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1. INTRODUCTION

Interactions between light and matter carry a special position in the study of
fundamental quantum phenomena. In the years since the invention of the laser
techniques have been refined to such a level that today it is possible to determi-
nistically create specific superposition states of matter by interaction with laser
light. The field of quantum information has in the last decade been subject to
a huge interest conceived from the fact that a computer, operating on quantum
mechanical principles, is capable of solving certain computational problems ex-
ponentially faster than a classical computer. A practical realization of such a
quantum computer could consist of a network of quantum processors which com-
municate information about their quantum states by exchanging photons that
have the information encoded in their polarization states or spatial wave func-
tions. One of the building blocks of such a scheme is a light memory interface,
which can temporarily store a photon while preserving its quantum state.

Atoms have the desired properties for temporal storage of photons. Con-
trolled mapping of a photon field onto atoms can be done using Raman adiabatic-
passage techniques [1]. This is done with single atoms and photons in the con-
text of cavity-QED [2]. Another approach, which is technically less demanding,
is to have a large number of atoms and make use of electromagnetically in-
duced transparency [3] to map photon states onto a collective excitation of an
atomic ensemble. The basic techniques for the latter approach have recently
been demonstrated in a cold cloud of sodium [4] as well as in atomic rubid-
ium vapor [5], where the classical properties of a pulse of light was temporarily
stored.

For the realization of a memory for light, that preserves the quantum state
of the light pulse during the whole storage procedure, we consider using cold
trapped ions as a storage medium. In general trapped ions are excellent targets
for quantum optics experiments, because they exhibit good spatial localization
and have internal states with very long decoherence times. Examples where
these properties are exploited include the experimental entanglement of four
ions [6] and the probing of the standing wave field of an optical resonator using
a single trapped ion [7].

The main theme in the present Thesis is quantum memory for light using
cold trapped ions. The trapped ions used for the light memory are cooled by
means of sympathetic cooling with another Doppler laser cooled ion species.
When Doppler laser cooling is applied to trapped ions temperatures in the
milliKelvin range are reached. Here the thermal kinetic energy of the ions is so
low compared to the mutual Coulomb repulsion of the ions that a crystalline
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ordering of the ions is observed and a so-called ion Coulomb crystal is formed. In
the proposed quantum memory scheme the ion Coulomb crystal will consist of
40Ca+ ions which are sympathetically cooled by Doppler laser cooled 44Ca+ ions.
In contrast to the typical quantum optical experiments on trapped ions, where
the number of ions are limited to only a few ions, this ion crystal will consist
of several thousand calcium ions. The production of these big two-isotope ion
Coulomb crystals is done using a photo-ionization technique.

Due to technical limitations of the trapping potentials and the Coulomb re-
pulsion between the ions the obtainable ion densities in an ion Coulomb crystal
is quite limited typically in the range 107–108 cm−3. The ion density limitation
in turn restrains the optical density of the ion Coulomb crystals and as a con-
sequence we need to follow the original proposal of Fleischhauer et al. [8] and
increase the coupling between the photon to be stored and the ions by placing
the ion Coulomb crystal in the mode of an optical resonator. The situation is
accordingly that we have a collective coupling between a few thousand calcium
ions and the mode of an optical resonator. The advantage is that the technically
challenging strong coupling requirement can be relaxed when the coupling is col-
lectively enhanced. The trapping potentials furthermore allow for an excellent
positioning control of the ions into the mode of the optical resonator.

In this Thesis the first steps towards realizing this quantum memory in ion
Coulomb crystals are presented. The current status of the project is that an ion
trap with an integrated optical resonator has been built and installed in an ultra
high vacuum chamber. The Thesis will focus on the ideas and reflections that
have concluded in the construction of the vacuum chamber and the ion trap as
well as the future plans for the evolvement of the quantum memory project. We
will also in the context of quantum memory in ion Coulomb crystals address
some experiments on the structure and the production of two isotope calcium ion
Coulomb crystals. The Thesis hence covers many facets from different areas of
physics including quantum optics, spectroscopy, ion trap physics, laser cooling,
and plasma physics, all of which it is my hope that the reader will appreciate
getting acquainted with.

Outline of the Thesis

The Thesis is divided in two major parts. In the first part (Chapters 3–6)
experiments with Ca+ ions trapped in a linear Paul trap are described. A
common aspect of these experiments is that they are all of relevance for the
project of light storage in ion Coulomb crystals, whether that is the production
of large bi-crystals or the structural properties of these bi-crystals. In the second
part (Chapters 7–9) we approach the subject of light storage in ion Coulomb
crystals more directly with an introduction to the subject and a description of
the experimental status of the project.

Chap. 2 A short description of the basic theory of the linear Paul trap and
Doppler laser cooling of ions followed by a discussion of the physics of
single- and multi-species Coulomb crystals.



1. Introduction 3

Chap. 3 Description of the experimental equipment used for the experiments
described in chapters 4–6, but also of relevance for the discussion of the
light storage in Coulomb crystals.

Chap. 4 After a general introduction to the photo-ionization ion trap loading
technique we use in Aarhus, spectroscopic measurements of the transition
used for the photo-ionization are presented. The quantitative results of
this part have been published in Ref. [III]. At the end the isotope selec-
tivity of the loading scheme is presented.

Chap. 5 Charge transfer rate measurements between neutral 40Ca atoms and
singly charged calcium ions of another isotope are presented. From the
results an estimate of the charge transfer cross section is given.

Chap. 6 Crystal structures of one- and two-species ion Coulomb crystals are
studied experimentally. A special emphasis is put on the lattice structure.
The experimental results are supported by molecular dynamics simula-
tions.

Chap. 7 General introduction to the theory behind the quantum memory sche-
me on which the light storage in ion Coulomb crystals is based. The
chapter is rounded off with an overview of the current experimental status
of quantum memory for light.

Chap. 8 This chapter deals with light storage in trapped ions. After presenting
basics of the proposed scheme for light storage in ion crystals the fidelity
of single photon storage is estimated from numerical simulations. Con-
siderations concerning the more technical side of the Paul trap with an
integrated resonator are presented next.

Chap. 9 Presentation of the real trap setup as well as the vacuum chamber in
which it is installed. At the end of the chapter some measurements that
characterize the optical resonator are presented.

Chap. 10 Summary and outlook.



2. BASIC THEORY

This chapter begins with an introduction to the theory of ion trapping in the
linear Paul trap followed by a discussion of Doppler laser cooling with special
attention to cooling of Ca+ ions. Next the theory of cold confined ion plasmas
is given and the end of the chapter the concept of sympathetic cooling in multi-
component plasmas is presented.

2.1 Linear Paul trap theory

The linear Paul trap is an experimental construction that can trap and confine
charged particles. All the experiments on trapped ions presented in this Thesis
are performed in a linear Paul trap, and the light memory ion trap construc-
tion presented in Chap. 9 is also based on the linear Paul trap design. The
predecessor of the linear Paul trap was the quadrupole mass filter invented by
Wolfgang Paul [9] back in the 1950’s, while the linear Paul trap was developed
about 30 years later [10]. Other types of ion traps include the hyperbolic Paul
trap [11], the Penning trap [12], and the race-track trap [13]. In present section
we will develop the basic theory of the linear Paul trap (see also Ref. [14]) and
introduce the quantities relevant for the Thesis.

The Paul trap design we shall consider in this Thesis consists of four electrode
rods situated in a quadrupole configuration as depicted in Fig. 2.1. Each of
the 4 electrode rods are sectioned in 3 pieces, two end-cap electrodes and a
center-electrode, such that the trap consists of a total of 12 electrodes on which
individual voltages can be applied. According to Earnshaws theorem it is not
possible to confine a charged particle spatially using static electric potentials
only. To remedy this time varying electric fields are used in the linear Paul trap.
More specifically we obtain a time varying quadrupole electric field between the
electrodes by applying the voltage 1

2Urf cosΩrft to the two of the diagonally
opposite electrode rods, while the voltage − 1

2Urf cosΩrft is applied to the two
remaining electrode rods (see Fig. 2.1). If the proper geometry is chosen the
resulting electric potential becomes U(x, y, z) = − 1

2Urf cosΩrft[(x2 − y2)/r2
0 ],

where r0 is the inter electrode inscribed radius. Note that the electric potential
depends on x and y and thus only affects the charged particle motion in the
xy-plane. To confine the particle axially we apply an additional static bias
voltage, the end-cap voltage Uec, to the 8 end-cap electrodes. Again, if the
right trap geometry is chosen, the axial electric potential near the trap center
derived from the end-cap potential becomes approximately φz(z) = ηUec

z2

z2
0
,
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Uec

Uec

1
2Urf cosΩrf t

1
2Urf cosΩrf t

− 1
2Urf cosΩrf t

− 1
2Urf cosΩrf t

2r0
2z0

x̂

ŷ
ẑ

(a)

x̂ŷ

x̂′

ŷ′

(b)

Fig. 2.1: (a) Linear Paul trap electrode configuration with applied voltages. We will
refer to the ẑ-axis as the trap axis (dotted line). (b) End-view of the Paul
trap with the definitions of the x̂ and ŷ axis (black). The x̂′ and ŷ′ axis
(grey) are used elsewhere.

where the axial geometric factor η is related to the trap geometry and 2z0 is the
center-electrode length. Adding the radial part of the end-cap potential to the
sinusoidally varying electric potential we get

φ(x, y, t) = −1
2
Urf cosΩrft

x2 − y2

r2
0

− 1
2
ηUec

x2 + y2

z2
0

(2.1)

for the radial trapping potential. The equations of motion of a particle influ-
enced by the electric potential in Eq. (2.1) can be rewritten as

d2ν

dτ2
+ (a− 2qν cos 2τ)ν = 0, ν = x, y, (2.2)

where we have made the substitutions

τ =
Ωrft

2
, a = −4

ηQUec

z2
0MΩ2

rf

, qx = −qy = 2
QUrf

Mr2
0Ω2

rf

. (2.3)

The differential equations (2.2) are well-known in literature as the Mathieu
equation [15]. The Mathieu equation has stable solutions for certain values of
the a and q parameters. In Fig. 2.2(a) the stability regions of the Mathieu
equation are mapped out in (q, a)-space. Because stable motion in the axial
direction require that a < 0 the region of stable particle motion is restricted
to the region mapped out in Fig. 2.2(b). In some situations it is desirable to
have more than one ion species trapped simultaneously. This requires that there
exists trapping parameters for which ion species in question all have a and q
parameters that give stable ion motion. As evident from Eq. (2.3) the a and q
parameters depend on the charge-to-mass ratio Q/M and stable motion of the
simultaneously trapped ion species is thus obtainable if their Q/M values are
sufficiently close to each other.



2. Basic theory 6

0 2 4 6 8 10

-4

-2

0

2

4

6

8

10

0 2 4 6 8 10

-4

-2

0

2

4

6

8

10

aa

qq

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

0 0.2 0.4 0.6 0.8 1 1.2 1.4

-0.8

-0.6

-0.4

-0.2

0

0.2

aa

qq

(b)

Fig. 2.2: (a) Stability diagram of the Mathieu function in the (q, a)-plane. Regions
with stable solutions are marked with grey. (b) Region of stable motion of
a particle in the linear Paul trap. Both diagrams also apply to negative
q-values, i.e., the stability regions are mirrored in the a-axis.

For |a|, |q| � 1 the solution to the Mathieu equation takes the simple form

ν(t) = ν0(1− qν cosΩrft) cosωrt, (2.4)

where the secular frequency

ωr =

√
q2/2 + a

2
Ωrf , (2.5)

has been introduced. This equation describes a slowly oscillating radial mo-
tion, the secular motion with a small amplitude, fast oscillating motion, the
micromotion, superposed on the secular motion. Notice that the micromotion
is perpendicular to the trap axis defined as the z-axis in Fig. 2.1.

Averaging out the fast motion of Eq. (2.4), the three dimensional motion of
the trapped ion can be described by the harmonic pseudopotential

Φps(r, z) =
1
2
M(ω2

rr2 + ω2
zz2), r2 = x2 + y2, (2.6)

where the axial trapping frequency is given by ωz =
√
−a/2Ωrf . It is important

to note here that while the pseudopotential is clearly independent on the mass of
the ions axially this is not the case radially. It is easily apparent from Eq. (2.6)
that for ions of equal charge, but different mass, the lighter ions are stronger
bound towards the trap axis. This means that when different species of ions are
simultaneously trapped they will separate spatially with the lightest ions closest
to the trap axis.

2.2 Doppler laser cooling theory

In the following we will discuss Doppler laser cooling of a trapped ion. The
Doppler cooling is based on the absorption and emission of photons from a laser
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field and the Doppler shift of the resonance frequency of an ion moving in the
laser field. The experiments considered in this Thesis are all performed with
the ions moving in a weakly binding potential for which the trap oscillation
frequency ωz is much smaller than the natural linewidth Γ of the transition
used for the Doppler cooling. When this is the case the ion can be regarded as
a free atom as the timescale of the absorption-emission process responsible for
the laser cooling is much shorter than the timescale for which the ion changes
its motional state due to the trap potential. In the case of calcium the natural
linewidth of the transition used for Doppler cooling is Γ ∼ 2π × 22 MHz and a
typical trap frequency in the experiments considered here is ωz ∼ 1 MHz. In
the regime where the natural linewidth of the cooling transition in the ion is
much smaller than the trap frequencies sideband cooling to near the motional
ground state of one or a few trapped ions becomes feasible [16, 17]. Currently
the Aarhus ion trap group is working towards performing sideband cooling on
a few ions [18].

The basic mechanism responsible for Doppler cooling can be understood by
considering two counter-propagating laser beams of frequency ωL interacting
with a two-level atom moving in one dimension towards one of the laser beams
with velocity v. The resonance frequency of the atom is denoted ωa. Assuming
that the lasers are red detuned with respect to the atomic resonance, i.e., that
ωL < ωa, we know that for a certain velocity v the atom is resonant with the
laser light that propagates towards the atom, because of the Doppler shift. On
the other hand the laser light that propagates in the same direction as the atom
is shifted away from the atomic resonance. The atom will thus preferentially
scatter photons that propagate in the opposite direction of the atom, and the
atom is accordingly slowed down, because of the momentum transfer from the
light field. After many scattering events an equilibrium state is reached, where
the temperature is ultimately set by the random nature of the scattering process.

Consider a two level ion with ground state |g〉, excited state |e〉, and transi-
tion frequency ωeg interacting plane wave laser field given by

E(r, t) = ε̂E0 cos(ωLt− kr), (2.7)

where ωL is the laser frequency, k = kẑ is the wave vector of the light, and ε̂ is the
polarization of the light. The Hamiltonian in the rotating wave approximation
interaction picture is

Hrwa =
�Ω
2

ei(kr−ωLt)|e〉〈g|+ h.c., (2.8)

where the Rabi frequency is given by Ω = −(eE0/�)〈e|r|g〉. In this picture the
rate at which photons from the field are scattered by an ion is given by

γ = Γ
|Ω|2/4

δ2 + |Ω|2/2 + Γ2/4
= Γ/2

s(
δ

Γ/2

)2

+ 1 + s

, (2.9)

where we have introduced the saturation parameter s ≡ 2|Ω|2/Γ2 and the laser
detuning δ ≡ ωL−ωeg. When the ion is moving with velocity v the frequency of
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the incoming light is Doppler shifted to first order by −kv. This can be taken
into account by making the substitution δ → δ − kvz in Eq. (2.9):

γ(δ, vz) = Γ/2
s(

δ−kvz

Γ/2

)2

+ 1 + s

. (2.10)

We neglect recoil kicks due to spontaneous emission for the time being, because
the net force on the ion averaged over many scattering events is zero due to the
symmetry of the angular distribution of the spontaneously emitted photons. The
radiation pressure force on the ion from the laser field is consequently given by
the momentum transfer from the absorption of one photon from the laser field
multiplied with the scattering rate in Eq. (2.9) giving the force F+(k, vz) =
�kγ(vz, k) along the ẑ direction. Expanding the force around v = 0 gives F+

∼=
F0 − βvz , where the coefficients are given by

F0 =
Γ
2

s(
δ

Γ/2

)2

+ 1 + s
and (2.11)

β = −4�k2 s[(
δ

Γ/2

)2

+ 1 + s

]2

δ

Γ
. (2.12)

It is seen that the force from one laser beam propagating along the ẑ-axis is a
sum of two contributions, i.e., a constant light pressure and a force that depends
on the ion velocity.

In order to counteract the constant light pressure F0 a counter-propagating
laser beam with the same frequency and intensity as the laser field described
by Eq. (2.7) is sent in providing the force F−(k, vz) = −�kγ(−k, vz) along the
ẑ-axis direction. Provided that the ion is not saturated in the scattering process,
i.e., s � 1, the scattering force from the two counter-propagating laser beams
can be added giving a total laser cooling force F� = �kγ(k, vz)− �kγ(−k, vz).
For small velocities the force becomes F� = −2βvz which is illustrated in
Fig. 2.3. For negative laser detuning (δ < 0) the coefficient β is positive, i.e.,
the velocity dependent force opposes the ion velocity and therefore viscously
damps the ion motion. This mechanism thus effectively leads to a cooling of
the ion and the rate at which kinetic energy of the ion is removed is given by
Rcool = −〈F�vz〉 = 2β〈v2

z〉.
If we take the spontaneous emission process into consideration it is true as

mentioned that the average momentum transfer after many spontaneous emis-
sion cycles is zero, but the rms momentum transfer is finite. This momentum
diffusion (see Ref. [19]) introduces a heating mechanism of the ion and the rate
of heating is approximately given by Rheat = 2γ× (�k)2

2m . The factor 2γ is just the
rate of emission rate when we have two laser beams in the low saturation limit,
while the energy (�k)2

2m is the recoil energy of the ion when emitting a photon.
The absorption process introduce a similar heating process when the ion moves
at low velocity, because in this case there is no preferred direction of absorption
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Fig. 2.3: Velocity dependence of the laser force on an ion for two counter-propagating
cooling lasers (full line), when the detuning is δ = −Γ/2 and the saturation
parameter is s = 0.1. See text for further details about the different graphs.

and the ion will get a random kick in the ẑ direction. The heating rate of the
absorption process is on the order Rheat, and we therefore get that the total
heating rate from absorption and spontaneous emission becomes 2Rheat. Using
δ = −Γ/2 as the optimal choice of detuning and equating Rcool = 2Rheat we get
the steady state kinetic energy of the ion is �Γ/4. Defining the ion temperature
through the kinetic energy of the ion kBT/2 = m〈v2

z〉/2 we find the Doppler
temperature

TD =
�Γ
2kB

, (2.13)

which is the limiting temperature when Doppler cooling is employed.
The Doppler cooling discussed here only affects the motion in the ẑ direction.

Doppler cooling of a free particle in all 3 dimensions would require 6 in pairs
counter-propagating laser beams. In the case of trapped ions Coulomb inter-
actions between the ions introduce momentum transfer between the transverse
(x̂–ŷ) directions and the axial ẑ direction. This coupling leads to sympathetic
cooling of the transverse degrees of freedom and in most cases it is only neces-
sary to cool the ions in the ẑ direction using counter-propagating beams. In the
special case where we have a few ions on a linear string aligned along the trap
axis (see Fig. 2.1) we usually employ laser cooling both along the trap axis and
in one of the transverse directions.

2.2.1 Doppler laser cooling of 40Ca+

The ion trap experiments described in this Thesis are all performed on the Ca+

ion. In the present section we will accordingly discuss the Doppler laser cooling
of 40Ca+. The 40Ca+ ion has its electronic ground state configuration with a
single optically active electron outside a closed shell. The level-scheme of the
40Ca+ ion is presented in Fig. 2.4. The 4S1/2 ground state is coupled via dipole
allowed transitions to the excited 4P1/2 and 4P3/2 states at 397 nm and 393 nm,
respectively. The P -states are in turn coupled via dipole-allowed transitions to
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Fig. 2.4: Level scheme for Doppler cooling of Ca+ with wavelengths and partial decay
rates for the dipole allowed transitions [20]. The thick lines indicate the
transitions most frequently used for Doppler cooling of Ca+. In the following
we the shorter notation 4S1/2, 4P1/2, etc., for the states of the Ca+ ion.

the 3D3/2 and 3D5/2 states at wavelengths 866 nm, 854 nm, and 850 nm (see
Fig. 2.4). The D-states are metastable with natural lifetimes of ∼ 1 s. The
decay of the D-states is to the ground state.

The partial decay rates of the excited states are included in Fig. 2.4. The
two most encountered transitions in this Thesis are the 4S1/2 ↔ 4P1/2 and the
3D3/2 ↔ 4P1/2 transitions, which have the decay rates Γ397 = 2π × 20.6 MHz
and Γ866 = 2π× 1.69 MHz, respectively. Here the indices refer to the transition
wavelength in nm.

From the level scheme shown in Fig. 2.4 we see that there is no closed
two-level transition that can be used for laser cooling of the 40Ca+ ion, so the
Doppler cooling theory discussed for a two-level ion in Sec. 2.2 is at first sight not
applicable. Doppler cooling of 40Ca+ ions is nevertheless possible if more than
one laser frequency is used, and furthermore does the Doppler cooling theory
presented in Sec. 2.2 also approximately apply to the laser cooling of 40Ca+

ion. The most frequently used transition for Doppler cooling in the experiments
described in this Thesis is the 397 nm 4S1/2 ↔ 4P1/2 transition. From the
excited 4P1/2-state the ion can decay via two channels, namely back to the
ground state and to the metastable 3D3/2 state. The branching ratio between
these two channels is Γ397/Γ866 ≈ 12, so in order to avoid that the ion ends up
in the metastable state after only a few cooling cycles of the 397 nm transition
we deplete the 3D3/2 level by adding an 866 nm laser. The large branching ratio
between the two decay channels implies that most of the cooling cycles are on
the 4S1/2 ↔ 4P1/2 transition, and as the 397 nm photon momentum is about
twice the momentum carried by an 866 nm photon it is a good approximation
to expect the cooling limit to be given by the Doppler cooling limit for the 397
nm transition, which is

TD = 0.5 mK. (2.14)

To achieve optimal cooling of the 40Ca+ ions we also need to consider the
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magnetic substates of the three states involved in the cooling scheme. First of all
it is advantageous to avoid optical pumping into one of the magnetic substates
of the 2S1/2 state. This is avoided by the use of laser light that is π-polarized
with respect to the quantization axis defined by the bias magnetic field, or using
any combination of σ+, σ−, and π-polarized light. For the 2D3/2-state optical
pumping into the substates with magnetic quantum numbers m3/2 = −3/2, 3/2
and so-called dark resonances [21] can be avoided by applying an additional
weak magnetic field perpendicular to the direction of propagation of the cooling
lasers and the polarization of the 866 nm re-pump laser beam. We have used
this method in the experiments described in this Thesis, but for the quantum
memory trap project it is desirable to have a very small magnetic field in the
trap region directed parallel to the cooling laser propagation direction. For such
a magnetic field we can prevent optical pumping by fast rotation of the 866 nm
re-pump cooling laser light polarization by using an electro-optic modulator.

The 4S1/2 ↔ 4P3/2 transition at 393 nm can be used for Doppler cooling of
40Ca+ as well. The only difference is that we here need two re-pump lasers at
854 nm and 850 nm (see Fig. 2.4). Apart from this the discussion above also
applies to this transition and we find the same Doppler cooling limit for the 393
nm transition, namely TD = 0.5 mK.

2.2.2 Doppler laser cooling of Ca+ isotopes

We have restricted the discussion in Sec. 2.2.1 to cooling of 40Ca+ ions, but
the discussion has a more general scope as Doppler laser cooling of the other
naturally occurring calcium isotopes is done using same techniques, with 43Ca+

as the only exception as this has a hyperfine structure because of its non-zero
nuclear spin. In Table 2.1 the measured isotope shifts relative to 40Ca+ of the
397 nm and the 866 nm transitions in Ca+ have been listed for future reference.
The isotope shifts are given by the expression νA − ν40, where ν40 and νA are
the resonance frequencies of the transition in question in the 40Ca+ ion and the
ACa+ ion, respectively. Note that the isotope shifts in Table 2.1 are much larger
than the spectral width of the dipole allowed transitions in the Ca+ ion, when
Doppler cooling is applied. When more than one calcium isotope is trapped this
implies that laser cooling can be applied selectively to one ion species while the
electronic states of the other ion species are unaffected.

2.3 Ion Coulomb crystals

The study of crystallized charged plasmas was initiated in the 1930s by Wigner
who introduced the theory of the Wigner crystal [24]. Several model systems
of these crystallized charged plasmas have been studied since then. The over-
all confinement the plasmas, such as an ion plasma, is done by a neutralizing
background, e.g., electromagnetic fields. The crystallized state of an electron
plasma in a metal is one example of such a model system [25]. Here the im-
mobile metallic ions constitute the neutralizing background that confines the
mobile valence electrons. On a macroscopic scale the crystallized plasmas can
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4S1/2 ↔ 4P1/2 3D3/2 ↔ 4P1/2
42Ca+ 425(4) -2366(59)
43Ca+ 672(9) -3163(94)
44Ca+ 842(3) -4509(24)
46Ca+ 1287(3)
48Ca+ 1696(4)

Tab. 2.1: Experimentally determined isotope shifts in Ca+ relative to the 40Ca+ res-
onance (νA − ν40) for the transitions used in the basic Doppler laser cooling
scheme. The data was taken from [22] for the 4S1/2 ↔ 4P1/2 transition and
from [23] for the 3D3/2 ↔ 4P1/2 transition. All shifts are given in units of
MHz.

be realized in dusty plasmas consisting of charged dust particles of ∼ µm size
confined by electromagnetic potentials [26].

Ion plasmas confined in an ion trap by electromagnetic fields can also un-
dergo crystallization to constitute a state of matter called ion Coulomb crystals.
In Nature ion Coulomb crystals are believed to exist in the interior of white
dwarf stars, where fully ionized nuclei moving in a neutralizing background of
electrons constitutes the ion plasma [27].

The thermodynamics of plasmas is described by the plasma coupling para-
meter Γ which is the ratio of the inter particle Coulomb energy to the thermal
energy. For an one component plasma at the temperature T we have

Γ =
Q2

4πε0awskBT
, (2.15)

where Q is the charge of the confined particles, and aws is the Wigner-Seitz
radius defined by 4

3πa3
ws = n−1

0 for the zero temperature ion density n0.
The value of the coupling parameter determines what the thermodynamical

state of the plasma is. The transition from the gas phase to the liquid phase,
where short range order governs the plasma, occurs at Γ 	 2 [28] and for Γ > 170
the plasma is in the solid phase [29, 30], which is characterized by long range
order. For an one component plasma of infinite extend the body-centered cubic
(bcc) lattice is the predicted ground state structure of the crystallized state.
Then the particle density is n0 ∼ 108 cm−3, which is characteristic for our
experiments with singly charged trapped ions, the onset of the of the plasma
crystallization occurs at temperature T ∼ 10 mK. This temperature is reachable
by Doppler laser cooling, where for instance the Doppler cooling limit of 40Ca+

ions is TD ∼ 0.5 mK (see Sec. 2.2.2).
The Debye length of the ion plasma is given by

λD =

√
kBT ε0
nQ2

(2.16)

and it is the characteristic length for which the electric field of a test charge Q
inserted in the plasma is screened out by rearranging the plasma particles. Here
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(a) Spherical (R = L) (b) Prolate (R < L) (c) Oblate (R > L)

Fig. 2.5: Possible spheroidal shapes of the ion Coulomb crystal. The z-axis corre-
sponds to the trap axis in the linear Paul trap.

n is the plasma particle density. A sample of charged particles is considered a
plasma and the theory of charged plasmas is applicable if the spatial extend of
the sample is larger than the Debye length. Insertion of the temperature T � 10
mK and the ion density n = 108 cm−3, characteristic for ion Coulomb crystals,
the Debye length becomes λD � 0.6 µm, which is much smaller than the inter
ion spacing in the Coulomb crystal and certainly smaller than the spatial extend
of the ion crystals encountered in this Thesis.

The predicted ground state structure in a crystallized one component plasma
of infinite extend is a bcc lattice structure. The ion Coulomb crystals treated in
this Thesis are of finite extend though with a shape determined by the trapping
potentials and the structural properties are thus effected by the crystal surface.
For most of the ion Coulomb crystals treated here the bulk crystal structure is
not even necessarily a 3D long range ordered lattice structure, because the ion
crystal surface boundary arrange the ions in so-called shell structures instead.
A spherically round ion Coulomb crystal is an example such a shell structure,
where the ions will arrange in concentric spheres of different radii throughout the
crystal. Each sphere constitutes a shell in the crystal. The inter shell distance is
equivalent for all the shells and determined by the ion density of in the crystal.

The general shape of the ion plasma is not spherical. In the linear Paul
trap where the ions are confined by the potential Φps(r, z) = 1

2M(ω2
rr2 + ω2

zz2)
a measure of the trap anisotropy can be given by the parameter α ≡ ω2

r/ω2
z .

For a given number of trapped ions the zero temperature crystal structure only
depends on α. For large values of α the ions will form an inhomogeneous linear
string along the z-axis. As the value of α is decreased a zig-zag pattern appears
near the trap center. When α is decreased even further a helical structure
develops [31]. For sufficiently small values of α the ions arrange in concentric
spheroidal shell structures with the z-axis as the axis of revolution. The spheroid
structures are prolate for α > 1 and oblate for α < 1. The spherical, prolate
and oblate spheroidal shapes are depicted in Fig. 2.5.

The ion density n0 in the ion Coulomb crystal at zero temperature can be
found by noting that the force Fion on each ion in the plasma in equilibrium
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is zero, i.e., Fion = −Q∇φtotal = 0, where φtotal is the total electric potential
in the crystal. From the requirement that the derivative of φtotal should be
zero we see that φtotal is constant inside the plasma. The total potential is
furthermore given by the sum of the harmonic pseudopotential Φps

Q (Eq. (2.6))
and the electric potential from the ion plasma φion, i.e.,

φtotal =
Φps

Q
+ φion. (2.17)

Applying Laplaces’ equation ∇2φtotal = 0 to Eq. (2.17) and using Gauss law in
the ion plasma ∇2φion = −Qn0/ε0 we get the identity

2Mω2
r

Q
+

Mω2
z

Q
=

Qn0

ε0
, (2.18)

which can be rewritten using the identities in Sec. 2.1 to yield the expression

n0 =
q2

4
ε0MΩ2

rf

Q2
=

ε0U
2
rf

Mr4
0Ω

2
rf

(2.19)

for the zero temperature ion density of an ion Coulomb crystal. Notice that the
density does not depend on the applied end-cap potential Uec, the total number
of ions trapped in the ion Coulomb crystal or the charge Q of the trapped ions
and that the density is uniform.

2.4 Sympathetic cooling and bi-crystals

In some situations it is desirable to be able to cool a trapped ion species without
applying laser cooling directly. The most obvious reason is that only a very
limited span of ion species is actually easy to laser cool. Another reason, which
is important for the work in this Thesis, is that continuous laser cooling of a
particular ion prohibits that the ion at the same time can be used for quantum
optics experiments where the electronic quantum state of the ion is involved.
Trapped ions which are not laser cooled directly can be cooled by collisional
coupling via the Coulomb interaction to other trapped ions that are directly
laser cooled. Applications of this sympathetic cooling of ions in linear Paul traps
are numerous because the only requirement is that the ions can be trapped
simultaneously with a laser coolable ion species. In practice this means that
sympathetic cooling in linear Paul traps is applicable to ion species with mass-
to-charge ratio in the range 2 to ∼ 500 as the laser coolable ions range in
mass-to-charge ratio from 9 (9Be+) to 138 (138Ba+)1. This makes sympathetic
cooling highly relevant for studies of molecular ions [32, 33],[IV].

Laser cooling of multi-component plasmas containing at least one laser coola-
ble ion species leads in most cases to crystallization of the ion plasma. Crystal-
lized two-component plasmas are also referred to as bi-crystals. Earlier experi-
ments have demonstrated that is possible to crystallize an ion plasma with only

1 See Sec. 2.1 for comments on the stability on ion motion.
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∼ 5% of the ions being directly laser cooled if the mass difference between the
two ion species is not too big [34], but generally a larger fraction of laser cooled
ions in the plasma is needed for crystallization to occur [35].

In this Thesis we are concerned with multi-component ion Coulomb crystals
consisting of different isotopes of singly charged calcium ions. A typical situation
is that we have a bi-crystal consisting of 44Ca+ ions sympathetically cooled by
40Ca+ ions. The pseudopotential in Eq. (2.6) implies that the radial confinement
of an ion in the linear Paul trap depends on the ion mass. Specifically the heavier
ions (44Ca+) are radially less tightly bound leading to a total radial separation
of the two ion isotopes, with the lightest isotope (40Ca+) situated closest to
the trap axis surrounded by the heavier isotope (44Ca+). The inner 40Ca+

ion core forms a cylindrical structure similar to that of an infinitely long single
component crystal, while the outermost shell of the surrounding 44Ca+ ions have
a spheroidal shape similar to the case of an one component ion Coulomb crystal.
The zero-temperature ion density in the crystal is given by Eq. (2.19) for each
of the spatially separated ion components in the crystal. This can be derived
following the derivation of Eq. (2.19) and taking the total spatial separation of
the two components into account.



3. EXPERIMENTAL SETUP

In this chapter we introduce the experimental equipment used for the expe-
riments described in chapters 4–6. This equipment also of relevance for the
discussion of the light storage in ion Coulomb crystals later in chapters 8–9.

3.1 Trap configuration

The experiments treated in this Thesis were all performed with the linear Paul
trap depicted in Fig. 3.1. The trap electrodes are made of gold coated stainless
steel and sectioned in three pieces separated by Macor spacers1. The electrodes
have radii of 4.00 mm, the inter-electrode spacing is r0 = 3.50 mm (see Fig. 2.1),
and the center-electrode length is 2z0 = 5 mm. This geometry gives rise to an
approximately harmonic potential near the center of the linear Paul trap with
the axial geometric constant η = 0.248. The trap is operated at the rf frequency
Ωrf = 3.88 MHz. Further details about the trap are found in N. Kjærgaard’s
Thesis [36].

Fig. 3.1: Photo of the linear Paul trap installed in the vacuum chamber.

1 Macor is a non-conducting UHV compatible glass-ceramic material
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3.2 Vacuum chamber

This section describes the ultrahigh vacuum (UHV) chamber setup in which
the linear Paul trap is situated. Figure 3.2 shows a technical drawing and
a photograph of the inside of the vacuum chamber. As seen in Fig. 3.2 the
UHV chamber consists of a stainless steel cylinder with a diameter of ∼ 30 cm
with 15 CF40-flange ports which are used for different purposes: optical access,
electrical feedthrough, pressure measurements, and motion feedthroughs. In the
photograph the top flange is not mounted. The top flange is usually the last
part of the chamber that is mounted before evacuating. UHV is obtained by
baking the chamber at 150◦C for a few days while pumping the vacuum chamber
with a turbo pump that is connected to the vacuum chamber via a roughing
valve. After bakeout the UHV is maintained by an ion getter pump2 and a
sublimation pump. An ion gauge is used for monitoring the pressure. Normal
operating pressure is in the range 5× 10−11–5× 10−10 Torr. Here the different
parts of the vacuum chamber labeled in Fig. 3.2 are described:

• The linear Paul trap is situated in the center of the chamber. The trap
electrode voltages are supplied via copper wires that are connected to the
trap feedthrough. The details about the linear Paul trap can be found in
Sec. 3.1.

• The atomic beam of calcium that crosses the center of the linear Paul
trap is produced in the Ca oven. The oven consists of a hollow graphite
container filled with metallic calcium. The oven is heated by a surrounding
coil of tungsten wire. A thermosensor coupled to the graphite is used for
monitoring the oven temperature. Normally the operating temperature
for the Ca oven is in the range 650–900 K. When the oven is heated a
beam of calcium atoms effuse out of a 4–5 mm long canal with a ∅1.0
mm diameter at the front of the graphite container. Skimmers placed
between the oven and the linear Paul trap collimate the atomic beam.
This is done vertically for the protection of the Paul trap electrodes against
contamination from the calcium atoms and horizontally in order to reduce
the transverse temperature of the atomic beam. The setup for the Mg
oven is similar to the Ca oven, but is not relevant for the remainder of the
Thesis, because all the experiments described are based on calcium.

• The oven shutter is used for blocking the atomic beams. It consists of a
stainless steel plate mounted on a rotary motion feedthrough, such that it
can be rotated in and out of the blocking position.

• The three laser beam paths drawn in Fig. 3.2(a) indicate the positions of
the six anti reflection coated viewports that are mounted on the ports for
optical access. The 397 nm cooling laser and the 866 nm re-pump beam for
Ca are directed along the Paul trap main symmetry axis. For transverse
cooling of linear strings of Ca+ ions it is possible to send the 397 nm laser

2 Leybold IZ270 triode pump
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Fig. 3.2: (a) Technical drawing of vacuum chamber viewed from above. The 15 ports
that points out from the chamber are used for different purposes: windows
for accessing the ions with laser beams, electrical feedthroughs, pressure mea-
surements, and motional feedthroughs. (b) Photograph of the UHV chamber
with the linear Paul trap installed and the top flange dismounted. The differ-
ent parts that are labeled in drawing and the picture are described in detail
in the text.
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in perpendicular to the trap main axis (see Sec. 2.2). The photo-ionization
laser is sent in perpendicular to the calcium atomic beam (the reason for
this is the main theme in Chap. 4) which is a 45◦ angle with respect to
the Paul trap axis.

• The alignment fiber is a small piece of optical fiber with a diameter of 125
µm mounted on a linear motion feedthrough, which is used to translate the
fiber end in and out of the center of the linear Paul trap. The alignment
fiber can viewed by the trap camera (see Sec. 3.3) when the cooling laser
light is scattered from the tip of the fiber. The alignment fiber is usually
used for initial alignment of cooling lasers and when calibrating the length
scale of recorded images. There is also installed a window in the top flange
through which the ions are viewed with the camera system(see Sec. 3.3).

• A beam of electrons from the electron gun (not used in this work) can
be send through the Paul trap center for ionization of the atoms in the
atomic beam. A set of deflection plates near the electron gun is used for
steering the beam of electrons.

3.3 Camera system

The ions trapped in the linear Paul trap are imaged by detecting the 397 nm
fluorescence that appears when light from the cooling laser is absorbed and
spontaneously emitted by the trapped ions. A schematic of the imaging system
is seen in Fig. 3.3(a). The fluorescence is first collected by the optics above the
trap. The optics consists of an iris that suppresses noise coming from back-
ground light in the chamber and a zoom telescope that focuses the light from
the ions onto an image intensifier3. The basic principle of the image intensifier
is that the incoming light causes the emission of electrons from a photocathode.
The electrons are then accelerated by an applied DC voltage towards a lumi-
nescent phosphor screen on which they are converted back into light. The gain
in energy during the acceleration is what causes an amplification of the light
signal. To further increase the amplification our image intensifier is equipped
with two microchannel plates (MCP) between the photocathode and the phos-
phor screen. The MCP consist of a thin plate of glass that contains a lot of
small (∼ 10µm) holes. In these holes the number of electrons is increased by
successive emission of secondary electrons. In this way multiplication factors
of 103–104 can be obtained with a single MCP. After amplification of the light
in the image intensifier the fluorescent image on the phosphor screen is focused
onto a charge coupled device (CCD) camera4 using a Nikon zoom lens5. The
output from the camera is a 12 bit VGA signal, i.e., 640 pixel × 480 pixel with
a range of 4096 grey levels, which can be viewed on a computer, and recorded
onto a hard disk.

3 Proxitronic BV 2581 BY-V 1N
4 Sensicam CCD camera system from PCO imaging
5 Nikon AF micro nikkor 60mm/2.8D
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Fig. 3.3: (a) Schematics of the camera system. The details are discussed in the text.
(b) Typical image of a Doppler cooled one component prolate Coulomb crys-
tal. The orientation of the crystal is indicated with the 3D spheroidal surface
plotted below. See also Fig. 2.5. Unless otherwise stated the crystal image
in the remainder of this Thesis has this orientation.

A typical image of an one component ion Coulomb crystal is shown in
Fig. 3.3(b) together with a surface plot of a spheroid that has approximately
the same major axis and minor axis aspect ratio as the Coulomb crystal as well
as the same orientation. The z-axis, which coincides with the Paul trap axis, is
the axis of revolution for the crystal. The projection of the ion crystal is thus
shaped as an ellipse. For a review on how the number of ions is determined
from such crystal images see App. D.

3.4 Laser systems

The laser systems in our laboratory are used for Doppler cooling of calcium
and magnesium ions as well as the production of the ions by photo-ionization
of atoms. In this section only the lasers used for calcium will be described, but
it should be mentioned that the laser system we use for cooling of magnesium
at 280 nm is similar to the laser system we use for photo-ionization of calcium.
To give an overview the laser systems used for the Doppler cooling and the
production of Ca+ ions a schematic is shown in Fig. 3.4.

There are two stationary home-build wave-meters available in our lab that
can measure the wavelengths of all the lasers we have in the lab with a preci-
sion up to 7 digits. The wavemeter is based on an interferometer design and
a description of the basics of the interferometer can be found in Ref. [37]. Al-
ternatively we can also use optogalvanic spectroscopy (see Ref. [38, 39]) to tune
the lasers to the transitions used for Doppler cooling in Ca+.
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3.4.1 397 nm laser sources

For Doppler cooling of Ca+ laser light at 397 nm is needed (see Fig. 2.4). This
is obtained by frequency doubling the output from an 899 Coherent Ti:Sapph
laser which is pumped by a Verdi V8 laser. The Verdi V8 laser is a diode
pumped, frequency doubled Nd:YVO4 laser providing green light at 532 nm
at a maximum output power of 8 W. The output power from the Verdi V8
laser is usually set to 6 W giving ∼ 400 mW output power at 794 nm from the
Ti:Sapph laser. The Ti:Sapph laser was during these experiments locked to a
commercial stabilization cavity with an offset lock giving a laser linewidth of
� 1 MHz. Frequency doubling of the 796 nm light is done in a 12 mm long non-
linear Lithium Triborate (LBO) crystal placed in an external bow-tie cavity.
An optical Faraday isolator between the Ti:Sapph laser and the bow-tie cavity
prevents optical feedback to the Ti:Sapph laser. The bow-tie cavity length is
locked using a Hänsch-Couillaud polarization lock, see Ref. [40]. For an input
power of 400 mW we usually obtained 20-30 mW of 397 nm blue light.

The generated 397 nm blue light is sent through a series of cylindrical and
spherical lenses to obtain a nice round, collimated gaussian beam, when it
reaches the trap table. At the trap table the laser light is split using a λ/2-
plate and a polarization beam splitter in order to make two power balanced,
counter-propagating cooling laser beams at the ion crystal. A third laser beam
for transverse cooling of linear strings of calcium ions is made by further splitting
one of the beams again using a λ/2-plate and a polarization beam splitter.

We also have a blue diode laser operating at 397 nm. This is an extended
cavity diode laser with an anti-reflection coated laser diode, where the cavity
is constituted by the diode and a grating in a Littrow configuration. The light
out-coupled from the laser from the laser is sent through a Faraday isolator
and an anamorphic prism for beam shaping. Part of the laser beam is split
off by a polarization beam splitter to an external temperature stabilized cavity
for frequency stabilization, while the remaining light is sent to the trap table
via an optical fiber. We have only obtained a throughput of ∼ 30% of the 397
nm laser light in the fibers, but we still chose to use the fiber because it has
good characteristics of cleaning the spatial mode of the laser beam. At the
trap table the 397 nm diode laser beam is spatially overlapped with the laser
beam from the Ti:Sapph laser using orthogonal polarizations of the lasers and
a polarization beam splitter.

3.4.2 272 nm laser source

For photo-ionization of neutral calcium laser light at 272 nm is needed, see
Sec. 4.1. This is obtained by frequency doubling the output from a 699 Coherent
dye laser, which is pumped by a Spectra Physics ‘BeamLok’ Argon ion laser.
The output power of the Argon ion laser is usually set to 4–6 W and depending
on range of factors this gives an output power of 150–500 mW of 544 nm green
laser light from the dye laser. The dye laser was during the experiments locked
to a commercial stabilization cavity with an offset lock giving a laser linewidth
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Fig. 3.4: (a) Schematics of the laser setup for cooling of Ca+ using the Ti:Sapph laser
and the 866 nm laser (basic setup). As we will see later in Chap. 6 it is also
possible to simultaneously cool other a different isotope of Ca+ using the
850 nm, the 854 nm laser, and the 397 nm diode lasers, but the schematic
presentation of this setup is postponed until Chap. 6. (b) Schematics of
the laser setup for photo-ionization of calcium. M: Mirror, DM: Dichroic
Mirror, (P)BS: (Polarization) Beam Splitter, λ/2: half wave plate. See text
for details.

of ∼ 100 kHz, while the long term fluctuations of the laser frequency are on
the order of MHz. Frequency doubling of the 544 nm light is done in a 7 mm
long β-barium borate (BBO) crystal placed in an external bow-tie cavity with
a free spectral range of FSR = 547.3± 6.0 MHz. The free spectral range of the
bow-tie cavity was determined by measuring the optical round trip path length
with a Vernier gauge and taking care that the BBO crystal has a refractive
index of n = 1.673 (see Ref. [41]). The bow-tie cavity length is locked using a
Hänsch-Couillaud polarization lock, see Ref. [40]. The output power of 272 nm
laser light from the doubling cavity has been measured to be 19 mW at 500 mW
pump power, but usually we had only 1–10 mW output power available during
the experiments. The 272 nm photo-ionization laser is then shaped by a series
of cylindrical and spherical lenses to give a round gaussian beam with a waist
of ∼ 200 µm in the interaction region where the calcium ions are produced (see
Sec. 4.2). Which gives an average laser intensity of 1–10 W/cm2.
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3.4.3 Infrared diode laser systems

The three infrared transitions in Ca+ at 850 nm, 854 nm, and 866 nm are all
covered by diode lasers. The laser at 854 nm is a commercial diode laser6, while
lasers at 850 nm and 866 nm are home-build diode lasers. The lasers are all
extended cavity diode laser systems. The cavity consists of the anti-reflection
coated infrared diode placed in a Littrow configuration (see Ref. [42]) with an
external grating for feedback. For the home-build laser the grating has 1800
lines/mm. The feedback angle of the grating with respect to the laser diode
that determines the lasing frequency is tuned using a piezo-electric transducer
giving a scan range on the order of a GHz. Coarse frequency tuning is done
by changing the diode current and diode temperature until the desired lasing
frequency is within tuning range of the grating-piezo system. The laser light
is out-coupled via the direct reflection on the grating and then sent through a
Faraday optical isolator and an anamorphic prism pair for beam shaping. The
laser light is then sent to the trap table or a wavemeter via an optical fiber.

Frequency stabilization of the 850 nm and 854 nm diode lasers is obtained
by locking them to the same external temperature stabilized cavity using the
Pound-Drever-Hall locking scheme [43, 44]. The 866 nm is also frequency stabi-
lized to an external temperature stabilized cavity. These temperature stabilized
cavities are identical and the cavity drifts are � 1 MHz/hour.

3.4.4 Stabilization cavities

Three home-built temperature stabilized optical cavities are used for the fre-
quency stabilization of the laser systems present in our lab. Details about
which laser are stabilized to these cavities are mentioned in the description of
the laser systems (Sec. 3.4). The stabilization cavities were designed and built
by F. K. Jensen [45].

The optical cavity consists of a ∼ 25 cm long quartz tube with mirrors
attached to each end giving a free spectral range of ∼ 600 MHz. Quartz is
chosen because it has a low but non-zero thermal expansion coefficient (α =
0.55 × 106K−1), so the cavity length is tunable by changing the temperature
of the quartz tube. Resistance wire has been wound around the quartz tube
to provide the temperature stabilization of the quartz tube. The whole cavity
is placed inside a vacuum tube for thermal and acoustic noise isolation. The
locking scheme used is usually the Pound-Drever-Hall FM locking scheme, but
for the 397 nm blue laser an offset lock is used. The short term stability of the
cavity system gives a spectral width of ∼ 20 kHz, while the long term drift of
the cavity is ∼ 1 MHz/h.

6 SDL-TC10 diode laser.



4. PHOTO-IONIZATION EXPERIMENTS

In our efforts towards realizing the light memory in Coulomb crystals it is essen-
tial for us to develop an efficient loading mechanism for calcium ions in the linear
Paul trap. Not only are � 10, 000 ions in these Coulomb crystals needed, but
it is also a requirement that specific calcium isotopes can be loaded to produce
large bi-crystals consisting of two different isotopes of calcium (see Sec. 2.4). An
ion loading technique that offers a solution to these requirements as well as hav-
ing other nice properties is resonant two-photon photo-ionization trap loading
of calcium which was introduced by Kjærgaard et al. [36]. Another variant of
the two-step loading scheme for calcium was demonstrated in Ref. [46] in which
the ions are produced via an auto-ionizing state in calcium.

In order to quantify the efficiency of the loading scheme of Ref. [36] a study
of the isotope selectivity of the loading scheme was initialized. In this chapter
the results of this study will be presented. The results include measurements
of the hitherto unknown isotope shifts of the 4s2 1S0 ↔ 4s5p 1P1 transition as
well as the hyperfine splitting of the 4s5p 1P1 state for 43Ca. The results in
Sec. 4.4 have also been reported in Ref. [III].

4.1 Photo-ionization of calcium

Our approach to photo-ionization of neutral calcium takes its origin in the
dipole-allowed 272 nm 4s2 1S0 ↔ 4s5p 1P1 transition depicted in Fig. 4.1.
The photo-ionization is a two-step process. In the first step a narrow band-
width CW-laser at 272 nm excites the calcium atom from the ground state
4s2 1S0 to the excited 4s5p 1P1 state. From this state the atom is either ion-
ized by absorption of another 272 nm UV-photon or the atom decays. The
lifetime of the excited 4s5p 1P1 state is 17–60 ns [47] and it decays via two
channels: first decay channel is back to the ground state and the second decay
channel is to the meta-stable 4s3d 1D2 state that has a lifetime of 18.3 ± 1.4
ms [48]. According to Smith et al. [49] the branching ratio between the first and
the second decay channel is 4s5p 1P1→4s2 1S0

4s5p 1P1→4s3d 1D2
∼ 1

50 . When the atom is in this
metastable 4s3d 1D2 state it is still sufficiently close to the ionization threshold
that absorption of another 272 nm photon leads to ionization.

The advantage of this scheme is that it relies on a closed system. Provided
that the 272 nm laser is sufficiently intense and resonant with the first transition
there is a reasonable probability that the atom is in one of the excited states
from which absorption of another UV-photon leads directly to ionization.
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Fig. 4.1: Level scheme showing levels in calcium relevant for the photo-ionization of
neutral calcium. The ionization threshold is 6.11 eV above the ground state
in calcium [50]. The lifetimes of the excited levels are also indicated.

As mentioned in the introduction of this chapter there exist another trap
loading scheme demonstrated by Gulde et al. [46, 51]. In this scheme the cal-
cium atom is excited via the 423 nm 4s2 1S0 ↔ 4s4p 1P1 transition and then
subsequently photo-ionized by resonantly exciting to an auto-ionizing state with
a 389 nm laser. Using this scheme has the advantage that a higher ion pro-
duction rate is attainable, due to the much stronger oscillator strength of the
4s2 1S0 ↔ 4s4p 1P1 transition compared to the 4s2 1S0 ↔ 4s5p 1P1 transi-
tion [52]. But the high ion production rate is at the expense of the reduced
isotope selectivity of the 423 nm transition [53], which is a critical quantity
in the light memory application. The isotope selectivity of the two schemes is
discussed in more detail in Sec. 4.6.

4.2 Experimental setup

The experiments on photo-ionization of calcium were performed in the trap
setup described in Chap. 3. A schematic overview of the experimental setup
for the photo-ionization is shown in Fig. 4.2. The 397 nm and 866 nm lasers,
which are directed parallel to the Paul trap axis are used for Doppler cooling of
Ca+ ions, and the 272 nm laser is used for photo-ionization of neutral calcium.
The output power of the 272 nm laser is typically in the range 1–10 mW. A
mechanical shutter controlled by a TTL-signal is placed in the beam path of
the 272 nm laser and used for blocking the laser beam. Using the mechanical
shutter it is possible to make laser pulses with a square temporal profile and a
duration down to ∼ 10 ms for which effects of the jitter and the rise time of
the shutter still are negligible. In front of the chamber a lens is placed that
focuses the beam down to a waist of ∼ 200 µm in the region where the photo-
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ionization laser beam crosses the calcium atomic beam, giving beam intensities
in the range 1–10 W/cm2. After passing the vacuum chamber the power of the
photo-ionization laser beam is measured with a photodetector connected to an
oscilloscope. This provides information about the average beam power as well
as the beam power output stability during one laser pulse.

� = 397 nm
(freq. doubled
Ti:Sapph laser)

Photodiode

Vacuum
chamber

Atomic beam

Paul trap

Oven shutter

Oven

M

M

M

DM
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�/2 PBS
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Fig. 4.2: (a) Schematic overview of the laser setup and the vacuum chamber geometry
for the photo-ionization experiments. M: Mirror, DM: Dichroic Mirror, PBS:
Polarization Beam Splitter, λ/2: half wave plate. (b) Schematic overview of
the oven setup, the photo-ionization beam, and the atomic beam as viewed
from above. The skimmer height is only a few 100 µm (not shown in the
picture). Further details about the experimental equipment are described in
Chap. 3.

The atomic beam effuses from a small orifice in the oven and is afterwards
collimated with skimmers to give a beam divergence angle of ∼ 23 mrad (see
Fig. 4.2(b)). The oven shutter is used for manually blocking the atomic calcium
beam. The oven temperatures in these experiments are typically in the range
T = 650–900 K giving atomic speeds in the beam direction approximately in
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the range of 400–1000 m/s. Transversal to the beam direction the atomic speeds
are smaller with a factor set by the beam divergence angle, i.e., the transverse
speeds of the atoms are only of the order of 10 m/s. The Doppler broadening of
the 272 nm transition in the photo-ionization scheme (see Fig. 4.1) thus depends
on the angle between the photo-ionization laser and the atomic beam. In or-
der to reduce the Doppler broadening as much as possible the photo-ionization
laser beam direction is perpendicular to the atomic beam direction as shown
in Fig. 4.2 making the Doppler width of the 4s2 1S0 ↔ 4s5p 1P1 transition in
calcium only a few 10 MHz. In comparison there would be both a shift and
a broadening of the transition of the order of ∼ GHz if the angle between the
atomic beam and the laser beam was 45◦.

Ions produced in the proximity of the center of the linear Paul trap are
trapped with a probability that depends on the speed and the position of the
ion at the time it is produced as well as the trap depth which is set by the trap-
ping parameters. The region of the trap where the produced ions are trapped
with high probability we refer to as the trapping region. For typical trapping
parameters of Urf ∼ 200 V, Ω = 2π × 3.9 MHz, and Uec ∼ 5 V, the effective
trap depth becomes ∼ 1 eV. This ensures that the ions produced are efficiently
trapped despite the initial thermal velocities of the neutral atoms, which corre-
sponds to energies of ∼ 0.1 eV.

4.3 Loading the linear Paul trap using photo-ionization.

In this section we discuss the applications of the two-photon photo-ionization
method presented in Sec. 4.1 and Sec. 4.2. The controlled ion trap loading
of large clean 40Ca+ Coulomb crystals, small linear ion strings and crystals
containing low abundant isotopes of calcium. The production of large bi-crystals
consisting of two calcium isotopes is also presented. Here near resonant electron
transfer between trapped calcium ions and calcium atoms in the atomic beam
is introduced as a technique to control the proportion between the two trapped
isotopes in the ion Coulomb crystal.

4.3.1 Controlled loading of the linear Paul trap

The photo-ionization of calcium offers a method to produce large clean crystals
of 40Ca+ with excellent control of the total number of ions loaded into the linear
Paul trap. The sequence shown in Fig. 4.3 demonstrates how we can actually
make a 40Ca+ crystal of a desired size. The sequence consists of 672 pictures
and the camera was gated with a repetition rate of ∼ 300 ms. The crystal is
loaded with trap parameters Uec = 0.7 V and Urf = 2.3 V giving an ion density
of about 0.8× 108 ions/cm3. The power of the 272 nm photo-ionization laser is
∼ 2.6 mW and the laser is detuned a few 100 MHz from the 4s2 1S0 ↔ 4s5p 1P1

resonance of 40Ca.
The graph in Fig. 4.3 shows the number of 40Ca+ ions in the crystal as

function of time. The nearly constant slope of this graph indicates that the ion
loading rate is almost constant and there is no loss of ions. The slope is a bit
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Fig. 4.3: Slow loading of a pure 40Ca+ crystal. Number of ions in the crystal is de-
termined by measuring the volume of the 40Ca+ crystal. The three crystal
images show the crystal at times 33 s, 103 s, and 221 s during the loading
sequence.

declining towards the end of the loading sequence which we attribute to the fact
that the oven temperature is not constant during the sequence, but actually is
Toven ∼ 472◦C at the beginning of the sequence and Toven ∼ 468◦C at the end
of the sequence. At t = 30 s there is a small kink in the measured crystal size,
which can be attributed to the formation dynamics of the trapped crystal.

Impurities in the 40Ca+ ion crystal such as doubly charged calcium ions,
or ions of different species would show up as dark regions in the crystal or
a deviation from the expected spheroidal crystal shape of an one component
crystal. In the series of crystals shown in Fig. 4.3 there are no signs of impurities
in the crystal, which proves that we can indeed load remarkably clean 40Ca+

crystals using the photo-ionization method.
Another example of the high degree of control of the ion production rate

offered by the photo-ionization method is illustrated with the sequence of 40Ca+

ion strings shown in Fig. 4.4. The oven temperature is ∼ 464◦C and the 272
nm laser power is ∼ 12 mW giving an ion production rate on the order of 10
ions/s. By exposing the calcium atomic beam to the photo-ionization laser with
pulses duration ∼ 100 ms we are able to load on average one 40Ca+ ion into
the same ion string per pulse. In Fig. 4.4 this was done for 1 ion to 5 ions in
a string. The fact that we are able to load clean 40Ca+ strings with this high
degree of control is an useful tool for certain quantum computational schemes
based upon a few ions in a string [18].

The photo-ionization trap loading method should be compared to electron
bombardment which was the method used in the past. Here Ca+ ions are
produced by collisions between a beam of electrons and the neutral calcium
atoms in the atomic beam. Unfortunately the electron beam can also further
ionize the Ca+ ions to produce Ca++ ions, as well as ionize the background
atoms, for example, O2 and CO2, which also become trapped, because the
charge to mass ratio is not far from the Ca+ ion. In order to make large pure
single-species crystals the impure crystal can be cleaned by changing the trap



4. Photo-ionization experiments 29

Time
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Fig. 4.4: Sequence of loading 40Ca+ into a string one at a time with laser pulses of a
duration of 100 ms.

parameters until the a and q parameters of the unwanted ions in the crystal lie
outside the Mathieu stability region (see Sec. 2.1) and they are expelled from
the trap. This is a very elaborate method of obtaining single-species ion crystals
and hence the photo-ionization method is preferred to the electron bombardment
method.

In the quantum memory trap which will be presented in Chap. 9, high finesse
mirrors are introduced near the trapping region of the linear Paul trap. In this
situation the photo-ionization method is superior to the electron bombardment
method. One advantage is that it is easy to shape and direct the laser beam such
that it does not hit any surfaces near the trap region. In comparison the electron
bombardment method usually charges up surfaces near the trap region, which
can diminish the ion trapping conditions by introducing stray fields. Another
advantage is that the photo-ionization method is many orders of magnitude
more efficient than the electron bombardment method. The smaller efficiency
of the electron bombardment method implies that in order to have reasonable
ion production rates with this method a high atomic flux is needed. This is
not an attractive situation when high reflective mirrors are placed near the
trapping region, because the atomic beam can contaminate the mirror surfaces
and reduce the mirror reflectivity.

4.3.2 Trapping low abundant isotopes of calcium

The fact that the two-step photo-ionization of calcium is a resonant process is a
big advantage when other isotopes of calcium than 40Ca+ need to be trapped.
The naturally occurring calcium consists of a mixture of 6 different isotopes:
40Ca (96.941%), 44Ca (2.086%), 42Ca (0.647%), and smaller proportions of,
48Ca (0.187%), 43Ca (0.135%), and 46Ca (0.004%). From these abundances it is
clear that either an isotope enriched sample of calcium or a trap loading method
that can distinguish between the different calcium isotopes is necessary in order
to load other isotopes than 40Ca+. Using the two step photo-ionization we
can pursue the latter method in a scheme which we refer to as isotope selective
photo-ionization.

The photo-ionization scheme is isotope selective because the resonance fre-
quency of the first transition in the photo-ionization depends on the isotope,
i.e., there is an isotope shift of the transition frequency. As we will study in
more detail later in the present chapter the typical isotope shift of the photo-
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Fig. 4.5: (a) Level scheme illustrating the basics in the isotope-selective scheme. The
lines at the 4s5p 1P1 state illustrate the shifted resonances of the different
isotopes. (b) Bi-crystal consisting of 40Ca+ (fluorescing) and 44Ca+ ions(non-
fluorescing). Total number of ions in the crystal is ∼ 1500 ions. The white
line indicates the actual boundary of the full crystal.

ionization transition 4s2 ↔ 4s5p in calcium is on the order of GHz. In the
special case of 43Ca which is the only naturally occurring calcium isotope with
non-zero nuclear spin (I = 7/2) and therefore has a hyperfine splitting of the
excited 4s5p-state the neighboring isotope resonances, 42Ca and 44Ca, are still
a couple of 100 MHz away. The linewidth of the 272 nm photo-ionization laser
is on the order of 1 MHz while the natural width of the 4s2 ↔ 4s5p transition is
a few MHz. The width of the first transition in the photo-ionization of calcium
is thus clearly dominated by the Doppler width of ∼ 50 MHz, which originates
from the transverse velocity spread of the atomic beam effusing from the oven
(see Sec. 4.2). Comparing the typical isotope shift (∼ GHz) with the total spec-
tral width (∼ 50 MHz) of the first transition we see that the photo-ionization
laser can selectively excite the different isotopes of calcium. The basics of the
isotope selective loading described is illustrated in Fig. 4.5(a).

Figure 4.5(b) shows a typical image of a bi-crystal (see Sec. 2.4) loaded
when the photo-ionization laser is tuned near the 4s2 ↔ 4s5p resonance of the
44Ca atom. In this experiment only the 40Ca+ ions are directly laser cooled,
while the 44Ca+ ions are sympathetically cooled by the 40Ca+ ions exchanging
their kinetic energy via the Coulomb interaction (see Sec. 2.4). Therefore only
fluorescence from the 40Ca+ ions is observed, while the presence of the 44Ca+

ions in this image have to be inferred from the tube shape of the 40Ca+ ions.
In many of the experiments described in this Thesis we need to count the total
number of ions in the crystal. This is done by using near resonant electron
transfer between trapped 44Ca+ ions and 40Ca atoms in the atomic beam to
convert the bi-crystal into a nearly pure 40Ca+ ion crystal, which is the theme
of Sec. 4.3.3.
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4.3.3 Near resonant electron transfer

In this section we will describe how the phenomenon of near resonant electron
transfer is used as an useful ion detection tool in the experiments described in
this Thesis. Near resonant charge transfer in our linear Paul trap occurs when
a neutral calcium atom from the atomic beam collides with one of the trapped
calcium ions and in this collision process exchanges an electron. The incoming
atom is thus ionized and subsequently trapped, while the initially trapped ion
becomes a neutral atom and is no longer confined by the trapping potentials.

The possible charge transfer processes between the calcium isotopes are sum-
marized by the following reaction formulas

ACa + ACa+ → ACa+ + ACa (symmetric), (4.1)
ACa + A′

Ca+ → ACa+ + A′
Ca + ∆E (asymmetric), (4.2)

where A and A′ are the atomic mass numbers of the calcium isotopes and A �=
A′. In the asymmetric case the energy deficiency denoted by ∆E comes from
the isotope shift of the ground state level relative to the atom’s ionization limit
for the atoms ACa and A′

Ca. According to Lorenzen et al. [54] this deficiency
is ∆E ∼ 13 × 10−6 eV for A = 40 and A′ = 481, so the reaction described in
Eq. (4.2) is truly near resonant when compared to the typical kinetic energy of
a calcium atom in the atomic beam.

The fact that 40Ca is by far the most abundant of the 6 naturally occurring
calcium isotopes (96.941%) directly influences which electron transfer reactions
are observed in the ion crystal. Assuming that a crystal consisting dominantly
of the isotope ACa+ has been loaded, where A �= 40, the most frequent occurring
asymmetric reaction is

40Ca + ACa+ → 40Ca+ + ACa + ∆E, (4.3)

and this process will reach an equilibrium when the relative occurrence of 40Ca+

in the crystal reflects the natural abundance of 40Ca. Usually the cooling lasers
are tuned to the 40Ca+ ions, and therefore only this particular isotope is visible
on the images of the crystals. Detection of the 40Ca+ part of the crystal is
readily available, because this particular isotope, being the lightest, is situated
closest to the trap axis and the volume of this part of the crystal can be found
with the technique described in Appendix D.

In Fig. 4.6 charge transfer in a small bi-crystal of 40Ca+–44Ca+ ions is
demonstrated. The density of ions in the crystal is about 0.5 × 10−8 cm−3

and the total number of ions in the crystal is ∼ 250. The small bi-crystal is
first produced by resonant photo-ionization of 44Ca atoms. In the ion produc-
tion stage some of the produced 44Ca+ ions are already exchanged with 40Ca+

ions by electron transfer with 40Ca atoms in the atomic beam. Then the oven
and the photo-ionization laser are blocked. The cooling lasers are tuned to the

1 The main contribution to the isotope level shift of the ground state comes from the Bohr
mass shift which is given by − m

M
E for an isotope of mass M , binding energy E. The electron

mass is m.
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40Ca+ cooling transition and the ions crystallize, i.e., the 44Ca+ ions are cooled
sympathetically by the ∼ 25 laser cooled 40Ca+ ions. At t ∼ 0 the oven is
un-blocked again so the ion crystal is bombarded with thermal atoms from the
atomic beam and the charge transfer starts. The oven temperature during the
charge transfer is T ∼ 533◦C. In Fig. 4.6 it is seen how the number of 40Ca+ ions
increases until the crystal nearly a pure 40Ca+ crystal at t ∼ 80 s. The number
of 40Ca+ ions are determined from the volume of the fluorescing 40Ca+ part of
crystal assuming that the different isotopes are completely spatially separated.
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Fig. 4.6: (a) Charge transfer in a 40Ca+–44Ca+ bi-crystal containing ∼ 250 ions, where
the 40Ca+ ions are laser cooled. The inserted pictures shows the crystal at
different times in the charge transfer process. The graph shows the number
of 40Ca+ ions in the crystal. (b) Series of images illustrating charge transfer
in a 44Ca+–40Ca+ bi-crystal consisting of ∼ 1300 ions, where the 44Ca+

ions (fluorescing) are laser cooled. The 5 images were recorded at times
t ∼ (0, 5, 9, 18, 34) s after the oven was opened. Further details are described
in the text.

The presence of 44Ca+ ions in the crystal is typically inferred from the shape
of the laser cooled 40Ca+ ion plasma, but to prove that they actually are 44Ca+

ions we can tune the cooling lasers to the 44Ca+ cooling transitions and record
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the fluorescence from the 44Ca+ ions instead. In the image series shown in
Fig. 4.6 (b) the 44Ca+ ions are cooled directly using the Ti:Sapph laser system
for generating cooling light at 397 nm and the 866 nm diode laser for the re-
pump laser light (see Fig. 2.4). The oven temperature is T ∼ 533.8◦C, which
should give the approximately same charge transfer rate as in Fig. 4.6(a). The
whole sequence in Fig. 4.6(b) takes about 35 s and shows the evolution of the
crystal from a 44Ca+ ion crystal that only contains a small cylindrically shaped
core of 40Ca+ ions to a crystal mainly consisting of 40Ca+ ions.

In Sec. 4.4 charge transfer will prove to be a very valuable tool when we
need to determine the total number of ions loaded as a function of the photo-
ionization laser frequency. The reason for this is that by using charge transfer
to transform the calcium ion bi-crystals into almost pure 40Ca+ ion crystals
the total number of ions in the crystals can be counted using only the cool-
ing laser system for 40Ca+ ions, which reduces the technical complexity of the
experiments considerably.

4.4 Experimental results

The results presented in this section were obtained using the techniques dis-
cussed in Sec. 4.3. Our goal with the experiments is to study the loading rate
of the ion trap as a function the frequency of the 272 nm photo-ionization
laser. The loading rate scans are interesting from an experimental point of view
because these provide information about the isotope selectivity of the photo-
ionization loading. From a more fundamental atomic physics point of view
these measurements are also interesting as they reveal the isotope shifts of the
4s2 1S0 ↔ 4s5p 1P1 transition of all naturally occurring calcium isotopes and
the hyperfine splitting of the 4s5p 1P1 state for 43Ca. This will be treated later
in Sec. 4.5.

4.4.1 Photo-ionization rate measurements

Figure 4.7 shows the measured photo-ionization rate as a function of the photo-
ionization laser detuning. Each data point in the graphs represents a measure-
ment of the trap loading rate for a particular detuning of the photo-ionization
laser. In the following the measurement procedure for producing scans simi-
lar to the two shown in Fig. 4.7 is described. The basic experimental setup
for these measurements is described in Sec. 4.2. At a given detuning of the
photo-ionization laser the trap loading rate is measured by exposing the atomic
beam to the photo-ionization laser beam for a certain time controlled by the
mechanical shutter. The cooling lasers are tuned to the cooling transition in
40Ca+ ions and as the ions get cold enough they crystallize. Generally, when
the photo-ionization laser is tuned in between the resonances of the various iso-
topes two or more singly charged calcium isotope ions will be produced and
trapped. The number of ions in the multi-component crystal could in principle
be determined by imaging the fluorescence from the individual isotopes. This
is, however experimentally very challenging as each isotope needs its own set
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of laser frequencies due to the isotope shift of the cooling transitions. As an
alternative route to quantify the total ion production, we choose to expose the
multi-component crystals to the thermal beam of calcium atoms until nearly all
the ions (∼ 97%) have been converted into 40Ca+ ions by near resonant charge
transfer collisions as described in Sec. 4.3.3. The total number of ions initially
produced and trapped by the photo-ionization can now be counted by measur-
ing the size of the now nearly pure 40Ca+ crystal. After saving the pictures of
the final crystal to hard disk the linear Paul trap is initialized for a new mea-
surement simply by switching trapping potentials off and on which will empty
the ion trap for the trapped ions.

The scans similar to the two shown in Fig. 4.7 are obtained by manually tun-
ing the photo-ionization laser in steps of ∼ 10 MHz and for each step measuring
the trap loading rate using the procedure described above. The oven tempera-
ture during the scans is approximately ∼ 600◦C. These high temperatures are
chosen in order to have high calcium atom flux which gives a rapid conversion
of the crystal into a nearly pure 40Ca+ ion crystal through the near resonant
charge transfer. Another reason for choosing the high oven temperature is that
we need a relative high ion production rate in order to trap a sufficient amount
of ions for the detection of the weak 46Ca+ ion resonance. During each scan
the oven temperature is kept stable within ±2◦C corresponding to a maximum
uncertainty of the density of the atomic beam of ±7% during a typical data
acquisition time for one scan which is on the order of an hour. Since the time
to measure a single resonance is only a fraction of this time, any systematic
errors in the resonance profiles due to fluctuating oven temperatures can be
neglected. The error bars seen in Fig. 4.7 take three effects into account. First,
due to intensity fluctuations of the laser intensity there will be a fluctuation
in the number of ions produced. Since for neighboring data points around a
resonance this intensity fluctuation is maximally a few percent, the expected
square dependence on the intensity of the ion production leads to an estimated
uncertainty of ∼ 5%. Second, in determination of the Coulomb crystal volumes,
both systematic and random uncertainties due to the measurements of the main
axis of the elliptical projections of the crystals occur. Both these errors are of
about 5%, but since the systematic errors are equal for points symmetrically
positioned around a resonance, it will have a small effect on the determination
of the resonance frequencies. Hence, in our analysis, we have only accounted
for the random errors of 5%. Finally, due to the finite number of ions produced
within one measurement, we have included an uncertainty of the square root of
the estimated number of ions.

4.4.2 Normalized scan

The photo-ionization rate measurements presented in Sec. 4.4.1 depends on the
output power of the photo-ionization laser. As the output power of this laser is
not stable throughout the scan we need to normalize the ionization rates in order
to obtain scan profiles that are independent of the laser output power. If we
assume that neither the 4s2 1S0 ↔ 4s5p 1P1 transition nor the following photo-
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Fig. 4.7: Two scans of the trapped ion production rate plotted as function of the photo-
ionization laser detuning. (a) A scan of the 40Ca and the 42Ca resonance.
(b) A scan from the three hyperfine resonances of the 43Ca atom to the 48Ca
resonance. The calcium oven temperature is (a) Toven = 612◦C , and (b)
Toven = 602◦C, and the power of the photo-ionization laser is (a) P = 5.5–
9.5 mW, and (b) P ∼ 11 mW. The data points in these plots have not been
corrected for the variation in output power of the photo-ionization laser. The
scans are both presented in a logarithmic and a linear plot.

ionization process is saturated, we can expect to see an ion production rate that
is proportional to the laser intensity squared. We tested this assumption by
measuring the ion production rate as a function of the photo-ionization laser
output power, which is shown in Fig. 4.8. The photo-ionization laser is tuned
approximately to the 4s2 1S0 ↔ 4s5p 1P1 transition of 40Ca+. We then measure
the number of ions loaded into the trap when the exposure time of the photo-
ionization laser is 100 ms as function of the photo-ionization laser power. The
oven temperature is T = 579◦C for the measurement in the P ∼ 0.5–2.5 mW
range and T = 416◦C for the measurement in the P ∼ 2.5–14 mW range. The
data points in the graphs are fitted with the function y = aP b, where a and
b are fitting parameters and P is the power of the photo-ionization laser. The
noticeable fluctuation of the data points around the fitted curves seen in Fig. 4.8
must come from a fluctuation that we have not accounted for in the error bars.
We believe that this fluctuation originates from a slow frequency drift of the
photo-ionization laser which, depending on how close the laser is tuned to the
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40Ca resonance (see Fig. 4.7 (a)), will appear as a fluctuation in the number
of trapped ions. Accounting for this slow drift in the trapped ion production
rate the exponents, b, found in the two fits in Fig. 4.8 of b = 2.18 ± 0.06 and
b = 1.90 ± 0.09 does not seem to contradict our assumption that the photo-
ionization rate depends on the square of the photo-ionization laser power.
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Fig. 4.8: Number of trapped ions produced with a laser pulse of a duration of 100 ms
as a function of the laser power. Oven temperature is (a) T = 579◦C and (b)
T = 416◦C.

Three partially overlapping normalized frequency scans are presented in
Fig. 4.9. The three data-series were measured at slightly different oven tem-
peratures: Toven = 612◦C(�), Toven = 630◦C(�), and Toven = 602◦C(�), while
the photo-ionization laser power was P = 5–9 mW(�), P = 8–9 mW(�), and
P = 8.5–9 mW(�).

The relative rates of the �-data and the �-data have been normalized, so
they share the same fitted maximum value and position at the 42Ca resonance
peak. In the same way the data indicated by � and � have been normalized to
the three 43Ca hyperfine peaks.

The Doppler broadening of the resonances, which only depends slightly on
the atomic mass, is best found by fitting the 40Ca resonance data to a Voigt
profile fit. In Fig. 4.10 the Voigt profile fit is plotted in two double logarithmic
plots in order to illustrate how the Lorentzian behavior of the profile becomes
significant far away from the resonance frequency, while the Gaussian behavior
dominates in the vicinity (∼ 100 MHz) of the resonance. The Voigt profile
fit of the resonance has a FWHM of 52 MHz, which consists of a Gaussian
contribution of wG = 47.8 ± 0.8 MHz and a Lorentzian contribution of wL =
7.3 ± 0.3. This means that the FWHM of the resonance is clearly dominated
by the Doppler broadening of the resonance. A Gaussian width of ∼ 50 MHz
is what we would expect from the oven geometry and an oven temperature of
∼ 612◦C.

If we assume that the first transition of the photo-ionization is not saturated,
a Lorentzian contribution of wL = 7.3 ± 0.3 MHz corresponds to a lifetime of
τ4s5p = 21.8 ± 0.9 ns for the excited 4s5p 1P1 state. If the first transition is
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Fig. 4.9: Three partially overlapping frequency scans covering all the naturally occur-
ring calcium isotopes. The scan ranges are 40Ca–42Ca (�), 42Ca–43Ca (�),
and 43Ca–48Ca (�).

saturation broadened the measured lifetime is shorter than the actual lifetime. It
is interesting to compare this lifetime estimate with the lifetime that have been
calculated or measured by others. The calculation of the 4s5p 1P1 lifetime have
been performed by Refs. [47, 52, 55], and they predict lifetimes of τ4s5p = 57.6
ns [47], τ4s5p = 59.2 ns [52], and τ4s5p = 42.21 ns [55]. The three calculations all
predict a longer lifetime than the lifetime measured by us, which might imply
that there is power broadening in our measurement. For the experimental work
there are to our knowledge only reported two 4s5p 1P1 lifetime measurements.
These also disagree with the theoretical work yielding lifetimes of τ4s5p = 16.6±
2.0 ns (Smith and Liszt [56]) and τ4s5p = 20.07±1.15 ns (Mathur and Kelly [57]).
Our measurement disagrees slightly with the value determined by Smith and
Liszt, while it is in good agreement with the value found by Mathur and Kelly.

4.5 Isotope shifts and hyperfine splitting

Isotope shifts and hyperfine splitting of optical transitions provide valuable in-
formation about atomic electron configurations and properties of the nuclei.
While nuclear charge distributions can be deduced from the isotope shifts (see,
e.g., Refs. [58, 59]), the nuclear spins, magnetic dipole moments, and electric
quadrupole moments can be determined from the hyperfine splitting [60].

Although isotope shifts and hyperfine splitting already have been measured
for a large number of transitions in neutral Ca (see Refs. [61–63] and references
therein) and in singly charged Ca+ ions [23, 64, 65] the 4s2 1S0 ↔ 4s5p 1P1

transition considered here has hitherto not been studied experimentally.
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Fig. 4.10: Voigt profile fit of the 40Ca 4s2 1S0 ↔ 4s5p 1P1 resonance showing the
photo-ionization laser blue detuned (a) and red detuned (b) from the reso-
nance. The resonance frequency is denoted by ν40 and the laser frequency is
νlaser. The total resonance area found by integration of the peak is 50.3±1.8
MHz. The fit parameters are the Lorentzian linewidth, wL = 7.3±0.3 MHz,
and the Gaussian width, wG = 47.8 ± 0.8 MHz.

4.5.1 Isotope shifts

Before deriving the isotope shifts from data like the ones presented in Fig. 4.9,
the uncertainty of the individual data points has to be estimated and taken into
account. In Sec. 4.4.2 we concluded that three error sources must be taken into
account. The three sources were power fluctuations of the photo-ionization laser
(∼ 5%), error in determining the correct number of ions in the crystal (∼ 5%),
and finally the number fluctuation which are just the square root of the number
of trapped ions. When these uncertainties are accounted for in a weighted least
squares Gaussian fit, the uncertainty on the resonance position is less than 2
MHz.

A more critical error arises when we compare similar scans. Here we find
that the measured resonance peak positions are associated with much larger
uncertainties than the ones from the Gaussian fits. This additional error origi-
nates from local frequency drift of the photo-ionization laser during a whole scan
which typically lasts about 40 min. From a series of scans, we have found that
this laser drift error leads to a RMS uncertainty in the resonance frequencies of
about 9 MHz. An unimportant error of a few hundred kHz is introduced due to
the fact the resonance frequencies have been determined from single Gaussian
fits instead from a more realistic multi-peak Voigt profile fit. In addition to
these statistical errors, there is also an systematic uncertainty of ±1% arising
from the calibration of the photo-ionization laser frequency scan to an optical
spectrum analyzer with a known free-spectral-range.

The measured isotope shifts of the 4s2 1S0 ↔ 4s5p 1P1 transition with
respect to the 40Ca resonance are given in Table 4.1. The isotope shift for 43Ca
has been found as the center of gravity for the three hyperfine components of the
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Mass, A Shift [MHz]
42 967± 9
43 1455± 9
44 1879± 14
46 2746± 16
48 3528± 16

Tab. 4.1: Isotope shifts of the 4s2 1S0 ↔ 4s5p 1P1 transition in calcium derived from
the experimental data like the ones presented in Fig. 4.9. All shifts are with
respect to the 40Ca resonance. The errors stated represent one standard
deviation originating from the statistical errors in the experiments. In ad-
dition, the shifts are subject to an overall linear scaling uncertainty of 1%
due to our frequency scan calibration (see text). The isotope shift for 43Ca
is the center of gravity of the hyperfine components.

transition. The center of gravity and the hyperfine splitting will be discussed in
Sec. 4.5.3.

4.5.2 Field shift and mass shift

The isotope shift for a given transition is usually described as a sum of the mass
and the field shift in the following way [58]

δνAA′
= M

A′ −A

AA′ + Fδ〈r2〉AA′
, (4.4)

where M is the mass shift coefficient, A and A′ denote the atomic masses of
the two isotopes, F is the field shift coefficient, and δ〈r2〉AA′

is the difference in
mean square nuclear charge radii between the isotopes.

The mass shift is usually written as a sum of the normal mass shift (NMS)
and the specific mass shift (SMS), which means that we can write the mass
shift coefficient as M = MNMS + MSMS. Here the NMS coefficient is given by
the simple expression MNMS = ν0me/mu, where ν0 is the transition frequency,
me is the electron mass and mu is the atomic mass unit. The NMS originates
from the reduced mass correction for the electron, while the SMS comes from
the change in the correlated motion of all the electrons (see, e.g., Ref. [66]).
Subtraction of the NMS from the total isotope-shift gives the residual isotope
shift (RIS),

δνAA′
RIS = MSMS

A′ −A

AA′ + Fδ〈r2〉AA′
. (4.5)

Rewriting Eq. (4.5) by multiplication by the factor AA′/(A′ −A) leads to

A′A

A′ −A
δνAA′

RIS = MSMS + F

(
A′A

A′ −A
δ〈r2〉AA′

)
, (4.6)

which shows that MSMS and F can be determined from a linear fit when the
δ〈r2〉AA′

’s are known. In Fig. 4.11 the left hand side of Eq. (4.6) is shown as
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for the 4s2 1S0 ↔ 4s5p 1P1 transition in Ca. The dashed
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and F from the relation given in Eq. (4.6).

function of A′A
A′−Aδ〈r2〉AA′

for the fixed value of A = 40 and using the measured
isotope shifts given in table 4.1. The root mean square charge radii from Ref. [59]
used in the calculation of δ〈r2〉AA′

have been listed in Appendix A. The SMS
coefficient and field shift coefficient, obtained by weighted linear regression fit
to the data points in Fig. 4.11, are listed in Table 4.2.

Inasmuch as the neither the field shift coefficient nor the specific mass co-
efficient have earlier been measured or calculated for the 4s2 1S0 ↔ 4s5p 1P1

transition, a direct comparison with earlier results is not possible. It is though
worth mentioning that the field shift coefficient for the 4s2 1S0 ↔ 4s5p 1P1

transition (Table 4.2) is, within the stated error, almost equal to the experi-
mentally determined field shift coefficient for the 4s2 1S0 ↔ 4s4p 1P1 transition
of F = −175.8 ± 1.2MHz/fm2 reported in [62]. Indeed the two field shifts are
expected to be almost identical. The reason is that the 4p and 5p electrons have
negligible overlap with the nucleus compared to the 4s electron in the ground
state of the transition and hence the 4p and 5p electrons only contribute insigni-
ficantly to the total field shift of the transition. Therefore the main contribution
to the field shift comes from the excitation of the 4s electron into a np state
independent of the quantum number n.

4.5.3 43Ca hyperfine splitting

The nuclear spin of I = 7/2 for 43Ca leads to three hyperfine levels of the
1P1-state with total spins F = 5/2, 7/2 and 9/2, respectively. The hyperfine
structure (HFS) constants and isotope shift of 43Ca are determined by fitting
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MSMS F
[GHz amu] [MHz/fm2]
243± 3± 9 −179± 39± 2

Tab. 4.2: The specific mass shift MSMS and field shift F coefficients for the 4s2 1S0 ↔
4s5p 1P1 transitions of calcium derived from the linear fit presented in
Fig. 4.11. The first stated uncertainty estimate is the one standard deviation
obtained from the linear regression to the data of Fig. 4.11. The systematic
error in the isotope-shifts due to the frequency scan calibration is included
as the second uncertainty estimate. The NMS coefficient is MNMS = 604.3
GHz amu.

to the Casimir formula [60]

∆EF =∆νcg +
A

2
C

+
B

4

3
2C(C + 1)− 2I(I + 1)J(J + 1)

(2I − 1)(2J − 1)IJ
,

(4.7)

where C = F (F + 1) − I(I + 1) − J(J + 1), ∆νcg is the isotope-shift of the
center of gravity of the HFS, and A and B are the magnetic dipole and electric
quadrupole coupling constants, respectively. Several scans across the three hy-
perfine resonances were made to increase the level of confidence of the A and
B constants. The HFS constants derived from these scans are summarized in
Table 4.3, while the center of gravity for 43Ca has been given in Table 4.1.
The small value of the B constant indicates that the magnetic dipole coupling
has the most prominent contribution to lifting the degeneracy of the 4s5p 1P1

level for 43Ca. Compared with the work of [62], where the HFS constants for
the 4s4p 1P1-state in 43Ca have been measured to be A = −15.54± 0.03 MHz
and B = −3.48± 0.13 MHz, the 4s5p 1P1 state has an opposite sign for the A
constant and the B constant is of the same order of magnitude or smaller.

A[MHz] B[MHz]
39.8± 0.8± 0.4 −0.3± 3± 0.03

Tab. 4.3: HFS constants for the 4s5p 1P1 state in 43Ca. The first stated uncertainties
originate from statistical errors in determining the resonance positions, while
the second account for the systematic errors due to frequency calibration
uncertainty.
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4.6 Isotope selectivity

In order to quantify the isotope selectivity of the photo-ionization scheme we
define a selectivity parameter

ηA =
IA(νA)∑

A′ �=A

IA′(νA)
, (4.8)

for the isotope with atomic mass A, where the IA(ν) and νA are the reso-
nance profile and the resonance frequency of the isotope with atomic mass A,
respectively. In the special case of 43Ca the isotope selectivity is evaluated
for the three hyperfine resonances individually, i.e., the 43Ca selectivity is de-
scribed by three individual hyperfine resonance profiles I43(F=5/2), I43(F=7/2),
and I43(F=9/2). As evident from Eq. (4.8) the selectivity parameter ηA is just
the ratio of the peak photo-ionization rate of the isotope, A, to the background
photo-ionization rate of the other isotopes at the resonance frequency νA. The
parameter ηA thus indicates the isotope purity of an ion crystal produced when
we tune the photo-ionization laser to a given isotope resonance assuming that
we can neglect near resonant electron transfer processes during the production
of the ion crystal. The selectivity parameter is interesting from an experimental
point of view, because it tells us which ions are favorable to load if we need big
ion crystals consisting primarily of another calcium isotope than 40Ca.

The resonance profile functions, IA(ν) are computed using Voigt profiles
with identical FWHM widths. For this purpose we use the widths that were
found by fitting the 40Ca resonance (see Sec. 4.4.2), i.e., a Lorentzian width
of wL = 7.3 MHz and a Gaussian width of wG = 47.8 MHz. The resonance
frequencies used for the different isotopes are the values presented in Table 4.1,
while tabulated values of the natural abundances (see Table A.1) of the different
calcium isotopes have been used to find the relative amplitudes of the different
isotopes. In the special case of 43Ca, which has a hyperfine structure, we use the
expected 3:4:5 ratio between the three hyperfine components to describe their
relative strength.

The calculated full Voigt profile fit of all the isotopes (I40(ν) + I42(ν) +
. . .) have been plotted in Fig. 4.12 together with the three scans that were
presented in Fig. 4.9. From this plot it is clear that the model presented above
describes the photo-ionization data to a very good approximation. There is only
a small discrepancy between the measured data and the Voigt profile between
the detunings 2300 MHz and 2700 MHz. This is presumably just a consequence
of the fact that it was not possible to load big ion crystals when measuring
the ion production rate in this interval and thus have a bigger error in the size
determination of the crystals.

The selectivity parameter ηA have been calculated from this model using
Eq. (4.8) for all the naturally occurring calcium isotopes and is presented in
Table 4.6. In the case of 43Ca we have evaluated the isotope selectivity at the
three hyperfine resonances. From the isotope selectivity of 40Ca, η40 ∼ 106, it
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Fig. 4.12: Full Voigt profile calculation of the photo-ionization rate of all naturally
occurring calcium isotopes compared to the normalized rate measurements
introduced in Sec. 4.4.2.

is evident that it is indeed possible load a very clean 40Ca+ crystal. Among
the low abundant isotopes 44Ca is the one that have the highest selectivity of
η44 = 1.1 × 103, which is primarily coming from the bigger natural abundance
of 2.086%. In comparison the 4s2 1S0 ↔ 4s4p 1P1 transition, which is used for
ion trap loading by other groups [46, 51], have a maximum isotope selectivity
of η44 ∼ 40 as reported by [53]. This transition have a natural linewidth of
∼ 35.6 MHz as well as an isotope shift that is about 2.3 times smaller than
the isotope shift we have measured for the 4s2 1S0 ↔ 4s5p 1P1 transition (see
Sec. 4.5). This illustrates that the advantage of the transition we have chosen for
photo-ionization is the small natural linewidth together with a large isotope shift
yielding an order of magnitude larger isotope selectivity. The drawback of the

Isotope (A) Selectivity(ηA)
40 ∼ 106

42 89
43(9/2) 15

44 1.1× 103

46 3.6
48 3.2× 102

Tab. 4.4: Isotope selectivity derived from the measured isotope shifts, the Lorentz
width, and the Doppler width of the 4s2 1S0 ↔ 4s5p 1P1-transition, as well
as the natural abundance of the different isotopes found in Table A.1. The
isotope selectivity of 43Ca is given for the hyperfine component F = 9/2 as
this has the highest selectivity of the three hyperfine resonances.
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transition we are using is that the oscillator strength of the 4s2 1S0 ↔ 4s5p 1P1

transition is about 3 orders of magnitude smaller than the oscillator strength
of the 4s2 1S0 ↔ 4s4p 1P1 transition [52], which makes the efficiency of our
scheme accordingly smaller.

4.7 Conclusion

We have demonstrated that the resonant photo-ionization of an atomic beam
of calcium provides a method of isotope selective loading of an ion trap. The
ionization rate measurements indicate that ions of all naturally occurring cal-
cium isotopes can be produced. As the most prominent example the ionization
spectrum revealed traces of the 46Ca isotope which has a very low abundance
of only 0.004%. For the 44Ca isotope that has an abundance of 2.086% the
isotope selectivity of η44 = 1100 is so good that production of ion crystals with
a high content of this isotope is indeed feasible. Near resonant electron transfer
between atoms in the atomic beam and trapped ion has been introduced as a
method to control the ratio of 40Ca+ and 44Ca+ ions in bi-crystals, which is an
essential ingredient in the quantum memory scheme.

The isotope shifts and the hyperfine splitting of the 4s2 1S0 ↔ 4s5p 1P1

transition was measured and from these data we deduced the field shift and
specific mass shift coefficients as well as the hyperfine structure constants for
43Ca.



5. ELECTRON TRANSFER EXPERIMENTS

Trapped laser cooled ions offer an opportunity to study collisions between atoms
in an effusive atomic beam and cold ions at velocities corresponding to thermal
energies. In this chapter we will study the low-energy near resonant charge
transfer between 44Ca+ and 40Ca. We demonstrate a technique to measure the
charge transfer rate at different ion Coulomb crystal positions relative to the
Paul trap center axis. By estimating the atomic flux from the calcium oven we
can use this rate measurement to estimate the charge transfer cross section at
thermal energies. The measured cross section is compared to an estimate of the
cross section found by extrapolation of some higher energy charge transfer data.
The symmetric resonant charge transfer process Ca+Ca+ → Ca+Ca+ has been
studied experimentally at higher energies ∼ 8–500 eV by Panev et al. [67] and
Rutherford et al. [68], and theoretically by Liu and Olson [69]. But at energies
corresponding to thermal energies there are to our knowledge no experimental
work on this transfer process.

5.1 Electron transfer cross section

We have studied the asymmetric near resonant charge transfer process

40Ca + 44Ca+ → 40Ca+ + 44Ca + ∆E, (5.1)

where ∆E ∼ 10−5 eV as mentioned in Sec. 4.3.3. This means ∆E is much
smaller than the typical thermal collision energy in the process described in
Eq. (5.1), and thus we will regard this process as a symmetric charge transfer
process with respect to the electronic wave function.

There are two mechanisms responsible for the behavior of the charge transfer
cross section as function of the relative velocity of the ion and the atom. In the
following we will discuss the physics behind these mechanisms and try to give
an estimate of the charge transfer cross section at thermal energies from this
discussion.

The first mechanism is relevant when the relative speed between the ion and
the atom is so low that their individual velocities are changed significantly by
the attractive dipole potential that exists between an ion and a neutral atom
due to the induced dipole moment of the atom. At large internuclear distances
the potential energy in this interaction is described by the dipole potential

φ(R) = − 1
4πε0

e2α

2R4
, (5.2)
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where R is the internuclear distance and α is the polarizability of the atom.
The orbits in such a potential have been calculated by Langevin in 1905 (see
Ref. [70]). Such orbits can be characterized by two parameters: the initial
relative velocity v and the impact parameter b, which is the distance at which
the initial path of the atom passes the ion. For these orbits it is possible to
define a critical parameter

b0 =
(

e2α

πε0µv2

)1/4

(5.3)

for which the orbits with b < b0 will go through the center, while the orbits
with b ≥ b0 never come closer than b0/

√
2 to the center. In other words at

a low velocity, v, the orbits divide in two classes as a function of the impact
parameter b. Those which only result in a grazing incidence and those which
result in an atom ion impact. Neglecting the charge transfer in the grazing
incidence collisions and assuming that the charge exchange probability for a
symmetric process is 1/2, when we have an ion atom impact the charge transfer
cross section becomes σ = 1

2πb2
0. Inserting Eq. (5.3) into this expression we get

σ(v) =
π

v

√
e2α

4πε0µ
, (5.4)

which I will refer to as the Langevin approximation. Inserting α = 154a3
0 which

is the polarizability of calcium [71] and the reduced mass µ of 40Ca and 44Ca
we get σ 	 1.2× 10−11/v cm2, where v is in m/s.

At higher impact velocity the Langevin approximation breaks down, because
here the atomic motion is almost unaffected by the dipole potential. But as long
as the velocities are well below 106 m/s the charge transfer cross section can
be calculated using the Born Oppenheimer separation of electronic and atomic
motions (see, for example, Ref. [72]) and assuming that the atomic motion
is rectilinear. In the case of symmetric charge transfer it can be shown that
the cross section behaves as σ(v) = [A + B ln(v)]2, where A and B are coeffi-
cients [73]. Liu and Olson [69] have calculated the charge transfer cross section
in the case of collisions between Ca+ and Ca for collision energies 10–10000 eV,
while Panev et al. [67] (8–500 eV) and Rutherford et al. [68] have investigated
this experimentally.

The charge transfer cross section for 40Ca–44Ca+ collisions is plotted as
function of the impact velocity in Fig. 5.1. From this plot we conclude that the
main contribution to the cross section at the thermal velocities comes from the
extrapolated σ(v) = [A + B ln(v)]2 behavior and that we should expect a cross
section σ ∼ 5× 10−14 cm2 at thermal collision energies.

5.2 Characteristics of the effusive beam

To make a quantitative measurement of the charge transfer rate that can be
used to determine the charge transfer cross section we have to consider the
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Fig. 5.1: Charge transfer cross section as function of the impact velocity. Graph (a)
is the described by the formula σ � 1.2 × 10−11/v cm2 and graph (b) is of
the form σ(v) = [A + B ln v]2, where the A and B coefficients have been
calculated by Ref. [69].

characteristics of the effusive atomic beam of calcium. In this section we will
describe the spatial atomic flux distribution in the beam and make a quantitative
statement about the beam intensity based on gas kinetics. Most of the discussion
in this section is based on textbook of N. F. Ramsey on molecular beams [74].

A schematic of the oven setup is shown in Fig. 5.2 (a) (see also Sec. 3.2 and
Fig. 4.2). The skimmer width is denoted w and the line marked ‘Detection’
denotes the center of the linear Paul trap, where the atomic flux is going to be
detected as a function of the position. The beam of calcium effuses through a
4–5 mm long canal that have a cross section of A = 0.785 mm2. Before the
atomic beam reach the Paul trap it is collimated with a skimmer that has a
height of a few 100 µm and a width of 2.4 mm. The distance between the oven
and the skimmer is 72.6 mm and the Paul trap is located 44.3 mm away from
the skimmer.

It can be shown that the flux of atoms from an effusive source can be ex-
pressed as [74]

φa = 1.118× 1022 pA

l2
√

MT
atoms/(cm2 · s), (5.5)

where p is the oven source pressure in mm Hg, l is the length to the oven source,
M is the atomic mass, and T is in Kelvin. This result is usually derived for an
oven with a thin walled orifice, but it also applies in our case where the atoms
effuse through a long circular canal. The condition for this to be true is that
the mean free collision path inside the oven source λM is sufficiently long for
collisions inside the canal to be negligible. The mean free collision path can be
calculated from the expression λM = 1/nσ

√
2, where n is the density of atoms

and σ the collision cross section. The collision cross section σ ∼ 600×10−16cm2

is used as an upper limit for the collision cross section of calcium [74]. At the
working temperature of T ∼ 700◦K the density of atoms is n ∼ 1012 m−3, which
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is found from Eq. (A.1) in appendix A. From these values a mean free path
length of λM � 10 cm is found, which is much longer than the canal length and
thus Eq. (5.5) also applies to the long canal length.

The reader may find it a bit disturbing that the flux given by Eq. (5.5) is
the same for the long canal as the thin walled orifice. After all the total flux
and the angular distribution out of an oven is not the same in the two situations
due to the atoms, that strike the wall of the canal, have a smaller probability
of escaping the oven and if they do so they will emerge at a different angle.
The reason why the flux in forward direction of the oven is unaltered is that
the atoms striking the wall of the canal will emerge again distributed according
the Knudsen law. This says that if N atoms strike a wall for which there is
no specular reflection or diffraction then the number dN that emerge from the
surface within the solid angle dΩ making an angle θ with the normal to the
surface is dN = (1/π)N cos θdΩ. For the canal wall θ = π/2 in the forward
direction of the oven. This means dN = 0 is this direction, i.e., there are no
attenuation of the atomic flux in the forward direction and Eq. (5.5) is valid in
the case of a long canal.
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Fig. 5.2: The atomic beam flux as a function of the position transverse to the atomic
beam direction. (a) illustrates basic geometric principles of how oven source
and skimmer widths relate to the atomic beam shape. The two graphs shows
the expected atomic beam shape in the horizontal direction (b) (w = 2.4
mm) and the vertical direction (c) (w ∼ 500 µm). The atomic flux is given
in units of the flux calculated from Eq. (5.5).

The atomic beam shape at the location of the ion crystal depends on the
size of the oven aperture, the horizontal and vertical widths of the rectangular
skimmer hole(w), and their relative positions as illustrated in Fig. 5.2 (a). The
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beam shape for a given geometry is calculated evaluating the area of the oven
orifice which is not obscured by the skimmer at a given point of the line marked
by ‘detection’ in Fig. 5.2 (a). This calculation has been done assuming a circular
oven aperture with diameter ∅1 mm, while the skimmer widths are w = 2.4
mm horizontally (Fig. 5.2 (b)) and w = 500 µm vertically (Fig. 5.2 (c)), which
resembles the real oven setup. When the oven orifice diameter is sufficiently
small there are locations on the ‘detection’ line, where the oven orifice is com-
pletely unobscured by the skimmer. In these locations the atomic flux is just
the same as would be observed in the absence of the skimmer, i.e., the flux is
constant and given by Eq. (5.5). In Fig. 5.2 (b) and (c) this is just given by
the region of constant flux. The region where the oven orifice is partly obscured
we refer to as the penumbra region. In Fig. 5.2 it is apparent that the expected
beam shape vertically is dominated by the penumbra region, as opposed to the
horizontal direction where the appreciable skimmer width gives constant flux
over a large range.

The vertical beam shape shown in Fig. 5.2 (c) illustrates that it is essential
that we measure the charge transfer rate at the position at maximum flux,
because here the flux is known and given by Eq. (5.5). How information about
the beam shape in the vertical direction is obtained experimentally is the theme
of Sec. 5.3.

5.3 Vertical beam shape

We want to measure the rate of charge transfer between the 40Ca atoms in the
effusive atomic beam and the 44Ca+ ions trapped in the linear Paul trap and
then from an estimate of the flux of 40Ca atoms this measurement is converted
to an estimate of the charge transfer cross section. The basics of the setup used
in these experiments were described in Sec. 3.2.

In order to be sure that the charge transfer rate is measured at the position
of maximum atomic beam flux, i.e., at the position where the atomic beam flux
is given by Eq. (5.5), we need to measure the vertical profile of the flux. The
experimental method used for mapping the atomic beam shape is described in
this section.

The basic idea is to use a small 40Ca+–44Ca+ bi-crystal to probe the elec-
tron transfer rate between 40Ca atoms in the atomic beam and 44Ca+ ions in
the crystal, when the crystal is displaced vertically from the trap center. The
electron transfer rate is proportional with the atomic beam flux at the position
of the ion crystal and we can therefore map out the vertical atomic beam flux
profile.

The displacement of the crystal away from the trap center is done by applying
offset DC voltages to the Paul trap electrodes. In Fig. 5.3 the 12 electrodes are
numbered from 1 to 12. In order to make a displacement of the ions we choose
to apply an offset DC voltage, −V , to the 1–2–3 electrodes, which translates
the ions in the x′y′ plane in the (x̂′ + ŷ′)/

√
2 direction. To compensate the

horizontal displacement of the ions we also apply the offset voltage V to the 4–
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Fig. 5.3: Overview of the Paul trap electrode numbering and a sketch of the crystal
displacement when an offset voltage is applied to the electrodes 1–2–3 and
subsequently to 4–5–6.

5–6 electrodes, which translates the ions in the (−x̂′+ ŷ′)/
√

2 direction. Because
the CCD-camera is placed vertically above the trap (see Sec. 3.3), it is not
possible to directly measure the vertical position of the ions relative to the trap
center from the images of the crystal. In order to circumvent this problem
the horizontal displacement of the ions relative to the trap center is calibrated
with respect to the applied offset voltage of electrodes 1–2–3 and 4–5–6, when
the applied voltage has the same sign, i.e., horizontal x̂′ displacement only.
The calibration which is done with a small Coulomb crystal containing ∼ 300
40Ca+ ions, and the applied rf-voltage is Urf ∼ 200 Volt. The calibration result
is shown in Fig. 5.4 and from this plot we can conclude that there is a nice
linear dependence between the displacement of the crystal and the applied offset
voltages.
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Fig. 5.4: Calibration of the horizontal displacement of 40Ca+ ions from the trap center
versus the offset voltage on electrodes 1–2–3 and 4–5–6.

The beam profile measurement, which is seen in Fig. 5.6, was taken by
measuring the charge transfer rate using small 40Ca+–44Ca+ bi-crystals con-
taining ∼ 1000 ions. The thermometer read off of the oven temperature during
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the beam measurement was 533 ± 2◦C. In the following the method used for
measuring the charge transfer rate for different vertical positions of the crystal
is described. Initially a small bi-crystal of 40Ca+–44Ca+ consisting mainly of
44Ca+ ions is loaded. Only the 40Ca+ ions are directly laser cooled, so we can
only count the number of 40Ca+ ions situated in the core of the crystal from
pictures like in Fig. 5.5(a) recorded by the CCD-camera. After the 40Ca+ ion
core has been imaged, the crystal is moved vertically from the trap center to the
position where we want to measure the charge transfer, where it is exposed to
the atomic beam for about 10 s. The exposure time is controlled manually by
un-blocking and blocking the oven beam using the oven shutter (see Sec. 3.2),
while the exact exposure time is measured using a stop watch. Subsequently the
crystal is moved back to the trap center, where it is in focus of the camera, such
that the increase in the number of 40Ca+ ions can be determined (Fig. 5.5(b)).
In order to measure the decay rate of the 44Ca+ ions, we need to deduce the
number of 44Ca+ ions instead of the number of 40Ca+ ions. To accomplish this
only the total number of ions in the crystal needs to be known, which is found
by completing the measurement by converting the remaining 44Ca+ ions into
40Ca+ ions using charge transfer (Fig. 5.5(c)).

t = 0 s

(a) (b)

t ~ 15.6 s

(c)

t ~ s�

100 m�

Fig. 5.5: Example of a 40Ca+–44Ca+ bi-crystal used for the beam shape measurements.
The crystal shape during the charge transfer measurement is prolate. See text
for further details.

During the ∼ 10 s charge transfer measurement the crystal has a horizontally
elongated shape obtained by lowering the end-cap potential of the linear Paul
trap. This is done to ensure that the vertical extend of the crystal is below 100
µm, which consequently is the maximum size of our atomic flux detector. When
the number of ions needs to be counted the end-cap potentials are increased to
shape the crystal like a sphere as shown in Fig. 5.5 for a precise determination
of the number of 40Ca+ ions present in the crystal.

The result of the electron transfer measurements is shown in Fig. 5.6 as
a function of the vertical crystal position with respect to the Paul trap center.
Each data point presented in the graph is the average of 3 measurements and the
error bars represents two standard deviations of the measurements. Inspired by
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the beam shape graphs presented in Fig. 5.2 a free-hand drawing of a trapezoid
has been added to the plot to guide the eye. Even though the measured beam
shape deviates somewhat from what we would expect from the simulation shown
in Fig. 5.2(c) it still features the expected characteristics, namely a flat constant
flux region with a rate of ∼ 0.032/s and two penumbra regions. It is difficult
to say why the data in Fig. 5.6 differs from the simulation in Fig. 5.2(c). The
truth about the beam shape obviously depends on the exact geometry of the oven
setup. An opening of the vacuum chamber could provide us with the information
needed to make a correct interpretation of the data shown in Fig. 5.6.
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Fig. 5.6: Vertical beam profile measurement.

5.4 Oven temperature

Establishing the correct oven temperature is essential for estimating the atomic
flux of calcium given by Eq. (5.5). During experiments the oven temperature
is monitored with a thermosensor coupled to the oven graphite (see Sec. 3.2),
but due to temperature gradients in the oven graphite the temperature read off
the thermosensor is not necessarily the same as the temperature of the calcium
vapor residing inside the oven chamber. To find the correct temperature of the
calcium vapor we have to measure the velocity distribution of the calcium atoms
in the atomic beam. For simplicity the same oven temperature has been chosen
for all the experiments in present chapter, i.e., the oven temperature measured
by the thermosensor is T = 533◦C. In this section we will establish what the
corresponding actual temperature of the calcium vapor is.

The normalized velocity distribution of the number density of calcium atoms
in an effusive atomic beam depends only on the temperature T and the mass
M of the atoms [75]

fv(v)dv =
4v2

√
πα3

T

e−v2/α2
T dv, (5.6)
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Fig. 5.7: Experimental setup for the velocity distribution measurement. The 397 nm
and 866 nm cooling lasers have not been included in this figure, but the
cooling laser setup is the same as in Fig. 4.2

where αT =
√

2kBT/M and v is the atomic velocity. We can therefore find tem-
perature of the calcium vapor from a measurement of the velocity distribution
of the atomic beam. The experimental setup for this measurement is shown in
Fig. 5.7. The experimental method for measuring the velocity distribution is
similar to the method we used in the photo-ionization rate measurements de-
scribed in Sec. 4.4 with the modification that the 272 nm photo-ionization laser
beam direction has a 135◦ ± 0.5◦ angle with respect to the atomic beam direc-
tion. After a simple geometric consideration it is seen that the photo-ionization
transition frequency, ν, is shifted by an amount ∆ = vν/

√
2c for atoms belon-

ging to the velocity class v. Using this expression in Eq. (5.6) we find that the
normalized photo-ionization spectrum for photo-ionization under this angle is

f∆(∆)d∆ =
4∆2

√
πβ3

T

e−∆2/β2
T d∆, (5.7)

where βT = αT ν/
√

2c.
Figure 5.8 shows the photo-ionization rate as function of the photo-ionization

laser frequency when the thermosensor temperature is 533◦C. The full curve is
a weighted fit of the data points to Eq. (5.7). For each curve the temperature
found from the fit is noted in the graph. The uncertainties stated are the statis-
tical fit uncertainty and a systematic uncertainty. There are two contributions
to the systematic uncertainty, namely the calibration uncertainty of the photo-
ionization laser (2.2%) and the 0.5◦ uncertainty in the 135◦ angle between the
atomic beam and the photo-ionization laser beam (1.7%). The total systematic
uncertainty is 2.8%, and this naturally sets the lower bound on how precise the
temperature can be determined. The velocity profile was measured 4 times and
the corresponding temperatures was found from a fits of Eq. (5.7) to the pro-
files as shown in Fig. 5.8. The weighted average of the 4 temperatures shown
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in Fig. 5.8 is T = 691 ± 8 ± 19◦K, which we will regard as the actual oven
temperature when the temperature sensor measures T = 533◦C.
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Fig. 5.8: Normalized ionization rates as function of the ionization laser detuning.

Inserting this temperature into Eq. (5.5) we find that the atomic flux of
calcium at the Paul trap position is

φa = 9× 1010 ±
{

+140%
−60% atoms/(cm2· s), (5.8)

assuming that no collimating slit or other obstruction intercepts with the beam
on its way the trap. This flux result is used in Sec. 5.5 to find the charge transfer
cross section between 44Ca+ ions and 40Ca atoms.

5.5 Charge transfer cross section

After having determined the approximate vertical profile of the atomic beam in
Sec. 5.3 it still remains to make a precise measurement of the electron transfer
rate at position where the atomic beam profile has its maximum. The charge
transfer rate is measured at the vertical position ∼ 150 µm from the center-axis
(see Fig. 5.6) . The charge transfer rate was measured using only one 40Ca+–
44Ca+ bi-crystal with a total of ∼ 580 ions and using the almost same method as
described in Sec. 5.3. The only difference is that we make several intermediate
measurements of the 40Ca+ fraction of the crystal before the crystal has become
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almost a pure 40Ca+ crystal. The result is shown in Fig. 5.9(a), where the
number of 44Ca+ ions in the crystal is plotted as a function of the time that
the crystal has been exposed to the atomic beam. As expected the number of
44Ca+ is exponentially decaying as a function of time, and a weighted fit of the
data points in Fig. 5.9(a) reveals a 44Ca+ decay rate of γ = 0.032± 0.002 s−1.
It is reassuring to see that this decay rate agrees with the decay rates found in
the beam profile measurement seen in Fig. 5.6.
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Fig. 5.9: (a) Measurement of the charge transfer rate at the vertical position ∼ 150 µm
from the trap axis (see Fig. 5.6). (b) Comparison between theory (Sec. 5.1)
and experimentally determined cross section. The experimental result has
been plotted at 600 m/s which corresponds to the average atomic velocity in
the beam.

Using the atomic flux, which is found in Eq. (5.8), and the charge transfer
rate measurement, we find that the charge transfer cross section is

σ = 3.5× 10−13 ±
{

+140%
−60% cm2. (5.9)

A comparison between the result reported in Eq. (5.9) and the theory presented
in Sec. 5.1 is plotted in Fig. 5.9(b). It is seen that the theoretically predicted
cross section is an order of magnitude smaller than the measured cross section.
Experimentally there are two factors that can contribute to this discrepancy,
namely erroneous temperature measurement of the atomic beam, and the ‘un-
known’ oven collimator geometry. The temperature is indeed critical for the
cross section measurement, which is seen by considering that the large error
bars in Fig. 5.9(b) solely comes from the temperature uncertainty, and it is
hence not possible to completely rule out the temperature measurement as a
significant error source. While it remains unsaid if the temperature measure-
ment is erroneous, it more interesting to consider the oven geometry. At present
the only knowledge we have about the oven collimator setup is from technical
drawings. Many differences are found when comparing the theoretical atomic
beam shape (Fig. 5.2) with the measured beam shape (Fig. 5.6), which indicates
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that oven setup may be different from what we expect. The beam collimator
can only reduce the maximum atomic flux measured at the Paul trap, which in
turn would increase the cross section calculated from this flux and our result
would be closer to the theory. We can obtain knowledge about the real oven
collimator setup once the vacuum chamber (see Sec. 3.2) is opened again, but
there are no plans of doing so in the nearest future.

Looking at the beam scan result in Fig. 5.6 and the measurement of the
charge transfer rate in Fig. 5.9(a) it is clear that the thermal charge transfer
rate can be measured to a high precision using ion Coulomb crystals. The
Achilles’ heel of the cross section measurement is the atomic flux estimate, so
it would indeed be satisfactory if we could improve this estimate. The ideal
way to determine the atomic flux would be to use absorption spectroscopy on
the 4s2 1S0 ↔ 4s4p 1P1 transition in neutral calcium, which has the transition
wavelength λ = 422.7 nm. Currently a laser source at this wavelength is not
present in our laboratory.



6. CRYSTAL STRUCTURE STUDIES

In this chapter we report on the structural properties of single component as
well as two component ion Coulomb crystals in a linear Paul trap. The main
emphasis here will be on the ordering of the ions in different lattice structures
and shell structures. Lattice structures as face-centered cubic (fcc) and body-
centered cubic (bcc) are observed. Concerning the single component Coulomb
crystals we will concentrate on small crystal sizes in the regime ∼ 1000 ions, and
for the bi-crystals the observed fcc structure in the 40Ca+ ion core is directly
compared to Molecular Dynamics (MD) simulations of bi-crystals.

6.1 One component crystal structures

The Wigner crystallization of electrons in metals was suggested in 1934 [24] and
since then there have been extensive experimental and theoretical studies of
various systems exhibiting these crystalline states. Experimentally laser cooled
ions confined in an electromagnetic field are excellent targets for studying the
structure of Coulomb crystals containing a single component. This has been
done both in Paul traps [76–80] and in Penning traps [81–84]. In Nature these
ion Coulomb crystals are believed to be present in ultra dense stellar objects as
in the interior of cooling white dwarf stars [27].

In smaller ion Coulomb crystals, where surface effects dominate, the crystal
structures are determined by the boundary condition set by the trapping poten-
tials. This is not the case for larger ion Coulomb crystals with more than 10,000
particles where the predicted ground state structure of the crystal has both
theoretically [85, 86] and experimentally [83, 84] proven to be a body-centered
cubic structure . In contrast the fcc structure is predicted for clusters where
the particles interact via short range potentials as for instance the Lennard-
Jones potential [87]. In the case of mesoscopic systems of up to 10,000 charged
particles confined in a spherically symmetric harmonic potential the theoreti-
cal prediction is that in the ground state of the system the ions will order in
a spherical concentric shell structure, where the shells are filled according to
certain “magic numbers” of particles [88]. On the other hand as the number of
particles in the Coulomb crystal is increased the difference in binding energy of
the various spatial configurations becomes smaller due to the decreasing influ-
ence of surface effects1. Furthermore the number of isomeric configurations is

1 This has been confirmed by MD simulations performed by Thierry Matthey and Michael
Drewsen (to appear in Ref. [VI]).
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generally expected to grow exponentially with the number of particles [89]. This
means that at a finite temperature the crystal structure might undergo transi-
tions between the various configurations when the ion number is above a certain
threshold. This phenomenon has not yet been investigated for spherically sym-
metric ion Coulomb crystals containing about 1000 ions. In the following we
report on direct observations of long-range order in ion Coulomb crystals con-
taining down to 1000 ions.

6.1.1 Experimental method

The experiments on 40Ca+ single component crystals were performed in the lin-
ear Paul trap described in Sec. 3.1. The standard laser systems for laser cooling
and ion production described in Chap. 3 were used. The camera system has a
resolution of 0.71± 0.01 µm/pixel. The depth of focus of the imaging system is
at least a few times the inter-ion spacing, so when a lattice structure occurs in
the two-dimensional projection images of the crystal it must originate from a 3D
long-range ordered lattice structure in the crystal oriented such that the lattice
is translational invariant in the direction towards the camera. In the camera
focus the ion micromotion is approximately directed along the direction of view
of the camera system. Further away from the camera focus the micromotion
is perpendicular to the direction of view of the camera. This is illustrated in
Fig. 6.1.

Imaging
system

electrodeelectrode

electrode electrode

micromotion

Region of focus

Fig. 6.1: Illustration of the direction of the micromotion of the ions relative to the
focus of the imaging system. The arrows indicate the micromotion of the
ions.

6.1.2 Observed structures in large crystals

Two projection images of a big crystal containing ∼ 13, 000 40Ca+ ions are
seen in Fig. 6.2. The Paul trap is operated at an rf-voltage of Urf ∼ 400 V
corresponding to an ion density of n = 2.2 × 108 cm−3. The exposure time
of the camera is 100 ms. In Fig. 6.2(a) a hexagonal structure is visible in
the projection of the crystal. The simple cubic (sc), face-centered cubic (fcc),
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body-centered cubic (bcc) structures all exhibit such a hexagonal structure when
viewed along one of the cube diagonals (e.g., the [111] direction), but for a given
length d of the sides of the equilateral triangles in the hexagonal structure the
density of ions n is different for the three different cubic structures such that
nbcc = 2nsc = 4nfcc. Assuming that the observed crystal structure in Fig. 6.2(a)
is a bcc structure projected in the [111]-direction the ion density deduced from
the length d = 17.2 ± 0.2 µm is nbcc ∼ 2.1 ± 0.1 × 108 cm−3. In view of the
fact that nfcc = 1

4nbcc and nsc = 1
2nbcc it is safe to conclude that the hexagonal

structure in Fig. 6.2(a) presumably arise from a bcc structure and not a fcc
structure or a sc structure.

(a) (b)

Fig. 6.2: 40Ca+ ion crystal showing both bcc structure (a) and fcc structure (b). The
inserts below the pictures indicate the projected structure of the crystals as
well as define the lengths d, w, and h used in the text.

In Fig. 6.2(b) a rectangular structure is visible in the projection of the crystal.
The sides of the rectangle are h = 15.2±0.5 µm and w = 9.71±0.2 µm revealing
that the ratio of the sides is h/w = 1.55± 0.06. A structure that exhibits such
a rectangular crystal projection is the fcc structure when viewed along the [211]
direction and the ratio of the sides of the rectangle is h/w =

√
8/3 ≈ 1.63.

Although there is not perfect agreement this could indicate that the projected
structure in Fig. 6.2(b) is an fcc structure viewed along the [211] direction.
This is supported by the ion density deduced from the lengths of the sides of
the projected rectangle if it is assumed that the crystal structure is fcc. For the
longest side of the rectangle (h) the deduced ion density is nfcc,h = 2.2±0.2×108

cm−3 and for the shortest side the deduced density is nfcc,w = 1.9 ± 0.1 × 108

cm−3. It is seen that nfcc,h agrees with the expected ion density, while there
is a 10% difference between the expected ion density and nfcc,w. The origin
to the discrepancy between the observed projected structure and a fcc lattice
[211] projection is at present unknown, but one explanation could be that the
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observed structure is distorted by the micromotion of the ions in the crystal. In
conclusion we have observed both bcc structures and fcc like structures in large
ion crystals with ion numbers exceeding ∼ 10, 000.

6.1.3 Observed structures in small ion clusters

MD simulations [85, 86] previously indicated that bcc structures are not present
in ion clusters which have less than ∼ 10, 000 ions. We here report on bcc
structures in spherically shaped one component ion Coulomb crystals containing
down to ∼ 1000 ions.

Figure 6.3 shows a series of projection images of nearly spherically symmetric
ion Coulomb crystals with ion numbers in the range 300–2700 ions. The Paul
trap is operated at an rf-voltage of Urf ∼ 400 V which corresponds to an ion
density of n = 2.2× 108 cm−3. The exposure time of the camera is 100 ms. In
Fig. 6.3 (a), (c), (e), and (g) the fluorescence from the crystallized ions exhibits
clear ring structures indicating that the ions are localized in concentric shells as
predicted by Hasse et al. [88]. In Fig. 6.3 (b), (d), (f), and (h) lattice structures
are present, at least locally, in the projection images, which indicates that the
crystals must have undergone a transition to lattice like cluster structures. In
the two largest crystals, hexagonal structures are present and clearly seen in
the projection images (Fig. 6.3 (f) & (h)) indicating that long-range ordering is
present throughout the entire crystal except at the crystal surface.

The side lengths of the triangles in the hexagonal projection seen in Fig. 6.3(f)
are d = 16.8 ± 1 µm. When it is assumed that the hexagonal projection arise
from a bcc lattice structure oriented in the [111] direction, this side length gives
the density nbcc = 2.3±0.3×108 cm−3. This is in agreement with the expected
density and we conclude that a bcc lattice structure is observed. The long-range
ordered bcc structures are thus present in spherically symmetric Coulomb crys-
tals with ion numbers down to ∼ 1000. This is quite a surprising result since
MD simulations have predicted that such a long-range order first appear when
ion numbers exceed ∼ 10, 000 ions. The presence of bcc structures in the small
clusters does not critically depend on the crystal shape, since the bcc structures
have also been observed in small prolate and oblate crystals with ion numbers
of ∼ 2000.

Although the projection image in Fig. 6.3(h) at first sight also seem to have
the same projected hexagonal structure as Fig. 6.3(f) a closer look reveals that
the projected structure is not made up of equilateral triangles. Rather the
three angles of the triangle are ∼ 66◦, ∼ 58◦, and ∼ 56◦. The reason for
this discrepancy could be found in some micromotion induced distortion of the
lattice structure, but the exact cause of the change in the observed projection
is at present unknown.

6.2 Bi-crystal structures

There are several interesting aspects of the structural properties of two-compo-
nent Coulomb crystals, which have earlier been studied by the Aarhus Ion Trap
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0.1 mm(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 6.3: Near spherical crystals showing both concentric shell structures (left) and
lattice structures (right). The ion crystals contain about 300 ions ((a) &
(b)), 700 ions ((c) & (d)), 1400 ions ((e) & (f)), and 2700 ions ((g) & (h)).
For the crystals (f) and (h) real long-range order is observed.
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Group in bi-crystals consisting of 24Mg+ ions and 40Ca+ ions. For a review
see Refs. [34, 90]. Here we will mainly focus on the structural properties of the
central 40Ca+ core of 40Ca+–44Ca+ bi-crystals. New results are presented which
indicate that the concentric shell structure of the central 40Ca+ core predicted
from MD simulations [34], and observed for bi-crystals trapped in a linear Paul
trap [90] is not unique. Instead a transition to a 3D long-range ordered lattice
structure exists when the crystal core contains a sufficiently high number of
40Ca+ ions.

6.2.1 Experimental method

The experiments on 40Ca+–44Ca+ bi-crystals were performed in the Paul trap
described in Sec. 3.1 and the bi-crystals were produced using the resonant two-
photon photo-ionization method described in Chap. 4. In order to study the
structural properties of both isotope ions in the crystal laser cooling needs to
be applied to the individual isotopes. Due to the isotope shift of the cooling
transition (see Tab. 2.1) each isotope ion species has its own unique laser fre-
quencies that is applied for laser cooling. A very elaborate method of applying
laser cooling to the individual isotopes would be to manually tune the cooling
lasers to each of the isotopes in turn. This is not an ideal experimental situa-
tion, because in the process of tuning the cooling lasers to another isotope the
trapped ions will inevitably get warm resulting in possible ion losses.

To avoid this we use individual laser systems for Doppler cooling of each
of the two calcium isotopes. All the laser systems mentioned in the following
are described in Sec. 3.4. For the 44Ca+ ions we use the 397 nm Ti:Sapph
laser for the 4S1/2 ↔ 4P1/2 transition, and the 866 nm diode laser for the
3D3/2 ↔ 4P1/2 transition. See Fig. 2.4 for a level scheme of Ca+. At the time
that the experiments were performed there were not two 866 nm diode laser
systems available in the laboratory, which would be needed for re-pumping via
the 3D3/2 ↔ 4P1/2 transition for both Ca+ isotopes simultaneously. Instead
re-pumping for the cooling transition in 40Ca+ was done via the 4P3/2 state
using an 850 nm diode laser and an 854 nm diode laser tuned to the 3D3/2 ↔
4P3/2 transition and the 3D5/2 ↔ 4P3/2 transition, respectively. During the
experiments the 850 nm and the 854 nm diode lasers are locked to the same
temperature stabilized cavity using a Pound-Drever-Hall lock (see Sec. 3.4.4).
The 4S1/2 ↔ 4P1/2 transition in 40Ca+ is covered by 397 nm diode laser, which
is locked to an optical cavity using an offset lock.

A schematic of the cooling laser setup is shown in Fig. 6.4. The two laser
beams at λ = 397 nm coming from the diode laser and the Ti:Sapph laser
are made co-propagating using a PBS. Shaping of the laser beams using lenses
before the PBS is done to ensure a good spatial overlap of the two beams. The
λ = 397 nm laser light is then split in two arms using a λ/2-plate and a PBS in
order to make two power balanced, counter-propagating cooling laser beams at
the ion crystal. The λ = 866 nm laser and the λ = 850 nm laser light are made
co-propagating using a PBS, while the λ = 854 nm is sent into the Paul trap in
the opposite direction. The infrared re-pump laser beams are overlapped with
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Fig. 6.4: Experimental setup for cooling 40Ca+ and 44Ca+. M: Mirror, DM: Dichroic
Mirror, PBS: Polarization Beam Splitter, λ/2: half wave plate, DL: Diode
Laser.

the UV light (λ = 397 nm) using dichroic mirrors that transmit infrared light
and reflects UV light.

In order to be able to distinguish between the two ion isotopes laser cooling
is applied in an alternating sequence between 40Ca+ and 44Ca+. An example
of such a sequence for a 40Ca+–44Ca+ bi-crystal is shown in Fig. 6.5. The laser
cooling of the two isotopes is effectively turned off by introducing mechanical
shutters in the laser beam pathways of the re-pump cooling lasers. In the case
of the 40Ca+ ions the λ = 850 nm diode laser is blocked and for the 44Ca+

ions the λ = 866 nm diode laser is blocked (see Fig. 6.4). To illustrate both
isotopes in the bi-crystals in one picture the RGB color coding scheme is used
to color the 40Ca+ ions red and the 44Ca+ ions blue and then subsequently
add the pictures2. An example of such a color coded illustration can be seen in
Fig. 6.14(a).

6.2.2 Central core shell structures in bi-crystals

The shell structure of the central core of bi-crystals in linear Paul traps has pre-
viously been studied for bi-crystals consisting of 24Mg+ ions and 40Ca+ ions [90].
As mentioned in Chap. 2 the radially mass dependent force will spatially sep-
arate the two calcium ion isotopes, such that 40Ca+ ions are situated closest

2 This was done using the image analysis program ImageJ.
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P1 P2 P3 P4 P5 P6

P7 P8 P9 P10 P11 P12

time

Fig. 6.5: Image sequence showing the alternating cooling of 40Ca+ and 44Ca+ ions.
The 40Ca+ ions are laser cooled in images P1–P6 and P11–P12. The 44Ca+

ions are cooled in images P1, P2, and P6–P12. The crystal contains about
500 40Ca+ ions and 1400 44Ca+ ions. The image acquisition rate is ∼ 6 Hz,
and Urf ∼ 400 V.

to the linear Paul trap axis. This can be seen in Fig. 6.6(a), where it is evi-
dent that the separation of the two isotopes is total. The observed core shell
structure of these bi-crystals is surprisingly similar to the shell structure which
have been observed [78] and predicted [91] for one component Coulomb crystals
confined in an infinitely long cylindrically symmetric harmonic potential. Here
we present observations of shell structure in the 40Ca+ core of 40Ca+–44Ca+

bi-crystals.
Figure 6.6(a) shows a small bi-crystal containing ∼ 270 40Ca+ ions and

∼ 500 44Ca+ ions, which illustrates the general structural properties of the bi-
crystals. The inner 40Ca+ core of the crystal has a cylindrical shell structure
with a string of twelve 40Ca+ ions on the trap axis surrounded by other 40Ca+

ions forming three cylindrical shells. The presence of the 40Ca+ ions in the bi-
crystal is observed to have only a weak influence on the spheroidal shape of the
outer envelope of the 44Ca+ ions. On the other hand the cylindrical envelope of
the 40Ca+ core is indeed shaped by the 44Ca+ ions surrounding the 40Ca+ core.
This manifests itself very explicitly in Fig. 6.6(b), where the three outer 44Ca+

shells clearly have a spheroidal shape and the inner 40Ca+ ions core have one
cylindrical shell surrounding a string of 11 40Ca+ ions.

Figure 6.7 shows the projection onto the x-axis of the 40Ca+ fluorescence
intensity from a radial cross section though a 40Ca+–44Ca+ bi-crystal consisting
of ∼ 550 40Ca+ ions and ∼ 1450 44Ca+ ions at three different end-cap voltages.
The crystal shell structure is evident from the local intensity maxima and min-
ima in the three graphs. The graph plotted with � data points and featuring
seven local intensity maxima reflects the crystal structure where the 40Ca+ ion
core has one 40Ca+ ion string surrounded by three cylindrical ion shell struc-
tures. At another setting of the end-cap potential the crystal has become more
elongated and the ion string in the center of the ion core has disappeared, which
gives the projection plotted with � data points and featuring six local inten-
sity maxima that indicate that only three shells are present in the 40Ca+ crystal
core. The graph plotted with • data points and marked ‘transition’ is the 40Ca+

core projection when the ion string is not complete. A small peak in the center
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Fig. 6.6: Bi-crystals with cylindrical shell structure. (a) The crystal contains ∼ 270
40Ca+ and ∼ 500 44Ca+ ions and the 40Ca+ ion density is n0 = 1.0 × 108

cm−3. (b) The crystal contains ∼ 100 40Ca+ and ∼ 800 44Ca+ ions and the
40Ca+ ion density is n0 = 1.3 × 108 cm−3.

of this graph indicates that a sharp transition between the two structures does
not exist, but instead ions gradually start to disappear from the Paul trap axis
when the end-cap potential is lowered.

In Fig. 6.8 the number of shells in the Coulomb crystal shown in Fig. 6.7
has been plotted against the dimensionless linear ion density of the 40Ca+ ions,
which is defined as

λ =
σ

e
aws, (6.1)

where aws is the Wigner-Seitz radius of the ions defined by 4
3πa3

ws = n−1
0 , and

σ is the linear charge density of the 40Ca+ ions defined as the 40Ca+ ion charge
density per unit length of the Paul trap axis. For the cylindrical 40Ca+ core of
the crystal we calculate σ from

σ = πn0R
2aws, (6.2)

where R is the radial distance from the Paul trap axis to the outer 40Ca+ ion
shell plus the half of a 40Ca+ ion inter-shell distance. The points in Fig. 6.8
plotted in-between the reported shell structures are transitional structures cor-
responding to the transition ion core structure shown in Fig. 6.7. The plot
reveals that the number of shells increases for increasing λ. I Ref. [91] MD
simulations of ions in a infinitely long cylindrically symmetric static potential
showed that the structure with 1 string + 3 shells appears at λ ∼ 19.9 and
the structure with 4 shells appear at λ ∼ 26.6, which agrees with observations
presented in Fig. 6.8.

6.2.3 Lattice structure in the 40Ca+ ion core

The observed structures of the 40Ca+ ion core of bi-crystals presented so far
in this section are in good agreement with the cylindrical shells predicted by
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Fig. 6.7: The projected radial intensity of the 40Ca+ ion core for a bi-crystal consist-
ing of ∼ 550 40Ca+ ions and ∼ 1450 44Ca+ ions at three different end-cap
voltages. The ion density of the 40Ca+ ions is ∼ 2.2 × 108 cm3.

the MD simulations for infinitely long single component crystals [91] and also
observed and predicted for bi-crystals consisting of 40Ca+ ions and 24Mg+

ions [34, 90]. The crystals presented in the following do, however, not exhibit
this shell structure, but instead there are indications of a 3D long range ordered
lattice structure.

An example of such a bi-crystal is shown in Fig. 6.9. The bi-crystal consists
of ∼ 1500 40Ca+ ions and ∼ 2000 44Ca+ ions and the density of 40Ca+ ions
is n0 ∼ 4.0 × 108 cm−3. The observed projected structure is a rectangular
structure having side lengths h = 12.6 ± 0.3 µm and w = 7.8 ± 0.3 µm. This
gives the ratio h/w ∼ 1.62± 0.07 between the sides of the rectangle. Similar to
the findings in Sec. 6.1.2 this indicates that the 40Ca+ ion core structure is a fcc
lattice viewed along the [211] direction where a ratio of h/w = 1.63 is expected.
The ion density calculated from the h and w, assuming a fcc structure [211]
projection, is nfcc = 3.8± 0.2× 108 cm−3 in good agreement with the expected
ion density of n0 ∼ 4.0× 108 cm−3.

Figure 6.10 shows the 40Ca+ part of the same crystal at different end-cap
voltages and it is observed that the lattice structure is present at all four end-
cap voltages. The lattice structure is oriented along the Paul trap axis for the
bi-crystal, which was not the case for the fcc structure observed for the single
component 40Ca+ crystal in Fig. 6.2(b) Sec. 6.1.2. A reasonable explanation
for this alignment of the lattice structure along the Paul trap axis is that the
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Fig. 6.8: Number of shells in the crystal plotted against the dimensionless linear ion
density.
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Fig. 6.9: Large bi-crystal containing ∼ 1500 40Ca+ and ∼ 2000 44Ca+ ions. The insert
highlights the rectangular structure in the 40Ca+ ion core and defines lengths
h and w.

cylindrically shaped outer envelope of the 40Ca+ ions imposes a boundary con-
dition on the lattice that determines the orientation of the fcc structure. This
explanation is supported by the observation that in the single component case
the orientation of the lattice structure does not exhibit the same stability as in
the two component case.

6.2.4 Comparison with simulations

To get a better understanding of the observed bi-crystal structures MD sim-
ulations were performed by Esben S. Nielsen in collaboration with Thierry
Matthey [92, 93].

Conventionally the ions in the MD simulations are confined by the harmonic
pseudopotential introduced in Eq. (2.6)

Φps(r, z) =
1
2
M(ω2

rr2 + ω2
zz2), (6.3)
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Fig. 6.10: The 40Ca+ component of a bi-crystal containing ∼ 1500 40Ca+ and ∼ 2000
44Ca+ at different end-cap voltages.

that describes the dynamics of an ion in the Paul trap when the micromotion is
ignored. In the MD simulations presented here we shall sometimes use the full
time-dependent electric potential (see Sec. 2.1)

φtot(x, y, z, t) = −1
2
Urf cosΩrft

x2 − y2

r2
0

− 1
2
ηUec

x2 + y2 − 2z2

z2
0

, (6.4)

instead of the pseudopotential in Eq. (6.3). The projection in the x′y′ plane3 of
a simulated 40Ca+–44Ca+ bi-crystal using the full electric potential is shown in
Fig. 6.11 at different stages of the micromotion during half an oscillation period.
The projection at Ωrf t = 2πN +π/2 shown in Fig. 6.11(b) is the stage at which
the highest degree of rotational symmetry is exhibited and the projections shown
in the remainder of this section are consequently from Ωrf t = 2πN + π/2.
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(b) Ωrf t = 2πN + π/2
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(c) Ωrf t = 2πN + π

Fig. 6.11: Projection in the x′y′-plane of a simulated bi-crystal containing 1509 40Ca+

ions and 1979 44Ca+ ions at three different stages of the micromotion. The
lines in (b) indicate the region used for the projections in Fig. 6.13(b) and
Fig. 6.14(b). N is an integer.

3 The unit vectors x̂′ and ŷ′ were defined in Fig. 2.1.
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Figure 6.12 shows projection of an ion crystal simulated at two different end-
cap potentials using both the pseudopotential (Fig. 6.12(a) & (c)) and the full
time-dependent potential (Fig. 6.12(b) & (d)). Figure 6.12(a) shows a setting of
the end-cap potential for which the pseudopotential simulation predicts a crys-
tal structure with three 40Ca+ ion shells. Using the full potential instead but
with the same trapping parameters in Fig. 6.12(b) we see that a lattice structure
appears in place of the inner shell. Apart from the appearing lattice structure
the two outer 40Ca+ ion shells do no longer have the rotational symmetry ob-
served in Fig. 6.12(a). At another setting of the end-cap potential both the
pseudopotential simulation and the full potential simulation predicts a string of
40Ca+ ions on the Paul trap axis, as seen in Fig. 6.12(c) and Fig. 6.12(d), and
a rotationally symmetric shell structure.
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Fig. 6.12: Projection in the x′y′ plane of a simulated ion Coulomb crystal containing
553 40Ca+ ions and 1460 44Ca+ ions at the end-cap potentials Uec = 14.31 V
((a) & (b)) and Uec = 18.26 V ((c) & (d)). Urf = 400 V. The corresponding
trap frequencies can be calculated using the Paul trap parameters given in
Sec. 3.1.

For a direct visual comparison between the experiments and the simulations
a projection of the region indicated in Fig. 6.11(b) is made resulting in the
projection images seen in Figs. 6.13 and 6.14 which are compared experimentally
observed bi-crystals.

In Fig. 6.13 an observed bi-crystal exhibiting shell structure in the 40Ca+

core is compared to a simulation, where the pseudopotential is used. The num-
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ber of ions as well as the trap parameters have been chosen to correspond to
the experimental parameters. It is seen that there is a nice visual agreement
between the observed crystal and the projection of the simulation. The similar-
ity between the two is expected because the pseudopotential indeed predicts a
shell structure for the central 40Ca+ core.

100 �m

(a) Observed

100 �m

(b) Pseudopotential

Fig. 6.13: (a) Observed bi-crystal with ∼ 500 40Ca+ ions and ∼ 1400 44Ca+ ions.
(b) Simulated using the pseudopotential bi-crystal with 553 40Ca+ ions and
1460 44Ca+ ions. The rf-potential is Urf = 400 V. The projected region of
the crystal is indicated in Fig. 6.11(b).

Figure 6.14 shows a comparison between the large 40Ca+ bi-crystal from
Fig. 6.9 and crystal simulations that use the full potential (Fig. 6.14(b)) as well
as the pseudopotential (Fig. 6.14(c)). Whereas the pseudopotential simulation
clearly fails to reproduce the observed crystal, the resemblance between the
full potential simulation and the observed crystal is striking in that they both
exhibit a rectangular structure in the crystal projection of the 40Ca+ core.

200 �m

(a) Observed

200 �m

(b) Full potential

200 m�

(c) Pseudopotential

Fig. 6.14: An observed bi-crystal with ∼ 1500 40Ca+ ions and ∼ 2000 44Ca+ ions
is shown in (a). Simulated bi-crystals with 1509 40Ca+ ions and 1979
44Ca+ ions using the full potential (b) and the pseudopotential (c). The
rf-potential is Urf = 400 V. The projected region of the crystal is indicated
in Fig. 6.11(b).

A more careful examination of the crystal structure of the 40Ca+ ion core in
the simulation reveals that the ions are arranged in an fc-orthorhombic struc-
ture. The lattice cell of the fc-orthorhombic structure is shown in Fig. 6.15. The
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ratio of the sides of the rectangular shaped structure seen in the projection of
this crystal structure in Fig. 6.14(b) is h/w =

√
3 	 1.73. This does not agree

with the observed aspect ratio of h/w ∼ 1.62±0.07 (see Fig. 6.9), which is found
for the observed crystal structure in Fig. 6.14(a). The result h/w ∼ 1.62± 0.07
rather indicates that the observed structure is an fcc structure, which predicts
h/w 	 1.63. Because the binding energy difference between the fcc and fc-
orthorhombic structures is small it is possible though that experimental factors
that are not accounted for in the simulations make the fcc structure more fa-
vorable than the fc-orthorhombic structure.

a
b
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z’

x’

y’

(a) (b)

Fig. 6.15: (a) Face-Centered Orthorhombic lattice cell with the side lengths c = l and
a = b =

√
3l = 1.73l. The lattice orientation with respect to the (x′, y′, z′)-

coordinate system is indicated. (b) The projection of the lattice as seen from
the camera. The white and the gray lattice points relate to the different
layers in the projection.

6.3 Conclusion

We have observed that for large one component ion Coulomb crystals with ion
numbers exceeding 10,000 there exist a long-range structural order throughout
almost the entire crystal. The observed 3D long-range ordered lattice structures
for these crystals are presumably bcc and fcc. In contradiction with earlier
theoretical predictions we have observed transitions to bcc lattice structures in
smaller one component spherical crystals of ion numbers down to ∼ 1000 ions.

In the case of two-component Coulomb crystals we have seen that the shell
structure is not an unique property of the central core of the bi-crystal. Instead,
for certain configurations of the trapping parameters and sizes of the Coulomb
crystals, there exists a transition to a 3D long-range ordered lattice structure in
the central core. The MD simulations of the bi-crystals indicate that the exis-
tence of the lattice structure in the crystal core is induced by the time variation
of the confining rf-potential of the linear Paul trap. The simulations furthermore
predict that this lattice has an fc-orthorhombic structure with projection ratio
h/w 	 1.73, which is not fully consistent with the observed h/w = 1.62± 0.07.



7. LIGHT MEMORY PHYSICS

In this second part of the Thesis we will turn to the subject of storage of quantum
states of light in ion Coulomb crystals. The use of the word ‘storage’ means
here that the quantum state of a light field is mapped onto some metastable
state of the ions, or more generally some metastable state of matter, and then
later, on demand, retrieved as a light field that has the same quantum state as
the original light field.

The recent efforts within quantum information science to manipulate the
quantum states of matter and light have stimulated the research on the subject
of light storage. A major issue in quantum information science is the desire to
make a quantum computer, which can solve tasks that are in practice unsolv-
able on a classical computer [94]. One of the challenges in quantum information
processing is the transport of unknown quantum states between specified loca-
tions [95] as well as having quantum memories with short access times. Photons
are good candidates for carrying such quantum states. The quantum states can
be encoded in the polarization state or the spatial wave function of the photon.
As carriers of information photons have the advantage that they are robust and
very fast, but at the same time this also implies that they are difficult to local-
ize and store. In the ideal quantum information scheme one would like to store
and manipulate quantum states in matter and then map these states onto pho-
tons, when desired. A network of such quantum information processors where
photons act as the carriers of quantum information between the nodes of the
network has been proposed [96].

The spin states of atoms are good candidates for a long-lived temporary
storage of photons. At the same time several quantum information processing
schemes are based on the manipulation of the spin states of atoms [97–99] or
in particular ions [6, 18, 100, 101]. In this context it makes good sense to study
the subject of coherent transfer of quantum states carried by light onto internal
states of atoms. In order to be useful for quantum computational schemes
reliable storage of quantum states on the level of individual quanta has to be
achieved.

The conceptually most simple approach is to store single photons in individ-
ual atoms using stimulated Raman adiabatic passage (STIRAP) techniques [1]
to make coherent reversible mapping of the photon state onto the atomic spin
states. At the same time this is a difficult approach as the absorption cross sec-
tion of an isolated atom is very small. Placing the atom in a high Q resonator
effectively increases the absorption cross section by a factor determined by the
number of photon round trips in the cavity. When the absorption cross section
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is sufficiently enhanced we enter the strong-coupling regime of cavity quantum
electrodynamics (QED) [2]. Experimentally it is extremely challenging to real-
ize the strong-coupling regime and to localize the atom inside the mode volume
of the cavity, but there is still much experimental progress in this field.

A different approach is to increase the number of atoms and in this way
increase the total absorption cross section. Absorption in an atomic ensemble
would normally lead to dissipation, i.e., loss of information about the quantum
state of the incoming photon. This information loss can, however, be avoided
using special techniques originally put forward by Ref. [8, 102]. In this approach
the quantum state of the photon is mapped onto a coherently driven atomic me-
dia using dissipation-free adiabatic passage techniques. It is based on Raman
adiabatic transfer of the quantum state of photons to collective atomic exci-
tations using electromagnetically induced transparency (EIT) [3] in which the
optical properties of atoms can be manipulated by an external classical control
field.

7.1 Coupling between cavity field mode and atoms

When the optical density of the atomic medium used for the light storage is low,
it is necessary to enhance the interaction between the photon and the atom by
means of an optical cavity surrounding the atomic medium. The ideas regarding
this intra-cavity light storage, originally put forward Ref. [8, 102], are presented
in this section. First, EIT and the adiabatic passage techniques for such a setup
are discussed. Next, storage of an one photon state utilizing these techniques
in a way that maximizes the fidelity of the storage will be discussed.

7.1.1 Dark states

To introduce the basic idea of a controlled and reversible quantum state transfer
via STIRAP, let us first consider an ensemble of N identical 3-level Λ-atoms with
two metastable eigenstates |b〉 and |c〉 as the two lower states and an exited state
|a〉 with decay rate γa. The energy of an eigenstate |µ〉 is denoted �ωµ and we
assume that �ωb = 0. The atoms interact with a quantized mode of an optical
resonator that couples the states |b〉 and |a〉 and a classical coupling field that
couples the states |c〉 and |a〉. The level scheme of a single atom is illustrated in
Fig. 7.1(a), where Ω(t) is the Rabi frequency of the classical coupling field, and
g is the single atom–single photon coupling constant of the |b〉 ↔ |a〉 transition.
The coupling constant g is given by the expression

g =
D
�

√
�ωca

2ε0V
, (7.1)

where V is the cavity mode volume, D is the dipole moment of the |b〉 ↔ |a〉
transition, and ωca ≡ ωa − ωc. For simplicity we assume that the coupling
constant g is equal for all the atoms. The dynamics of this system is given by
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Fig. 7.1: (a) Interaction level scheme of a single atom interacting with a single quan-
tized cavity mode and a classical control field of Rabi frequency Ω(t). (b)
Interaction of a single photon in the cavity with an ensemble of N 3-level
atoms in the lowest excited states.

the complex Hamiltonian [103]

H =�ωa†a + �(ωa − iγa)
N∑

i=1

σj
aa + �ωc

N∑
i=1

σj
cc (7.2)

+

[
�gâ

N∑
i=1

σ̂i
ab + �Ω(t)e−νt

N∑
i=1

σ̂i
ac + h.c.

]

where ν is the optical frequency of the classical coupling field and σ̂i
µν = |µ〉ii〈ν|

is the spin flip operator between the states |µ〉i and |ν〉i in the ith atom. The
annihilation (creation) operator of one photon in the cavity mode is denoted by
â (â†) [104].

We now assume that the cavity mode is resonant with the |b〉 ↔ |a〉 transition
and the classical control laser field is resonant with the |c〉 ↔ |a〉 transition.
When working in a frame rotating with optical frequencies and using the rotating
wave approximation the interaction part of the Hamiltonian (Eq. (7.2)) reads

H̃ = �gâ

N∑
i=1

σ̂i
ab + �Ω(t)

N∑
i=1

σ̂i
ac + h.c.− i�γa

N∑
i=1

σi
aa. (7.3)

The symmetry of this interaction Hamiltonian invites us to introduce the col-
lective operators Σ̂ab =

∑N
i=1 σ̂i

ab and Σ̂ac =
∑N

i=1 σ̂i
ac. When all N atoms are

initially prepared in the state |b〉, which we will denote by |b〉 ≡ |b1 . . . bN〉 it
is obvious that the subspace spanned by eigenstates of the collective operators
Σ̂ab and Σ̂ac must consist of symmetric atomic states. More specifically the
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subspace is spanned by the symmetric state vectors

|b〉 = |b1 . . . bN〉,
|a〉 = 1√

N

∑N
i=1 |b1 . . . ai . . . bN 〉,

|c〉 = 1√
N

∑N
i=1 |b1 . . . ci . . . bN 〉, (7.4)

|aa〉 = 1√
2N(N−1)

∑N
i�=j=1 |b1 . . . ai . . . aj . . . bN〉,

|ac〉 = 1√
N(N−1)

∑N
i�=j=1 |b1 . . . ai . . . cj . . . bN〉, etc.,

which we will refer to as the collective atomic states. Dicke discussed the sym-
metric collective states in the simpler case of 2-level atoms in 1954 [105]. These
so-called Dicke states are of relevance in the description of superradiance from
atomic ensembles [106].

In the following we will consider the simplest non-trivial case, where there
is one photon in the cavity mode while the atoms are in the |b〉 state. This
state we will denote by |b, 1〉 where the number of photons in the cavity mode is
indicated by the second index in the state vector. The interaction Hamiltonian
in Eq. (7.3) couples the |b, 1〉 state to two other states of the combined atom-

field system, namely |b, 1〉 H̃←→ |a, 0〉 H̃←→ |c, 0〉. In the basis consisting of
these three state vectors, B = {|a, 0〉, |b, 1〉, |c, 0〉}, the interaction Hamiltonian
is represented by the 3× 3 matrix

H̃B = �

⎡
⎣−iγa g

√
N Ω∗(t)

g
√

N 0 0
Ω(t) 0 0

⎤
⎦ . (7.5)

The eigenvalues of this matrix are given by λ± = −iγa

2 ±
√

g2N + Ω2 − (γa

2 )2
and λ0 = 0. The instantaneous (adiabatic) eigenstate corresponding to the zero
eigenvalue λ0 reads

|D, 1〉 = Ω|b, 1〉 − g
√

N |c, 0〉√
Ω2 + g2N

= cos θ(t)|b, 1〉 − sin θ(t)|c, 0〉, (7.6)

tan θ(t) ≡ g
√

N

Ω(t)

where the mixing angle θ(t) has been introduced. The important feature of the
|D, 1〉 eigenstate is that it does not contain the excited |a, 0〉 state and is thus
immune to spontaneous emission from this state. For this reason this eigenstate
is called a dark state (see, e.g., [107]) while the eigenstates corresponding to
the eigenvalues λ± are called bright states because they are superpositions of
all three states in the basis B. More generally if the number of photons in the
cavity is n, where n� N , the dark states of the Hamilton become [102]

|D, n〉N =
N∑

i=1

√
n!

k!(n− k)!
(−g)kNk/2Ωn−k

(g2N + Ω2)n/2
|ck, n− k〉, (7.7)
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i.e., the dark states are composed by the symmetric Dicke-like atomic states
presented in Eq. (7.4) containing k atoms in the level |c〉 and the rest in level |b〉
and field states with n− k photons. In Ref. [108, 109] the dark states |D, n〉 are
shown to correspond to elementary excitations of bosonic quasiparticles called
dark state polaritons.

7.1.2 Stimulated Raman adiabatic passage

To discuss the mechanisms behind STIRAP [1, 110], which has already been
explored in the context of cavity QED with single atoms [111] we consider the
asymptotic behavior of the dark states. From Eq. (7.6) we see that when the
mixing angle is θ ∼ 0 the dark state is |D, 1〉 = |b, 1〉 and when θ ∼ π/2 the
dark state is |D, 1〉 = |c, 0〉. This means that by varying the mixing angle
adiabatically, i.e., varying the Rabi-frequency of the classical control field Ω(t),
the dark state of the atom-cavity system can be rotated from a cavity-like state
(where the excitation is of photon nature) to an atom-like state (where the
excitation is shared in the collective state of the atoms). Later we will state
more quantitatively what is meant with the term ‘adiabatically’ here.

In the limit where the control field is strong Ω(t) � g
√

N (θ(t) ∼ 0) the
atoms do not interact with the cavity mode and the dark state resembles the
‘bare’ cavity mode. This coherently induced transparency of the |c〉 ↔ |a〉 tran-
sition of an atomic ensemble is called electromagnetically induced transparency
(EIT) [3, 112], and in the case where the atoms are situated in a cavity it is
called intra-cavity EIT [113]. The transparent atomic medium allows photons
to circulate in the cavity as if it was empty, and the lifetime of the dark state
excitation is then set by the cavity decay rate.

In the opposite limit where the control field is weak, i.e., Ω(t) � g
√

N
(θ(t) ∼ π/2), the dark state is as mentioned purely an atomic excitation with
no photons in the cavity. The lifetime of the dark state is then obviously not
limited by the cavity decay rate, but set by the decay rate of the collective
atomic state. This is ultimately set by the decoherence rate γbc of the two
metastable states |b〉 and |c〉, which can be much smaller than the cavity decay
rate, i.e., the photon is stored in the atomic collective states.

7.1.3 Decoherence and loss

At this stage it is interesting to ask how fragile the collective Dicke like states of
Eq. (7.4) are with respect to decoherence and losses. After all, the decoherence
of some many-particle states are known to exhibit linear (∝ N) or even quadratic
(∝ N2) scaling behavior with the number of particles involved (see [114]). This
is not the case with the Dicke-like states. It can be argued [103] that if one
atom of an N -atom Dicke like state is spin flipped (decays) the resulting state
is almost identical to an N − 1 atom Dicke like state with an error that scales
as ∼ 1/N . This scaling property is found to compensate the factor N of the
total probability of a spin flip error to occur in any atom. So the characteristic
decoherence rate of the state |c, 0〉 describing a single stored photon is indeed
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given by the single atom decay rate γbc. We can therefore conclude that the
symmetric Dicke like states are very robust with respect to decoherence.

To conclude we have argued that the coupling of the dark state to the envi-
ronment can be changed by varying the Rabi frequency of the classical control
field Ω(t). In the next section we will present a scheme that makes use this to
load a single incoming photon wave packet in the dark state of the atom cavity
system and also allows for subsequent release the wave packet after some storage
time.

7.2 Transfer of an One-photon State

In this section we will present the ideas on how to transfer a single photon state
from a free field onto the dark state of the cavity atom system and back again.
The derivation of the results presented can be found in Fleischhauer et al. [8]
and Lukin et al. [102]. Here we will not try to repeat these derivations, but
rather introduce the model and state the main results.

7.2.1 Dark state coupling to outside states

The cavity-atom dark states introduced in the previous section were derived
under the assumption that the cavity mode is decoupled from it’s surroundings.
We will now explore what happens when photons are allowed to leak in and out
of the cavity.

γcav

Φin Ω(t)

N

MirrorMirror

Fig. 7.2: Overview of basic setup.

To this end an effective one-dimensional model is considered. The z-axis is
assumed to be the propagation axis of the incoming and outgoing modes. We
assume that we have a traveling wave Fabry-Perot like cavity with one partially
transmitting input mirror (at z = 0) and the other mirror being 100% reflecting.

The coupling of the cavity modes to the environment is modeled by intro-
ducing a continuum of free space modes with field creation operators b̂†k which
are coupled to the cavity modes with a coupling constant κcav. The effective
Hamiltonian for this coupling is governed by

V = �

∑
k

κcavâ
+b̂k + h.c., (7.8)

which added to the cavity atom Hamiltonian given in Eq. (7.2), gives the com-
plete Hamiltonian for the model. The initial state of the free field is taken to
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be |Ψin(t)〉 =
∑

k ξk(t)|1k〉, where ξk(t) = ξk(t0)e−iωk(t−t0). The state |1k〉 de-
scribes a state with one photon in the free space mode k outside the cavity. In
the continuum limit, i.e., ξk(t)→ ξ(ωk, t), the envelope “wave function” of the
incoming wave packet is given by Φin(z, t) = (L/2πc)

∫
dωkξ(ωk, t)eikz , where

L is the quantization length (for further details see [8]).
To describe the dynamics of the total system of free field modes and the

combined atom cavity system it is convenient to write the total state as

|Ψ(t)〉 = b(t)|b, 1〉|0k〉+ c(t)|c, 0〉|0k〉+ a(t)|a, 0〉|0k〉+
∑

kξ(t)|b, 0〉|1k〉, (7.9)

where the state vector |0k〉 describes a state with zero photons in the free space
mode k outside the cavity. In Eq. (7.9) it is an implicit assumption that the
atoms are initially all prepared in the state |b〉.

We assume that the bare cavity resonance frequency coincides with that of
the atomic |c〉 ↔ |a〉 transition and that the carrier frequency of the incoming
wave packet is on resonance with the cavity. It is then a simple matter to derive
the equations of motion for the amplitude functions in Eq. (7.9). In Sec. 8.2 we
will use these equations to make realistic simulations of the transfer of a single
photon state in the limit where adiabatic following of the dark state is not, or
only barely, fulfilled. For now we will restrict the discussion to the limit where
adiabatic following is fulfilled. The criterium for adiabatic following of the dark
state is [102]

Ω2(t) + g2N � max[γcavγa, γa/T,
√

γcav/Tγa], (7.10)

where the typical pulse duration of the incoming wave packet T and the bare
cavity decay rate γcav = κ2

cavL/c have been introduced. Since the spectral
width of the incoming wave packet should not exceed the width of the optical
resonator, i.e., the characteristic time T is larger than the bare cavity decay
time γ−1

cav, the first condition is the most stringent one. Therefore in the case of
one-photon storage the adiabatic following criterium becomes

g2N � γcavγa. (7.11)

For an n-photon Fock state the bare cavity decoherence rate is nγcav and there-
fore the adiabaticity condition changes to g2N � nγcavγa [1].

If the adiabatic criterium in Eq. (7.11) is fulfilled and under assumption of
perfect two-photon resonance, the envelope of the outgoing wave packet becomes

Φout(t) = Φin(t) −
√

γcavL/cD(t), (7.12)

where the dark state amplitude D(t) of the full state given in Eq. (7.9) is given
by [102]

D(t) =
√

γcavc/L

∫ t

t0

dτ cos θ(τ)Φin(0, τ)

× exp
[
−γ

2

∫ t

τ

dτ ′ cos2 θ(τ ′)
]

. (7.13)
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7.2.2 Impedance Matching

In the ideal storage of a photon wave packet there is no reflection of the incoming
photon wave packet at the in-coupling mirror, such that after the loading of the
wave packet the dark state amplitude of the atom cavity system is maximized.
The dark state amplitude can be maximized by optimizing the time dependence
of cos θ(t). By imposing the condition Φout(t) = Φ̇out(t) = 0 on Eq. (7.12) we
find

− d

dt
ln cos θ(t) +

d

dt
ln Φin(t) =

γ

2
cos2 θ(t), (7.14)

which corresponds to a dynamical impedance matching condition. The term
on the right hand side of Eq. (7.14) is the effective cavity decay rate of the
dark state |D, 1〉, where it has been taken into account that the |b, 1〉 state
has an amplitude of cos θ(t) (see Eq. (7.6)). The first term on the left hand
side of Eq. (7.14) describes the transfer rate of the intra cavity photon field
into the collective atomic state |c, 0〉. The second term on the left hand side of
Eq. (7.14) comes from the time dependence of the incoming photon field Φin(t).
If Φin(t) is constant Eq. (7.14) just reduces to the impedance matching condition
known from laser theory [115], where the internal ‘loss’ rate in the cavity exactly
matches the in-coupling rate of the field Φin(t). When this condition is fulfilled
there is complete destructive interference between the directly reflected part of
the incoming wave packet and the circulating field that leaks out of the cavity
through the in-coupling mirror (see also Sec. 9.3).

Solving Eq. (7.14) gives

cos2 θ(t) =
Φin(t)

γcav

∫ t

−∞ dt′Φin(t′)
. (7.15)

From this solution we see that for a photon envelope function Φin(t) the mixing
angle θ → π

2 as t → ∞, i.e., if the cavity-atom system stays in the dark state
(Eq. (7.6)) through the entire loading process the excitation is purely atomic
as t → ∞. Releasing the stored photon can now be accomplished in a straight
forward way, because reversal of the time dependence of the mixing angle cos θ(t)
at a later time, t = ts, leads to a mirror image Φout(t) of the initial pulse Φin(t).
Note that cos θ(t) can also be rotated back to the initial value in another way,
which would yield a re-shaping of the initial pulse. In this way one can tailor
the pulse shape of the released photon.

A basic storage sequence is shown in Fig. 7.3. The shape of the incoming
photon wave packet envelope Φin(t) has been chosen to be a hyperbolic secant
(see appendix B). At the arrival of the incoming pulse (t = 0) the mixing angle
is changed according to Eq. (7.15) such that the photon state is mapped onto
the collective state of the atoms and not reflected at the in-coupling mirror.
Later at t = 25T the adiabatic rotation of the mixing angle is reversed and the
stored photon is released into a free-field photon Φout(t) with the original wave
packet envelope preserved.

The product γcavT serves as a figure of merit for how the control field Ω(t)
has to be shaped to fulfill the dynamical impedance matching condition. This
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Fig. 7.3: Storage of hyperbolic secant input wave packet Φin(t). The characteristic
time T is chosen such that γcavT = 4.

is illustrated in figure 7.4, where the input one-photon field is a hyperbolic
secant pulse. For this pulse shape the dynamical impedance matching condition
requires that γcavT ≥ 4. We see that when γcavT � 6, which is close to the
values we would like to use in our experiments, Ω(t) is initially on the order
of g
√

N . When γcavT � 4 the initial value of Ω(t) becomes much larger than
g
√

N . In particular the coupling field Ω(t) → ∞ as t → −∞ for the special
value γcavT = 4.

7.2.3 Fidelity

The success of the quantum memory depends on the ability for a certain set
of experimental parameters to reproduce the incoming photon wave packet en-
velope Φin(t), after the storage time ts, in the released photon wave packet
envelope Φout(t). As a quantitative measure of this reproduction success we
introduce the fidelity of the photon storage process as

F =
∫

dt
Φ∗

out(t)Φin(t− ts)∫
dt|Φin(t)|2 . (7.16)

In Chap. 8.2 we shall explore how the fidelity depends on the experimental
parameters, when the adiabaticity condition g2N � γcavγa is barely fulfilled
and additional loss mechanisms in the cavity are introduced.

7.3 Experimental work on light storage

In this section the current experimental status of EIT-based light storage is
described. At the end of the section we will briefly mention a recent experiment
where the quantum state of a light pulse has been mapped onto an atomic
sample using a completely different approach.
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Fig. 7.4: Control field Ω(t) optimized according to the dynamic impedance matching
condition (Eq. (7.15)) for a one-photon field with a hyperbolic secant shaped
wave function envelope shown for different values of γcavT . The full line
shows the envelope function of the photon field.

Some of the fundamental features of EIT-based light storage of classical light
pulses were demonstrated in 2001 by Liu et al. [4] and Phillips et al. [5]. In par-
ticular the experiments have shown that the pulse shape is not destroyed in the
process of storing and releasing the light pulse. Phase coherence conservation in
the process has also been demonstrated [116]. Here it is important to emphasize
that storage of the quantum properties of the light pulses have not been demon-
strated in these experiments and hence, they do not represent the realization of
a true quantum memory.

For the present, the setups in the experiments on light storage have been
quite different from the scheme presented in Sec. 7.1, although most of the
physics underlying the light storage experiments is the same. The major dif-
ference is that in these experiments the atoms are not situated in an optical
cavity. This implies that to have a sufficient collective interaction between the
atoms and the light pulse the atomic sample has to be optically dense. In or-
der to be able to store a pulse of light in an atomic sample using techniques
similar to the ones we described in Sec. 7.1, the light pulse obviously needs to
be contained inside the atomic sample at the instant the control field Ω(t) is
adiabatically switched off. This is also the case in the light storage experiments.
Even though typical light pulses in these experiments are ∼ 1 km in vacuum,
this can be accomplished since the low group velocity [117] associated with EIT
leads to a spatial compression of the light pulse [109]. In 1999 Hau et al. [112]
slowed light pulses down to group velocities of 17 m/s in an ultra cold gas of
Na atoms, which meant that the pulse was localized entirely inside the atomic
gas. Soon after this experiment very slow group velocities in hot atomic vapor
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was also reported [118, 119].
The first experiments demonstrating dynamic reduction of the group velocity

until the light pulse is brought to a halt inside the atomic medium and adiabatic
following of the so-called dark state polaritons [109, 120], were reported in 2001.
The atomic mediums used in these experiments are diverse. Liu et al. [4] use an
ultra cold (∼ µK) gas of Na as the medium for light storage, obtaining storage
periods of up to 1.5 ms. Phillips et al. [5] use a hot (T ∼ 70–90◦C) Rb vapor and
obtain storage times of up to 0.5 ms. Even though these systems are different
they exhibit nearly same properties when it comes to light storage. One common
property is that the light pulse shape can be preserved in the light storage
process. In Ref. [4] it is also demonstrated that a re-shaping of the pulse by
an appropriate timing of the control field is possible. The coherence properties
of the light storage technique has been probed in experiments on Rb vapor
using a pulsed magnetic field during the storage interval to vary the Zeeman
coherence in the Rb vapor in a controlled way [116]. After the light pulse was
released again the phase shift was probed in an interferometric measurement.
In Ref. [121] the phase coherence of light storage in Rb vapor is probed using
purely optical techniques.

Storage of classical light pulses has also been accomplished in solids [122].
More specifically an optically dense crystal of Pr doped Y2SiO5 is used. Again
the light storage is based on the dispersive properties of EIT, even though the
EIT in solids [123] is quite different from EIT in the atomic systems [3].

Other interesting experimental effects of light storage and slow light has been
observed. In Ref. [124] Bajcsy et al. store a light pulse using the conventional
methods to map the light pulse onto the atomic coherence. They then apply
forwards and backwards propagating control fields to obtain a periodic spatial
variation of the light intensity, which gives a periodically modulated absorption
in the atomic medium. This results in a situation where the stored light pulse
is regenerated as a light field, but still not released from the atomic ensemble,
because the modulation of the refractive index acts as a stack of mirrors for the
stored light.

All of the light storage experiments described above are based on EIT, but
there is another approach to light storage based on off-resonant interaction of
a light pulse with a spin-polarized atomic sample. Due to the interaction, the
atomic sample and the light pulse become entangled [125]. The light pulse is
subsequently measured and a magnetic field feedback to the atoms conditioned
on the measurement results in an one-to-one mapping of the initial quantum
state of the light pulse onto the quantum state of the atomic sample. The
mapping of light pulses containing on average eight photons per pulse onto an
atomic cesium sample was achieved experimentally by Julsgaard et al. [126].
They proved that the mapping conserved the quantum state of the original
light pulse by a subsequent measurement of the polarization state of the atomic
sample. The retrieval of the original light pulse from the stored state using
this method has not yet been demonstrated, but proposals to how this could be
accomplished can be found in Refs. [127, 128].
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Trapped cold ions forming a Coulomb crystal is a good candidate for an atomic
medium that can be used for storage of quantum states of light. There are
several reasons why this is the case. First of all the ions are spatially confined
to a small region, which means that they can stay in the interaction region
during the storage and read-out processes. The ions are also well-isolated from
the environment implying that the decoherence times in the states of these
systems are notably long, which in turn makes it possible to achieve long storage
times. The light storage fidelity may also be sensitive to Doppler shifts of the
transitions involved in the scheme and it is accordingly desirable to cool the
ions down to very low temperatures. This can be achieved through sympathetic
cooling using another laser coolable ion species, which has cooling transition
wavelengths that are different from the transition wavelengths in the ions used
for the light storage.

The drawback of using ion Coulomb crystals for light storage is the low
optical density in these crystals that originates from the low ion density (∼ 108

cm−3). To amend this the ion crystal needs to be placed in a moderately high
finesse optical cavity as described in Chap. 7 to increase the photon-ion coupling
strength. The realization of such an experimental setup involving an ion trap
with an integrated optical resonator is the theme of current chapter.

8.1 Implementation of the quantum memory in ion Coulomb
crystals

The atomic medium we are working towards using as a storage medium for
quantum states of light is a big ion Coulomb bi-crystal trapped in a linear Paul
trap. The bi-crystal will consist of the two ion isotopes 44Ca+ and 40Ca+. As
we know from the first part of this Thesis these isotopes separate spatially due
to the mass dependent confinement of the ions with respect to the Paul trap
axis. As a consequence the 40Ca+ ions are situated closest to the trap axis as a
cylindrical core of the crystal surrounded by the 44Ca+ ions. Our scheme relies
on using the 40Ca+ ions as the atomic medium for light storage and using the
44Ca+ ions for sympathetic cooling of the 40Ca+ ions.

8.1.1 Quantum memory transitions

In this section the transitions in the 40Ca+ ion that can be used for the quantum
memory Λ-level scheme are discussed in more detail. There will be a discussion
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of different experimental parameters leading to this choice.
Following the discussion in Chap. 7 we situate the ion Coulomb crystal in

the mode of an optical cavity to compensate for the low optical density of the
ion crystal. The fidelity of the storage scheme depends critically on the quality
of this optical cavity. The transmission of the in-coupling mirror has to be low
enough for the cavity decay rate γcav to fulfill the requirement for adiabatic
following of the dark state, i.e., g2N � γcavγa. At the same time unwanted
cavity loss mechanisms should be much lower than this transmission loss. In
the latter case the loss mechanisms originate from the non-zero transmission of
the high reflective mirrors as well as the scatter or absorption losses in the mir-
rors. In practice this sets considerably restrictive demands to the experimental
parameters, because the resonance transitions of the ions have wavelengths in
the ultra violet (UV). In this wavelength range the lowest obtainable mirror
reflection loss is in the range 10−3 [7], which for our purposes is very poor. At
infrared wavelengths the mirror coatings are much better. Here it is possible to
get mirrors with reflection losses as low as a few parts per million (ppm). In
40Ca+ we can accordingly choose from three infrared transitions available at 866
nm, 854nm, and 850 nm for the signal field transition in the quantum memory
adiabatic transfer scheme. From these wavelengths the 866 nm 3D3/2 ↔ 4P1/2

transition has been chosen for the quantum memory.
Even though the 40Ca+ ions are sympathetically cooled to temperatures as

low as a few tens of mK [34], there is still some Doppler broadening of the
transitions due to the thermal motion of the ions. For a Λ-scheme Raman
transition the Doppler broadening is divided into two classes, namely single
photon Doppler broadening and the two-photon Doppler broadening. As is well
known the Doppler broadening originates from a velocity dependent shift of the
atomic resonances. For illustrative purposes Fig. 8.1 shows the single photon
Doppler shift dependent detunings δ1 and δ2 of two laser beams with optical
frequencies ω1 and ω2, respectively, and the corresponding two-photon detuning
of the transition ∆2ph = δ1 − δ2. While the width of the single photon Doppler
broadening depends exclusively on the temperature of the ions this is not the
case for the two-photon Doppler broadening. In the special case where the two
laser beams are co-propagating, the two lower states, |b〉 and |c〉, in the Λ level
scheme are degenerate in energy and ω1 = ω2, we have that the two-photon
detuning ∆2ph = δ1 − δ2 ≡ 0 independent of the ion velocity. This means that
there is a zero Doppler broadening of the two-photon transition. In general this
is not the case. If for instance we choose to use one of the UV transitions as the
coupling transition to store an infrared photon in 40Ca+ a temperature of 20
mK would result in a Doppler broadening of the two-photon resonance of ∼ 4
MHz. As the resonance width of the two-photon transition is much narrower
than the width of the individual one-photon transitions (∼ 20 MHz) a 4 MHz
broadening of the two-photon resonance would severely diminish the fidelity of
the quantum memory scheme.

It is thus necessary to use a control beam transition in 40Ca+ that has a
similar transition wavelength as the transition which is used for storage of the
signal field. Furthermore, the control beam Ω(t) needs to be co-propagating with
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Fig. 8.1: Level scheme illustrating the difference between single photon detuning and
two-photon detuning.

the signal field in the optical resonator at the location where the fields interact
with the 40Ca+ ions. To comply with these requirements the possibility of using
the magnetic substates of the 3D3/2 state as the lower levels in the Λ level scheme
is attractive. More specifically, the control laser is an 866 nm σ+-polarized laser
beam that couples the 3D3/2(mj = −1/2) and the 4P1/2(mj = 1/2) states and
the signal field is σ−-polarized light resonantly coupling the 3D3/2(mj = 3/2)
and the 4P1/2(mj = 1/2) states as shown in Fig. 8.2.

-1/� 1/�

-3/� -1/� 1/� 3/�

Signal fieldControl field

� ~ 866 nm

|a〉

|b〉|c〉

gΩ(t)

γa = 2π × 22.3 MHz

σ+ σ−

4P1/2

3D3/2

Fig. 8.2: The magnetic substates of the 3D3/2 state and the 4P1/2 state. The three
magnetic substates constituting the Λ-system for the quantum memory are
indicated by their coupling to the control field (σ+-polarized) and the signal
field (σ−-polarized). The states |a〉, |b〉, and |c〉 refer to the level scheme
discussed in Chap. 7 (see Fig. 7.1).

Apart from minimizing the two-photon Doppler broadening there is another
good reason for choosing the same wavelength for the signal and control field.
The infrared coating of the mirrors is very broadband (∼ 80 nm), so a laser beam
with wavelength in the infrared would get reflected off the in-coupling mirror
unless it is mode-matched and on (near) resonance with the cavity. Inasmuch as
the control and signal beams have to be co-propagating the two beams can only
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be coupled into the optical cavity if it is resonant with the signal beam frequency
and at least near-resonant with the control beam frequency at the same time.
On the other hand, the signal beam and the control beam frequencies have to
be resonant with transitions in 40Ca+, so in practice the only way to comply
with these restrictions is to choose Zeeman substates of the same level for the
lower states of the Λ scheme, and hence equal wavelength for the signal and the
control fields.

In the beginning of the storage sequence the σ+-polarized control field is on
and the population of the magnetic substates mj = −3/2 and mj = −1/2 of
the 3D3/2-state are depleted. To initialize all the ions in the |b〉 state, which is
the dark state condition before the signal pulse enters the cavity (see Sec. 7.1),
a resonant π-polarized laser beam is also applied to deplete population in the
3D3/2(mj = 1/2) level. Shortly before starting the actual transfer of the signal
pulse to the atomic dark state the π-polarized laser beam is switched off, such
that adiabatic transfer between the |b〉 and |c〉 states can begin.

8.1.2 Basic setup

In Fig. 8.3 the basic configuration for the light storage in the calcium ion crystals
is shown. The basic setup consists of an optical cavity for which the fundamental
mode is a running wave bow-tie mode. The bow-tie cavity consists of three
high reflecting mirrors and one partly transmitting in-coupling mirror with a
transmission of T ∼ 0.0015. This gives an expected cavity finesse of F =
2π/T ∼ 4200. The radius of curvature of the mirrors is 10 mm and the distance
between the mirrors is lcav � 10 mm. The distance between the two parallel
arms of the mode is ∼ 400 µm, and for the 866 nm laser light coupled into cavity
the mode minimal waist, which occurs half-way between the mirrors, is w0 ∼ 37
µm, while the mode waist increases to wm ∼ 52 µm at the mirror surfaces. The
control field and the signal field are both coupled into this fundamental mode
via the in-coupling mirror. The 40Ca+/44Ca+ ion crystal is situated such that
the 40Ca+ cylindrical crystal core interacts only with one of the arms of the
bow-tie mode.

The 40Ca+ ions interact with the laser light at the location where one of the
arms of the bow-tie mode is overlapping with the 40Ca+ crystal core. To mini-
mize the Doppler broadening of the 40Ca+ transitions with respect to the light
circulating in the bow-tie mode the orientation of the crystal is such that the
micromotion of the trapped ions is perpendicular to the direction of propagation
of the light interacting with the ions (see Sec. 2.1).

8.1.3 Adiabatic following

The criterium for adiabatic following in the quantum memory scheme is g2N �
γcavγa, and it is thus desirable to maximize the number N of 40Ca+ ions situated
in the cavity mode to take advantage of the collective enhancement of the ion-
photon field coupling strength. There are two ways of increasing N . The first
is to have a high density of ions in the crystal and the second is to increase the
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signal pulse, Φin(t)
control pulse, Ω(t)

stored pulse, Φout(t) 40Ca+ 44Ca+

400 µm

lcav � 10 mm

lcrys ∼ 5 mm

HRHR
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Mirror

Mirror

Mirror

Mirror

T ∼ 0.0015

Fig. 8.3: Schematic of the setup for light storage in ion Coulomb crystals. The red
lines illustrate the laser beam paths of the control field and the signal field.
The mirrors have different coatings: high reflecting (HR) and transmitting
(T ∼ 0.0015).

length of the crystal lcrys (Fig. 8.3) to maximize the spatial overlap between the
ion crystal and the cavity mode. A realistic goal for the ion crystal is to have
an ion density of n = 3 × 108 cm−3, and a crystal length of lcrys ∼ 5 mm. An
experimental demonstration of such a crystal consisting of ∼ 5000 44Ca+ ions
and ∼ 3000 40Ca+ ions has been performed in the linear Paul trap described
in Sec. 3.1. Figure 8.4 shows a section of this crystal, where the center string
of the crystal and the first shell are the cylindrical 40Ca+ part of the crystal
surrounded by the 44Ca+ ions. The last sketch in Fig. 8.4 illustrates the ∼ 5
mm long part of the crystal that is outside the view of the camera system.

In Appendix C we have derived an expression of the collective coupling
strength of the 40Ca+ ions to one photon in the cavity mode. The result is that
for an ion crystal of length lcrys ∼ 5 mm and density n ∼ 3 × 108 cm−3, N ∼
3200 40Ca+ ions will interact with the cavity mode and the collective coupling
strength is g

√
N ∼ 2π×11.6 MHz. To simplify the model it was assumed in the

Hamiltonian introduced in Chap. 7 (see Eq. (7.2)) that all the ions couple equally
to the cavity mode. As seen in Appendix C the individual coupling strengths are
actually not equal for all ions, because the ions are situated at different positions
in the cavity mode. These individual coupling strengths have been accounted for
in the calculation of g

√
N by an integration over the mode volume of the cavity

mode, but not in the Hamiltonian. The real world experimental conditions
are thus somewhat more complex than the model leading to the rate equations
which are used in the next section to calculate the fidelity of the light storage.

8.2 Simulations on storage of a single photon

In the adiabatic limit, where the condition g2N � γcavγa is fulfilled, the fidelity
is F approaches 1. Experimentally it is hard to fulfill the adiabatic following
strictly, because experimental conditions restrict the parameters. The decay rate
out of the excited state γa is fixed once the transition for the light storage has
been chosen. The coupling parameter g also depends on the chosen transition,
but here there is also a dependence of the cavity mode volume V (see Eq. (7.1)).
The number of ions situated in the cavity mode N is limited by the spatial
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Fig. 8.4: Section of a bi-crystal consisting of ∼ 3000 40Ca+ and ∼ 5000 44Ca+ which
is approximately the size needed for the quantum memory ion Coulomb crys-
tals. Laser cooling is applied to 40Ca+ (first insert), 44Ca+ (second insert),
and both ion isotopes (third insert). The drawing indicates the actual size
of the crystal from which the crystal section is taken.

overlap of the ion Coulomb crystal and the cavity mode as well as the density of
ions in the crystal. When these parameters have been fixed by the experimental
conditions the final parameter to consider is the cavity decay rate γcav.

In general we can write the total cavity decay rate as

γtot = γcav + γloss, (8.1)

where γcav ≡ T c
4lcav

is the cavity decay rate originating from the transmission
of the in-coupling mirror and γloss is the decay introduced by absorption and
scattering losses on the mirror surfaces of the cavity. Ideally γloss should be
zero, because the fidelity of the light storage is directly influenced by these loss
mechanisms, but in real world experiments there are always these unwanted
dissipative effects in a cavity. A condition that certainly should be fulfilled to
have a fidelity of F 	 1 is γcav � γloss. This condition follows from the simple
reasoning that in order to preserve a stored photon field during the photon
release process it needs to be favorable for the photon to leak out of the in-
coupling mirror (γcav) rather than dissipate through the other decay channel
(γloss). The minimum allowable length of the photon wave packet also depends
on the cavity decay rate γcav. In the specific example of a hyperbolic secant pulse
(Sec. 7.2.2) the condition for photon transfer is that γcavT ≥ 4, where T is the
characteristic length of the secant pulse (see appendix B). In the following we



8. Light storage in ion Coulomb crystals 89

shall explore how the storage fidelity depends on the parameters γcav and γloss

by numerical simulations of the light storage based on the model introduced in
Chap. 7. The main purpose of the simulations is to find the in-coupling mirror
transmission T , or equivalently γcav, for which the storage fidelity in optimized
when cavity losses are taken into account. The simulations were carried out in
collaboration with Claudia Mewes and Michael Fleischhauer.

Under the condition of perfect two-photon resonance, the equations of mo-
tion for the amplitude functions of the full state vector |Φ(t)〉 defined in Eq. (7.9)
are given by

ȧ(t) = −(γa/2)− ig
√

Nb(t)− iΩ(t)c(t),

ḃ(t) = −ig
√

Na(t)− iκcavΦin(t)− (γcav/2)b(t)− (γloss/2)b(t),
ċ(t) = −iΩ(t)a(t), (8.2)

which are solved numerically in the simulations. The envelope of the outgoing
wave packet is found from

Φout(t) = Φin(t)− i
γcav

κcav
b(t), (8.3)

and subsequently the fidelity of the sequence can be calculated using Eq. (7.16).
The simulations are based on the single photon storage of a hyperbolic secant

pulse (see appendix B) Φin(t), where we have chosen the pulse length T such
that γcavT = 4. At t = 0 the pulse enters the cavity and the classical control
field Ω(t) is changed according to Eq. (7.15). At t = ts the time evolution of
the control field is reversed to release the stored photon wave packet.
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Fig. 8.5: Output |Φout(t)| wave packet envelopes for a hyperbolic secant input wave
packet |Φin(t)| and optimized cos θ(t). In (a) the cavity decay rate γcav is
varied and the parameters are γcav/g

√
N = [0.05, 0.5, 10], γa/g

√
N = 1, and

γloss = 0. In (b) the atomic excited state decay rate γa is varied and the
parameters are γa/g

√
N = [0.1, 10, 50, 100], γcav/g

√
N = 0.05, and γloss = 0.

Further details are described in the text.
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Figure 8.5(a) and Fig. 8.5(b) show the output field envelopes for different
parameter sets of the decay rates γa and γcav. The dissipative loss decay rate
is set to γloss = 0 and the storage time is ts = 15T . It is seen that the output
wave packet preserves the shape and amplitude of the input wave packet when
the adiabaticity condition g

√
N � γaγcav is fulfilled. When the condition is

barely or not fulfilled the input field Φin is partly reflected on the arrival of the
pulse (t ∼ 0). A closer look on the output wave packet reveals that apart from
decreasing the amplitude of the output wave packet the non-adiabatic effects
also tend to shift the effective storage time. This can be corrected by replacing
the storage time ts by an effective storage time ts,eff that maximizes the overlap
integral (Eq. (7.16)) used in the calculation of the fidelity.
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Fig. 8.6: Color maps of the fidelity F . In all the simulations the collective coupling
strength is g

√
N = 2π×11.6 MHz. The pulse is released after ts = 15T , where

T = 4γ−1
cav. Graph (a) shows (γa, γcav, F ), while γloss is set to zero. Graph

(b) also shows (γa, γcav, F ), but here a dissipative loss of γloss = 2π × 120
kHz is included. Graph (c) shows (γloss, γcav, F ) for the excited state decay
rate γa = 2π × 22.3 MHz.

Figure 8.6 shows color maps of the calculated fidelity for different decay rate
parameters. The fidelity has been calculated using the effective storage time
ts,eff rather than the storage time ts. In Fig. 8.6(a) the dissipative decay rate
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γloss = 0, so the only loss of fidelity is due to non-adiabatic effects. In this
idealized case we see that for a given atomic excited state decay rate γa the
fidelity can in principle be increased at will by decreasing the cavity decay rate
γcav. A small cavity decay rate implies that the cavity finesse is high which
in turn makes the experiment more elaborate. Furthermore, the photon wave
packet length still needs to fulfill the adiabaticity criterium T ≥ 4γ−1

cav, which
could also limit the range of γcav in practice.

In Fig. 8.6(b) the fidelity is plotted in the situation where a dissipative loss
of γloss ∼ 2π × 120 kHz is included. An obvious conclusion from this plot is
that γcav � γloss is indeed a requirement for a high fidelity storage process. In
the last graph, Fig. 8.6(c), the fidelity dependence on the loss decay rate γloss

has been plotted. The range of γloss has been chosen as representative for what
is expected in the experiment. The excited state decay rate is γa = 2π × 22.3
MHz. This plot illustrates that there is a dependence of the fidelity on γloss and
that it is advantageous to choose γcav � 2π× 0.5 MHz. At higher values of γcav

the adiabaticity criterium g2N � γcavγa is violated and the fidelity decreases.

8.3 The bow-tie mode cavity

In Sec. 8.1.2 the basic optical resonator setup was introduced. Now we shall
discuss the possibility of obtaining a running wave bow-tie mode cavity based
on spherical mirrors. It should be mentioned that Hemmerich et al. [129] have
designed a small high finesse running wave resonator. This resonator unfortu-
nately suffers from a large mode volume that would make it unsuited for our
experiment.

The basic geometry of the bow-tie mode resonator is shown in Fig. 8.7. Light
circulating in the bow-tie mode is reflected at the points a, b, c, and d. The
two lengths L1 and L2 are the distances |ab| and |bc|, respectively. The distance
between the parallel arms of the mode is denoted by x and as was mentioned in
Sec. 8.1.2 the aim is to have x ∼ 400 µm. The mirrors have a radius of curvature
of R = 10 mm.

We shall now examine the stability of the resonator by the use of ray transfer
matrices (ABCD-matrices). A general treatment of this subject can be found
in Kogelnik and Li [130]. The resonator stability is crucial when considering
Gaussian beam modes in the resonator as these modes only apply to stable
resonators. To describe the cavity round trip ray propagation in the bow-tie
mode of the resonator it is sufficient to calculate the ABCD-matrix for the
propagation a → b → c, because it is equivalent to the ABCD-matrix for the
c→ d→ a propagation. The ray propagation matrix for a→ b→ c is given by[

A B
C D

]
=

[
1− 2L2

R L1 + L2 − 2L1L2
R

−4 1
R + 4 L2

R2 1− 4L1
R − 2L2

R + 4L1L2
R2

]
. (8.4)

A necessary and sufficient condition for stability of periodic sequences of an
ABCD-matrix is that 1

2 |A+D| ≤ 1, which for our ray transfer matrix (Eq. (8.4))
gives the condition

0 ≤ (1− L1/R)(1− L2/R) ≤ 1 (8.5)
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on the lengths L1 and L2.
In the case where the mirror radius of curvature equals the distance between

the mirrors the resonator is said to be confocal. In such a geometry a bow-tie
ray is supported. The resonator is however unstable in this situation because
L1 < R and L2 > R and this violates Eq. (8.5). In order to meet the criterium
we thus choose lengths L1 > R and L2 > R. The graph in Fig. 8.7 (b) shows
how the minimal waists of the Gaussian bow-tie mode (λ = 866 nm, x = 400
µm) depends on L1. The minimal waists have been calculated by using the
ABCD-law to propagate the q parameter of the Gaussian beam (see Ref. [131])
and assuming that the q-parameter is unchanged after one round trip in the
resonator. It is seen that the waist at the point α defined in Fig. 8.7(a) goes
to zero, while the waist at the point β diverges as the length of the cavity,
approaches the unstable resonator geometry. The dotted graph in Fig. 8.7 (b)
is the minimal waist in a standing wave resonator geometry (x = 0, L1 = L2).
For the real trap setup the cavity length of 10.7 mm has been chosen. At this
cavity length the minimal waists of the bow-tie mode are ∼ 37 µm.
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Fig. 8.7: (a) The geometry of the bow-tie mode resonator. (b) Minimal waist as a
function of the cavity length L1 at the points α and β defined in Fig. 8.7(a)
The dotted graph is the minimal waist for a standing wave cavity of length
L1 and mirror radius of curvature of 10 mm. (c) The modification of the
mirror substrates needed for a bow-tie ray supporting geometry.

A simple geometric ray tracing argument reveals that conventional spherical
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mirrors fail to support a bow-tie ray unless the resonator is in a confocal geom-
etry. In the light of the previous discussion we need a non-confocal geometry
in order to have stable oscillation. In order to obtain a bow-tie mode in the
non-confocal geometry the mirrors need to be modified. We envision this is
done by removing a little more than half of a mirror substrate under an angle
φ defined in Fig. 8.7(c). Then taking two such half mirror substrates and set
them together tilted at the angle 2φ. The angle φ required for a bow-tie mode
cavity can be calculated using the formula

φ = arcsin
x

2R −
1
2

arctan
x

L1
. (8.6)

Inserting x ∼ 400 µm, L1 ∼ 10.7 mm, and R = 10 mm in Eq. (8.6) we find the
angle φ ∼ 0.076◦.

The manufacturing of the bow-tie cavity still needs to be done. In the present
setup we have a standing wave near confocal resonator geometry with spherical
mirrors. Further details about this resonator geometry will be discussed in
Sec. 9.3.2.

8.4 Linear Paul trap with integrated optical resonator

This section describes the design considerations concerning the implementation
of an optical resonator into a linear Paul trap. Some of the challenges we have
encountered in this design phase are known from the relatively young field in
quantum optics concerning one ion coupled to the mode of a high finesse optical
cavity. The significant progress in this field is mainly due to the groups of
H. Walther [7, 132] and R. Blatt [133–135], which both work with a single Ca+

ion coupled to the mode of an optical resonator. There are some advantages of
using an ion instead of neutral atoms coupled to the cavity mode. To mention
the most important ones the ions have long trapping times and a high degree of
localization, which for instance can be used to probe the standing wave pattern
of an optical cavity [132]. On the other hand, introducing an optical cavity
in the vicinity of the ion trap changes the electric trapping fields produced
by the Paul trap electrodes. With the present ion trap technology this fact
actually prohibits the cavity mode volume from getting small enough that a
strong coupling between the ion and the cavity mode can be reached.

In the quantum memory setup we are going to trap big ion crystals in be-
tween the mirrors using a linear Paul trap. The ions in these big ion crystals
are not stationary but move under the influence of the harmonically varying
rf-field that gives the radial confinement of the ions. This micromotion which
was introduced in Sec. 2.1 is in an ideal linear Paul trap perpendicular to the
trap axis. Because we want to minimize the Doppler broadening of the storage
transitions (see Fig. 8.2) we have chosen to have the control and signal light
propagate along the trap axis in the interaction region, i.e., the light propagates
perpendicular to the micromotion. But in the real trap setup the fields from
the electrodes are perturbed by the presence of the cavity mirrors.
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The dielectric constant of fused silica which is used for the mirror substrates
is ε = 3.78ε0 for static electric fields and harmonically varying electric fields
with frequencies in the ∼ MHz range [136]. The electric field lines from the
electrodes are hence strongly attracted by the mirror substrates. The distortion
of electric field lines introduces an unwanted component of the micromotion
towards the mirrors, i.e., an axial component of the micromotion. This axial
component is unwanted as it Doppler broadens the transitions used for the light
storage. Furthermore the laser cooling of the 44Ca+ ions is affected by axial
micromotion and in the worst case it prohibits crystallization of the ion plasma.

8.4.1 Trap dimensions

In order to design the Paul trap electrodes and the shape of the mirror substrates
the 3D partial differential equation solver ‘FlexPDE’ was used. The program
enables us to define the geometry of the linear Paul trap and the mirrors in 3D,
and to solve the Laplace equation for the potential V when the potentials on
the Paul trap electrodes have been specified.

In the design of the linear Paul trap we aim at getting as close to a harmonic
potential as possible in the region where the ions are located. In order to
minimize anharmonicity in the radial direction the potential is simulated in the
situation where only the rf-voltage Urf (see Eq. (2.1)) has been applied and
the electrode radius is varied. According to Ref. [137] the best approximation
to a harmonic quadrupole potential is obtained when the electrode radius is
re ∼ 1.147r0, where r0 is the inter electrode inscribed radius (see Fig. 2.1). The
simulations indicate that this is also the case when the mirror substrates are
present, and we have thus chosen to keep this ratio. The center-electrode length
2z0 determines the shape of the static potential Uec(z) that confines the ions
axially.

In Fig. 8.9 the axial potential for different center-electrode lengths is shown.
The trap dimensions used in the simulation are given in the figure caption. As
seen from the axial potential curve plotted in Fig. 8.9 will the presence of the
mirrors act to confine the trapped ions stronger in the axial direction. The
least squares fits of the axial potential reveal that a center-electrode length of
2z0 = 5 mm gives an axial potential with a very small deviation from a harmonic
potential in the region |z| < 2.5 mm which is where the ion crystal is located.
This is in accordance with the findings of C. E. Brodersen [138], who found
that the length of the center-electrode should be 2z0 ∼ 2r0 in order to obtain a
harmonic potential in the ordinary Paul trap design where no mirror substrates
are included.

In the design of the cavity mirrors trap it is important to consider what shape
of the mirrors will induce the least micromotion along the z-axis. Here a small
argument may lead us in the right direction. Suppose we have four infinitely long
electrode rods in a quadrupole configuration directed along the z-axis. Adding
voltages to the electrodes will induce an E-field that is everywhere perpendicular
to the z-axis. Now, filling space uniformly with a dielectric for z < 0 will not
change the E-field in any point in space, because this E-field fulfills the necessary
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Fig. 8.8: (a) Sketch of linear Paul trap with integrated mirrors. (b) End-view of the
trap.

boundary conditions at the dielectric vacuum interface [139]. The same line of
reasoning leads to the conclusion that in the real trap setup the end of the
mirror substrates should be flat and extend as far as possible to the electrodes.
Numerical simulations for different mirror radiuses rm reveal that the induced
axial micromotion becomes more than a factor of 100 higher when the mirror
radius is scaled from rm = r0 to rm = 1

2r0 which confirms this assertion.

Mirror radius: rm = 2.075 mm
Electrode radius: re = 2.6 mm
Electrode inscribed radius: r0 = 2.35 mm
Center-electrode length 2z0 = 5 mm
End-cap electrode length zec = 5 mm
rf-frequency: Ωrf = 2π × 4.25 MHz
Axial geometrical constant: η = 0.342
a-parameter(40Ca+): a = −0.74× 10−3Uec [Volt]
q-parameter(40Ca+): q = 1.23× 10−3Urf [Volt]

Tab. 8.1: Reference table of the trap-parameters. The trap dimensions are depicted
in Fig. 8.8, and the a and q parameters are treated in Sec. 2.1.

The dimensions of the trap and the mirror substrate are presented in Ta-
ble 8.1. They have been chosen such that we can fulfill the requirement that the
Coulomb crystal ion density is n0 = 3 × 108 cm−3 for a reasonable amplitude
of the rf-voltage. Using the parameters from Table 8.1 and Eq. (C.1) we see
that to obtain this ion density for 40Ca+ an rf-voltage of Urf ∼ 220 V is needed,
which is technically feasible.

8.4.2 Mirror off-set

As a prerequisite for the geometry of the ion trap and integrated bow-tie mode
cavity the 40Ca+ ion Coulomb crystal core needs to be located at the position
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Fig. 8.9: Axial potentials along the center-axis when Urf = 0 and Uec �= 0 for the
center-electrode lengths [2,3,4,5,6,7] mm starting from top graph. The mirror
end-faces are indicated by the full lines and the ion Coulomb crystal region
is indicated by dotted lines. The electrode radius is re = 2.6 mm and the
electrode inscribed radius is r0 = 2.35 mm. The cylindrically shaped mirrors
have radius rm = 2.0 mm and the distance between the mirrors is lcav = 10
mm (see Fig. 8.8).

with the least micromotion, which is on the Paul trap axis. This implies that in
order to get overlap between the cavity mode and the ion crystal (see Fig. 8.3)
a 200 µm radial displacement of the bow-tie mode cavity relative to the Paul
trap axis may be needed. Unfortunately this displacement introduce unwanted
micromotion along the z-axis.

When the mirror symmetry axis is centered on the linear Paul trap axis the
geometrical symmetry makes the induced axial micromotion near the Paul trap
axis so small that it is hard to quantify in the numerical simulations. If we
make a small radial off-set of the mirrors this is no longer the case. We shall
now investigate the consequences of axial mirror displacements from numerical
simulations of the rf-potential, which is used to give an estimate of the veloc-
ity amplitude of the axial micromotion. The directions x̂ and ŷ used in this
discussion are defined in Fig. 8.8.

In Fig. 8.10 the velocity amplitude of the axial micromotion component for
a 40Ca+ ion is shown as a function of the position in the ŷ-direction, when both
mirrors have been displaced 200 µm in the directions x̂ and x̂+ŷ√

2
. This velocity

amplitude was estimated from electric field simulations in FlexPDE. From this
graph we can deduce that the size of the axial micromotion is really dependent
on the displacement direction. Mirror displacement along the x̂-direction clearly
introduces much bigger axial micromotion than the displacement along the x̂+ŷ√

2
-

direction. For the 200 µm displacement in the x̂-direction the axial micromotion
velocities are vz ∼ 30 m/s for ions at the position z = 2.5 mm. Even though this
has the biggest effect on the ions that are closest to the mirrors (z ∼ 2.5 mm) the
other ions are moving with comparable velocities. In terms of Doppler cooling
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2
directions. The unit vectors x̂ and

ŷ have been defined in Fig. 8.8(b).

velocities of this magnitude are critical and should be avoided. A displacement
of 200 µm in the x̂+ŷ√

2
-direction has, according to the simulations, less critical

influence on the axial micromotion. This is especially the case for the ions at
distances r � 200 µm from the trap axis. These ions move at axial velocities of
vz ∼ 1 m/s, which is sufficiently low for cooling below the critical temperature
for crystallization.

The smaller axial micromotion for a mirror displacement in the x̂-direction
is expected for simple symmetry reasons. Imagine that we have the mirrors
centered in the linear Paul trap and only applied the quadrupole voltages at the
four electrode rods. Then the electric potential is constant in the plane spanned
by the x̂+ŷ√

2
and the ẑ unit vectors and located halfway between the Paul trap

electrodes. Due to symmetry this is still valid if the mirrors are displaced along
the x̂+ŷ√

2
direction. If the electric potential is constant in this plane there is no

electric field component in this plane, i.e., the micromotion associated with the
oscillating electric field is zero in this plane. Therefore it is expected that vz = 0
m/s in this plane as is confirmed by the simulation shown in Fig. 8.10.

8.5 Magnetic field

The magnetic field in the region of the 40Ca+ ions has a crucial influence on
whether or not light storage in the 40Ca+ ions is possible. The obvious reason
for this is that we use the magnetic substates in the 40Ca+ ions for light storage.
In the present section the influence of magnetic fields present in the experiment
is discussed.

Two physical properties that have direct consequences for the outcome of
the experiment depend on the magnetic field.
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• The first property is the Zeeman shift of the magnetic substates of the
3D3/2 state. Two of these magnetic substates are coupled by the 866 nm
control laser and signal laser pulse in a Λ-configuration (see Fig. 8.2) under
the condition of two-photon resonance. Zeeman shifts of the substates thus
imply that a detuning of the control laser frequency with respect to the
carrier frequency of the signal pulse is necessary, which in turn means
that the control and signal pulse cannot be on resonance with the cavity
simultaneously. For a Zeeman shift which is much larger than the cavity
resonance width in-coupling of the control laser into the cavity mode is
impossible, when the two photon resonance condition is fulfilled.

• The second property is the Larmor precession of the ions around the
direction of the magnetic field. This will cause a fast decoherence of the
stored state if the magnetic field is perpendicular to the quantization axis
of the control and signal light.

These two properties make it important to minimize and control the magnetic
field at the location of the 40Ca+ ions.

The different sources of magnetic fields are the earth field, currents in the
wires connected to the trap electrodes, and magnetic materials in the vicinity
of the trapping region. The latter magnetic field source has been minimized by
careful selection of non-magnetic materials for the Paul trap construction, the
vacuum chamber, and the laser table. This will be described in Chap. 9.

The earth field, which is on the order of one gauss, is compensated by coils
external to the vacuum chamber giving a homogeneous field at the location
of the 40Ca+ ions. The field in the vacuum chamber emanating from various
local sources of magnetic fields was measured to have a gradient |∇|B|| � 0.1
mG/mm.

The currents in the wires connected to the trap electrode can be estimated
from the capacitance of the linear Paul trap, which is on the order of ∼ pF.
For an rf-voltage of Urf ∼ 200 V this gives rise to time varying currents with an
amplitude of ∼ 1 mA. The magnitude of the B-field induced by these currents
is � 0.5 mG. The magnetic field gradient from these currents is expected to be
∼ 0.1 mG/mm.

It is therefore possible to reduce stray magnetic fields in the region of the
40Ca+ ions to ∼ 1 mG. This corresponds to a Larmor frequency of 1 kHz
that would determine the decoherence rate of the atomic dark state, which is
a considerably faster decoherence than the decoherence set by the lifetime of
∼ 1 s of the 3D3/2-state. In order to make the decoherence rate smaller a bias
magnetic field directed along the propagation axis of the control laser and the
signal pulse (ẑ-axis) can be added which with certainty makes the ẑ-axis the
axis of Larmor precession. This bias field can be fairly large compared to the
stray field in the trap, because the only requirement is that the Zeeman shift due
to the bias field is not too large compared to the cavity width as mentioned in
the beginning of this section. The relative Zeeman shift of the mj = −1/2 and
mj = 3/2 substates in the 3D3/2 state is ∆E = 2π× 2.2 MHz/G and the cavity
resonance width is γcav = 2π× 1.7 MHz, which means that a bias field of up to
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∼ 1 G can be applied before the in-coupling of the control field is significantly
reduced.

8.6 Cavity locking scheme

In order to fulfill the criteria that the trap cavity is resonant with the carrier
frequency of the memory pulse the length of the trap cavity needs to be stabi-
lized to some external reference. Certain measures have been taken at the trap
table to minimize the acoustic noise at the cavity, such as having a rigid table
construction with a noise-dampening honeycomb structure inside the table. De-
spite these precautions active cavity stabilization during the adiabatic transfer
of the memory pulse seems to be necessary as the cavity length has to be well
defined on the length scale determined by the ratio between the wavelength of
the light (λ ∼ 866 nm) and the finesse (F ∼ 4200), i.e., ∼ 0.2 nm.

For the active stabilization we need locking laser for the cavity. The laser
needs to be stable in frequency and it must not interact with the 40Ca+ ions. In
the following discussion the different aspects of choosing the appropriate locking
laser setup is covered.

It is important that the locking laser is stable on a long term as the experi-
ments typically take hours to complete. Ideally the cavity has to stay exactly on
resonance with the 866 nm transition in 40Ca+ at all times. We could consider
using an absolute frequency reference for the locking laser as for instance an
atomic transition. A problem arises, however, when we take into consideration
that the locking laser should be tunable with respect to the atomic transition in
order to set the trap cavity on resonance with the 866 nm transition in 40Ca+.
Tuning the locking laser with respect to the atomic transition is possible by
introducing an AOM or an EOM to induce sidebands, but in order to be able
to tune to all frequencies in a free spectral range of the cavity the tuning range
of the AOM or the EOM system has to be a few GHz, which is not feasible.

To overcome this problem a temperature stabilized cavity with a free spectral
range of ∼ 600 MHz is used as a frequency reference instead, which gives a span
of frequencies that the locking laser can be tuned to. The idea is to use the
same temperature stabilized cavity for the locking laser as we use for the 866
nm memory laser. By doing so the two lasers are fixed relative to each other,
which in turn implies that the trap cavity length is fixed to the 866 nm laser
which needs to be on resonance with the cavity. A drawback of this scheme is the
drift of the temperature stabilized cavities, which mainly cause the 866 nm laser
to drift away from the atomic resonance of 40Ca+. This drift has been measured
to be maximally 1 MHz/h and only ∼ 5 MHz during a whole day [45] for the
temperature stabilized cavity we intend to use (see also Sec. 3.4.4). A similar
setup for the locking laser is used by the ion trap group in Innsbruck [134]. In
this setup an ultra-stable cavity is used as a reference [140].
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8.6.1 Scheme description

A conceptual schematics of the locking scheme for the trap cavity is shown in
Fig. 8.11. An 894 nm diode laser is used as the locking laser. This laser is locked
to the same temperature stabilized cavity (see Sec. 3.4.4) as the 866 nm diode
laser using a Pound-Drever-Hall locking scheme for both lasers. Before the 894
nm laser is sent to the trap table via an optical fiber it is frequency shifted by
a double-pass acousto-optic modulator setup giving a frequency tuning range
of ±100 MHz1 for the locking laser. The 866 nm laser has likewise been made
tunable with respect to the temperature stabilized cavity using an AOM. This
part of the 866 nm laser setup is not included in Fig. 8.11, but is treated in
Ref. [45].

The Pound-Drever-Hall scheme is used for locking the trap cavity to the 894
nm locking laser. The basics of this lock are illustrated in figure 8.11. In order to
be able to obtain an error signal for the lock an EOM, which is controlled by the
modulation signal from a local oscillator, is used for modulation of the locking
laser beam, before it is coupled in as bow-tie mode in the trap cavity through
one of the high reflecting mirrors. The cavity transmission of the laser beam
is detected by a photodetector at one of the other high reflecting mirrors. The
detected cavity transmission signal is then mixed with the modulation signal
from the local oscillator to obtain the error signal [43, 44], which is used for the
locking feedback to the cavity.

The wavelength of 894 nm has been chosen for two reasons. First of all
it is far off resonant with any internal transitions in the 40Ca+ ion which is
a requirement for continuous cavity locking during the experiments. Second
the wavelength is in the infrared where the mirror coatings have the highest

1 The AOM is a Brimrose TEF 270 MHz ± 50 MHz.
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reflectivity. This ensures a sufficiently high cavity finesse for the locking laser.
The cavity mirror transmissions at λ = 894 nm have been measured and we
find that the high reflective mirror transmission is T ∼ 9.5 × 10−4 and the
in-coupling mirror transmission is T ∼ 3.2 × 10−3. This results in a finesse of
F ∼ 1000 for the trap cavity at 894 nm which is only a factor of 4 lower than
the finesse at 866 nm, so adequate cavity lock precision can be obtained using
894 nm as the locking laser wavelength.



9. LINEAR PAUL TRAP WITH OPTICAL RESONATOR

In the previous chapter the different aspects of the trap design were considered.
In the present chapter the actual trap construction is presented together with an
overview of the vacuum chamber in which the trap has been installed. The op-
tical resonator is for this first generation quantum memory trap an asymmetric
standing wave resonator consisting of a high reflecting mirror and in-coupling
mirror with a transmission of T ∼ 1500 ppm. Measurements of the optical
resonator finesse and losses are presented at the end of the chapter.

9.1 Trap and resonator construction

The quantum memory trap setup, which can be seen in Fig. 9.1, was designed
in collaboration with Henrik Bechtold (engineer at the institute). Figure 9.1(a)
shows the fully assembled trap setup, which basically consists of a linear Paul
trap construction mounted on an outer construction that holds the cavity mir-
rors.

9.1.1 Electrodes and mirror mounts

The linear Paul trap electrodes are made of gold coated copper. The copper
electrodes are mounted in a construction made of Macor. Connections to the
electrodes are made by ∅1 mm copper wire that has been welded onto the
electrodes. The whole Paul trap electrode construction can be translated and
tilted with respect to the optical axis of the optical cavity. This translation and
tilt are controlled by three screws that push the electrode construction down
against two beryllium copper springs.

The cavity mirror mounts are made of titanium, because this metal exhibits
a notably low diamagnetism and hence does not introduce magnetic fields in
the trapping region. To keep the distance between the mirror mounts stable
against fluctuations of the trap temperature they have been mounted on a ce-
ramic material1 of a special composition that has a very low thermal expansion
coefficient of � 1 ppm/◦C. In one end of the mirror mount construction the
length of the optical cavity is controlled by three piezo tubes2 glued onto the
mirror mount. The idea of using three piezoes is that small misalignments of
the cavity could be compensated by applying slightly different voltages to the
piezoes that would tilt the mirror mount. In practice the construction turned

1 Machinable ceramic (MC-LD) from MarkeTech International, Inc. [141]
2 Ferroperm Piezoes (ref nr. 27202).
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out to be too rigid for this tilt to have any noticeable effect on the cavity align-
ment, so we will probably only use one piezo in future versions of the quantum
memory trap. Before the closure of the vacuum chamber the optical cavity is
aligned by turning three set screws that tilts the piezo construction with respect
the outer mirror mount construction. Each mirror is mounted in a ∅3.0 mm
hole in the titanium and held in place by a small screw which is gently tightened
against the mirror from the side. In Fig. 9.1(b) a picture is shown of the mirrors
installed in the mirror mount.

9.1.2 Alignment of the trap

The alignment of the linear Paul trap with respect to the optical cavity mode
is very important in order to have proper overlap between the 40Ca+ ions and
the cavity mode (see Sec. 8.1.2). The cavity mode waist is ∼ 37 µm, so the
alignment precision should preferably be better than this.

In the setup stage of the quantum memory trap some precautions are taken
to obtain this precision, but for a final adjustment a special tool has been made
which consists of two thin plates with a 100 µm hole drilled in each plate. The
plates are mounted on four rods such that they can be mounted in the Macor
holder for the linear Paul trap. The holes define where the optical mode has
to be in order to be centered on the linear Paul trap axis. The positioning of
the linear Paul trap is done by sending light into the mode of the optical cavity,
and then minimize the mode losses introduced by the finite size of the holes in
the two plates.

9.1.3 Re-pump laser in-coupling

Re-pump laser light at 866 nm is needed for laser cooling of the 44Ca+ ions
(see Sec. 2.2.1). For an efficient re-pumping out of the 3D3/2-state the angle
between the linear Paul trap axis and the re-pump laser beam should be as small
as possible. To couple sufficient re-pump laser light, which is resonant with the
866 nm transition of the 44Ca+ ions, along the Paul trap axis would require that
the cavity is on resonance with the light. This is not possible though, because
the cavity at the same time has to be resonant with the 866 nm transition in the
40Ca+ ions which is used for the Λ-transition in the quantum memory scheme
(see Fig. 8.2).

Instead we have mounted two fused silica caps on the mirrors that act as
reflectors for the 866 nm re-pump light for the 44Ca+ ions and make a small
angle between the re-pump laser beam and the Paul trap axis possible (see
Fig. 9.1(d)). The fronts of the caps have a λ/10 surface quality and an infrared
reflective coating. The beam path of the 866 nm re-pump laser is illustrated in
Fig. 9.1(f), which shows a horizontal cross-section including the Paul trap axis
of the trap construction seen from above. The angle of the 866 nm laser beam
with respect to the trap axis is ∼ 11◦ which is a sufficiently low angle to have
an efficient re-pumping out of the 3D3/2 state in 44Ca+. To confirm this we
performed an experiment in the linear Paul trap described in Sec. 3.1 in which
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Fig. 9.1: Pictures of the quantum memory trap setup. (a) The full trap setup. (b)
The bare mirrors. (c) The Paul trap electrodes mounted behind the mirrors.
(d) Caps mounted on the mirrors. (e) All Paul trap electrodes mounted. (f)
A cross section of the trap setup showing the re-pump laser beam path. The
trap dimensions are listed in Table 8.1.
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re-pumping of the Ca+ ions was done under angle with respect to the Paul trap
axis. In this experiment we saw that efficient laser cooling and crystallization
of a medium sized 40Ca+ Coulomb crystal is still possible when the re-pump
angle is 45◦.

Apart from acting as mirrors for the 866 nm re-pump light the caps also give
rise to the substrate geometry that introduce the least axial micromotion. This
subject was treated in Sec. 8.4, where it was argued that the end face of the
substrate should be flat and substrate diameter as large as possible to minimize
the axial micromotion induced by the presence of the mirror substrates.

9.2 UHV chamber

The quantum memory trap is mounted in an UHV chamber which was build
as a part of the project. In this section we will describe the different parts
of the vacuum chamber. An important design parameter has been to minimize
magnetic fields in the trap region as discussed in Sec. 8.5. To reduce the number
of magnetic field sources in the neighborhood of the trap region we have chosen
non-magnetic materials as, for example, aluminum for most of the parts inside
the vacuum chamber. The vacuum chamber and the laser table on which it
has been installed are made in low-magnetic stainless steel. The UHV chamber
geometry is similar to the UHV chamber described in Sec. 3.2, so here only
a brief summary of the inside of the new UHV chamber will be presented.
The UHV with a pressure of roughly 10−10 Torr is maintained by a titanium
sublimation pump and an ion getter pump3. The pressure is monitored by an
ion gauge. A photograph of the UHV chamber inside is shown in Fig. 9.2. A
stainless steel plate with threaded holes, on which the various parts are mounted,
has been installed in the chamber. Here the different parts in the photograph
are described in detail:

• The quantum memory trap is situated in the center of the chamber. It
is mounted on an aluminum base together with 20 in-line connectors
mounted in 4 Macor blocks. The in-line connectors are used for connect-
ing the trap electrode wires and the piezo wires to ∅1.0 mm copper wires
that are connected to the trap feedthrough and the piezo feedthrough.

• The calcium and magnesium ovens are very similar in their construction
to the ovens installed in the other vacuum chamber described in this The-
sis and the reader is referred to Sec. 3.2 for a review of the basic oven
construction. In the setup presented here the atoms effuse through a 4–5
mm long canal with a ∅0.4 mm diameter. Skimmers placed between the
ovens and the quantum memory trap protect both the trap electrodes and
the cavity mirrors from contamination. There are three vertical skimmers
and two horizontal skimmers. The resulting beam size at the center of the
linear Paul trap is ∼ 1.5 mm horizontally and ∼ 1.0 mm vertically. The Ca
and Mg atomic beam directions make a 45◦ and a 57◦ angle with respect to

3 Physical electronics 300 l/s Captorr ion pump.
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the Paul trap axis, respectively. Isotope selective photo-ionization produc-
tion of Ca+ ions under a 90◦ angle is possible through two anti-reflection
coated viewports.

• The optical access for the laser beams to the trap region parallel and
perpendicular to the trap axis as well as in a 45◦ angle is provided through
six viewports. The viewports have been anti reflection coated for the three
wavelengths: 866 nm, 397 nm, and 272 nm. In Fig. 9.2(a) are also seen
two mirrors denoted by M1 and M2. These mirrors have been introduced
in the vacuum chamber, because the chamber geometry prohibits direct
optical access through the viewports for the 866 nm re-pump laser, which
needs to be send in under an 11◦ angle with respect to the trap axis (see
Sec. 9.1). All the laser beam paths are indicated in Fig. 9.2(b). In the top
flange (not shown in figure) a viewport is mounted through which the ion
fluorescence from the Doppler laser cooling is imaged.

• The oven shutter is for blocking the atomic beams. It consists of an alu-
minum plate mounted on a rotary motion feedthrough, so it can be rotated
in and out of the blocking position. The aluminum plate is designed such
that the Ca oven and the Mg oven can be blocked individually.

• A small piece of optical fiber with a diameter of 80 µm has been mounted
on a linear motion feedthrough, which is used to translate the fiber end
in and out of the center of the linear Paul trap. The optical fiber can
viewed by a CCD camera, when laser light is scattered from the tip of the
fiber. This is used for initial alignment of cooling lasers and length scale
calibration of the recorded images.

9.3 Cavity characterization

The cavity losses play a critical role for the fidelity of the quantum memory in
ions as shown in Sec. 8.2 and therefore the cavity losses need to be measured.
Here the methods used for characterization of the cavity are presented along
with some data obtained for the standing wave cavity presently used in the
quantum memory setup.

9.3.1 Theory

This section is devoted to deriving and discussing the basics of resonator theory
which we use for characterization of the high finesse cavity. The discussion will
be restricted to a resonator consisting of two mirrors (Fabry-Perot resonator),
but the derivations here can easily be extended to more complex resonator setups
as for instance the bow-tie cavity presented in Sec. 8.3.

In our efforts towards characterizing the cavity, the cavity finesse as well
as the cavity round trip losses are important parameters. Information about
these can be obtained in many ways. A simple model can be used to deduce the
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(a)
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Fig. 9.2: Photos of the vacuum chamber for the quantum memory trap setup. (a) The
different parts of the vacuum chamber. M1 and M2 denotes the two mirrors
for the 866 nm re-pump beam. (b) Beam paths of the lasers and the atomic
calcium beam. For a length scale note that the distance between nearest
neighbor holes in the base plate of the vacuum chamber is 1 cm.

cavity finesse and the cavity round-trip losses from measurements of the cavity
reflection and transmission signals when the cavity is scanned across resonance
of the fundamental TEM00 mode.

In the following we will consider a Fabry-Perot cavity. Let the transmission
for the in-coupling mirror be denoted by T1 and the transmission of the high-
reflecting mirror be denoted by T2. The reflectivity of the mirrors we define as
Ri ≡ 1 − Ti for i = 1, 2. This definition of the reflectivity may at first glance
appear a bit odd as there are also dissipative loss mechanisms at the surface of
the mirrors that will reduce the actual mirror reflectivity. We cannot however
easily measure the individual dissipative loss of each mirror, and therefore it
makes more sense to treat this loss separately. Therefore we also introduce, L,
as the fractional loss of intensity of a light field propagating one round trip in the
cavity which cannot be attributed to light transmission through the mirrors. To
simplify the equations below we also introduce the loss parameter αL ≡ 1− L.
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Considering the electric field amplitude of the intra-cavity circulating light just
before the in-coupling mirror Ec1 it is easily seen that this field relates to the
in-coupling field amplitude Ei as follows

Ec1

Ei
=

√
αl(1−R1)R2e

iδ

1−
√

αLR1R2eiδ
, (9.1)

where δ is the phase shift of the electric field for one cavity round trip. Similarly
the electric field amplitude just before the high reflector mirror, Ec2 , is

Ec2

Ei
=

√
αL(1 −R1)eiδ/2

1−
√

αLR1R2eiδ
. (9.2)

The field amplitude of the field transmitted through the high reflector, Et,
is related to the intra-cavity field by the relation Et/Ei = −

√
1−R2Ec2/Ei

and the field amplitude reflected from the in-coupling mirror, Er, is Er/Ei =
−
√

1−R1Ec1/Ei +
√

R1. Now inserting the equations (9.1) and (9.2) into these
expressions and taking the square modulus the reflected and the transmitted
powers normalized to the incoming power become

Pr

Pi
=

R1 + αLR2 − 2
√

αLR1R2 cos δ

1 + αLR1R2 − 2
√

αLR1R2 cos δ
(9.3)

Pt

Pi
=

αL(1−R1)(1 −R2)
1 + αLR1R2 − 2

√
αLR1R2 cos δ

. (9.4)

The reflected and transmitted powers have been plotted as a function of δ in
Fig. 9.3(a). The FWHM width of the resonance δFWHM is also indicated in the
figure. From Eq. (9.4) the finesse is easily found as the ratio of the distance
between two neighboring resonances (2π) and δFWHM, which gives

F =
2π

δFWHM
= π

(αLR1R2)1/4

1−
√

αLR1R2

. (9.5)

For the case of a low loss and low transmission cavity (T1, T2, L� 1) Eq. (9.5)
reduces to

F ∼=
2π

T1 + T2 + L
. (9.6)

If we define ρ ≡ Pr(δ=0)
Pr(δ=π) , i.e., the reflected power on resonance divided by

the reflected power off resonance, it is found that ±ρ = (R1−x)(1+x)
(R1+x)(1−x) , where

x =
√

αLR1R2. The quantity ρ, which can be determined experimentally from
the reflection signal, has been plotted in Fig. 9.3(b) as a function of the dissipa-
tive cavity round trip loss L for a cavity with parameters similar to our cavity.
It is seen that ρ 	 1 when the cavity losses are small. When the in-coupling
transmission equals the sum of the dissipative losses of the cavity and the trans-
mission of the out-coupling mirror (T1 = T2 + L) there is no reflected signal on
cavity resonance (ρ = 0). In this situation the cavity is said to be impedance
matched.



9. Linear Paul trap with optical resonator 109

-0.010 -0.005 0.000 0.005 0.010

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000

0.0

0.2

0.4

0.6

0.8

1.0

(a) (b)

δ

δFWHM

Pr
Pi

50 × Pt
Pi

Loss [ppm]

ρ

Fig. 9.3: (a) The transmission signal and reflected signal normalized to the incoming
power for a cavity with T1 = 1500 ppm, T2 = 5 ppm, and L = 200 ppm (see
Eq. (9.3)). The transmission signal is multiplied by a factor of 50 to account

for the small cavity transmission signal. (b) Reflection dip, ρ = Pr(δ=0)
Pr(δ=π)

,
as function of the cavity round trip dissipative loss, L. The in-coupling
transmission is T1 = 1500 ppm and the high reflector transmission is T2 = 5
ppm.

Using the approximation (1−R1, 1 −R2, L)� 1 we arrive at a simple and
highly useful expression for the cavity round-trip dissipative loss

L = T1

1±√ρ

1∓√ρ
− T2, (9.7)

where the upper sign is used when the total cavity round trip loss exceeds the
transmission of the in-coupling mirror (T2 + L > T1) and the lower sign is
used when the total round trip loss is lower than the in-coupling transmission
(T2 + L < T1).

9.3.2 Results and methods

Both the cavity transmission signal and the reflected signal need to be measured
to make a proper characterization of the cavity. We will now present such
measurements and use them to calculate the cavity finesse and losses.

A schematic of the setup for this measurement is shown in Fig. 9.4. The
866 nm laser light is derived from a diode laser via an optical fiber and sent
through a series of lenses for beam shaping such that beam is mode matched
with the cavity. When appropriate mode matching and cavity alignment have
been done the fundamental TEM00 mode dominates. The transmitted signal
is measured simply by focussing the transmitted signal onto a detector. The
reflected signal is separated from the incoming beam using a λ/4-plate and a
polarization beam splitter and the light is then focused onto a detector. This
configuration avoids that all the reflected light is sent directly back to the diode
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laser. The diode laser is furthermore protected from cavity back reflections by
two optical Faraday isolators.

PBS�/4 ~ 5.7 MHz

Detector
(reflected light)

866 nm

Detector
(transmitted light)

EOM
T2 ∼ 5 × 10−6 T1 ∼ 0.0015

Fig. 9.4: Setup for cavity characterization.

The cavity length is scanned by applying a sawtooth scan voltage to the
piezoes that control the cavity length. An example of such a scan signal when
the cavity is scanned more than one free spectral range is shown together with
the sawtooth scan signal in Fig. 9.5(a). The resonance peaks represent the
increased cavity transmission for the TEM00 cavity mode. Higher order cavity
modes are also present in the scan and they are identified as small peaks with
an amplitude of ∼ 0.1 V in the scan.
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Fig. 9.5: (a) Transmission signal of the cavity when the cavity is scanning more than
one free spectral range together with the sawtooth scan signal. (b) The
transmission signal when the cavity is scanned slowly across the TEM00-
resonance of the cavity. The light sent to the cavity is modulated at frequency
fmod = 5.7 MHz using an EOM.

The resonance width is established from the transmission signal of a slow
scan of the cavity length across the fundamental TEM00 cavity mode. The
scan needs to be slow in order to avoid broadening effects of the resonance due
to the finite rise time of the photo detector. To calibrate the measurement
we introduce an electro optic modulator (EOM) in the laser beam path which
produces sidebands at the modulation frequency fmod ∼ 5.7 MHz. For each
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resonance width measurement the modulation frequency is known to a 4-digit
precision. The transmission signal of the cavity for the carrier an the first
sidebands is shown in Fig. 9.5(b). A multi peak Lorentzian fit of the carrier and
the two neighboring sidebands determines the peak positions and the Lorentzian
width of the three peaks. The peak widths are assumed to be equal in the multi
peak fit. In the example shown in Fig. 9.5(b) the resonance width is δν ∼ 3.3
MHz. The resonance width measurements are extremely sensitive to acoustic
noise in the laboratory, so in order to get good statistics the measurements are
repeated several times.

A good measure for the quality of the cavity mirrors is the fidelity F 	
2π/(T1 + T2 + L) derived in Sec. 9.3.1, which only depends on the cavity mir-
ror transmissions and the dissipative loss in the cavity. The finesse is found
experimentally as the ratio between the cavity free spectral range ∆fsr and the
resonance width δν, i.e., F = ∆fsr/δν. The free spectral range could be cal-
culated from the length of the cavity, but it is very hard directly to measure
the exact cavity length. Instead the free spectral range is measured optically
by comparing the cavity free spectral range to a free spectral range of a laser
stabilization cavity (see Sec. 3.4.4 for a description of the stabilization cavity).
The procedure for this is as follows. A laser beam from the Ti:Sapph laser is
split in two and sent both to the laser stabilization cavity and the quantum
memory cavity. Then the Ti:Sapph laser frequency is manually tuned one free
spectral range of the quantum memory cavity while the number of stabiliza-
tion cavity free spectral ranges the laser frequency traverses is counted. The
free spectral range for the stabilization cavity is 596 MHz, which also has been
measured optically, but this time using the modulation frequency of a double
pass acousto optic modulator as a reference. For the present cavity setup a
free spectral range of ∆fsr = (22.0± 0.1)× 596 MHz = 13.1± 0.1 GHz has been
measured. Using this result together with measurements of the cavity resonance
width we can deduce a cavity finesse of F = 4000±200, which is consistent with
the finesse of F ∼ 4200 expected from the nominal in-coupling transmission of
T ∼ 1500 ppm.

The finesse measurement reveals that the cavity dissipative losses are small
compared to the transmission loss of the in-coupling mirror, but to get a quanti-
tative measure of cavity losses a measurement of the amplitude of the resonance
dip in the reflection signal is necessary. Our experience is that new mirrors
which have not yet been cleaned typically have losses of a couple of 100 ppm.
The mirrors are cleaned using a lens tissue and acetone or methanol. The best
cleaning result is usually obtained by folding the lens tissue a few times to get
some layers of tissue such that a moderate pressure of the lens tissue against the
mirror surface is applied. Figure 9.6 shows the cavity reflection dip after such a
cleaning. The cavity loss deduced from this measurement is L + T2 ∼ 28 ppm,
which is the lowest loss we have obtained using the described cleaning method.
The cavity losses are very sensitive to dust particles in the air which will conta-
minate the mirror surfaces. To protect the mirrors from dust a plexiglass house
for the setup (1 m × 0.5 m × 0.5 m) has been built. The dust free environment
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Fig. 9.6: Reflection signal from the cavity fitted to a Lorentzian. The total cavity
round-trip loss calculated from this reflection dip is L + T2 ∼ 28 ppm as
shown in the insert.

is obtained by blowing air4 cleaned with a Hepa-filter into the plexiglass house
at a rate of 0.5 lites per second.

4 Using an air pump Nitto Kohki LA 28 B



10. SUMMARY AND OUTLOOK

The present Thesis has covered different aspects of the construction and devel-
opment of an experiment on quantum memory for light in two component ion
Coulomb crystals consisting of 40Ca+ and 44Ca+ ions. A central part of the
work has been to build a linear Paul trap with an integrated optical resonator.
The linear Paul trap is the first of its kind where the Paul trap axis and the
optical axis of the resonator coincide, and the Paul trap construction at the
same time is designed to confine large ion Coulomb crystals. The linear Paul
trap is now installed in a low-magnetic UHV chamber and the first ion trapping
experiments have been initialized. In the present trap setup the resonator is a
standing wave resonator, but a running wave resonator setup is ultimate goal for
the trap setup. We are currently working on the realization of this running wave
resonator setup. Resonator round trip losses on the order of a few tens ppm have
been measured in the standing wave resonator setup. If we include these cavity
losses in the simulations of single photon storage in the bow-tie configuration,
the predicted attainable fidelity of the light storage becomes F ∼ 0.9.

Numerical simulations of the trapping fields have been used in the design
phase of the linear Paul trap with integrated resonator to estimate the mag-
nitude of the axial micromotion introduced by the presence of the resonator
substrates. Our conclusion is that with the right choice of substrate geometry
the magnitude of the axial micromotion will not be critical for the experiment.
The magnetic fields in the trapping region need to be reduced to a few mG. A
bias magnetic field along the trap axis, which will decrease the decoherence rate
of the ions caused by Larmor precession, has furthermore to be applied.

With the aim of being able to produce the large bi-crystals consisting of two
isotopes of calcium experiments on isotope-selective photo-ionization loading
of calcium in a regular linear Paul trap have been carried out. The photo-
ionization experiments indicated that ions of all naturally occurring isotopes can
be produced from natural calcium, including the extremely rare 46Ca isotope
which has an abundance of only 0.004%. For the 44Ca isotope, that has an
abundance of 2.086%, the isotope selectivity of η44 ∼ 1100 is sufficient for the
purpose of producing the large 40Ca+–44Ca+ bi-crystals needed for the quantum
memory experiment. As a tool for controlling the ratio of 40Ca+ and 44Ca+ ions
in the bi-crystal the near electron transfer between the atoms in the atomic beam
and the trapped ions is utilized.

Ionization rate measurements as a function of the ionization laser detuning
revealed the hitherto unknown isotope shifts of the 4s2 1S0 ↔ 4s5p 1P1 transi-
tion in calcium and the hyperfine splitting of 4s5p 1P1 state of 43Ca. From these
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data the field shift and specific mass shift coefficients as well as the hyperfine
structure constants for 43Ca were deduced.

We have also performed experiments on collisions between trapped laser
cooled calcium ions and calcium atoms in an effusive beam. These experiments
offer an opportunity to study the low-energy near resonant charge transfer be-
tween ions of a low abundant isotope, as for instance 44Ca+, and 40Ca atoms.
A technique has been demonstrated to measure the atomic beam profile of the
effusive beam by probing the charge transfer rate at different locations in the
atomic beam. The atomic flux in the atomic beam was estimated from the tem-
perature of the atomic beam and the theory of effusive beams. This has been
used to calculate the near resonant charge transfer cross section, which is found
to be an order of magnitude larger than the cross section predicted from an
extrapolation of higher energy charge transfer data. Greater confidence in the
experimental cross section result would be obtained by improving the atomic
flux estimate, which for instance is found by using absorption spectroscopy on
the 4s2 1S0 ↔ 4s4p 1P1 transition in neutral calcium.

The structural properties of single component Ca+ ion Coulomb crystals
have been studied. For large Coulomb crystals with ion numbers exceeding
10,000 transitions between fcc and bcc lattice structures are observed. Accord-
ing to theoretical predictions smaller spherically symmetric ion Coulomb crystals
with ion numbers below 10,000 ions the ions arrange in concentric spheres of
different radii throughout the crystal. Besides observing these shell structures
a transition to long-range lattice structures has been observed. The different
structures are co-existing for the same set of trap parameters and presumably
induced by the finite temperature of the ion crystal.

For two component ion Coulomb crystal consisting of 40Ca+ and 44Ca+ ions
we have seen the concentric shell structure of the 40Ca+ crystal core predicted
from previous MD simulations and observations of bi-crystals in a linear Paul
trap. The shell structure of the 40Ca+ core resembles the structure of an one
component Coulomb crystal confined in an infinitely long cylindrically sym-
metric static harmonic potential. Quite surprisingly our results show that this
structure is not unique, but instead a transition to a fc-orthorhombic lattice
structure of the 40Ca+ core exists for certain configurations of the trapping pa-
rameters and sizes of the Coulomb crystals. MD simulations of the bi-crystals
which include the full time-dependent potential, indicate that the existence of
the fc-orthorhombic lattice structure in the crystal core is induced by the time
variation of the confining rf-potential of the linear Paul trap. We find a quali-
tative agreement between the experimentally observed rectangular structure of
the crystal projection and the MD simulations, but quantitatively there is a
small deviation of 7% which is at present not fully understood.
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[22] A.-M. Mårtensson-Pendrill, A. Ynnermann, and H. Warston. Isotope-
shifts and nuclear-charge radii in singly ionized 40−48Ca+. Phys. Rev. A,
45(7):4675–4681, april 1992.

[23] W. Alt, M. Block, V. Schmidt, T. Nakamura, P. Seibert, X. Chu, and
G. Werth. Shifts of the 3D−4P transitions in different isotopes of positive
calcium ions. J. Phys. B, 30:L677–L681, 1997.

[24] E. Wigner. On the interaction of electrons in metals. Phys. Rev., 46:1002–
1011, 1934.

[25] H. W. Jiang, R. L. Willett, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer,
and K. W. West. Quantum liquid versus electron solid around ν = 1

5
Landau-level filling. Phys. Rev. Lett., 65(5):633–636, 1990.

[26] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, and
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H. Häffner, C. Roos, J. Eschner, F. Schmidt-Kaler, and R. Blatt. Spon-
taneous emission lifetime of a single trapped Ca+ ion in a high finesse
cavity. Phys. Rev. Lett., 92(20):203002, 2004.

[136] A. von Hippel, editor. Dielectric materials and applications. The technol-
ogy press of M. I. T. and John Wiley & Sons, 1954.

[137] D. R. Denison. Operating parameters of quadrupole in a grounded cylin-
drical housing. J. Vac. Sci. and Tech., 8:266–269, 1971.

[138] Christian E. Brodersen. Laserinduceret krystallisering af Mg+-ioner i en
lineær Paulfælde. Master’s thesis, University of Aarhus, 1997.

[139] J. David Jackson. Classical Electrodynamics. John Wiley & Sons, 3 edi-
tion, 1999.
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A. RELEVANT DATA ON CALCIUM

A.1 Natural abundance of calcium

Isotope Abundance
40 96.941%
42 0.647%
43 0.135%
44 2.086%
46 0.004%
48 0.187%

Tab. A.1: Natural abundance values of the calcium isotopes. Values are found in [142].

A.2 Clebsch-Gordan coefficients in Ca+

The Clebsch-Gordan coefficients for the λ = 866 nm 3D3/2 ↔ 4P1/2 transition
in Ca+ are shown in Fig. A.1.

-1/� 1/�
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− 1√
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Fig. A.1: Clebsch-Gordan coefficients for the 866 nm 3D3/2 ↔ 4P1/2 transition Ca+

A.3 Vapor pressure of calcium

The vapor pressure of solid calcium found in Ref. [143]

p [mmHg] = 106.08968−9051.24/T−0.00078270T+1.03041 log T , (A.1)
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where the temperature T is in Kelvin.

A.4 Root mean square nuclear radii

The root mean-square charge radii
√
〈r2〉 of calcium (in fm).

Isotope, A
√
〈r2〉 [fm] uncertainty [fm]

40 3.4827 0.0017
42 3.5142 0.0017
43 3.5001 0.0017
44 3.5242 0.0017
46 3.5011 0.0017
48 3.4831 0.0017

Tab. A.2: Nuclear root mean-square charge radii of calcium. Taken from Ref. [59].



B. STORAGE OF A SECANT PULSE

The dynamical impedance matching condition (see Eq. (7.14)) in Chap. 7 im-
poses a constraint on how control field Ω(t) has to be shaped for a complete
transfer of an incoming one photon state to the dark state of the atom cavity sys-
tem. We assume that the input photon wave packet envelope has a normalized
hyperbolic secant shape, i.e.,

Φin(t) =

√
L

cT
sech

(
2t

T

)
. (B.1)

Inserting this into the impedance matching condition Eq. (7.14) we find the
non-linear first order differential equation

d

dt
cos θ(t) +

γcav

2
cos3 θ(t) +

2
T

tanh[2t/T ] cosθ(t) = 0. (B.2)

This differential equation can be solved analytically for cos θ(t). Using the
constraint that cos θ(t) → 0 for t → ∞, i.e., the dark state of the cavity-atom
system ends up as a purely atomic excitation, the solution becomes

cos θ(t) =
2

γcavT

sech[2t/T ]√
1 + tanh[2t/T ]

. (B.3)

From this we see that the impedance matching condition can only be fulfilled
provided that γcavT ≥ 4.

Using the definition Eq. (7.6) it is found that the Rabi frequency of the
classical control field should be changed according to

Ω(t) = g
√

N
sech[2t/T ]√

(1 + tanh[2t/T ])(tanh[2t/T ] + γcavT/2− 1)
. (B.4)



C. COHERENT COUPLING STRENGTH

In this appendix the coherent coupling g(r) between an optical cavity mode
with one photon in the mode and an ion situated at r is derived. This is
subsequently used in the calculation of the collective coupling strength g

√
N of

the photon field to an 40Ca+ ion crystal. A two-level ion with ground state |a〉
and excited state |b〉 is exposed to an electric field E(r, t) = (E0(r)/2)(eiωt+c.c.)
from the photon field mode, where ω is the photon frequency and E0(r) is the
electric field amplitude. When the optical frequency is assumed to be resonant
with the |a〉 ↔ |b〉 transition the interaction Hamiltonian in the rotating wave
approximation reads

Hint −
�

2

(
2DE0(r)

�

)
[|b〉〈a|+ |a〉〈b|], (C.1)

where the transition dipole moment D is given by

D2 =
3πε0�c3Ws

ω3
. (C.2)

Ws is the transition rate of spontaneous emission and �ωab is the transition
frequency between the states |a〉 and |b〉. Comparing Eq. (C.1) to the interaction
Hamiltonian given in Eq. (7.3)1, we see that the one-photon coupling strength
to one ion is defined by the electric field amplitude of an one-photon mode in
the cavity, E0(r), by the relation �g(r) = 1

2DE0(r).
The electric field amplitude for each of the four arms of the running wave

Gaussian bow-tie mode in the cavity we write as

E0(r) = Ẽ0
w0

w(z)
e−(x2+y2)/w2(z), (C.3)

where w(z) = w0

√
1 + (zλ/πw2

0)
2 is the waist and w0 is the minimal waist2.

From this the mode volume function f(r) is defined by E0(r) = Ẽ0f(r). Now
defining the coherent coupling parameter g as g(r) = gf(r) it is easily shown
that

g =
D
�

√
�ω

2ε0V
, (C.4)

1 We ignore that the Hamiltonian in Eq. (7.3) includes the a and a† operators that describe
the creation and annihilation of a cavity mode photon.

2 For brevity the spatial displacement of the mode arms and the small angle between them
is left out in this description.
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where the mode volume is given by V =
∫

f2(r)dr and integration is over all
four mode arms of the bow-tie mode. The mode volume for the bow-tie mode
is

V =
πw2

0

2
× 4lcav, (C.5)

where lcav is the cavity length. Inserting lcav = 10 mm and w0 = 37 µm we
obtain a mode volume of V ∼ 0.086 mm3. The collective coupling to the 40Ca+

ions in the crystal is given by the integral∫
g2(r)n(r)dr = g2

∫
40Ca+crystal

n0f
2(r)dr, (C.6)

where n(r) is the density of the trapped 40Ca+ ions and n0 is the uniform density
of 40Ca+ in the crystal. The last integral in Eq. (C.6) is the number of 40Ca+

ions that overlap with the bow-tie mode, which gives

N = n0
πw2

0

2
× lcrys. (C.7)

Inserting the characteristic parameters for our experiment, namely n0 = 3×108

cm−3, and lcrys ∼ 5 mm, the number of ions contained in the cavity mode
becomes N ∼ 3200. The collective coupling Eq. (C.6) becomes

g2N =
n0ωD2

8ε0�
· lcrys

lcav
. (C.8)

For the 3D3/2(mj = 3/2) ↔ 4D1/2(mj = 1/2) transition, which is coupled by
the cavity field (see Fig. 8.2) the spontaneous emission rate is Ws = 2π × 0.84
MHz. This is calculated from the total spontaneous emission rate of 1.69 MHz
found in Fig. 2.4 and the Clebsch-Gordan coefficient for the 2D3/2(mj = 3/2)↔
2D1/2(mj = 1/2) transition (see Fig. A.1) of 1/

√
2. Inserting Ws = 2π × 0.84

MHz and ω = 2π × 3.46 × 1014 Hz into Eq. (C.2) we find that the dipole
moment of the transition 3D3/2(mj = 3/2) ↔ 4P1/2(mj = 1/2) in 40Ca+

is D = 11 × 10−30 m·C. We now have the relevant numbers to calculate the
collective coupling strength in Eq. (C.8) and we arrive at g

√
N ∼ 2π × 11.6

MHz.



D. CRYSTAL SIZE EXTRACTION

In order to determine the number of ions in a Coulomb crystal it is necessary
to extract information about the crystal volume from the recorded images. An
one component Coulomb crystal confined in the harmonic potential of our linear
Paul trap has a spheroidal shape with the axis of rotational symmetry parallel
to the plane in which the crystal is projected. The crystal projection corre-
spondingly becomes an ellipse. The most obvious way to establish the volume
of the spheroidally shaped crystal is to calculate it from the major and minor
axis of the projected ellipse. In some applications this method will be sufficient,
but it is inefficient if a large series of crystal images have to be measured and
furthermore it is associated with an uncertainty from the subjective determi-
nation of the crystal boundary. Last but not least if the crystal contains more
than one species the shape of each constituent is no longer spheroidal and this
rudimentary method does not apply.

A more precise and faster method is to integrate the crystal volume numeri-
cally on a computer. If the boundary of the crystal is known the crystal volume
V can be found by assuming rotational symmetry around the z-axis and make
the integration summation

V [pixel3] =
N∑

i=1

πr2
i × 1 pixel, (D.1)

where ri is the radial extend determined by the crystal boundary at pixel zi.
The crystal boundary is found from the image of the crystal by setting an

intensity threshold (see Fig. D.1). Pixels that belongs to the crystal projection
are above this intensity threshold and pixels below threshold are not part of the
crystal projection. We then use the image analysis program ImageJ to analyze
and find the boundary of the crystal region. The crystal boundary determined
this way is depicted in Fig. D.1, where it is seen that the boundary is found
to be about half a shell distance outside the outer shell. At first sight this
might seem to overestimate the crystal size, but is turns out that to calculate
the correct ion number in the crystal half a shell distance should be added to
the actual crystal boundary in the volume calculation. Despite the subjective
initialization of the intensity threshold this method seems to be consistent at
reproducing the crystal boundary at half a shell distance outside the crystal for
different crystal images.

For medium sized crystals which are most often encountered in our experi-
ments the uncertainty of the volume measured by the threshold method ranges



D. Crystal size extraction 133

Fig. D.1: Techniques for determining the outer boundary of the crystal. The graph
shows a radial profile plot of the crystal along the thick white line in crystal
image. The pixel depth if 8 bit and the intensity peak at 22 pixels indicates
the boundary found by the threshold condition. The outer boundary of the
crystal (plus half a shell distance) is indicated by the white line in the crystal
image.

from 2–10% depending on the crystal size. A conservative uncertainty estimate
of 5% is used in this Thesis.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /NOR <>
    /SVE <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


