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Abstract
Quantum storage and retrieval of light in ion Coulomb crystals using cavity
electromagnetically induced transparency are investigated theoretically. It is found that when
both the control and the probe fields are coupled to the same spatial cavity mode, their
transverse mode profile affects the quantum memory efficiency in a non-trivial way. Under
such conditions, the control-field parameters and crystal dimensions that maximize the
memory efficiency are calculated.

(Some figures may appear in colour only in the online journal)

1. Introduction

Motivated by applications in the field of quantum information
processing [1–4], quantum memory devices are being
investigated in a variety of physical systems and with different
techniques and protocols (for a review, see e.g. [5, 6]). Among
the various criteria used to evaluate the performance of a
quantum memory, its fidelity, efficiency, storage time and
multimode capacity [5] are generally of interest. For optical
quantum memories, in which an input light pulse is stored into
a material system and subsequently retrieved, the efficiency
can simply be defined as the ratio between the energies of
the output and input pulses. For an important class of optical
quantum memories based on electromagnetically induced
transparency (EIT) processes in atomic ensembles [7–15],
the efficiency crucially depends on the optical depth of the
ensemble [5]. Enclosing the atomic medium in an optical
cavity allows for substantially increasing the effective optical
depth experienced by the light, and cavity EIT protocols have
been proposed to achieve high storage efficiencies [16–20].

Among the variety of atomic systems studied in
connection with quantum memories, an ion Coulomb crystal
positioned in an optical cavity has been suggested as
a good candidate to realize a high-performance quantum
memory, potentially meeting the criteria mentioned above
[21]. Recently, this analysis has been backed up by a series

of key experimental results. Substantial effective optical
depths can indeed be realized by strongly coupling large ion
Coulomb crystals to a cavity field and long coherence times
can be achieved in such a system [22, 23]. Furthermore,
strong coupling to various spatial cavity modes has been
demonstrated [24], which is promising for spatial multimode
quantum storage [25–28]. Finally, cavity EIT has recently
been observed with ion Coulomb crystals using an all-cavity
geometry in which both the probe and the control fields are
coupled to the same spatial cavity mode [29].

In this specific cavity EIT geometry, it has been observed,
both theoretically [30] and experimentally [29], that the
spatial transverse profile of the control field has a significant
effect on the probe transmission/reflection lineshapes and
dynamics. This is in contrast with more standard cavity EIT
configurations in which the control field is free propagating
and has typically a much larger extension than the probe field
[31–37]. Since the all-cavity geometry is one natural
realization of the scheme presented in [21], it is interesting
to investigate its implications for the performance of such an
ion Coulomb crystal-based quantum memory. In this paper,
we extend the existing theoretical models for cavity EIT-
based light storage and retrieval [16–20] to the all-cavity
configuration and numerically investigate the effect of the
transverse mode profile of the fields on the quantum memory
efficiency. We find in particular that the optimal efficiency
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Figure 1. (Left) Three-level � atomic structure is considered. (Right) A cylindrically symmetric atomic medium, composed of � atoms, is
enclosed in a single-ended optical cavity where it interacts with a probe field and a control field in an EIT situation. Two configurations are
investigated: one in which both fields are coupled to the same cavity mode and have therefore the same waist, and one in which the control
field has a constant intensity profile over the ensemble.

depends not only on the cooperativity parameter, but also
on the radial extension of the crystal, as a result of the
more complex spatial mode structure defined by the fields
inside the atomic medium. Using parameters taken from
current experiments with ion Coulomb crystals [22, 29], our
simulations predict that similarly high efficiencies (>90%)
should however be obtainable in the all-cavity configuration.

This paper is structured as follows. In section 2, the
theoretical model for the light storage and retrieval is
presented: starting with a general description in sections 2.1
and 2.2, an optimization of the quantum memory efficiency
in the standard configuration for smoothly varying single-
photon input pulses, following the approach of [20] in
section 2.3 and the ‘cylindrical shell’ model used for the
simulations of the all-cavity configuration in section 2.4.
Section 3 presents the results of the numerical simulations
based on typical experimental parameters for ion Coulomb
crystals (section 3.1) and for light fields coupled to the cavity
fundamental TEM00 mode (section 3.2) and a higher order
Laguerre–Gauss LG01 mode (section 3.3). A brief conclusion
on the implications of these results for experiments are given
in section 4.

2. Theoretical model

2.1. Description of the model

Inspired by the experiments of [29], we base our description
of the light–matter interaction on the model developed in
[30]. We consider an ensemble of three-level � atoms with
two ground states |1〉 and |2〉 and an excited state |3〉. The
atoms interact with a cavity probe field on the |1〉 −→ |3〉
transition and a classical control field � on the |2〉 −→ |3〉
transition. Both fields are assumed to be resonant with the
atomic transitions and the cavity is tuned to resonance with
the probe field. Since we are mostly interested in discussing
the effects of the transverse mode profile of the fields, we
neglect the longitudinal variation of the atom–field couplings.
This goes for atoms in a running-wave cavity [33, 36, 38], but
can also apply to a standing-wave cavity geometry for atoms
with either well-defined positions with respect to the cavity
standing wave [32, 39, 40] or atoms whose motion average out
the longitudinal standing-wave structure of the fields over the
relevant timescales [29, 30]. The atomic ensemble extension is
also assumed to be much smaller than the cavity field Rayleigh

range. The cavity is furthermore taken to be single ended and
with lossless mirrors (figure 1).

We will also assume that the fields injected into the
cavity are smooth pulses whose envelopes are slowly varying
with respect to the cavity field decay rate and the atomic
decay rate, in the sense of [20]. For the light storage and
retrieval dynamics, we will follow the approach of [16, 19, 20]
and assume a standard write–store–read temporal sequence.
During the write phase, the input probe field is injected into the
cavity and the control field is adiabatically turned off to ensure
temporal impedance matching [18]. Both fields are turned off
during the store phase, and the control field is adiabatically
turned back on during the readout, causing the emission of an
output probe pulse.

Denoting by σ̂ (k)
μν = |μ〉〈ν|k the individual atomic

operator for the kth atom positioned at rk and by â the
annihilation operator for the intracavity probe field, the
interaction Hamiltonian in the rotating wave approximation
and the rotating frame reads

H = −�g
∑

k

�p(rk)σ̂
(k)

31 â − ��(t)
∑

k

�c(rk)σ̂
(k)

32 + h.c.,

(1)

where g is the single-atom maximal coupling rate (at the centre
of the cavity mode), �p,c(r) are the probe and control-field
transverse mode profiles (with the longitudinal dependence
being neglected) and �(t) is the time-varying Rabi frequency
of the control field.

2.2. Equations of motion in EIT

We consider a typical EIT regime in which all the atoms are
initially in level |1〉 and in which the control field is much more
intense than the probe field, assumed to be at the single-photon
level. One can then assume that almost all the atoms stay in |1〉
at all times and perform a standard first-order treatment in the
probe field [2]. The Heisenberg equations of motion for the
relevant operators, namely the intracavity probe field â,
the atomic optical coherences σ̂

(k)

13 and the atomic ground-state
coherences σ̂

(k)

12 , are given by

˙̂a = −κ â + ig
∑

k

�p(rk)σ̂
(k)

13 +
√

2κ âin, (2)

˙̂σ (k)

13 = −γ σ̂
(k)

13 + ig�p(rk)â + i�(t)�c(rk)σ̂
(k)

12 + F̂ (k)

13 , (3)

˙̂σ (k)

12 = −γ0σ̂
(k)

12 + i�∗(t)�c(rk)σ̂
(k)

13 + F̂ (k)

12 , (4)
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and the input–output relation

âout =
√

2κ â − âin, (5)

where κ is the cavity field decay rate, âin and âout are the
annihilation operators associated with the input and output
probe fields, respectively. γ and γ0 are the atomic dipole and
ground-state coherence decay rates, respectively, and F̂ (k)

13 and
F̂ (k)

12 are the corresponding Langevin noise operators.
Following [20], we assume a single-photon input and

calculate the quantum memory efficiency by first solving in
time the semiclassical counterparts of (2)–(5) for given input
probe and control-field pulses

ȧ = −κa + ig
∑

k

�p(rk)σ
(k)

13 +
√

2κain, (6)

σ̇
(k)

13 = −γ σ
(k)

13 + ig�p(rk)a + i�(t)�c(rk)σ
(k)

12 , (7)

σ̇
(k)

12 = −γ0σ
(k)

12 + i�∗(t)�c(rk)σ
(k)

13 , (8)

aout =
√

2κa − ain, (9)

and second, by computing

ηtot ≡
∫

r |aout(t)|2 dt∫
w

|ain(t)|2 dt
, (10)

where the subscripts w and r refer to a summation over the
whole duration of the write and read processes, respectively.
ηtot then represents the ratio of the number of retrieved photons
to the number of incoming photons and provides a good
measure of the quality of the mapping (for other measures, see
e.g. [5, 6])1. To simplify the discussion, we will in the following
neglect the decay of the ground-state coherence during the
whole process and set γ0 = 0. The duration of the storage
phase is then simply chosen such that the dynamics of the
write and read phases occur in well-separated time windows.

2.3. Efficiency optimization in the case of an extended control
field

If the waist of the control field is much larger than the
probe field, as in many EIT experiments, one can neglect
the transverse variations of the control-field intensity over the
section of the atomic ensemble that interacts with the probe
field. Following, e.g., [30], one can define an effective number
of atoms interacting with the probe field

N =
∑

k

�p(rk)
2 (11)

and collective operators for the ground-state coherence and the
optical dipole by

Ŝ = 1√
N

∑
k

�p(rk)σ̂
(k)

12 , P̂ = 1√
N

∑
k

�p(rk)σ̂
(k)

13 . (12)

Equations (6)–(9) can be straightforwardly rewritten as

ȧ = −κa + igNP +
√

2κain, (13)

1 One could carry out a similar analysis by computing the fidelity, i.e. the
overlap between the outgoing and incoming field pulses. However, in order to
be able to identify more clearly the spatial and temporal effects at play here,
we chose to focus the discussion on the efficiency.

Ṗ = −γ P + igNa + i�(t)S, (14)

Ṡ = i�∗(t)P, (15)

aout =
√

2κa − ain, (16)

where gN = g
√

N is the collectively enhanced coupling
rate [2].

In this collective mode picture, the input photonic state
is mapped during the write phase onto a collective spin wave
described by S and one can define a write efficiency by taking
the ratio of the number of atomic excitations and the number
of input photons:

ηw = |S(Tw)|2∫
w

|ain(t)|2 dt
, (17)

where Tw is the end time of the write phase [20]. Similarly,
one can define a readout efficiency by the ratio of the number
of output photons and the number of atomic excitations before
readout:

ηr =
∫

r |aout(t)|2 dt

|S(Tr)|2 , (18)

where Tr is the start time of the read phase. In the adiabatic
limit, i.e. for input pulses with duration T, such that 2TCγ �
1, one can derive the optimal control pulse that maximizes
the read and write efficiencies, which can be shown to scale
as [19, 20]

ηopt
w,r = 2C

1 + 2C
, (19)

where

C = g2N

2κγ
(20)

is the cooperativity parameter2. In the absence of decoherence
during the storage phase, the optimal total efficiency thus
scales as

η
opt
tot =

(
2C

1 + 2C

)2

(21)

and increases with the effective number of atoms defined
by the spatial overlap of the ensemble and the probe field
(equation (11)).

2.4. Effect of the control field’s transverse profile

If the waist of the control field wc is no longer very large, but
comparable to that of the probe field wp—as it will be the case
in an all-cavity geometry for instance [29, 30]—the previous
results no longer apply, and one must evaluate the effect of
the control-field transverse profile on the storage and retrieval
efficiencies. With the approximations made in section 2.2
and having specifically in mind ion Coulomb crystals as the
physical storage medium, we assimilate the atomic ensemble
to a cylinder with length L and radius R (figure 1), and slice it
into n cylindrical shells of thickness d 	 wp, wc (R = nd). We
also assume that d is much larger than the mean interparticle
distance. Although it is not essential, we take the atomic
density ρ to be constant throughout the ensemble, which is the

2 Note the difference of factor 2 with respect to [20].
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case for large ion Coulomb crystals in linear Paul traps [41],
and we consider cavity modes with cylindrical symmetry. We
proceed by defining collective operators for the jth slice as

P̂j = σn jσ̂
( j)
13 , Ŝ j = σn jσ̂

( j)
12 , (22)

where the subscript j refers to an atom in the jth slice with
position r j = d( j − 1/2) ( j = 1, ..., n), σ = ρL is the atomic
cross-sectional density and nj is the number of atoms in the
jth slice. The corresponding semiclassical equations of motion
are then

ȧ = −κa + ig
n∑

j=1

�p(r j)Pj +
√

2κain, (23)

Ṗj = −γ Pj + igσn j�p(r j)a + i�(t)�c(r j)S j, (24)

Ṡ j = i�∗(t)�c(r j)Pj, (25)

where the mode functions �p,c are evaluated at r j.
It is clear from equations (23)–(25) that unless |�c(r j)| =

1 like in the previous section, it is no longer possible to define
collective spatial eigen modes of the problem that would yield
closed equations of the form (13)–(15). In particular, these
equations show that adjacent shells are coupled together by
the control field. The spatial mapping of the probe field onto
the ground-state spin now depends on the control-field
transverse profile, in addition to that of the probe field. Because
of the intershell coupling during the mapping, the radial
extension of the ensemble now becomes a parameter that
affects the memory efficiency in a non-trivial way.

In the following section, we numerically solve these
equations of motion for a fixed probe field pulse basing
ourselves on the analytical control-field pulse derived from
the temporal optimization of section 2.3 in the absence of
effects due to the control-field transverse profile. Note that
because of the impossibility of analytically defining a spatial
collective spin mode during the write or the read phase, and
thereby of defining write or read efficiencies, this optimization
is performed numerically using the total efficiency ηtot as a
figure of merit.

3. Numerical results

3.1. Physical system considered and input parameters

To solve the problem of optimizing the quantum memory
efficiency under the conditions of the previous section, we
take for the physical storage medium an ion Coulomb crystal,
trapped and laser-cooled in a linear Paul trap, with the optical
cavity positioned along the trap axis, as in [22–29]. Although
single-component ion Coulomb crystals (i.e. consisting of
only ion species) have spheroidal shape and may therefore
deviate from the cylindrical shell model (unless they are
sufficiently prolate), the inner component of a prolate two-
species crystal can be assimilated to a good approximation to
a uniform density cylinder [41, 42]. We consider the cavity
EIT configuration used in [29], in which both the control and
the probe fields are frequency degenerate and orthogonally
polarized in order to create EIT between Zeeman sub-states
of the 3 d 3D3/2 sub-level of 40Ca+. In these experiments,

both fields are coupled resonantly or near-resonantly to the
same cavity mode (TEM00). We thus take Gaussian transverse
profiles �p,c(r) = exp(−r2/w2

p,c) and compare the extended
control-field configuration (wc → ∞) and the finite control-
field waist configuration (wc = wp).

For the 11.8 mm long, close to confocal cavity of [29]
with an incoupling mirror transmission of 1500 ppm and an
interaction on the 3 d 3D3/2, mJ = +3/2 → 4p 2P1/2, mJ =
+1/2 (probe) and 3 d 3D3/2, mJ = −1/2 → 4p 2P1/2, mJ =
+1/2 (control) transitions, one finds (g, κ, γ ) = 2π ×
(0.37, 1.5, 11.3) MHz3. With a radius of curvature of 10 mm,
the waist of the probe field at the centre of the cavity is wp =
37 μm. For crystals with typical length of a few millimetres
and radius of up to a few hundreds of micrometres, neglecting
the longitudinal curvature of the fields over the crystal mode
volume is well justified [22, 24].

For the sake of the discussion, we assume for the probe
field a hyperbolic secant input pulse of the form

ain(t) = 1√
T

sech(2t/T ), (26)

where T is the probe pulse duration4. In the adiabatic limit
(TCγ � 1) considered previously in section 2.3 and the
extended control-field configuration (wc → ∞), the control-
field pulses that optimize the write and read efficiencies are
given by [20]

�w(t) = A

√
2γ (1 + 2C)

T

1√
1 + exp(4t/T )

(27)

for the write phase, and its time-reversed counterpart

�r(t) = �w(−t + Tr + Ts) (28)

for the readout phase. In the extended configuration, the
prefactor A is equal to unity. As we will see in the next section,
the previous control-field temporal profiles are still found to be
optimal with respect to maximizing the efficiency in the finite-
waist configuration, the main difference being in the optimal
control-field amplitude scaling factor A.

3.2. Results for the TEM00 mode

Figure 2(a) shows the results of a storage and retrieval sequence
for a crystal with density ρ = 6.1 × 108 cm−3, length
L = 3 mm and radius R = 100 μm, an input probe pulse
of the form (26) with duration T = 2 μs and an extended
control field of the form (27) and (28) with A = 1. For
such a large crystal (R � wc), the effective number of ions
as defined by (11) is N = 3936, yielding a cooperativity
parameter C � 16.7. The write and read efficiencies are found
to be ηw = 0.970 and ηr = 0.971, respectively, close to
the theoretical value of η

opt
r,w = 0.971, and yielding a total

efficiency ηtot = 0.942 (ηopt
tot = 0.943). Figure 2(b) shows

the results of the same sequence and parameters for a control

3 Note that, in contrast to [22, 29], the single-ion coupling rate has been
scaled by a factor 1/

√
2 to account for the longitudinal averaging over the

standing-wave structure.
4 This form for the probe pulse is taken for convenience, as one obtains an
analytical expression for the optimal control-field pulse [16], but the numerical
simulations show that the exact form of the input pulse is not critical.
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Figure 2. Temporal storage and retrieval sequence for (a) an
extended control field (wc → ∞), (b) a control field with finite
waist (wc = wp) and non-optimized amplitude (A = 1) and (c) a
control field with finite waist (wc = wp) and optimized amplitude
(A = 2.45). The dotted and solid curves are the normalized input
and output field intensities |ain(t)|2 and |aout(t)|2, respectively. The
dashed curve shows the control-field intensity �(t)2, scaled such
that its maximum value is 0.5. Tr = Tw = 10 μs. See the text for the
values of the other parameters.

field with wc = wp. It is clear that, during the write phase,
perfect temporal impedance matching is not achieved, as a
substantial amount of the incoming light is reflected. This is in
itself not surprising as the prefactor A = 1 is only optimal in
the extended configuration, and one expects that, in the finite-
waist configuration, the ions see on average a control field
with lower Rabi frequency. As can be seen from figure 2(c),
close to perfect impedance matching can be recovered by
increasing the control-field amplitude (A � 2.45). The
total efficiency ηtot = 0.667 remains, however, lower than
in the corresponding extended configuration. We checked
numerically that varying the control-field pulse switching
time and shape, or having different amplitudes/time evolutions
profiles during write and read, does not increase the efficiency.
We also checked that these results do not significantly depend
on T as long as one stays in the adiabatic limit.

The lack of critical dependence of the optimal efficiency
with respect to the temporal parameters found in the
simulations seems to indicate, in agreement with the analysis of
section 2.4, that the spatial profile of the control field now plays
a significant role in the mapping process. To investigate this
effect further we show in figure 3 the variation of the effective
number of ions and the (temporally) optimized efficiency as
a function of the crystal radius in the two configurations. The
other parameters are kept the same as previously. While in the
extended control-field configuration the efficiency increases,
together with N, with the crystal radius and saturates when
R � wp, it reaches a maximum for R ∼ wp in the finite-waist
configuration, before decreasing and reaching a constant level
at a high radius. The total efficiency peaks at R � 0.95wp

with a value of 0.914 (A = 1.5), closer to the theoretical value
of η

opt
tot = 0.932 (for this radius N = 3279 and C = 13.9).

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

R / w
p

η to
t

0 0.5 1 1.5 2 2.5
0

2000

4000

R / w
p

N

Figure 3. Variation of the total efficiency ηtot as a function of the
crystal radius R, for the same parameters as in figure 2. The dashed
line shows the extended control-field case while the solid line shows
the finite-waist case for which the control-field amplitude has been
optimized for each radius. The inset shows the variation of the
effective number of ions (equation (11)) as a function of the crystal
radius R.

The decrease for R > wp radius may appear surprising, since
more ions are being added to the crystal and one could expect
an enhanced efficiency due to the stronger coupling to the
probe field. However, for a finite-waist control field, the spatial
spin mode defined during writing—or, for that matter, during
reading—is no longer that of the probe, but depends on the
overlap of both the probe and the control-field transverse
profiles in the crystal. As the radius of the crystal is increased,
the stored photonic excitation is spread more and more over
shells with higher radius. The spatial atomic mode then no
longer resembles the spatial mode of the probe, which leads
to a decrease in efficiency in the writing process. A similar
phenomenon then takes place in the reading process, as the
atomic spatial excitation profile is no longer optimally matched
to the spatial light mode profile.

To illustrate this phenomenon, we show in figure 4 the
variation of the radial density of excitations after writing,
which is proportional to the surface probability of finding
the photonic excitation in the jth shell, at the end of the
write phase, again in both configurations and for crystals
with different radii. The radial density of excitations s(r j)

is obtained by normalizing the squared modulus of the jth
shell operator mean value S j(Tw) by the number of ions in the
shell n j:

s(r j) = |S j(Tw)|2/n j. (29)

In the extended configuration, one sees that s(r j) reproduces
well the spatial Gaussian mode profile of the probe field,
as expected from the analytical predictions of section 2.3.
In the finite-waist configuration, the spatial atomic mode
defined by s(r j) has reasonable overlap with the ideal extended
configuration mode (i.e. the probe field mode) for R � wp, but
clearly deviates from it as the crystal radius increases and the

5
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Figure 4. Variation of the radial density of excitations after writing
in the extended (dashed) and finite-waist (solid) configurations, for
different crystal radii ((a) R = 0.5wp, (b) R = 0.95wp,
(c) R = 2.7wp). Other parameters are the same as in figure 3.
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Figure 5. (a) Variation of the cooperativity as a function of the
crystal dimensions L and R. (b) Variation of the optimized efficiency
in the extended configuration versus L and R. (c) Variation of the
optimized efficiency in the finite control-field waist configuration
(wc = wp) versus L and R. The crystal density is ρ = 6.1 ×
108 cm−3 and the pulse duration T = 2 μs.

coupling between the shells causes the excitation to spread
more and more radially into the crystal.

To summarize the results and show in particular that the
decrease in efficiency for large radii is always substantial in the
finite-waist configuration, regardless of the length or density
of the crystal, figure 5 shows the variation of the optimized
efficiency as a function of the crystal dimensions L and R
for a density of 6.1 × 108 cm−3. The range chosen for the
dimensions is typical of current experiments with ion Coulomb
crystals in the cavity [22, 42]. The optimized quantum
memory efficiency in the extended control-field configuration
is found to agree well with the predictions from the
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Figure 6. Variation of the quantum memory efficiency ηopt as a
function of the crystal radius R, for the TEM00 (black) and LG01

(green) modes and for a crystal with L = 3 mm and ρ = 6 ×
108 cm−3. The dashed lines show the extended configuration and the
solid lines show the finite-waist configuration. The inset shows the
corresponding variations of the effective number of ions
(equation (11)) as a function of R, for both modes.

analytical model (equation (21)) and is an increasing function
of the crystal radius for all lengths. This is no longer true in
the finite-waist configuration for which an optimal radius—of
the order of wp—exists, for all lengths. However, it can be
seen that by choosing the radius of the crystal appropriately to
‘match’ the waist of the cavity mode, one can achieve similarly
high quantum memory efficiencies (>90%) as in the extended
configuration.

3.3. Higher order modes

In this last section, we investigate these spatial mode effects
on the storage using higher order spatial cavity modes. On
the one hand, this is motivated by the fact that collective
strong coupling with higher order cavity modes has been
demonstrated using ion Coulomb crystals [24], which is
promising for multimode (spatial) storage. On the other hand,
in view of the previous results, one can wonder how the
conclusions drawn for the TEM00 mode generally hold for
higher order cavity modes, and in particular, if some modes
are less sensitive to these spatial effects. A general analysis is
beyond the scope of this paper and we will only focus in this
last section on the case of a first-order Laguerre–Gauss cavity
mode LG01, which preserves the cylindrical symmetry of the
problem. We thus assume that the probe field radial mode
function is now given by �p(r) = √

2(r/wp) exp(−r2/w2
p).

5

We then compare the quantum memory efficiency in an
extended control-field configuration and in a configuration
where the control field has the same transverse profile as the
probe field (�c(r) = �p(r)).

Figure 6 shows the variation of the effective number of
ions defined by equation (11) as a function of the crystal radius,

5 The azimuthal variation of the phase of the mode function in eiφ plays no
role here and can be incorporated in the definition of the atomic operators.
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Figure 7. Variation of the mean surface number of excitations after
writing in the extended (dashed) and finite control-field waist (solid)
configurations, for different crystal radii ((a) R = 0.5wp,
(b) R = 1.35wp, (c) R = 2.7wp) and for the LG01 mode. Other
parameters are the same as in figure 6.

for a crystal with fixed length and density (L = 3 mm and
ρ = 6.1 × 108 cm−3). As expected, N increases less rapidly
at small radii than for the fundamental mode, on account of
the lower coupling at the centre of the mode, but saturates
at the same value for large radii, because the orthonormal
character of the mode functions. In the inset of figure 6, the
corresponding variations of the quantum memory efficiency,
both for the TEM00 and LG01 modes and in the extended
and finite-waist configurations, are represented. If a similar
behaviour is qualitatively observed for the LG01 mode, one
can see that the optimal radius is larger for the LG01 mode
(R � 1.35wp) than for the TEM00 mode (R � 0.95wp). This
can be explained by the fact that the regions of high radial
intensity for the fields are now located farther away from r = 0,
so that the spreading of the photonic excitations into large
radius shells occurs at larger R and is less pronounced. One
can carry out a similar analysis as for the fundamental mode
and calculate the variation of the radial density of excitations
after writing as a function of the crystal radius. The results
are represented in figure 7 and show the same qualitative
conclusions as drawn previously in the case of the fundamental
mode.

4. Conclusion

We have investigated the efficiency of a cavity EIT-based
quantum memory in which both control and probe fields
are coupled to the same cavity mode. Due to the complex
spatial atomic mode defined during the EIT process between
both fields during the write and read phase of the memory,
the optimal efficiency is found to depend not only on the
cooperativity parameter, but also the crystal radius. Using
parameters from current experiments with ion Coulomb
crystals [22, 29], our simulations predict that high efficiencies

(>90%) should however be obtainable in this specific
configuration.

This theoretical investigation clearly implies that an
experimental realization of such an all-cavity EIT quantum
memory based on a cylindrical ion Coulomb crystal can
be optimized by choosing a crystal with a radius matching
the waist of the cavity modes. For single-species crystals as
used in [22, 29], the optimum crystal radius has been found
to differ slightly because of the spheroidal (non-cylindrical)
shape of such crystals [41], but similar conclusions hold.
For two-species crystals, the lighter species typically takes
the shape of a nearly perfect cylindrical rod surrounded
by the other ion species [41–43], and matches perfectly
the situation considered theoretically. Applying isotope
selective photoionization [44], Coulomb crystals consisting
of two calcium isotopes can easily be created with varying
compositions and shapes [42, 43], providing an ideal situation
to test the predictions and optimize the storage conditions.
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