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Abstract
We demonstrate a general technique to achieve a precise radial displacement of the nodal line
of the radiofrequency (rf) field in a linear Paul trap. The technique relies on the selective
adjustment of the load capacitance of the trap electrodes, achieved through the addition of
capacitors to the basic resonant rf circuit used to drive the trap. Displacements of up to
∼100 μm with micrometer precision are measured using a combination of fluorescence images
of ion Coulomb crystals and coherent coupling of such crystals to a mode of an optical cavity.
The displacements are made without measurable distortion of the shape or structure of the
Coulomb crystals, as well as without introducing excess heating commonly associated with
the radial displacement of crystals by adjustment through static potentials. We expect this
technique to be of importance for future developments of microtrap architectures and
ion-based cavity QED.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Radiofrequency (rf) traps provide a simple trapping scenario
for charged particles [1] and allow for stable confinement
for long periods of time [2]. Such traps have proven to
be versatile tools for a wealth of investigations, including
quantum information science [3], frequency standards [4] and
cold molecular ion physics [5].

Due to the time-varying potential inherent in rf traps the
trapped ions undergo rapid motion at the applied rf frequency.
This so-called micromotion results in Doppler shifts and
broadening of the atomic transitions [6], as well as heating
of the ions [7]. Depending on the particular type of trap
used, the rf field may have either a nodal point or a nodal
line for which the micromotion vanishes. To avoid excess
micromotion and rf heating of the ions, experiments are often
restricted to operate under conditions where the ions reside in
these regions, which are typically defined by the trap geometry.

1 Present address: Research Laboratory of Electronics, Massachusetts
Institute of Technology, Cambridge, MA 02139, USA.

This may impose severe demands on the manufacturing and
assembly of the trap, should there be a need for the ions to line
up with other components incorporated into the trap structure.
In microtrap architectures [8, 9], for instance, it might be
desirable to integrate optical fibres for cooling, manipulation
and detection of the ions [10]. In the field of cavity QED
with trapped ions [11–13], to which this work applies, the
ions should be located within the mode volume of an optical
resonator, which might only be of the order of ∼10 μm. In both
cases a method for displacing the ions with ∼μm precision
over tens of μm without inducing an excess of micromotion is
therefore of importance to future developments.

One obvious way to achieve this is by physically moving
the trap electrodes and, hence, changing the geometric centre
of the trap, relative to the external objects such as the optical
fibres or an optical resonator. In terms of practicality this
is, however, not always a viable approach, especially if these
objects are integrated into the trap structure. Here, we present
a general method for translating the nodal line of a linear Paul
trap that does not require any physical translation of any parts
of the trap structure and which can be accomplished simply
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Figure 1. Sketch of the linear Paul trap incorporating an optical resonator. Further details about the trap can be found in [14].

through external adjustments of the rf circuit residing outside
the vacuum chamber. We show that radial displacements of
up to ±100 μm can be achieved without compromising the
trapping of large ion Coulomb crystals and that positioning of
the potential minimum with respect to the axis of an optical
cavity is possible with micrometer precision.

This paper is organized as follows: in section 2 we review
the description of ions in a linear Paul trap. In section 3 we
present our scheme for displacement of the nodal line of the rf
field. In section 4 we describe the trap and the technique for
measuring the rf field nodal line position. Section 5 presents
the results based on two different realizations of the scheme,
which are then evaluated and compared against an idealized
scenario. In section 6 we perform a characterization of our
trap and compare the non-displaced configuration with the
displaced one. In section 7, we confirm that the overlap
between the potential minimum and the cavity axis is optimal
within one micrometre by measuring the coherent coupling
strength of prolate ion Coulomb crystals with the cavity field.
Finally in section 8 we conclude.

2. The linear Paul trap

Figure 1 shows a schematic of the linear Paul trap used in the
experiments. A special feature of this trap is the integration of
an optical cavity into the trap structure with the mirrors located
in-between the trap electrodes. This trap has been described in
detail here and elsewhere [14], only a brief review is presented
as reference for the remainder of the paper. The trap is operated
by applying time-varying voltages 1

2Urfcos(�rf t) to electrodes
1, 2, 3 and 10, 11, 12 and − 1

2Urfcos(�rf t) to electrodes 4, 5, 6
and 7, 8, 9, where Urf is the amplitude of the rf voltage and �rf

is the rf frequency. This gives rise to a potential in the radial
(x̃ỹ)-plane of the form

φrf(x̃, ỹ, t) = −1

2
Urf cos(�rf t)

x̃2 − ỹ2

r2
0

, (1)

where r0 is the inter-electrode inscribed radius. The sectioning
of each of the electrode rods allows for the application of
a static voltage Uend to the end electrodes, which provides
confinement along the z-axis. The electric potential near the
centre of the trap is then well described by

φend(x̃, ỹ, z) = ηUend

z2
0

(
z2 − x̃2 + ỹ2

2

)
, (2)

where η is a constant related to the trap geometry and 2z0 is
the length of the centre electrodes (2, 5, 8, 11). From the
combined potentials of (1) and (2) the resulting motion of a

single ion near the centre of the trap is described by a Mathieu
equation:

∂2u

∂τ 2
+ [au − 2qu cos(2τ)] u = 0, u = x̃, ỹ, z. (3)

We have introduced the following dimensionless parameters:

τ = �rf t

2
, ax̃ = aỹ = −az

2
= −4

ηQUend

Mz2
0�

2
rf

,

qx̃ = −qỹ = 2
QUrf

Mr2
0 �2

rf

, qz = 0, (4)

where Q and M are the charge and mass of the ion, respectively.
The solution to (3) can be written as a Fourier series, from
which regions of stable motion can be identified [15]. In
general, the trap is operated such that |a| , |q| � 1, in which
case the solution to (3) takes the simple form:

u(t) = u0 cos (ωut)
[
1 − qu

2
cos (�rf t)

]
, (5)

where the secular frequency

ωu =
√

q2
u

/
2 + au

2
�rf (6)

has been introduced. From (5), two distinct types of motion
can be identified: the slow secular motion at frequency ωu and
with amplitude u0, and the superimposed fast micromotion at
the rf frequency �rf , which has a much smaller amplitude due
to the smallness of the q-parameter. The amplitude of the
secular motion is determined by the thermal energy of the ion,
which can be minimized, e.g., by Doppler laser cooling.

A constant dc voltage may also be added to the electrodes
in order to create a static electric field in the radial direction.
For instance, if applied to electrodes 1, 2, 3, such a field will
shift the location of the potential minimum along x̃. This
modifies the equation of motion as the ion is now displaced
from the nodal line of the rf field by an amount udc into a
region of the larger micromotion amplitude. Equation (5) thus
becomes

u(t) = (udc + u0 cos (ωut))
[
1 − qu

2
cos (�rf t)

]
. (7)

This means that even for the situation where the secular motion
is essentially non-present, the amplitude of the micromotion
will still be 1

2udcqu which may become substantial though the
displacement udc is only of the order of a few microns. This
effect, commonly referred to as excess micromotion [6], shows
why the radial displacement of the ion by the application of a
static potential is undesirable and motivates an approach based
on the modification of the potential created by the rf field.

For large ion clouds, there will always be some ions
with equilibrium positions in regions not coinciding with the
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Figure 2. Two electrodes used in the derivation of the location of
the shifted potential minimum. See the text for details.

nodal line of the rf field and, hence, with large micromotion
amplitudes. The transfer of energy associated with their
driven motion into random thermal motion, through collisions
in the crystal, gives rise to an effective heating rate which
has a complex dependence on the trapping parameters, the
temperature and the number of ions [16, 17]. This counteracts
the Doppler cooling effect and results in temperatures of the
ion cloud that are typically a few tens of mK above the Doppler
limit [13, 18, 19]. Nevertheless, under good cooling conditions
the ions may crystallize to form ion Coulomb crystals and may
even exhibit long-range ordered structures [20], expected at
temperatures around 10 mK for typical trapping parameters
[21].

In less-ideal scenarios, where the equilibrium position
of the ion cloud does not coincide with the nodal line of
the rf field, the rf heating rate can be substantial resulting
in inhomogeneous broadening of the atomic transitions and
even failure to crystallize due to the high temperature of the
cloud. Moreover, this method cannot be used when working
simultaneously with different ion species or isotopes, since
the application of a static field fails to maintain the structural
symmetry of multi-component crystals [22, 23].

The present paper is focused on general aspects of large
ion plasmas and the ability to cool them into ion Coulomb
crystals. The persistent structures of these crystals will serve
as one figure of merit for the quality of the displacement of
the rf nodal line. A specific motivation for this work is cavity
QED experiments, where the need for maximizing the overlap
between a Coulomb crystal and the cavity modevolume is
paramount [13].

3. Moving scheme

For simplicity, we consider the one-dimensional case depicted
in figure 2. In the following, we shall only analyse the effect
of the rf fields and assume that no offset with respect to the
nodal line of the rf potential has been induced by static fields
(udc = 0). Instead, we assume that the rf amplitude on two
electrodes, A and B, can differ by some attenuation factor
δ < 1, such that UB

rf = δUA
rf . The zero point on the x̃-

axis in figure 2 indicates the location of the geometric centre
at the distance r0 from both electrodes. The potential from
both electrodes falls off with the inverse of the distance to
the electrode and assuming that the displacement is small
compared to the trap dimensions (|x̃| � r0), the total potential
at x̃ may be written as

φ(x̃) ∝ UA
rf + UB

rf

r0
− UA

rf − UB
rf

r0

x̃

r0
+

UA
rf + UB

rf

r0

x̃2

r2
0

+ O

(
x̃3

r3
0

)
.

(8)

L

CtC

CtC

...

Cs

Cp CtC

CtC

Figure 3. Schematic of the rf resonant circuit. Each electrode is
represented by a capacitance Ct. Adjustment of the load on each
electrode can be achieved by adding series and parallel capacitances
Cs and Cp (see dashed box). This will be treated in detail in
section 5.

Omitting contributions from terms higher than the second
order, the location of the minimum x0 is

x0 = UA
rf − UB

rf

UA
rf + UB

rf

r0

2
= 1 − δ

1 + δ

r0

2
. (9)

For small attenuations (δ ≈ 1) one therefore expects the
displacement to be linear, x0 = (1 − δ)r0, and the potential
to remain harmonic around the new minimum. This simple
analysis shows that we can lower the amplitude of the rf voltage
on the electrode rod in the direction where we wish to move
the potential minimum. The fact that the trap potential retains
its harmonic shape (for small displacements) means that the
results of section 2 still hold and that the trap should operate
normally in the new configuration.

The rf voltage applied to the trap electrodes in our
experiments is supplied by a frequency generator (HP 33120A)
and is amplified by an rf amplifier (Amplifier Research
4W1000) before being transferred to the trap electrodes via
a resonant circuit. In this circuit, the trap itself acts as
the capacitative part of an LRC circuit which is inductively
coupled to the rf power supply through a ferrite toroid
transformer with a single turn on the source side and 10 turns
on the trap side. A diagram of this circuit for the transfer
of the rf voltage to each of the trap electrodes is shown in
figure 3. It consists of two separate circuits with opposite
phases, which are created from a single rf input by winding
the output coil wires around the ferrite toroid transformer
in opposite directions. Each phase of the rf voltage is then
coupled to a set of six trap electrodes through capacitors C in
series. Missing in the figure is the part of the circuit used to
add the dc-voltage to the electrodes, omitted for the sake of
simplicity. The electric circuit for each of the electrodes thus
consists of a capacitor C = 2.2 nF and the trap electrode Ct

which, including wires, is typically around 40 pF. The circuit
therefore acts as a basic voltage divider and the voltage on one
electrode, Ue, with respect to the input voltage, Uin, is given
by

Ue = Uin

1 + Ct
C

. (10)
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Figure 4. Schematic of the linear Paul trap used in the experiments,
along with the beams used for loading and Doppler cooling of the
ions. The inset shows the relevant energy levels of the calcium ion
for Doppler laser cooling.

For our parameters, where C � Ct, the gain across the voltage
divider is close to unity regardless of the exact value of the trap
capacitance Ct, which may vary slightly from one electrode
to another. Equation (10) shows that lowering the voltage on
selected electrodes can be achieved either by increasing Ct or
by decreasing C. In section 5 we will describe how this is done
experimentally in both cases. To move the potential minimum
radially, we will make identical changes to the capacitative
loads on all three electrodes of a given electrode rod (e.g.
electrodes 1, 2, 3 in figure 1).

4. Experimental setup

4.1. Linear Paul trap description

The linear Paul trap used in the experiments is shown in
figure 4 and has been described in [14]. It consists of four
segmented cylindrical rods in a quadrupole configuration. The
length of the centre electrode is 2z0 = 5.0 mm and the lengths
of the end electrodes are 2zE = 5.9 mm. The electrode
diameter is d = 5.2 mm and the distance from the trap centre
to the electrodes is r0 = 2.35 mm (cf figure 1). The trap is
operated at a frequency �rf = 2π × 4.0 MHz and the end and
rf voltages are typically within the range Uend = 1–10 V and
Urf = 100–400 V, respectively. This corresponds to axial and
radial secular frequencies in the range ωz = 80–260 kHz
and ωr = 70–780 kHz, respectively, and to ion crystal
densities between 6.8×107 and 1.1×109 cm−3. The trap also
incorporates a moderately high-finesse cavity (F ∼ 3000) in
between the electrodes, designed to operate on the 3d 2D3/2 →
4p 2P1/2 transition of Ca+ at 866 nm (see insert of figure 4).

The trap is loaded with 40Ca+ and 44Ca+ ions by isotope
selective two-photon photoionization [24], by intersecting an
atomic beam produced by an effusive oven with a 272 nm
beam at the centre of the trap. The 40Ca+ ions produced
are subsequently Doppler cooled on the 4s 2S1/2 →
4p 2P1/2 transition by two counter-propagating beams at 397
nm along the z-axis, while in the radial (xy)-plane the ions
are sympathetically cooled through the Coulomb interaction.
An 866 nm beam, propagating along the x-axis and resonant

(a)

(b)

z y

x

Figure 5. Images of a two-component crystal of 40Ca+ (cooled and
visible) and 44Ca+ (outer part, not visible) ions. From image (a) to
(b) the 866 nm repumper is shifted from the beam illuminating the
entire crystal from the side (along x) to the cavity mode (along z).
The ellipse indicates the outer boundary of the whole 40Ca+ + 44Ca+

crystal. Exposure time: 1 s.

with the 3d 2D3/2 → 4p 2P1/2 transition, is applied to prevent
the ions from being shelved into the metastable D3/2 state.
Detection of the ions is performed by imaging spontaneously
emitted light at 397 nm onto two image intensified CCD
cameras, monitoring the ions in the (xz)- and (yz)-planes,
respectively.

4.2. Measurement scheme with fluorescence images

We now turn to the measurement of the rf potential minimum
line using fluorescence images of the crystals. Because of the
isotope selectivity of the photoionization scheme used, it is
possible to load simultaneously various isotopes of calcium
into the trap [14, 24]. The use of a two-component crystal
allows for adjusting the static radial trap potential to coincide
with the potential created by the rf field. Indeed, since the
radial secular trap frequency (6) depends inversely on the mass
of the ion, heavier ions are confined less tightly in the radial
plane. As a result, they appear on the outside of the inner 40Ca+

component. However, this only happens symmetrically if the
static potential created by the dc voltages exactly coincides
with the rf nodal line. An example of this is seen in figure 5(a),
which shows a two-component crystal consisting of 40Ca+ and
44Ca+. Only 40Ca+ is being Doppler laser cooled and visible.
The 44Ca+ ions are sympathetically cooled by 40Ca+ ions. The
appearance of symmetrical dark regions around the 40Ca+ ions
is a signature that the equilibrium location of the ion Coulomb
crystal coincides with the nodal line of the rf field.

Once the dc potential has been adjusted, the repumping
light at 866 nm is shifted from the x-axis beam to a beam
injected into the cavity (z-axis), the frequency of which is
close to resonance with the 3d 2D3/2 → 4p 2P1/2 transition.
When the repumping light is injected only into the cavity, only
the 40Ca+ ions which are located within the cavity modevolume
fluoresce, as can be seen from figure 5(b)). This allows for
the detection of the cavity mode offset with respect to the ion
Coulomb crystal centre in the plane considered and, therefore,
the absolute positioning of the nodal line of the rf field with
respect to the cavity axis.
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Cp on either electrodes 1–6 or electrodes 7–12. (a) Displacement
along the x-direction versus added load and linear fit. (b) Resonance
frequency of the circuit versus added load. The solid line is of the
form 1√

a+bCp
, where a and b are free parameters.

5. Experimental results

5.1. Addition of a parallel load

In this section we will translate the rf potential minimum line
by adding loads on the electrodes. To perform this translation
in the (xy)-plane and maintain the symmetry of the trap, the
same loads are added to each electrode of a given rod (e.g. 1,
2, 3). Increasing Ct can be achieved simply by adding a load
Cp in parallel, such that Ct → Ct +Cp in (10). The attenuation
on each electrode is then given by

U ′
e

Ue
= 1 + Ct

C

1 + Ct+Cp

C

	 1 − Cp

C
, (11)

assuming C � Ct, Cp. The expected linear scaling of
the rf field nodal line displacement with increasing value
of Cp is confirmed by the results presented in figure 6(a).
In these measurements, the capacitance Cp was added to
either electrodes 1–6 or to electrodes 7–12, as defined in
figure 1, thus resulting in a displacement along the x-direction
by as much as ∓100 μm. The red line illustrates the linearity
of the displacement. A drawback of adding a parallel load,
however, is that the resonance frequency of the rf circuit may be
substantially lowered as the load increases. Figure 6(b) shows
measurements of the resonance frequency of the circuit for
various values of the added load Cp. As for the displacement,
the effect is symmetric with respect to adding capacitance on
either side of the trap. The solid lines are of the form 1√

a+bCp
,

where a and b are free parameters. Lowering the resonance
frequency may be undesirable in practice, since, as �rf is
lowered for the same values of the stability parameters qu and
au, the secular frequency as well as the trapping potential will
be lowered, which is often unwanted.

Cs [pF]

d
is

p
la

ce
m

en
t

[μ
m

]

Figure 7. Displacement of the rf potential minimum by adding a
capacitative load Cs in series. Black squares correspond to the
displacement in the x-direction (Cs added to 1–6) while the red
circles are for displacement in the y-direction (Cs added to 1–3 and
7–9). The solid line is of the form 1

Cs
.

5.2. Addition of a series load

As aforementioned, an alternative method consists in adding
a capacitor Cs in series (see figure 3). In practice, there is
also some coupling to the ground associated with this, which
is accounted for by the parallel capacitor Cp (∼10 pF). The
attenuation on one electrode thus becomes

U ′
e

Ue
= 1 + Ct

C

1 + (Ct+Cp)(C+Cs)

CCs

	 1

1 + Ct+Cp

Cs

(12)

where as previously we have neglected terms according to
C � Ct, Cp, Cs. The resulting displacement is then inversely
proportional to the added series capacitance.

The advantage of this method is that it has a comparatively
smaller effect on the resonance frequency of the circuit. The
combined effect of the added capacitors Cs and Cp is to modify
the initial electrode capacitance as

Ct → C ′
t = Ct + Cp

1 + Ct+Cp

Cs

. (13)

The LC-circuit resonance frequency for this electrode will then
be modified according to

�′
rf

�rf
∼

√
Ct

C ′
t

=
√

Ct

Ct + Cp
+

Ct

Cs
. (14)

Provided that Cs � Ct � Cp, the resonance frequency is
therefore expected not to be changed significantly. However,
a change, even small, in the resonance frequency for one set of
electrodes causes a phase shift between the two circuits with
opposite phase, which may result in increased micromotion
[6]. Equation (14) shows that, with a careful adjustment of the
loads Cs and Cp, one can keep the resonance frequencies equal
for the two circuits. One can therefore ensure that there is no
phase shift between the two circuits with opposite phase after
the desired changes in electrode voltages have been obtained.

Figure 7 shows the resulting displacement of a single-
component Coulomb crystal for various values of Cs. Black
points correspond to the displacement in the x-direction when

5
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Figure 8. Image of a crystal of 40Ca+ ions in its final position with
respect to the cavity mode (adding the set of loads described in
section 5.2. From image (a) to (b) the 866 nm repumper is shifted
from the beam propagating along x and illuminating the entire
crystal to the cavity mode along z. The rf field nodal line has been
translated by ∼90 μm in the (xz)-plane, and by ∼70 μm in the
(yz)-plane.

Cs is added to electrodes 1–6, while the red points are for
displacement in the y-direction when Cs is added to electrodes
1–2–3 and 7–8–9. The solid line is of the form 1

Cs
, applicable

to large values of the series capacitance for which Cs � Ct, Cp

(cf (12)) and shows nice qualitative agreement.
Figure 8 shows an image where the cavity mode is clearly

seen. From this image, the overlap between the ion Coulomb
crystal and the cavity mode in the (xz)-plane is found to be
within 0 ± 2 μm. A second camera system along the x-axis
is used for detection of the overlap in the (yz)-plane, which is
found to be within 0±8 μm. Because of the optical resolution
the images only provide a crude estimate of the cavity mode
position. A more precise method to determine the overlap
between the cavity mode and the crystal centre (and therefore
the potential minimum) will be presented in section 7.

Combination of loads on all electrode rods ((1, 2, 3),
(4, 5, 6), (7, 8, 9) and (10, 11, 12)) can thus allow for arbitrary
positioning of the nodal line of the rf field anywhere in the
(xz)- and (yz)-planes. For the crystal in figure 8 the nodal
line has been shifted by 90 μm along x and 70 μm along y, in
order to achieve a near-perfect overlap with the TEM00 mode
of the optical cavity incorporated into the trap. The formation
of highly regular structures indicates that the heating rates and
excess micromotion are still low, which is very encouraging
for the applicability of the method. Furthermore, at these
settings, the observed change in the resonance frequency,
compared to the case without any additional load, is 0.3%.
We estimate the phase difference between the rf fields on
electrodes with and without the additional load to be less than
1◦ and from the model of [6] we estimate the resulting excess
micromotion to be equivalent to a temperature below 10 mK
for typical parameters for our trap. Note that for applications
where excess micromotion is a critical issue, one could e.g.
adjust the capacitive loads and use the fluorescence modulation
technique of [6] to minimize this effect further.

6. Trap characterization

We now turn to a quantitative characterization of the trap
parameters and compare the results obtained without any
additional load and with the previous set of loads, described in

section 5.2, allowing for overlapping the potential minimum
and the axis of the optical cavity integrated in the trap.

6.1. Zero-temperature charged liquid model

Both the radial and the axial frequencies are interesting
parameters to consider when characterizing the trap. However,
as our work is focused on the trapping of large ensembles
of ions, we require more information than just the trap
frequencies alone, which are typically evaluated from motional
excitation spectra of a single or a few trapped ions [25]. Rather,
we seek to confirm that the assumption of a harmonic potential,
as motivated by our simple model of section 3, is still valid
and that it applies over the entire region in space occupied by
the ions. To this end, we approximate the trapping potential
by a harmonic potential with an axial frequency ωz (4) and an
effective radial frequency equal to the radial secular frequency
ωr given by (6). Based on this assumption, we model the
ion plasma as a zero-temperature charged liquid [26], which
has previously been shown to be an accurate model for ion
Coulomb crystals at temperatures of ∼10 mK [22]. According
to the model one expects the following relation between the
ratio of the trap frequencies and the aspect ratio of the crystal,
α ≡ R/L, where R is the radius of the crystal and L its axial
half-length:

ωz

ωr

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

√
−2

sinh−1(α−2−1)
1
2 −α(α−2−1)

1
2

sinh−1(α−2−1)
1
2 −α−1(α−2−1)

1
2
, for α < 1

√
−2

sin−1(1−α−2)
1
2 −α(1−α−2)

1
2

sin−1(1−α−2)
1
2 −α−1(1−α−2)

1
2
, for α > 1.

(15)

From (4) and (6) the ratio of the trap frequencies can be written
as

ωz

ωr

=
√

−(Uend − Uoff)

β
(

Urf
2

)2
+ 1

2 (Uend − Uoff)
, (16)

where we have introduced Uoff to account for any static dc
offsets in the end voltage Uend and where β is defined as

β = q2
x

ax

Uend

U 2
rf

= −Qz2
0

Mηr4
0 �2

rf

, (17)

which for our trap is expected to be −(2.29 ± 0.06)×10−3 V−1,
based on the trap parameters [14].

Equating the right-hand sides of (15) and (16) we obtain
a relation relating the trap parameters to the aspect ratio of
the cold trapped crystals that can be used to test the agreement
with the zero temperature charged liquid model and to calibrate
the trap parameters by treating β as a free parameter. To
achieve this, we trap and cool ion Coulomb crystals of 40Ca+

for a large range of trap parameters (Urf = 100–350 V and
Uend = 2–15 V) and deduce their aspect ratios α from the
recorded images by measuring their radius and length, as
described in [27]. From a fit to the data (α versus Urf and
Uend) we find β = −(2.311 ± 0.016)× 10−3 V−1, in excellent
agreement with our prediction, and Uoff = 0.92 ± 0.05V,
where the non-zero value can be ascribed to charging effects
caused by the UV laser during loading or the trap.

To give a visual impression of the validity of the fit and
the agreement with the zero-temperature charged liquid model,
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Figure 9. Ratio of trap frequencies versus crystal aspect ratio. (a) For no additional load on the trap electrodes. (b) For loads added as
described in section 5.2. The solid black line is the theoretical curve based on the zero temperature charged liquid model (15) and the red
points are data where α has been measured directly from images of crystals and ωz

ωr
has been deduced from a fit to (16). See the text for

further details. The error bars are within the point size.
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Figure 10. (a) Intershell spacing δr measured as a function of rf voltage Urf when no additional load is applied to the electrodes. The red
line is a fit based on (19) from which the pre-factor is determined to be δ0 = 1.484 ± 0.010. (b) δr as a function of Urf when loads are added
as described in section 5.2. The red line is a fit based on (19) with δ0 = 1.48 as a fixed parameter.

we use the obtained values for β and Uoff to calculate ωz

ωr
via

(16) and, for each measurement, plot this versus α (red, solid
squares in figure 9(a)). The solid black line represents the
theoretical prediction of (15) based on the zero temperature
charged liquid model and is seen to be in good agreement with
the data.

Figure 9(b) shows the result of a similar measurement
after the nodal line of the rf field has been moved through the
addition of serial loads as described in section 5.2. Again, nice
agreement with the zero temperature charged liquid model is
seen, which supports our arguments in the previous section that
the trap potentials should not be distorted by an appreciable
amount from their initial harmonic form. From the fit we find
Uoff = (1.20 ± 0.03) V and β = −(2.10 ± 0.02) × 10−3 V−1.
Since only the rf voltage is modified by our scheme for moving
the nodal line, it is expected that the end voltage Uend and the a
parameter are unchanged and that the ratio β is modified only
as a result of the attenuation of the rf voltage. By comparison
with the value found without any additional load, we deduce
an attenuation factor of 0.96 ± 0.01.

6.2. Wigner–Seitz radius

For infinitely long crystals of more than three shells, the radial
inter-shell spacing δr is predicted by molecular dynamics

(MD) simulations to be constant across the crystal and given
by the relation [28] δr = 1.48aws, where aws is the Wigner–
Seitz radius, defined as 4

3πa3
ws = 1

ρ0
. ρ0 is the average density

of crystal, given by [22]

ρ0 = ε0U
2
rf

Mr4
0 �2

rf

= ε0η

Qz2
0

βU 2
rf, (18)

from which we can express the inter-shell spacing as

δr = δ0 ×
(

3Qz2
0

4πε0ηβ

)1/3

× 1

U
2/3
rf

. (19)

Here, we have replaced the pre-factor of 1.48 by a fitting
parameter δ0, which allows us to test the validity of the
molecular dynamics simulations for our trap.

Figure 10(a) shows the result of measurements of the
inter-shell spacing δr for different values of the rf voltage in
the configuration where no additional load has been applied to
the electrodes. To mimic the notion of ‘infinitely long’ in the
MD simulations, low aspect ratio crystals of 1.5–2 mm length
were employed for these measurements. δr is determined from
the recorded crystal images as described in [18] and the red
line shows the result of a fit to the data based on (19). The fit
gives a value for the pre-factor of δ0 = 1.484 ± 0.010, which
is a significant improvement in the determination of this factor
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Figure 11. Coherent coupling strength as a function of the crystal radial displacement from the rf nodal line in the (xz)-plane (left) and the
(yz)-plane (right). The solid lines are Gaussian fits, yielding horizontal and vertical offsets of 0.0 ± 0.7 μm and −0.5 ± 0.5 μm, respectively.

over previous measurements [18] and a strong support of the
MD simulations of [28].

A similar set of data has been obtained for the
configuration where the serial loads have been added.
Figure 10(b) shows the results, where for the fit we inserted
δ0 = 1.48 and used β as a free parameter. Again, nice
agreement with the model is found and a value of β =
−(2.137 ± 0.045) × 10−3 V−1 is obtained in good agreement
with the measurements of the previous section.

7. Overlap between the cavity mode and the
potential minimum

In order to measure more precisely the overlap between the rf
potential minimum and the cavity mode one can make use of
the coherent coupling of a thin, prolate crystal with the cavity
fundamental TEM00 field mode, as demonstrated in [29]. By
translating radially a crystal whose radius is smaller than the
waist of the cavity and monitoring the change in the coherent
coupling strength with the cavity field one can reconstruct the
transverse mode profile of the cavity field. We performed
similar experiments to those of [29] and translated the ions
along the x- and y-axes by the application of a suitable static
electric field to electrodes (1, 2, 3) and (4, 5, 6). The coherent
coupling was measured by scanning the cavity length around
atomic resonance and injecting a probe field at the single
photon level, resonant with the 3d 2D3/2 → 4p 2P1/2 transition
[13]. Due to the absorption induced by the ions the width
of the cavity reflection spectrum is broadened by an amount
proportional to the coherent coupling strength, which depends
on the overlap between the crystal and the cavity modevolume
[29]. Figure 11 shows the variation of the coherent coupling
strength with the radial translation of the crystal along two
orthogonal axes. The positions of the maxima give an offset
of less than a micrometer of the rf nodal line (0.5 ± 0.6 μm).
This confirms the near-optimal positioning of the potential
minimum with respect to the axis of the optical cavity.

8. Conclusion

In conclusion, we have developed a method for radially
translating the rf nodal line of a linear Paul trap based on

the selective adjustment of capacitative loads on the trap
electrodes. Two different methods were analysed and tested
and in both cases the results were well accounted for by
simple models. By appropriate design of the resonant circuit
for the rf voltage, all adjustments can be made outside the
vacuum chamber which makes the method attractive from a
practical point of view. In the second scheme, adding both
parallel and series loads allowed for an arbitrary translation
of the potential minimum as well as precise control of the
relative phase between the two rf circuits and the resonance
frequency.

Based on the images of the trapped ion Coulomb crystals,
we observed no additional heating effects, caused by excess
micromotion, as one would expect, had the ion location
been shifted through the adjustment of static radial potentials.
Furthermore, the validity of both the zero-temperature charged
liquid model and the scaling of the inter-shell spacing with
the Wigner–Seitz radius, when the position of the ion crystal
was shifted, supports the non-invasiveness of the technique.
Incidentally, we have found that this analysis provides a value
for the pre-factor in the relation between the inter-shell spacing
and the Wigner–Seitz radius, with an uncertainty that, to our
knowledge, is the lowest obtained thus far, and which is in
perfect agreement with MD simulations.

Finally, we employed the coherent coupling between the
ion Coulomb crystal and the TEM00 mode of the cavity
to obtain high-resolution measurements of the location of
the crystal with respect to the cavity mode axis. This
made it possible to position the ion Coulomb crystal in the
cavity mode with a precision at the micrometer level. We
believe this technique will become of high value for cavity
QED-based ion–photon interfaces and for the development
of microtrap architectures for ion-based quantum information
science.
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