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Abstract
We show that the rotational degree of freedom of a polar heteronuclear
molecular ion can be cooled through an optical coupling to the collective
motional modes of the molecular ion and a simultaneously trapped and laser
cooled atomic ion. Since the dissipative part of the rotational cooling is realized
through laser cooling of the two-ion systems motional modes, the scheme
should be applicable to a large range of molecules. As a test case for our
cooling scheme we consider rotational cooling of a MgH+ ion trapped with a
laser cooled 40Ca+ ion.

1. Introduction

Molecules are more difficult to cool than atoms because the multitude of ro-vibrational energy
levels does not generally lead to a closed optical pumping cycle needed for conventional
laser cooling. Having a translationally and internally cold molecular sample is, however,
very attractive because the preparation of the system in a unique quantum state holds the
promise for, for example, investigations of controlled chemical reactions and applications in
quantum information science. For these reasons, a number of alternative cooling methods
including Stark deceleration and buffer gas cooling have recently been developed (Bethlem
and Meijer 2003, Doyle et al 2004, Egorov et al 2002). For molecular ions, the ability to
cool the translational degrees of freedom has been thoroughly verified experimentally (Babab
and Waki 1996, van Eijkelenborg et al 1999, Mølhave and Drewsen 2000, Blythe et al 2005,
Drewsen et al 2004). For a trapped molecular ion, the large difference in energy scale between
translational energy levels of the external motion in the trap (∼MHz) and internal molecular
ro-vibrational energy levels (�1011 Hz), led us in previous work (Vogelius et al 2002) to
the assumption that the internal degrees of freedom would be unaffected by the translational
cooling. A recent experiment by Bertelsen et al (2006), in which a lower bound on the
rotational temperature of MgH+ was found, supports this assumption. If, on the other hand,
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a controllable explicit coupling mechanism is introduced, this situation can be changed, and
in the case of trapped atomic ions, it has been proven both theoretically and experimentally
that the coupling of internal and external degrees of freedom can successfully be exploited
for cooling (Wineland and Itano 1979, Monroe et al 1995). Recently, this coupling has
been applied in the construction of quantum gates as proposed by Cirac and Zoller (1995) and
Sørensen and Mølmer (1999) and as implemented by Leibfried et al (2003) and Schmidt-Kaler
et al (2003).

In the present paper, we show that similar mechanisms, that is controlled coupling between
internal molecular and external motional states, can be exploited to cool internal and external
degrees of freedom in molecular ions. The paper is organized as follows. In section 2, we
present the basics of the scheme for cooling of the internal degree of freedom of the molecular
ion. In section 3, we consider in detail the sympathetic translational cooling of a molecular
ion by a laser cooled atomic ion. In section 4, we present the dynamics of the two-ion system
during a laser-induced process where a Raman pulse connects electronic states of � symmetry.
In section 5, we present the results of the cooling at longer times (∼seconds) when the
redistribution of population induced by black-body radiation becomes effective. In section 6,
we discuss some of the complications of the proposed scheme, as well as prospects for
improvement. Finally, in section 7, we conclude.

2. Scheme for rotational cooling

The cooling concept is illustrated in figure 1. In addition to the states of collective vibrations
in the trap discussed above, the cooling scheme involves the molecular electronic ground
state, |g〉el, an optically accessible excited electronic state of the molecule, |e〉el, and a number
of rotational sub-states of the electronic molecular states, |J 〉rot, with J being the rotational
quantum number. We assume that the state |�〉 of the system can be written as a product of
these molecular states and the states of collective vibrations in the trap, i.e.,

|�〉 = |ψ〉el|J 〉rot|νCM〉|νBR〉, |ψ〉el = (|e〉el, |g〉el), (1)

where |νBR〉 and |νCM〉 denote the states of the breathing (BR) mode and centre of mass (CM)
mode, respectively. The internal vibrational state is left out of the wavefunction |�〉 since
this degree of freedom is frozen out at room temperature for light molecules. Similarly in
our specification of the state of the system, we ignore the atomic state which is not directly
affected by the molecular cooling cycle.

Since the rotational energy BJ(J+1)

h̄
≡ ωrot with B the rotation constant and J the rotational

quantum number, is much larger than the typical energy in the external modes νp�p (p = BR,
CM), the system can be considered a collection of rotational molecular states with sub-states
of vibrational motion in the trap. These external vibrational states of one of the modes are
shown in figure 1 as solid horizontal lines and the molecular part of the wavefunction is also
indicated in the figure. The molecular rotational energy levels decouple from the external
vibrational states in the trap without the application of an explicit coupling mechanism and
the total population is therefore distributed over rotational levels as a Boltzmann distribution
at room temperature (Bertelsen et al 2006). The equilibrium distribution of population for the
lowest rotational states is schematically depicted as filled areas (blue online) superimposed on
the states in figure 1 with the total area in each of the molecular rotational states proportional
to the population in that state. The atomic Doppler cooling rates between external vibrational
states in the trap, {�atom} (see section 3), result in an equilibrium distribution over external
vibrational levels in the trap potential with a temperature in the mK regime, in contrast to the
room temperature distribution over rotational levels. The distribution of population over the
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Figure 1. The proposed scheme is based on a Raman transition between two rotational states
of the molecule, |J = 2〉rot and |J = 0〉rot, both in the molecular electronic ground state, |g〉el.
The sub-states of collective motion in the trap potential are depicted as solid horizontal lines.
The equilibrium distribution without molecular cooling is a Boltzmann distribution over the sub-
states of collective motion with mK temperature superimposed on a distribution over rotational
levels at room temperature as explained in the text. The resulting distributions without molecular
cooling are schematically shown as the filled areas with the population along the horizontal axis.
Assuming that both the ground and excited electronic potentials have � symmetry, the Raman
lasers are chosen to be resonant with states of collective motion in |J = 2〉rot and higher-lying
motional states in |J = 0〉rot via an excited electronic state of the molecule |e〉el with detuning
�. The transitions between the rotational levels within the electronic ground state are mediated
by spontaneous emission and black-body radiation (not shown in the figure). The continuous
distributions depicted by the filled areas are schematic only; the physical distributions are discrete.

(This figure is in colour only in the electronic version)

external vibrational motional sub-states is thus peaked at a low vibrational quantum number,
as shown in figure 1.

Assuming � symmetry of both involved electronic potentials, an effective coupling
between the external vibrational modes and the internal rotations of the molecule is achieved
by addressing the states, |�i〉 = |g〉el|J = 2〉rot|νCM〉|νBR〉, with a Raman transition which
couples to |�f 〉 = |g〉el|J = 0〉rot|ν ′

CM〉|ν ′
BR〉 with ν ′

p > νp(p = CM, BR) via the excited
electronic molecular state, |	m〉 = |e〉el|J = 1〉rot|ν ′′

CM〉|ν ′′
BR〉. The population in |	m〉 is

maintained negligible through a large detuning. If we choose the Raman transition resonant
with a state ν ′

p with ν ′
p − νp � ν̄p, where ν̄p is the mean vibrational quantum number of

the vibrational mode p, the population in |J = 2〉rot can be transferred to high-lying external
vibrational states in |J = 0〉rot. Population within the equilibrium distribution over vibrational
levels with |J = 0〉rot can, however, not be transferred to |J = 2〉rot as the Raman transition will
be detuned below the vibrational ground state |g〉el|J = 2〉rot|νCM = 0〉|νBR = 0〉. We then
conclude that population transferred from |J = 2〉rot to |J = 0〉rot will relax to the equilibrium
distribution over vibrational levels in |J = 0〉rot from where it cannot be transferred back
to |J = 2〉rot. We have then established unidirectional pumping between the two molecular
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states where the only dissipative term originates in the spontaneous decay of the atomic
cooling cycle. We have previously shown that, with unidirectional pumping established,
black-body radiation (BBR) can be used to cool the remaining rotational degrees of freedom
in the molecule (Vogelius et al 2002, 2004a, 2004b). Unfortunately, the coupling matrix
elements for ν ′

p − νp � ν̄p are extremely small under realistic conditions. We will thus,
through numerical simulations, show that effective unidirectional pumping is possible even
when ν ′

p − νp < ν̄p. The coupling matrix elements are maximized if the lasers in the Raman
process are chosen to be counter-propagating to ensure maximal momentum transfer.

In the next section we will derive the atomic cooling and heating rates, �atom.

3. Sympathetic translational cooling of the molecular ion

3.1. Normal modes of the two-ion system

The derivation of the atomic cooling and heating rates is conveniently performed via the
normal modes of the two-ion system. We consider the motion of a laser-cooled atomic ion
and a sympathetically cooled heteronuclear diatomic molecular ion along one dimension of
a harmonic trap. We assume the dynamics of the ions in the two other dimensions of the
trap be decoupled from the motion considered here, thereby reducing the system to one
dimension. The equation of motion can conveniently be written as a sum of two independent
harmonic oscillator equations each representing a normal mode of collective vibration in the
trap (Kielpinski et al 2000, James 1998). The modes in the trap are the centre of mass (CM)
and the breathing (BR) mode, with vibrational states |νCM〉 and |νBR〉. To extract the cooling
and heating rates due to the Doppler cooling of the atoms we need to keep track of the motion
of the atoms only, and we therefore have to be able to extract the atomic degrees of freedom
from the collective modes. The approach below is readily generalized to a string of N, but
here we focus on one atomic and one molecular ion. The potential energy of the string of the
atomic and the molecular ions both with nuclear charge q in the confining potential is given
by (James 1998, Kielpinski et al 2000)

V = 1

2
qφ0

(
x2

at + x2
mol

)
+

q2

4πε0

1

|xat − xmol| . (2)

Here xm (m = at, mol) denotes the position of particle m and φ0 is a constant describing the
strength of the trap potential. The equilibrium positions of the ions in the confining potential
can then be found by minimizing equation (2) with respect to xm.

After Doppler cooling of the atomic ions, the displacement of the ions from the equilibrium
positions is small, so we may write xm = x0

m + qm(t), where x0
m is the equilibrium position of

the mth ion and
∣∣qm(t)| � ∣∣x0

m+1 − x0
m

∣∣. Following James (1998) and Kielpinski et al (2000),
we now use the second-order expansion of the potential around the equilibrium positions to
obtain an approximate expression for the Lagrangian,

L ≈ 1

2

2∑
m=1

Mmq̇2
m − 1

2

2∑
m,l=1

qmql

(
∂2V

∂xm∂xl

)
(3)

= 1

2

2∑
m=1

Mmq̇2
m − 1

2
φ0q

2∑
m,n=1

An,mqnqm (4)

= 1

2

2∑
m=1

(
dQm

dT

)2

− 1

2

2∑
m,n=1

A′
n,mQnQm, (5)
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where Qm = qm

√
φ0q, T = √

φ0q/Matt ,

An,m =




1 + 2
∑2

p 	=m

1

|um − up|3 if n = m

−2

|um − un|3 if n 	= m,

with um = x0
m

/
3
√

q/4πε0φ0, and

A′
n,m =




An,m if n = at, m = at

An,m√
µ

if n = mol, m = at ∨ m = mol, n = at

An,m

µ
if n = mol, m = mol,

with µ = Mmol
Mat

. In the derivation we used the fact that the equilibrium positions minimize the
potential, resulting in a vanishing linear term in the Taylor expansion, and then neglected the
constant term.

We find the eigenmodes of collective vibrations expressed in terms of Qm by diagonalizing
A′, i.e., as the normalized eigenvectors vk and eigenvalues ξk corresponding to the equation
A′vk = ξ 2

k vk . Now, by expanding Qm on the eigenvectors vk we may write the Lagrangian of
equation (3) in the basis of the eigenmodes, in which case it takes the form

L = 1

2

2∑
p=1

(
dQ′

p

dT

)2

− 1

2

2∑
p=1

ξ 2
pQ′2

p , (6)

where Q′
p = vp · Q. Equation (6) is immediately recognized as the Lagrangian of a

superposition of 2 harmonic oscillators with frequencies ξp and unit mass (for the MgH+, 40Ca+

system studied below we have ξ 2
CM = 1.0954 and ξ 2

BR = 2).
We may now proceed to the quantization of the vibrational motion. From equation (6),

the Hamiltonian of the system is found to be

H = 1

2

2∑
p=1

P 2
p +

1

2

2∑
p=1

ξ 2
pQ′2

p , (7)

with the Pp being the canonical momentum conjugate to Q′
p, i.e. Pp = Q̇′

p. We make the
operator substitution Pp → −i d

dQ′
p

and find [Q′
p, Pq] = iδpq . Defining ladder operators

a±
p = 1√

2

(√
ξpQ′

p ∓ iPp√
ξp

)
, (8)

we find

H =
∑

p

ξp

(
a

p
+ a

p
− +

1

2

)
,

[
a

p
−, a

q
+

] = δpq. (9)

As expected, the quantized Hamiltonian is a superposition of independent harmonic oscillator
Hamiltonians. The physical eigenfrequencies of the vibrational modes are found by
transforming T → t giving �p = ξp�trap. Similarly, the physical position coordinates
of the ions can be found by transforming Q′

p → qm.
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3.2. Atomic Doppler cooling rates, �atom

Let us now simply assume that the atomic ion can be treated as a two-level system with a
transition frequency ω0 and a natural excited state lifetime of γnatural, then if γnatural � �CM,BR

and h̄k2/(2m) < γnatural, where k is the wave-number of the laser light, a semiclassical approach
can be applied in calculating the cooling process (Metcalf and van der Straten 1999).

The cooling force on the atomic ion can in this approximation be written as

F = −2αvat
x , (10)

where vat
x is restricted to the single dimension under concern and where

α = −h̄k2 s

(s + 1)2

�γnatural

�2 + γ 2
natural

/
4
, (11)

with � = ωLaser − ω0 being the detuning of the atomic ion cooling transition and s the
saturation parameter

s = �2
Rabi

/
2

�2 + γ 2
natural

/
4
, (12)

with Rabi frequency �Rabi. It follows from equation (10) that the change in the kinetic energy
per unit time satisfies

dEat
kin

dt
= − 4α

mat
Eat

kin, (13)

with Eat
kin = p2

at

/
2mat. We may express pat in terms of normal modes. We have the following

relation between physical qat and the scaled coordinates Qat = qat
√

φ0q, so dQat/dqat = √
φ0q

and

pat =
√

φ0q

(
−ih̄

d

dQat

)
. (14)

The scaled particle position Qat is related to the eigenmodes via Q′
p = vp,at · Q, i.e.,

Qp =
∑

m=at,mol

vp,mQm, (15)

where p = CM, BR. Since, now, d/dQat = ∑
p(d/dQ′

p)(dQ′
p/dQat) = ∑

p vp,at(d/dQ′
p)

it follows from equation (14) that pat is given in terms of normal mode P ′
p =

−ih̄
√

φq/matd/(dQ′
p) operators as

pat = √
mat

∑
p

vp,atP
′
p. (16)

By equation (8), the normal mode momentum operators are given by

Pp = i

√
ξp

2

(
a+

p − a−
p

)
. (17)

Using equations (16) and (17) we may now finally evaluate the right-hand side of
equation (13) as the expectation value of the kinetic energy operator in the motional vibrational
state |ψvib〉 = ∏

p |νp〉,

〈Ekin,at〉 = h̄

2

∑
p

v2
p,atξp(νp + 1/2) (18)
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Table 1. Typical absolute values of the atomic cooling and heating rates in Hz for the centre of
mass (CM) and the breathing (BR) mode of the MgH+–40Ca+ two-ion system.

Initial νCM �cool
νCM

�heat
νCM

0 2.5 × 104

1 4.1 × 104 2.5 × 104

2 6.8 × 104 2.5 × 104

3 9.5 × 104 2.5 × 104

Initial νBR �cool
νBR

�heat
νBR

0 1.4 × 104

1 1.6 × 104 1.4 × 104

2 2.7 × 104 1.4 × 104

3 3.8 × 104 1.4 × 104

and from equation (13) we obtain

dEat
kin

dt
= − 2α

mat
�trap

∑
p

v2
p,atξp(νp + 1/2), (19)

or by the energy Eat
kin = h̄�trapξp(νp + 1/2),

dνp

dt
= − 2α

mat
v2

p,at(νp + 1/2), (20)

Hence, the atomic cooling rate reads

�cool
νp

= − 2α

mat
v2

p,at(νp + 1/2). (21)

We now turn to a discussion of the heating rate. Fluctuations in the number of absorbed
photons and recoil effects lead to a heating rate (Metcalf and van der Straten 1999)

dEheat

dt
= 1 + 2/5

4m
h̄2k2γnatural2s. (22)

However, in terms of normal modes, dEheat,p

dt
= d/(dt)

∑
p h̄�p(νp + 1/2). The atomic

absorption rate is largely independent of the vibrational state of the atom, so we assume that
d/(dt)Ep

heat is independent of p, so (22) is equal to twice the mode-specific heating rate. We
now translate into frequency and proceed with the quantization as above and find

�heat
νp

= 1 + 2/5

4mat�p

h̄k2γnaturals. (23)

The resulting temperature of the external vibrations in the trap is in the mK regime, and
the corresponding distribution is, accordingly, peaked at low vibrational quantum number (see
figure 1). Table 1 summarizes some typical cooling and heating rates for the MgH+–40Ca+

two-ion system.
Even for γnatural ∼ �CM,BR the above approximation gives reasonable results, but when

γnatural � �CM,BR, in the so-called re-solved sideband cooling regime, a full quantum
mechanical treatment is needed.
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4. Dynamics during Raman pulses: translational cooling and extraction of
effective pumping rates

With the atomic cooling and heating rates at hand we now consider the dynamics under the
Raman pulses. At the short (ms) time scale of the Raman pulse the evolution of the system
due to the BBR can be safely neglected and the evolution is described by the rate equation

dP
dt

= KP, (24)

where P is a vector with population in the states |g〉el|J 〉rot|νCM〉|νBR〉 and K is a coupling
matrix determined by {�atom} and the set of coupling rates between internal molecular states
and external motion in the trap, {�mol}. The matrix K is partitioned into different J blocks
corresponding to rotational quantum number J = 0, 1 and 2. Within each J block the
atomic rates discussed in section 3 couple nearest neighbour states for both the CM and
the BR modes. For the � states considered here, the Raman transition only couples the
J = 0 and J = 2 levels. The evaluation of the accompanying rates {�mol} proceeds
as follows. The interaction operator describing the interaction of the molecule with the
Raman pulse is VI = d · E1(x, t) + d · E2(x, t) = 1

2V
(1)
I (eik1x̂ + e−ik1x̂ ) + 1

2V
(2)
I (eik2x̂ + e−ik2x̂ )

with d the dipole operator and El (x, t) the electric field from laser l = (1, 2) with
frequency ωl and wave number kl . Assume that the frequency ω1 + � is resonant with
the molecular transition |g〉el|J = 2〉rot → |e〉el|J = 1〉rot and that the frequency ω2 + �

is resonant with the molecular transition |e〉el|J = 1〉rot → |g〉el|J = 0〉rot. The transition
rate induced by the interaction VI from an initial state, |�i〉 = |g〉el|J = 2〉rotνCM|νBR〉,
to a final state, |�f 〉 = |g〉el|J = 0〉rot|ν ′

CM〉|ν ′
BR〉, via a collection of intermediate states,

|	m〉 = |e〉el|J = 1〉rot|ν ′′
CM〉|ν ′′

BR〉, is then given by

�i→f = 1

4h̄4

∣∣∣∣∑
m

〈�f |V (2)
I e−ik2x̂ |	m〉〈	m|V (1)

I eik1x̂ |�i〉
Em−Ei

h̄
− ω1 − 1

2 iγm

∣∣∣∣
2

L(�, δ), (25)

where Ei,Em and Ef denote the energies of |�i〉, |	m〉 and |�f 〉, respectively, γm is the
line width of the intermediate state and we apply the rotating wave approximation and
ignore far off-resonant terms. Furthermore, we have introduced a Lorentzian line-width
function, L(�, δ) = 1

π
�

δ2+�2 with δ = ω1 − ω2 − Ef −Ei

h̄
to describe the effect of a laser

bandwidth �. The expression is simplified by denoting the molecular matrix element by
�±

moll
= 1

h̄
〈e|el〈J = 1|rot, V

(l)
I |J = J = 1 ± 1〉rot|g〉mol

�i→f = 1

4

∣∣�+
mol2

∣∣2|�−
mol1

|2

×
∣∣∣∣ ∑
ν ′′

CM,ν ′′
BR

〈ν ′
CM, ν ′

BR| e−ik2x̂ |ν ′′
CM, ν ′′

BR〉〈ν ′′
CM, ν ′′

BR| eik1x̂ |νCM, νBR〉
Em−Ei

h̄
− ω1 − 1

2 iγm

∣∣∣∣
2

L(�, δ), (26)

where
∣∣�±

moll

∣∣2
can be expressed in terms of the Einstein A coefficient between the molecular

states (Vogelius et al 2004a). All other molecular coupling matrix elements are negligible due
to selection rules.

It remains to calculate the transition matrix elements between collective motional states
in the trap. To this end, we recall the discussion of section 3 and use that x̂ = x0 +qCM +qBR =
x0 +

∑
p qp to obtain

〈ν ′
CMν ′

BR| eikx̂ |νCMνBR〉 = eikx0
∏
p

〈ν ′
p| eikqp |νp〉. (27)
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The first factor is just an overall phase factor that cancels out. The two factors in the product
over normal modes p are by now standard matrix elements in quantum optics text books and
in the context of laser cooling they were calculated by Wineland and Itano (1979).

The computational task is made considerably less demanding by making approximations
as follows. The eigenenergies of the excited states |	m〉 are given by Em = h̄ωge +
h̄�CM

(
ν ′′

CM + 1
2

)
+ h̄�BR

(
ν ′′

BR + 1
2

)
, where ωge denotes the free molecule transition frequency.

For reasonable detuning from the excited electronic molecular state, �CM
(
ν ′′

CM + 1
2

)
+

�BR
(
ν ′′

BR + 1
2

) � ωge −ω1. Furthermore, we assume that the linewidth of |	m〉 is independent
of the motional excitations, i.e., γm � γnatural. Under these assumptions, the denominator in
equation (26) is independent of m. We may then use completeness of the collective motional
states,

∑
νp

|νp〉〈νp| = 1, to completely eliminate the sum over intermediate states, thus
reducing equation (26) to

�i→f = 1

4

∣∣�+
mol2

∣∣2|�−
mol1

|2
∣∣∣∣ 〈ν ′

CMν ′
BR| eik1x̂−ik2x̂ |νCMνBR〉
� − 1

2 iγnatural

∣∣∣∣
2

L(�, δ). (28)

Here, � = ωge − ω1 denotes the single photon detuning from the intermediate state. Note
that equations (26) and (28) give results for the populations which cannot be distinguished on
the scale of the figures below. It takes approximately 10 h on a standard PC to obtain the rates
from equation (26) while equation (28) allows us to obtain the results in less than 3 min.

Our next task is to extract the effective rates for the J = 0 to the J = 2 transition
and vice versa corresponding to the process shown in figure 1. The effective rates make
no reference to all the external motional states, and hence a propagation of the dynamics
over the timescale of seconds, necessary for the black-body radiation to become effective,
becomes possible. We illustrate the effective-rate-extraction procedure with a calculation on
the rotational cooling of MgH+ though sympathetic Doppler laser cooling of a 40Ca+ ion and
by coupling the internal and external motions as described above. In our simulation of the
Raman process, we neglect spontaneous decay processes and use an oscillation trap frequency
of �Ca = 50 MHz for the calcium ion. The transition rates in equations (26)–(28) are evaluated
with νp, ν ′

p, ν ′′
p = 0 · · · 40, p = (CM, BR). The oscillation frequencies of the two external

modes are �CM � 50 MHz and �BR � 100 MHz. We use the linewidth (γnatural = 2π ×
22 MHz) and transition wavelength (λ = 397 nm) of the 4s2S1/2 − 4p2P1/2 Doppler cooling
transition in 40Ca+. The Rabi frequency of the atomic cooling transition is chosen to be
50 MHz. The lasers in the Raman process were tuned to resonance when ν ′

p − νp = 2. The
coupling rate �±

moll
was chosen to be 3 GHz for both transitions and the detuning from the

excited state was 750 GHz. The width of the Lorentz function was chosen to � = 1 kHz,
and the Raman coupling lasers were assumed to be pulsed with a pulse length of 1 ms. In our
simulations we have included rates under the Lorentzian profile until convergence.

The initial distribution over collective motional states was the equilibrium distribution
resulting from {�atom} alone, while the molecule was assumed to be in |J = 2〉rot. We
propagated the rate equations with this initial distribution of population for 1 ms. This is a
short time scale for the rotational transitions within the molecular ground state potential.

The full curves in figure 2 show the population distribution at representative times
during pumping. The dashed curves show the corresponding distribution without the Raman
transition. We see as expected from the discussion in section 2 that the Raman transition results
in an effective transfer of population from the initial |J = 2〉rot molecular state to |J = 0〉rot

(see figure 1).
To exploit this population transfer for cooling, the state J = 2 has to be re-populated.

This is where the black-body radiation comes in. The effect of the latter, however, sets in on
much longer time scale (∼seconds). It is unwieldy to propagate the system of equations with
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Figure 2. The distribution of the population in the CM mode of the collective motion in the trap
potential at representative times during a Raman pulse. Population in |J = 0〉rot is shown in the
left half, while population in |J = 2〉rot is depicted in the right. The simulation was started from
J = 2 and with an equilibrium distribution over the external motional states resulting from atomic
cooling. Full curves depict distributions with the Raman transition shown in figure 1, while dashed
curves represent population distributions without the Raman transition. Results for the BR mode
are very similar, except that the equilibrium distribution is shifted to the left due to the higher
eigenfrequency of this mode.

all motional states included on such a time scale. We therefore fit the evolution of population
to the solution of a system of two coupled differential equations corresponding to an effective
pumping rate, γ2→0, pumping from |J = 2〉rot to |J = 0〉rot and another effective rate, γ0→2,
pumping from |J = 0〉rot to |J = 2〉rot. This gives a near-perfect fit with γ2→0 = 5.3 ×
103 s−1 and γ0→2 = 0.18 × 103 s−1. Since the effective rate model accurately describes the
effect of the Raman pulses we may exclude the external motional states from our basis of
states and consider the long time dynamics with the effective rates above and the BBR induced
transitions between the rotational states of relevance.

5. Long-time dynamics: black-body-induced rotational cooling

The rates γ2→0 and γ0→2 are now used to propagate rate equations representing a system of
the lowest 12 rotational states labelled by i = 0, 1, 2, . . . , 11 of MgH+ when interacting with
the 300 K black-body radiation (BBR) field present in the trap and subject to the presented
cooling mechanism. In short the equation of motion of the molecular population Pi in state i
reads

dPi

dt
= −

i−1∑
j=0

AijPi +
M∑

j=i+1

AjiPj −
i−1∑
j=0

PiBijW(ωij ) +
i−1∑
j=0

PjBjiW(ωij )

−
M∑

j=i+1

PiBijW(ωij ) +
M∑

j=i+1

PjBjiW(ωij )

+ δi,0(γ2→0P2 − γ0→2P0) + δi,2(γ0→2P0 − γ2→0P2). (29)
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Figure 3. Population in the four lowest rotational states of MgH+ as a function of time, when
subject to the 300 K BBR field present in the trap and the cooling scheme shown in figure 1. The
simulation was performed using effective rates for the pumping of population between |J = 0〉rot
(full curve) and |J = 2〉rot (dashed curve) as explained in the text. The population in |J = 2〉rot
is rapidly emptied as a result of the large effective pumping rate γcool, while the population in
|J = 3〉rot (dotted curve) is removed somewhat more slowly as the result of BBR redistributions.
Finally, the population in |J = 1〉rot (chained curve) increases as a result of rotational heating
from the ground state. The population in the rotational ground state after 60 s is ∼60%, while the
population in |J = 0〉rot and |J = 1〉rot combined is larger than 80%.

Here M = 11 is chosen such that the population in higher-lying rotational states is negligible
during the cooling process. Aij and Bij are the Einstein coefficients describing spontaneous
and stimulated transitions from energy level i to j . W(ωij ) is the BBR radiative energy density
present in the trap at the resonant transition frequency ω = ωij , between levels i and j . The last
terms describe the coupling due to the effective pumping rates γ2→0 and γ0→2 and δi,0 and δi,2

denote the Kronecker delta functions. The first term in equation (29) describes spontaneous
decay from state i to states with lower energy, while the second term describes spontaneous
decay from levels with higher energy into state i. Black-body-radiation stimulated emission
from the ith state and BBR stimulated absorption from lower-lying states is then described by
the third and fourth terms, and finally, the fifth and sixth terms represent transitions due to
absorption of radiation from the ith state and stimulated emission from higher-lying states into
the ith state. The Einstein coefficients of relevance for MgH+ were given by Vogelius et al
(2004a) and the numerical values for the pumping rates were given in the preceding section.

The result of an integration of the set of equations (29) is shown in figure 3. The simulation
is performed with continuous pumping, which is a good approximation provided the repetition
frequency of the Raman lasers is much faster than the BBR rotational redistribution rate.

The J = 2 level is emptied immediately due to the comparatively large γ2→0. The
remaining rotational levels of the molecule are redistributed due to transitions mediated by
BBR and spontaneous decays. After 60 s more than 60% of the distribution is found in the
ground state. The only excited rotational state which is not emptied by γ2→0 and BBR induced
rotational redistribution is |J = 1〉rot. This is explained as rotational heating from the highly
populated |J = 0〉rot in the presence of BBR at a timescale so fast that rotational heating
from |J = 1〉rot to |J = 2〉rot cannot compensate. This effect can be somewhat reduced by the
introduction of tailored incoherent fields as discussed by Vogelius et al (2004b). Even without
the use of such fields we note that more than 80% of the total population is in the two lowest
rotational states, roughly corresponding to a rotational temperature of ∼8 K.
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(b) BBR and microwave pump on |J = 1〉rot ↔
|J = 2〉rot

Figure 4. (a) Population in the four lowest rotational states of MgH+ as a function of time, when
subject to the 300 K BBR field present in the trap and the cooling scheme shown in figure 1
and using an excited vibrational state within the ground electronic state as an intermediate state
in the Raman transition. The simulation was performed using effective rates for the pumping of
population between |J = 0〉rot (full curve) and |J = 2〉rot (dashed curve) as explained in the text.
(b) As (a) but with a microwave source (Lewen et al 1998) saturating the |J = 1〉rot ↔ |J = 2〉rot
transition.

6. Complications and prospects for improvements

The parameters used in section 4 are somewhat problematic when it comes to an experimental
implementation. Most importantly, the assumed linewidth of the laser is very small.
Furthermore, incoherent scattering on an intermediate state with linewidth of more than
10 MHz will be a problem. Thus, the achilles’ heel of the scheme is incoherent scattering on the
intermediate state, since scattering will take place on the dominant carrier transition, while the
Raman transition must take place on sideband transitions for the scheme to be effective.
The disadvantage was minimized by cooling with 40Ca+, which results in a motionally
cold sample. A modification of the cooling scheme may circumvent the problems with
incoherent scattering on the intermediate state. First, the Raman transition could be changed
to a stimulated Raman adiabatic passage (STIRAP) type transition. STIRAP transitions are
generally robust, but driving selective sideband transitions in a trap with STIRAP is not
straightforward. STIRAP on sideband transitions are discussed in another context by Vogelius
et al (2006).

In the simulations presented, we assumed an oscillation frequency �Ca = 50 MHz for
the calcium ion. Further simulations show that the scheme would indeed work for lower
oscillation frequencies, but with a lower efficiency, other parameters being equal. Though at
present a frequency of 50 MHz is relatively high for most ion traps, with the current focus
on development of micro-traps (Stick et al 2006, Seidelin et al 2006), frequencies of this size
may become standard in the near future.

When side-band laser cooling on the atomic ion is feasible it can lead to nearly exclusive
population of the ground state of the collective mode of interest (without the laser field
driving the transition in the molecular ion being present). Since this situation only requires
a first-order Raman side-band molecular transition, generally much lower laser powers are
needed and incoherent light scattering due to electronic excitation of the molecule can be
made very small. As a consequence, a more effective rotational cooling will be expected
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in this case. Experimentally, the drawback of side-band laser cooling is that this cooling is
technically much more challenging than Doppler cooling. Another approach would be to
use an excited vibrational state within the electronic ground state potential energy curve as
intermediate state in the Raman transition. The narrow linewidth of such states would allow for
smaller detunings and higher free-molecule Rabi frequencies in the Raman transition without
inducing incoherent scattering. The trade-off would be that internal transitions typically have
infrared transition frequencies, thus resulting in a very small Lamb–Dicke parameter. We
have performed investigations along the latter lines using the first excited vibrational state of
MgH+ as intermediate state. The results show that this approach is feasible. In the simulation,
we assumed the intermediate state to have a spontaneous decay rate of 50 Hz and a transition
wavelength of 4 µm. The detuning from the excited state in the Raman process was 500 MHz,
the molecular Rabi frequencies �+

mol1
and �−

mol2
of equation (28) were both 800 MHz and the

lasers in the Raman process were tuned to resonance when ν ′
p − νp = 3. The linewidth, �,

of the Lorentzian in equation (28) was 100 kHz. The remaining parameters were identical
to the ones used above. With these parameters, the rate of inhomogeneous scattering on the
intermediate state was acceptable at 30 Hz. Figure 4 shows the cooling efficiency with these
parameters. We have also included a simulation, where the |J = 1〉rot ↔ |J = 2〉rot rotational
transition is saturated with an additional microwave source (Lewen et al 1998). It appears that
cooling using the scheme of figure 1 may be possible if the intermediate state in the molecular
transition is long-lived.

7. Conclusion

In our proposal, we used internal–external state couplings to rotationally cool a molecular ion
confined in a harmonic trap with a laser-cooled atomic ion. The only dissipative term in the
cooling cycle stems from the spontaneous decay in the translational cooling of the atomic ion
and it makes no reference to molecular vibrational structure, decay rates or selection rules.
The scheme is hence fundamentally different from the previously proposed schemes (Vogelius
et al 2002, 2004a, 2004b) in which the dissipative process was spontaneous decay from an
excited molecular vibrational state.

The cooling scheme relies on cooling of the collective translational state through the
atomic cooling cycle and pumping between an excited rotational molecular state and the
molecular ground state with effective pumping rates faster than the rotational redistribution
mediated by black-body radiation (BBR). The fundamental requirement of the scheme can
therefore be summarized as γ2→0 � γBBR, where the last rate is the rotational redistribution
rate in BBR and γ2→0 describes the effective pumping rate from J = 2 to J = 0 and is found
from the rates of external cooling, {�atom}, and rates of the individual Raman transitions, {�mol}.
Finally, γBBR must be much greater than the rate of trap loss. The method is versatile and
may be adapted to polyatomic molecules, provided the rotational and, if relevant, vibrational
redistribution due to BBR can occur from any populated state to the state addressed by the
Raman laser on the required timescale.

For simplicity, we only considered Raman transitions where both the ground electronic
potential and the excited potential to which the single Raman pulse couples are of � symmetry.
If, however, one could couple to an excited state of different symmetry, say � symmetry, the
dipole selection rules would allow us to drive Raman transitions where the change in the
rotational quantum number could be �J = −1. In such a case, one would therefore be
able to avoid population of states other than the ground rotational state by letting the Raman
transition be resonant with the J = 1 → J = 0 transition. The drawback of coupling to a
excited electronic potential with � symmetry is though that such electronic potential curves
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generally lie higher in energy than the first excited potentials of � symmetry, and are hence
more difficult to reach by reasonable laser wavelengths.
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