The transverse dipole trap had to be redesigned as the dual objective system

was removed, but the present setup still provides a beam with a waist of about

90µm. The last mirror of the TDT, and the second to last of the LDT are

mounted in a controllable piezodrivenmirrormounts (RadiantDyes,N-470

PiezoMike), such that day-to-day adjustments of the position of the CDT can

be done without opening the compartments around the experiment. We do es-

pecially see drifts of the LDT beam (a fewµmper day), which is possibly due to

both its very long beampath (∼ 3m), and some slight hysteresis in the transport

stage (see sec. 3.1). The stability of the whole setup is greatly improvedwhen the

climate system is operating (see sec. 6.5).

The horizontal lattice beams are depicted in blue. The main difference be-

tween the horizontal 1 (H1) and horizontal 2 (H2) lattice axes (see fig. 6.3), is

thatH1 is externally reflected andH2 is internally reflected on a re-entrant view-

port (D in fig. 6.1 (a)). The distance from the centre of the chamber to the

surface of the re-entrant viewport is 30mm, which constrains the achievable

waist of the H2 lattice beam. Naturally the focus of the beam must be placed

on the viewport itself leaving the size at the atoms up to Gaussian beam propa-

gation. Byminimising the beam size at a distance of 30mmfrom the focus using

eq. (1.16), one can obtain a waist of about 150µm at the atoms, given that one

has a 100µm beam at the viewport. As a result both lattice beams are designed
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to give 100µmwaists where the focus of H1 is placed at the atoms, and the fo-

cus of H2 placed at the re-entrant viewport. The beam sizes were confirmed

by beam profiling.
‡
The size of the H2 beam 30mm from the focus was mea-

sured to be 140µm. Both beams have pure linear polarisation that is cleaned by

a polarising beam splitter cube after the last mirror before it enters the chamber.

The light for the horizontal lattice axes is provided by a 50Wfibre amplifier

at1064 nmwavelength (AzurLightsystems). The light distribution is done

on a separate optical breadboard (shown in appendix B) and the light is passed

through photonic crystal fibres (NKT Photonics, aeroGUIDE-POWER)

to the setup. The H1 axis is externally reflected by a specially coated dichroic

(see appendix C of ref. [199]) that is highly transmissive for 780 nm light and

reflective at 1064 nm at a 0◦ angle of incidence. The retro-reflection of all lattice

axes is achieved with the reflective element in a cat’s eye configuration, where

the beam is focussed onto the retro-reflector. This configuration enhances the

stability of the setup andminimises distortions of the reflected beam due to any

surface deviations on the reflector.

Absorption images of the cloud can be acquired on both lattice axes (path

shown in orange in fig. 6.3). This provides a good starting point for the align-

ment of the optical lattices as the lattice beams are also visible on the cameras.

The alignment of theH1 axis is considerably easier than that of the H2 axis. For

the purpose of the alignment of the H1 we have installed a flip mirror before

the retro-dichroic. This mirror sends the beam to a dump, turning our lattice

into a single-beam dipole trap. To be sure that the beam hits the cloud centrally,

the CDT is turned off and the H1 beam is pulsed on at high power for ∼ 1ms,

followed by a TOF measurement. If the beam hits the cloud on the side, the

‡
When aligning the lattices we routinely measured the beam size of the laser at various

points in the setup. In the beginning we often did those measurements only with the laser in

seed mode or with the fibre amplifier running at low current, simply because more precautions

have to be taken when operating at high power. This turned out to give incorrect results. The

profile of the laser is radically different at lower powermainly because a relatively big portion of

the seed light propagates in the cladding of the fibre.Always measure the properties of the beam
under the settings in which it will be operated.
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Figure 6.3: The optical setup around the science chamber. Lens sizes are given in mm and a

legend for the optical elements is available in appendix B. Details are given in the text. Figure

borrowed from [178] and edited.

cloud will accelerate towards the region of highest intensity. By scanning the

beam position across the cloud one obtains a dispersion-like curve in the cloud

position and can deduce the centre of the beam. The retro-reflected beam is

overlapped to an iris in the beam path (before the optical isolator) and the lat-

tice depth is maximised either by Kapitza-Dirac measurements or by modula-

tion spectroscopy (bothmethods are explained in ch. 7). For theH2 axis we rely

on the camera for initial positioning, but as the retro-reflector is fixed, the beam

must be walked. In the end that must be done by using the atoms as a measure
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Figure 6.4: The optical setup for the vertical lattice. Lens sizes are given in mm and a legend for

the optical elements is available in appendix B. Details are given in the text. Figure borrowed

from [178] and edited.

of the lattice depth, which is considerably more cumbersome than for the H1.

In our experience the H2 axis was generally more stable than the H1 axis, but

because of the limitation of the beam size it requires twice the optical power to

achieve the same depth.

The beam shaping optics for the vertical lattice beam are placed on a bread-

boardmounted above the science chamber. The path is shown in fig. 6.4. Most

notably it is designed to provide a narrow waist of 55µm at its focus, and this

corresponds to a waist of about 60µm at a distance of 3.5–4.0mm above the

viewport where the atomic cloud is held in the CDT. As the last lens in the opti-

cal setup is mounted inside the top viewport, we never confirmed the size of the

beam directly. The choice for the narrow waist was mainly because of power

considerations. The light is provided by our Nufern amplifier that also gives

light to the CDT. In fact the 0th order (un-diffracted) beam emerging from the

AOM for the TDT is used for the vertical lattice. For details the reader may

study the schematics of the high power laser table given in fig. B.3 (bottom) of

appendix B. This axis is aligned in the same way as the H2. For further details

on the particularities of our lattice setup, and lessons learned, see appendix D.

The beams for the optical molasses in the horizontal direction are depicted
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in red in fig. 6.3. Theoptics are designed toprovidebeamswith awaist of around

0.7mmandestimationsusing the lattice cameras reveal themtobe about0.5mm

on both axes at the position of the atoms. The paths feature a combination of

waveplates (quarter-half-quarter), withwhich one can produce any given polar-

isation of the laser beam. They are adjusted to give beams with circular polar-

isation. The horizontal molasses beams are retro-reflected by mirrors glued on

top of ring-shaped piezo actuators (Piezomechanik, HPSt150/4-10/12). By

modulating them with an amplitude of several λ at a frequency much greater

than the exposure time of a fluorescence image, one avoids that standing waves

in the molasses light appear on the images (see fig. 4.11 of ref. [280]).

The light collected by the objective from the atoms is the scatteredmolasses

light. As a result we cannot shine a molasses beam in from above, as that would

completely dominate the faint fluorescence light from the atoms. To provide

some cooling in the vertical direction, it turns out to be enough to pass a single

molasses beam through the objective from below (its path is sketched in blue in

fig. 6.5 (c)). This so-called third molasses beam is overlapped with the imaging

path via an uncoated glass plate that ensures about 5% reflection of the incom-

ing light. A portion of the light is unavoidably back-reflected into the imaging

system giving rise to speckle patterns on the camera. This is minimised by walk-

ing the beam such that themain portion of the retro-reflectionmisses the imag-

ing system. To attain a reasonable waist (one that covers the whole cloud) the

optical system must focus the beam right before the objective. Our estimates

were that in this way we could get a beam with a waist of 100µm at the atoms,

but this turned out not to be the case. The beam only illuminated a portion of

the cloud and suffered heavily from fringing. However, it is still necessary for

cooling as is discussed in sec. 9.4.

The molasses light comes directly from the master laser and is brought near

resonance by AOMs in double pass configuration. A schematic of the distribu-

tion system is given in fig. B.3 (top). A necessary repumper beam is shone into

the chamber through the same viewport as the LDT beam (magenta in fig. 6.3).

Its size is similar to that of the molasses beams.
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6.4 The high-resolution optical breadboard

The centrepiece in the machinery of our quantum gas microscope is the opti-

cal breadboard that hosts the high-resolution objective (d. den gule pølse) and
other high-resolution optics. The objective (ASE Optics, custom design)

has an NA of 0.69, an effective focal length of 5mm and a working distance

of 12.95mm. It is designed to perform at the diffraction limit for 780–790 nm

light without any chromatic shifts. For details see sec. 7.3.2 of ref. [199]. It is

mounted on apiezo-driven objective scanner (PI, PifocP-725.4CA)with a scan

range of 400µmwhich enables control of its vertical position to nm precision.

The objective and the scanner are shown in fig. 6.5 (a).

The alignment of the objective to the window of the high-resolution view-

port is highly critical as any residual tilt will lead to an aberrated image. There-

fore the setup must allow for some means of moving and tilting the objective

irrespective of the viewport. To achieve this without affecting the relative align-

ment of the objective with respect to other optics the whole breadboard is mo-

bile. A schematic top view of the breadboard is given in fig. 6.5 (b). The board is

laid on top of a metal block that is identical in shape to it and three micrometer

screws (Newport, BM30.10) are the sole points of contact between the bread-

board and the bottom plate. Their positions are marked by red circles in the

sketch. To enable high precision positioning on top of the experimental table,

micrometer screws can be placed around it as marked by the green arrows in the

sketch. The yellow dot marks the position of the objective. The breadboard

is custom made by the Institute’s mechanical workshop, machined out of alu-

minium. Both plates are 4 cm thick and given the dimensions from the sketch,

the whole construction with all optics weighs a few hundred kilos.

There are four optical systems on the breadboard and they are all sketched in

fig. 6.5 (c). The sketch is simplified andmarks only how the different systems are

combined. Adetailed description of all the separate optical paths and alignment

strategies can be found in ref. [130], but below the most important aspects will

be discussed. The imagingpath ismarked in orange and togetherwith a750mm

achromatic doublet the system has a magnification aroundM = 152.3(9) (see
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Figure 6.5: The high-resolution optics. (a) An image of the objective mounted to the objective
scanner. (b) A sketch of the breadboard itself and the means to move it. (c) A coarse schematic

setup of the optics on the hires board. Details are given in the text.

measurements in sec. 9.3). As a result a single camera pixel corresponds todpix =

105.5(2) nmand so the fieldof viewof the camera spans a regionof54×54µm2.
As the periodicity of the lattice is 532 nm, a single atom covers an area of 5 ×
5 pixels. The molasses beam from below, discussed in the previous section, is

marked in blue.

In addition there are twooptical systems capable of projecting light onto the

atoms spatially shaped by DMDs. One is operated with light at a 940 nmwave-

length intended for the creation of far off-resonant potentials and the other uses

near-resonant light at awavelength close to 787.5nm. That light is used for local

spin-addressing that has been realised previously both in a quantum gas micro-

scope [281] and in a large spacing 3D optical lattice [277]. At this wavelength

the light shifts generated by σ+ polarised laser beams, with respect to the D1

and D2 lines, cancel each other for the |F = 1,mF = 1〉 state, but there is still
a significant light shift for the |F = 2,mF = 2〉 state. This shift can be used to
pull individual atoms locally into resonance with microwave radiation used to

transfer atoms between the two spin states.

Both of those systems have two paths. On one arm the light is shaped by
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a DMD in a direct imaging configuration, and on the other arm the DMD is

placed in the Fourier plane of the imaging system. These arms are combined by

a non-polarising beam splitter cube. Both methods of imaging have their pros

and cons. The direct imaging method is conceptually simpler and is preferable

for big structures as the intensity that can be obtained is independent of the

structure. However, any residual optical aberrations inherent in the systemwill

affect the pattern. When theDMD is placed in the Fourier plane of the imaging

system one gains control both over the amplitude and the phase of the light.

Here one obtains a way of correcting for residual aberrations. The drawback is

that large and complex patternswill becomepower limited, as they require high-

frequency components in Fourier space that effectively requires one to turn off

a large fraction of the mirrors on the DMD.

As explained in ref. [130] much work has been done in the group on map-

ping out the aberrations efficiently. Briefly, to project a certain image onto the

atoms one would naively upload its Fourier transform to the DMD, but as it

turns out this will not yield a good result. The generated image will be highly

aberrated, mostly due to the curvature of the DMD itself, which amounts to

several λ across the whole chip. These aberrations (and others) can bemeasured

and corrected for by an interferometric measurement, where the phase of the

light across the chip is mapped out with respect to its centre. In this procedure

one acquires a phasemap that can be used to correct the Fourier transform of the

desired image. This procedure ofmeasuring the phasemap can be time consum-

ing. However, as is explained in ref. [130], this time can be cut down to about

half an hour. Until now, we have not reached the point of using the Fourier

DMDs in the experiment and so their function won’t be detailed any further.

Ref. [294] offers a fine account of Fourier imaging with DMDs.

Each of the direct imaging DMDs can be illuminated either with a large

(more uniform, less intense) or a small (less uniform, more intense) beam. The

twobeams are shone in fromdifferent sides to theDMD.As explained in sec. 3.3

the mirrors can be tilted±12◦. Therefore either orientation can be used as the
on or off state, depending on the direction of the incoming beam. One can

project the same onto the atoms simply by inverting the image uploaded to the
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DMD (black↔white). A smaller beam (with higher intensity) leads to deeper

traps, at the cost of a smaller usable area on the DMD. The laser systems that

provide light to the787 and940 nmsetups are depicted in fig. B.2 of appendixB.

The whole breadboard with DMDs was pre-aligned and characterised be-

fore instalment to the system [130]. The final alignment of the imaging system

had to be done in-situ with the correct viewport before the chamber was closed

and baked out. A specially made test plate was placed on top of the viewport

and imaged (with 780 nm light) to guide the alignment of the system. The plate

wasmade of glass, coatedwith a thin gold layer on one side. In the gold, 100 nm

holes had been etched out constituting tiny pinholes that were well below the

resolution limit of the imaging system. The positions and tilts of the board

were adjusted by the micrometer screws. Having obtained a satisfying result

the board was removed again as it could not be in place for the bakeout. After-

wards it was placed in again and the alignment could be reproduced by resetting

the micrometer screws to their optimal positions. This procedure is described

in details in ch. 7 of ref. [130].

As a final comment let us examine the 940 nm direct system, which we have

used themost, inmoredetail. Thedemagnification to the imageplane is1/M940 =

92.7(5). The other systems have a similar demagnification. This means that

each DMD pixel corresponds to about 80 nm at the position of the atoms. To

make tight tweezerswehave routinely used circleswith a radius of7DMDpixels

(R7) that yields tweezers with a waist of 780 nm.§ This is limited by diffraction

(and some residual aberrations in the system) so smaller patches will only result

in lower intensity.

Before the DMDwe have maximally about 500mWof optical power. Out

of that we are able to regulate 21µW in a single R7 tweezer, as measured in the

§
The term Rn describes a tweezer with a radius of n DMD pixels. A single DMD pixel

corresponds to about 80 nm in the image plane. Although it might seem excessive to include

the size of the spot used on the DMD when the actual waist can be quoted, one must realise

that the correspondence between the object size and the image size is not 1 : 1, as ultimately the

image will be limited by diffraction. Thus this number is quoted for completeness, where it is

applicable.
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intermediate image plane. The efficiency of the optical system from the inter-

mediate image plane to the atom plane is about 45%. The tweezers have a waist

of w940 = 780 nm (see sec. 8.2), corresponding to tweezer potentials of 1.5–

2.0 µKmaximum depth. Using the small outcoupler we should be able to gain

a factor of five in the depth.

6.5 The climate system

Drifts of ambient temperatures on the timescale of hours are an inevitable part

of life on the surface of the pale blue dot. The in-house climate system provided

by the University maintains the temperature in the laboratory between 22–

24◦C, depending on outside weather conditions. On very hot summer days
¶

lab temperatures rise some degrees above that level. Such drifts cause the point-

ing of laser beams to change by someµmasmost opto-mechanical components

are made of metal that is prone to thermal expansion and contraction. The op-

tical lattices and the high-resolution optics require a long term stability in the

position of atoms and lasers on the level of 1µm.

To achieve stable temperatures on the experiment table we designed and

built a dedicated climate system for precise regulation of the temperature down

to the level of 0.1◦C. The principle of the system is simple and relies on the

fact that its easy and fast to heat things and hard and slow to cool. The system

consists of two stages: a cooling stage that brings the temperature of the air to

Tc a few degrees below the desired temperature Td and a heating stage that heats

the air to Td. Any drifts in Tc are easily compensated by the heating element.

The schematic is shown in fig. 6.6 (a). A fan-coil unit (AermecTDA) sucks

in air from the lab. The University provides cooling water typically around

13◦C,which serves as the coolant in the fan coil unit. A controllable valve (Siemens

SAS61) mounted to the inlet line of cooling water steers the temperature at this

stage. After the fan coil the air is blown through a resistive heating element (Sys-

temairCB 250-3), fromwhere the air is guided into the experimental compart-

¶
Which are blessedly few here in Denmark!
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Figure 6.6: The climate system. (a) A schematic figure of the climate system. (b) An image of
the cooling and heating units. (c)The experimental compartments. The outlet from the climate

system is guided through the ceiling in the lab into two separate HEPA filters that rest on top

of the experiment cage.

ments. The air from the climate system flows throughHEPA filters (Venfilter

BTSR244805/250H14) that filters dust and ensures homogeneous and laminar

air flowonto the experiment table, which is closed off in a boxwith sliding doors

(that can easily be unmounted for access) and a cover on the top.

The central parts of the climate system (fan-coil and heating unit) sit on

top of the ceiling of the laboratory that is accessible from outside. In fig. 6.6 (b)

these parts are shown. The black patch on the tube that goes towards the experi-

ment tablemarks the position of theNTC temperature sensor (Texas Instru-

ments LMT70) used for the regulation of the temperature. The air is guided

down to the lab through the tube extending from the ceiling towards the ex-

periment in fig. 6.6 (c). The temperature sensors are read out by a National

InstrumentsmyRIOdevice that runs LabView. Software PID loops running

on themicro-controller regulate the pre-cooling of air via the adjustable valve, as

well as the resistive heating element that warms up the air to the desired point.

To estimate the quality of the regulation data are evaluated for a period of 1

week. This particular week was not a busy lab week, but at the time of writing

there was no access to data where the experiment was running continuously.

The temperature on the experiment table during thatweek ranged from 20.3◦C

to 20.4◦C, meeting our demands of 0.1◦C stability.



CHAPTER 7
Optical lattices

Ef gárur ganga dal í dal
gjarnan lýsist rúmið,

en falli þær sem fjall í sal
fýkur yfir húmið.

An optical lattice is an optical potential created by two counter-propagating

laser beams. As the light is coherent it will interfere to create a standing wave

along the beam with a periodicity of d = λ/2. We use 1064 nm light resulting

in a lattice period of d = 532 nm, and as the laser is red-detuned with respect

to the atomic transitions the high intensity regions form an attractive potential.

Along a single spatial dimension x, the potential is

V(x) = V0 cos
2(kx), (7.1)

wherek = λ
2π

is thewave vector andV0 the depth of the latticewhich can be cal-

culated from eqns. (1.14), (1.15) and (1.22). At the origin,V0 =
8P
πw20

U0whereP is

the optical power of the beam,w0 is its waist andU0 is the atom-light coupling

151
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Figure 7.1: A 1D optical lattice. (top) Two focussed counter-propagating laser beams interfere
and a standing wave is created along the beam. (bottom) For a red-detuned laser an attractive
potential is created at high intensity regions. The Gaussian nature of the focussed beam affects

the depth of the potential wells along the beam.

constant of eq. (1.14). Typically the Gaussian shape of the interfering beams has

to be considered, as is evident fromeq. (1.22). This feature is illustrated in fig. 7.1,

and as a result the depth of the individual potential wells varies along the beam.

However, as the Rayleigh range of our lattices (∼ 30mm) is long compared to

the periodicity, the system can typically be considered as homogeneous over rel-

evant length scales and eq. (7.1) is a good approximation.

Periodic potentials are ubiquitous in nature as all crystals are essentially pe-

riodic structures of atoms on a lattice. The analogy between electrons travelling

in a crystal of ions and neutral atoms in optical lattices is apparent. It is however

much easier to control individual atoms in optical lattices than single electrons

in solid state materials, which renders atoms in lattices a perfect test bed for the-

ories in solid state physics.

The depth of an optical lattice is often cited in terms of the recoil energy of

the trapping light, that is half of the energy an atom obtains from scattering a

lattice photon. In our case, such events are rare as the light we use is very far off-

resonant from theD-line doublet in 87Rb. To relate it to other units of energy,
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one lattice recoil at 1064 nm amounts to
*

Er =
( hk)2

2m
=

h2

2mλ2
= 97.3 nK× kB = 2.03 kHz× h. (7.2)

The purpose of our optical lattices is twofold: first, they provide a periodic

potential landscape for physics investigations, and second, they provide a tightly

confining deep potential for site-resolved imaging of atoms. A BEC immersed

in an optical lattice exhibits superfluid properties at low lattice depths< 10Er,

where the location of each atom is ill defined but their phases are in sync. When

ramped deep the atoms become localised to a given site of the lattice potential

and the phase coherence vanishes. This is theMott insulating state and all rem-
nants of superfluidity vanishes around 20 Er. For the purpose of imaging single

atoms (see ch. 9) the lattices are ramped deep to 1000’s of Er. This dual purpose
of the optical lattices where several Watts of laser light are required to reach the

imaging regime, and only some 10’s of mW for the physics regime, makes the

technical implementation challenging.

This chapter discusses different aspects of our optical lattice setup and ex-

periments we have performed to characterise its performance. The first section

contains a theoretical account of how band structure arises for atoms in opti-

cal lattices. The second and third sections cover the different ways we use to

calibrate the depth of our optical lattice. The fourth section is devoted to our

observation of the superfluid to Mott insulator phase transition. The fifth and

final section delves into heating issues caused by Brillouin scattering in optical

fibres.

*
Please note that there is a slight ambiguity in definitions here. The recoil temperature of

87
Rb is quoted as Tr = 362 nK [252], corresponding to two units of the Er at 780 nm, whereas

in the optical lattice literature [118] the depth is quoted in units of one lattice recoil. In the

case of a scattering event between the atom and a lattice photon it still gains two units of recoil
energy [187].
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7.1 Band structure in periodic potentials

Atoms in optical lattices are quantum mechanical particles in periodic poten-

tials.
†
The energyof such aparticle is readily obtained fromthe time-independent

Schrödinger equation,H |ψ〉 = E |ψ〉. We assume an infinite lattice, and so ig-

nore the harmonic confinement of the potential. This is a fine approximation

for our BECs that span a few 10’s of µmwhereas the periodicity of the lattice is

only 0.5 µm [72]. The Hamiltonian has a kinetic and a potential term, and for

a 1D lattice of a depth V0 Schrödinger’s equation becomes,(
p̂2

2m
+ V0 cos

2(kx)

)
|ψ〉 = E |ψ〉 . (7.3)

In this situation Bloch’s theorem for quantum waves in periodic potentials ap-

plies (see ch. 8 in ref. [17]). The state vector |ψ〉 is decomposed into a product
of a plane wave and a function |u〉 that is modulated at the frequency of the lat-
tice. Each function is labelled by the band number (the energy level) n and the

numberq, the so-called quasimomentum of the lattice. The Bloch functions are

|ψn,q〉 = eiqx |un,q〉 . (7.4)

Thenamingofq is apparent ifwe substitute theBloch ansatz into the Schrödinger

equation, arriving at (mainlyby applying themomentumoperator p̂2 = − h2 ∂
2

∂x2
)(

(p̂+ q)2

2m
+ V0 cos

2(kx)

)
|un,q〉 = En,q |un,q〉 . (7.5)

As |u〉 is periodic in the lattice potential it may be written as a Fourier sum of

plane waves

|un,q〉 =
∑
α

cα,n,q |α〉 , (7.6)

†
The derivation in this section is based on refs. [117] and [233].
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where α ∈ Z and |α〉 = e2ikxα.‡ In addition the plane waves |α〉 form a closed

basis. The energies are the matrix elements of the Hamiltonian 〈u ′|H|u〉, and
by focusing on one term at a time, we obtain for the kinetic part〈

u ′
∣∣∣∣(p̂+ q)22m

∣∣∣∣u〉 =
∑
α ′

∑
α

c∗α ′cα
 h2

2m
(2kα+ q)2 〈α ′|α〉 , (7.7)

and the potential part

〈
u ′
∣∣V0 cos2(kx)∣∣u〉 = V0

2

∑
α ′

∑
α

c∗α ′cα(e
2ikx 〈α ′|α〉+ e−2ikx 〈α ′|α〉)

(7.8)

=
V0

2

∑
α ′

∑
α

c∗α ′cα+1 〈α ′|α+ 1〉+ c∗α ′cα−1 〈α ′|α− 1〉 .

(7.9)

As a result, the Hamiltonian only has non-zero kinetic terms on the diagonal

and the potential terms on the off-diagonal

Hαα ′ =

{
 h2

2m
(2kα+ q)2, if α = α ′

V0
2
, if α = α± 1.

(7.10)

To solve the system numerically, the summust be truncated at some reasonable

value of α. For rendering fig. 7.2 we have −10 6 α 6 10, and we plot the dis-

persion relation in the first Brillouin zone (− hk 6 q 6  hk). The green dotted

line in each panel signifies the lattice depth. Odd bands are coloured blue, and

even bands are orange. In (a) there is no lattice present and the dispersion rela-

tion is parabolic (E ∼ k2), identical that of a free particle. In the presence of a

lattice a band gap opens up between the first and the second band, and a depth

‡
The exponent 2kx comes about as cos2(kx) = 1

2
(cos(2kx) + 1). For clarity the coeffi-

cients cα,n,q will only be written with the subscript relevant for the given calculation. For the

remainder of the section we write cα,n,q = cα.
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Figure 7.2: Band structure in a simple sinusoidal 1D lattice. The depth of the lattice is varied

from 0 to 20 Er from left (a) to right (e) in steps of 5 Er. In the absence of a lattice (a), the
dispersion is that of a free particle and with increasing depth, band gaps open up on the edges

| hk| = 1 and in the centres | hk| = 0 of the first Brillouin zone and the bands flatten out. The

structure approaches that of a harmonic oscillator.

of 5 Er is sufficient to open up a gap between the second and third band as seen

in (b). The effect of an increasing lattice depth flattens out the bands and as the

depth becomes sufficient the structure approaches that of a harmonic oscillator,

with an even energy spacing of  hω between each band, whereω is the (angular)

trap frequency. This is also supported by the intuition that as the potential be-

comes deep, it can readily be approximated with a harmonic potential around

the bottom of each lattice site.

7.2 Calibrating lattices: Kapitza-Dirac scattering

In 1933 P. L. Kapitza and P. A. M. Dirac proposed an elegant experiment that

could demonstrate particle-wave duality in a clear manner. In this experiment a

beam of electrons should traverse a standing wave of light, and be diffracted by

it. The effect was first observed with atoms in 1986 [116] but the observation of

the original proposal was only achieved in 2001 [96]. The effect is identical to

the diffraction of laser light by a grating, where the roles of the matter and the
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laser are interchanged. A BEC—a coherent matter-wave—can be diffracted by

a pulsed optical lattice, that acts as the grating [211].

As the depth of the lattice affects the dynamics of the BEC, the Kapitza-

Dirac effect can be used to calibrate it. This is the method we routinely use in

the lab to monitor the lattice depth on a day to day basis. It works primarily

in the low-power regime, as the dynamics become very complex for depths >

20Er [8].

Let us imagine that a BEC is abruptly exposed to an optical lattice potential

for a short period of time∆t. In the previous section we saw that the wavefunc-

tionof an atom in a lattice canbenaturally expanded inBlochwaves (planewaves

with different momenta),
§

|ψn,q〉 =
∑
α

eix(2kα+q)cα,n. (7.11)

As the momentum distribution of a BEC is very narrow we take it for a plane

wave of the lowest order |φBEC〉 = eiqx |0〉 [72]. Typically the BEC possesses no

net momentum relative to the lattice, but in the following calculation we allow

for q 6= 0. By non-adiabatically exposing the BEC to the lattice it is projected

onto the Bloch states. We get that

|Φ(t = 0)〉 =
∑
n

|ψn,q〉 〈ψn,q|φBEC〉 (7.12)

=
∑
n

c∗0,ne
−iqx |ψn,q〉 . (7.13)

During the timewhere the lattice is present each component gains a phase factor

from the time-evolution operator,

|Φ(t)〉 =
∑
n

c∗0,ne
−iqx |ψn,q〉 e−i

En,q
 h t. (7.14)

§
In the following calculation the subscript n is included on the coefficients cα,n.
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After the lattice is turned off the state is projected onto the plane wave basis and

the different components of that state are

|Φ ′(∆t)〉 =
∑
α

|α〉 〈α|Φ(∆t)〉 (7.15)

=
∑
α

|α〉
∑
n

c∗0,ne
−iqx 〈α|ψn,q〉 e−i

En,q
 h ∆t

(7.16)

=
∑
α

|α〉
∑
n

c∗0,ncα,ne
−i

En,q
 h ∆t. (7.17)

As an effect the BEC is projected into n energy bands with some compo-

nents also mapped into separate momentum components (multiple of 2 hk)

depending on the lattice depth of the pulse. If q = 0, only even energy bands

are populated due to symmetry. After the lattice is turned off the populations

in the different bands will interfere within the different momentum orders. As

an example, in the+2 hk order there will be a population in bands 0 and 2 that

give rise to an oscillatory signal according to eq. (7.17) [8]. We typically work

in the weak pulse regime where we only need to take into account population

in bands 0 and 2which exhibit Rabi-like oscillations. The contribution from a

population in the band 4 only becomes significant& 15 Er (see for example fig.
6.5 (b) in ref. [8]).

In our case, a typical experimental sequence for a Kapitza-Direc measure-

ment involves the creation of a pure BEC in the CDT by evaporation followed

by a short pulse of the lattice. We achieve this by bypassing the intensity regu-

lation of the laser power (PID controller) as its response is very slow, and adjust

the lattice power by attenuating the output of the AOM driver itself with RF

attenuators. The lattice signal is controlled with a TTL signal providing a true

square pulse. The cloud is subsequently imaged in TOF.

An example of such a calibration measurement is depicted in fig. 7.3. Panel

(a) shows a concatenated series of images obtained after 15ms TOF, where the

BEC was exposed to a 13 Er deep potential for a time ranging from 0 to 150µs.

The data has been processed in panel (b) by determining the atom number
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Figure 7.3: Diffracting matter with light. Panel (a) is a compilation of absorption images of a
BEC diffracted by the vertical lattice beam, taken after 15msTOF. In the series the pulse length

is scanned from 0 to 150µs from left to right. In (b) the atom number in the centre peak and

an adjacent first order has been extracted and normalised to the total atom number. The data

are fit with a damped sinusoidal. The data in (c) are obtained with a shallower lattice. These
measurements correspond to one point on the calibration graph in panel (d). In (e) a matter
diffraction with the lattice at full power is shown. The diffraction orders extend out of the field

of view of the camera.

in the centre peak and one of the side peaks (with a momentum of ±2 hk).
The populations are normalised as we only require relative populations tomea-

sure the depth. They oscillate with a frequency ωKD = (E2,0 − E0,0)/ h ob-

tained from a fit of a damped sinusoidal.
¶
The data in panel (c) are taken at

a lower lattice depth (around 6 Er), yielding a slower oscillation. By repeating

these measurements for different depths, one obtains a calibration graph like

¶
The average frequency of the two is used to calculate the depth from a graph like the one

displayed in the inset of fig. 7.4 (a), which shows the calculated transition frequency for a given

lattice depth at q = 0.
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Figure 7.4: Deep optical lattices. (a) A calculation of the transition frequencies between the

ground band and first and second bands at q = 0 as a function of the lattice depth. The inset is

a zoom in on the low depth regime. (b)A band structure calculation for a 1000 Er deep lattice.

the one displayed in panel (d). This particular measurement yielded a slope

of 472(17)Er/W. It was our experience that this calibration could be extrap-

olated to much higher depths, something we confirmed with modulation spec-

troscopy, as explained in the next section. Panel (e) displays a Kapitza-Dirac sig-

nal takenwith the vertical lattice at full power, far beyond theweakpulse regime.

At least 30momentum orders are visible in the image.

7.3 Calibrating lattices: Modulation spectroscopy

Another standard method for characterising the eigenfrequencies of an optical

trap is to modulate its intensity at various frequencies and observe the response

of the atom cloud. As trapping frequencies (or multiples of them) are matched,

themodulation results in heating of the cloud. In fig. 7.4 (b) the band structure

of a 1000 Er deep lattice has been calculated. The even level spacing is obvious

so the potential is well approximated by a harmonic one. Adding a sinusoidal
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intensity modulation at a frequencyωm gives a potential

V(t) =
1

2
mω2x̂2 cos(ωmt) (7.18)

where x̂ is the position operator. The matrix element coupling states |i〉 and |j〉
yields

〈i|V(t)|j〉 ∼
〈
i
∣∣x̂2∣∣j〉 (7.19)

∼
〈
i
∣∣â2 + â†â+ â†2 + ââ†

∣∣j〉 = {1 if |i− j| = 0,±2
0 otherwise,

(7.20)

where in the second step the expression for x̂2 in terms of the ladder operators

of the harmonic oscillator (see ref. [233], p. 93) was inserted. Thus, an intensity

modulated harmonic trapping potential can only couple transitions between

levels separated by 2 hω. In a more classical picture the modulation excites the

breathingmode in the cloud, oscillating at twice the eigenfrequency of the trap-

ping potential.

The transition frequencies for the 0→ 1 and 0→ 2 transitions are plotted

in fig. 7.4 (a). The reason for the inclusion of the 0 → 1 process is discussed

below. For high lattice depths we obtain that f ∼
√
V0 as expected by eq. (1.19).

The inset is a zoom to the low depth end of the spectrum, and as V0 → 0,

f → 8.253 kHz which is the energy between bands 0 and 1 or 0 and 2 in the

case of the free particle, see fig. 7.2 (a).

To performmodulation spectroscopy on the atom clouds, they are first adi-

abatically loaded into the lattice beam to be measured. The intensity controller

for the laser light is designed such that upon a TTL signal, it commands the

AOM driver to fix the amplitude of the RF wave it outputs, and an external

signal (coming through the intensity controller) is used to modulate the ampli-

tude of thatwave. This results in an amplitudemodulation of the laser intensity

as coming from the AOM. We use a function generator (Agilent, 33220A) to

supply themodulation signal. Amodulation typically consists of 500–1000 pe-

riods at amodulation depth of a few%of the total amplitude. The experimental

sequence ends with an absorption image in TOF.
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Figure 7.5: Modulation spectroscopy. (a) and (b) are modulation spectroscopy signals of the

0 → 2 transition, taken at two different values of the power in the optical lattice beam. The

absorption images show the corresponding clouds of the orange and green data points in (b)
after 3ms TOF. The data in panel (c) are taken at the same power as the one in (b), but most
likely corresponds to a 0→ 1 transition.

From the images we extract the width of the cloud, and this can be directly

related to its temperature by eq. (2.23). By scanning the modulation frequency,

traces like the ones displayed in panels (a) and (b) of fig. 7.5were obtained. Here,

modulation spectroscopy was performed in the vertical lattice beam for beam

powers of 45mW and 4W respectively. The images to the right of (b) are TOF

images. In these cases we loaded a BEC into the lattice, but in the process the

cloud was heated out of the BEC phase so the falling cloud was thermal. The

image on the top belongs to the orange data point and the bottom figure to the

green point. The effect of the modulation is apparent from an increasing width

of the cloud accompanied by a depletion in the density (the colour scale of the

images is the same).

The shape of the profiles is asymmetric. Towards the lower frequencies the

rise of the signal is slower, resulting in a longer tail compared to the abrupt fall of

the signal after the peak has been reached. As the lattice potential is provided by

aGaussian beam, the trapping frequencies in each well will vary along the beam

with the highest frequencies at its focus, as is indicated by fig 7.1 (bottom). As

a result, the response of the atoms to the modulation frequency will also vary,
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Table 7.1: The properties of the different lattice axes. The first two columns contain the mea-
suredwaist and the estimated depth at 1Wof optical power. The next two columns list the typ-

ical lattice depths achieved on each axis during the period when the microscope was functional

(June–August 2018), and the alignment efficiencies as compared to the theoretical estimation.

w0 V0 at 1W calibration efficiency

H1 100µm 400 Er 450 Er/W > 100%

H2 140µm 200 Er 160 Er/W 80%

V 60µm 1100 Er 450 Er/W 40%

with a clear cut-off at the highest frequency. The depth according to fig. 7.4 (a) is

36 Er for (a) and 2300 Er for (b), as determined by the highest frequency where

the modulation clearly affects the cloud.

The data in panel (c) are taken with the same beam power as in (b). How-

ever, we also observe a resonance signal at frequencies corresponding to the

0 → 1 transition, which according to the reasoning above should not be vis-

ible. The most likely explanation is that the trap is not entirely harmonic and

odd anharmonic components (∼ x̂3 or higher), do couple the 0→ 1 transition.

We have found the results of the two different methods of Kapitza-Dirac

scattering and modulation spectroscopy to coincide. Table 7.1 lists the prop-

erties of the different lattice axes. The beam waists of the horizontal axes are

obtained from a beam-profile measurement taken during the alignment pro-

cedure and the vertical waist is estimated from the optics design. The results

of efficiencies > 100% indicate that we probably overestimate the waist of the

H1 beam. After August 2018 the alignment of the vertical lattice was improved

significantly to yield around 900 Er/W (80%).

7.4 The transition from a superfluid to a Mott insulator

A superfluid can flow without friction. A BEC exhibits superfluid properties.

Let’s imaginewe havemeans of stirring up our BEC and can induce a net flow in
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it. For a superfluid there exists a critical velocity belowwhich there are nomeans

of dissipating heat, so nothing can hamper its flow. The Landau critical velocity

is the point at which it becomes energetically possible to create excitations in the

fluid, which can dissipate heat (see ch. 10 of ref. [219]).

This property is also present when a BEC is immersed in a weak optical lat-

tice potential given that the immersion process itself is adiabatic. Envision a 3D

optical lattice potential. In the superfluid state the atoms flow freely between

sites of the lattice (by tunnelling), so the number of particles on each site fluctu-

ates considerably, as a result of a projective measurement. The atom ensemble

is coherent and that property is maintained as the atoms can tunnel in the shal-

low lattice. If, however, the lattice potential is made deep, the atoms become

localised on a given site. This entails that the atom number on a given site be-

comes well determined as a result of the on-site interactions between atoms,

and the system loses its phase coherence. This is called a Mott insulating state,

in analogy with an electrical insulator with a filled band. The transition from

the superfluid to theMott insulating state is not driven by thermal fluctuations.

The physics of the transition is governed by a competition between the kinetic

energy and local interaction energy, a significant property of a quantum phase

transition that this system exemplifies [118].

As a theoretical basis for the description of the system we use the Bose-

Hubbard Hamiltonian. This is the bosonic counterpart of the seminal model

introduced by J. Hubbard in 1963 to describe electron behaviour in solid state

materials [138]. Themodel assumes all particles to be contained in the lowest en-

ergy band of the lattice, so no excitations are allowed. The Hamiltonian is pre-

sented in the framework of second quantisation (where occupation numbers of

quantum states are quantised and altered by operators) and reads [118, 295]

HBH = −J
∑
〈i,j〉

â†iâj +
1

2
U
∑
i

n̂i(n̂i − 1) +
∑
i

εin̂i. (7.21)

Here âi and â
†
i are annihilation and creation operators for a particle on site i

and n̂i is the number operator that counts the number of particles on site i.
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Figure 7.6: The Bose-Hubbardmodel and the superfluid toMott insulator transition. (a)An il-
lustration of the components of the Bose-Hubbardmodel, the tunnel coupling between neigh-

bouring sites J, the on-site interactionU, and the energy shift per site εi due to the underlying

potential. Inspiration for this figure comes from the artwork of Jesper H. M. Jensen. (b) Snap-
shots of the superfluid and Mott insulator phases. (c) Absorption images of the superfluid to
Mott insulator phase transition. For low lattice depths the phase coherence of the condensate

results in the characteristic interference peaks separated at momentum 2 hk. As the lattice is

ramped deep the phase coherence vanishes. (d) By ramping the lattice into theMott regime and

back down to the superfluid regime, the coherence of the state can be restored.

There are three terms in the Hamiltonian, and fig. 7.6 (a) illustrates the physics

of each term. The first term describes the kinetic energy in the system and is

characterised by the hopping amplitude J. The sum runs over neighbouring

sites only. The second term captures the on-site interaction. If there are particles

present on a given site, the energy increases byU. The third termcaptures energy

shift εi due to the overall shape of the potential. In a typical experimental setting

the optical lattice is in fact enveloped in a harmonic function which is a weak

change compared to the fast spatial modulation of the lattice potential. As a

result this term is often omitted.

To calculate the energies in the system we must know how to calculate J

and U. To describe atoms that are localised to a given lattice site i, we use the
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so-called Wannier functionsw(x − xi) which have that property (see sec. 3.1.4

of ref. [117]). The hopping amplitude is the matrix element of the kinetic and

potential part of the GPEHamiltonian (first two terms of eq. (2.14)), calculated

withw(x − xi) between two neighbouring lattice sites i and j, J = −
∫
w(x −

xi)(T + V(x))w(x − xj)dx. The interaction constant is the matrix element

of the interaction part (third term of eq. (2.14)) on site i so U = U0
∫
|w(x −

xi)|
4dx. In the limit of deep lattices (V0 >> Er) J and U can be calculated

exactly [295] where

J =
4√
π
Er

(
V0

Er

) 3
4

e−2
√
V0
Er (7.22)

and

U =

√
8

π
kaEr

(
V0

Er

) 3
4

. (7.23)

where a is the scattering length. The hopping element is exponentially damped

with increasing lattice depth, whereas the on-site interaction term increases as

the particles are squeezed together in deeper traps. When the J term domi-

nates, the ground state is a product of single-particle superposition states that

are spread all over the lattice. The occupation per lattice site follows Poissonian

statistics. On the other hand when U dominates, the occupation numbers are

Fock states with no number fluctuations, as fig. 7.6 (b) illustrates.

The boundary between the superfluid and theMott state lies atU/J = z×
5.83 [273], where z is the number of nearest neighbours in the lattice. In a cubic

lattice z = 6, so we expect a transition around 13 Er. This quantum phase

transition was first observed in 2002 and reported on in a seminal paper that

ignited the field of quantum simulation [118].

As another benchmark for the functionality of our lattices, we have ob-

served this phase transition in our laboratory. The experimental parameters

were never optimised to perform the measurement to high accuracy, but still

what is reported below contains all the qualities of the physics involved. We
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considered it to be an important milestone, that confirms the ability of our ma-

chine to work with a truly quantum gas.

The experiment starts by creating a BEC. Then the lattices are ramped lin-

early to a given value in 100 ms, ensuring an adiabatic turn on.∥ Immediately

after the depth is reached the lattice potential is turned off and the cloud is

dropped into TOF. The result of such a measurement where the end point of

the lattice ramp is varied from the superfluid regime into the Mott regime is

shown in fig. 7.6 (c). As the lattice potential is abruptly turned off in the super-

fluid regime, coherent matter waves at each site expand and interfere to create

the distinct momentum peaks that are visible in the two images to the left. In

this particular realisation (which was still the best dataset at hand) we did not

keep all lattice axes at equal depth, but still all thequalities of thephase transition

are visible. For this reason the interference peaks are much more pronounced

vertically than horizontally. When interpreting the images, one must also keep

in mind that our lattice axes are diagonal to the imaging axis. This is why five

peaks are seen horizontally across the image, and the ratio of the distances from

the centre peak to the top and to the side is about

√
2. As the depth of the lat-

tice is increased an incoherent background arises, but thewidthof the superfluid

peaks does not change. In the end the peaks vanish and theMott state takes over

as an entirely incoherent cloud.

The phase coherence of the superfluid state can be regained by ramping

down the lattice back into the superfluid regime. An example of such a mea-

surement is shown in fig. 7.6 (d). Here the sequence resembles the one before,

but after the Mott regime is reached (here the lattice was ramped to 20 Er) the

lattice depth is held constant for 20ms and ramped down to 6 Er. Wemeasured

that 20ms was sufficient to restore the coherence of the superfluid state.

Lets focus more closely on the scan in fig. 7.6 (c). The endpoint of the

lattice was scanned from 9 Er → 19 Er for both of the horizontal axes and

6 Er → 16.4 Er for the vertical axis in 20 points with three repetitions. In

∥
The criterion for an adiabatic ramp of an optical lattice is discussed in ref. [72]. Effectively

the criterion is
dV
dt
<< 16

E2
r

 h .
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Figure 7.7: The visibility of aMott insulator. (a)The visibility as a function of the lattice depth.
(b)The scaling of the visibility in theMott regime. The broken line is a power-law fit to the last

10 points (14-19 Er).

ref. [112] the phase coherence through the transition, and especially its reminis-

cence in the Mott phase is analysed in detail. The following discussion is based

on that article. Similar to a classical optics experiment, where the fringe visibility

of an interferometer is a figure of merit, we define the visibility of momentum

peaks in the TOF image as

V =
nmax − nmin

nmax + nmin

. (7.24)

The nmax is chosen as the sum of the signal in a ROI around one of the inter-

ference peaks in the first momentum order (marked by a white rectangle in the

inset of fig. 7.7 (b)). This is referenced to an empty region within the realms

of the atom distribution (also marked in white). The data in fig. 7.7 (a) fol-

low two slopes, and the intersection of the two lies between 13 and 14 Er. This

signifies the transition point from the superfluid phase to the Mott insulator

phase and our results are both in accordance with theory [273] and earlier ex-

periments [118]. The same data are graphed in fig. 7.7 (b) on a log-log plot with

the ratio
U
6J

on the horizontal axis. This quantity is calculated by eqns. (7.22)

and (7.23). In the latter part of ref. [112] the scaling of V in the Mott regime is
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discussed. According to their theoretical results the integrated visibility in the

Mott regime should scale as

V =
4

3
(n0 + 1)

6J

U
, (7.25)

where n0 is the filling factor of the lattice. The data from 14 Er onwards are

fit with a power law V = a
(
6J
U

)b
, and from the fit we obtain b = −1.01(7),

in perfect agreement with the prediction. The pre-factor a = 2.4(3), yields

a filling fraction of n0 = 0.8(1) in the lattice, which is also in line with our

expectations.

7.5 Noise-inducing Brillouin scattering in optical fibres

It is well known that optical traps can induce heating of an atom ensemble by

multiple means. These mainly include recoil heating due to spontaneous emis-

sion, intensity noise [235] and pointing noise. Heating due to spontaneous

emission is minimised by using far off-resonant light. For a large detuning ∆,

the scattering rate is linked to the potentialUAC of eq. (1.14) by Γ = ΓsUAC

 h∆
[121].

For deep lattices at1000 Er theheating rate due to this process amounts to about

150 nK/s for each lattice axis, which is very low compared to the depth, but this

is an unavoidable heating mechanism.

Whenwe first began toworkwithoptical latticeswe sawheating/instabilities

caused by pointing drifts of the horizontal lattices. As discussed in appendix D

those effects wereminimised by coupling the lattice light through a fibre and by

stabilising the temperature in the experiment to combat thermal drifts.

Soon after we fixed the pointing issue, we encountered a severe (and dis-

proportionate) reduction of the sample lifetime in the optical lattices at high

depth. Figure 7.8 (a) presents an example of such measurements. For the blue

and yellow data points the H2 lattice was operated at 13W (2350 Er) yielding a

lifetime of about τ = 0.4 s, but for the orange trace at 11W (2000 Er) the life-

time is improved by a factor of five to about τ = 2.2 s. By changing the depth
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Figure 7.8: Brillouin scattering causes heating. (a) Lifetime measurements of atom clouds in

the deep optical lattices, where the depth of the different axes is limited to different levels (see

legend). (b) The relative noise as measured on an oscilloscope. The orange point is taken with
the lattice in an unregulated mode. The inset is a snapshot of a linear ramp of the H2 lattice

(magenta), and the green trace is the light level as measured in the reflected port of an optical

isolator in the beam path. The temporal spacing between the grey horizontal lines is 500ms.

of the other axes (H1 and vertical) regardless of theH2, we excluded them as the

source of this issue. The inset of fig. 7.8 (b) is a snapshot from an oscilloscope

that monitors the laser power (in magenta) and the light level in the reflected

port of an optical isolator that was later added to the laser setup. As the reg-

ulated power reaches 11W (14–15W before the fibre), noise is visible on the

signal. We quantified this noise by obtaining the mean and standard deviation

of the photodiode traces on an oscilloscope, and plot the relative noise σP/P as

a function of P, as is seen in fig. 7.8 (b). There is a clear and a steep increase in

the relative noise after we reach 11W.

We ascribe this effect to Brillouin scattering that occurs in optical fibres sub-

ject to high intensities of light. In short, at some threshold intensity the light

begins to alter the structure of thematerial in the fibre through electrostriction,

generating an acoustic wave in the fibre. A portion of the light is scattered by

the acoustic wave back from where it came (for details see ref. [164]). This is a

non-linear process that limits the amount of light that can be coupled through
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an optical fibre, but more importantly the backscattered light induces instabili-

ties and enhanced noise in the laser source itself. The effect of Brilloin scattering

is proportional to the length of the optical fibre and inversely proportional to

its area. By using a shorter fibre or one with a larger mode field diameter we

should be able to pass more light through it. To avoid getting into that detri-

mental regime before replacing the fibre, we simply limited the output power

of the AOM for the H2 lattice axis. Consequently this limited the depth of our

lattices to 2000 Er, which turned out still to be enough for high contrast fluo-

rescence imaging.

Despite taking these precautions, it was most likely due to light backscat-

ter from this effect that the ALS fibre amplifier broke down in the beginning of

September 2018. After we got the laser back from repair, we added an extra stage

of optical isolation after the output (as shown in the schematic of the setup in

fig. B.3) which we previously thought to be unnecessary (having consulted with

ALS staff) as there was an isolator in the laser head itself. Furthermore, after the

fire incident discussed in the outlook, we decided to remove the internally reflec-

tive viewport on theH2 axis in the science chamber and place a normal viewport

instead. This enables us to design it in a similarway to theH1 lattice axis so in the

future the depth of our lattices should only be limited by the maximum power

of the fibre amplifier.





CHAPTER 8
Optical tweezer arrays

This chapter covers measurements that have been made to characterise the far

off-resonant tweezer arrays generatedwith the 940 nm light. We have so far only

used the direct imaging DMDwith the beam that illuminates the full chip, i.e.

the big outcoupler arm (see sec. 6.4). Our trials with the system were in hind-

sight coloured by the fact that the sizes of the tweezers and our power budget

had been poorly characterised. The tweezers were both broader by 30–40% and

the power that arrived to the atomswas lower than expected, resulting in tweez-

ers that were at least an order of magnitude shallower than initially thought.

The structure of the chapter is as follows. The first section covers the first

measurements conducted to overlap the tweezer array with the reservoir cloud.

The second section accounts for general characterisation measurements, where

various parameters, like the depth, spacing and size are scanned. Some images

of the tweezer arrays taken with the fluorescence imaging system (then in an

immature state) are shown and discussed, as well as results from modulation

spectroscopy. The third section discusses characterisation measurements of the

light potentials that we made after the fire, and those results are compared to

earlier measurements. The fourth section discusses the role of light-assisted col-

lisions in the tight tweezers and the optical lattices. In the fifth and final section

173
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Figure 8.1: Searching for the tweezer in the haystack. (a)A fluorescence image of an atom cloud

in early stage resonant optical molasses, taken from above. (b) A comparison of the width of

the atom fluorescence and the 787 beam size as a function of the position of the last lens in the

imaging system before the camera.

preliminary results for transport of atoms/atom clouds with the tweezers are

shown.

8.1 Loading optical tweezers

Searching for the first signal of the tweezers is a bit like looking for the needle in a

haystack. One can only align the system to a certain degree in advance, butwhen

the chamber is closed off and the size of the reservoir is only a fraction of a mm

this can become troublesome. To guide the search we built up a preliminary

fluorescence imaging system that imaged the cloud from above. The light is

collected by a 50mm lens that is mounted inside the top viewport and focuses

also the vertical lattice beam (see schematics of fig. 6.4). The fluorescent light

passes through a dichroic and is then imaged by a second lens onto a EMCCD

type camera. An example of such an image is shown in fig. 8.1 (a). A thermal

cloud in the CDT is illuminated with resonant molasses beams. The LDT is

visible as the horizontal line across the image, and the traces left by the molasses

beams are apparent at 45◦ angles. With such images at hand we could easily
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guide a DMD generated tweezer on top of the CDT and observe it from above.

To determine the correct focus position we took images of the atom cloud

and of a tweezer generated with the 787 direct imaging DMD (tominimize any

possible chromatic shift that could arise from comparing the atom position to

the 940 light), while varying position of the last lens of the imaging system. The

change in the width of the atom cloud and the laser beam were determined by

Gaussian fits. The results are shown in fig. 8.1 (b), where the focus position of

the787 tweezerwas found tobe roughly2mmabove the atomcloud. As a result

we raised thehigh-resolutionbreadboardby that amount. After thismanoeuvre

we were successful in observing an effect of the tweezers on the reservoir cloud

via standard absorption imaging from the side.

Even though we saw a detrimental effect on the reservoir cloud in the first

shots (for large tweezers), we could not hold any atoms against gravity. The

Rayleigh range for those traps is only several micrometers and our method of

the lens focusing is not precise to that level. Our high-resolution objective is

mounted to a scanner which can be translated vertically, thereby moving the

tweezers up and down. To determine the height we conducted lifetime mea-

surements of the atom cloud with a single tweezer at a waist of about 6µm

(R70) superimposed to the reservoir for various positions of the scanner. The

reservoir is prepared and the tweezer is ramped adiabatically to about 5mW.

Afterwards the system is held for 4 s. This measurement is repeated at various

positions of the objective, and the results are shown in figs. 8.2 (a) and (b). The

atomnumber and cloudwidth are determined from an absorption imagewhere

each measurement point was acquired twice. The TOF was set too short for a

reliable determination of the temperature, but the width is related to the cloud

temperature. A hump is visible in the atom number of the graph (a) accompa-

nied by a dip in temperature (b). For the dips on either side around the hump

the temperature of the cloud increases. We also observed BECs arising from the

reservoir at positions around 120 and 260µm.

To aid the interpretation the real potential depth is plotted (as the blue solid

line) for different positions of the tweezer in fig. 8.2 (c). Here we assume Gaus-

sian beam propagation, but as this tweezer is quite large the potential resembles
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Figure 8.2: Scanning the focus position of the tweezers. A tweezer with a waist of about 6µm

was used in all these measurements. (a) Atom number after a fixed hold time of 4 s with the

tweezer superimposed to the reservoir. (b)The cloud width from the same dataset as of the one

in (b). (c) The calculated potential depth along gravity for a varying position of the tweezer.

The orange curve is the depth of the reservoir in the absence of the tweezer. The inset shows the

radial potential for the two positions marked in the figure.

to some extent a flat-top. When the tweezer is below the reservoir it lowers the

reservoir depth locally, which will aid evaporation and support the creation of

a BEC. The presence of the tweezer itself also enhances the PSD via the dim-

ple trick. But we observe that as the tweezer is moved higher into the cloud the

temperature is increased and the atom number decreases (as is apparent in (a)

and (b) around an objective position of 175µm). We interpret this as a result

of increased density and three-body losses. In those regimes we would also ex-

pect an increase in the temperature of the cloud, as it ismainly the coldest atoms

that are removed from the sample. The hump in the centre is however harder

to explain. One explanation might be that when the tweezer is accurately over-

lapped with the cloud the volume it encompasses is in fact smaller than when it

is slightly offset. Another hypothesis could be that at some point the potential

depth in the vertical direction is unaffected by the tweezer (see the crossing of

the blue and red curve). The effect of the tweezer on the cloud is therefore less

than when the two are offset. Note that the range of the displayed tweezer dis-

placement in (c) is in fact twice that of the objective scan range, to emphasize the

dispersive shape of the curve. We never confirmed if the location of the hump
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Figure 8.3: Varying the spacing in the tweezer grid. (a) In-situ absorption images for a varying
spacing in the grid. The tweezer separation is indicated in the top left corner of each panel. (b)
The atom number as a function of array separation. The fit is a power-law, giving an exponent

of around−2 as expected.

coincided exactly with the objective position that was later on routinely used to

overlap the tweezers with the reservoir.

8.2 Characterising tweezer arrays

Having determined the rough position of the tweezer we could then load and

hold atoms in a tweezer array. In fig. 8.3 (a) atoms are loaded to an array of

tweezers with a variable spacing and a fixed waist of about 1.0 µm (R10) and an

absorption image is taken in-situ. The tweezer array covers the entire cloud, so

for a tight spacing there are more tweezers that overlap with the cloud than in

the case of a large spacing. For tightly spaced tweezers one big cloud is trapped,

with an extent much larger than the expected Rayleigh range of 3–4µm. As

the tweezers are separated the clouds start to separate and eventually only one

elongated cloud remains, which is the shape one would intuitively expect.

Such periodic structures of light exhibit some non-trivial near-field diffrac-

tion as one moves away from the focus position [49]. One expects the pattern

to be repeated one Talbot length, dT , away (then shifted in phase by a factor of
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π)

dT =
a2

λ
. (8.1)

Herea is the periodicity in the structure and λ is thewavelength of the light. We

see separated planes emerging at a spacing of 3.3 µm where dT = 12 µm, and

for 4.1 µm the separation is clear (dT = 18µm). For that case atoms are only

in the Talbot plane below the main plane due to the pull of gravity. In both

cases the distance to the adjacent planes matches dT . To avoid trapping in the

nearest Talbot planes wemust increase the spacing of the array. In the following

we work with a spacing of 5.7 µm.

Figure 8.3 (b) displays the atomnumber after TOF.The errorbar is the stan-

dard deviation of five repetitions. The atom number is fitted with a power law

in the spacingD,N = aD−b
, yielding an exponent of b = 2.07(4) as expected

from the fact that the number of tweezers overlapping with the reservoir and

being loaded should drop quadratically withD.

To find the point of optimal loading the reservoir depth and tweezer depth

are scanned for an array of both 1.0 µm (R10) and 0.78 µm (R7) tweezers. The

results of those measurements are shown in fig. 8.4 (a) and (b). The optimal

loading conditions in terms of depth are about double for the 0.78 µm tweezer

to that of the 1.0 µm tweezer. When the tweezer array is dropped into TOF

we see that the expansion is far too small for a thermal cloud. By scanning the

TOF we can fit eq. (2.23) to acquire a temperature. For the vertical expansion,

this yields only 20 nK.We therefore argue that as we load the tweezers multiple

BECs are created in the traps by the dimple trick. This is also expected from

our previous experience with the dimple trick, see fig. 4.6 (e)–(f). Along these

lines we wanted to compare if there was any visible difference between load-

ing a tweezer array adiabatically at a given value of the depth Utw, or to load it

at the optimal value and subsequently evaporate to Utw. The results of such a

measurement are shown in fig. 8.4 (b) for 0.78 µm traps. The evaporation was

exponential with a time constant of 2ms and lasted for a total of 10ms. There is

nodiscernible difference between the two in termsof atomnumber. Thewidths
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Figure 8.4: Optimal loading of a tweezer array for an array of 1.0 µm (a) and 0.78 µm tweezers

(b). (c) A 0.78 µm tweezer array that covers the entire cloud is either loaded directly at Utw or

loaded at the optimal point in (b) and subsequently evaporated toUtw.

of the clouds (not plotted) were also identical. That leaves us to believe that the

BECs are in fact created by the dimple trick.

As a measure of how many tweezers the reservoir cloud can accommodate,

at the fixed spacing ofD = 5.7 µm the number of tweezers in a square array is

varied in fig. 8.5 (a). The atom number increases linearly up to about a 5 × 5
array and after a 7 × 7 array there is no increase in atom number. Like in the

case presented above, where the spacing was increased one would perhaps ex-

pect a quadratic increase in atom number, but that is not so obvious here. The

first three points in the graph hint at such a behaviour, but as the array size is

increased beyond a 3 × 3 array, this is no longer the case probably because the
cloud grows thinner towards its edges. All in all, this hints at that between 30–

40 tweezers are loaded with atoms from the cloud. Comparing to fluorescence

images taken later on (see fig. 8.10 (d)), we confirm that we load atoms into

about 40 tweezers. This means that the atom number in each tweezer varies

from about 500–1000 atoms depending on where in the array it sits.

In a different measurement the radius of the tweezers in a 4 × 4 square ar-
ray was varied and the available power scanned for each setting. The depth of

the tweezer grows with the optical power as long as the size of the trap is not

limited by the PSF of the imaging system. For shallow tweezers the effect of

gravitational sagging is also important. The results are shown in fig. 8.5 (b). We
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Figure 8.5: Characterising the optical tweezers. (a)Varying the size of a square array. The loading
is saturated for a 7 × 7 array. (b) The atom number achieved at the available optical power for

different patch sizes on the DMD. The pink patch is set at a power of 5.5 µW as a guide to the

eye.

can achieve a state of maximal loading (where we see a maximum in the atom

as a function of Ptw) for tweezer radii down to a radius of 6 DMD pixels, but

comparing the curves to the pink patch (at Ptw = 5.5 µW), we can see that the

peak is reached considerably later in the R6 curve compared to the others. We

believe this to indicate that up to this point we are not limited by the PSF of

the imaging system. For maximum power efficiency it is best to use the largest

possible tweezer size that just reaches that limit. We believe that the R7 tweezer

patches will serve that purpose.

Asmentioned in the introduction to the chapter, wewere under the impres-

sion that our tweezers should be smaller than they later turned out to be. The

characterisation measurements reported in ref. [130] indicated that we should

have a diffraction limited optical system for the tweezers at NA = 0.69. At

940 nm that would correspond to waist of about 580 nm. However, after hav-

ing worked with them for a period of time we were starting to suspect that they

were bigger than we initially thought. This suspicion arose mainly during at-

tempts of using the tweezers to load a single lattice plane, discussed in ch. 10.

Another reason to believe that the tweezers were bigger than expected were
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Figure 8.6: Modulation spectroscopy in optical tweezers. (a) The atom number in a tweezer

array is depleted as the modulation frequency is varied. Each trace contains three repetitions.

(b) The extracted trap frequencies vary as
√
P as expected, from which we can determine the

tweezer waist.

independent experiments withmodulation spectroscopy of atoms in the tweez-

ers. An example of data from suchmeasurements is presented in fig. 8.6 (a). The

sequence is as follows. The reservoir is evaporated to the usual loading depth

containing about 600.000 atoms at a temperature of 0.5 µK. The tweezers are

ramped to a depth of a few 100 nK, enough to hold the atoms against gravity.

In the following, the reservoir is also ramped down. Afterwards the tweezers are

ramped to the depth intended for the measurement. Subsequently the ampli-

tude is modulated at a considerable fraction (10–20%) of the total depth for 50

cycles, at a given frequency fmod which is scanned in multiple realisations.

Ideally onewould find the highest frequencywhich offers some disturbance

of the atom number (see discussion in sec. 7.3), and calculate the corresponding

trap frequency to be the half of that value, as the intensity modulation drives

the breathing mode at twice the trap frequency. However, both the breadth of

the resonances and the scan range of the data shown fig. 8.6 (a) make it difficult

to determine that edge, so instead we take the centre of the dip as determined

from Gaussian fits as the measure. This approach will overestimate the waist.

Thedata in (a) corresponds to thebluepoints in theupper curve in fig. 8.6 (b).
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They were taken with an R7 spot uploaded to the DMD. We were also able to

locate another resonance at a lower frequency, indicated by the blue circles on

the lower branch.
*
We attribute the higher branch to the radial trap frequency,

and the lower branch to the axial one. To see if we could make tighter tweez-

ers in the system we carried out the same measurements with an R4 spot on

the DMD. As it turned out, the results from the twomeasurements yielded the

same result, indicating that the R7 tweezer is at the limit of the optical system.

The waist of the tweezer is extracted by fitting eq. (1.19) to the data. This yields

a waist of is 0.85(2)µm. The uncertainty of the fit however does not capture

the uncertainty in the determination of the actual waist. From the blue and the

orange data curves fig. 8.6 (b), one can deduce that the edge is about 30%higher

than the dip, at least for this dataset. Assuming that is the case the waist shrinks

to 0.75(2)µm. Based on the results presented in sec. 8.3 we adopt a value of

0.78(2)µm, that corresponds to taking the resonance frequencies to be about

20% higher than presented in the plot.

8.3 Post-fire characterisation of the optical tweezers

As has become clear we had started to doubt the characterisationmeasurements

of the DMD systems reported in ref. [130]. On the sad occasion of the fire in-

cident discussed in the outlook, we took the opportunity to re-characterise the

DMD systems in-situ. We constructed a re-imaging system out of a 0.75 NA

commercial microscope objective (Olympus, UPLSAPO 20X) with an effec-

tive focal length of 9mm and a 300mm lens. The re-imaging objective was

mounted into a gimbal mount (Thorlabs, GM100/M) that enabled tilting of

the optic without severe translation of the image. The measured magnification

of the imaging system wasM = 32.0(1).

As an example of an image that we acquired of a tweezer array from the

940 nm direct system is shown in the inset of fig. 8.7 (a). It was taken with an

IDS UI-1240SE, a CMOS camera with an 8 bit dynamic range, which we fre-

*
The ratio of the two branches isωr/ωz ' 8.
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quently use for absorption imaging. Looking closely, one may notice that the

background is suspiciously flat. The camera automatically subtracts a certain

reference voltage called black level, which can change from image to image as it

depends on the temperature of the camera chip. In addition there a constant o�-
set value added before the readout. This is designed to suppress effects of dark
noise, but if the settings are incorrect details will be removed from the back-

ground [142], which for our purposes must be included. We found out by dig-

ging through the old characterisation data, that it had been acquired with the

wrong settings and thus heavily underestimated all beam waists.

This is shown in fig. 8.7 (a) where the mean count in a 3 × 3 pixel region
around the peak of each spot in the inset figure is plotted against the fittedwaist.

Themeasuredwaist should not depend on the intensity of the laser, but it does.

To understand this setting we obtained a series of images of a circular patch that

was scanned over the DMD chip (effectively varying the level of illumination)

and imaged it onto an identical camera in an intermediate imaging plane. The

results are shown in fig. 8.7 (b), where the datawere acquiredwith the black level

compensation on and off (blue and orange data points). The size on the vertical

axis represents the spot size in the intermediate imaging plane. When o�, the
fitted data depend on the illumination level comparably to the data in (a). In

contrast, when switched on, the fitted waist is constant, albeit with an increased
noise for low light levels. For this particular setting the fitted waist is still 20%

too small at the highest illumination, when the black level compensation is set

off. The images displayed with (c) and (d) show exemplifying spots with and

without the black level compensation, together with fits to transversal cuts.

With the right setting of the camera we obtain proper images of the light

fields for both the787 and940 nmdirect imagingDMDsystems. The results are

shown in fig. 8.8. Examples of spots are given as well as Gaussian fits to transver-

sal cuts through the data. The PSF as provided by ASEOptics is shown as a ref-

erence. To get a value for the waist we take the mean and standard deviation of

the fits to the cuts with an average peak count above 70% of the dynamic range

(∼ 180 counts). For the 787 system this yields for horizontal (h) and vertical (v)
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Figure 8.7: The importance of knowing your camera. (a) Using the wrong setting, the fitted
waist depends on the average peak count in the image shown in the inset. (b) A set of images

obtained with (orange) and without (blue) the black level compensation setting in the interme-

diate imaging plane. For a correct measurement, the camera’s black level compensation should

be switched on. (c) and (d) show exemplary spots with and without black level compensation,

together with fits to transversal cuts.

cuts

w787,h = 0.77(2)µm (8.2)

w787,v = 0.79(2)µm, (8.3)

and for the 940 system

w940,h = 0.78(2)µm (8.4)

w940,v = 0.92(2)µm. (8.5)

The reason for the large aspect ratio of the 940 system is not clear. We inspected

the beam paths and improved slightly the alignment of both systems, but could

not get rid of the tail-like structures. We had hoped that this was somehow due

to bad alignment of the re-imaging optics, which are in itself tedious to align,

but as the 787 data looksmuch better, it is hard to blame that part of the system.

In light of the modulation spectroscopy measurements reported in sec. 8.2, we

will use the w940,h when modelling the tweezers. The power efficiency of the

940 setup was also observed to drop by 55% between the intermediate imaging
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Figure 8.8: Spot sizes of spots generated by the 787 nm and 940 nm direct DMDs. Details are

given in the text.

plane and the atoms, a quantity that had not been previously measured when

the chamber was initially built in.

8.4 Towards few atom loading with light-assisted collisions

A central objective of our experiment is the loading and detection of individual

atoms. There are essentially two routes to achieve few atoms in optical tweezers.

Either one can load the trap at a very low depth, such that it only holds very

few atoms (above we saw the we can maximally load up to 500–1000 atoms in

each tweezer) or one relies on light-assisted two-body collisions. In the following

discussion we focus on the second option.

Elastic two-body collisions arenecessary to ensure the thermalisationof atomic

samples. At high densities in intense light fields close to an atomic transition,

these collisions can become inelastic and have detrimental effects on the atom

number in the sample [92, 174]. This process is due to light-assisted two-body col-
lisions (LACs). LACs are a key to understanding recent measurements of quan-
tum phases in optical lattices where the filling fraction exceeds unity [21, 243].

They have also been used to near-deterministically prepare single atoms in tight

optical tweezers [123].

The process is schematically described in fig. 8.9 (a), where the molecular

potential for two interacting atoms is sketched. The blue curve represents the
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potential whenboth atoms are in the ground (S+S) state and the orange denotes

the situation when one is in the ground state and the other in the first excited

(S+P). The process can be described as follows [137, 257]: (1) Two atoms in the

ground state coincidentally approach one another due to thermal movement.

One atom is excitedby absorbing aphoton froma light fieldwhich is present (2).

The slope of the S+P potential is however greater than that of the S+S potential

and the atoms accelerate towards each other (3). After a while the excited atom

spontaneously emits a photon (4), thereby gaining a kinetic energy∆E. If∆E is

large enough the atoms can escape the trap (5).

The loss rate is obtained from a rate equation [174]

dN

dt
= −β ′N2(t), (8.6)

where β ′ is an atom loss constant. The equation can be integrated to yield the

time it takes to reach an atom numberN, starting fromN0 atoms

t =
2
√
2

β

(
1−

N0

N

)
1

n
. (8.7)

Here β is the two-body loss rate normalised to the volume V occupied by the

atoms [99], the number typically quoted in the literature. This indicates that if

the densities can be maintained at a high enough level, one will end either with

0 or 1 atom in the trap, with 50% probability [237].

We have observed these effects mainly in our optical tweezers where densi-

ties reach 1016 cm−3
.
†
In our experiment the LACs are driven by near-resonant

light. At first we observed the effect using the molasses light that is 40MHz de-

tuned from the F = 2→ F ′ = 3 transition (about 7 Γs). Later we also observed

LACs using the repumper light which is 6.8GHz detuned. Such far-detuned

light was also used in ref. [280] for the same purpose.

†
We obtain this number by assuming the validity of eq. (5.11), an atom number of 1000,

and the ratio
πkBT
U

= 1
10
.
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Figure 8.9: Light-assisted collisions. (a) A schematic that explains the microscopic picture of

an LAC. (b) Atom number as a function of the LAC pulse duration. LACs are induced in our

tweezer arrays (blue), but there is no clear sign of such a process when atoms are trapped in deep

3D optical lattices (orange and green).

In the following, an investigation of this effect in our system is presented.

Three different data sets are plotted in fig. 8.9 (b). The blue data points are

atoms counted in TOF that were loaded into an array of 0.78 µm tweezers,

where they were held without any reservoir present at a depth of about 1µK,

and exposed to light from our repumper laser. The intensity of the beam is es-

timated to be about 10mW/cm2. There is a clear and immediate drop in the

atom number to about 1/3rd of its initial value. Estimating the timescale of the

losses from eq. (8.7) by using a value of β = 10−12 cm3/s [92]‡ we obtain that

considerable fractions of the atoms are lost on the timescale of tLAC = 10µs.

As the repumper laser is only controlled with a mechanical shutter (rise-time of

several µs) but not an AOM, we cannot resolve the timescale to a greater pre-

cision. It is also clear that there are still atoms remaining after the LAC pulse.

Assuming about 40 loaded tweezers, this amounts to about 50 atoms in each.

The obvious reason for why the LACs halt is that they become ineffective as

the densities drop. Our shallow tweezers are not able to maintain the density

needed to reach a single atom (with 50% probability), as is routinely done in

‡
This is the value measured at 900MHz red-detuning, but it is the one closest to 6.8GHz

I could find in the literature.
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Figure 8.10: Examples of early-stage fluorescence images of atom clouds and tweezer arrays taken

in deep 3D optical lattices. (a) The reservoir cloud from which we load our tweezers, averaged

from five exposures. (b) Atoms in a tweezer array, averaged from five exposures. Atoms are

loaded in about 50 individual tweezers. (c) A single exposure where the lattice pinning was

preceded by a 50ms repumper pulse. (d) An average of 20 exposures from the same sequence

as used in (c). The individual tweezers are more distinct, as compared to (b).

very tight tweezers [237]. By applying longer pulses we can still remove atoms,

just not as effectively.

To compare the densities in the tweezer to the densities in the optical lattices,

data for atoms pinned into a deep 3D optical lattice is presented. At that point

we used the molasses beams to induce the LACs, but they are much closer de-

tuned. Data are shown for two caseswhere the total intensity is about10mW/cm2

(orange) and 30mW/cm2 (green). No abrupt losses are observed in either case,

only a much slower decay due to recoil heating of the near-resonant light is vis-

ible. At this time the molasses beam provided no cooling effect. We believe the

reason for the absence of LACs simply to be our densities. The atom number

loaded into the lattice barely suffices for unity filling. As a result there are very

low chances of having two atoms or more per site, which is necessary for the

LAC process.

Figure 8.10 shows early-stage fluorescence images of atoms in optical tweez-

ers. Figs. (a) and (b) show the reservoir and atoms loaded to an array of 0.5 µK

deep tweezers with awaist of 0.78 µm. The images are averages of five exposures

each 500ms long. The atom cloud is illuminated with (non-cooling) molasses

beams in the horizontal plane. After loading the tweezer array, the atoms are
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pinned in very deep lattices within 10ms. Figure (d) is an average of 20 images

(100ms exposure each). The main difference between (b) and (d) is that in (d)

a 50ms repumper pulse was applied before the lattice pinning, whereas in (b) a
100mspulsewas applied after the pinning. The difference is obvious. There are
more atoms in (b) and some are clearly scattered around in the directions of the

molasses beams (along the diagonal). However, these streaks are not present in

(d), of which fig. (c) is a single exposure. By applying a 50ms pulse we certainly

get further into the few atoms regime as indicated by the data in fig. 8.9 (a).

Looking at (c), one is temped to assume that some tweezers even have single

atoms.
§

8.5 Transporting atoms in optical tweezers

With the high magnification of the fluorescence imaging system, we also con-

ducted some trials of using the DMDs’ dynamic abilities to display movies and

transport atoms. The DMD controller board can hold up to 400 images and

display them at a rate close to 10 kHz (see sec. 3.3). The exposures in fig. 8.11

show atoms in tweezers before and after they have been transported. The dis-

tance profile is constructed such that the acceleration is constant and positive in

the first half of themove, and constant and negative in the second half, resulting

in an S-shaped transport profile. The images in (a) and (b) show the start and

end point of transport.

The atoms are loaded into a single tweezerwith awaist of 0.78 µmat a depth

of 0.7 µK. Afterwards the tweezer was moved by a distance of 12µm in a to-

tal time of 23ms to (b). The movie was split up into 75 images and generated

such that the image of the tweezer was moved by two pixels (corresponding to

160 nm in the atomplane) between each frame. In order to achieve the required

transport profile, the display ratewas varied up to amaximumof 6.5 kHz in this

§
At the time we were starting to look into few photon counting methods for single atom

detection, in the style of ref. [30], but exactly aweek later after the datawere acquired our optical

molasses started to work.
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Figure 8.11: Transporting atoms in tweezers. Atoms in a single tweezer before (a) and after (b)
being moved 12 µm in 23ms. From (c) to (d) the corners of a 4× 4 array were moved outwards
by 5.6 µm.

measurement. In a different setting atoms were trapped in a 4× 4 array (c) and
the corners were moved diagonally outwards by a distance of 5.6 µm (d). This

was done in 50 frames and a single pixel step size (80 nm in the atom plane),

reaching a maximum frame rate of 4.5 kHz. The total time of the move was

21ms. In both cases a part of the atoms are lost during the transport. However,

these tests were preliminary and not optimised to yield good results.

Atoms are routinely shuttled around with AODs [22, 87] to create defect

free tweezer arrays of single atoms, but to our knowledge there is only one report

so far on atom transport using DMDs [256]. In that case 1.4 µm tweezers were

loaded directly from a
87
RbMOT.The trapswere created by aDMD in Fourier

configuration using trapping light at 785 nm, reaching a trap depth of 400µK

which is more than 500 times deeper than the depth of our traps. Due to the

tight confinement, the process of LACs boils the population down to 0 or 1

atom. During transport, the atoms are cooled by optical molasses that carried

away a lot of the transport-induced heating. In the experiments single atoms

were moved a distances of 25µm in 132ms time, spilt up in 30 frames. The

step size was to 0.89 µm,more than half of the tweezer waist. The smallest step

size we can realise in our system is only about 1/10th of the tweezer waist, so

we can perform moves in a smoother manner. Moreover, our atoms are also

colder, as we start with BECs in our tweezers. All in all, this route is worthmore

detailed investigations as soon as the experiment is up and running again.



CHAPTER 9
Site-resolved fluorescence detection

Leiðin að hjarta atómsins er stráð innrauðum ljóseindum.

Fluorescence imaging is a standardmethod for detecting single atoms in a quan-

tum gas [210]. As an atom absorbs a resonant photon it becomes transparent to

the light which makes absorption imaging of a single atom very difficult [255].

Even though high phase shifts have been obtained with trapped ions [148], dis-

persive imaging techniques of single atoms are still inferior to fluorescencemeth-

ods in terms of contrast [291]. This chapter describes our route to fluorescent

single-atom detection and offers an analysis of the performance of the high-

resolution imaging system. Its structure is as follows. In the first section the

main topics are the optical molasses and general aspects of our imaging system.

The second section discusses the properties of our single-atom signals and the

third section describes a measurement of the magnification of the high resolu-

tion imaging system and how to assign the grid of the optical lattice to an atom

image. The fourth and last section accounts for heating issues we traced down

to the H1 lattice axis, that remain unresolved.

191
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9.1 Optical molasses and fluorescence imaging

To obtain a good fluorescence signal from an atom one needs to collect as many

scattered photons from it as possible. The photon collection efficiency is max-

imised by placing a high NA lens very close to the atom cloud. In addition,

tight confinement in deep potentials and simultaneous cooling allow for mul-

tiple scattering events per atom before it is lost from the trap. To estimate the

attainable signal from a single atom, let us imagine that we expose it to optical

molasses for a time Texp, from which it scatters photons at the rate Γ . The atom

is assumed not to be lost during the exposure time. The collection efficiency of

the objective can be calculated by integrating over the emission pattern of the

atoms in the portion of the sphere subtended by the objective. Assuming an

isotropic emission pattern the collection efficiency is [187]

Ω =
1

4π

∫θ+
θ−

∫φ0
−φ0

sin(θ)dθdφ, (9.1)

where the limits areθ± = π
2
±arcsin(NA) andφ0 = arcsin

(√
NA

2

sin
2(θ)

− 1
tan
2(θ)

)
.

A numerical evaluation for an NA = 0.69 yieldsΩ = 13.8%. The transmis-

sion of the objective itself is at least 90% according to the manufacturer. As

shown in fig. 6.5 (c), the light collected by the objective passes through a spe-

cially coated dichroic with 99% transmission (see appendix E of ref. [199]), and

two glass plates that are estimated to have 91% transmission.
*
To shield from

stray light three interference filters (Semrock, FF01-780/12-25) are put in the

imaging path. The transmission at 780 nm is 96% for each filter. All in all we

lose about 35% of the fluorescence light before it arrives to the camera, so the

transmission of the optics is η = 0.65. In total

Nph = Γ TexpΩη (9.2)

*
The glass plate transmission is found according to Fresnel’s equations (see sec. 1.5.2 of

ref. [34]), assuming a 50/50mixture of S and P polarised light.
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Figure 9.1: Preliminary adjustments of optical molasses and the cooling environment. (a) Light
pressure in free space molasses, with and without the retro-reflection. (b) Microwave spec-

troscopy on the F = 2 to F = 1 hyperfine transition. The data are fit to a Gaussian function to

determine the centre of the transition. (c)Varying the current in the compensation coils reveals
the background magnetic fields.

photons hit the EMCCD register of the camera. Its quantum efficiency reduces

the number of photons detected, but this value is well characterised as discussed

in sec. 3.6. The detuning of our opticalmolasses is set to∆ = 40MHz, and for a

saturation intensity of 10 Isat the scattering rate is about 5% of the resonant rate

in steady state. For a 0.5 s exposure time this should yield a signal of about 105

photons per atom.
†

First steps to molasses cooling
The opticalmolasses that are used for cooling in the lattices consist of two retro-

reflected beam pairs in the horizontal plane that propagate at right angles to

one another, and a single beam that enters though the objective from below

(the third molasses beam). The polarisation of all beams is adjusted to be cir-

cular realising a σ+–σ− configuration in which sub-Doppler temperatures are

achieved (see sec. 2.1). As a first step in the alignment of the optical molasses, we

†
Thedesign and setupof the imaging system is very similar to theonedescribed in ref. [243].

Under similar imaging parameters to those discussed here they collect only about 1/10th of the

expected number of photons, as is reported in ref. [280].
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observe how a single beam pushes the atomic cloud. The back-reflection is care-

fully aligned onto an iris early in the beam path. Fine adjustment is made to the

retro-reflectors such that the atom cloud stays putwhen exposed to themolasses

beams, indicating that the intensities of the twobeams are equal. The beam that

passes through the chamber is focussed by a lens onto the retro-reflecting mir-

ror (see fig. 6.3), so any losses in the optics along the path can be made up for

by adjusting the position of the retro-mirror to slightly focus the retro-reflected

beam, and increase the effective intensity at the atoms. Figure 9.1 (a) demon-

strates a positionmeasurement of a thermal cloud in single-beammolasses with

(blue data) and without (orange data) the retro beam for a varying pulse length

of the optical molasses. The cloud is pushed by light pressure in the absence

of the retro-reflected beam, as there is no trapping potential present during the

pulse.

For awell-functioningopticalmolasses thebackgroundmagnetic fieldsmust

be compensated to within about 100mG [182], otherwise Larmor precession

compromises the optical pumping mechanism of sub-Doppler cooling. We use

themicrowave system in the science chamber (see sec. 6.2) toperformmicrowave

spectroscopy on the F = 1 to F = 2 hyperfine transition. An example of such a

measurement is shown in fig. 9.1 (b). For each point in the graph themicrowave

frequency is scanned discretely over 10 kHz in 500points dwelling 10ms at each

frequency. Subsequently the cloud is dropped for some TOF and the atoms are

imaged resonantly in absorption imaging. When the resonance is hit, a portion

of the cloud is transferred into the |F = 1,mF = 1〉 state rendering that part in-
visible to the absorption imaging beam. The dip is fit by a Gaussian function

and its centre determined from the fit. An atom cloud typically fills up a trap to

the level of its own temperature. The trapping potential naturally varies across

the cloud, so the atoms experience a spatially-varying AC Stark shift equal to

that temperature. Here the temperature of the cloud is about 700 nK, corre-

sponding to about 14 kHz. This coincides well with the width of the dip.

In the presence of a bias magnetic field B the degeneracy of the hyperfine

states is lifted according to the Zeeman shift, eq. (1.2), and the energy differ-

ence between the |F = 2,mF = 2〉 and |F = 1,mF = 1〉 states increases as∆E =
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Figure 9.2: Minimising detection noise. Panels (a) and (b) are histograms of images taken with
different light sources present in the experimental compartments, with 1 and 3 interference fil-

ters stacked along the path respectively. (c) Ameasurement of the camera noise for various set-

tings of the vertical shift speed and amplitude.

3µBgFB = 2.1MHz/G. By varying the compensating magnetic field, the res-

onance is shifted accordingly as shown in fig. 9.1 (c), where the centre of the

Gaussian fits is plotted against the applied current in compensation coils. The

location of the truemagnetic field zero is obtained from fitting a function of the

form ∆fµW = A|I − I0|. In fig. 9.1 (c) the transversal fields were already well

compensated. For this particular set of coils (the vertical coil pair) the calibration

factor amounts to 0.675(12)G/A. This value is similar to what we obtained by

Larmor magnetometry (see the inset of fig. 5.6), but differs by 10%. That dis-

crepancy is natural as the compensation coils had to be removed and remounted

after the bakeout following the installation of the high-resolution equipment.

Minimising stray light and detection noise
Todetect single atoms, the camera should be operated in amode thatminimises

technical noise. As a first step we measured the noise from various light sources

on the experiment table as shown in fig. 9.2 (a). The graph shows a histogram

of the ADC counts (see sec. 3.6) obtained for each setting. The distribution is

characteristic of EMCCD cameras and consists of a Gaussian shaped distribu-

tion and an exponential tail. The former part stems from the nature of theADC
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register which offsets the image by around 500ADC counts (called a baseline)

and has a width that is a measure of the readout noise. The latter part comes

from the stochastic nature of the process of EM amplification which essentially

follows a Poisson distribution, hence the exponential falloff. The data are ac-

cumulated for an exposure time of 1 s with the camera operating at maximal

EM gain ofGEM = 300. The light sources are run at typical powers during the

imaging procedure. The technical noise level (blue) is taken with the shutter of

the camera open. For these measurements a single interference filter (bandpass,

780 ± 10 nm) was mounted on the camera. In addition the camera is shielded
off with a cardboard box and a system of 1 inch lens tubes is built around the

light path. As is obvious from (a) the largest contribution comes from the ver-

tical lattice beam, which is shone directly into the path. Some of that light is

bound to leak through the coating of the high-resolution viewport, as the lat-

tice beam is very intense. This is remediedby adding twomore filters (at an angle

to avoid standing waves) into the path, resulting in fig. 9.2 (b). The purple data

of the horizontal molasses beams stand out as they cannot be filtered away. At

the time when we acquired the data the third molasses beam was not properly

aligned and so it was not measured. That beam is however the largest source of

noise we have in our images and will be discussed later.

Section 3.6 accounted for general aspects of the operation of an EMCCD

camera. At the operational temperature of TCCD = −40◦C the dark current

is measured to be Idark = 0.042(2) e−/px/s.‡ As indicated by the data-sheet

of the camera the readout noise is dictated by the readout rate and the pre-

amplifier setting. For typical settings in EMmode at 17MHz readout rate and

the pre-amplifier setting with sensitivity S = 4.24, this noise term amounts

to δread = 74 e−/px, but as it is suppressed by the EM gain, it only results in

δread = 0.35 ph/px (photon equivalent counts).

As the shifting process of the electrons from the CCD register to the ADC

converter induces CICs (see sec. 3.6), we mapped out the noise for different

settings of the vertical shift time ∆tv and amplitude Av. The CICs are am-

‡
Here px stands for pixel.
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plified in the EM register so the data represented in fig. 9.2 (c) were obtained

at GEM = 300 with a readout rate 5MHz to minimise the effect of δread in

the measurement.
§
Each data point is the mean pixel value as measured out

of 100 images taken at each setting. Unsurprisingly less amplitude and faster

shift time minimises the CICs. However, for the two fastest settings we ob-

served spilling of electrons from a hot pixel
¶
present in the chip leaving a trace

on the images. To avoid this we work with Av = 0 and ∆tv = 0.9 µs where

δCIC = 0.197(8) e−/px = 0.27(1) ph/px. Note that as the measured value

is similar to δread, it represents the joint contribution of the two noise terms for

this setting. Formore details of the procedure forminimisation of the detection

noise, see ref. [171].

The colour of the optical molasses
The first fluorescence signals that were acquired in the lab through the high-

resolution imaging system were taken without confinement in deep lattices.

The molasses did not provide any cooling, but still the structure of the trap-

ping potentials projected by the 940 nm DMD was apparent in those images.

The atoms were easily heated and diffused quickly out of the traps, which were

also shallow, maximally about 2µK deep.

After adding deep confinement by the optical lattices, it looked as if single-

atom signals were present in some images, as is exemplified in fig. 9.3. In (a),

atoms were transferred from optical tweezers to the vertical lattices, populating

several lattice planes. The vertical lattice potential is ramped down to a level

just above levitation, spilling most of them out of the trap, and the atom dis-

tribution is subsequently pinned and imaged. In (b) an atom cloud is trapped

in a single tweezer and its population reduced by evaporation and immediately

pinned and imaged. From small light patches, as those magnified in panels (c)

and (d) we count up to 50–100 photons.

§
For this setting δ

read
= 0.17 ph/px.

¶
A hot pixel is a defect camera pixel that accumulates an excessive amount of charges and

appears very bright.
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Figure 9.3: Low-photon single-atom signals. Panels (a) and (b) are exposures taken with non-
cooling optical molasses, with only a few atoms trapped in the deep optical lattices. Panels (c)
and (d) are enlarged regions of light patches from where we count around 50 photons.

This low photon collection efficiency was an indication that some part of

the system was not performing as expected. We had had problems with heating

in theH2 lattice axis and suspected that theH1 latticewas also not performing as

it should. However, the photon count from the light patches roughly matched

the estimated number we could expect for single atoms trapped in 2000 Er deep

latticeswithout cooling, and thiswas a clear indication that themolasseswerenot
functioning at all. Such indications are also present in fig. 8.11 that were taken

under similar conditions, where diffuse lines appear under imaging along the di-

rection of the horizontal molasses axes (along the diagonals). The most natural

explanation is that atoms are blown out of the traps and diffuse predominantly

along the direction of the molasses beams.

The individual arms of the molasses were controlled by individual AOMs

as the optical setup in fig. B.3 (top) indicates. The RF wave supplied to each

AOM was provided by separate AOM drivers, adjusted to the same frequency

to within 200 kHz corresponding to the jitter in the potentiometer used to ad-

just it. This was a crucial mistake. As a step in the investigation of the poor

performance of the molasses, we built a small setup that distributed the light

from a single AOM to the three molasses axes. Bringing all beams to the same
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Figure 9.4: Atomic luv. Atoms trapped in a heart shaped potential generated by the 940 nm

DMD. (a)Atoms are held by heart alone. (b)Atoms pinned in deep optical lattices before imag-
ing. (c)Optical molasses cooling atoms pinned in deep optical lattices. Single atoms are clearly
discernible. (d) An enlarged image of the region framed in white in (c). The signal from this

atom amounts to 830 photons. (e)The image uploaded to the DMD to create the potential.

frequency had an enormous impact on the fluorescence signal. Finally, the op-

tical molasses were cooling the atoms in the deep lattices.

Figure 9.4 shows the fluorescence signal of atoms trapped in a heart shaped

potential, under different imaging conditions. Images (a) and (b) show atoms

exposed to the horizontal molasses at different frequencies. In (a) the atoms

were held by the heart potential alone, but in (b) they were pinned in deep lat-

tices before imagingwhich kept the atomheartmore uniform. Image (c) is taken

with all three molasses at the same frequency. Individual atoms are clearly visi-

ble even though the imaging conditions were to be improved. A pure BEC was

loaded into the heart-shaped light box, and the atoms were held by it for 50ms

before imaging. The white rectangle demarcates the region of panel (d), a zoom

of an individual atom trapped and cooled in a single lattice site. To create the

potential we uploaded the image shown in (e) to the DMD.
∥
The width of the

line in the heart is about 20 DMD pixels, corresponding to roughly 1.5 µm at

∥
The image was hand-drawn inMicrosoft’s finest program, MS Paint.
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the position of the atoms.

The theory of sub-Doppler cooling (see sec. 2.1) in optical molasses is non-

trivial and the standard theoretical treatment is limited to the 1D case [63, 191].

The intuition that one has from the 1Dtheory is not easily generalised to higher

dimensions, but as we found out experimentally one cannot assume simply

that 1D molasses along two perpendicular directions provide 2D optical mo-

lasses. The interplay between the beams is important and cooling is definitely

enhanced as the beams are brought close together in frequency. This was some-

thing we failed to realise when designing the system. Perhaps it should have

been clear that at least the third beam could not have provided any cooling on

its own, and interference with one of the other molasses beams would be nec-

essary to create a polarisation gradient along the vertical direction. In our setup

for the science chamber we required individual control over each beam. This

was mainly chosen because we knew of the necessity to offset their frequencies

at least some 10’s of Hz with respect to one another to avoid standing wave pat-

terns between the different axes (see sec. 4.5 of [280]). However, we judged such

fine control over the phase of the beams unnecessary in the first iteration, and

saw it only as a second step in the realisation of good optical molasses.
**
Thus

wewere left with the unfortunate situation of threemolasses beams that all had

slightly different colours.

Strong signals by cooling
As we now held the key to a stronger fluorescence signal it was straightforward

to improve it by scanning the intensities of the molasses beams. Figure 9.5 (a)

shows the total number of photons scattered per atom from a BEC pinned in

deep optical lattices, for a varying exposure time. The traces have been corrected

for a varying atom number during the imaging procedure using the data pre-

**
Since then we have built an RF control system (using a SynthHD from Windfreak

Technologies) where the phases and frequencies of all three beams are set precisely with re-

spect to one another.
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Figure 9.5: Improving the atom signal. The graph in (a) shows the scattered number of photons
per atom. The trace has been corrected to account for the varying atom number. The scatter-

ing rates as extracted from (b) as a function of the molasses intensity. (c) The atom number as

measured in absorption imaging with and without molasses cooling.

sented in (c). Each trace is fit with a line (no offset) and the scattering rate is

extracted according to eq. (9.2).

The horizontal molasses beams have a beam waist of aboutwH = 0.5mm

and the third beam is close tow3 = 10µm. The relative intensities of the beams

were adjusted such that the scattering rates were equal for the horizontal beams,

and the scattering rate of the third beam was half of the rate for the horizontal

beams. The peak intensity of the horizontal beams is calculated as IH = 2P
πw2H

,

where P is the optical power in the beam. The total intensity is assumed to be

Itot = 5 IH, which is normalised to the saturation intensity for σ+/− polari-

sation, Isat,σ = 1.67mW/cm
2
[252]. Simultaneously with the molasses beam,

light from a linearly polarised repumping beam (resonant to the F = 1 to F ′ = 2

transition) with an estimated intensity of 50mW/cm
2
, is shone into the cloud

in order to prevent the depumped atoms from remaining in the F = 1 ground

state manifold. The measured rate Γmeas is plotted as a function of the satura-

tion intensity in fig. 9.5 (b). It rises until around I = 30 Isat,σ, where it bends

off and afterwards decreases. In the most intense regions of the third beam we

see a clear depletion in the signal. We believe that the equilibrium temperature

of the molasses is simply getting too high at this point, and atoms are lost from
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the lattice.
††
For reference the expected scattering rate per atom is graphed as the

purple dashed line, and 1/10th of that function is plotted as the green dashed

line. The reduced rate compared to theoretical expectations could be explained

to some degree by ellipticity of the molasses beams, where the effective Isat is

in fact greater than Isat,σ. In any case do our results match what is reported in

ref. [280].

The atom number and cloud sizes were also measured by absorption imag-

ing for a BEC loaded into a deep lattice with andwithout optical molasses. This

is presented in fig. 9.5 (c). The particular dataset was acquired at a total intensity

of about 15 Isat,σ, but the behaviour was not notably different with double or

half the intensity. The atom number equilibrates under the molasses to about

20× 103 atoms, whereas the number drops below that level without any cool-

ing present. The green dashed line is an exponential fit to the data, and was

used to correct for the atom number in the calculation of the scattering rates in

fig. 9.5 (a). The inset shows the cloud size after 1ms TOF, which clearly reaches

a steady state in the optical molasses.

As a final remarkwe should state that we have chosen toworkwithmolasses

at a red-detuning of ∆ = 40MHz. Along with the high AC Stark shift experi-

enced by the atoms in the optical lattices, about ∆AC = 12MHz at 2000 Er,
‡‡

the atoms are almost 9Γs away from the F = 2 → F ′ = 3 transition. This is

similar to the parameters reported in ref. [280]. For nowwe have not varied this

parameter, andour reasoningwas thatwhenoff-resonant the temperature scales

as
I/Isat
∆

, see eq. (2.4), so in this regime we should be able to adjust the temper-

ature of the molasses as needed without sacrificing too much in the scattering

rate which is also linear in the parameter I/Isat. Our intention was ultimately to

be able to adjust the optical molasses by observing how the photons coherently

††
Using eq. (2.4), the molasses temperature for I = 30 Isat,σ is about 400µK. This cannot

be as the lattices are only 200µK deep. Reducing the effective saturation value by an order of

magnitude, as is justified by fig. 9.5 (b), yields a temperature of 40 µK, about 1/5th of the total

depth.

‡‡
The contribution is about 4MHz from each axis with respect to the field-free environ-

ment.
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Figure 9.6: Bright fluorescence signals. Panel (a) is single fluorescence exposure of a BEC, and
(b) is an average of 40 frames. In (c) and (d) atoms were trapped in a 4-by-4 tweezer array, with
(c) and without (d) an LAC pulse preceding pinning in the deep lattices.

scatter off a Mott insulator state, as is described in ref. [283]. During the time

when the microscope was working we did not get to that point, but eventually

we will.

9.2 Bright fluorescence images of single atoms

Let us inspect examples of bright fluorescence images as displayed in fig. 9.6.

Panel (a) shows a single exposure of a BEC. First a BEC is prepared in the CDT,

then all lattices are ramped to a depth of 20 Er in 100ms using a ramp shaped

like a sin
2
function. Subsequently the lattices are pinned within 10ms to about

2000 Er and thedistribution is exposed toopticalmolasses (∼ 20 Isat,σ) for400ms.

The granular look of the image is due to single atoms scattering off of multiple

sites in the lattice. Its extent along the line of sight should be similar to its vertical

extent on the figure. The 1/e2 width is 34 µm according to a Gaussian fit to a

vertical cut through the image in panel (b), which is an average of 40 exposures.

Thereby we expect it to populate about 60 anti-nodes of the vertical lattice. A

horizontal cut through the image (not shown) reveals a clear flat top structure of

the distribution. We take this as an indication of atomdepletion during themo-

lasses phase due to LACs (see sec. 8.4) in the centre where the cloud is densest,

hinting at a filling fractionn > 1. In panels (c) and (d) we see atoms trapped in

a 0.5 µKdeep 4-by-4 array of tight tweezers. Here the atoms are pinned directly
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Figure 9.7: Purple rain. (a) An exposure of about 50 atoms. From the atom in the inset we

collect 8000 photons. The 33 brightest signals are superimposed to produce (b). The image is
fit by a 2DGaussian function and the residual of the fit is shown in (c). Horizontal and vertical

cuts through (b) are displayed in (d) and (e) along with Gaussian fits thereof and the PSF of the
objective.

after about 100ms of hold time in the tweezer potential. In (c) a 2ms long pulse

of repumper light that induces LACs precedes the pinning and imaging (same

imaging conditions as for the BEC), but in (d) it is absent. Looking closely at

panel (c), some single-atom signals are clear but mostly they are blurred by sig-

nals from atoms in adjacent lattice planes along the line of sight.

To attain a better view of the performance of the imaging system we must

trap only a few atoms that are spread out so the individual signals become clear.

The imagedisplayed in fig. 9.7 (a) is producedby loading a single shallow tweezer

such that the atoms barely levitate against gravity. After a hold time of 100ms

in the tweezer, the vertical lattice is ramped in 10ms to a depth of 130 Er. The

tweezers are turned off and the lattice potential is ramped down to 20 Er in a

1 s long evaporation ramp. The two horizontal lattice axes are ramped to the

same depth within 1ms and afterwards the lattices are pinned. As explained in

sec. 10.3, the focus position of the tweezers is about 1.5 µm away from the op-

timal imaging position. In the subsequent 200ms after pinning, the objective
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is moved by this amount and afterwards the distribution is imaged for 500ms.

This provides clear single-atom signals, but at variable intensities. This is most

likely due to that atoms are trapped in a few planes of the vertical lattice.

Tomeasure the quality of the imaging system, 33 of the brightest signals are

superimposed (centre is determined by a Gaussian fit) to create an averaged im-

age as shown in fig. 9.7 (b). This image is fit by two means. First a 2DGaussian

that is free to rotate yields waists ofwmin = 502(5) nm andwmaj = 548(5) nm,

along the minor and major axes of the ellipse that are drawn by the dotted lines

in (b). The residual of the fit is shown in (c), and in fact it exhibits some coma.

In panels (d) and (e) aGaussian is fit (blue dashed line) to a horizontal and a ver-

tical cut through the data as marked by the dashed lines in (b). This results in

wH = 519(8) nmandwV = 503(9) nm. The PSF (as provided byASEOptics)

is plotted as the orange solid line. This method of determining the resolution

of the system gives a lower bound, because (i) the process of superimposing the

images can only broaden the true PSF, (ii) the signals used in the averaging pro-

cedure do not all lie in the same vertical lattice plane, and (iii) atoms in optical

lattices are not true point sources. By combining eqs. (3.6) and (3.7) we obtain

a lower bound for the NA,

NAeff = 0.66. (9.3)

This is within 5% of the expected NA = 0.69.

9.3 Imaging optical lattices with atoms

Clear images that contain many distinguishable atoms can be used to deter-

mine the underlying lattice grid that traps them.
§§
Such a procedure also de-

termines precisely the magnification of the high-resolution imaging system. In

this dataset used below, the experiment prepared atoms in the same manner as

was done for fig. 9.7 (a). However, for the imaging procedure five fluorescence

§§
The methods described in this section have been applied earlier in the same context, see

ref. [280].
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Table 9.1: Angles and spacing of the lattice grid

θmin lattice spacing magnification pixel size

H1 45.37(2)◦ 5.08(2) px 152.8(6) 104.7(4) nm

H2 −44.93(1)◦ 5.05(1) px 151.9(3) 105.3(2) nm

exposures were obtained, each 200ms long. To each of the five images we ap-

ply a peak finder that first filters out high frequency Fourier components and

then applies a threshold to the image. In this way the positions of the atoms

(xi, yi) are determined, and from those the mutual distances (∆xij, ∆yij) =

(xi − yi, xi − yj) between each two atoms is calculated. From the data a his-

togram is generated for either∆xij or∆yij andGaussian functions with a com-

mon height, width and separation are fit to the data as shown in fig. 9.8 (a). The

image is rotated and the fitted spacing between the peaks and width are plotted

in the (b) and (c) panels. The horizontal lattices propagate along the diagonals

of the images, so we expect these angles to be close to 45◦. To the widths of

the Gaussian fits we fit a quadratic function to determine the angle at which

the width is minimised. The histogram displayed (a) is the one where the angle

minimises the width. The results are displayed in table 9.1. We adopt a value of

Mhi = 152.4(6) for the magnification of the imaging system. The data for H1

(not shown) are significantly more noisy, which is partially reflected in the error

of the numbers shown in the table.

Having determined the spacing and angles of the lattices we can overlay a

grid onto each image. To do this correctly the phase of the standing wave must

be determined according to
¶¶

V =
V0

2
cos

(
2π
x

d
+ φ

)
, (9.4)

¶¶
This formula is equivalent to eq. (9.4) apart from the addition of the phase, and a constant

offset.
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Figure 9.8: Fitting a lattice grid to single-atom signals. (a) A histogram of the mutual distances

for theH2 lattice is shown. (b)From the histogram the spacing of the peaks can be determined as

a function of the angle of the lattice. (c) The width of the peaks plotted along with a quadratic
fit. (d) Determining the phase of the optical lattice. A Fourier filtered fluorescence exposure

with the lattice grid superimposed as the white dots. (e) The phases of the H1 and H2 lattices

are extracted for the entire dataset. The horizontal axis spans about 1 hour.
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where d is the lattice spacing. The phase is determined by overlaying a grid {xg}

with the angles and spacing found previously. The distance from the atom co-

ordinate xi to a grid-point is calculated modulo the lattice spacing

∆xi = xi − xg,j mod

(
λ

2

)
, (9.5)

and the corresponding phase is determined as

φ = 2π
∆xi

d
. (9.6)

This is calculated for all the atoms in the image, and the mean and standard

deviation of the sample are taken as the phase and the error in its determination.

This has been done in fig. 9.8 (d), where the lattice grid is marked by the

white dots in the image. The atom image has been cleaned by filtering out high

frequency components in its Fourier spectrum. This ensures a better stability of

the phase determination. The graph in fig. 9.8 (e) shows the calculation of the

lattice phase for theH1 andH2 horizontal lattice axes for the entire dataset used

earlier. Temporally the graph spans about one hour. Each datapoint denotes

the mean of the phases extracted for the five images taken in each experimental

run and the errorbar the standard deviation of those numbers. TheH2 trace has

been shifted by−π for clarity. The noise of the H1 lattice is notably higher and

its overall drift about two times that of the H2 lattice.

9.4 Heating caused by lattices

As has been hinted at in the previous sections we did encounter heating issues

in the system after we had a workingmicroscope. We tracked this heating down

to the H1 lattice axis. The heating effects both manifested themselves on the

fluorescence images and in absorption imaging, and are described in this section.
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Atom heating in fluorescence images
These issues became clear when we acquired multiple exposures of a few atoms

prepared in the optical lattice. We observed clear atom loss and about 20% of

the atoms hopped between consecutive images, primarily in the direction of the

H2 lattice beam. First the focus was set on the optical molasses. In a set of mea-

surements we varied the overall intensity of the optical molasses. The atoms

were prepared in the same way as described in the beginning of sec. 9.3. In each

run five 200ms exposures were obtained and in all cases the time between the

images was short (5ms) apart from one case where it was set to 200ms. During

that time the atoms were not cooled. To every image we apply a peak-finding

algorithm. The number of atoms is counted in each image and the average frac-

tional change in the atom number is calculated for all 100 images obtained at

each setting. This is plotted in fig. 9.9 (a). We clearly see that more atoms are

lost for higher molasses intensities. This is maybe no big surprise, but even at

the lowest intensities there is still a notable loss.

In another set of measurements
***
the intensity was fixed to around 15 Isat,σ

and themolasses beams were blocked one at a time. The data are analysed as be-

fore, but the experiment was only repeated five times for each realisation, which

at least partially explains larger fluctuations. The results are shown in fig. 9.9 (b).

When all beams are cooling, the population is reduced by roughly 10%. We also

observe that the atoms primarily hop along the direction of theH2 lattice beam.

As one of the horizontal beams is blocked the atoms start to hop around more,

which is reflected in an increased fluctuation and noise in the trace. The most

likely reason for the relative atom number rising above one, is that due to in-

creased hopping atoms appear in later images as they spread out during imag-

ing. When the third molasses beam is blocked, atoms disappear quickly from

the image, probably because they start to hop along the vertical direction. This

shows the necessity of using all three molasses beams.

We were however never fully happy with the third molasses beam. By shin-

***
This latter set was taken three weeks later and the molasses were re-aligned at least once

during that period. This can explain the small differences in absolute numbers.
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Figure 9.9: Atom loss due to hopping. (a)The fractional change in atom number wasmeasured

for different molasses powers. (b) Here the cooling beams are blocked one at a time. (c) The
third molasses beam. (d)The noisy background of the third molasses beam.

ing it into a thermal cloud of atoms its intensity distribution may be imaged by

averaging amultiple of exposures. Such an averaged image is shown in fig. 9.9 (c).

The beam only covers an area of 20 × 20µm2. In addition the intensity dis-

tribution is not homogeneous and fringing is apparent, indicating a cut in the

path.
†††

But even though the third molasses beam is necessary to cool the atom

distribution, it introduces speckles and enhances the noise in the images. This is

seen in fig. 9.9 (d), that displays a single image of the background fromwhich an

averaged image of the background has been subtracted. Therefore it measures

the noise present in a single shot. As the figure shows, there are fringes present

that vary from shot to shot. The fringes likely stem from interference of themo-

lasses beam with itself, as it is combined into the imaging path by a glass plate.

It is difficult to get rid of this background pattern, but in future measurements

we could try to wash it out by scanning the beam pointing with a piezo-driven

mirror at a rate which is much faster than the exposure time.
‡‡‡

†††
At the time of writing we have in fact improved the beam quality.

‡‡‡
Such piezomodulators are already built in on the retro-reflectingmirrors of the horizontal

molasses beams. However, we never saw any clear effect of using them. That was probably only

caused by a lack of a clean enough atom signal (like a uni-layer Mott insulator state).
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Figure 9.10: The erraticH1 lattice. (a)Lifetimemeasurements indicate a serious issuewith theH1

lattice. (b)Measurements taken in a different setting, indicate that the heating rates are similar

for all axes. (c) A potential cause for the erratic behaviour. The holder of the transport coils

might have partially blocked the beam path of the retro-reflected H1 beam, depending on its

alignment.

Atom heating in absorption images
As another step in these investigations we performed lifetime measurements in

the lattices. A BEC was carefully loaded into a 1D lattice, pinned and held for a

variable time. The results, shown in fig. 9.10 (a), reveal a particularly poor life-

time in the H1 lattice of only τH1 = 1 s. The H2 lattice accommodates most the

atoms as it has the largest waist, and likewise the vertical lattice has the small-

est waist and is expected to hold the fewest atoms. The lifetimes for both of

those axes are τH2,V = 6 s. In the time to come we carefully inspected the dif-

ferent aspects of the lattice beam, its alignment, the control electronics, opti-

cal elements in the beam path, and potential effects of thermal lensing that we

found to be minimal. We changed around the optical fibres and inspected the

retro-reflection but found no obvious reason for the poor performance. It was

in this process where our Azur laser eventually broke down, probably due to

back-reflections from the optical fibres due to Brillouin scattering as discussed

towards the end of sec. 7.5.

In its absence we coupled light from the Nufern laser (used for the dipole

traps and the vertical lattices) into the lattice paths. In this way we could have
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low power lattices, or fairly high power in one axis at a time. Instead of looking

at lifetimes, we focussed on thermometry to extract heating rates. The results are

shown in fig. 9.10 (b). The inset is an example of heating rate measurements of

the H1 lattice. For comparison the expected heating rate
dE
dt

= 2ErΓ is plotted

as the dashed line in light blue. This time we measured no excessive heating

in H1, and in fact it was comparable to the other axes. Thus we blamed the

heating on the Azur amplifier.
§§§

When the Azur arrived back, we measured

again extremely poor lifetimes in the H1 lattice so once more we diverted light

from the Nufern into the H1. Now the heating rates were just as bad with the

Nufern, as we measured with the Azur, which lead us to believe the amplifier

was in fact not the issue. We swapped an optical isolator in the beam path of the

axis and measured all of a sudden much better lifetimes again. It was however

difficult to believe that a static optical element could cause such heating.

In hindsight it was difficult to track down the heating issue. Although we

managed to isolate the H1 lattice as the source, the exact reason for it was never

clear. When looking back on the lifetime and heating measurements the de-

gree of the effect varied dramatically. On top we had the results of the fluores-

cence measurements in mind where the atoms seemed to primarily hop along

direction of theH2 lattice, which is hard to reconcile with theH1 being the sole

source of heating. Perhaps some part of the thermal hopping can also be traced

to themolasses, butwhenmany things arewrong simultaneously, it is very time-

consuming to disentangle the issues.

During the reconstruction of the experiment after the fire we found a po-

tential cause for the poor lifetime of theH1 lattice. In all experimental sequences

the atoms are transported from the 3DMOT to the cube chamber by movable

coils. The coils are only sent back to the3DMOTat the endof each sequence, so

they stay at the cube for thewhole time experiments are conducted in the science

chamber. Figure 9.10 (c) is taken through the backside of the retro-reflecting

dichroic of the H1 lattice, looking along its path back into the science chamber.

§§§
We still found this hard to believe as the H2 lattice shares light with the H1 lattice, so any

intensity noise arising in the amplifier itself should also appear on the H2 axis.
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The transport coil holder is visible and the tubes on it are for coolingwater. The

window of the science chamber is in the centre of the image. It is of course hard

to fully realise the situation from a single image, but looking from this angle it

seems quite probable that parts of the coil holder could block the beam path.

This could also explain why the effect was so erratic, as a realignment procedure

of the lattice axis could result in partial blocking of the retro beam. Looking

back, we failed to inspect the retro-reflected beamwith the transport coils at the

cube chamber as all experimental sequences automatically drive it back. In fu-

ture experiments we will make sure to drive the transport stage back to the 3D

MOT before any lattice beams are turned on. That will hopefully resolve the

issue permanently.





CHAPTER 10
Atom cloud tomography

Our first strategy for loading a single lattice planewas to rely on the shortRayleigh

range of the optical tweezers. However, as discussed in ch. 8, the tweezers turned

out to be wider and shallower than we initially thought. The distribution of

atoms loaded into the different planes of the vertical lattice is still of interest, es-

pecially as the high-resolution objective can be moved to image different planes

of the vertical lattice. By acquiring multiple fluorescence exposures at different

positions of the objective, one can even trace out the positions of individual

atoms and tomographically reconstruct the 3D atom distribution in a sparsely

loaded optical lattice.

Full 3D tomography has not been demonstrated before in wavelength scale

optical lattices. Until now, the method has only been applied in large-spacing

lattices [200] and in 3D arrays of optical tweezers [23], where the spacing be-

tween atom layers is minimally 5µm. One study, however, reports on methods

to prepare and read out a bilayerMott insulator system in a quantum gasmicro-

scope [225]. In their approach a superlattice facilitated the creation of a tunable

double-well potential along the line of sight. By virtue of a tunable standing

wave in the molasses light, the scattering rate could be adjusted between layers.

At first, light was collected from both layers, with only one of them in focus.

215
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The scattering rate was tuned to be lower for the plane out of focus. After imag-

ing the atoms in the in-focus plane, they are subsequently heated out by intense

molasses, that was tuned to cool the neighbouring layer. By removing a glass

plate in the imaging path the focus of the system was shifted to that plane, al-

lowing for a proper image to be taken. The distribution in the two planes was

determined in post-processing.

The chapter is structured as follows. In the first section the translation of

the objective by the scanner is characterised. In the second section, we theoreti-

cally analyse the expected distribution of atoms loaded from the tight tweezers

into the vertical lattice. The third section covers an analysis of a dataset where

(on average) 1–2 atoms were loaded into the vertical lattice, and the objective

position was changed between experimental realisations. The fourth and final
section accounts for the analysis of the loading of 20–30 atoms into the vertical

lattice, where the objective focus is scanned within an experimental sequence,

enabling atom cloud tomography.

10.1 Moving the high-resolution objective

Thehigh-resolutionobjective ismountedonapiezo-driven scanner (see sec. 6.4)

and can be positioned with nm resolution. As a result it can be translated be-

tween consecutive fluorescence exposures within the same sequence. To charac-

terise its movement we recorded position profiles, and varied the amplitude of

the movement and the slew rate vmax, which is basically the maximum allowed

velocity of the movement. Figure 10.1 (a) shows the results where the 90% set-

tling time T90 (the time it takes to travel 90%of the desired distance) is plotted as

a function of vmax. For an increasing vmax the travel time settles to about 70ms,

which eventually becomes limited by the PI-control of the scanner itself. The

optimal control parameters depend on the weight of the objective, but the ad-

justment of the P and I coefficients of the control must be made with care. If

one were to drive the piezo too hard it might induce resonant oscillations that

can, in the worst case, cause permanent damage to the piezo-electric material.
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Figure 10.1: Characterising the movement of the objective scanner. (a) Measurements of T90
are shown as a function of vmax. (b) To improve those results the mechanical resonances of the
objective scanners are measured. (c) The optimised position profile after suppression of the

mechanical resonances.

The manual of the scanner has instructions on how to optimise the move-

ment. This basically involves measuring the mechanical resonances in the sys-

tem and subsequently applying so-called notch filters that damp the effect of

those resonances when the scanner is moved. An example of such a measure-

ment is displayed in fig. 10.1 (b), which shows the Fourier transform of the po-

sition profile (the inset) recorded after an abrupt shift of the scanner. The lo-

cation of the highest two resonance peaks can now be typed into the control

program, and the program subsequently suppresses the resonances. The im-

provement is demonstrated in fig. 10.1 (c). The blue curve shows the position

profile, and T90 is marked as the yellow dashed line as the objective was shifted

by dz = 0.5 µm. In comparison the old profile is plotted in orange and the cor-

responding T90 as the purple dashed line. The 90% settling time is improved by

a factor of two, and residual oscillations during the move are no longer present.

The inset shows the optimised position profile for dz = 5µm, where the T90
of that curve is marked in green and lies just below 50ms (the inset shares the

horizontal axis with the main graph). The T90 of the dz = 0.5 µmmovement

is also marked for reference.

These measurements were however conducted in the period after the Azur
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amplifier broke down, so for all data reported below we worked with the old

settings and the timebetween exposureswas set to200ms. This ensured enough

time for the objective scanner to settle before the next image was taken. In the

future we can safely reduce this time to 50ms and cut down the total imaging

time by 600ms.

10.2 Slicing a hypothetical BEC

Our goal is to understand the population distribution of the atoms in the ver-

tical lattice, as loaded from the optical tweezers. Small BECs are created in our

tweezer potentials by virtue of the dimple trick. Their density is approximated

by the Thomas-Fermi approximation of the GPE equation, see eq. (2.15). We

work in cylindrical coordinates and assume a harmonic potential of the form

V(r, z) =
1

2
m(ω2rr

2 +ω2zz
2), (10.1)

whereωr andωz are the radial and axial trapping frequencies. The radial bound-

ary condition is obtained by setting the BEC density, given by eq. (2.15), to zero.

That yields R(z) =
√
R2
BEC

− ε2z2 where ε = ωz
ωr

and RBEC is the radial extent

of the BEC given by eq. (2.16). By integrating out the radial direction, we get the

density ñ(z) as a function of the line-of-sight coordinate z

ñ(z) =

∫2π
0

dθ

∫R(z)
0

rdr |ψ(r, z)|2 (10.2)

=
2π

U0

∫√R2
BEC

−ε2z2

0

(µ− V(r, z))rdr (10.3)

=
π

U0

mω2r
4

(
R2
BEC

− ε2z2
)2
, (10.4)

where µ is the chemical potential given by eq. (2.17).
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Figure 10.2: Slicing up a dimple BEC. (a) The tweezer potential along the line of sight. The
dashed lines mark the extent of the atom density shown in blue in (b) panel, that shows the
line density of the Thomas-Fermi approximation of the GPE for N = 25 atoms. The lattice

potential is drawn when the center of an anti-node overlaps with the middle of the cloud (φ =

0), and when its phase is shifted byφ = π/2. (c)A histogram of the population fraction that is

loaded into different lattice planes of the mode-matched and shifted lattices in (b).

With the atom distribution in hand we can slice up the density distribu-

tion and calculate the population fraction loaded into each lattice plane. Fig-

ure 10.2 shows an example of such a calculation. In panel (a) the tweezer po-

tential is drawn in orange along the line of sight (which is also the direction of

gravity), and the blue dotted lines represent the extent of the BEC, which is rep-

resented in panel (b) by the blue line. For large atomnumbers and shallow traps,

one might doubt the validity of the harmonic approximation as the potential is

severelymodified by gravity.
*
The atomdistribution in (b) is rendered using the

radial and axial trapping frequencies measured by modulation spectroscopy as

reported in sec. 8.2 with N = 25 atoms. The atom number is chosen as these

are typical numbers loaded into the tweezer in the scan described in sec. 10.4.
†

The lattice potential is drawn as the solid orange line, with an anti-node opti-

*
Luckily the radial extent of the BEC only grows as R ∼ N

1
5 , so at least adding more atoms

will not render the approximation invalid, but to be sure one should solve theGPE in the correct

potential.

†
For such low atom numbers one might rightly doubt the quality of such a simple treat-

ment. This is first because the Thomas-Fermi approximation grows better with larger BECs

(and 25 is not many) and second because the GPE is after all a mean-field approach (and 25 is
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Figure 10.3: Population fraction in different vertical lattice planes rendered for (a) 25 atoms (b)
and 100 atoms. In (c)we also have 100 atoms but the maximal power in the tweezer is 10 times
higher that our current maximal optical power. The numbers in the legend stand for the plane

of the vertical lattice with respect to the central plane.

mistically placed in the center of the distribution. The case when the phase of

the lattice has been shifted byφ = π/2 is drawn as the yellow dashed line. Panel

(c) shows a histogram of the fractional population in each plane obtained from

integrating from crest to crest, for the two lattices shown in (b). The main dis-

tribution is represented by the blue bars, and the one from the shifted potential

by the yellow ones. The effect of a mismatch is to skew the loaded distribution,

which otherwise populates about five adjacent planes.

It is easy to extend this calculation to higher atom numbers and greater trap

depths, as shown in figs. 10.3 (a)–(c). Here the calculations were done in the

unshifted lattice. The trap setting used to generate fig. 10.2 is marked by the

green dashed line in panel (a). As is expected more atoms provide a broader dis-

tribution and deeper tweezers narrow it. If we were to rely on this method as a

route towards single plane loading itwould definitely be favourable to addmore

tweezers, each with few atoms, instead of addingmore atoms to fewer tweezers.

Instead of relying on the 940 nm tweezer system with the big outcoupler (that

provides amore homogeneous illumination), we could either use the small out-

not many). For a better theoretical treatment ofN interacting bosons one could consult a mul-

ticonfigurational time-dependent Hartree method for bosons (MCTDHB) [4], but such fine

theory is outside the mental capacity of a humble experimentalist writing a PhD thesis.
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coupler for illuminating the DMD, or use the holographic DMD system (see

sec. 6.4). This should be favourable in terms of attainable depth, at least for

few tweezers. The calculation in panel (c) was rendered with 100 atoms up to

an optical power of 10 times the maximal power of the tweezer system that we

currently use. For the highest depths only three planes of the vertical lattice are

populated.

10.3 Counting a few atoms in multiple lattice planes

To measure the atom distribution in the vertical lattice we must scan the posi-

tion of the objective. For the dataset covered in this section, five fluorescence

exposures were acquired in each experimental run. The first image was taken

with the objective at the same position as where the tweezer-trapped cloud was

loaded to the vertical lattices zload, then afterwards the objective was moved to

another position zi that was scanned between consecutive runs. For each im-

age the atoms were exposed to the optical molasses for 100ms and the time be-

tween images was set to 300ms.‡ Prior to imaging, a single tweezer was loaded

at a depth of 0.5 µK. After turning off the CDT the atoms were held in the

tweezer for 10ms before a 4ms long repumper pulse depleted the atom num-

ber by LACs. After another 100ms of hold time, the distribution was pinned

in deep lattices and imaged as described earlier. The objective position zi was

scanned over a range of 5µm with a resolution of dz = 0.5 µm, just below

the lattice spacing of d = 0.532 µm. This cycle was repeated 120 times to ac-

quire statistics. In the following analysis the image obtained at zload is omitted,

and the other images are treated individually. The position of the objective will

be referenced to the central position of the scan z0, by the use of the quantity

∆z = zi − z0. This position happens to coincide with the zi where atoms are

detected.

‡
This was the first experiment that we conducted where the objective was moved between

exposures, so in hindsight we used a rather short exposure time and a long time between the

images. The atom hopping was in fact not as pronounced in this scan as in later scans.
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Figure 10.4: Atom counting statistics. (a) A histogram of the number of atoms detected at z0,

fit by a Poisson distribution. (b) A histograms for all objective positions zi. The image shares

the vertical axis with (a). (c) Average atom number detected as a function of zi (blue points).

Atom signals above (orange circles) and below (yellow points) ρ, the mean PTR.

Atoms out of focus will appear fainter and cover a larger area on the image

that those that are in focus. As a measure of this feature we adapt a quantity

that we call the peak-to-total ratio (PTR). It is ratio of the peak count in a 3× 3
pixel array around the centre of the atom image, to the total count in a 7 × 7
pixel array around the same centre,

PTR =
N3×3

N7×7
. (10.5)

We apply a peak finding algorithm to all images, that locates the atoms and the

centre of the signal to the precision of a camera pixel. The PTR is calculated

from a Fourier-filtered version of the raw image.

We begin by looking at the number of atoms detected as a function of the

position zi. Figure 10.4 (a) is a histogram of the atom number at the centre po-

sition z0. The orange circles represent the Poisson distribution that best fits the

data, yielding a mean number of n̄ = 1.63(8) atoms. The image in fig. 10.4 (b)

is the histogram compiled at all the different positions zi. The distribution has a

spear-like shape indicating that most atoms are loaded in the vicinity of z0, and
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Figure 10.5: Inspecting the PTR of atoms detected. (a)A scatter plot of the PTR and
¯N3×3 for

atoms detected close to z0 (blue points) and far from z0 (orange points). The histogram shows

that the PTR distributions are notably different. (b) An image of the histograms as a function
of zi.

it is also clear that towards the edges no atoms are found in the vast majority of

the images. In fig. 10.4 (c) we plot n̄ as a function of zi. Themaximumnumber

of atoms lies 1.5 µm above zload, as is indicated by the green dashed line. This

is most likely the effect of a chromatic shift between the 940 nm light in which

the atoms are held, and the 780 nm light they emit. This is an important obser-

vation as the objective must always be moved by this amount before imaging if

the tweezer potentials have been used earlier in the sequence. By looking at the

PTR values of the atoms detected we filter the n̄ that have PTR > ρ (orange

circles) and PTR < ρ (yellow circles), where ρ is the mean value of the PTR for

the whole dataset. We see that atoms with low PTR are detected away from the

z0 and signals with higher PTR values are typically found close to the centre.

To get a better idea of how distinguishable the atom distributions are in

and out of focus, a scatter plot is presented of the PTR and the average peak

count in the centre of the atom signal,
¯N3×3, also obtained from the filtered

image. The dataset presented in fig. 10.5 (a) is split in two. The blue points

contain atoms found in images within |∆z| 6 0.5 µm (three positions in total)

and the orange points contain |∆z| > 1.5 µm(six positions in total). The atoms
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detected in the vicinity of z0 generally have higher PTR, and a higher density of

high values of
¯N3×3. The histogram on the side shares a vertical axis with the

scatter plot, and here it is clear that at least on the length scale of 1µm there is a

notable difference in the distributions. In fig. 10.5 (b), the histogram is presented

with full resolution, so each vertical row corresponds to a given zi. TheΛ-like

shape of the distribution is related to the underlying atom distribution, but the

measurement result itself is convolved with the axial profile of the PSF as given

by eq. (3.5). This is inherently the limiting factor in this approach, as there is no

obvious way to determine with certainty if a given atom signal is in or out of

focus and how far away it is from the focal plane.

10.4 Tomographic reconstruction of sparse atom clouds

To gain information about into which lattice plane a given atom was loaded,

the position of the objective had to be changed between consecutive exposures

within the same experimental run. This was achieved in a set of experiments

where a single tweezer was loaded at low power and the cloudwas subsequently

moved over to a 130 Er deep vertical lattice followed by an evaporation in that

potential down to 20 Er. The sequence, apart from the imaging procedure, was

the same as the one used to obtain fig. 9.7 (a), and is described in sec. 9.2. For

the data presented here five images were obtained, each with an exposure time

of 200ms, separated by the same amount of time. During the time between the

images the objective was translated by dz = 0.5 µm through a set of positions

{zi}, spanning a total range of 2µm. This sequence was repeated 100 times to

acquire statistics.

The dataset is not free of heating effects.
§
For further data processing we

filter out atoms that are not found within a distance of one pixel (up, down,

left, right and diagonally) from one image to the next. Essentially, the atoms

we consider have to stay put in their lattice site in all five images for the total

duration of the imaging procedure of 1.8 s. In this way we obtain traces {ai},

§
Indeed the data were taken on the same day as the hopping data discussed in sec. 9.4.
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Figure 10.6: Tracing out the atom position. The top row in (a) shows an example trace of raw
atom images and the bottom row contains the filtered versions. The numbers above the top row

denote ∆z̃. In (b) and (c) the PTR and
¯N3×3,raw (as calculated by the raw image) are plotted as

a function of∆z̃, respectively.

where i = {1, . . . , 5}. An example of such a single-atom trace and how the

atom image changes as a function of zi, is given in fig. 10.6 (a). The figure shows

a series of five raw atom images in the top row and their filtered versions in the

bottom row. For each image we find the PTR by eq. (10.5), and the distance

from the maximum PTR to a given image ∆z̃ = zi − zmax is written above the

top row. For this particular trace themaximumPTRwas found in the 4th image

of the series.

An example of some PTR traces is given in fig. 10.6 (b), and the particular



226 CHAPTER 10. ATOM CLOUD TOMOGRAPHY

one in (a) is shown in yellow. Through each set of points a quadratic function

is fitted, and this is also drawn as a guide to the eye. In fig. 10.6 (c) we plot

¯N3×3,raw as a function of ∆z̃ for the same traces as shown in (b). The errorbars

represent the photon-shot noise

√
¯N3×3,raw. Even though the PTR values are

similar, e.g. for the orange and yellow traces, the orange and the yellow
¯N3×3,raw

traces differ at least by a factor of two. There can be many reasons why the pho-

ton collection efficiency is so different for the two atoms, but it is likely due to

non-homogeneous illumination in the optical molasses. In the blue data trace

the second point stands out and has about twice as many counts as the equiva-

lent point on the other side of the zmax. We attribute this to another atom that

hopped into the line of sight in a different plane of the vertical lattice, but was

gone again in the next image. This does not seem to affect the PTR value sig-

nificantly, and shows the robustness of that measure to spurious events like this

one.
¶
However, focusing on the purple trace we see that the correct focus posi-

tion of the trace seems to be mis-identified when the quadratic fit is considered.

As stated above the center is identified as the point with the maximum PTR

value. As this case demonstrates, one should rather rely on the center of the fit

as a measure of the plane into which the given atom was loaded, and this will

be done in a future iteration of the analysis. All in all, this discussion shows the

power of the technique. By the atom trace {ai} the correct plane of the atom

along the line of sight can be determined with a greater certainty than in the ap-

proachdescribed in sec. 10.3, where theobjectivewasnotmovedduring imaging.

As shown in the inset of fig. 10.7 (a) we find on average n1 = 30(9) atoms

in the first image of each series. However after the filtering process we are left

with 169 atom traces {ai}which corresponds to close to 6%of the total number

of atoms detected in all of the initial images. The atom loss during imaging

was thoroughly discussed in sec. 9.4, but one could point out especially that

a portion of the atoms found in the first image lies outside the region of the

third molasses beam, and so they are expected to be heated out quite fast. In

¶
In future work we hope that such events will be suppressed with better cooling in the

molasses, and minimal lattice heating.



10.4. TOMOGRAPHIC RECONSTRUCTION OF SPARSE ATOM CLOUDS 227

20 40 60 80 100 120
avg. peak count [photons]

0.2

0.22

0.24

0.26

P
T

R

(a)
max

0.5 m
1.0 m

10 30
occurence

0 50 100
N

3 3
 in focus

0

20

40

60

80

100

N
3

3 o
ut

 o
f f

oc
us

(b)

+0.5 m
-0.5 m

1.0 m
1.5 m

1 3 5

img no.

0

20

40

at
om

s 
de

t.

Figure 10.7: Correlations in PTR and peak count. (a)A scatter plot of the PTR and
¯N3×3. The

histogram of the PTR coordinate is shown to the right. The inset displays the average num-

ber of atoms detected each of the five images obtained, and the errorbar denotes the standard

deviation. (b)The correlation of ¯N3×3, both in and out of focus for the different planes.

fig. 10.7 (a) we show a scatter plot of the PTR and
¯N3×3. Like in fig. 10.5 (a) all

the points lie above the diagonal of the plot, but the bulk of the data are grouped

around 1/3rd of the maximal value of ¯N3×3. The blue points correspond to

atoms identified at zmax, and the orange and yellowdata points at |∆z̃| = 0.5 µm

or |∆z̃| = 1.0 µm respectively. The histograms on the right to the scatter plot

are not as easily distinguishable as those in fig. 10.5 (a), but the separation ∆z̃ is

also much less. The group of the zmax count is however considerably narrower

than the other groups.

Another way to characterise the data is to find the correlation between the

maximumpeak count
¯N3×3 in andout of focus. This is presented in fig. 10.5 (b).

The 1 : 1 correlation is drawn for reference as the blue dashed line. Each data set

is fit by a linear function (without an offset) and as expected the slope is reduced

for planes further away from the location of zmax. In the graph we treat sepa-

rately the data 0.5 µm above and below zmax, and as expected they yield exactly

the same slope (the green and orange solid lines are practically indistinguishable

in the graph).

As a next step we superimposed all the 169 {ai} traces with respect to the
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Figure 10.8: Shifting atom traces. (a) Histograms of the PTR for each coordinate ∆z̃. (b) A
histogram of the location of the maximum PTR as a function of the objective position. (c)
Using that data we model the intensity of the light along the axial coordinate, and compare to

measurements.

∆z̃ coordinate, and a histogram for the PTR value is compiled for each value of

∆z̃. This is represented in the image of fig. 10.8 (a). The image is equivalent to

the one that we would obtain if all atoms had been loaded into the same lattice

plane. Onemay now directly compare this image to themain result of the static

objective approach, fig. 10.5 (b), which ismuch broader andmore uncertain. We

see that the tomographic approach reduces substantially the uncertainty in this

distribution.

We are now equipped to answer the question of how the atoms loaded into

the vertical lattice were distributed into the respective planes. This is done by at-

tributing the location of the zmax as the plane into which it is loaded. The result

is displayed in the histogram of fig. 10.8 (b), where the occurrence is equivalent

to the population fraction loaded into a given plane. This result can be directly

compared to a similar plot of fig. 10.2 (c), which was the result of the simple

GPE based theory represented in that section. That particular figure was ren-

dered for N = 25 atoms, which is the mean number of atoms detected in all

images. The difference between the two situations is however that in the exper-

iment, some evaporation was carried out in the vertical lattice after loading, but
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still the simple theory predicts the total number of loaded planes. The asymme-

try of themeasured population fraction could stem from the phase of the lattice

with respect to the center of the atom cloud as was demonstrated in fig. 10.2 (c),

given that the phase drift was negligible over the one hour it took to acquire the

data. The gravitational sag of the tweezer potential from which it was initially

loaded could also play a role. The measurement yields a notably larger fraction

in the central plane compared to the prediction, which could be the result of the

evaporation.

To a good approximation, we expect each atom to emit light according to

the PSF of the imaging system. Along the line of sight its intensity should fol-

low eq. (3.5), the axial shape of the PSF. The total light intensity as measured

from the atoms should be equal to the sum of all the individual PSFs, that we

denote by Ii(z), for an atom in lattice plane i. As we know the distribution of

atoms in the planes along z from fig. 10.8 (b), we can use those numbers as pop-

ulation weights pi to achieve a normalised total intensity Itot(z). That function

is modelled by

Itot(z) =
∑
i

piIi(z− id) (10.6)

where i ∈ {−2, . . . , 2} and d is the lattice spacing. The average total number

of photons collected per atom is plotted in fig. 10.8 (c). The Itot(z) is the blue

dashed line, and the individual components of eq. (10.6) are also drawn. As

the function Itot(z) is normalised, its height is fit to match the data. This simple

theorymatches themeasurements quitewell. In futurework, we could improve

the comparison to the model by scanning the objective over a larger range.

As a final exercise, we can now tomographically reconstruct the 3D spatial

distribution of atoms. This is shown in fig. 10.9 (a) and (b) from slightly differ-

ent angles. The distribution is rendered by the zmax of each of the 169 atoms,

and the horizontal coordinate is obtained from the image at which the PTR

was found to be at a maximum. This represents an average distribution as it

samples about 6% of the atoms present in the first image, and it is compiled us-

ing all 100 repetitions of the measurement. However, with improved molasses
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Figure 10.9: A tomographic reconstruction of the atom cloud loaded from a single tweezer into

the vertical lattice. The frames (a) and (b) are taken from slightly different angles and show

different aspects of the distribution. The colour of the atom depends on the lattice plane.

cooling, and better stability of the optical lattices nothing prohibits such images

to be rendered from each single realisation of the experiment.



OUTLOOK

A brave new experiment

The outlook is split in four parts. The first section describes the fire accident, its

causes and effects, and briefly accounts for the reconstruction of the experiment

and its present status. The second section sketches out different strategies to

achieve single plane loading and the third section discusses the feasibility of the

single-site spin addressing scheme. The fourth section outlines the longer-term

goals, and which promises the machine holds for future physics experiments.

O.1 The rise of the Phoenix

February the 11th 2019 was a particularly bad Monday in the lab. We forgot to

turn on the water-cooling for the high-current coils (not for the first time), but

this time the interlock that prevents the system from overheating in such sit-

uations did not work as intended. We had recently built in two high-current

coils around the science chamber. They were run on two separate power sup-

plies (Delta Elektronika, SM 15-400), identical to the one used for the cube

(see fig. 6.5). At the time, the interlock channels of each power supply had been

hooked up in series to the interlock systemof the existing power supply, in away

231
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Figure O.1: Ashes to Ashes. (a) The author inspects the scene. Robert hides behind the optics.
(b)The remnants of the cube chamber.

that seemed to work all right, at least when all the power supplies were turned

on.
*
This morning however, we only needed one power supply.

Thehigh-current coils used formicrowave evaporationoverheated andmelted

and burnt the epoxy they were mold in. There was probably fire in the lab for

some time, as the epoxy went up in flames. Luckily it did not spread to any

electric cables or other plastic material that is present in vast amounts above the

experiment table. Water hoses broke in the heat and sprinkled the optics table.

Vacuum broke and all chambers were filled with soot. Fire, water, and air filled

chambers. The elemental forces of nature drove the experimentalist to the dust.
†

*
We came to learn that this was of course by no means the right way to do things. Both

were the interlocks connected in the wrong way, but more importantly, the functionality of the

interlock had not been properly tested after the alterations. Always test your fail-safes in all
modes of operation. Else your machine might spontaneously combust.

†
My grandfather’s only lesson to me on physics became appropriate (in a very loose trans-

lation).

Hvert orð þitt kvelur mig, Your words torture,

hvar sjást þín þín gæði? where are your qualities?

Andskotinn eigi þig Go to hell

eðlisfræði. physics.



O.1. THE RISE OF THE PHOENIX 233

Figure O.2: The death of an experiment. The machine faithfully creates BECs until its last

breath. The dark clouds on the horizon eventually reach the vacuum chambers and suddenly

their insides turn optically thick.
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The scene was frightful, as fig. O.1 shows so vividly, and it was immediately

clear that this incident would set back our progress for a long time (at least on

the timescale of a PhD student). The machine recorded images in the science

chamber during the warmup routine, and it managed to make 22 BECs before

things started to fail, as is shown in fig. O.2. In the 64th shot (after about 40

minutes of continuous operation) the OD in the chamber changes abruptly.

That marks the point of the vacuum failure.

There was only one way ahead: to mend what was broken. Luckily all the

high-resolution optics as well as the optics around the science chamber were in-

tact, apart from the high-resolution viewport that had grown a thick soot-doped

epoxy coating. All vacuum components had become extremely dirty on the in-

side, but with the help of dirt-eating bacteria, organic solvents and great assis-

tance from the mechanical workshop, we could clean almost all of the vacuum

parts to XUV grade. The optics and viewports were carefully rinsed with hun-

dreds of cotton swabs and (m)ethanol. Even the SAES getter pumps were func-

tional after several bakeouts and cycles of getter-activation. The cube however

had to be replaced. After cleaning, the experiment was baked out in two parts

outside of the lab. First we baked the MOT section, and later the cube and

science chambers were baked together (see fig. 3.1). We back-filled theMOT sec-

tion with argon and then the two parts were joined via a gate valve connected

after the cube chamber. Afterwards we could pump the system down to same

vacuum level as before. At the time of writing we have atoms anew, with a cou-

ple of months of work still ahead of us. The new experiment is appropriately

nick-named The Phoenix.

O.2 Loading a single lattice plane

The ability to extract reliable results from a quantum gas microscope experi-

ment depends crucially on the imaging fidelity of single atoms, which is in all

cases above 95%. The depth of focus of our imaging objective is close to 1.5 µm,

which naturally renders the resolution of dense atom clouds along the line of
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sight challenging. This is why all quantum gas microscope experiments have

exclusively worked with atoms in a single plane, with minor exceptions [225].

Today, different approaches are used to achieve the loading of a single lattice

plane. Methods include magnetic field slicing [243] (explained below); trap-

ping based on the combination of an evanescent wave and a large spacing opti-

cal lattice [115]; compression of a degenerate cloud bymeans of an accordion lat-

tice [139]; or loading of a large spacing lattice from a tightly focussed and highly

elongated optical tweezer [208] (supp. mat.). The last method suffers from the

fact that atoms do spill over into neighbouring lattice planes. They are however

subsequently removed by selectively transferring them via a local RF addressing

scheme under a magnetic field gradient to states where spin-changing collisions

deplete the population.

Our tomographic approachpresented in ch. 10has obvious limitationswhen

it comes to imaging dense samples inmultiple planes. It seems for instance to be

impossible to precisely determine the location of holes in a multi layerMott in-

sulatorwith a filling fractionn < 1. However, its strength lies in analysis of few-

atom systems distributed over a handful of lattice planes along the line of sight.

As an example of an experiment that fulfils such conditions would be the reali-

sation of quantum random walks in 3D, something that has been investigated

before in 1D [224]. The majority of the experiments that have been realised

in quantum gas microscopes, also rely on rather small populations. With some

further work, especially in terms of homogenising the number of photons col-

lected from each atom, this method could be adapted to work for precise atom

counting along the line of sight in a few layers.

Despite these prospects, it is still one of our immediate goals to achieve the

loading of a single plane, and in what follows, different means to that end are

outlined.

Magnetic field slicing
The method of magnetic field slicing has been successfully employed for single

plane loading, as described in ref. [243]. Figure O.3 (a)–(f) explains the process.
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An atom cloud in the |F = 2,mF = 2〉hyperfine state, is trapped in a 1Doptical

lattice with a lattice spacing d as shown in (a). By applying a magnetic field

gradient
dB
dz

(b), the energy levels are shifted dependent on the clouds position

by the Zeeman effect. The atoms are exposed to microwave radiation (c) which

is adjusted to be resonant only with a single lattice plane, transferring them to

the |1, 1〉 state (shown in blue). To get rid of all but one atom layer a light pulse,

resonant with the F = 2 → F ′ = 3 transition, pushes all atoms in the |2, 2〉
state out (d). Now the single layer can be shifted back to |2, 2〉 state (e) and we
end up an atom cloud in a single layer (f).

As we will see, this approach both requires the stabilisation of current in

the gradient coils to a high degree and for a homogeneous loading the flatness

of the magnetic field at the atoms is also important. To analyse this in more

detail let us calculate the total magnetic field (in cylindrical coordinates) at a

distance (∆r,∆z) from the centre of the quadrupole field. By assuming only

linear contributions (which is reasonable close to the centre of the trap), we have

that

B(∆r,∆z) =

√(
dB

dz
∆z+ Bz

)2
+

(
dB

dr
∆r+ Br

)2
, (O.1)

where the
dB
dz

and
dB
dr

are gradients in the vertical and radial directions, and Bz
and Br are offset fields.

Now we impose the condition of a homogeneous field in the centre of the

trap, which will the enable loading of a Mott insulating state of a radius r0 in

a single lattice plane. We take the limiting condition to be the point where the

field strength at a radius r0 in plane numbern is equal to the field strength in the

centre of the neighbouring planen+1, i.e. B(∆r+r0, ∆z) = B(∆r,∆z+z0).
‡

Solving for Bz gives the vertical offset field required to achieve the condition as

‡
It can of course be debated if this is exactly the right condition, but it is correct at least up

to a constant front factor.
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Figure O.3: Magnetic field slicing. (a)–(f) Preparation of atoms in a single layer of an optical
lattice by magnetic field slicing. (g) Stability requirements for the magnetic field gradient used
for slicing, and hence the current in the quadrupole coils. here are two requirements that must

bemet, first a given size of theMott insulatormust be reached, and second the background field

fluctuations set a limit for the minimal gradient. Details are given in the text.

a function of the gradient. If we recall that
dB
dz

= 2dB
dr

we obtain

Bz(∆r,∆z) =
1

2z0

dB

dz

(
1

4
(r20 + 2r0∆r) − (z20 + 2z0∆z)

)2
+ r0Br. (O.2)

The fixedpoint in our experiment is the locationof the objective, so all other

entities must be aligned to that point. The quadrupole coils around the science

chamber are placed directly on the flanges of the vacuum chamber. Their align-

ment with respect to the centre of the chamber is achieved bymechanical means

only (not involving the atoms) and as the atom cloud is located slightly below

the centre, it will not be in the physical centre of the anti-Helmholtz system.

We carried out some preliminary tests of the quadrupole coils while the exper-

iment was still intact, and we found that the coils were offset radially by about

1mm and vertically by 2.5mm.§ By controlling the coils independently using

§
We have now altered the coil holders such that their mechanical alignment will improve.

They are also now closer to the atoms which will allow for higher gradients.



238 OUTLOOK: A BRAVE NEW EXPERIMENT

separate power supplies, we can shift the location of the zero field vertically to

coincide with the location of the tweezer-trapped clouds above the objective,

but the radial displacement is hard to fix.

From the first half of the thesis we found shot-to-shot fluctuations of stray

magnetic fields to be on the level of σB = 0.5mG. In fig. O.3 (g) we plot the

ratio of Bz/σB, assuming ∆r = 1mm, ∆z = 0mm and Br = 0mG. If we

demand that the difference in the magnitude of the magnetic field between ad-

jacent planes (∆B), is an order of magnitude greater than σB, this will require a

gradient

dB

dz
= 10

σB

d
= 100G/cm. (10.7)

For comparison, ref. [85] reports 50G/cm. For a homogeneousMott insulator

of only r0 = 5µm this puts us close to a fractional current stability of 10−5.

To build such a power-supply will require some electrical engineering. A recent

approach reaches a fractional stability of high currents to the level of 10−6 [267],

which would definitely fit our needs.

Large-spacing lattice from the side
Interference patterns of lattice beams with a larger spacing than λ/2 can be cre-

ated by introducing an angle 2θ between the beams.¶ This will result in an op-

tical lattice with a spacing of

d =
λ

2 sin(θ)
, (O.3)

as exemplified in fig. O.4 (a). We could foresee the implementation of such a

system using a dual microscope system from the side (see fig. 3.6). To minimise

the lattice spacing, θ must be large and will ultimately be limited by the NA

¶
We prevent this from happening in our current lattice beams by shifting their optical fre-

quencies by 10’s of MHz relative to one another.
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Figure O.4: Loading a large spacing optical lattice. (a) A schematic figure of the creation of a

large spacing lattice using the dual microscope setup. The g-arrow points in the direction of

gravity. (b)The fraction of atoms loaded from a BEC in the large spacing lattice to a single node

of the short spacing lattice as a function of the depth of the large lattice spacing. Parameters for

the calculation are given in the text.

of the objective. For the most extreme rays sin(θ) = NA. The objectives are

estimated to have an effective NA = 0.19 (see sec. 4), but as the atom cloud

is located below the centre let us assume an NA = 0.15. This will produce a

lattice with a spacing of d = 3.5 µm.

Such an optical lattice could be used as an intermediate step in a preparation

sequence for a single plane. With that tool at hand we have two options.

(i) If the system is designed such that the distance between the incoming

beams (∆l), can be varied (this can be achieved e.g. with an AOM), the

spacing in the lattice can also be varied. By reducing ∆l to 1/10th of its

maximal value, the spacing becomes d ' 30 µm, which would suffice to
engulf the BECs we create in our CDT (see fig. 9.6). The BEC could then

be compressed by increasing ∆l. This could maximally yield about 105

atoms in a single plane.
∥

∥
There is some flexibility in the length scales here. First if∆l = 30µm is not easily realised,

the BEC could both be made smaller by further evaporation, and subsequently compressed in

the CDT before loading over to the lattice.
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(ii) We could rely on the shortRayleigh range of the optical tweezers and load

atoms from an array into a single anti-node of the large-spacing lattice.

According to fig. 8.5 (a), thismethod should yield 2 ·104 atoms in a single
plane.

Both of these schemes might introduce heating in the cloud such that the BEC

might be lost, or at least the condensate fraction somewhat reduced. To reliably

load from the large-spacing lattice over to the short-spacing lattice, the extent

of the atom cloud must not exceed 532 nm. Using GPELab [14], we calculated
the spatial extent of a BEC of 104 atoms in a harmonic potential assuming a

beam waist of w0 = 100µm and a lattice spacing of d = 3.5 µm, where the

aspect ratio of the trapping frequencies is
ωz
ωr

= π√
2

w0
d

= 63. Figure O.4 (b)

shows the calculation of the atom fraction that ends up in the central plane of

a short-spacing lattice (assuming that an anti-node of the lattice coincides with

the BEC), as a function of the depth of the large-spacing lattice. The remaining

atoms are distributed equally to the nearest adjacent planes. We see that already

at the depth of 60 Er, around 95% of the atoms populate the central plane of

the short spacing lattice.

Light-sheet-aided microwave transfer
The method described below is in many respects the same as the magnetic field

slicing scheme discussed above. In fact, the schematics presented in fig. O.3 (a)–

(f) is applicable, but the spatially dependent energy shift is not created by amag-

netic field. Instead the shift is due to an optical potential. For this to work out,

two conditions must be met. (i) The light field must be di�erential in the states
of the ground state manifold, F = 1 and F = 2, which means that in its pres-

ence the energy levels of the two states are shifted by different amounts. (ii) The

difference in the light shift between themain plane and the neighbouring plane

must be so large that the transfer pulse (in terms of frequency), acts exclusively

only in one plane.
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Figure O.5: Spin flips in a light-sheet. (a) The light shift for the |F = 1,mF = 1〉 and
|F = 2,mF = 2〉 hyperfine states due to σ+ and σ− polarised light. (b) The differential light
shift between |F = 1,mF = 1〉 and |F = 2,mF = 2〉 states as produced by a σ+ polarised beam

at a wavelength of 787.6nmmadewith aNA = 0.15 objective. The blue solid line corresponds

to a transversal cut through the light-sheet intensity, as a function of the distance from its cen-

ter. Parameters for the calculation are given in the text. The vertical lattice potential is drawn as

the solid orange line. Its depth is irrelevant in this context. The inset shows the difference in the

light shift between the green filled circles as a function of the NA.

The ideal light color to achieve a high differential light shift Udiff, in
87
Rb

lies between the D1 and D2 lines. Figure O.5 (a) shows the AC stark shifts for

the twohyperfine states |F = 1,mF = 1〉 and |F = 2,mF = 2〉 in thepresence of
σ+ andσ− polarised light. The expression for the shift is similar to eq. (1.14) but

takes into account the polarisation states of the light. That variant can be found

in sec. II.B of ref. [121]. Of particular interest here is the “magic” wavelength for

the |F = 1,mF = 1〉 state where the contributions from the D1 and D2 lines

cancel one another, that is roughly at awavelength of787.6nm in aσ+ polarised

light field.

Let us now assume that we can generate a light-sheet from the side using the

AOD and the dual microscope system of the magnetometry experiments. As

in the previous section, the beam is modelled as a diffraction-limited Gaussian

beam atNA = 0.15, and calculated according to the criteria discussed in sec. 3.2.

That calculation is shown as the blue solid line in fig. O.5 (b), where we have as-
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sumed a power of 10mW in the beam (comparable to what we used for the

microtraps in the magnetometry experiments), and a wavelength of 787.6nm.

The horizontal axis denotes distance along the vertical direction and its origin

is chosen in the centre of the light-sheet potential. The vertical lattice potential

(short-spacing) is also drawn as the orange solid line, and the positions that cor-

respond to an anti-node are also drawn with filled circles on the solid blue line.

We are interested in the difference in the light shift between the central plane

and the adjacent one ∆U, marked as the green circles in fig. O.5 (b). For this

particular calculation we get that ∆U = 3.5MHz × h. The inset shows how
this result changes when we relax the condition of the NA. Even at the old NA

of 0.11, the Udiff = 1.0MHz × h. In ref. [280], the author used a so-called

HS1 pulse (details in ref. [107]) with a width of about 60 kHz. Assuming that

we can use similar parameters, the scheme as outlined above is promising. The

main challenge of this method will be to stabilise the light-sheet to a particular

lattice node with ∼ 100 nm precision.

Evaporation strategies
Regardless of the strategy we choose for single plane loading we will need to

perform subsequent forced evaporation in the lattice. This will serve both to

cool the atoms and stabilise the atom number, as well as to get rid of any atoms

that might still be in neighbouring planes. As discussed in ch. 9 we found that

evaporation in the vertical lattice enabled us to remove some atoms from neigh-

bouring planes and clearly image individual atoms. If the population difference

between planes is great enough, one’s intuition is that an optimal evaporation

ramp for the main plane is not at all optimal for the adjacent planes, so atoms

there will be predominantly lost. Such a purification effect is also hinted at in

ref. [280]. However, evaporation in the lattice alone will only cause the hottest

atoms to fall downwards, risking that the falling atoms would be trapped in the

lattice potential again further downstream.

As reported in appendix A of ref. [85], the magnetic slicing scheme is fol-

lowed by evaporative cooling in the vertical lattice. The cooling process is fa-
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Figure O.6: The differential light shift of a 787.6nm beam through the high-resolution objec-

tive, intended for site-resolved spin-addressing.

cilitated by a magnetic field gradient in the horizontal direction that, together

with an optical trap with about 10µm waist at the plane of the atoms, creates

a controllable potential barrier. Any atoms that remain in adjacent planes of

the vertical lattice should also be removed in this process. We could implement

such a gradient either by means of a horizontal gradient field or via an optical

gradient imaged onto the atoms through the objective with the DMD.

Anotherway of using theDMDto evaporate the atoms in the lattice, would

be to project tweezer potentials in a ring around the optical lattice beam to en-

able a flow of the hottest atoms radially outwards into them, in order to realise

so-called ghost-beam evaporation in the style of ref. [68]. Atoms that flow into

the tweezer are then pulled downwards by gravity, and away from the vertical

lattice.

O.3 Single-site spin addressing

Let us briefly discuss the feasibility of our single-site spin addressing scheme.

Figure O.6 shows a similar calculation as was presented in fig O.5 (b). Here,

however, the blue solid line represents the light coming from the 787 tweezer
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system that was shown in sec. 8.3, to have a waist of w787 = 780 nm, used in

this calculation. The curve in the figure is rendered for a power of 6µW in the

beam. For reference, the horizontal lattice is drawn as the solid orange line.

After the fire, we took the opportunity to measure the optical powers we

could get in the DMD-generated 787 beams using the laser system shown in

fig. B.2 (left). The highest power we measured was 0.3 µW in the image plane,

using the Fourier DMD to create a single tweezer. This number seems horrifi-

cally low, but it is due to both low efficiency of theDMDsystems in general, and

the fact that the 787 arm is combined with the imaging path using a glass plate

where 95% of the light is lost. The direct DMDs were worse, simply because

fewermirrors reflect light. To attain reasonable depths, we can boost the optical

power by incorporating a tapered amplifier in the system. Comparing it to the

940 laser system, this should give us at least a factor of 20 in the maximum op-

tical power or about 6µW in the Fourier arm. That should bring us safely into

the regime where the spin of a single atom can be selectively flipped with high

fidelity.

O.4 Future experiments

In ch. 10 of this thesis we demonstrated how to reconstruct the 3Ddistribution

of atoms trapped in deep optical lattices, as measured in a quantum gas micro-

scope experiment. By scanning the position of the high-resolution imaging ob-

jective we can measure which plane of the optical lattice an atom was loaded

into along the line of sight. This is an important step towards the realisation of

3D quantum many-body physics with quantum gas microscopes. These novel

experimental tools have in the past decade also proven to be extremely powerful

for the purpose of quantum simulation, as was detailed in the introduction of

this thesis.

There are many paths that can be taken with an experiment such as ours.

With a deterministic way of preparing a single plane, the limits of the tomo-

graphic approach can first of all be further investigated. As mentioned earlier
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in the outlook, one application would be to track atoms in a 3D quantum ran-

dom walk. We could prepare a 2D structure (such as a 3-by-3 array of atoms),

and allow them to diffuse in the 3D lattice. To access non-trivial dynamics in

this setting we could tilt the lattice, by a magnetic field gradient, or even modu-

late it to study diffusion of higher motional states. For detection we would rely

on the tomographic imaging.

The topic of quantum optimal control lies close to the heart of our research

group. The flexibility of the experiment will enable studies in protocols for

quantum information processing. Joining those two fields is an essential part

in making quantum technologies tenable in the 21st century [1, 67]. By rely-

ing on DMD aided state preparation [158], both in terms of occupation and

spin, we could realise spin networks [177]. Along these lines one could study

the transport of a spin in a ring (router) or in a chain (link) and apply methods

of optimal control to the process by shaping potentials via the DMDs, optimis-

ing transport fidelity, speed, etc. We could also study transport of single atoms

directly using the dynamic capabilities of the DMD, as we demonstrated with

small atom clouds in sec. 8.5. The transport of single atoms is an essential in-

gredient in certain realisations of digital quantum computations with neutral

atoms in optical lattices [282]. The elementary quantum logic gates used in that

proposal are also applicable for quantum optimal control studies [149].

Apart from the ideas discussed in the outlook at the end of ch. 5, there

are other routes that involve weak measurements. Until now, weak measure-

ments have been employed in an optical lattice system to suppress tunnelling

in a quantum gas by the quantum Zeno effect [216], or to study the dissipative

Bose-Hubbard model [271]. To observe such dynamics in combination with

single-site resolution would be fascinating. This seems viable with the flexible

light-shaping tools at hand in our system, that could even allow for control the

phases of the system via local measurements [259].

As a final point Iwould like tomention the idea of opening a state-of-the-art

quantumsimulation experiment to other experts in the field, or even to the pub-

lic. This idea is not entirely unfamiliar, as was briefly discussed in the preface.

In the Alice Challenge, we enabled remote access to our experiment through a
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gamified control interface [132]. In that case people were allowed optimise the

BEC size in our experiment, but there is nothing that hinders similar studies to

be carried out with more complex and intricate quantum systems.



APPENDIX A
The

87
Rb level scheme

All near-resonant interaction between the
87
Rb atoms and coherent light, used

in our laboratory happens on the D2 line. In the level scheme reprinted on the

next page, the interaction of the nuclear angular momentum i and the total

electronic angular momentum j is taken into account. The energy splitting due

to the linear Zeeman effect is marked in parentheses at each hyperfine state.

The frequencies of the our near-resonant lasers, that we use for cooling and

imaging are drawn in the figure. In particular, the master laser is locked to the

F ′ = 2 to F ′ = 3 crossover, and detuned by 300MHz. That light is redis-

tributed for various purposes and pulled to the right frequency.
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Figure A.1: The atomic level structure of 87Rb, on the D2 transition line. The frequencies of
the relevant lasers and laser control systems have been drawnon top. Reprintedwith permission

from [252], and modified.



APPENDIX B
Laser systems

This appendix has schematic images of four laser systems. A legend for the dif-

ferent symbols is shown in fig. B.1. In fig. B.2 the systems that distribute the

light to the 787 (left) and 940 nm (right) laser systems are shown. Each system

has three different outcouplers that lead to the high-resolution breadboard, two

for the direct imaging DMDs and one for the Fourier DMD. To start with we

both had a home-built laser and less optical isolation (36 dB) between the laser

source and the tapered amplifier in the 940 system. This gave rise to great insta-

bilities (both in intensity and frequency) in the laser system so we doubled the

isolation. In the end we also swapped the home-built source with the Toptica

laser that was previously used for the 912 nmmicrotraps in the magnetometry.

The laser was easily tuned to 940 nm.

The molasses setup is shown in fig. B.3 (top). The AOMs operate around

200MHz, and are set up in a double pass configuration. A part of the light is

also used for the absorption imaging on the lattice axes. The high-power laser

setup is shown in fig. B.3 (bottom). TheNufern amplifier provides light for the

two beams of the crossed dipole trap and the vertical lattice beam. The Azur

amplifier provides light for the horizontal lattice axes.
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Figure B.1: A legend for the laser setups found in ch. 6 and in this appendix.
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Figure B.2: (left) The 787 nm laser distribution system. (right) The 940 nm laser distribution

system.
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Figure B.3: (top) The molasses laser distribution system at 780 nm. A part of the light is also

used for imaging. (bottom)The high-power 1064 nm laser system.





APPENDIX C
The logging server

All laboratories continually measure a multitude of quantities signifying the

health status of their machinery. In our case these are laser powers, tempera-

tures around the lab, the temperatures of the climate system sensors, the water

flow and temperature of the high power magnetic field coils and even the mag-

netic field background. To ease the monitoring of all those numbers we run an

online monitoring system which is available from the internet through a web

browser.

The system is run from a server (Ubuntu Linux, 16.04 LTS) hosted by the
IT department of Århus University. On the logging server we have an SQL

style time series database (InfluxDB, v. 1.7.4) for writing, reading and the ma-
nipulation of data. There is also a web application (Chronograph, v. 1.7.4)
that graphs data uploaded to the database. Both are freely available from influx-

data.com, see documentation [144]. The database automatically coarse-grains

old data sets as the amount of data can become quite excessive. The data can be

downloaded from the server for further analysis if necessary.

The logging of all log-able quantities is handled in LabView and via its na-

tive LabViewHTTPClient we can directly upload data using the InfluxDBAPI
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https://www.influxdata.com/
https://www.influxdata.com/
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Figure C.1: A snapshot of the online Chronograph server, used for logging in our experiment.

The graph displayed is the readout from the temperature sensors of the climate system over a

period of oneweek. The vertical axis is not calibrated to temperature. Thebottom linemonitors

the cooling part of the system, the middle one the heating part and the top one is the regulated

temperature measured on the experiment table.

protocol. A snapshot for the pageweuse tomonitor the climate system is shown

in fig. C.1. Please note that the vertical axis is not calibrated to temperature.



APPENDIX D
Notes on our optical lattice setup

Theoptical lattice setuphas seenquite some changes since itwas first constructed.

Here I make a couple of comments on the importance of fibre coupling high-

power lattices and on the intensity regulation system.

To image the fluorescence from single atoms we need deep lattices. In the

first iteration of constructing the optical lattices we decided to place the laser

head of the Azur laser (that provides light for the two horizontal lattice axes),

directly on the experiment table to lose as little power as possible. As a result

the laser setup with optical isolators, AOMs for fast switching and all the beam

shaping optics were fitted around the science chamber. The laser head had to

be placed on one side of the laser table, resulting in quite some difference in the

lengths of the beampaths of theH1 andH2 lattices, where theH1 pathwas close

tobeing1mlonger. Weworkedwith this lattice design for7months (learnt how

to make Kapitza-Dirac scattering and modulation spectroscopy, observed the

superfluid to Mott insulator transition and even saw faint single-atom signals)

but due to constant drifts in the alignment and obvious shot-to-shot jitter in

the depth of the horizontal lattices (especially on the H1 axis), we decided to

couple the output of the laser through optical fibres. That did indeed remedy

all pointing issues and shot-to-shot depth fluctuations we had with the lattices.
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Always fibre couple your lattices.
To regulate and control the laser powers we use an AOM driver (providing

RF signals to the lattice AOM) coupled to a PI-circuit both made by the Insti-

tute’s electronicworkshop. The transmitted part of the lattice light through one

of the mirrors in the setup, is measured on a photodiode (Thorlabs, PDA36).

Soon after we started operating the optical lattices we realised that there was

something rotten in the state of Denmark. Troubles arose whenwe tried to reg-

ulate the lattice at low powers. The system only responded to a control signal

with an excessive delay of several 100’s of µs and the following ramp up was

also limited to such a timescale for low regulation signals. For high signals the

response was much better, but still with a delay. We found out that output of

the RF amplifier in the AOM driver had a logarithmic response in the control

voltage, rendering it difficult to control low voltages. The solution was to use

a different amplifier that had a linear response in the control voltage. That am-

plifier did however not provide enough RF power for the AOMs (they require

up to 2W to reach high diffraction efficiency), so the internal amplifier was by-

passed and a constant gain amplifier (Mini-ciruits, ZHL-1-2W-S+)was added

afterwards. After this fix we could well regulate the low-power end of the lat-

tice. However, the regulation circuit still failed to turn on the lattices smoothly.

Every time the TTL signal to the AOM driver is opened the intensity spikes.

To prevent this from affecting the delicate ultracold cloud we open the TTL

much earlier in the sequence, before we start the evaporative cooling process

in the CDT. The downside is that this results in a small amount of leak light

through the fibre, that give maximally a depth of 0.5 Er on the vertical lattice

axis. Adding a D part to the regulation loop might remedy the issue.

At the current stage there is only one step in the regulation. We can either de-

cide to be able to regulate the lattices at high or lowpower, by switching the gain

of the photodiodemanually. This means that in a single experiment, we cannot

both regulate low powers precisely and the high powers for ramping really deep

and imaging. Our hope was that under normal circumstances we would always

work in the low power regulation regime and when we needed to go deep for

imaging, we would simply ramp the lattices to saturation level of the photodi-
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ode. At that stage the light intensity controller maximises the output intensity

so the lattices are ramped to maximum power. This methodology has resulted

in a few broken photodiodes that probably do not tolerate the high laser in-

tensities at high gain. We never reached the point of validating if this method

wouldwork or if it would induce toomuch heating. Most certainly it is a simple

approach compared to other high-power optical lattice designs recently imple-

mented in experiments performing state-of-the-art quantum simulation [190],

but time will tell if this will be sufficient.





APPENDIX E
The atomic Mach pendulum swing

During our first attempts to load the tight tweezers from below, we encoun-

tered something we did not quite understand at first. We had been experiment-

ingwith imposing the tweezer potential into the reservoir, and afterwardswe al-

lowed it to expand in awaveguide formedby theLDTbeam. Whenwe dropped

our cloud into TOFwe saw it wiggling over the computer screen like a snake, as

is shown in fig. E.1 (left). After some consultation with more experienced peo-

ple, we figured that we had excited the trapped cloud into oscillation. Due to

the propagation of a Gaussian beam, different portions of the cloud will expe-

rience different trapping frequencies. This is very similar to the so-called Mach

pendulum swing, where a series of pendulums that hang from a bar in strings of

different lengths, will oscillate at different frequencies. The number of wiggles

along the pendulum swing will vary as a function of the time after the onset of

the oscillation. If one is patient enough the initial configuration (all pendulum

in a straight line) will revive.

To study this a bit we released cold atoms from the CDT into the waveg-

uide. Immediately after, the intensity in the LDT was doubled for 1ms and

then put back to the former value. This sharp intensity step put the cloud into

oscillation, and as the trap frequency varies along the beam the atoms will os-
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Figure E.1: The formation of an atomic snake. (left)Two snakes slither in our vacuum chamber.

The two different images are taken after TOF, for two different hold times in the waveguide.

(right)The frequency as measured as a function of the position along the LDT beam. The blue

shaded region is the 1σ error of the trap frequency.

cillate at different frequencies. We scanned this hold time, and fit a sinusoid to

the trace formed by the vertical position of the cloud (in a narrow region of in-

terest shifted along the LDT beam) and the time coordinate, and extracted the

trap frequency. The result is shown in fig. E.1 (right). The trap frequency clearly

changes along the beam, but on top we see additional wiggles in the trace. We

believe that is due to coupledmotion of the atoms along both the vertical direc-

tion, and the direction into the figure (so to speak).
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This thesis covers experimental work con-
ducted within two distinct fields of cold-
atom physics. The first part describes an 
experiment capable of spatially-selective 
dispersive measurements of a cold-atomic 
system in part or in whole, by virtue of a digi
tal micromirror device (DMD). Atom clouds 
are trapped in optical tweezers made and 
controlled by an acousto-optical deflector. 
Two types of high-precision magnetometers 
are realised. One is vectorial and reaches a 
single-shot precision of δB = (100, 200) μG 
for the field components parallel and trans-
versal to the probe light, exceeding a previ-
ous realisation by two orders of magnitude. 
The other is a scalar magnetometer based on 
Larmor precession and reaches δB = 30 μG, 
putting it on equal footing with other state-
of-the-art cold-atom magnetometers.

The second part is devoted to the characteri-
sation and the first results of a new quantum 
gas microscope experiment. It features a 
0.69 NA microscope objective for high-
resolution fluorescence imaging of individ-
ual atoms trapped in deep optical lattices. 
The imaging system is shown to perform 
near the diffraction limit. By means of DMD-
generated off-resonant tight optical twee-
zers, projected through the high-resolution 
optics, we can load only a few planes of a 
co-propagating 1D lattice. In a single reali-
sation of the experiment we acquire multiple 
fluorescence images, where the objective is 
translated between images, bringing differ-
ent planes of the optical lattices in focus. In 
this way we can tomographically reconstruct 
the atom distribution in 3D.
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