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Preface

This progress report contains some of the work done during part A of my Ph.D. studies
at the Department of Physics and Astronomy, Aarhus University.

My project is about theoretical study of electron correlation in strong-field and at-
tosecond physics. So far the work focuses on two-electron systems. This report displays
numerical studies of strong-field ionization of a helium atom. The two-electron dy-
namics in the presence of intense laser pulses is studied by solving the time-dependent
Schrödinger equation (TDSE) and extracting the ionization probability. All the compu-
tations are implemented in FORTRAN.

Notation

Atomic units 4πε0 = ~ = me = |e| = 1 are used throughout this report unless stated
otherwise.
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Chapter 1

Introduction

The interaction of atomic and molecular systems with laser fields has been studied
for several decades, both theoretically and experimentally. Such studies give knowledge
about the structures and dynamics of the systems. With significant developments in laser
technology during the past decades, new light sources with field strengths comparable
to the Coulomb interaction in atoms and molecules are readily available. In such strong
fields, the traditional perturbation theory breaks down, resulting in a number of new
phenomena, such as above threshold ionization (ATI) [1], high harmonic generation
(HHG) [2], ionization stabilization [3], etc. Studies on these strong-field phenomena also
promote the development of the non-perturbative theoretical methods. On the other
hand, laser pulses with durations in the femtosecond (fs) or even the attosecond (as)
time regime, open up the possibility to observe and to control dynamics of atoms and
molecules on their natural time scales, and give birth to entirely new research areas such
as femtochemistry and attophysics [4].

In both theoretical formulation and numerical calculation, it is challenging to describe
realistic multi-electron systems in strong-field physics. Due to the difficulty of completely
describing multi-electron systems, the single-active electron (SAE) approximation [5] is
often used in the strong-field regime. For example, a semi-classical three-step model
can be used to qualitatively understand the HHG [2], i.e. the generation of high-energy
photons with frequencies being a multiple of the laser frequency during the nonlinear
interaction between laser and medium. In this model, first, a single electron is freed
into the continuum via tunneling ionization; second, it is driven back and forth by
the periodic laser field, accumulating energy from the field; third, at a later time it
recombines with the parent ion with the excess energy emitted as a high energy photon.
This model gives an explanation of the HHG cutoff, which is the binding energy plus
the maximum kinetic energy obtained from the field.

However, it is increasingly realized that electron correlation can play an important
role in strong-field and attosecond physics. To investigate the role of electron corre-
lation in laser-induced dynamics, we have to go beyond the SAE approximation. The
huge dimensionality and the large-amplitude electron motion in the strong-field regime
make it difficult to numerically solve the time-dependent Schrödinger equation (TDSE).
Several approaches have been developed for correlated many-electron systems, e.g., the
time-dependent R-matrix (TD-RM) [6, 7, 8] approach, the multi-configurational time-
dependent Hartree-Fock (MCTDHF) [9, 10] approach, the time-dependent restricted-
active-space configuration-interaction (TD-RASCI) [11] approach, the time-dependent
restricted-active-space self-consistent-field (TD-RASSCF) [12, 13] approach, etc. These
methods are usually used to study processes in which only one electron is freed to the
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continuum, since treatment of a double-continuum wavefunction is much more difficult.
Even for the simplest two-electron systems, such as He and H2, the strong-field

induced dynamics are not completely understood. At the current stage, my study is
focused on the ionization of He in strong laser fields. It is possible to numerically solve
the three-dimensional (3D) TDSE of He, with electron correlation fully included without
any approximation. However, in the presence of intense laser fields, solving the 3D TDSE
of He calls for a huge numerical grid with many discretization points, which is still a
formidable task. To avoid the computational difficulty, we use a one-dimensional (1D)
model for the interaction with linearly polarized laser, in which the two electrons are
restricted to the direction of laser electric-field polarization. This 1D model is often
used, since it can simplify the calculation and it keeps the essential physics.

For ionization, it is interesting to study the photoelectron spectra and the ionization
probabilities. The time-dependent surface flux (t-SURFF) method was introduced to
extract ionization spectra of one and two-electron atomic systems from numerical TDSE
calculations, using a minimal simulation grid [14, 15]. Recently it was also extended to
treat dissociation and dissociative ionization processes of H+

2 [16]. In my work, the t-
SURFF method is used to calculate the spectra of single ionization (in different channels)
and double ionization, and then the corresponding probabilities.

This report centers around the strong-field ionization of helium. Chapter 2 introduces
the numerical methods used in solving the TDSE, including the t-SURFF method for
extracting the photoelectron spectra. In Chapter 3 we present and discuss some results
for high frequency laser pulses, in which stabilization against ionization occurs. The
high-frequency Floquet theory (HFFT) for stabilization is also outlined. Finally, Chapter
4 gives a summary of my work progress, and proposes an outlook and plans for the future.



Chapter 2

Numerical Methods

In this chapter we describe the numerical methods used in solving the TDSE, taking the
1D helium model as an example. Discretization of coordinate space, time propagation
of wavefunction and calculation of spectra are discussed.

2.1 Discretization

With the coordinates of the two electrons of the 1D helium model denoted by x and y,
we can express the time-independent field-free Hamiltonian as

Ĥ0 = −1

2

∂2

∂x2
− 1

2

∂2

∂y2
− 2√

x2 + aen
− 2√

y2 + aen
+

1√
(x− y)2 + aee

= T̂x + T̂y + Vx + Vy + Vxy, (2.1)

where aen and aee are softening parameters used to avoid the Coulomb singularity.
Within the dipole approximation, the time-dependent laser-interaction term in the

length gauge (LG) and the velocity gauge (VG) is written as,

Ĥ1(t) = ĤL
x (t) + ĤL

y (t) =

{
F (t) · (x+ y) for the LG,

A(t) · (p̂x + p̂y) for the VG,
(2.2)

where the electric field F (t) and the vector potential A(t) are related by F (t) = −∂tA(t).
To solve the TDSE

i∂t
∣∣Ψ〉 = Ĥ

∣∣Ψ〉 = (Ĥ0 + Ĥ1)
∣∣Ψ〉, (2.3)

the first step is discretization, i.e., setting up a basis set for the states.

Discrete Variable Representation

Instead of simply using discrete values of spatial coordinate variables, the discrete vari-
able representation (DVR) [17] uses analytic basis functions localized about discrete
values of the variables, which is an accurate and popular way to describe wavefunctions
in numerical computations. Matrices of differential operators, e.g., the kinetic energy op-
erator, are calculated analytically without having to resort to numerical approximation
of derivatives, while matrices of coordinate operators, e.g., the potential energy opera-
tor, are diagonal and approximated by their values at the DVR points with Gaussian
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quadrature accuracy. For a given number of points and weights, the Gaussian quadra-
ture gives a good approximation to an integral. This contributes to the accuracy and
efficiency of the DVR method.

For example, if we use N Gauss-Legendre quadrature points xk and weights wk, for
integration on the interval [a, b], we can construct a set of orthonormal basis functions
from Lagrange interpolation polynomials

χk(x) =
1
√
wk

∏
l 6=k

x− xl
xk − xl

. (2.4)

Then the local potential energy matrix is diagonal in the DVR basis,

〈
χk
∣∣V ∣∣χl〉 =

∫ b

a

χk(x)V (x)χl(x)dx ≈
N−1∑
m=0

wmχk(xm)V (xm)χl(xm)

=
N−1∑
m=0

wm
δmk√
wk
V (xm)

δml√
wl

= δklV (xk). (2.5)

The kinetic energy matrix is full, but its elements have analytic expressions.

Finite-Element Discrete Variable Representation

In our work, the finite-element discrete variable representation (FEDVR) basis is used,
which is a more efficient basis set giving a kinetic energy matrix with a banded structure.
Briefly speaking, the coordinate space is divided into a chosen number Ne of finite
elements. In each element e, a grid of Gauss-Lobatto nodes xek and integration weights
wek is set up, with the number of grid-points in element e denoted by ne. Details of the
grid setup can be found in Ref. [18].

Gauss-Lobatto nodes have the property that grid points are situated at the boundary
of the finite element which accounts for the continuity of the wavefunction across two
elements. The basis functions are constructed as Lagrange polynomials over the grid
points in a chosen finite element,

χek(x) =
f ek(x)√
wek

(k = 1, . . . , ne − 2), (2.6)

where the Lobatto shape functions are defined by

f ek(x) =
∏
l 6=k

x− xel
xek − xel

. (2.7)

Further, at the boundary points of the finite element, i.e., at the grid-point xene−1 =
xe+1
0 , we define a bridge function by

χene−1(x) =
f ene−1(x) + f e+1

0 (x)√
wene−1 + we+1

0

, (2.8)

which connects the finite elements e and e+ 1.
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The FEDVR then satisfies the usual property of DVR, i.e., a diagonal representation
of local operators and a kinetic matrix having analytical expression [19],

V ef
kl =

∫
χek(x)V (x)χfl (x)dx ≈ δefδklV (xek), (2.9)

T efkl =
δe,f + δe,f±1

2

∫
dx

d

dx
χek(x)

d

dx
χfl (x). (2.10)

Instead of using the element index e and the local DVR index k as in Eq. (2.6), we
use a global index j for the FEDVR basis

∣∣χj〉 in practice. Thus a 1D state is described
as ∣∣ψ〉 =

∑
j

∣∣χj〉〈χj∣∣ψ〉 (2.11)

with ∑
j

∣∣χj〉〈χj∣∣ = 1. (2.12)

Eq. (2.11) and Eq. (2.12) are exact for a complete basis set, which is not possible
in practical computations, since we always use a limited number of basis functions in
numerical calculations. With a basis set describing the wavefunction accurately, however,
we may say that Eq. (2.11) and Eq. (2.12) are exact to the numerical accuracy.

So the n-th derivative of wavefunction can be easily evaluated by

dn

dxn
〈
x
∣∣ψ〉 =

∑
j

(
dn

dxn
〈
x
∣∣χj〉) 〈χj∣∣ψ〉. (2.13)

Since the basis function χj(x) =
〈
x
∣∣χj〉 is localized within only one (for an inner-

element function like Eq. (2.6)) or two (for a bridge function like Eq. (2.8)) elements,
evaluation of Eq. (2.13) at a point only calls for

〈
χj
∣∣ψ〉 corresponding to the one or two

elements. Also the kinetic energy matrix evaluated via analytic differentiation of the
basis functions shows an interesting sparse property.

As an example, we shows two connected finite elements [-2,0], [0,2] and seven FEDVR
functions in Fig. 2.1. Then the corresponding kinetic energy matrix can be expressed in
the following form,

T =



t11 t12 t13 t14
t21 t22 t23 t24
t31 t32 t33 t34
t41 t42 t43 t44 t45 t46 t47

t54 t55 t56 t57
t64 t65 t66 t67
t74 t75 t76 t77


. (2.14)

Sparse Matrix Manipulation

For a sparse matrix like Eq. (2.14), substantial memory requirement reductions can be
realized by storing only the non-zero entries. Here we use two typical formats, the
Compressed Sparse Row (CSR or CRS) and the Compressed Sparse Column (CSC or
CCS) formats. Both these two formats are efficient for matrix-vector products, which
are of fundamental importance in our calculations. Evaluation of any expectation value
in quantum mechanics requires multiplication of the operator matrix on the state vector.
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Figure 2.1: Two connected finite elements [-2,0], [0,2] and seven FEDVR functions. χ(x)
stands for the FEDVR functions defined by Eq. (2.6) and Eq. (2.8).

As will be shown later, matrix-vector products also need to be computed in each time
step when using the Arnoldi-Lanczos propagator.

The CRS format is (val, col ind, row ptr), where val is an array of the (left-to-right,
then top-to-bottom) non-zero values of the matrix; col ind records the column indexes
corresponding to the values; and, row ptr is the list of val indexes where each row starts.

The CSC format, similar to CSR, is (val, row ind, col ptr), where val is an array of
the (top-to-bottom, then left-to-right) non-zero values of the matrix; row ind records
the row indexes corresponding to the values; and, col ptr is the list of val indexes where
each column starts.

Usually we have Hermitian or symmetric matrices, for which we only need to store
half of the matrices in memory. In my implementation, the diagonal elements are stored
as a vector, and the upper off-diagonal elements in the CSR format. Taking T in
Eq. (2.14) for example, its upper off-diagonal sparse part is stored as

val = [t12, t13, t14, t23, t24, t34, t45, t46, t47, t56, t57, t67],

col ind = [2, 3, 4, 3, 4, 4, 5, 6, 7, 6, 7, 7],

row ptr = [1, 4, 6, 7, 10, 12, 12].

The same row ptr just indicates a row with all elements being zero, e.g., the row ptr of
the last row is the same as that of the last but one, due to the upper off-diagonal matrix.

We notice that this upper off-diagonal matrix has nice block structure, which is
more convenient to manipulate. Considering matrix-vector multiplication, such a block
(partitioned) matrix enables us to run the program in parallel easily.

If T is symmetric, the same storage can also be seen as the lower off-diagonal sparse
part in the CSC format. With matrix-vector multiplication algorithms for the CSR and
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CSC formats, the product of the matrix T and a vector v can be decomposed into three
parts, Tv = Tdiagv + Tupperv + Tlowerv.

Two-Electron Hamiltonian Matrices

For our two-electron problem, the same FEDVR functions are used for the two electrons
x and y, with independent indexes ix and iy, i.e., χix(x) =

〈
x
∣∣χxix〉 and χiy(y) =

〈
y
∣∣χyiy〉,

1 so the basis set for the two-electron problem is labeled by two indexes ix and iy,
χix(x)χiy(y).

Labeling the matrix elements by four indexes (ix, iy, jx, jy), we can calculate the
matrices of all the operators in Eq. (2.1),〈

χxix
∣∣〈χyiy∣∣T̂x∣∣χxjx〉∣∣χyjy〉 =

〈
χxix
∣∣T̂x∣∣χxjx〉〈χyiy∣∣χyjy〉 = (Tx)ix,jxδiy,jy, (2.15)〈

χxix
∣∣〈χyiy∣∣T̂y∣∣χxjx〉∣∣χyjy〉 =

〈
χyiy
∣∣T̂y∣∣χyjy〉〈χxix∣∣χxjx〉 = (Ty)iy,jyδix,jx, (2.16)〈

χxix
∣∣〈χyiy∣∣Vx∣∣χxjx〉∣∣χyjy〉 =

〈
χxix
∣∣Vx∣∣χxjx〉〈χyiy∣∣χyjy〉 = Vx(xix)δix,jxδiy,jy, (2.17)〈

χxix
∣∣〈χyiy∣∣Vy∣∣χxjx〉∣∣χyjy〉 =

〈
χyiy
∣∣Vy∣∣χyjy〉〈χxix∣∣χxjx〉 = Vy(yiy)δiy,jyδix,jx, (2.18)〈

χxix
∣∣〈χyiy∣∣Vxy∣∣χxjx〉∣∣χyjy〉 = Vxy(xix, yiy)δix,jxδiy,jy. (2.19)

It shows that the matrix of kinetic energy operator is easy to manipulate, with
only one sparse matrix stored in memory, while all the potential energy matrices are
approximated by their values in the FEDVR.

2.2 Time Propagation

Time-Evolution Operator

Quantum-mechanical time-propagation evolves a given wavefunction at time t0 to a new
one at time t with preservation of the norm. Its action is thus expressed by a unitary
time-evolution operator U(t, t0) defined by the relation∣∣Ψ(t)

〉
= Û(t, t0)

∣∣Ψ(t0)
〉
. (2.20)

The equation of motion and the initial condition follow directly from the TDSE,

i∂tÛ(t, t0) = Ĥ(t)Û(t, t0), (2.21)

Û(t0, t0) = 1. (2.22)

And its solution can be written as,

Û(t, t0) = T exp

[
−i
∫ t

t0

Ĥ(t′)dt′
]
≈ exp

[
−iĤ(tM−1)∆t

]
. . . exp

[
−iĤ(t0)∆t

]
, (2.23)

where T is time-ordering operator.
For a short time step ∆t, we can approximate the action of the time-evolution oper-

ator on the state with an exponential-type propagator,∣∣Ψ(t+∆t)
〉

= exp
[
−iĤ(t)∆t

] ∣∣Ψ(t)
〉
, (2.24)

With the dimension of wavefunction, i.e., the total number of the basis functions
denoted by N , the matrix of Ĥ is HN×N . Exact calculation of matrix exponential scales
cubically with dimension, feasible only for small systems.

1In this chapter, we use the superscript x or y for a one-electron state, and the subscript x or y for
a one-electron operator.
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Arnoldi-Lanczos Scheme

Instead of evaluating the huge matrix exponential, the fundamental idea of Arnoldi-
Lanczos method is to make use of the Krylov subspace, spanned by a small set of
vectors Ĥk

∣∣Ψ〉, (k = 0, . . . , L).
To begin with, we can expand Eq. (2.24) as

∣∣Ψ(t+∆t)
〉

=
∞∑
n=0

(n!)−1
[
−iĤ(t)∆t

]n ∣∣Ψ(t)
〉
, (2.25)

For a short time step ∆t that ensures the convergence of the series, we can truncate
the expansion to some order,

∣∣Ψ(t+∆t)
〉
≈

L∑
n=0

(n!)−1
[
−iĤ(t)∆t

]n ∣∣Ψ(t)
〉
, (2.26)

which means that we express the
∣∣Ψ(t+∆t)

〉
by using Ĥk

∣∣Ψ〉, (k = 0, . . . , L).
To illustrate the Krylov subspace method, we first use a general basis set

{∣∣χj〉} for
the system and express the Hamiltonian as,

Ĥ =
∑
j

∑
k

∣∣χj〉〈χj∣∣Ĥ∣∣χk〉〈χk∣∣, (2.27)

where
〈
χj
∣∣Ĥ∣∣χk〉 is the matrix element of the Hamiltonian H. Similar to Eq. (2.12),

Eq. (2.27) is understood to be exact to the numerical accuracy, as long as the state can
be well described by the basis set.

Similarly, in the Krylov subspace spanned by Ĥk
∣∣Ψ〉, (k = 0, . . . , L), we can find an

orthonormal set of vectors
∣∣Qk

〉
, (k = 0, . . . , L), and approximate the Hamiltonian as

Ĥ ≈
L∑
j=0

L∑
k=0

∣∣Qj

〉〈
Qj

∣∣Ĥ∣∣Qk

〉〈
Qk

∣∣, (2.28)

where
〈
Qj

∣∣Ĥ∣∣Qk

〉
is the matrix element of the reduced Hamiltonian HL.

Since Eq. (2.26) indicates that we express the
∣∣Ψ(t+∆t)

〉
in the Krylov subspace,

∣∣Ψ(t+∆t)
〉
≈

L∑
j=0

∣∣Qj

〉〈
Qj

∣∣Ψ(t+∆t)
〉
, (2.29)

Eq. (2.28) can be used as a substitute of Eq. (2.27) in short-time propagation. Thus the
exponential-type propagator in Eq. (2.24) is approximated as

exp
[
−iĤ∆t

]
≈

∞∑
n=0

(n!)−1

[
−i∆t

L∑
j=0

L∑
k=0

∣∣Qj

〉〈
Qj

∣∣Ĥ∣∣Qk

〉〈
Qk

∣∣]n

=
L∑
j=0

L∑
k=0

∣∣Qj

〉 [ ∞∑
n=0

(n!)−1(−i∆tHL)n

]
jk

〈
Qk

∣∣
=

L∑
j=0

L∑
k=0

∣∣Qj

〉
[exp (−i∆tHL)]jk

〈
Qk

∣∣. (2.30)
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The orthonormal set
{∣∣Q0

〉
, . . . ,

∣∣QL

〉}
and the matrix HL can be obtained with a

modified Gram-Schmidt orthogonalization, i.e., the Arnoldi-Lanczos recursion. Starting

from a normalized state
∣∣Q0

〉
=
∣∣Ψ(t)

〉
/‖Ψ(t)‖ =

∣∣Ψ(t)
〉
/
√〈

Ψ(t)
∣∣Ψ(t)

〉
, it constructs

an orthonormal basis
{∣∣Q0

〉
, . . . ,

∣∣QL

〉}
by a two-fold loop,

for k = 0, . . . , L do∣∣Φ(0)
k+1

〉
= Ĥ

∣∣Qk

〉
for j = 0, . . . , k do

βjk =
〈
Qj

∣∣Φ(j)
k+1

〉∣∣Φ(j+1)
k+1

〉
=
∣∣Φ(j)

k+1

〉
−
∣∣Qj

〉
βjk

end for

βk+1,k = ‖Φ(k+1)
k+1 ‖ =

√〈
Φ

(k+1)
k+1

∣∣Φ(k+1)
k+1

〉∣∣Qk+1

〉
=
∣∣Φ(k+1)

k+1

〉
/βk+1,k

end for

Then the reduced Hamiltonian HL is a complex upper Hessenberg matrix of dimen-
sion (L+ 1)× (L+ 1), with its matrix elements given by

(HL)jk =
〈
Qj

∣∣Ĥ∣∣Qk

〉
=

{
βjk for j ≤ k + 1,

0 else.
(2.31)

The small matrix of the reduced Hamiltonian HL can be easily diagonalized with a
similarity transformation,

S−1HLS = λ (2.32)

where λ = diag(λ0, . . . , λL) is diagonal matrix of eigenvalues of HL and S the corre-
sponding eigenvector matrix of HL. Then the exponential of HL is calculated by

exp [−iHL∆t] = S exp[−iλ∆t]S−1 = Sdiag(exp[−iλ0∆t], . . . , exp[−iλL∆t])S−1.
(2.33)

Finally we find the coefficents cj =
〈
Qj

∣∣Ψ(t+∆t)
〉

in Eq. (2.29)

cj =
〈
Qj

∣∣ exp
(
−iĤ∆t

) ∣∣Ψ(t)
〉

=
〈
Qj

∣∣ L∑
k=0

L∑
l=0

∣∣Qk

〉
[exp (−iHL∆t)]kl

〈
Ql

∣∣Q0

〉
‖Ψ(t)‖

=
L∑
k=0

[S]jk exp [−iλk∆t]
[
S−1
]
k0
‖Ψ(t)‖. (2.34)

We note that the Arnoldi-Lanczos algorithm requires L + 1 evaluations of matrix-
vector products in each time step. Combined with the FEDVR basis set, the sparse
matrix of Ĥ leads to high efficiency. The derivations above consider a general state∣∣Ψ(t)

〉
, which is not restricted to our 1D helium model. So the Arnoldi-Lanczos scheme

can be generally applied to any multi-electron system.

Imaginary Time Propagation

The ground state, i.e., the state with the lowest energy, is obtained by performing
the imaginary time propagation (ITP): one can start from a guessed wavefunction and
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propagate it in this way,∣∣Ψ(τ +∆τ)
〉

= exp
[
−Ĥ(τ)∆τ

] ∣∣Ψ(τ)
〉
, (2.35)

where normalization of
∣∣Ψ(τ)

〉
is needed in each time step.

After obtaining the ground state
∣∣Ψ0

〉
with high accuracy, we can redo the ITP and

project out the ground state contribution from the wavefunction in each time step,∣∣Ψ(τ +∆τ)
〉

= exp[−Ĥ(τ)∆τ ]
[
1−

∣∣Ψ0

〉〈
Ψ0

∣∣] ∣∣Ψ(τ)
〉
, (2.36)

thus a state with the second-lowest energy will be obtained.
This procedure can be repeated to prepare a small number of bound states, which

can be chosen as the initial condition for the real time propagation (RTP). However, the
numerical error will be accumulated on each energy level. So we only use the ITP method
for the ground state and the first excited spin-singlet (spatially-symmetric) state.

For our 1D helium model, with softening parameters aen = 0.5 and aee = 0.325, the
ground state energy is −2.90 a.u., which is a good approximation to that of a real helium
atom.

Complex Absorbing Potentials

When interacting with a strong laser pulse, electrons can be liberated and travel large
distances during and after the pulse. If electron wavepackets reach the grid boundaries
in numerical calculations, unphysical reflections can occur, distorting the true physics.

To extract correct observables it is therefore crucial to make sure that the wave
packets do not reach the boundary of the simulation volume. One method is the usage
of complex absorbing potentials (CAPs) [20] near the box boundaries that can absorb
the outgoing wavepackets without modifying the wavefunction in the inner part of the
grid.

In our work, VCAP (x, y) = −iWx − iWy is added to the Hamiltonian in real time
propagation, where Wx (or Wy) is a function of this form,

Wx =

{
1− cos

[
π(|x|−rc)

2(rmax−rc)

]
for rc < |x| < rmax

0 for |x| ≤ rc
. (2.37)

2.3 Calculation of Ionization Spectra

To extract photoelectron spectra, the most straightforward approach is to project the
final state onto the exact scattering states after the laser pulse. Instead of solving for
the exact scattering states, we can approximate them by Volkov states in the asymptotic
free zone where the Coulomb interactions can be neglected, and perform the projection
only in the asymptotic region after long time propagation [21]. In the limit of infinitely
long time and infinitely large grid, such a projection can give accurate results, since
the freed electron is completely in the asymptotic region far from the core. The time-
dependent surface flux (t-SURFF) method [14, 15] shows that such a projection can
be related to the flux passing through some surfaces, which are the boundaries of the
asymptotic region. By using the t-SURFF method, we can still extract photoelectron
spectra with the wavefunction absorbed beyond the surfaces. Combined with efficient
CAPs, it requires a small simulation box to analyze the momentum distribution of
photoelectron.
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Figure 2.2: Partition of the coordinate space into bound and asymptotic regions

Partition of Coordinate Space

For 1D helium considered here, we can decompose the coordinate space into bound and
asymptotic regions, as Fig. 2.2 shows. We consider single ionization into ionic channels
and double ionization. In Fig. 2.2, the regions S1, S2, S3, S4 correspond to single
ionization while the regions D1, D2, D3, D4 correspond to double ionization.

We assume that the electron-core interaction Vx (or Vy) can be neglected for |x| > rs
(or |y| > rs), and that the electron-electron interaction Vxy can be neglected for either
|x| > rs or |y| > rs.

For convenience, we define the following operators with Heaviside step functions θ(x)
and θ(y),

θ̂+x =

∫
dx
∣∣x〉θ(+x− rs)〈x∣∣, θ̂−x =

∫
dx
∣∣x〉θ(−x− rs)〈x∣∣, (2.38)

θ̂+y =

∫
dy
∣∣y〉θ(+y − rs)〈y∣∣, θ̂−y =

∫
dy
∣∣y〉θ(−y − rs)〈y∣∣, (2.39)

which are used to describe projections in different regions.
Here we exemplify the t-SURFF method for single and double ionization in regions

S1 and D1, corresponding to θ̂+x(1− θ̂+y − θ̂−y) and θ̂+xθ̂+y.

t-SURFF for Single Ionization

The Hamiltonian in the region S1 {x > rs, |y| < rs} is approximated by

ĤS1 = T̂x + ĤL
x + T̂y + V̂y + ĤL

y = ĤV
x + ĤI

y , (2.40)

where ĤV = T̂x + ĤL
x and ĤI = T̂y + V̂y + ĤL

y stand for Volkov and ionic Hamiltonian,
respectively.
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Denoting the Volkov state of momentum k by
∣∣φxk(t)〉 and the ionic channel state c

by
∣∣φyc(t)〉, we can write their corresponding TDSEs as

i∂t
∣∣φxk〉 = ĤV

x

∣∣φxk〉, (2.41)

i∂t
∣∣φyc〉 = ĤI

y

∣∣φyc〉. (2.42)

In Eq. (2.41), the Volkov wavefunction describing the motion of free electrons in the
laser field is given by〈
x
∣∣φxk〉

=

(2π)−1/2 exp {i[k + A(t)]x} exp
{
−
∫ t
∞ dt

′[k2/2 + A(t′)k + A(t′)2/2]
}

for the LG,

(2π)−1/2 exp {ikx} exp
{
−
∫ t
∞ dt

′[k2/2 + A(t′)k]
}

for the VG.

(2.43)

In Eq. (2.42)
∣∣φyc〉 becomes a field-free ionic state when t → ∞, so it can be solved by

performing backward time propagation.
At a large time T , we can perform the projection in the region S1 {x > rs, |y| < rs}

to calculate the transition amplitude aSI(k, c, T ),

aSI(k, c, T ) =
〈
φxk(T )

∣∣〈φyc(T )
∣∣θ̂+x(1− θ̂+y − θ̂−y)∣∣Ψ(T )

〉
, (2.44)

which means that one electron is freed with asymptotic momentum k > 0 with the
helium ion being in a bound state c. And the corresponding spectral intensity is defined
by the probability PSI(k, c) = |aSI(k, c, T )|2.

aSI(k, c, T ) can also be expressed as,

aSI(k, c, T ) =

∫ T

−∞
dt
{
∂t
〈
φxk(t)

∣∣〈φyc(t)∣∣θ̂+x(1− θ̂+y − θ̂−y)∣∣Ψ(t)
〉}

=i

∫ T

−∞
dt
{〈
φxk(t)

∣∣〈φyc(t)∣∣(ĤV
x + ĤI

y )θ̂+x(1− θ̂+y − θ̂−y)
∣∣Ψ(t)

〉
−
〈
φxk(t)

∣∣〈φyc(t)∣∣θ̂+x(1− θ̂+y − θ̂−y)(ĤV
x + ĤI

y )
∣∣Ψ(t)

〉}
. (2.45)

where we use the fact

θ̂+x(1− θ̂+y − θ̂−y)Ĥ
∣∣Ψ(t)

〉
= θ̂+x(1− θ̂+y − θ̂−y)ĤS1

∣∣Ψ(t)
〉
, (2.46)

since ĤS1 only neglects some potentials from the total Hamiltonian Ĥ.
By assuming that

〈
y
∣∣φyc〉 ≈ 0 for |y| > rs, we may rewrite

aSI(k, c, T ) = i

∫ T

−∞
dt
〈
φxk(t)

∣∣[ĤV
x , θ̂+x]

〈
φyc(t)

∣∣Ψ(t)
〉

= i

∫ T

−∞
dt
∑
n

〈
φxk(t)

∣∣[ĤV
x , θ̂+x]

∣∣χxn〉〈χxn∣∣〈φyc(t)∣∣Ψ(t)
〉

(2.47)

where Eq. (2.12) is used for the electron labeled by x.
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t-SURFF for Double Ionization

Similarly, we can perform the projection in the region D1 {x > rs, y > rs} at a large
time T to calculate the transition amplitude aDI(k1, k2, T ),

aDI(k1, k2, T ) =i

∫ T

−∞
dt
{
∂t
〈
φxk1(t)

∣∣〈φyk2(t)∣∣θ̂+xθ̂+y∣∣Ψ(t)
〉}

=i

∫ T

−∞
dt
{〈
φxk1(t)

∣∣〈φyk2(t)∣∣(ĤV
x + ĤV

y )θ̂+xθ̂+y
∣∣Ψ(t)

〉
−
〈
φxk1(t)

∣∣〈φyk2(t)∣∣θ̂+xθ̂+y(ĤV
x + ĤV

y )
∣∣Ψ(t)

〉}
=i

∫ T

−∞
dt
{〈
φxk1(t)

∣∣〈φyk2(t)∣∣[ĤV
y , θ̂+y]θ̂+x

∣∣Ψ(t)
〉

+
〈
φxk1(t)

∣∣〈φyk2(t)∣∣[ĤV
x , θ̂+x]θ̂+y

∣∣Ψ(t)
〉}

, (2.48)

which means that both electrons are freed with asymptotic momentum k1 > 0 and
k2 > 0. And the corresponding probability is PDI(k1, k2) = |aDI(k1, k2, T )|2.

We denote the integrand in Eq. (2.48) by b(k1, k2, t) + b̄(k1, k2, t). The two terms are
related by exchange symmetry b(k1, k2, t) = b̄(k2, k1, t).

To evaluate

b(k1, k2, t) =
〈
φxk1(t)

∣∣〈φyk2(t)∣∣[ĤV
y , θ̂+y]θ̂+x

∣∣Ψ(t)
〉

=
∑
n

〈
φyk2(t)

∣∣[ĤV
y , θ̂+y]

∣∣χyn〉〈χyn∣∣〈φxk1(t)∣∣θ̂+x∣∣Ψ(t)
〉
, (2.49)

we define
b1(k1, n, t) =

〈
χyn
∣∣〈φxk1(t)∣∣θ̂+x∣∣Ψ(t)

〉
(2.50)

and calculate it by solving the corresponding time-dependent equation,

i∂tb1(k1, n, t) =
〈
χyn
∣∣〈φxk1(t)∣∣θ̂+x(ĤV

x + ĤI
y )
∣∣Ψ(t)

〉
−
〈
χyn
∣∣〈φxk1(t)∣∣ĤV

x θ̂+x
∣∣Ψ(t)

〉
=
〈
φxk1(t)

∣∣θ̂+x〈χyn∣∣ĤI
y

∣∣Ψ(t)
〉
−
〈
φxk1(t)

∣∣[ĤV
x , θ̂+x]

〈
χyn
∣∣Ψ(t)

〉
=
∑
m

〈
χyn
∣∣ĤI

y

∣∣χym〉b1(k1,m, t)−∑
m

〈
φxk1(t)

∣∣[ĤV
x , θ̂+x]

∣∣χxm〉〈χxm∣∣〈χyn∣∣Ψ(t)
〉
.

(2.51)

where Eq. (2.12) is used for the two electrons labeled by x and y.

t-SURFF with CAPs

The derivations above show that the t-SURFF method is equivalent to projecting the
final wavefunction onto approximated scattering states in the asymptotic region after
long-time propagation.

When implementing the t-SURFF method in numerical calculations, we assume that
an ideal CAP of in x (or y) direction does not modify the wavefunction in the inner
region of the grid |x| < rc (or |y| < rc), and choose rc > rs.
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Evaluation of the commutator〈
f
∣∣[ĤV

x , θ̂+x]
∣∣g〉

=


1
2

[
d
〈
f

∣∣x〉
dx

〈
x
∣∣g〉− 〈f ∣∣x〉d〈x∣∣g〉

dx

]
x=rs

for the LG,

1
2

[
d
〈
f

∣∣x〉
dx

〈
x
∣∣g〉− 〈f ∣∣x〉d〈x∣∣g〉

dx

]
x=rs

− iA(t)
[〈
f
∣∣x〉〈x∣∣g〉]

x=rs
for the VG,

(2.52)

only calls for the values and first derivatives of f and g at the point rs. Therefore
Eq. (2.47) for the single ionization is still valid with the CAPs included.

The formula for double ionization should be altered to include the CAPs in practical
computation. To illustrate this, we consider the following equations,

i∂t
∣∣Ψ̃〉 = [Ĥ − iWx − iWy]

∣∣Ψ̃〉, (2.53)

i∂t
∣∣Ψ̃1

〉
= [Ĥ − iWy]

∣∣Ψ̃1

〉
. (2.54)

In Eq. (2.49), the existence of the commutator [ĤV
y , θ̂+y] allows us to replace

∣∣Ψ〉 by∣∣Ψ̃1

〉
.

Similar to Eq. (2.50), we define

b̃1(k1, n, t) =
〈
χyn
∣∣〈φxk1(t)∣∣θ̂+x∣∣Ψ̃1(t)

〉
, (2.55)

which is used in evaluating b(k1, k2, t), and derive the equation for its time evolution,

i∂tb̃1(k1, n, t)

=
∑
m

〈
χyn
∣∣ĤI

y − iWy

∣∣χym〉b̃(k1,m, t)−∑
m

〈
φxk1(t)

∣∣[ĤV
x , θ̂+x]

∣∣χxm〉〈χxm∣∣〈χyn∣∣Ψ̃1(t)
〉
,

=
∑
m

〈
χyn
∣∣ĤI

y − iWy

∣∣χym〉b̃(k1,m, t)−∑
m

〈
φxk1(t)

∣∣[ĤV
x , θ̂+x]

∣∣χxm〉〈χxm∣∣〈χyn∣∣Ψ̃(t)
〉
. (2.56)

Again in Eq. (2.55), due to the existence of the commutator [ĤV
x , θ̂+x],

∣∣Ψ̃1

〉
is replaced

by
∣∣Ψ̃〉, which is the state in practical computation with CAPs included.
The t-SURFF method [14, 15] was originally implemented with the infinite range

exterior complex scaling (irECS) method, which can serve as a perfect absorber in time-
dependent problems [22]. It can also be implemented with CAPs [16, 23]. Compared
with Ref. [15], our derivations here clearly reveal how the introduced CAPs enter the
equation for double ionization, as shown in Eq. (2.56).



Chapter 3

Helium in High-Frequency Strong
Fields

With the numerical methods discussed in Chapter 2, we can investigate strong-field
ionization of the 1D helium model by performing ab initio calculations. We focus on
ionization by superintense extreme ultraviolet (XUV) laser pulses, which is in the so-
called stabilization regime.

3.1 Strong-Field Stabilization

The lowest-order perturbation theory (LOPT) predicts that photon ionization rates
increase with intensity I : n-photon ionization rate grows as Γn ∝ In. However, direct
nonperturbative handling of the Schrödinger equation can show that the reverse trend
may set in for intense high-frequency lasers: the higher the intensity, the lower the
ionization. The phenomenon was first discovered theoretically [3] and later attempts
were made to observe it in experiments [24, 25, 26, 27, 28]. It was theoretically predicted
that this phenomenon termed as atomic stabilization requires strong laser fields with
high frequencies (compared to the ionization potential energy). So the experiments in
this area are quite difficult. So far experimental observation of stabilization has only
been done in Rydberg atoms, rather than ground-state atoms. It is because only for
Rydberg states did the available laser parameters satisfy the theoretical requirement for
stabilization.

In contrast, there have been a number of theoretical studies on stabilization, in
particular for one-electron systems (see reviews [29, 30]). Comparatively speaking, fewer
studies of stabilization in multi-electron systems have been done. Calculations performed
in 1D two-electron model systems indicated that correlation effects could reduce the
stabilization effect [31]. 3D calculations of helium showed the existence of stabilization
in both single and double ionization [32, 33], and it found that 1D models tend to
overestimate the effect of correlation. Up to now the dynamics of multi-electron systems
in the stabilization regime are still not completely clear, so the motivation of our work is
to gain more understanding of the simplest two-electron system, helium, in the presence
of high-frequency laser fields.

15
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3.2 High-Frequency Floquet Theory

The high-frequency Floquet theory (HFFT) [34] is a general framework for laser-atom
interactions at high frequencies and all intensities. It has been extensively used to study
the atomic structure and stabilization in high-frequency fields. Here we briefly introduce
the theory, taking a one-electron state as an example. Also, the basic equations for the
1D helium model are given.

Kramers-Henneberger Frame

We start with the TDSE in the laboratory frame within the dipole approximation,

i∂t
∣∣Ψ̃L

〉
=

{
1

2

[
p̂+ ~A(t)

]2
+ V (~r)

} ∣∣Ψ̃L

〉
. (3.1)

The term containing ~A2 can be eliminated by the phase-factor tranformation

∣∣ΨL

〉
= exp

[
i

∫ t

dt′ ~A2(t′)/2

] ∣∣Ψ̃L

〉
, (3.2)

to give

i∂t
∣∣ΨL

〉
=

[
1

2
p̂2 + ~A(t) · p̂+ V (~r)

] ∣∣ΨL

〉
. (3.3)

A classical electron driven by the field ~A(t) has a quiver motion of vector radius

~α(t) =
∫ t
dt′ ~A(t′). By applying to Eq. (3.3) the coordinate translation ~r → ~r+ ~α(t), one

can obtain

i∂t
∣∣Ψ〉 =

[
1

2
p̂2 + V (~r + ~α(t))

] ∣∣Ψ〉. (3.4)

The space-translated TDSE can be interpreted as characterizing the dynamics of the
electron in an accelerated frame of reference, the Kramers-Henneberger (KH) frame
[35]. In the KH frame, the center of force has a quiver motion ~α(t) of the classical
electron, as indicated by the shift of the potential origin in Eq. (3.4).

Floquet Method

For a monochromatic electric field linearly polarized in the z-direction,

~F (t) = F0 cos(ωt)ẑ, (3.5)

the corresponding vector potential ~A(t) = −
∫ t
dt′ ~F (t′) and quiver motion ~α(t) =∫ t

dt′ ~A(t′) are simply

~A(t) = −(F0/ω) sin(ωt)ẑ, (3.6)

~α(t) = (F0/ω
2) cos(ωt)ẑ. (3.7)

Within the Floquet theory, we can seek a quasiperiodic solution to Eq. (3.3) of the
form ∣∣Ψ(t)

〉
= exp(−iEt)

∑
n

∣∣φn〉 exp(−inωt), (3.8)
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and expand the oscillating potential in Fourier series

V (~r + ~α(t)) =
∑
n

Vn(α0;~r) exp(−inωt), (3.9)

with

Vn(α0;~r) =
1

2π

∫ 2π

0

dϑV [~r + ~α(ϑ/ω)] exp(inϑ). (3.10)

Insertion of Eq. (3.8) and Eq. (3.9) into Eq. (3.3) leads to an infinite set of time-
independent coupled equations for the Floquet components

∣∣φn〉,[
1

2
p̂2 + V0 − (E + nω)

] ∣∣φn〉 = −
∑
m 6=n

Vn−m
∣∣φm〉. (3.11)

Boundary conditions need to be imposed on the channel states
∣∣φn〉 to ensure the

uniqueness of the solution. These are expressed in terms of the channel momenta kn
defined by k2n/2 = E +nω. To study ionization, these are mostly chosen of the Gamow-
Siegert (resonance-state) type, which leads to an eigenvalue problem. Because of the
nature of these boundary conditions, the eigenenergy is complex: E = W−iΓ/2. Briefly
speaking, W is the average energy in the field and Γ is its ionization rate.

Lowest Approximation Formulas in HFFT

The HFFT solves the corresponding Floquet system of equations at large ω by succesive
iterations of increasing order in ω−1. Here we only briefly discuss the formulas of the
zeroth order and the first order, skipping the details of the iteration procedure.

To the lowest order in ω−1 and at fixed α0, the HFFT Floquet system reduces to a
single equation, the structure equation[

1

2
p̂2 + V0(~α0;~r)

]
un = Wnun, (3.12)

From Eq. (3.10) we know that V0 is the time average of the oscillating potential. In the
KH frame the potential has an oscillating bahavior. As ω is supposed large, the electron
will not react to the rapid oscillations of the potential, but rather to its time average.
In the high-frequency limit ω → ∞, the energy W is real, which means that there is
no ionization. For a linearly polarized field, at sufficiently large α0, the eigenfunction
of any state splits into two practically nonoverlapping parts (atomic dichotomy) due to
the two-center character of the dressed potential V0 [34, 36, 37].

The first iteration within the HFFT allows for ionization [38]. For the partial n-
photon ionization rates it gives

dΓn/dΩ = kn |fn(k)|2 (3.13)

with the amplitude

fn(k) = − 1

2π

〈
ukn
∣∣Vn∣∣u0〉 (3.14)

Here
∣∣ukn〉 is a contnuum state of Eq. (3.12) with asymptotic momentum kn.

The zeroth-order and first-order formulas are most frequently used in describing the
laser-dressed atomic structure and the ionization rate, while the higher-order corrections
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are usually neglected. A pragmatic convergence criterion for the HFFT iteration scheme
was shown to be the high-frequency condition, ω � W (α0), where W (α0) is an average
excitation energy for the manifold of the initial state. Most often, W (α0) is of the order
of magnitude of the largest binding energy of the manifold. One should note that this
is a sufficient condition: HFFT results may apply even when it is not satisfied.

HFFT for 1D Helium

Following Eq. (2.1), the space-translated TDSE of our 1D helium model reads,

i∂t
∣∣Ψ〉 =

{
T̂x + T̂y + Vx[x+ α(t)] + Vy[y + α(t)] + Vxy

} ∣∣Ψ〉. (3.15)

The corresponding structure equation is{
T̂x + T̂y + V0(α0;x) + V0(α0; y) + Vxy

} ∣∣Φ〉 = W (α0)
∣∣Φ〉. (3.16)

With the initial and final states denoted by
∣∣Φi

〉
and

∣∣Φf

〉
, which are both solutions

to Eq. (3.16), the n-photon rate is given by

Γn = 2π
∣∣〈Φf

∣∣[Vn(α0;x) + Vn(α0; y)]
∣∣Φi

〉∣∣2 (3.17)

with conservation of energy requiring Wi + nω = Wf . To study the single and double
ionization, we may choose the final state

∣∣Φf

〉
to be an ionic state and a double continuum

state, respectively.

3.3 Results and Discussions

Energy Levels

Before discussing the strong-field ionization of helium, we first provide some information
about the energy levels of the 1D helium model. This may help us understand the role
of laser frequencies and illustrate the motivation of our study.

A δ-like dipole excitation spectrum can help identify some energy levels of the system.
Choosing the ground state as the initial state, we excite the system with a δ-like dipole
kick (F0 = 0.001, t0 = 1, σ = 0.1),

F (t) = F0 exp

[
−(t− t0)2

2σ2

]
, (3.18)

and record the dipole response d(t) =
〈
Ψ(t)

∣∣[x(t) + y(t)]
∣∣Ψ(t)

〉
over a long time (4000

a.u.). A Fourier transform with respect to time, S(ω) = |F{d(t)}|2, gives the dipole
excitation spectrum, as shown in Fig. 3.1.

In Fig. 3.2, the energies of the ground state and the first excited state are calculated
by imaginary time propagation, while the single ionization channel energies are calcu-
lated by diagonalizing the ionic hamiltonian. Two doubly excited states, identified from
the dipole excitation spectrum are also shown.

Due to the 1D model, single electron wavefunction can be only even or odd. We
denote single electron states by

∣∣1e〉, ∣∣2o〉, ∣∣3e〉, ∣∣4o〉, etc. On the basis of electron
configurations, we can use

∣∣1e1e〉 for the ground state and
∣∣1e2o〉 for the first excited

state. 1 The ground state
∣∣1e1e〉 has two equivalent electrons while the first excited

state
∣∣1e2o〉 has two non-equivalent electrons.

1
∣∣1e1e〉 and

∣∣1e2o〉 should be understood as the dominating configurations.
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Figure 3.1: Dipole excitation spectrum S(ω) of the 1D helium model.
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Figure 3.2: Energy levels of the 1D helium model, including the ground state, the spin-
singlet first excited state, the lowest 6 single ionic states, two doubly excited states and
the double ionization threshold. The red and blue arrows indicate two laser frequencies
used, with the their spectral bandwidths also shown.
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Computational Parameters

We use a short laser pulse (5 cycles) with a Gaussian envelope, defined by its vector
potential,

A(t) = (F0/ω) exp

(
−4 ln 2

t2

t2FWHM

)
sin(ωt), (3.19)

and the number of cycles is defined as Nc = ωtFWHM/(2π).
We can choose the ground state or the first excited state as the initial state. For

both the ground state and the first excited state, we do calculations in two cases: (1)
One-photon absorption can only open the

∣∣1e〉 He+ channel while two-photon absorption
can open all the channels, including double ionization. (2) One-photon absorption can
open all the channels, including double ionization. For the ground state

∣∣1e1e〉, we use
ω1 = 1.80 for case (1) and ω1 = 3.90 for case (2). For the excited state

∣∣1e2o〉, we use
ω1 = 1.12 for case (1) and ω1 = 3.22 for case (2). The case (1) is also shown in Fig. 3.2.

For two-electron atoms, stabilization has been studied for total ionization, single
ionization and double ionization [39, 31, 40, 32, 33]. To our knowledge, there is still no
research on the ionization in different single ionization channels, i.e., the populations of
different residual ionic states have not been investigated for single ionization. Compared
with total ionization probability, we believe that the probabilities for different channels
may provide more information. So the t-SURFF method is applied to study the channel-
resolved probabilities.

The simulation box is defined as {|x| < 120, |y| < 120}, with 120 finite elements and
9 DVR functions in each element for each electron. The TDSE is solved with a time step
∆t = 0.002, by using the Arnoldi-Lanczos propagator with a Krylov space of dimension
L = 9. In the RTP, the CAPs are given by Eq. (2.37) in Chapter 2, with rc = 65. In
the t-SURFF method, the surfaces are placed at rs = 60.

Identification of Stabilization

In Fig. 3.3 and Fig. 3.4 we plot the ionization probabilities (the total ionization prob-
ability and the probabilities of individual channels) versus the field strength. For high
intensities, the total ionization probabilities are close to 1. From the insets in Fig. 3.3
and Fig. 3.4, we find that stabilization actually occurs.

At low field strengths (F0 < 1), the
∣∣1e〉 He+ channel ionization dominates for

the ground state
∣∣1e1e〉. For the excited state

∣∣1e2o〉, both the
∣∣1e〉 He+ channel and

the
∣∣2o〉 He+ channel are important. We may understand these on the basis of an

independent-electron picture, i.e.,
∣∣1e1e〉 → ∣∣1eεp〉 channel means that one of the two

equivalent is freed while the other is bound;
∣∣1e2o〉 → ∣∣1eεp〉 channel means that the

outer electron is freed while the inner one is bound;
∣∣1e2o〉 → ∣∣2oεp〉 channel means

that the inner electron is freed while the outer one is bound. 2 So at low field strengths
the main dynamics is that only one electron is freed while the other one is still bound
in the same state. For the ground state

∣∣1e1e〉 with two equivalent electrons, only∣∣1e1e〉→ ∣∣1eεp〉 dominates. For the excited state
∣∣1e2o〉 with two nonequivalent (inner

and outer) electrons, both
∣∣1e2o〉→ ∣∣1eεp〉 and

∣∣1e2o〉→ ∣∣2oεp〉 can be important.
For high field strengths (F0 > 2), the double ionization dominates, which is (at least)

a two-photon process. The two-photon double ionization (TPDI) has been studied both
theoretically [41, 42, 43] and experimentally [44, 45] in recent years. Some studies discuss

2Here we use notation
∣∣εp〉 for a free electron with energy ε and proper parity p (e or o).
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Figure 3.3: Total, double and the lowest 6 single-channel ionization probabilities of the
ground state helium

∣∣1e1e〉 versus electric field strength F0, for a 5-cycle pulse with
ω = 1.80. Inset: zoom-in of the total ionization probability.

the sequential and nonsequential regimes at low or intermediate laser intensities [43, 46,
47]. However, researches on the TPDI in the stabilization regime are still scarce [32, 33].

The oscillation behavior of the ionization probabilities versus the field strength was
observed and discussed for one-electron systems [48, 49], and was attributed to the two-
center character of the dressed atomic wavefunction. For our two-electron system, the
oscillating probabilities in different channels are much more complicated, which would
need more investigations to be understood.

For high frequencies of case (2), the total ionization probabilities are much smaller
than those of case (1). Stabilization can be clearly observed from Fig. 3.5 and Fig. 3.6.
This is quite natural since stabilization is a high-frequency phenomenon according to the
HFFT. Dressed in a laser field with a higher frequency, the atom becomes more easily
stabilized.

From Fig. 3.5, we find that the
∣∣1e〉 He+ channel dominates for the ground state∣∣1e1e〉 while the other channels give much smaller contribution to the total ionization

probability. An interesting phenomenon appears in Fig. 3.6, i.e.,
∣∣3e〉 He+ channel

dominates for the excited state
∣∣1e2o〉, which calls for future studies.

Finally, we solve the structure equation Eq. (3.16) and obtain the laser dressed energy
levels. As Fig. 3.7 shows, the high-frequency laser actually changes the average energy
of all the states. This is the lowest order calculation within the HFFT, and will be
continued in the future, which may serve as an explanation of the results shown here.
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Chapter 4

Summary and Outlook

4.1 Summary

Here is a summary of my work during part A of my Ph.D. studies.
By using an FEDVR basis set and the Arnoldi-Lanczos time propagator, we have

made a FORTRAN code for solving the TDSE of a 1D two-electron system such as
helium. With CAPs as absorbers at the grid boundaries, we implement the t-SURFF
method to extract spectra of single and double ionization. This allows us to study the
photoelectron spectra with a small simulation volume, even in the strong-field regime.

By applying the TDSE solver to a 1D helium model, we study the strong-field ion-
ization of helium exposed to short XUV laser pulses. On the basis of the energy levels of
this 1D model, we choose the ground state

∣∣1e1e〉 and the first excited state
∣∣1e2o〉 as two

initial states, and investigate how the total and channel-resolved ionization probabilities
change with the laser field strength. For the laser frequency, we consider two cases: (1)
the system can only ionize into the

∣∣1e〉 He+ channel by absorbing one photon energy,
but it can be doubly ionized by absorbing two photon energy; (2) double ionization can
occur with only one photon absorption.

In both cases we observe atomic stabilization, i.e., decreasing ionization probabilities
with increasing laser field strength. However, the ionization probabilities into different
channels are much more complicated, which have not been completely understood, and
will be work for the immediate future.

For the laser frequencies of case (1), double ionization dominates at high laser in-
tensity for both the ground state

∣∣1e1e〉 and the excited state
∣∣1e2o〉, which means that

the two photon double ionization may be the most important process in the strong-field
interaction regime. The

∣∣1e〉 He+ channel dominates at low laser intensity for both the
ground state

∣∣1e1e〉 and the excited state
∣∣1e2o〉. In addition, the

∣∣2o〉 He+ channel is
the second important at low laser intensity for the excited state

∣∣1e2o〉, We interpret
this as the process

∣∣1e2o〉→ ∣∣2oεp〉, in which the inner electron is freed while the outer
one is bound. However, the results for the laser frequencies of case (2) are not fully
understood, i.e., the

∣∣1e〉 He+ channel dominates for the ground state
∣∣1e1e〉 while the∣∣3e〉 He+ channel dominates for the excited state

∣∣1e2o〉. This interesting phenomenon
may require more investigations.

Based on the HFFT, which is extensively used in the stabilization regime, we also
perform the lowest-order calculation within this non-perturbative theory and obtain the
laser dressed energy levels. Calculations on the basis of the HFFT will be continued in
the future.

24
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4.2 Outlook

In the nearest future, we will continue doing more calculations in the stabilization regime.
We would like to implement the first-order HFFT calculations and compare those with
our ab initio calculations, since the HFFT may offer an interpretation and help us to
understand the results. The HFFT applies for the long pulse limit, so we may extend
our ab initio calculations to longer laser pulses, This may also reveal the role of the pulse
duration in the dynamics.

There are also a number of open questions that can be studied with our 1D two-
electron TDSE solver. For example, how are the different channels coupled with one
another in the stabilization regime? What is the role of the doubly excited states in
the strong-field ionization? Will any new dynamics appear when extending attosecond
experiments, such as streaking [50], to the strong-field regime?

Afterwards, we plan to perform calculations on multi-electron atoms interacting with
laser fields in full dimensions. On the one hand, we may extend the two electron TDSE
solver to 3D. Combined with the t-SURFF method, the photoelectron spectra can be
computed with a small simulation volume. On the other hand, we plan to resort to a
general multi-electron scheme based on quantum chemistry, such as TD-RASCI or TD-
RASSCF. Implementation of the t-SURFF method in that approach will be a meaningful
task for the future.
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