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Preface

This thesis is a summary of my work done as a Ph.D. student at the Department
of Physics and Astronomy at Aarhus University, Denmark. It contains the recent
progress made within the ion-based cavity QED project over the last four years in
the Ion Trap Group at the University of Aarhus. Prior to my Ph.D. employment I
also did my bachelor project in the group on measuring frequency drifts of a reference
cavity using Doppler-free spectroscopy of Cs atoms. Through this work my interest
for optical and atomic physics started as I was introduced to the ongoing experiments
in the group and the overwhelming complexity of the physical phenomena that was
studied. When I was offered the opportunity to continue working in this exciting field
of research I had no doubt in accepting the contract.

In this context, I would like to thank my supervisor Michael Drewsen for giving
me the possibility to further develop the experimental project and hereby improve
my physical intuition, ability to solve experimental and theoretical issues and get
an impression of the entire field of research in which we are operating. I have been
challenged to work both in cooperation with colleagues in the group and individually,
and I think the balance between the two has been close to optimal for me.

At the beginning of my work on the project, the cavity trap had already been
running for several years giving great breakthroughs in the field of cavity quantum
electrodynamics. These results are to a great extent the achievements of my predeces-
sors Peter Herskind, Magnus Albert, Joan Marler and Aurélien R. Dantan, to whom
I am very grateful. I have been pleased to get the chance to continue developing the
complexity of the system to achieve the new goals that were set for the studies. In
the projects that I was involved in, I have been working mainly together with the
post docs Aurélien R. Dantan and Ian D. Leroux, who at the same time served as my
mentors, answering every question I might have had.

In the beginning of my time in the group I also worked closely together with
Magnus Albert in continuing the work he had performed as a PhD student in the
group. Towards the end of my study I have been working with post doc Thomas
Lauprêtre and the PhD student Olivier Legrand who are going to continue the open
projects and hopefully succeed in obtaining great results. Of other people with whom
I have been working, I have to mention the master students Niels H. Nielsen, Kasper
R. Zangenberg and Martin Larsen. I would like to use the opportunity to thank all
these people for their help and for the exciting discussion we have had throughout the
last four years. In addition, I would like to thank all the other people in the ion trap
group for creating a friendly and constructive environment in which collaborations
across projects and goals has been working seamlessly.

I also acknowledge all the help and support from the staff from the electronics
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department, the construction group and the mechanical workshop.
Moreover, I would like to thank my family for their support and encouragement

during the past four years. I have tried to distribute my time between work and
taking care of my wife and children, but sometimes it has been hard to balance the
focus between the two. I appreciate your understanding.

Finally, I would like to gratefully thank Aurélien R. Dantan and Ian D. Leroux
for useful discussions during the writing process of this thesis together with the major
effort of proof-reading it. Their remarks and comments improved the thesis substan-
tially.

Rasmus Bogh Linnet, April 2014.



Resumé - English
This PhD thesis deals with the interaction between light fields in optical resonators
and cold, trapped ions. The studies reported here have been carried out in an existing
cavity ion trap setup in the Ion Trap Group at the University of Aarhus. Experi-
ments are performed using ensembles of Ca+ ions, trapped in a linear Paul trap and
laser-cooled into a spatially ordered structure called an ion Coulomb crystal, with
temperatures in the mK range. The ions in the crystal can couple strongly to the
light field of an optical cavity integrated into the trap and resonating with the D-P
transition in Ca+.

The first experiments described in this thesis are an investigation of the temper-
ature of large ion Coulomb crystals, by a non-invasive spectroscopy method which
exploits the coupling between the cavity field and the atomic levels of the ions. By
recording resonance spectra from the combined cavity-ion system probed at the single
photon level we make use of the modification of the crystal-light coupling in order
to infer the temperature of the crystals. In the specific experiments we observe ion
crystal temperatures in the range from 10 mK to > 600 mK. These measurements
will be checked against the results of independent molecular dynamics simulations.
The information about the thermodynamical state of ion Coulomb crystals gained in
such studies are relevant both for cold charged plasma physics as well as for ion-based
cavity quantum electrodynamic studies.

In a second set of experiments we develop a technique for determining the absolute
center of the optical cavity. Two optical fields, separated with a specific detuning,
are resonantly injected into a linear Fabry-Pérot cavity and the spatial beating pat-
tern between them is observed by using an ion crystal as the imaging medium. We
demonstrate how this simple technique allows for finding the absolute center of a
11.8 mm-long cavity with a precision of ∼ 100 nm.

The last experiments of this thesis represent a study of the localization of ions in
a standing wave optical potential inside the cavity. A strong intra-cavity laser field
(lattice), far detuned from an atomic transition of the ions, imposes a dipole force on
the ions in the crystal that forces them to be localized at either nodes or anti-nodes
of the lattice field, depending on the sign of the detuning. We first show that a single
ion can be captured in a single well of a 34 mK-deep optical lattice with over 97%
probability. We also show that the coupling between an ion and a second resonant
intra-cavity probe field can be enhanced substantially, from 50%, for a free ion, to
> 80% for an ion in the deepest lattice. Furthermore, we also show that ion crystals
with up to 8 ions and in several multidimensional structures can be localized in such
a lattice potential.

We also discuss the prospects and preparations for implementing a protocol for
quantum storage and retrieval of light using ion Coulomb crystals in a cavity. This pro-
tocol uses the so-called cavity electromagnetically induced transparency mechanism,
which has been demonstrated in our system, in order to convert photonic excitations
at the single photon level into collective excitations in the ions.



Resumé - Dansk
Denne ph.d.-afhandling beskæftiger sig med vekselvirkningen mellem lys-felter i op-
tiske kaviteter og kolde, fangede ioner. Studierne der gennemg̊as er blevet udført i det
eksisterende kavitets ionfælde eksperiment i Ion-fælde gruppen ved Aarhus Univer-
sitet. Eksperimenter udføres her ved hjælp af ensembler af Ca+-ioner, der er fanget
i en lineær Paul fælde og laser-kølet til en rumligt vel-ordnet struktur kaldet en ion
Coulomb-krystal, med temperaturer i størrelsesordenen mK. Ionerne i krystallen kan
koble stærkt til feltet i en optisk kavitet som er integreret i fælden og som er resonant
med DP overgangen i Ca+.

De første forsøg, der er beskrevet i denne afhandling, er en undersøgelse af tem-
peraturen af store ion Coulomb-krystaller vha. en metode der bruger ikke-invasiv
spektroskopi, ved at udnytte koblingen mellem kavitets-feltet og de atomare niveauer
af ionerne. Ved at optage resonans-spektre fra det kombinerede kavitets-ion-system
m̊alt p̊a enkelt foton niveau, kan vi gøre brug af ændringen af krystal-lys koblingen
til at udlede temperaturen af krystallen. I de specifikke eksperimenter observerer vi
ion krystal temperaturer i intervallet fra 10 mK til > 600 mK. Disse m̊alinger vil
blive sammenlignet med resultater fra uafhængige molekylære dynamik simuleringer.
Oplysningerne om den termodynamiske tilstand for ion Coulomb-krystaller, opn̊aet i
s̊adanne undersøgelser, er relevante b̊ade for kold plasmafysik med ladede partikler,
samt for ion-baserede kavitets kvante elektrodynamiske studier.

I et andet sæt af eksperimenter, udvikler vi en teknik til bestemmelse af det
absolutte centrum af den optiske kavitet. To optiske felter, adskilt med en speci-
fik frekvensforskel, kobles resonant ind i kaviteten, hvorved et beat-mønster mellem
felterne kan observeres ved hjælp af en ion-krystal som afbildningsmedie. Vi viser,
hvordan denne enkle teknik giver mulighed for at finde det absolutte centrum for en
11, 8 mm lang kavitet med en præcision p̊a ∼ 100 nm.

De sidste eksperimenter i afhandlingen er et studie af lokaliseringen af ioner i et
optisk potentiale fra en st̊aende bølge i kaviteten. Et stærkt intra-kavitets laser felt
(gitter), med en frekvens langt fra en atomar overgang for ionerne, skaber en dipol
kraft p̊a ionerne i krystallen, der tvinger dem til at være lokaliserede p̊a enten noder
eller anti-noder i gitteret, afhængigt af fortegnet p̊a frekvensforskydningen. Vi viser
først, at en enkelt ion kan fanges i en enkelt brønd i et 34 mK dybt optisk gitter
med over 97% sandsynlighed. Vi viser ogs̊a, at koblingen mellem en ion, og et andet
resonant intra-kavitets felt kan forøges betydeligt, fra 50% for en fri ion, til > 80%
for en ion i det dybeste optiske gitter. Endvidere viser vi ogs̊a, at ion-krystaller med
op til 8 ioner og i flere fler-dimensionelle strukturer kan lokaliseres i et s̊adant optisk
gitter potentiale.

Vi diskuterer ogs̊a udsigterne og forberedelserne til gennemførelse af en protokol for
kvante lagring og genudlæsning af lys ved hjælp ion Coulomb-krystaller i en kavitet.
Denne protokol bruger den s̊akaldte kavitets elektromagnetisk inducerede gennem-
sigtighed (EIT), som er blevet p̊avist i vores system, til at konvertere fotoniske exci-
tationer p̊a enkelt foton niveau til kollektive excitationer i ionerne.
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Chapter 1

Introduction

The control of quantum mechanical interactions between light and matter systems
have been a central issue in an understanding of physics for decades [1, 2]. Major
developments have been made in quantum optics labs around the world, by trapping
and coherently manipulating photons and atoms down to the single particle level. If
special boundary conditions are imposed to the electromagnetic field, for example, by
placing a resonator around the atoms, the light-matter coupling can be significantly
enhanced. Such interactions are at the focus of the field of Cavity Quantum Electro-
dynamics (CQED) [3]. A prototypical system in CQED considers the interaction of
a single mode of the electromagnetic cavity field with a single quantum mechanical
system. A two-level regime arises in that case when the coherent coupling rate (g)
between the quantum system and the field mode exceeds the dissipative rates arising
from the coupling of the quantum system and the cavity field with the other modes
of the electromagnetic fields (γ, κ) [4]. In this so-called strong coupling regime, sin-
gle quanta can be exchanged coherently between the two-level system and the cavity
field, thus making the emission of a photon from e.g. an atom a reversible pro-
cess. Studies of this regime has been performed in many different systems, including
single atoms in both microwave and optical cavities [5, 6], quantum dots [7, 8] and
superconducting Josephson junctions [9, 10]. Using ultrahigh-finesse cavities with a
small mode-volume, the strong coupling regime has been reached for single neutral
atoms [11, 12]. With charged particles, reduction of the mode-volume is limited by
the perturbation of the trapping potentials induced by the cavity mirrors [13,14] and
thus, the regime has yet to be reached with ions. Nevertheless, studies of single ions
in optical cavities have successfully demonstrated e.g. probing of spatial structures in
cavity fields [15], the generation of single photons [16, 17], studies of cavity sideband
cooling [18], experiments exploiting optical fiber cavities [19–22] and the single ion
laser [23].

For an ensemble of N identical two-level particles that simultaneously interact with
a single photon in the cavity, the coherent coupling is enhanced by a factor of

√
N [1].

For this system, an interesting regime is the collective strong coupling regime, where
the collective coupling rate for the ensemble, gN = g

√
N , is larger than both γ and

κ. The regime was first entered using Rydberg atoms in microwave cavities [24], and
has later been exploited with optical fields using e.g. atomic beams [5], Bose-Einstein
condensates [25, 26], and recently in our group, ion Coulomb crystals [27, 28]. This
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2 Introduction

collective interaction, enhanced by the presence of the cavity, has been applied to
many different studies, e.g. establishment of strong nonlinearities [29], the generation
of non classical states [30–32], QND measurements [33, 34], observations of cavity
optomechanical effects [35–38], and cavity cooling [39,40].

Studies of the collective coupling are in particular very relevant for the fields
of quantum information and computation [41, 42], which exploit quantum mechan-
ical effects to reduce the complexity of computational classically unsolvable prob-
lems [43, 44]. Many of the schemes developed in these fields of research are based
on the use of so-called qubits, consisting of quantum mechanical two-level systems.
By performing unitary operations on the considered qubit system, it is possible to
process quantum information as part of a quantum computation protocol. Often,
photons are used to transport this quantum information from one computational unit
to another [45], while static qubits, like an atomic system, are used for processing
and storing of this information [41,42]. In addition to atoms, many other systems are
studied in this context, e.g. quantum dots [46], nuclear spins [47] and superconduct-
ing Josephson junctions [48]. Trapped laser-cooled ions are considered as one of the
most promising systems for realizing scalable quantum information devices because
of the high controllability of external and internal degrees of freedom that can be
achieved [49–53]. Because of their charge ions can be trapped in e.g. a linear Paul
trap confining them using static and RF-frequency electrical fields. By laser cooling
the ions it is possible to get very stable configurations of one ion or many ions and
this diversity makes ion traps a very useful system to apply in different parts of a
quantum computation process. Further advantages for ions is long storage/coherence
times, individual and high efficiency addressing and direct readout using optical fields.

The qubit processor is one part of a quantum computer. Another important ba-
sic component is the quantum memory [54, 55] where the information carried by e.g.
photons can be temporarily stored and at a later time be retrieved from the sys-
tem with the possibility to proceed in further quantum computations. Successful
implementation of storage and retrieval of light have been performed with atomic en-
sembles [54–56]. Many factors can be used to evaluate the performance of a quantum
memory, depending on the application of interest [56]. Three parameters are particu-
larly relevant for our studies: i) the efficiency of storage and retrieval of the photonic
state; ii) the storage time, which should be long compared to other timescales involved
in the process; iii) a multi-mode capacity, i.e. a possibility to store several quantum
states simultaneously. Quantum memories have been implemented, e.g. using atomic
vapors to store single photons from free-propagating fields [57–60], but these typically
have low efficiencies. The efficiency of the quantum memory can be significantly im-
proved if the atomic medium is placed inside an optical cavity, where, as mentioned
above, the interaction between the medium and a specific cavity mode can be much
stronger than in free space. The realization of an efficient cavity-based quantum
memory is based on the collective strong coupling regime introduced above [61–63].

Our implementation of a quantum memory for light is based on a large ion en-
semble (ion Coulomb crystal) trapped within a moderate finesse (F ≈ 3000) optical
cavity. This is likely to be a system with good prospects of fulfilling the three criteria
mentioned above. The collective strong coupling regime has been reached for the
system [28, 64] and substantial effective optical depths have been achieved, which is
promising for improving the quantum storage efficiency. Furthermore, the enhanced
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light-matter coupling can be used as a diagnostic tool for studying properties of ion
Coulomb crystals like e.g. vibrational modes of the crystals [65] or their temperature
(see sec. 6.1). Cavity electromagnetically induced transparency (EIT) [66, 67] has
also been achieved in this system [68, 69], which is another requisite for realizing a
quantum memory [61–63]. EIT is a quantum interference effect experienced by a light
field propagating through a medium illuminated by another intense control field, in
which a reduction in the group velocity of the light causes the pulse to be slowed down
or even stopped. This coherent process can be used to convert photonic excitations
into collective atomic ones, and conversely. This has been demonstrated in a number
of systems [56, 70–72]. The demonstrated coupling strengths and coherence times in
our ion-cavity system [61] should allow for achieving high efficiency (> 90%) and long
storage time (∼ms). In addition, we have the possibility to store photons in multiple
cavity modes in order to meet all the criteria of [56]. This could be achieved e.g.
by coupling large ion Coulomb crystals strongly to different transverse modes of the
cavity field [73,74]. Another application, proposed for this quantum memory system,
is a photon number detector [75–77].

Preparing the implementation of an ion Coulomb crystal-based quantum memory
in an optical cavity is the goal of the project that I have been a part of. In this thesis we
focus on preliminary experimental studies of the quantum memory implementation,
the results of which should be useful for improving the performance of the quantum
memory once it is realized.

First, we make use of the coherent coupling between the ion crystals and a weak
cavity field at the single photon level to determine the temperature of large ion
Coulomb crystals. In these experiments, the cavity reflection spectrum is modified
by the strong interaction with the ions in the crystal in a way that depends on their
temperature [28]. By changing the cooling conditions of the ions, one can study crys-
tals with various thermodynamical properties, such as their temperature or heating
rate, in a non-invasive manner. With respect to realizing a quantum memory for light
based on ion Coulomb crystals, these experiments will be important in quantifying
the crystal heating-rates at different trap parameters. A related study has already
been performed in order to investigate the vibrational mode spectrum of large ion
crystals [65]. This non-invasive spectroscopy technique was applied to the measure-
ment of the frequencies and temperatures of electrically excited normal modes of the
crystals. The good agreement observed between the experiments and the predictions
of the cold charged liquid model seems to indicate that the simple CQED model of
the interaction, including the effect of the motion of the ions, is reliable [65,78]. This
prompted us to try tackling the difficult task of measuring the temperature of large
ion Coulomb crystals.

Secondly, we developed a technique for determining the position of the absolute
center of a linear Fabry-Pérot cavity using an ion Coulomb crystal as an imaging
medium [79]. Due to the boundary conditions for the fields imposed by the cavity, all
longitudinal modes of the same parity (even or odd) have overlapping nodes and anti-
nodes at the center of the cavity. This means that an in-phase relation is imposed
at the center for two different modes, regardless of their frequency. For two fields
with different parity, one with even and one with odd number of nodal planes in the
cavity, similarly an out-of-phase relation will be obtained. In this study we use an
ion Coulomb crystal as an imaging medium to visualize the beat pattern between
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two different fields, both resonant with the cavity but at different longitudinal modes.
More specifically, we inject into the cavity a probe field which is close to resonance
with an atomic frequency, and an off-resonant lattice field which provides a periodic
AC Stark shifting potential for the ions, and which induces a spatial modulation of
the scattering rate of the probe field. By using different detunings of the lattice field
we determine the center of an 11.8 mm-long cavity with about 100 nm precision [79].
This technique of positioning single or ensembles of ions with respect to the absolute
center of the cavity may find several applications for ion-based CQED. It is relevant
for studies of trapping ions in localizing optical potentials [80–82] and within the
context of coherent atom-ion interaction studies [83–85]. Besides ions in cavities, the
technique could also be applied to cold neutral atoms trapped in optical dipole or
magnetic traps, used e.g. in single atom dynamics studies [86–88]. It could also apply
to CQED studies with ensembles, e.g. with cold atoms in cavity-generated optical
potentials [89] or for the interaction with multiple standing-wave fields [68,90].

Thirdly, a study of localization of ions in a far detuned standing-wave optical po-
tential inside the cavity has been performed and can be seen as an important step
towards controlling structural properties of Coulomb crystals and to enhance the
coupling strength between ions and a cavity field. For many years, optical lattices
have been used to confine ultra-cold neutral atoms in optical-wavelength-scale po-
tentials [91, 92], while ions are traditionally trapped in electrical potentials of much
greater size [93]. In the experiments reported in this thesis we show that it is possible
to combine the two techniques to also confine ions on the wavelength-scale [81], which
is a topic of current interest for several groups in the world [80,82,94]. The prospects
of such novel trapping conditions for ions are, among others, quantum simulations
of many-body physics [95–97] and examination of the Frenkel-Kontorova model for
friction [98, 99]. In the experiments reported here, an optical lattice formed by a
standing-wave field in the cavity is applied to 40Ca+ ions trapped in a linear Paul
trap. The lattice induces an AC Stark shift of the atomic energy levels, which provides
a dipole force confining the ions within less than half a wavelength of the standing
wave potential. Since sub-wavelength imaging resolution is extremely challenging to
achieve we measure the localization effect of the lattice by detecting the spatially
dependent fluorescence from inelastic photon scattering by the lattice itself. Using
this detection method we first demonstrate sub-wavelength localization of a single
ion and subsequently prove that the lattice induced localization can increase the cou-
pling strength of the ion to another cavity probe field to about 81%, compared to a
non-localized ion (50%). Next, we demonstrate simultaneous localization of up to 8
ions in the optical lattice potential. This provides the setting for investigating inter-
esting physical phenomena involving a competition between the lattice potential and
inter-ion Coulomb interactions [98,99]. Another potential application of these results
would be to control the position of the ions with respect to the standing wave probe
field in quantum memory experiments in order to increase the light-matter coupling
and, thereby, the quantum storage efficiency [27].



Introduction 5

The contents of the thesis is organized as follows:

Chapter 2 describes trapping and laser cooling of ions in a linear Paul trap and
focuses on the different ion structures that can be achieved. Especially, the thermo-
dynamics of ion Coulomb crystals will be reviewed within the context of cold charged
plasmas.

Chapter 3 introduces atom-cavity field interactions, with emphasis on an ensemble
of N two-level atoms coupled to a single cavity mode.

Chapter 4 describes a possible quantum memory for light using an ion Coulomb
crystal placed inside an optical cavity. We outline the theoretical aspects and give a
possible implementation for our experimental system.

Chapter 5 sketches the experimental setup, the laser systems and the various detec-
tion schemes.

Chapter 6 describes and discusses two different techniques for characterizing large
Coulomb crystals in the cavity. First, a method for non-invasively measuring the
temperature of ion Coulomb crystals using the coupling to the cavity field and, second,
a method for finding the absolute center of a linear symmetric Fabry-Pérot cavity
using an atomic ensemble as an imaging medium.

Chapter 7 presents a detailed study of the sub-wavelength localization of individual
ions in ion Coulomb crystals in a far-detuned intracity standing wave potential.

Chapter 8 presents some future aspects of the study, including preparations and con-
siderations for the implementation of an ion Coulomb crystal-based quantum memory
in an optical cavity.

Chapter 9 summarizes the thesis and gives a brief outlook.





Chapter 2

Trapping and laser cooling of ions
in a linear Paul trap

This chapter provides a basic theoretical description of ion trapping and laser cooling.
We introduce the principles of the linear Paul trap and its mathematical description
in sec. 2.1. In sec. 2.2 laser cooling of single 40Ca+ ions is described, by introducing
the Doppler cooling technique. In the last part of the chapter (sec. 2.3) we describe
some general structural and thermodynamical properties of ion Coulomb crystals.
Furthermore, we discuss the effect of the so-called micromotion in the ion system and
how to possibly minimize it.

2.1 Trapping ions in a linear Paul trap

As ions are charged particles they can be influenced by electrical forces. Trapping
ions using only static electrical fields is not possible though, as Laplace’s law pre-
vents us from obtaining an extremum for the electric potential, φ(x, y, z), in all three
dimensions at the same time. To overcome this obstacle other methods are there-
fore used, e.g. either combinations of static electrical and magnetic fields (Penning
traps) or a combination of static and time-varying electrical fields (Paul traps). For
an introductory description of different trapping techniques see e.g. [93]. In all ex-
periments presented in this thesis ions are confined in a so-called linear Paul trap
combining static and radio frequency (RF) electrical fields, to create a time-averaged
three-dimensional harmonic potential. The present form of this trap was invented
around 1989 [100], but is closely related to its predecessor, the quadrupolar mass fil-
ter, invented by Wolfgang Paul in 1958 [101,102]. Other related types of traps include
the hyperbolic Paul trap [103] and the race-track trap [104].

The linear Paul trap used in the experiments consists of four rods each segmented
into three parts (see fig. 2.1, where the relevant coordinate systems are defined)
[27, 73]. The axial confinement (along the z-axis) is produced by applying a static
voltage (UDC) to the end-electrodes, giving rise to an electrical potential along the

7
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Figure 2.1: (a) Schematic drawing of the Linear Paul trap electrode configuration with the
applied voltages URF and UDC . The center electrode length is 2z0. The trap axis is referred
to as z (dotted line). (b) End-view of the trap showing the definitions of the x̃ and ỹ axis
used in this section. The inter-electrode distance is 2r0. In the rest of the thesis, the x and
y axis, which are tilted by 45◦. with respect to the x̃ and ỹ axis, will be used.

z-axis, well described close to the center of the trap by

φ(z) = ηUDC
z2

z2
0

, (2.1)

where 2z0 is the length of the center electrode and η is a constant depending on
the geometry of the trap, typically found through numeric simulation of the trap
potentials (see [27]). The rods are placed in a quadrupolar configuration and radial
confinement (xy-plane in fig. 2.1) is produced by applying sinusoidally modulated
voltages, which are 180 degree out of phase, to pairs of diagonally opposite rods as

± URF (t) = ±1

2
Urf cos(ΩRF t) , (2.2)

where Urf is the amplitude of the applied RF-voltage and ΩRF is its frequency. A
requirement of Laplace’s law is that the confinement along the z-axis induced by the
DC field will cause a defocussing effect in the radial plane. Thus, the total radial
potential takes the form

φ(x̃, ỹ) = −1

2
Urf cos(ΩRF t)

x̃2 − ỹ2

r2
0

− 1

2
ηUDC

x̃2 + ỹ2

z2
0

, (2.3)

where 2r0 is the inter-electrode distance between diagonal rods (see fig. 2.1). Sec-
tioning the electrodes allows in addition for applying individual DC-offsets shifting
the ion both radially and axially compared to the trap minimum. In the rest of the
thesis, the x and y axis, which are tilted by 45◦ with respect to the x̃ and ỹ axis, will
be used.
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The equation of motion in the radial plane is found by combining eq. (2.3) and
Newton’s second law for a particle with mass M and charge Q, M r̈ = −Q∇φ(r),
where φ(r) = φ(z) + φ(x̃, ỹ, t) is the total potential. Rewriting this second order
differential equation with dimensionless parameters results in the so-called Mathieu
equations (see e.g. [49, 102])

∂2u

∂τ2
+ [a− 2qu cos(2τ)]u = 0 , u = x̃, ỹ (2.4)

where we introduced

τ =
ΩRF t

2
, a = −4

ηQUDC
Mz2

0Ω2
RF

, q = qx̃ = −qỹ = 2
QUrf

Mr2
0Ω2

RF

. (2.5)

A particle placed in such a potential can exhibit either stable motion, where the
solutions to the Mathieu equations correspond to non-diverging trajectories, or un-
stable motion with diverging trajectories. This means that the particle can be either
radially confined inside or expelled from the trap. The stability depends on the pa-
rameters defined in eq. (2.5), see e.g. [49, 105] for a diagram of stable motion in
(a, q)-space. Generally, stable motion in the radial plane can be achieved both for
positive and negative values of a, but as the work described here only considers posi-
tively charged particles and positive UDC , a is limited to negative values. The region
of stable motion depends linearly on the charge-to-mass ratio, Q/M , through the a
and q parameters and, as a result, different atomic species can be trapped simulta-
neously as long as their charge-to-mass ratio is not too different. In general, the trap
is operated in the regime |a| , |q| � 1, in which the Mathieu equations (2.4) have the
following approximate solutions

u(t) = u0

[
1− qu

2
cos(ΩRF t)

]
cos(ωrt) , u = x̃, ỹ , (2.6)

where u0 is a constant and we have introduced the secular frequency

ωr =

√
q2/2 + a

2
ΩRF . (2.7)

The radial motion of the ion is a combination of a high frequency motion at the
applied rf-frequency, ΩRF , and a slower motion at the secular frequency ωr � ΩRF .
The high-frequency motion is called micromotion and its amplitude depends on qu.
Consequently, the fast motion is small and only acts as a small oscillatory perturbation
to the larger amplitude, slow secular motion. By averaging over the fast micromotion,
a particle close to the Paul trap center, can be described by only considering the
secular motion in a radial harmonic pseudo-potential :

Φr(r) =
1

2
Mω2

rr
2 , (2.8)

where

ω2
r =

Q2U2
rf

2M2r4
0Ω2

RF

− ηQUDC
Mz2

0

. (2.9)

From eq. (2.1) it follows that the axial motion (along the z-axis) of a single charged
particle is that of a simple harmonic oscillator with a frequency ωz, determined by the
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amplitude of the end-electrode DC voltage. The harmonic potential along the trap
axis, z, can thus be rewritten in the form

Φz(z) =
1

2
Mω2

zz
2 , (2.10)

where

ω2
z =

2ηQUDC
Mz2

0

. (2.11)

Notice from eq. (2.8)-(2.11), that the radial pseudo-potential contains a term
which is inversely proportional to the mass of the trapped ion while the axial potential
is independent of the mass. This causes heavier species to be confined less tightly in
the radial plane than lighter species, which is relevant when trapping multi-component
ion Coulomb crystals [106]. The final trapping potential is now given by the sum of
the radial pseudo-potential and the axial DC-potential

Φtrap = Φz(z) + Φr(r) . (2.12)

2.2 Laser cooling of 40Ca+ ions

Here, we are going to describe laser cooling of 40Ca+ ions. First, we introduce the
concept of Doppler cooling in general and later apply it to the case of trapped calcium
ions.

2.2.1 Doppler cooling

To lower the kinetic energy and the entropy of trapped ions, one can use laser cooling.
Laser cooling of atoms and ions is a widely used technique, described in many different
contexts. An outline of different cooling techniques for trapped ions is found in
e.g. [107–109]. In the experiments described in this thesis, we only use the Doppler-
cooling technique and will here mainly focus on aspects relevant for 40Ca+ ions.

The principle of this cooling technique is based on the velocity dependent ab-
sorption probability of photons experienced by moving atoms illuminated by near
resonant monochromatic light due to the Doppler-effect. When applying two counter-
propagating laser beams to an atomic medium the Doppler-effect will cause absorbers
moving in one direction to see the light shifted differently than absorbers moving in the
opposite direction. The frequency of the light seen by absorbers (atoms or ions) mov-
ing with velocity ~v is hence shifted according to the Doppler formula: ω± = ωl(1± v

c ),
where ωl is the laser frequency and c the velocity of light. Here, the positive (negative)
sign applies to absorbers moving towards (away from) the laser beam, and the de-
scription is kept to one dimension but can easily be expanded to all three dimensions.

If the laser frequency is less than the atomic resonance frequency (red detuned)
atoms moving towards the laser beam are shifted into resonance and will have a
higher absorption probability than those moving away from the laser beam. Assuming
relatively low laser intensities, after each absorption, the ion will undergo spontaneous
photon emission in a centrosymmetric distribution (equal emission probability for
opposite directions), whilst the absorption process occurs in a specific direction. This
leads to a friction force and an effective deceleration of the atomic motion in one
direction because of the decrease in kinetic energy after each scattering event.
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We consider a free two-level atom interacting with a near-resonant monochromatic
field, having a detuning, ∆l = ωat−ωl, with respect to the atomic transition frequency
and an intensity much lower than the saturation intensity for the atomic cooling
transition (I � Isat)

1. The net force exerted on the atom can be found as [27,107]

F =F+ + F− (2.13)

=
~kΓ

2

I

Isat

[
1

1 + (2(∆l + kv)/Γ)2
− 1

1 + (2(∆l − kv)/Γ)2

]
≈ βv . (2.14)

Here, F+ is the force from the co-propagating beam while F− is for the counter-
propagating beam. k = ωl/c is the laser field wave-vector and Γ = 2γ is the spon-
taneous decay rate of the two-level system, with γ being the decoherence rate of the
atomic dipole. The force can be expressed through a friction coefficient, β, times the
atomic velocity, by performing a 1st order expansion in kv, as indicated in eq. (2.14).
To work as a friction force β needs to be negative, requiring ∆l > 0, corresponding
to a red detuning. The scheme can be easily extended to three dimension using three
sets of counter-propagating beams to cool a free atom.

The centrosymmetric spontaneous photon re-emission is causing a diffusion pro-
cess, rather than a net-force on the atoms, and this limits the reachable temperature
when using Doppler cooling. In steady state, an equilibrium arises as a balance be-
tween friction and diffusion in the simple picture described above, and for an optimal
detuning choice (∆l = Γ/2) the so-called Doppler temperature can be reached:

TD =
~Γ

2kB
. (2.15)

The minimum temperature obtainable by Doppler laser cooling is thus set by the
width of the transition Γ.

2.2.2 Doppler cooling of 40Ca+ ions

The previous description assumes a free particle whereas our ions are trapped. How-
ever, as we will discuss shortly, for the parameters used for trapping and cooling in
the experiment this picture still holds. In all experiments presented in this thesis
40Ca+ ions were used and in fig. 2.2 the relevant energy levels are shown.

The laser cooling beams are slightly red detuned from the 4S1/2 ↔ 4P1/2 transition
around 397 nm, illustrated as a thick blue arrow. An excited ion in the 4P1/2 state
can spontaneously decay back to the ground state 4S1/2 or to the metastable 3D3/2

state. The branching ratio of these two decays is ∼ 1 : 12, but since the lifetime
of the metastable state is about 1 second, ions ending up in this state will leave the
cooling cycle long enough to prevent effective cooling. To actively pump these ions
back into the cooling cycle, an additional repumping laser, resonant with the 3D3/2 ↔
4P1/2 transition around 866 nm, must be applied, illustrated in fig. 2.2 (a thick red
arrow). Note here, that decay from 4P1/2 has a total rate of ΓP1/2

= 2π × 22.4MHz.
Consequently, the time associated with the cooling absorption/emission process is
much less than the timescale of the secular ion motion in the harmonic trap potential

1The saturation intensity is defined as Isat = ~ω0Γ
2σ(ω0)

, where σ(ω0) is the resonant absorption

cross section
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Figure 2.2: Energy level scheme for 40Ca+ with transition wavelengths in air and decay
rates (Γ = 2γ) for the dipole allowed transitions (taken from [110, 111]). The solid lines
indicate relevant transitions for the Doppler cooling used in this thesis, i.e. the 4S1/2 ↔ 4P1/2

cooling transition (blue) and the 3D3/2 ↔ 4P1/2 repumping transition (red).

(see sec. 2.1). Typical trapping frequencies in the experiments described are in the
few 10 − 100 kHz range, so the ions in the trap can effectively be considered as free
particles for the Doppler cooling process. Actually, from a frequency perspective,
the ion motion adds sidebands to the absorption spectrum at the trap frequency, but
since the linewidth of the cooling transition is much broader than the trap frequencies,
these sidebands are not resolved. As the ion’s momentum is much greater than the
photon’s, many scattering cycles are needed to cool down the 40Ca+ ion close to the
Doppler limit, TD ≈ 0.5 mK.

In general, three sets of counter propagating laser beams are needed to perform
Doppler cooling of atoms, but in the confining potential from the linear Paul trap,
cooling only from three directions is necessary as the ion motion reverses direction
after each half-period of its axial or radial oscillation [109]. Actually, cooling can be
accomplished using a single laser beam, provided that this beam has a component
of its k-vector along each of the normal modes of the trap, and that the three trap
frequencies (ωx, ωy, ωz) are non-degenerate. The laser systems used for Doppler
cooling and the optical setup will be presented in sec. 5.5, including the description
of the isotope-selective loading of Ca+-ions from neutral Ca atoms.

2.3 The physics of ion Coulomb crystals

In this section we describe the properties of ion Coulomb crystals. First, we introduce
the different ion structures that we will encounter in the thesis. Afterwards, we
describe the thermodynamics of ion Coulomb crystals in which the different phase
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transitions will be introduced besides the zero temperature charged liquid model. In
the end we discuss micromotion and temperature effects.

2.3.1 Ion structures

A deterministic isotope selective ionization process is used to load Ca+ ions into our
trap system, by using a two-photon process enhanced by the first resonant absorption
stage (see sec. 5.5.5). After (or while) loading a cloud of ions into the trap, laser
cooling can be used to lower the kinetic energy of the system. As the cloud gets colder
and denser, Coulomb interactions between the ions get more and more important. At
very low temperatures, when the mean Coulomb energy is much larger than the
mean kinetic energy, the ions organize in well-ordered configurations in space. The
configuration of the ion structures can be controlled by varying the DC and RF
electrical voltages. Choosing to trap a single ion, there is a great freedom in choosing
the possible potentials, and the ion thermal position distribution can be shaped almost
at will [102, 112]. With high electrode voltages the ion position can be pinned in

50 μm 

30 μm 20 μm 

100 μm 

z-axis 

Figure 2.3: Projected images of four different types of trapped ion structures (40Ca+),
obtained by collecting the 397nm fluorescence light emitted during cooling: a single ion,
a 1D string of 16 ions, a 2D “ZigZag” crystal of 4 ions and a 3D ion Coulomb crystal of
∼ 1000 ions. The three-dimensional crystal shape can be visualized by rotating the crystal
around the z-axis. Relative length scales are defined on the figures. For more detail about
the imaging and detection system see sec. 5.6.
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a very deep potential of several tens of eV (> 105 K) and a spatial extent much
lower than the optical wavelength scale can be obtained, e.g. turning the ion into a
nanoscopic probe of an optical field [15]. For lower electrode voltages the position
distribution of the ion can extend over a much larger area (see fig. 2.3 where the ion
position extends over several microns). By adding DC-potentials to the electrodes
individually or in combinations the ion position distribution minimum can be moved
around in the trap deterministically. An ion placed off the trap-axis will undergo
micromotion, potentially leading to additional heating and spectral broadening [113]
(for more details on micromotion see sec. 2.3.4).

When more than one ion are simultaneously trapped, the Coulomb interaction
between the ions has to be taken into account. In a cloud of trapped ions, the
particles are subjected to both the trapping potential and the Coulomb potential
arising from the other ions. The repulsion between the particles will couple their
individual motional degrees of freedom. For a radial confinement much stronger than
the axial, small ensembles of ions will arrange in a string configuration along the RF
field-free trap axis, coupling the axial vibrational modes of the ions (see fig. 2.3). As
a consequence, the axial and radial motion are in principle uncoupled and Doppler
cooling along both axial and radial directions is still necessary. Such strings of ions can
be used for many applications including quantum computing, where the individual
ions work as so-called quantum bits and the large ion separation arising from the
Coulomb interaction makes it easier to perform individual addressing and detection
(for more detail see e.g. [49, 50]). By either lowering the axial or raising the radial
electronic potentials, stable 2D structures of ions can be designed, e.g. the ZigZag
pattern shown in fig. 2.3 [114,115], or the pancake-shaped crystals obtained in [116].

For a large ion ensemble, lowering the radial confinement arranges the ions in a
three dimensional spheroidal structure [78, 117], where some ions are situated off the
RF field-free trap axis. As a consequence, it is never possible to avoid micromotion
effects in the ensembles. Furthermore, the Coulomb interaction leads to a coupling of
radial and axial motions, whereby it is sufficient to only apply cooling light along the
longitudinal axis and still get efficient three-dimensional cooling. As a cooling beam
along the radial direction can drive the jittery micromotion it is actually preferable,
especially with large ensembles, to only apply the cooling light along the RF-field free
trap axis. For a description of the experimental laser cooling beam directions in the
different configurations, see sec. 5.5.

In the experiments described in this thesis, we will encounter a variety of ion
structures, from single ions, through ion strings and ZigZag patterns, to large so-called
ion Coulomb crystals, which will be described in more detail in the next section (see
fig. 2.3) [118].

2.3.2 Thermodynamics of ion Coulomb crystals

For many purposes a large ensemble of ions, confined in the linear Paul trap, can be
well-described as a non-neutral plasma and characterized in terms of collective param-
eters such as temperature and density. Later, we will introduce the zero-temperature
charged liquid plasma theory, but to sketch the background for the model, we start
by introducing some concepts and parameters from plasma physics.

Consider a plasma of identical charged particles, each with charge Q and mass
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M , trapped in a linear Paul trap, thus experiencing the pseudo-potential defined in
eq. (2.12). In a static situation, corresponding to zero temperature (T = 0), the
equilibrium force on a single particle has to vanish, hence causing the total potential
to be constant [119]:

F = −Q∇Φtot(r) = 0 ⇒ Φtot(r) = Φtrap(r) + Φpl(r) = const. (2.16)

The total potential is defined here as the sum of the trapping potential, Φtrap from
eq. (2.12), and the mean electrostatic plasma potential from the charge distribution of
the particles, Φpl. In this case, the charge distribution and, hereby the atomic density
ρ0, is constant throughout the ensemble. The density can be related to the trap
potential by using Poisson’s equation on the plasma potential, ∇2Φpl(r) = −Qρ0/ε0,
giving:

∇2Φtrap(r) =
Qρ0

ε0
. (2.17)

Now, inserting the explicit expressions of the trap potential (eq. (2.8) and eq.
(2.10)) and taking the Laplacian, an expression for the average equilibrium density of
the ion system can be found as

ρ0 =
ε0U

2
rf

Mr4
0Ω2

RF

. (2.18)

Notice that ρ0 does not depend on the axial DC voltage and for a fixed RF-
frequency, ΩRF , it can be controlled by exclusively varying the RF voltage applied
to the electrodes of the Paul trap. By knowing the density of the ion plasma we can
deduce the mean distance between neighboring particles. This is found by assuming
that each particles occupies a certain spherical volume with a so-called Wigner-Seitz
radius, aWS :

4

3
πa3

WS =
1

ρ0
, (2.19)

where ρ0 can be inserted from eq. (2.18).
Image a plasma of some density, ρ0, and consider a one-dimensional displacement,

δx, of a sheet of charge within the plasma. The sheet experiences a field associated
with its own displacement corresponding to: |E| = Qρ0δx/ε0. The potential energy
associated with the displacement, U , can be found from the force F = QE as

U =

∫
Fdx =

Q2ρ0δx
2

2ε0
. (2.20)

The potential that the sheet experiences can be approximated by a harmonic potential:
U = 1

2Mω2δx2, from which the oscillation frequency can be extracted as

ω2
pl =

Q2ρ0

Mε0
. (2.21)

This is generally referred to as the plasma frequency, which sets the fundamental
time scale for motions in the plasma and the dynamics of the charge redistribution
after external perturbations. From this, the related typical length scale of the plasma,
called the Debye length λD, can be defined using the Virial theorem 〈U〉 = 〈Ekin〉. By
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inserting the harmonic potential energy 〈U〉 = 1
2Mω2

plλ
2
D and the thermal equilibrium

kinetic energy in one dimension 〈Ekin〉 = 1
2kBT , we find:

λD =

√
kBT

Mω2
pl

=

√
ε0kBT

ρ0Q2
. (2.22)

The Debye length can be interpreted as the length scale at which an external
field perturbation is shielded by rearrangement of the space charge inside the plasma.
Also, an ensemble of charged particles can only be considered a plasma if the complete
spatial extend of the ensemble is much larger than the Debye length. Considering the
ion ensembles used in our experiments with typical temperatures of ∼ 10 mK and
densities of ∼ 108 − 109 cm−3, we obtain λD ∼ 300 nm. This is much less than the
typical inter-ion spacing of ∼ 10 µm and, consequently, even small Coulomb crystals
in our system can be described using plasma theory.

Another useful thermodynamical parameter, used to describe an ion Coulomb
crystal, is the plasma coupling parameter Γp. It is given as the ratio of the mean
Coulomb interaction energy to the mean thermal energy. For a one-component plasma
with particles of charge Q at a temperature T , Γp is defined as [120]

Γp =
Q2

4πε0 aWSkBT
. (2.23)

Knowing Γp for a plasma system it is possible to estimate its thermodynamical
state. From molecular dynamics simulations it has been found that an infinitely large
plasma will undergo a phase-transition from gas to liquid at Γp ' 2 as short-range
ordering occurs [117], and a phase-transition from liquid to solid state around Γp ' 170
with the establishment of long-range ordering throughout the plasma [121,122]. The
hot ion cloud will get denser and denser as it is cooled down and undergoes a phase
transition into a liquid state (typically at ∼K temperatures). Cooling the plasma even
more, (at ∼mK temperatures) will make the ions crystallize in a spatially well-ordered
structure, forming a so-called Coulomb or Wigner crystal [123–125].

For infinite plasmas at zero temperature, the simulations predict crystalline struc-
tures in a body-centered cubic (bcc) arrangement. For crystals with finite size, surface
effects have to be taken into account. These cause the ions to distribute in concentric
shells with a two-dimensional hexagonal structure within each shell and a constant
radial inter-shell spacing, δr, throughout the whole crystal [118]. They can be seen
e.g. in fig. 2.3 showing a crystal with ∼ 1000 40Ca+ ions. Varying the RF and DC
trapping voltages, the crystal shape can be controlled as it depends on the radial and
axial trapping frequencies. Shell-structured crystals were observed in linear Paul traps
briefly after the invention of the trap, using buffer gas cooled aluminum particles of
micron size [126], and after the introduction of Doppler cooling, atomic ion Coulomb
crystals was produced in both linear Paul traps [123,124] and Penning traps [127].

The simulations predict that, for infinitely long crystals having parallel shells in
the center, the inter-shell spacing is proportional to the Wigner-Seitz radius (defined
in eq. (2.19)) as: δr = 1.48aWS [118]. In our group, shell structures have been
experimentally confirmed for ion Coulomb crystals in a linear Paul trap [125] and the
above relation of δr has been shown to be in good agreement with the expected value
from MD simulations [128]. Measuring the exact value of the DC and RF voltages
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is not trivial for technical reasons, but from knowledge of δr the crystal density can
be determined and this provides a method to calibrate the trap voltages seen by the
ions through eq. (2.18) [27,128].

2.3.3 Zero temperature charged liquid model

A convenient plasma description of ion Coulomb crystals can be constructed using
the so-called zero temperature charged liquid model [119, 120, 129], that derives ex-
plicit expressions for the plasma potential of the crystal in the linear Paul trap. The
trapping potential of the linear Paul trap is cylindrically symmetric (as defined in eq.
(2.12)) and, as a consequence, the equilibrium shape of the plasma is a spheroid with
constant density. The spheroids are defined by the aspect ratio between their radius,
R, and length, L, as

α =
2R

L
. (2.24)

The model distinguishes between three system shapes: prolate (α < 1), oblate
(α > 1) and spherical (α = 1). An outcome of the model is a relationship between
the ratio of trap frequencies, ωz/ωr, and the aspect ratio, incidentally providing a
calibration tool for the trap RF-voltages.

An explicit form of the electrostatic potential within the plasma, which arises from
the charge distribution and depends on the charge, Q, the plasma zero-temperature
density ρ0 and the crystal aspect ratio, can be found in [119]. By taking the sum of
the plasma potential and the trapping potential (eq. (2.12)) and applying Poisson’s
law, the potential separates in a radial and an axial part. The trap frequencies in the
radial and axial directions, ωr and ωz, can then be expressed as (see [119])

ω2
r =

ρ0Q
2

2Mε0
R2L f(R,L) , (2.25)

ω2
z =

ρ0Q
2

2Mε0
R2L g(R,L) , (2.26)

where the two shape-related function f(R,L) and g(R,L) are calculated from the zero
temperature charged liquid model, accounting for the difference between prolate and
oblate systems (see [27, 119]). The ratio between the trap frequencies in the model
can thus be written as

ω2
z

ω2
r

=
g(R,L)

f(R,L)
= −2


sinh−1(α−2−1)

1/2−α(α−2−1)
1/2

sinh−1(α−2−1)1/2−α−1(α−2−1)1/2 , for α < 1 ,

sin−1(1−α−2)
1/2−α(1−α−2)

1/2

sin−1(1−α−2)1/2−α−1(1−α−2)1/2 , for α > 1 ,
(2.27)

where the explicit expressions for the f and g functions have been inserted. This
relationship has been shown to be in good agreement with experiments performed
with ion Coulomb crystals with a moderate size aspect ratio (α . 1) [106, 128, 130].
Furthermore, we can take the ratio of the trap frequencies found in eq. (2.9) and
(2.11), which directly relates the applied trap voltages as

ω2
z

ω2
r

=

[
QU2

rfz
2
0

4ηMr4
0Ω4

RFUDC
− 1

2

]−1

. (2.28)
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Consequently, from the two expression of the relative trap frequencies (eq. (2.27) and
eq. (2.28)) the trap voltages, UDC and Urf , can be calibrated, by experimentally
measuring the aspect ratio, α(R,L), of a trapped ion Coulomb crystal for varying RF
and DC voltages (for more detail see [27,73]).

Finally, we note that as long as the ion length and radius are much larger than the
distance between neighboring ions (i.e. L,R � aWS) the zero temperature charged
liquid model provides a good description of the ion ensemble. This also implies, that
1D string [110,131] and 2D planar [114,115] structures are special cases, in which the
liquid model can not be considered as a good description of the shape [116]. Here,
other approaches (e.g. MD simulations) have to be implemented in order to obtain
detail structural information.

2.3.4 Micromotion and temperature effects

Describing the ion Coulomb crystals we have only considered the secular motion in
the time-averaged pseudo potential (eq. (2.8)), and hence ignored effects of the mi-
cromotion. For a complete description of the ion motion in the trap, we would have to
include the time-varying forces from this RF-field that causes the ion kinetic energy to
vary dramatically, but periodic on the associated timescale. The velocity distribution
is position and time dependent, and, as a consequence, the atomic transitions can be
inhomogeneously broadened or unwanted heating can be introduced to the system.

The axis of the linear Paul trap is a desirable position to place single ions as the
micromotion effects here can be put to a minimum. From eq. (2.6) we can write the
micromotion amplitude for an ion on the axis as

Amicro =
1

2
u0q , (2.29)

where u0 is the amplitude of the slow secular motion. In principle, placing an ion
on the trap axis and cooling it, i.e. decreasing the secular motion amplitude, thus
minimizes the micromotion amplitude. As a consequence, experiments with ions
placed on the trap axis can be done with almost no detectable Doppler broadening of
the atomic transitions from micromotion effects.

Adjustment of the DC voltages of the individual electrodes can be used to position
the ion on the RF field-free axis, thus minimizing radial micromotion. Even so,
in practice, there can still be some excess micromotion due to slight asymmetries
in the trapping potentials. This might come from small asymmetries in electrode
geometry or alignment, patch potentials, asymmetry in the RF-voltage provided to
the individual electrodes, etc. Moreover, even if the RF-field is intentionally designed
to only affect the radial trapping potential, a small axial component can also be
present.

RF-signal can be coupled directly into the axial direction through the voltages ap-
plied to the electrodes. As seen on fig. 2.1 the RF-signal is sent to all 12 electrodes in
the quadrupolar configuration. The phase of the voltages sent to each of the electrode
segments needs to be well controlled and small phase differences may cause inhomo-
geneities in the electrical potential seen by the ions. In particular, one could imagine
a phase difference between the four electrodes in one end compared to the other end,
in the axial direction. This phase difference would introduce axial micromotion to the



2.3. The physics of ion Coulomb crystals 19

system, which has a big effect on the single ion level. In our setup, capacitative loads
are placed between the voltage supplies and the trap electrodes, making it possible
to carefully adjust the offsets and phases of every electrode [27, 128], minimizing the
voltage-related excess micromotion (see sec. 5.7).

In addition, the system used for our experiments incorporates the two mirrors
of the optical cavity parallel to the trap axis. The dielectrics of the cavity mirrors
might cause the RF-field lines to bend and introduce axial micromotion. Simulations
performed by Anders Mortensen [14] revealed that the effect of the cavity mirrors
would be reduced by adding (at the extremity of the mirrors) a flat dielectric coat
filling the region between the mirrors and the electrodes almost entirely (see sec. 5.4).

The techniques for detecting and minimizing the excess micromotion of single ions
in our trap will be presented in chap. 7 in the context of the localization of ions in
optical potentials, for which control of the micromotion is a crucial prerequisite.

Considering three dimensional ion Coulomb crystals, there are always ions off
the axis and, as a consequence, there is always intrinsic micromotion in the system.
Ions placed radially off the RF nodal-line will experience micromotion of the same
form as shown by eq. (2.29), but with the ion mean distance from the trap axis
replacing u0, and hence a much larger amplitude. Thus, the atomic transitions can
be inhomogeneously broadened [113]. The micromotion can of course be minimized
by placing the crystal symmetrically with the trap axis. Moreover, performing laser
spectroscopy only in the axial direction also minimizes the effect of the micromotion,
as it is mainly radial (although one can expect a small axial component arising from
the coupling between the different motional degrees of freedom of the ions induced by
the Coulomb interaction).

In addition, in Coulomb crystals the ions are not only affected by the RF-field, but
they also affect each other. The RF-motion will cause collisions from the Coulomb
interaction between the ions and heat the crystal, as the RF-driven kinetic energy
is coupled into the secular motion. This effect is often referred to as RF-heating
[132]. The heating effectively raises the temperature of the whole crystal and is more
important for crystals with high aspect ratio, having many ions away from the axis,
and for high RF-voltage amplitudes. For large ion Coulomb crystals, with many
ions in regions of large micromotion, it has been observed in both simulations and
experiments that the RF-heating can increase the crystal temperature well above the
Doppler limit [27,73,129,133].

In some of the experiments reported in this thesis (sec. 6.1) we study the coupling
between large ion Coulomb crystals and the cavity field . In this context, the Doppler
broadening of the atomic transitions is relevant (see chap. 3) and can be found by
measuring the crystal-cavity coupling, from which we can estimate the temperature
of the ions.





Chapter 3

Atom-Cavity field interactions

In this chapter we will introduce the theoretical concepts necessary to describe the
ion-cavity QED system. In the first section (3.2) we describe the dynamics of a
single mode of the electromagnetic field confined in an empty optical cavity. We will
introduce the different longitudinal and transverse cavity modes (sec. 3.2.1) before
describing the dynamics of the cavity field close to a cavity resonance and deriving
the steady state cavity reflection and transmission spectra (sec. 3.2.2). In sec. 3.3
we describe how an ensemble of two-level atoms interacts with a single mode of the
cavity field. In doing so, the Tavis-Cummings model is introduced (sec. 3.3.1), after
which equations of motion for the atom and cavity field observables will be derived
in a semi-classical picture. Last, we will consider a situation where the atom-cavity
system is weakly probed at the single-photon level (low saturation), initially without
considering atomic motion (sec. 3.3.2) and, subsequently, with atomic motion in one
dimension (sec. 3.3.3).

3.1 Introduction

The interaction between a single mode cavity electromagnetic field and a system
of atoms, at the quantum level, can be described within the frame of CQED, see
e.g. [1, 3, 134]. CQED has the past decades had a major impact in the fields of
quantum mechanics and, atomic and optical physics. A huge progress is currently
being made in developing different experimental systems exploiting CQED concepts
and techniques, e.g. within quantum information processing (QIP) [135] or quantum
metrology [136].

Cold trapped ions in optical cavities is one of the most promising systems currently
investigated in this context. For a system containing a single two-level atom interact-
ing with a single photon in the cavity mode, it is necessary to describe the dynamics
purely quantum mechanically, and effects that depends on the exact number of pho-
tons in the cavity, can be studied. Strong coupling between a single ion in an optical
cavity has not yet been achieved, but these systems has still been used to e.g. probe
the spatial structure of a cavity field [15], generate single photons [16, 17, 137], and
demonstrate a single ion laser [23]. In this thesis, we describe a special semi-classical
case of CQED, that does not require having exactly one photon in the system. In
stead we are working with a few photons (classically), but the dynamics will be the
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same as in the quantum case, as long as the number of photons are much smaller than
the number of interacting atoms in the ensemble [28].

3.2 A linear Fabry-Pérot optical cavity

In this section, we introduce the mathematical description of a light field confined in
a single mode optical cavity. First, we introduce the concept of cavity modes, both
transverse and longitudinal, after which, we derive the dynamical field equations of
the empty cavity, together with the reflectivity and transmittance spectra.

3.2.1 Spatial cavity modes

In an empty cavity the mirrors impose boundary conditions for the electromagnetic
field and light can build up only in certain cavity modes. We consider a cavity of
two flat mirrors, M1 and M2, separated by the distance L (see fig. 3.1). The cavity
resonance condition requires that the phase of the field changes by an integer multiple
of 2π after one round trip. This imposes that resonant modes in the longitudinal
(axial) direction will be be standing waves, and their wavelength has to satisfy: λq =
2L/q, where q ∈ N is the longitudinal mode number. The resonance frequencies,
when only considering the longitudinal direction, are thus

νq =
c

λq
=

qc

2L
, (3.1)

where c is the speed of light. Fig. 3.1 shows the longitudinal standing wave modes
inside the cavity for four different mode number (q = 1, 2, 3, 20). It is clear that

L

λ/2

q

1

2

3

20

...

.

Figure 3.1: Sketch of the longitudinal standing wave modes for a laser field inside a cavity of
length L, shown for resonances with mode numbers q = 1, 2, 3, 20. Each loop of the standing
wave envelope has the width of half the laser wavelength, λ/2
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increasing q by one adds an extra loop to the standing wave, corresponding to half
the wavelength of the resonant laser field (λ/2). Considering the wavelength and
cavity dimensions used in the experiments (λ = 866 nm and L = 11.8 mm) we obtain
a mode number of q ≈ 2.7 × 104, thus a huge number of standing wave envelopes
will be present in the cavity at all times. Furthermore, we remark that the phase
of the standing wave has a specific parity in the center of the cavity. i.e. modes
with an odd q have maximum amplitude and modes with an even q have minimum
amplitude in the center. The standing wave nature of the field inside the cavity will
become important later in the thesis, when we describe a beat mechanism between
two different longitudinal field modes in sec. 6.2, as well as when describing the
interaction between ions and a far detuned intracavity lattice field (see sec. 7). Now,
we can introduce the free spectral range (FSR) of the cavity, i.e. the frequency spacing
between two subsequent longitudinal modes: νFSR = c/(2L).

Due to the unstable nature of the flat mirror cavity, we change our description to
a cavity of spherical mirrors with a radius of curvature rM (fig. 3.2). Consequently,
we have to also take into account the transverse components of the intra-cavity elec-
tromagnetic field. It can be shown that the frequency of a so-called TEMnm mode
(Transverse Electric and Magnetic mode), resonant with a spherical mirror cavity of
length L, must satisfy [138,139]

νnmq = νFSR

[
q +

1

π
(n+m+ 1) arccos

(
1− L

rM

)]
. (3.2)

νnmq now depends on the two transverse mode indices, m and n, in addition to the
longitudinal mode number q as before.

These TEMnm modes also have a well-defined spatial distribution and in the so-
called paraxial approximation (small angles) they are called the Hermite-Gaussian
modes (see e.g. [138,140]), for which the spatial field distributions is expressed as

Enm(r) = E0Ψnm(r) = E0Ψn(x, z)Ψm(y, z)Φ(x, y, z) , (3.3)

where E0 is the amplitude of the electric field. The transverse mode function are
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Figure 3.2: Schematics of a symmetric linear Fabry-Pérot cavity of length L consisting of
two curved mirrors, both with radius of curvature rM . The light field amplitudes, aj , are
marked at different locations and specified in the text together with the cavity loss rates κj .
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given by (u = x, y):

Ψn(u, z) =

√
ω0

ω(z)
Hn

(√
2u

ω(z)

)
exp

(
− u2

ω(z)2

)
, (3.4)

where Hn(ξ) is the n-th Hermite polynomial with n > 0, ω(z) = ω0

√
1 + (z/zR)2

is the position depending beam waist, ω0 the minimum waist and zR = (πω2
0)/λ is

the Rayleigh range. The longitudinal (complex) field mode, that also depends on the
transverse indices n and m, is defined as

Φ(x, y, z) = sin

(
kz − (m+ n+ 1)arctan

(
z

zR

)
+
k(x2 + y2)

2R(z)

)
. (3.5)

Here we introduced the wavenumber k = 2π/λ and the radius of curvature of the
wavefronts R(z) = z

[
1 + (zR/z)

2
]
.

In eq. (3.3) all possible modes are included, but often (as long as these modes
are well-separated in frequency), one can restrict the analysis to a single mode. In
the experiments described here we work mostly with the fundamental TEM00 mode.
The expression for this lowest order mode is relatively simple as it is cylindrically
symmetric with a Gaussian field distribution along the transverse axis (note that
H0(ξ) = 1):

Ψ00(x, y, z) =
ω0

ω(z)
exp

(
−x

2 + y2

ω(z)2

)
sin

(
kz − arctan

(
z

zR

)
+
k(x2 + y2)

2R(z)

)
.

(3.6)

The phase difference between a cavity mode wave and a plane wave with the same
frequency is defined as the Gouy phase shift, φG(z) = −(m + n + 1)arctan (z/zR),
which can also be used to characterize the considered mode.

In sec. 3.3 we are going to describe the interaction between a single cavity mode
and an atomic ensemble. Several different cavity modes can be chosen and the dif-
ference in coupling strength for higher order modes, compared to the fundamental
TEM00 mode, can be significant. For more detail see [73, 74]. Coupling an ion
Coulomb crystal to different cavity modes can be interesting when considering multi-
mode storage of quantum information, a possibility that we will discuss in the next
chapter.

3.2.2 The dynamics of the cavity field close to a resonances

In this section we consider the linear optical Fabry-Pérot cavity, as sketched in fig.
3.2. For now, the cavity contains no medium, and a monochromatic light field ain is
injected through mirror 1 with a frequency close to a cavity resonance. We wish to find
expressions for the steady state cavity spectrum, i.e. a relation between the incoming
field and the reflected and transmitted fields, as function of the input field frequency
and the cavity parameters. The two mirrors are charactered by their (intensity)
transmission, reflection and loss coefficients, Tj , Rj and Aj , respectively (j = 1, 2).
On fig. 3.2 a is the intracavity field amplitude at the incoupling mirror and a′ is the
field amplitude after one round trip in the cavity. Furthermore, atrans and arefl are
the transmitted and reflected field amplitudes coupled out of the cavity.
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We inject a monochromatic input field of frequency ωl into the cavity through
mirror 1, as specified above. The mirror transmission, reflection and loss coefficients
related to the field amplitudes, tj , rj and αj (j=1,2), can be related to the corre-
sponding intensity coefficients by: tj =

√
Tj , rj =

√
Rj and αj =

√
1−Aj . By

conservation of energy, we require that Tj + Rj + Aj = 1. The intracavity field
amplitude after the first mirror, M1, is given by

a(t) = t1ain(t) + α1r1e
iπa′(t) , (3.7)

where eiπ is the phase shift arising from the reflection on the mirror. The field
amplitude after a reflection on M2 can be found as

a′(t) = α2r2 a(t− τ) e−iφeiπ , (3.8)

where τ = (2L)/c is the round trip time, φ = ∆cτ = (ωc − ωl)τ is the phase change
of a field with frequency ωl after one round-trip, while ωc = 2πνnmq is the cavity
mode resonance frequency closest to ωl [140] (see eq. (3.2) for νnmq). As mentioned,
the frequency spacing between two subsequent longitudinal modes (FSR) is defined
as the inverse round trip time νFSR = 1/τ . To produce a self-consistent solution for
the intracavity field we substitute eq. (3.8) into eq. (3.7):

a(t) = t1ain(t) + α1α2r1r2 a(t− τ) e−∆cτei2π . (3.9)

By subtracting a(t− τ) on both sides and dividing by τ we get

a(t)− a(t− τ)

τ
=
t1
τ
ain(t) +

α1α2r1r2e
−i∆cτ − 1

τ
a(t− τ) . (3.10)

In order to simplify the expression we can insert the decay rates defined on fig.
3.2. κ1 and κ2 are cavity loss rates as a result of the finite mirror reflectivity, whereas
κA1 and κA2 give the loss rates originating from absorption and scattering processes
on the mirrors. The transmission, mirror loss and reflection coefficients can be related
to their relative decay rates as

κj =
Tj
2τ

=
t2j
2τ

j = 1, 2 , (3.11)

κAj =
Aj
2τ

=
1− α2

j

2τ
j = 1, 2 , (3.12)

rj =
√

1− Tj −Aj =
√

1− 2τ(κj + κAj ) j = 1, 2 . (3.13)

For a so-called high-finesse cavity (see eq. (3.19)) the cavity decay and loss rates are
very small compared to the inverse round trip time, hence κjτ � 1 and κAjτ � 1.
Furthermore, as we are only interested in the field around a resonance, where the light
field frequency is close to the cavity resonance, ωl ≈ ωc, we can assume ∆cτ � 1.
Substituting the rates of eq. (3.11)-(3.13) into eq. (3.10) and letting τ → 0, we can
restrict ourself to linear terms in κj , κAj and ∆c, and obtain

ȧ(t) =

√
2κ1

τ
ain(t)− (κ1 + κ2 + κA + i∆c) a(t) , (3.14)
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where the loss rates has been combined to κA = κA1
+ κA2

. This is the equation
of motion for the intracavity field amplitude. It contains passive loss terms due to
the mirrors, a phase shift depending on the cavity detuning, ∆c, and a source term
from the input field, ain(t). In a later section we will see how the introduction of an
atomic medium inside the cavity modifies the dynamics of the field. In steady state
(ȧ(t) = 0) the field amplitude becomes

a =

√
2κ1

τ

(κ1 + κ2 + κA + i∆c)
ain . (3.15)

From this, the steady state intracavity intensity can be found as

I = |a|2 =
2κ1

τ

κ2 + ∆2
c

|ain|2 , (3.16)

where we defined the total cavity field decay rate κ = κ1 +κ2 +κA. The reflected and
transmitted cavity output field amplitudes can be defined from: arefl =

√
2κ1τa−ain

and atrans =
√

2κ2τa, where the same first order expansion as with eq. (3.14) has
been performed.

The cavity reflectivity R and transmittance T are defined as the ratio of the
reflected and transmitted intensities to the input intensity as

R =

∣∣∣∣areflain

∣∣∣∣2 =
(κ− 2κ1)2 + ∆2

c

κ2 + ∆2
c

, (3.17)

T =

∣∣∣∣atransain

∣∣∣∣2 =
4κ1κ2

κ2 + ∆2
c

. (3.18)

R and T are Lorentzian functions of the cavity detuning ∆c with a full width at half
the maximum (FWHM) of 2κ (see fig. 3.3). To describe the quality of the cavity the
so-called finesse, F , can be used, given by the ratio of the free spectral range FSR
and the FWHM as

F ≡ νFSR
δFWHM

=
2π

T1 + T2 +A
, (3.19)

where δFWHM = (2κ)/(2π). We see that a cavity with a high finesse requires
low transmission and loss coefficients, and will in general have a narrow linewidth
(δFWHM � νFSR).

3.3 Ensemble of N two-level atoms interacting with a single
mode cavity field

In this section we examine the situation in which an ensemble of N two-level atoms
is trapped (e.g. using an ion trap) inside an optical cavity, and interacts with a
single mode of the cavity field. The interaction of a single atom with a single cavity
field mode can be described using the Jaynes-Cummings model (JC) [141,142], which
derives the dynamics of the atomic and field observables in a fully quantized picture.
Later, this model was extended to N atoms and named the Tavis-Cummings model
(TC) [143,144], which we will describe in the following subsection.
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Figure 3.3: Cavity transmittance and reflectivity spectra around a resonance, plotted
as function of the cavity detuning relative to the FWHM. The plot represents a cavity
similar to the one used in our experiments, whose transmission coefficients for the mirrors
are T1 = 1500ppm, T2 = 5ppm, while the total absorption loss coefficient is A = 600ppm.
The FSR is νFSR = 12.7GHz and with these parameters the cavity finesse is F ≈ 3000.
Note that the scale of T is 100 times smaller than for R.

3.3.1 The Tavis-Cummings model

We consider N two-level atoms (ground state |g〉, excited state |e〉) interacting with
a single mode of the electromagnetic field in a cavity. The Hamiltonian of the system
can be written as

Ĥ = Ĥat + Ĥcav + Ĥint . (3.20)

The atomic Hamiltonian is defined from the excited state population Π̂e =
∑N
j=1 π̂

e
j =∑N

j=1 |e〉 〈e|j as

Ĥat = ~∆lΠ̂
e , (3.21)

where ∆l = ωat − ωl is the atom-laser detuning. The second term of eq. (3.20)
describes a single mode of the quantized cavity field (omitting the zero-point energy
of the vacuum field)

Ĥcav = ~∆câ
†â . (3.22)

Here, ∆c = ωc − ωl is the cavity detuning and â and â† are the photon annihilation
and creation operators. The interaction Hamiltonian in the dipole approximation
can be written as a scalar product of the electrical field and the atomic dipole op-
erator, Ĥint(t) = −

∑N
j=1 Dj ·E(t). In the rotating wave approximation (RWA), i.e.

excluding non-energy conserving terms, we can write:

Ĥint(t) = −~
N∑
j=1

gj

(
σ̂j â
† + σ̂†j â

)
, (3.23)
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where σ̂j = |g〉 〈e|j is the atomic coherence of the j’th atom. The coupling parameter
of the j’th atom has been defined as

gj = gΨnm(rj) , (3.24)

where the maximum single ion coupling rate is found as the projection of the transition
dipole matrix element djeg = djge ≡ dj onto the electric field amplitude Ê0 as

g =

∣∣dj∣∣ E0
~

=

∣∣dj∣∣
~

√
~ωl

2ε0V
, (3.25)

where V is the cavity mode volume. The ions in the ensemble do not a priori see the
same cavity field amplitude, and in eq. (3.24) we have thus taken into account the
cavity field distribution E0Ψnm(rj), describing a single cavity Hermite-Gaussian mode
(see eq. (3.3)). This weights the contribution to the atom-field interaction for each
single atom by taking into account the field amplitude at the atom position [64,73].

The dynamics of the coupled atom-field system is found by using Hamilton’s equa-

tions of motion: dQ̂/dt = i/~
[
Ĥ, Q̂

]
, where Q̂ is an operator [145]. A full set of

equations gives the time evolution of all observables and is known as the Heisenberg-
Langevin equations [146]. In this thesis we are only interested in the expectation
values of the atomic and field operators. Their equations of motion can be found by
using eq. (3.20) and taking the mean value of the Hamilton equations, yielding:

ȧ = −i∆ca+ i

N∑
j=1

gjσj (3.26)

π̇gj = igj

(
σja
† − σ†ja

)
(3.27)

π̇ej = −igj
(
σja
† − σ†ja

)
(3.28)

σ̇j = −igja
(
πej − π

g
j

)
− i∆lσj , (3.29)

where an expectation value for an operator
〈
Q̂
〉

is written as Q.

The system can be described in a semi-classical framework by phenomenologically
adding dissipation processes. We add the effect of a spontaneous emission rate of
the excited state, Γ, in the equations for the state populations π̇gj and π̇ej , and the
decoherence rate of the atomic dipole γ = Γ/2 is inserted in the equation for the
atomic coherence, σj . Furthermore, we combine the equation of motion for the empty
cavity system, defined in eq. (3.14) from sec. 3.2.2, with the field equation of the TC
model of eq. (3.26). Hence, the equations of motion now takes the form:

ȧ =
√

2κ1a
in + i

N∑
j=1

gjσj − (κ+ i∆c)a (3.30)

π̇gj = igj

(
σja
† − σ†ja

)
+ Γπej (3.31)

π̇ej = −igj
(
σja
† − σ†ja

)
− Γπej (3.32)

σ̇j = −igja
(
πej − π

g
j

)
− (γ + i∆l)σj . (3.33)
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Here, the field amplitude of the electrical field has been substituted with the input
photon flux per round trip, ain →

√
τain. Notice, that the three lower equations,

(3.31)-(3.33), are commonly referred to as the optical Bloch equations; for more detail
see e.g. [139].

If we assume an equal coupling strength for all atoms, the total atomic coherence
in steady state (σ̇j = 0 ∀j) can be found from eq. (3.33) as

P =

N∑
j=1

σj = − iΩ

γ + i∆l
(Πe −Πg) , (3.34)

where we inserted the total ground and excited state populations, Πg and Πe, together
with the Rabi frequency Ω = 2ga assuming the same coupling strength for all atoms
in the system. By inserting eq. (3.34) into the steady state excited state population
obtained from eq. (3.32) with π̇ej = 0 ∀j, we can write:

Πe =
1

2

s

1 + s
, (3.35)

where s is the saturation parameter, defined as

s =
2 |Ω|2

(Γ/2)
2

+ ∆2
l

=
s0

1 +
(

2∆l

Γ

)2 , (3.36)

and where s0 is the on-resonance saturation parameter given by

s0 = 2
|Ω|2

(Γ/2)
2 ≡

I

Isat
. (3.37)

Here Isat =
~Γω3

at

12πc2 is the saturation intensity and the spontaneous emission rate can

be specified as Γ =
ω3

at|dj|2
3πε0~c3 [139, 147]. The steady state population of eq. (3.35) can

give us information about the atomic state for a specific light field interacting with
an atomic medium. This will be important in chap. 7 where we impose a spatially
varying standing wave light field from the cavity onto the ions, besides another far
detuned standing wave field spatially confining the atoms. In the description of the
interactions in the current chapter we assume that the light field frequency is close to
the atomic transition and the cavity resonance frequency.

3.3.2 Low saturation and motionless atoms

The dynamical equations (3.30)-(3.33) describe the whole coupled atom-cavity system,
but in the limit where only single or few photons are in the cavity, one can further
simplify the description (low saturation limit). To describe the interaction of the
atomic ensemble with a single cavity photon one can restrict the analysis to a basis
of the three lowest-lying Dicke states [148]:

|g, n〉N = |g〉(1) |g〉(2) · · · |g〉(N) |n〉 , for n = 0, 1 (3.38)

|e, 0〉N =
1√
N

N∑
j=1

|g〉(1) |g〉(2) · · · |e〉(j) · · · |g〉(N) |0〉 . (3.39)
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Here |g〉(j) and |e〉(j) denote the ground and excited state of the j’th atom respectively.
|g, n〉N describes a state with all the atoms in the ground state and n photons in the
cavity, while the state |e, 0〉N is a superposition of states having one atom in the
excited state, no photons in the cavity and the remaining atoms in the ground state.

In the low saturation limit, thus almost all ions are in the ground state and it can
be assumed that πgj ≈ 1 and πej ≈ 0 ∀j [27, 73]. The dynamical equations of (3.30)
and (3.33) simplify significantly and in steady state they can be solved to give

σj =
igja

γ + i∆l
(3.40)

a =

√
2κ1a

in

κ′ + i∆′c
, (3.41)

where an effective cavity field decay rate, κ′, and an effective cavity detuning, ∆′c,
have been introduced:

κ′ = κ+
g2
Nγ

γ2 + ∆2
l

, (3.42)

∆′c = ∆c −
g2
N∆l

γ2 + ∆2
l

. (3.43)

We also defined the collective coupling rate of the atom-cavity system:

g2
N =

N∑
j=1

g2
j ⇒ gN = g

√
Neff , (3.44)

where we have expressed gN as function of the maximum single ion coupling, g (see
eq. (3.25)), times the square root of the effective number of ions interacting with
the cavity field [28, 64]. This effective number is defined as the sum over all ions in
the crystal weighted by the squared modulus of the field mode function, Ψnm, of the
TEMnm mode considered (see eq. (3.24) or app. B):

Neff =
N∑
j=1

Ψ2
nm(rj) . (3.45)

In the simple ideal case where all ions couple with equal strength to the cavity field
mode, the effective number of interacting ions equals the total ion number, Neff = N .
In general, for randomly distributed ions in the cavity field mode-volume, the effective
number of ions is given by the overlap between the mode-function considered and the
ion medium [74].

A situation of special interest arises when the collective coupling rate between the
N atoms and the cavity field exceeds the dissipative rates in the system. This regime
is called the collective strong coupling regime [1] and corresponds to

gN > (γ, κ) . (3.46)

In 1983 the regime was entered with neutral atomic ensembles using microwave
fields [24], in the 1990’s the limit was reached in the optical domain using thermal
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atoms [5,149] and later with Bose-Einstein condensates [25,26]. Only a few years later
(2009) our system of an ion Coulomb crystal coupled to a moderate finesse cavity was
able to operate in the collective strong coupling regime, as successfully demonstrated
experimentally in [28]. In these experiments 40Ca+ ions were made to interact with a
cavity light field on the 3D3/2 ↔ 4P1/2 transition (see fig. 2.2), where the decay rate
of the 4P1/2 level is γ = 2π × 11.2 MHz. The cavity field decay rate was measured
to κ = 2π× 2.1 MHz [27,73] and the maximum single ion coupling rate can be found
from atomic parameters and the cavity geometry as gtheory = 2π × 0.53 MHz (see
appendix B or [27]). From these rates we can infer that an effective number of ∼ 500
ions is enough to get into the regime of gN > (γ, κ). Our system can somewhat exceed
this limit and coupling of crystals with Neff > 1500 ions has been achieved [28]. In
the case of cavity ion traps operating with single ions the (single-ion) strong coupling
regime still remains to be achieved, although recent experiments exploiting optical
fiber cavities, are moving close to the limit [19–22,150,151]. These have the advantage
of a small cavity mode volume, boosting the coupling strength (eq. (3.25)) and at the
same time reducing the disturbance on the trap potential.

Returning to eq. (3.42) and (3.43) we see that the effective cavity decay rate and
detuning reflect the atomic absorption and phase shift. We can predict the steady
state cavity response by considering the equation for the field amplitude (eq. (3.41)),
which reveals that the cavity reflectivity and transmittance are still given by eq. (3.17)
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Figure 3.4: Calculated cavity reflectivity spectra as function of cavity detuning, ∆c, for
an empty cavity (blue line) and for 500 ions coupled to the cavity mode (red line). In the
plot the laser detuning is set to ∆l = γ, while κ is defined in the text. We see that coupling
ions to the cavity field changes the resonance width from κ to κ′ and induces a shift of the
resonance frequency, ∆c −∆′c.
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and (3.18), but with the substitution κ→ κ′ and ∆c → ∆′c:

Ratom-cav =
(κ′ − 2κ1)2 + ∆′

2
c

κ′2 + ∆′2c
, (3.47)

Tatom-cav =
4κ1κ2

κ′2 + ∆′2c
. (3.48)

This means that the line shape is still a Lorentzian, but it is broadened to κ′ and
the detuning is shifted by ∆c − ∆′c. In figure 3.4 the cavity reflectivity can be seen
for an empty cavity (blue line) and a cavity containing a crystal with an effective
number of ions N ∼ 500 (red line). Typical values for our system have been used as
before: γ = 2π × 11.2 MHz, κ = 2π × 2.1 MHz and g = 2π × 0.53 MHz [27, 73, 110].
Furthermore, the laser detuning is set to ∆l = γ, to make the resonance shift more
evident. The effect that we are primarily going to use later in this thesis is the
broadening of the cavity spectrum through κ′. In sec. 6.1 we are thus going to study
experimentally how the effective cavity linewidth change as we vary the temperature
of the ion ensemble coupled to the cavity. To give the required theoretical background
this issue will thus be treated in the next section.

The broadening of the linewidth is maximum on atomic resonance (∆l = 0), where
the absorption from the medium is maximum, and hence from eq. (3.42) we can write

κ′ = κ(1 + 2C) , (3.49)

where the cooperativity parameter has been defined as

C =
g2
N

2γκ
. (3.50)

Reconsidering eq. (3.43) we can see that the phase-shift of the detuning has a maxi-
mum value at ∆l = ±γ, where in fact we get: ∆c −∆′c = κC. Thus, we notice that
the cooperativity naturally appears as a relevant parameter to describe the strength
of the light-matter interaction in our system, and we will return to its importance in
chap. 4 when discussing the quantum memory.

3.3.3 Low saturation and moving atoms (along axis)

So far we have considered ions at rest inside the cavity, but after Doppler cooling
the ions are moving around in the trap with a certain velocity distribution. If we
consider an ion with a velocity component vj along the cavity axis the standing-wave
structure of the cavity field and the Doppler shifts due to the nonzero velocity of the
ion have to be taken into account. We define the atomic dipole operators arising from
the interaction between the ion and the two counter propagating components of the
standing wave cavity field as

σj± =
1

2
σjexp(±ikzj) , (3.51)

where zj is the position of the j’th ion along the z-axis (cavity axis). In the low
saturation regime and taking into account opposite Doppler shifts, the equations of
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motion for the ion-cavity system from eq. (3.30) and (3.33) become [64,73]:

ȧ =
√

2κ1a
in − (κ+ i∆c)a+ i

N∑
j=1

gj
2

(σj+ + σj−) , (3.52)

σ̇j± = ia
gj
2
− [γ + i (∆l ± kvj)]σj± . (3.53)

The typical timescale of the ion motion is slow compared to the timescales for the
coupled dynamics of the cavity field and the atomic dipole. The ions in the ensemble
have a certain velocity distribution, f(v), and the steady state mean value of the
intracavity field is found by averaging the contributions of the dipole mean values
(eq. (3.53)) over f(v).

We consider a velocity distribution with average velocity vD. For the model to
be valid a conservative estimate is that the mean Doppler-shift has to be smaller
than both effective rates of the coupled system on resonance (∆c = ∆l = 0); i.e.
kvD � min[κ + g2

N/γ , γ + g2
N/κ]. The first effective rate describes the cavity

decay, modified by the presence of the atomic ensemble, while the second effective
rate describes the decoherence rate of the atomic dipole broadened by the interaction
with the cavity field. In this regime the intracavity field mean value has the same
form as for the motionless ions (eq. (3.41)), but the effective cavity field decay rate
and detuning found in eq. (3.42) and (3.43) are modified [64,73]:

κ′ = κ+ g2
N

∫
γ ξ(∆l, v) f(v) dv , (3.54)

∆′c = ∆c − g2
N

∫
(∆l − kv) ξ(∆l, v) f(v) dv , (3.55)

where

ξ(∆l, v) =
γ2 + ∆2

l + (kv)2

(γ2 + ∆2
l )

2 + 2(γ2 −∆2
l )(kv)2 + (kv)4

. (3.56)

By assuming a thermal atomic ensemble with temperature T , f(v) is given by a
Maxwell-Boltzmann distribution

f(v) =

√
m

2πkBT
exp

(
− mv2

2kBT

)
, (3.57)

where m is the atomic mass, T is the considered temperature, kB is the Boltzmann

constant and we can define the average Doppler velocity as vD =
√

kBT
m . From this

we get

κ′ = κ+
g2
Nγ√

2πγD

∫
ξ(∆l, v) e

− (kv)2

2γ2
D dv , (3.58)

where γD = k
√

kbT
m is the Doppler width. The variation of κ′ with ∆l is no longer a

Lorentzian, but rather given by a Voigt profile; a convolution between a Gaussian and
a Lorentzian profile. The temperature of an ion Coulomb crystal can be determined
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e.g. by measuring κ′ as function of ∆l and fitting to eq. (3.58), which, if κ, γ and gN
are known, allows for extracting T from γD. For ∆l = 0 eq. (3.58) reduces to

κ′(∆l = 0) = κ+

√
π

2

g2
N

γD
erfc

(
γ√
2γD

)
e
γ2

2γ2
D , (3.59)

where erfc(x) = 1 − erf(x) is the complementary error function. In sec. 6.1 mea-
surements of the resonance width of the coupled atom-cavity system is presented and
the above equations can be used to extract the temperature of ion Coulomb crystals
under different cooling conditions.



Chapter 4

Quantum memory for light based
on an ion Coulomb crystal

In this chapter we introduce the general concept of a quantum memory for light
and discuss its possible realization with ion Coulomb crystal in an optical cavity.
We start by giving a short introduction to the concept of a quantum memory (sec.
4.1) and define the important factors which characterizes it. Then, we introduce a
quantum memory protocol making use of a Λ-type medium in a cavity (sec. 4.2).
In doing so, the so-called dressed and dark states for the system are introduced (sec.
4.2.2), followed by a discussion of the dynamical evolution of the system in a cavity
STIRAP process (sec. 4.2.3). In sec. 4.3 we focus on the implementation of an ion
Coulomb crystal-based quantum memory in our present experimental system. Based
on previous observations of cavity electromagnetically induced transparency (EIT)
with this system, we discuss two technical issues and present the results of some
numerical simulations for this implementation (sec. 4.3.1-4.3.2). In the last part
of this chapter (sec. 4.4) we briefly discuss the possibility for realizing multi-mode
storage.

4.1 The concept of a quantum memory

Many protocols in quantum information science are based on the manipulation of
so-called quantum bits (qubit), which are quantum analogues of the classical bits.
A qubit is a two-state quantum-mechanical system (|1〉, |2〉) and, in contrast to the
classical bit, its state can be a superposition of both logical states at the same time,
|ψ〉 = α |1〉+β |2〉. To be able to perform quantum logical operations on a qubit system
it might be necessary to store the qubit states temporarily, while other operations are
being performed. In this context quantum memories are important and an essential
ingredient for many quantum information processing applications such as quantum
networks [42], quantum repeaters [152] and linear optics quantum computing [153]. In
quantum optics, a quantum memory is a device in which quantum states of light can
be stored and retrieved on demand. Such a quantum optical memory can be based
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(1) (2) (3) 

time 

Write Read 

tstore t t0 

Figure 4.1: Simple illustration of the quantum memory storage and retrieval process. (1) At
time t0 a photon (green arrow) is written into the memory medium, represented by an atomic
ensemble (red ellipse). (2) The quantum state of the photon is stored in the memory medium,
potentially losing coherence due to decoherence mechanisms in the medium (represented as
blue arrows). (3) At time tstore the stored state is read out as a photonic excitation, which
if the quantum memory is efficient is similar to the incident quantum state.

on for example a single atomic system, but it can also be an atomic ensemble, like an
ion Coulomb crystal, which is the main focus here.

A very simple illustration of the operation of a quantum memory is shown on fig.
4.1. (1) A photonic state is incident on the quantum memory medium at a time t0
and is coherently written into the medium. (2) During storage, the quantum memory
system keeps the quantum state preserved for some time, limited by the decoherence
mechanisms inside the physical system. (3) After some time, at tstore, the excitation
stored into the medium is read out, i.e. coherently converted back into a photonic
excitation, which can be used in further quantum information processes.

The quantum memory, which we will describe, is based on the storage and retrieval
of single- or few-photon excitations in the collective pseudo-spin state of an atomic
ensemble placed inside an optical cavity. An important requirement for obtaining
an efficient quantum memory is the ability of the atomic medium to absorb a single
cavity field photon with a high probability. This can be achieved by operating in the
collective strong coupling regime introduced in the previous chapter, i.e. by making
the collective coupling rate, gN , larger than the spontaneous emission rate, γ, and the
cavity field decay rate, κ (eq. 3.46). The efficiency of the quantum memory, η, i.e. the
ratio between the retrieved and the incident photons, depends on the cooperativity
parameter C = g2

N/(2κγ). C was introduced in sec. 3.3.2 as a measure of the effective
optical depth of the system. One can show that, for the protocol that we will use,
the optimal efficiency of the write or the read phase scales as η = 2C/(1 + 2C), thus
approaching unity for large C. The total efficiency of the memory is the product of the
efficiencies in these two phases, times the efficiency of the storage, which depends on
the possible decoherence in the system. To further evaluate the quality of a quantum
memory one can also consider the fidelity, which is the overlap between the incoming
and the outgoing state [56]. The optimal fidelity is also generally found to increase
with the cooperativity.

Another important measure of the quality of a quantum memory is its storage time.
Here, the important factor is the coherence time of the quantum system. Different
decoherence channels will be present in any system and the fastest of these sets the
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limit of the final quantum memory storage time. Consider a system of two-level atoms,
mapping a photonic excitation by means of an interaction on a ground-to-excited state
transition, such as the one introduced in sec. 3.3. This will result in a storage time
which is limited by spontaneous emission decay from the excited state, and thereby
the lifetime of the excited state. This lifetime is often short, e.g. if the transition is
also used for Doppler cooling, and hence, it is naturally more interesting to use two
long-lived atomic states for the mapping. We will thus consider in the next section a
three-level Λ-system.

4.2 Λ-type quantum memory in a cavity

In this section we will theoretically describe a three-level Λ-system inside a cavity and
its use as a quantum memory. The first sections introduce the energy-levels of the
system, its Hamiltonian and a useful basis for describing the dynamic evolution of the
quantum memory states. In the last part we discuss the concept of Stimulated Raman
Adiabatic Passage (STIRAP) and its application in a quantum memory protocol.

4.2.1 A three-level atomic Λ-system in a cavity

We consider an atomic ensemble of N identical 3-level atoms in a Λ-configuration,
illustrated on fig. 4.2(a). The system contains two long-lived ground states, |b〉 and
|c〉, and an excited state |a〉 which can decay to the two ground states or other external
states at a rate 2γ. The ensemble is placed inside an optical cavity and interacts with
two monochromatic fields. The atoms are coupled on the |c〉 ↔ |a〉 transition with a
strong control field with Rabi frequency Ωc (treated classically). They also couple on
the |b〉 ↔ |a〉 transition to a weak (single photon level) intra-cavity probe field having
Rabi frequency Ωp [66]. We assume that initially all the atoms are in |b〉. A single
probe photon can, through the strong control field, couple the states |b〉 and |c〉 in a
two-photon process called a Raman transition.

For the sake of simplicity, we assume that the cavity is resonant with the |b〉 ↔ |a〉
transition and the control and probe fields are resonant with the atomic transitions.
Using a frame rotating at the probe field frequency and applying the dipole approxi-
mation, the interaction Hamiltonian of the system will be given by

Hint = ~g
N∑
j=1

Ψnm(rj)
(
σjbaâ

† + σjabâ
)

+ ~Ωc(t)

N∑
j=1

(
σjca + σjac

)
, (4.1)

where the annihilation and creation operators of a single photon in the cavity mode
are denoted â and â† respectively, while the spin operator of the j’th atom is σjαβ =
|α〉 〈β| (α, β = a, b, c). As we assumed that all atoms where initially prepared in state
|b〉, the eigenstates spanning the Hamiltonian subspace are the collective symmetric
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Figure 4.2: (a) A Λ configuration formed by the long-lived ground states |b〉 and |c〉 and
the excited state |a〉. The ground states couple to the excited state through the weak probe
field and the strong control field with Rabi frequencies Ωp and Ωc, respectively. The excited
state can decay to the two ground states or other external levels at a total rate 2γ. As
indicated with the blue ellipse the atomic population is initially in |b〉. (b) The system in the
dressed state picture where the excited state splits into a doublet (|±〉) and the dark state
becomes a superposition of the two bare ground states. The situation is shown here for a
strong control field, Ωc � Ωp, for which |D〉 ≈ |b〉.

Dicke-like states [14,154]:

|b〉 = |b1, b2, . . . , bN 〉 ,

|a〉 =
1√
N

∑N

i=1
|b1, . . . , ai . . . , bN 〉 ,

|c〉 =
1√
N

∑N

i=1
|b1, . . . , ci . . . , bN 〉 , (4.2)

|aa〉 =
1√

2N(N − 1)

∑N

i 6=j=1
|b1, . . . , ai . . . , aj . . . , bN 〉 ,

|ac〉 =
1√

N(N − 1)

∑N

i6=j=1
|b1, . . . , ai . . . , cj . . . , bN 〉 , etc.

where, to ease the notation, N represents the effective number of interacting atoms.
The simplest non-trivial case has one photon in the cavity mode and all the atoms
in state |b〉. This state will be denoted by the combined state |b, 1〉, where the
second index denotes the photon number. In this case, the interaction Hamiltonian
(eq. (4.1)) couples |b, 1〉 to two other states of the combined atom-cavity system:

|b, 1〉 H↔ |a, 0〉 H↔ |c, 0〉.
By inserting the cavity field mode function, Ψnm(rj), into eq. (4.1), the atom-

cavity interaction of the probe is weighted with the field amplitude at each atom
position (as in sec. 3.3.1). The effective number of atoms interacting with the cavity

probe field is defined in eq. (3.45), as Neff =
∑N
j=1 Ψ2

nm(rj). For most purposes
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the fundamental TEM00 cavity mode is used. In the next section, for simplicity, we
will assume that the control field Rabi frequency, Ωc(t), is equal for all atoms, but
later we will discuss the experimentally relevant situation where the control field is
also applied through the cavity, making it necessary to take into account the spatial
variation of the control field amplitude.

4.2.2 Dressed and dark states

The Hamiltonian of the Λ-system (eq. (4.1)) can be diagonalized in a basis of so-called
dressed states, which are related to the collective Dicke-like states of eq. (4.2). Of
particular interest here is the state [154]

|D, 1〉 = cos θ(t) |b, 1〉 − sin θ(t) |c, 0〉 , (4.3)

tan θ(t) =
g
√
Neff

Ωc(t)
, (4.4)

where the mixing angle θ(t) has been introduced. |D〉 and two other dressed states
(|+〉 and |−〉) are illustrated on fig. 4.2(b), in the case of a strong control field.
The dressed state |D, 1〉 is a combination of the ground states only and has zero
eigenenergy. A system initially prepared in |D, 1〉 can never be excited to the spon-
taneously decaying state, |a, 0〉, and thus |D, 1〉 is often called the dark state. The
states |±〉 involve in general all 3 bare states and their energy is shifted by ~ω± =
±~/2

√
g2Neff + Ω2

c [66], as indicated on the figure.
From eq. (4.3) we see that the mixing angle θ controls the relative weight of states

|b, 1〉 and |c, 0〉 in the dark state. When the control field is strong compared to the
probe field θ � 1 and the dark state becomes |D, 1〉 ≈ |b, 1〉. For a vanishing control
field, the mixing angle is θ ≈ π/2, turning the dark state into |D, 1〉 ≈ |c, 0〉. This
implies that adiabatically changing the mixing angle θ the population of the dark
state can be coherently transferred between the two original ground-states of the bare
system.

4.2.3 Cavity STIRAP quantum memory

A simple approach for storing single photons in collective atomic systems is to use
a Stimulated Raman Adiabatic Passage (STIRAP) technique. With this technique
a coherent reversible mapping of the photonic state onto the atomic energy states is
performed. To increase the absorption probability the atomic system can be placed
inside a cavity opening the possibility to enter the strong coupling regime, as discussed
before. A dissipation-free method of the photon storage can be performed, by adiabat-
ically transferring the atom-cavity dark state from a cavity-like state (photonic cavity
excitation) to an atom-like state (collective atomic state excitation) [14,61,155]. The
method is based on cavity electromagnetically induced transparency (EIT), in which
the optical properties of the atoms can be manipulated by varying the external clas-
sical control field, as introduced above. For a resonant control field, the absorption of
a resonant probe field is reduced as a result of quantum interference in the absorption
amplitudes of the probe photons to the bare states. In other words, the absorption
between the states |b〉 and |a〉 occurs either directly or via the coherent indirect path
|b〉 → |a〉 → |c〉 → |a〉. If the Rabi frequency of the control field is strong compared
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to the probe field (Ωc(t) � g
√
Neff → θ(t) ∼ 0), the probability amplitude of the

indirect path is comparable to the direct. On two-photon resonance these amplitudes
are of opposite sign, though, and will interfere destructively, thereby rendering the
medium transparent for the probe field [66,67]. When the Rabi-frequency of the con-
trol field is decreased the absorption probability of the probe photons in the system
increases, rendering the medium completely absorbing for the probe photons in the
strong coupling regime.

The equations of motion for the amplitude functions describing the atomic and
cavity operators can be derived from the Hamiltonian (4.1) (see e.g. [61, 73]). In the
adiabatic limit in which the control field Rabi frequency is varied slowly enough so
that the dynamics of the observables follow the slow collective spin operator associated
with the ground state coherence between states |b〉 and |c〉, one can define an effective
atomic decay rate [156,157]:

γ̃bc(t) = γbc +
Ω2
c(t)

γ + g2Neff/κ
= γbc +

Ω2
c(t)

γ(1 + 2C)
, (4.5)

where γbc is the decoherence rate between the two bare ground states (not shown on
fig. 4.2) and, in order to follow the adiabatic requirement, eq. (4.5) needs to satisfy

γbc � γ̃bc � κ, γ . (4.6)

We remark that the time evolution of the effective decay rate follows the control field
Rabi frequency, thus, actively varying Ωc(t) will modify γ̃bc(t). This gives us the
freedom to control the dynamics of the ground state population transfer. At the same
time eq. (4.6) shows that in order to stay adiabatic the strength of Ωc(t) is restricted
to a certain magnitude.

In a simple picture the atomic quantum memory evolution can be modeled by
considering an empty cavity. Rather than having a time-varying control field, Ωc(t),
modifying the atomic absorption inside the cavity, we describe an empty cavity having

c(t) 

p 

 

𝛾, 𝛾𝑏𝑐 

(a)

p 

𝛾 𝑏𝑐 𝑡  

(b)

Figure 4.3: (a) The physical situation of the Λ-system quantum memory in a cavity. The
probe field, Ωp, is coupled into the cavity mode, where the interaction with the atomic
system is modified by a uniformly applied control field, Ωc(t). The cavity decay rate is κ,
the spontaneous emission decay rate is γ and the decoherence rate between the two ground
states is γbc. (b) A probe field is coupled into an empty cavity with a controllable cavity
decay rate (variable incoupling mirror transmission). In the adiabatic limit, discussed in the
text, the two situations are analogous, and the cavity containing an EIT medium can be
described by an empty cavity with a variable incoupling transmission.
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a controllable transmission coefficient, T (t) = 2γ̃bc(t)τ [156]. This is illustrated on
fig. 4.3. The formalism of the two systems can be made identical and the transfer
efficiency, the field emitted during read-out and the detection is similar.

When a probe photon is incident on the empty cavity, the transmission can be
increased by raising the effective cavity decay rate, γ̃bc(t), making the cavity-EIT
medium transparent for the probe light (to a degree fulfilling eq. (4.6)). Once the
photon is coupled into the cavity, the effective decay rate can be lowered (still fulfilling
eq. (4.6)), thus “closing” the cavity and trapping the probe photon for storage [156].
Read-out of the stored photon is performed by re-raising the cavity field decay rate,
by which the transmission out of the cavity is increased again.

4.2.4 Impedance matching

Turning back to the actual physical system, a specific dynamical sequence for the
probe and control fields as depicted in fig. 4.4, can be used to store photons in
the three level Λ-system described above. In the ideal storage process, the incoming
photon wave is completely coupled into the cavity and transferred into the atomic
medium, maximizing the dark state amplitude (∼1) and the writing efficiency. To
optimize the process, any reflection of the probe light during the writing process has to
be minimized. This leads to an impedance matching condition between the incoming
probe field shape, Φin(t), and the mixing angle, θ(t), ultimately set by the control
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Figure 4.4: Exemplary storage sequence as a function of time. The control field intensity is
decreased with a specific shape as the incoming probe pulse arrives (t = 0) with a sech-shape
of width T . From this process the photon state is mapped onto a collective excitation in
the atomic medium and thereafter stored within it. Later (t = 10T ), the control field is
turned on again with the time-reversed temporal shape and the collective atomic excitation
is transferred back to the field, exiting the cavity.
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field strength (see eq. (4.4)) [61] as

− d

dt
ln (cos θ(t)) +

d

dt
ln (Φin(t)) =

γ

2
cos2 θ(t) . (4.7)

This relationship allows for composing sets of probe and control field shapes that
will optimize the quantum storage process. We can specify a particular form of the
input probe pulse (e.g. a hyperbolic secant function) [61] as

Φin(t) =

√
1

T
sech

(
2t

T

)
, (4.8)

where T is the pulse length. On fig. 4.4 this shape has been plotted at the incoming
time t = 0 (dashed blue line) together with the control field Rabi frequency found
using eq. (4.7) (full red line). Note that the intensities have been normalized to their
respective maximum values, but, in reality, the probe field intensity is at the single
photon level, whereas the control field contains many photons. Slowly turning off
the control field amplitude decreases the transmission of the cavity-medium system
and the photon state is mapped onto the collective state of the atoms without being
reflected at the incoming mirror. At a later time, here tstore = 10T , the adiabatic
evolution of the control field is reversed and the stored photon is released with a similar
shape as the incoming photon. The storage efficiency of the quantum memory, ηstor,
is defined above as the ratio between the outgoing number of photons to the incoming
photon number and depends strongly on the coupling strength between the atoms
and the probe field, and on the decay channels in the system.

4.3 Quantum memory in a 40Ca+ ion Coulomb crystal

To implement this protocol in our experimental setup with 40Ca+ ions, the Λ-system
will be formed by two metastable Zeeman-substates of the

∣∣3d2D3/2

〉
level as the two

ground states and one Zeeman-substate of the
∣∣4p2P1/2

〉
level as the excited state,

as shown in fig. 4.5 (see also fig. 2.2 showing the energy levels relevant for Doppler
cooling). This means that

|a〉 =
∣∣4p2P1/2,mJ = +1/2

〉
, (4.9)

|b〉 =
∣∣3d2D3/2,mJ = +3/2

〉
, (4.10)

|c〉 =
∣∣3d2D3/2,mJ = −1/2

〉
. (4.11)

A magnetic field along the quantization axis (z-direction) is added, creating the
Zeeman-splitting of the energy-levels. The transitions are addressed with the probe
field around 866 nm and we define the frequency of the |b〉 ↔ |a〉 transition as ωab
and for the |c〉 ↔ |a〉 transition ωac = ωab + ωB . The frequency shift ωB is set by the
applied B-field through the Zeeman effect (see app. A.4). The excited state |a〉 has a
spontaneous decay rate to the ground states or other states of Γ = 2γ = 2π×22.4 MHz.
Furthermore, there is a possible decoherence between the two ground states |b〉 and
|c〉, which is introduced phenomenologically as the decay rate γbc [73] (see fig. 4.5).

The considered physical system is a large ion Coulomb crystal trapped inside a
linear optical cavity with a total loss rate, κ = 2π × 2.1 MHz [27,73] (as described in
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Figure 4.5: Level scheme for the realization of a quantum memory with 40Ca+ ions. The
Λ-system is formed by the mJ = +1/2 Zeeman substate of the

∣∣4p2P1/2

〉
level and the

metastable mJ = +3/2 and mJ = −1/2 states of the
∣∣3d2D3/2

〉
level. Besides the definitions

from fig. 4.2, ∆ac is the control field detuning and γbc is the decoherence rate between the
two ground states.

chap. 3 and 5). The probe beam is applied as a weak σ− circularly-polarized field
with a frequency, ωp, close to the |b〉 ↔ |a〉 transition. It is injected into the cavity
trough mirror M1 after having passed a polarizing beam splitter (PBS) and a λ/4
wave plate (see fig. 4.6). In the fundamental case the probe is coupled to the TEM00

mode of the cavity. The strong control field has a frequency ωcrtl (opposite circular
polarization) and couples the states |c〉 and |a〉 with a detuning ∆ac = ωac−ωcrtl (see
fig. 4.5).

M1

M2

Figure 4.6: Geometry for quantum memory experiments. The 866 nm probe beam passes
a polarizing beam splitter (PBS) and a λ/4-wave plate, making it σ− circularly-polarized.
It is injected into the cavity through mirror M1, where it interacts with an ion Coulomb
crystal (ICC). The reflected probe light is detected after the PBS using an avalanche photo
detector (APD). To control the transparency of the medium a σ+ circularly-polarized 866 nm
control field is injected into the cavity through mirror M2. The figure originates from [68].
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In typical quantum memory experiments with cold atom ensembles a control field
beam with a waist larger than the atomic ensemble extent is applied, ensuring that
the control field Rabi frequency is equal for all atoms in the medium [56]. In the case
of a large ion Coulomb crystal, applying the control field in the radial direction will
make it impossible to achieve the two-photon resonance condition for all atoms. This
is due to the large Doppler-shifts induced by the micromotion of ions away from the
longitudinal axis of the trap (see sec. 2.3.4). Consequently, for our system, the control
field has to be injected into the cavity as well. As shown in fig. 4.6 the control field is
coupled into the cavity through mirror M2 and has a σ+ circular polarization. As a
result, effects of the transverse profile and the longitudinal standing wave structure of
the control field have to be taken into account, and we will discuss this later. Detection
of the out-going probe field is performed on an avalanche photo detector (APD) placed
in cavity reflection.

As previously mentioned, operating in the collective strong coupling regime should
ensure in principle a high efficiency of the quantum memory. Cooperativities of ∼ 8
have been achieved on the relevant transitions [28, 64, 73] and somehow higher val-
ues can probably be achieved in this setup by e.g. increasing the effective number of
ions [27]. Moreover, the coherence time of collective Zeeman coherences has been mea-
sured to be in the ms range [28,64], which is also promising for achieving reasonably
long storage times. In addition, full control of the transparency of the ion crystal-
cavity system using steady-state EIT has been demonstrated experimentally [68]. In
these experiments the geometry of fig. 4.6 was used and the steady state reflection
spectra of a probe field at the single photon level, interacting with an ion Coulomb
crystal in the collective strong coupling regime, have been measured. These experi-
ments demonstrated the possibility to fully control the transparency of an otherwise
opaque ion crystal-cavity system, which is an excellent preliminary step to the im-
plementation of the store and retrieve protocol described earlier. As a concluding
remark, experiments using a radially applied control field, instead of an intracavity
control field, have also been performed [73] (see. fig 4.7), but, as expected, no EIT ef-
fect could be observed, as a consequence of the micro-motion induced Doppler-shifts.
Accordingly, in the quantum memory experiments the control field should also be
applied through the cavity.

4.3.1 Effects of the intracavity control field

As introduced above, in our quantum memory implementation the control field is
injected into the cavity trough mirror M2. This means that the transverse and longi-
tudinal profiles of the cavity mode have to be taken into account. As the frequency
difference between the two transitions |b〉 ↔ |a〉 and |c〉 ↔ |a〉 is not very big we
can assume that the wave vectors corresponding to the probe and control field are
equal (k ≡ kp ' kc). The modified interaction Hamiltonian of the system now has
to include both the mode function of the probe field, Ψnm(rj , kp), and of the control
field, Ψnm(rj , kc) (see sec. 3.2.1), and becomes

Hint = ~g
N∑
j=1

Ψnm(rj , k)
(
σj13â

† + σj31â
)

+ ~Ωc(t)

N∑
j=1

Ψnm(rj , k)
(
σj23 + σj32

)
.

(4.12)
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Figure 4.7: Illustration of a cylindrically symmetric Λ-type atomic medium inside a linear
optical cavity. The medium interacts with a probe field and a control field in an EIT situation,
as shown in sec. 4.2.1. To different scenarios are shown: one in which the control field is
incident from the side with a constant uniform intensity profile over the whole ensemble, and
one in which the control field is coupled to the same cavity mode as the probe. These two
situations have been compared in the numerical simulations described in the text [158,159].

The equations of motion for this system are more complicated than in the uni-
form control field case, but can readily be solved as e.g. in [73]. The difference in
coupling strength for the uniform case and the intra-cavity case has importance both
for the steady state EIT spectra measured in [68,69] but also for the quantum mem-
ory performance considered here. Fig. 4.7 shows an illustration of a cylindrically
symmetric atomic medium (of Λ atoms) enclosed by a linear optical cavity where it
interacts with the probe and the control field. Two configurations can be chosen: one
with both fields coupled into the same cavity mode (same field waist) and one where
the control field is sent from the side with the same intensity over the whole atomic
ensemble [158,159].

The storage of single photon fields in our system, using the protocol described
earlier, has been theoretically investigated by master student Kasper Rothe Zangen-
berg. Based on the parameters relevant for our system extensive numerical simulations
were performed by Kasper in order to optimize the expected performance of such a
quantum memory [158, 159]. The two scenarios introduced before were investigated
simultaneously and compared (ignoring micro-motion effects).

The atomic medium was assumed to be cylindrically symmetric with concentric
shells (as in fig. 4.7) and all the appropriate physical constants of our experimental
system was applied. The shape of a single-component ion Coulomb crystal in a linear
Paul trap is not cylindrical, but rather ellipsoidal, however, making this assumption
simplifies the numerical simulations and is also relevant for prolate two-component
ion crystals, whose inner component can be shaped in this way.

While the optimization of the efficiency in the all-cavity geometry generally follows
that of the standard geometry [62, 63, 156], an essential difference is the dependence
of the efficiency with the radial dimensions of the ensemble. A key result of this
numerical study is shown on fig. 4.8 where the probe and control field shapes were
defined as in sec. 4.2.4 and on fig. 4.4 (sech(t/T )), with the pulse width T = 2 µs.
The optimized efficiency is evaluated as function of the radius, R, and length, L, of
the ion crystal (cylinder), for an ion density of ρ = 6.1× 108 cm−3. On the figure the
length is expressed in mm which is within the range of the maximum obtainable stable
ion crystals for our trap. The radius is given in units of the cavity TEM00 mode waist,
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Figure 4.8: From [159]. The simulated efficiency of the quantum memory is plotted as
function of the length, L, and radius, R, of the ion Coulomb crystal medium. (a) Shows the
variation for the uniform control field situation. (b) Shows the variation where the control
field is coupled into the cavity. wp = 37 µm is the cavity mode waist, the crystal density
is ρ = 6.1 × 108 cm−3 and the probe and control field shapes were as defined in sec. 4.2.4
(sech(t/T )) with the pulse width T = 2 µs.

wp = 37 µm. Graph (a) shows the results when applying the control field uniformly
on all ions e.g. from the side of the cavity. The distribution is found to agree with
the predicted analytical model of [62, 63, 156] and shows an increasing function with
the crystal radius for any length. We see that efficiencies of more than 90% may
be obtainable with large crystals. Graph (b) shows the results using a control field
coupled into the same cavity mode as the probe field. The efficiency variation with
radius is no longer simply increasing but rather has a maximum value at a certain
radius for every choice of length. However, the simulations reveals that, for a long
crystal (L & 2.5 mm) choosing an appropriately crystal radius (R ' 0.95wp), the
quantum memory efficiency can still reach > 90% [159]. The highest efficiencies are
reached with R ∼ wp, where the crystal fills as much of the cavity mode volume
as possible. The simulations serve as a reliable background estimate of the crystal
dimensions needed in the actual experiments in order to obtain a reliable quantum
memory device.

4.3.2 Bi-crystal Ca+ ion system

In the previous paragraph simulations where performed using a cylindrical system
(as shown on fig. 4.7) rather than the actual single-component ion Coulomb crystal
shape (ellipsoidal). For very prolate single-component crystals, the cylinder shape is
still a good approximation, but in practice a crystal having a length of several mm
and R ∼ wp will be very unstable, because it can not be cooled very efficiently. As
an alternative, it is possible to use bi-component crystals for the quantum memory
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medium. According to the Mathieu equations from sec. 2.1 two different ion species
can be trapped in the linear Paul trap at the same time, as long as the charge-to-
mass ratio is not too different. The cavity field can couple to the lighter (inner)
species, while the heavy (outer) species can be laser cooled. Sympathetic cooling
occurs between the two species, as a result of their mutual Coulomb interaction, and
cooling only the outer component can be sufficient [27,160,161].

R 

L 

200 m 

Figure 4.9: Projection images obtained during cooling of a two-component ion Coulomb
crystal of ∼ 2000 40Ca+ ions (inner component) and ∼ 13000 44Ca+ ions (outer component).
On the top image both components are being cooled simultaneously. On the lower images,
only one species is cooled (middle image: 44Ca+, bottom image: 40Ca+). The inner part
of the crystal resembles the cylindrical shape used in the previous paragraph, with a radius
R and length L. The red lines illustrate the applied cavity field mode (the curvature of the
Gaussian mode is very exaggerated). The images comes from [27].

On fig. 4.9 images of a two-component crystal containing ∼ 2000 40Ca+ ions and
∼ 13000 44Ca+ ions are shown. The lighter 40Ca+ ions form the inner cylindrical
core, which is surrounded by a crystal of the heavier 44Ca+ ions. In the top figure
both isotopes are being cooled at the same time and a cavity field mode is illustrated
along the crystal as two red lines (not drawn to scale). On the two lower images
laser cooling is only applied to one of the two species (first 44Ca+ and then 40Ca+),
while the other is being sympathetically cooled [27]. The 3-dimensional shape of the
crystals can be visualized by rotating the crystal around the long axis.

Using this two-component system the ion-cavity coupling resembles the situation
used in the numerical simulations performed on the quantum memory efficiency. Com-
paring the lowest image of fig. 4.9 to fig. 4.7 the radius and length can be defined in
the same way as in the simulations. A small discrepancy between the idealized shape
and the inner-crystal shape arises in the ends, where the cylinder is flat opposed to a
round crystal shape, but for long crystals this effect is negligible.

The inner part of the bi-component system clearly has a bigger overlap with the
cavity mode and can be shaped so as to optimize the quantum memory efficiency.
The essential property that maximized the collective coupling strength is the number
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of effectively coupling ions. In the bi-crystal system, the inner part can be made more
stable with a higher effective number of ions, compared to a single-component crystal
with the same aspect ratio as the inner component. This is a result of the outer
component cooling, which can in principle be performed continuously. Ultimately,
this cooling can help decreasing heating effects in the central component, which can
potentially increase the final storage time of the quantum memory.

4.4 Multi-mode storage implementation

For a quantum memory to be a part of a quantum information process, like e.g. a
linear optics quantum computer [153], it needs to be able to store quantum infor-
mation. As opposed to single atoms, atomic ensembles allow in principle for storing
more than one photon, and thereby increases the capacity of a quantum memory. The
quantum states of photonic qubits can be encoded in various degrees of freedom of
the photons, such as their polarization or their frequency. For example, the qubit can
be represented by the superposition of vertically and horizontally polarized photons,
|ψ〉 = α |V 〉 + β |H〉. In our case, one can also exploit the spatial degree of freedom
of the cavity photons by considering e.g. different transverse cavity modes (see sec.
3.2.1). Indeed, ion Coulomb crystals have a uniform density and therefore crystals
with a radius larger than the cavity waist will couple equally strongly to the different
transverse modes, as the collective coupling between the ions and the cavity mode
depends on the overlap between the modefunction and the crystals. This has been

200 mµ
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Figure 4.10: Projection images of a 1.2 mm long ion Coulomb crystal, repumped with
an 866 nm field in three different ways: Top: from the side illuminating the whole crystal,
Middle: injected into the TEM00 cavity mode, Bottom: injected into the TEM10 cavity
mode. In [74] the two cavity modes was shown to couple equally strongly to a large ion
crystal.
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verified in prior experiments for the TEM00, TEM01 and TEM10 modes [74].
On fig. 4.10 projection images of an ion Coulomb crystal (1.2 mm long, ρ =

5.4×108 cm−1) is shown during normal laser cooling with the 866 nm repumper from
the side (along the x-axis) (top), with repumping predominantly performed trough
the cavity mode TEM00 (middle) or TEM10 (bottom). In this way the two different
cavity modes get apparent in the fluorescence pattern on the ion crystal. Numerical
simulations of the efficiency of the store and retrieve protocol for different transverse
modes, was also performed in [159] and show similar qualitative variations. Thus,
implementing a multi-mode storage of several quantum states simultaneously seems
possible, and is a natural step after having successfully achieved the fist experiments
of single photon storage. This will hence, establish this system as a promising tool
for implementing in a quantum information protocol.

4.5 Conclusion

In this chapter we introduced the dynamical cavity STIRAP process, based on the EIT
effect, which makes it possible to store and retrieve photonic states using an atomic
medium. We described a possible implementation with a large ion Coulomb crystal
inside an optical cavity, for which the basics ingredients required for implementing
this protocol have already been demonstrated (collective strong coupling [28], long co-
herence time, EIT resonances [68] and coupling to different transverse cavity modes).
To successfully implement the storage process in our system, a specific all-cavity ge-
ometry scheme has to be used, together with a two-component crystal medium.

In the chapter describing future aspects of my studies (8), we are going to return
to this quantum storage process. First, we describe an experimental system incor-
porating two electronically controlled acousto-optic modulators (AOMs) producing
the relevant pulse-shapes of the probe and control fields, and show a few tests that
has been performed on the system. Second, we introduce some considerations on the
specific photon detection scheme for our system during quantum memory read-out,
which becomes slightly complex because of the all-cavity implementation.

Furthermore, the experiments described in this thesis serves as preparatory im-
provements of our insight to the thermodynamic properties of the ion system, together
with a study of increasing the coupling strength to the cavity mode, by placing the
ions at positions of maximum field intensity. The obtained results may give us the
possibility to improve the efficiency of the quantum memory, once this device is func-
tioning.





Chapter 5

The experimental setup

This chapter presents the experimental setup used in my work as a PhD student.
In the first section a short historical background is given (sec. 5.1). Then, we give
an overview of the setup inside the vacuum chamber and define the different laser
beams going into the cavity trap (5.2). In sec. 5.3 the trap is described, referring
to chapter 2. In sec. 5.4 a description of the optical cavity is given. In sec. 5.5 we
describe how the different lasers are applied to the system and what purpose they
have in the measurements. In sec. 5.6 the CCD-imaging system is described together
with the detection system of the cavity fields. In the last section (5.7) we discuss the
calibration of the trap potentials relative to the cavity field. For a more extensive
description, the reader is referred to [27,73].

5.1 Experimental setup: historical background

In this chapter the setup used in the thesis will be presented. Most of the setup
was already built and had been operating for some years when I started working on
my project. The main purpose of this experimental setup is to build an efficient
quantum memory consisting of a large ion Coulomb crystal in an optical cavity. A
description of a quantum memory for light using cold trapped ions together with
numerical simulations estimating the fidelity of single photon storage can be found
in Anders Mortensen’s PhD thesis [14]. To implement this scheme a first version of
a linear Paul trap incorporating an optical cavity was built by Anders Mortensen in
2002-2005. Unfortunately, this trap never succeeded in trapping ions. In another
trap, not including a cavity, Anders Mortensen performed experimental studies of the
loading rate of ions into the trap [162], electron transfer experiments between different
isotopes and general structure studies of ion Coulomb crystals both single-component
and bi-component [106,163].

Around 2005 the project was continued by Peter Herskind and Aurélien Dantan
who developed and constructed a second trap, which is the one described in this thesis.
An extensive description of the trap, the cavity and the majority of laser systems used
in the current setup is found in Herskind’s PhD thesis [27].

Trapping charged particles close to dielectric objects like cavity mirrors is very
challenging, as the dielectrics modify the boundary conditions set by the electrodes
and can substantially alter the field lines of the confining potentials. One of the
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fundamental requirements in order to obtain a quantum memory in an ion system is
the achievement of the strong coupling regime [61], introduced in sec. 3.3. To enter
the strong coupling regime with single ions the cavity mode volume has to be small
(see eq. (3.25)) making it very difficult. Thus, only a few groups in the world has so
far obtained strong interaction between single ions and a cavity field mode (e.g. using
optical fiber cavities [19–21]), although not in the single-ion strong coupling regime
yet.

Our cavity trap was designed to operate with large ion Coulomb crystals, where the
effective coupling rate with the cavity field is enhanced by

√
N , where N is the number

of ions effectively coupling to the cavity field, introduced in sec. 3.3.2 (see eq. (3.44)).
In 2008-2009 operation in the collective strong coupling regime, in which the collective
coupling rate g

√
N exceeds the decay rates of the system, γ and κ, was demonstrated

in this trap [28]. Collective strong coupling was subsequently achieved for various
transverse cavity modes [74], and, recently, observations of cavity electromagnetically
induced transparency (EIT) and all-optical switching [68] in this system have been
major advances towards the realization of an ion Coulomb crystal-based quantum
memory [61]. In this context, the experiments reported in this thesis contribute to
the preparation of the ion-cavity system to work as a quantum memory for photons.
Only minor changes to the original optical setup have thus been performed and these
will be introduced in the relevant sections.

5.2 Overview

The ion trap used in this project is a segmented linear Paul trap formed by cylindrical
electrodes equivalent to the trap introduced in sec. 2.1. Integrated into the trap is
a moderately high finesse optical cavity having its axis parallel to the symmetry axis
of the quadrupole trap (see sec. 5.4). The whole setup is placed inside a vacuum
chamber with a diameter of 40 cm, pumped to a pressure of a few 10−10 mbar.

Outside the vacuum chamber three sets of Helmholtz coils are mounted. Two coils
produce magnetic fields in the x- and y-direction to compensate for the residual earth
magnetic field. The third coil produces a magnetic field in the z-direction to create
a well-defined quantization axis parallel with the trap axis. This splits the atomic
energy levels into Zeeman states and these can be addressed by narrow linewidth
laser fields. More detail about the considered substates will be given in the relevant
sections describing the experiments.

The vacuum chamber is provided with 7 view-ports, anti-reflex coated for the
appropriate wavelengths, giving optical access to laser fields from all sides. On fig.
5.1 this is illustrated together with the main applied laser beams. Cooling light is
primarily provided along the trap axis (z) and, optionally, in the radial direction (x)
depending on the ion structure in each of the experiments (see 2.3.1). The cooling
light (397 nm) does not couple to the optical cavity because of the chosen coating
on the mirrors, but is transmitted through the mirrors almost unaffected. A repump
beam (866 nm) and an optical pumping beam (866 nm) is applied in order to cool the
ions and prepare the internal states of the ions. In addition, a probe (866 nm) and a
reference (894 nm) beam are applied along the cavity axis coupling light resonantly
into the cavity mode. To load ions into the trap an ionization laser (272 nm) is applied
orthogonally to a beam of neutral Ca atoms provided from an oven and some skimmers
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Figure 5.1: Sketch of the vacuum chamber (top-view), showing the cavity-ion trap (center),
the main laser beams and their direction relative to the trap. The inner diameter of the
chamber is 40 cm. The x- and z-directions has been defined on the figure in accordance to
the definitions of sec. 2.1.

shaping the atomic beam. More details on the isotope selective loading procedure are
given in sec. 5.5.5. The vacuum chamber is placed on an optical table containing
all the necessary optics distributing the laser beams to the correct directions into the
system. For more detail on the different applied lasers see sec. 5.5. All laser systems
are placed on different optical tables and brought to the trap table through single-
mode optical fibers. This minimizes vibration and noise interactions between the trap
and laser systems and more importantly ensures stability in the beams directions on
the trap table. More details about the trap design, assembly and characterization
can be found in the Ph.D. thesis of Anders Mortensen [14], Peter Herskind [27] and
Magnus Albert [73].

5.3 The linear Paul trap

A central part of our experimental setup is the ion trap; a linear Paul trap of four
cylindrical rods, each segmented into three individual electrodes. On fig. 5.2 a pho-
tograph (sideview) of the actual trap and cavity system are seen, while fig. 5.3 shows
a sketch defining the length scales. A description of a linear Paul trap is given in
sec. 2.1 together with equations for the confining potentials. All electrodes have a
radius of re = 2.6 mm and the distance between diagonal electrodes is 2r0 = 4.7 mm.
The end-electrodes have a length of ze = 5.9 mm while the center electrode length is
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Figure 5.2: Photo of the cavity trap inside the vacuum champers seen through a view
port. The cylindrical electrodes, made from copper with a gold coating, are mounted to a
monolithic ceramic mount. The two cavity mirrors are hidden inside the mirror coats, here
shining blue. Mirror 1 (high reflector (HR)) is mounted to a titanium plate on one side, while
mirror 2 (partial transmitter (PT)) is mounted into a PZT system allowing for scanning or
actively stabilizing the cavity length. In the trap center a large ion Coulomb crystal (∼ 1 mm
long) emitting 397 nm light during cooling, can be observed.

2z0 = 5.0 mm. An electrical RF-field is applied to all three electrodes in each rod, in a
quadrupolar configuration, i.e. with a phase difference of π between neighboring rods
(see fig. 2.1). The RF-field is operated around the frequency ΩRF = 2π × 4.0 MHz
and provides a confinement in the radial direction (x and y). The axially confining
potential (z-direction) is created by applying a static electrical DC potential to the
electrodes on each end of the rods.

With these geometric definitions the a- and q-parameters, defined in eq. (2.5),
can be expressed as: a = −0.84 × 10−3V −1 × UDC and q = 1.38 × 10−3V −1 × Urf .
Here the axial geometric constant is η = 0.342 (see eq. (2.1)). The electrodes are
manufactured in copper, coated with a thin layer of gold and mounted on ultra low
expansion glas rods1. The whole structure is held together by a monolithic ceramic
mount2. For more detail about the trap design and assembly see the thesis by Peter
Herskind [27].

The RF trap-voltages are produced by a frequency generator and amplified before
being transfered to the electrodes through a resonant circuit. A homemade voltage
driver is used to supply DC voltages to the electrodes. Most importantly, this allows
for varying the axial potential by changing the end-electrode voltages at the same time,
but it also makes it possible to alter the DC potentials of each individual electrode

1Made of Zerodur®, manufactured by the company Schott
2Made of a machinable ceramic material called Macor
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segment separately. In this way the DC potential minimum can be shifted around
in the trap both radially and axially opening the possibility to position the ions at
will. The trap itself acts as a capacitative part of an LRC-circuit which is coupled
inductively to the RF-power supply. Variable external capacitors makes it possible
to either tune the phases of different RF-chains and in this way alter the resonance
frequency of the circuit, while others can be used to fine tune the voltage on individual
trap electrodes. This adjustment is usefully when overlapping the trap center with
the cavity axis (see sec. 5.7), but also crucial for minimizing the excess micromotion
in the ion system (see sec. 7.3.5).

2z0   ze

2r0

mirror coat

mirror substrate

z
x

y

Figure 5.3: Sketch of linear Paul trap with integrated mirrors forming an optical cavity
along the RF field-free axis (z). For more detail see [27].

5.4 The optical cavity

The optical cavity consists of two mirrors with a diameter of 1.2 mm and a radius of
curvature of rM = 10 mm. The mirrors are mounted in a nearly confocal geometry
with a spacing of L = 11.8 mm and the cavity axis is parallel to the symmetry axis
of the linear Paul trap (see fig. 5.3). The mirrors are made of fused silica and their
presence could in principle cause the RF-field lines to bend and introduce excess
micromotion, and thereby broaden the atomic transitions through the Doppler effect.
As mentioned in sec. 2.3.4, simulations showed that this issue could be minimized
by adding dielectric mirror coats around the substrates extending almost all the way
to the electrodes [14]. The coats have a diameter of 4.16 mm, while the electrode
separation is 2r0 = 4.70 mm (see fig. 5.3). On fig. 5.2 the coats appear blue arising
from scattering of 397 nm cooling light.

The mirrors are coated for 866 nm and 894 nm with one mirror being a high
reflector (HR) and the other being a partial transmitter (PT), having transmittances
of 5ppm and 1500ppm, respectively, at 866 nm. A construction of two titanium plates
holds the cavity together. The HR mirror is fixed at one plate, and on the other plate,
the PT mirror is mounted in a holder containing a piezo-electric transducer (PZT)
module. This allows for the cavity length to be either scanned or locked (see fig. 5.2).
The choice of optical frequency-bands in the coating makes it possible to address the
3D3/2 ↔ 4P1/2 transition in 40Ca+ with an 866 nm laser field (see fig. 2.2), while
at the same time having a non-atom-interacting laser field resonant with the cavity
at 894 nm, with the purpose of locking it. The cavity has a free spectral range of
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νFSR = 12.7 GHz and the waist of the TEM00 mode is ω0 = 37µm. The cavity
decay rate is measured at 866 nm to κ = 2π × (2.1 ± 0.1) MHz giving a finesse of
F = 3000±200 [27], whereas, the finesse at 894 nm is about 2000. Modematching the
866 nm light to the fundamental cavity mode can typically be achieved with > 95%
efficiency.

5.5 Laser systems

In this section we introduce the lasers used for Doppler cooling, state preparation and
ionization of the ions. A sketch of the beams entering the trap area are shown on fig.
5.1, and the optical setup for most the laser beams is shown on fig. 5.4.

Optical pump 
866 

Ti:Saph 
794 nm 

Reference 
cavity 

PDH 
lock 

SM
 f

ib
er

 
PBS 

AOM 
PDH 
lock 

PBS 

Diode laser 
866 nm (1) 

Diode laser 
866 nm (2) 

Diode laser 
894 nm 

AOM 

BS 

Reference 
cavity 

PDH 
lock 

PDH 
lock 

PBS 

A
O

M
 

SM
 f

ib
er

 

DM 

DM 

SM fiber 

P
B

S 

AOM 

A
O

M
 

Repumper 
866 

SM fiber 

λ/4 

λ/2 

SM
 f

ib
er

 
APD 

PBS 

SM
 f

ib
er

 

APD 

λ/2 

λ/2 
@866 

PDH 
lock 

Z 

X 

Cavity  
866, 894 

Cooling  
397 

Cooling 
397 

SHG 
794397 

866, 894 

894 

866 

λ/4 

PBS 

Cooling 
397 

894 

PT 

HR 

λ/2 
λ/4 

@866 

GP 

GP 

GP 

8
6

6
, 8

9
4

 

PBS 

Figure 5.4: Schematics showing the cavity trap and the laser beams needed for Doppler
cooling and state preparation of the ions. Along the beam paths the wavelength and purpose
of the laser fields are indicated. The abbreviations are: acousto-optic modulator (AOM),
second harmonic generation (SHG), Pound-Drever-Hall (PDH), single mode (SM), beam
splitter (BS), polarizing beam splitter (PBS), avalanche photo detector (APD), dichroic
mirror (DM), glan polarizer (GP).
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5.5.1 Doppler cooling laser - 397

Light at a frequency of 397 nm is used to cool the trapped ions by driving the
4S1/2 ↔ 4P1/2 transition for the 40Ca+ (see fig. 2.2). A Verdi V8 laser (5.5 W
at 532 nm) pumps a Coherent Ti:Saph laser and produces typically ∼ 200 mW of
794 nm light, which is subsequently frequency doubled into 397 nm through a second
harmonic generation (SHG) process in an external bow-tie cavity system containing
an LBO crystal. Before the SHG a part of the 794 nm beam is taken out and used
for frequency stabilization using a Pound-Drever-Hall (PDH) lock [164,165] to a tem-
perature stabilized reference cavity. The reference cavity is formed by two mirrors
on a 25 cm long quartz tube, it is mounted inside a vacuum tube and has a FSR
of ∼ 600 MHz. The stability of the laser in lock was measured to 1 MHz/h (for
more detail see [166]). Fine tuning of the laser frequency is done using a double pass
acousto-optic modulator (AOM) in the locking setup, allowing for tuning the Ti:Saph
laser by ±100 MHz. This corresponds to a total tuning range of the doubled 397 nm
light of ±200 MHz. When the laser is in lock its linewidth is <MHz, hence, much
narrower than the Doppler cooling transition in 40Ca+ which is Γ = 2π × 22.4 MHz.

The 397 nm light passes an AOM in single pass and the −1st order of diffraction
is coupled into a single mode (SM) optical fiber and sent to the trap table (see fig.
5.4). This AOM has the purpose of switching the laser source on and off during the
experimental process. The attenuation after the fiber is ∼ 55 dB and the switching
has a typical rise time of ∼ 100 ns. At the trap table the laser beam is split into
three parts. Two beams are sent to the trap along the axis (z) in opposite directions
(see fig. 5.4), with σ+/σ− circular polarization and approximately equal intensity
at the center of the trap. The third beam, linearly polarized along the y-direction,
is sent perpendicular to the trap axis (x). The balance of axial to side cooling can
be adjusted in order to stabilize cooling of single ions, strings of ions as well as ion
Coulomb crystals.

5.5.2 Repumping and optical pumping laser - 866-2

A diode laser [167], here referred to as 866-2, provides light at 866 nm corresponding
to the 3D3/2 ↔ 4P1/2 transition of the 40Ca+ ion (see fig. 2.2). The laser uses
an external-cavity, as the output coupler is a grating (1800 lines/mm) placed in a
Littrow configuration. The frequency can be tuned by varying the diode current, the
temperature (through a peltier element) or by a PZT changing the angle of the grating
(i.e. the cavity length). The 866-2 laser is used to repump the ion population that
decayed into the metastable 3D3/2 state during the Doppler cooling cycle, but also
to optically pump the ion populations into a certain Zeeman sub-state of the 3D3/2

level.
Like the 397 nm laser system, the 866-2 diode laser is frequency stabilized to a

temperature controlled reference cavity (25 cm long and νFSR ∼ 600 MHz) using a
PDH lock, resulting in a laser linewidth of ∼ 100 kHz. As before, a double-pass AOM
is used to tune the laser frequency, while a single pass AOM on each beam allows for
switching the light on or off during the experimental sequence. Again, the -1st order
of diffraction is coupled into a single mode optical fiber and sent to the trap table (see
fig. 5.4) with an extinction > 55 dB after the fiber. A third part of the 866-2 laser
beam is coupled into the cavity, which is described below.
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The repumper is sent into the trap along the x-direction as shown in fig. 5.4. It has
a linear polarization perpendicular to the y-axis, which corresponds to a superposition
of σ+ and σ−, in the basis of the quantization axis (z-axis). This ensures that all four
Zeeman states of the 3D3/2 level are addressed and repumped into the cooling cycle.
The optical pumping is performed by sending the 866-2 beam to the trap at an angle
of 45o relative to the quantization axis (see fig. 5.4). The polarization is carefully
chosen to only drive π and σ+ transitions between 3D3/2 and 4P1/2 [168]. Before
entering the trap area the beam passes a glan polarizer (GP), followed by a λ/4 and
a λ/2 wave plate, in order to control precisely its polarization. During the optical
pumping process, the 397 nm cooling light is also present, making the m = +3/2
state of 3D3/2 the only un-addressed state and hence, population is pumped into
this specific quantum state (more detail will be given in the appropriate experimental
descriptions).

5.5.3 Cavity reference laser - 894

A diode laser, with a wavelength of 894 nm, is used as a cavity reference in the
experiments (see fig. 5.4). The laser has the same design as 866-2 and is locked to
the same reference cavity using the PDH technique. As with the other diode lasers
the frequency can be tuned using a double pass AOM before the reference cavity.

The wavelength of 894 nm is not resonant with any transitions in the 40Ca+ ion,
but despite the narrow linewidth the laser light still contains a non-negligible amount
of photons at 866 nm. These might possibly interfere with the probe field light at the
single photon level, interacting close to resonance with the 3D3/2 ↔ 4P1/2 transition.
As a consequence, the 894 nm light is spectrally filtered with a diffraction grating
(1800 lines/mm) before being sent to the trap table through a SM fiber overlapped
with the beams of the cavity probe lasers. The grating is not shown on fig. 5.4.

The 894 nm laser has two purposes in the experiments, depending on the measure-
ment. By scanning the cavity length, the resonance signal of the 894 nm laser can be
observed. The transmission peak is used to monitor drifts and acoustic noise by com-
paring its position in the scan with a resonance of the probe lasers [27], i.e. serving as
a frequency reference. The second purpose of the laser is to lock the cavity length in
a PDH scheme to ensure that the cavity resonance frequency is well-determined with
respect to the atomic resonance frequency of interest. Note, that the 894 nm laser
and the probe lasers have the same reference cavity and hence, experience (almost)
the same slow drifts of the reference cavity. The detection system of all cavity fields
will be described in sec. 5.6.2.

5.5.4 Cavity probe lasers - 866-1 and 866-2

In the experiments, two different lasers are used to probe the interaction of the coupled
ion-cavity system, 866-1 and 866-2 (see fig. 5.4). 866-1 is a diode laser similar to
866-2. It can be frequency stabilized to the same reference cavity and tuned using
a double pass AOM by ±100 MHz. The linewidth of the 866 nm probe lasers in
lock (∼ 100 kHz [27]) are substantially narrower than both the cavity decay rate
(κ = 2π× 2.1 MHz) and the atomic dipole decay rate (γ = 2π× 11.2 MHz), ensuring
reliably interaction between the lasers and the ion-cavity system. A SM fiber transfers
the 866 nm probe light, together with the 894 nm reference light, from the laser table
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to the trap table. Before the fiber, a single pass AOM is used as a shutter for each
beam, sending the -1st order of diffraction into the fiber (attenuation after fibers
> 55 dB). In fig. 5.4 both 866 nm lasers enter the cavity from the PT mirror side.

Depending on the aim of the experiment, the cavity probe lasers serve different
purposes:

� In measurements of the collective coupling between an ion Coulomb crystal and
a cavity field, such as those depicted in sec. 6.1, the 866-1 beam is used for
probing the crystal-cavity system at the single-photon level and its detection is
performed by measuring the light reflected by the cavity using an APD. In this
configuration the 866-2 beam is only used for repumping and optical pumping.
The 894 nm, 866-1 and 866-2 lasers are all locked to the stabilized reference
cavity. This makes it possible to reference the 894 nm laser to the others and
prevent any relative frequency drifts.

� In sec. 6.2 and chap. 7, the 866-1 laser light is used to create a far-detuned in-
tracavity optical lattice, while light from the 866-2 laser, close to resonance with
the atomic transition, is used to probe the ions. Both lasers are resonant with
the cavity but with different frequencies, i.e. resonate with different longitudinal
modes of the cavity. In these experiments it is required that the standing wave
lattice field (866-1) follows the vibrations of the trap cavity and thus, the laser
is locked directly to the experimental cavity, and not to the reference cavity.
This is done in order to minimize the intensity fluctuations of the intracavity
optical lattice. The trap cavity itself is then locked to the 894 nm laser, which is
locked to the stabilized reference cavity. Furthermore, locking the cavity probe
(866-2) to the reference cavity keeps it resonant with the trap cavity but also
on atomic resonance.

Beside the configurations described above, there is also a possibility to send one
of the 866 nm laser beams through a different fiber in order to couple light into the
cavity from the HR side. This beam arrangement was used when investigating cavity
electromagnetically induced transparency (EIT) (see [68,73]) and this will also be the
configuration used in order to realize a quantum memory for light (see chap. 4 for
more detail).

5.5.5 Isotope selective loading laser - 272

Our ion loading scheme only involves an atomic beam and a single laser source,
nonetheless, a specific number of ions of a particular isotope, can deterministically
be loaded into the trap. The atomic calcium beam is produced from a resistively
heated oven and sent through the trap center at 45◦ compared to the trap axis as
seen on fig. 5.1. The most abundant calcium isotope is 40Ca (96.9%), which is also
used in all experiments presented in this thesis, however, any other stable Ca isotope
can be ionized and loaded into the trap [27, 169] (see app. A.1). This is important,
e.g. when trapping two species simultaneously in the trap, in the context of quantum
memory [106,170].

The oven is heated to ∼ 400◦C and the atomic beam is collimated using skim-
mers after which it passes the trap center. Here, a 272 nm laser beam crosses the
atomic beam at 90◦ and photo-ionizes the calcium atoms. As shown in fig. 5.5, we
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Figure 5.5: Isotope selective two-photon ionization scheme for Ca+-ions from neutral Ca
atoms, resonantly enhanced by the first 272 nm absorption. The lifetime of the 4s5p1P1 and
the 4s3d1D2 states in Ca are 17-60ns [171] and 18ms [172] respectively.

use a two-photon ionization process enhanced by the first resonant absorption stage.
Neutral calcium is resonantly excited to the 4s5p1P1 state with the 272 nm laser
and afterwards transferred into the ionization continuum, using the same laser field.
This occurs directly from 4s5p1P1 or through the metastable 4s3d1D2 state, after a
spontaneous decay. For the different isotopes, the resonance frequency of the first
transition differs substantially, and thus, this method is isotope selective (as demon-
strated in [162]), e.g. the difference between the resonances of 40Ca and the closest
isotope, 42Ca, is 1 GHz.

The 272 nm light is produced by a fiber laser3 at 1088 nm that is frequency
doubled twice using SHG in two consecutive bow-tie cavities [173]. The first SHG
stage uses a type I non-critical phase-matching in a LiNbO3 crystal, which depends
on temperature matching of the medium, to produce light at 544 nm, while the second
stage employs type I critical phase-matching in a BBO crystal to turn the frequency
into 272 nm. The frequency of the fiber laser can be scanned over a range of 5.8 GHz
using a PZT or, by changing its temperature (2.3 GHz/K). The wide tuning range
of the fiber laser and its narrow linewidth (<MHz) makes it possible to ionize any
stable Ca isotope. During loading, the cooling and repump lasers are also present
in the trap [169], and as the desired number of ions is reached, the 272 nm loading
laser is blocked manually and the oven is closed. Using this method, large single- and
bi-component crystals of up to 105 ions can be quickly loaded into the trap [169].
The same ion ensemble can be kept in the trap during many experiments and we can
easily reload ions if they escape from the trap.

3The fiber laser is a so-called distributed feedback (DFB) laser, Koheras Boostik�
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5.6 Imaging and detection system

In the experiments we use two different methods to get information on the ion-cavity
system. The first method is based on the collection of fluorescence photons emitted by
the ions during cooling (397 nm), while the other method is based on the measurement
of the cavity reflection signal (866 nm).

5.6.1 CCD imaging

Two charge coupled device (CCD) camera systems are used to detect images of the
ions in the trap by collecting the 397 nm fluorescence remitted during the Doppler
cooling process. This makes it possible to determine the size and location of the ion
position distribution in the trap. On fig. 5.6 the camera system is depicted together
with images obtained with each of the cameras. Images of the ion Coulomb crystals
are projections of the three-dimensional ellipsoidal shaped ion system into an image
in two dimensions.

A camera4 mounted above the trap can image trapped ions in the (x, z)-plane. The
ion fluorescence is collected by a long achromatic imaging lens with a focal length of

y 

x 
CCD 

Image 
Intensifier 

Objective 

Lens 

CCD 

y-axis view 

x-axis view 

Figure 5.6: Schematics of the imaging setup. Two charge coupled device (CCD) cameras
can be used to monitor the ion position by collecting the 397 nm fluorescence of the ions. The
camera used in the experiments are mounted above the trap in the y-direction and an image
recorded with a magnification of 10 is shown to the right (part of an ion Coulomb crystal
containing ∼ 13000 ions). A second camera can image the ions from the side (x-direction),
although with a much lower magnification, and the projection image to the right shows a
very large crystal of length ∼ 2.5 mm.

4PCO sensicam
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70 mm. The lens and camera are mounted in a hight above the trap leading to a
magnification of ∼ 10 on the CCD. The size of the camera CCD is 640 × 480 pixels
and this leads to an image resolution on the CCD of 0.9 µm/pixel. In the experiments
presented in sec. 6.1, where the ion-cavity coupling is measured from the cavity
spectrum, the ions are imaged directly onto the camera. The image depicted in the
top right of fig. 5.6 shows a projected image of an ion Coulomb crystal (Ntot ≈ 13000)
during cooling. In the experiments described in chap. 7 the fluorescence level is
extremely low, as the experiments involve only single ions. In this case the ions are
imaged onto an image intensifier5 with a magnification of 20 and subsequently onto
the CCD camera with a magnification of 1/2 using a commercial objective6. The
resulting magnification is still ∼ 10.

Inside the image intensifier, incident light from the ions is transformed into elec-
trons using a photocathode. The electrons are accelerated and amplified through
two stacked multichannel plates and produces a fluorescence image on a phosphor
screen. This is detectable for the CCD camera as an amplified image of the ions.
The acceleration voltage of the image intensifier can be used to gate the images in
well controlled sequences with a time resolution as short as 20ns. This is of great
importance especially for the experiments of chap. 7 where we are only interested in
measuring scattered light from the ions at certain time-intervals in an experimental
sequence. The fast gating can also be used to obtain time resolved images of the ions
to e.g. visualize dynamics of the ion Coulomb crystal undergoing micromotion for
example.

The side camera (x-axis view) images the ions in the (y, z)-plane and is only used
under circumstances where the top-camera has a limited view. As the lens is outside
the vacuum chamber (with ∼ 30 cm to the trap center), its imaging resolution and
magnification is considerably lower than for the top-camera. This makes it possible,
though, to observe very large ion Coulomb crystals but also to determine the vertical
position of the ions. Fig. 5.6 shows an image taken with the side camera containing a
long ion Coulomb crystal. On the image, contours of the electrodes can also be seen
indicating the length scale of the crystal (∼ 2.5 mm).

5.6.2 Probing and detection of the cavity signal

As introduced above we use two possible configurations in the experiments described in
this thesis. In the experiments with the high-power lattice laser of sec. 6.2 and chap. 7
detection of the reflection or transmission can be done with normal photodiodes. The
ion-cavity coupling experiments (sec. 6.1) take place at the single photon level and
therefore we use two avalanche photo detectors (APD) to collect the reflected and
transmitted photons. A PBS placed in cavity reflection makes it possible to choose
between measuring with the APD or with the normal detectors.

One APD is installed on the PT side of the cavity to record the reflected signal from
the cavity probe beam (see fig. 5.7). Before arriving at the cavity, the probe (866 nm)
and reference (894 nm) beams pass a glan polarizer (GP), separating the incident
and reflected cavity signals. Subsequently, a λ/4 and a λ/2 wave plate ensures the
appropriate circular-polarization of the laser fields, and in addition they compensate

5Proxitronic detector systems, MCP-Proxifier
6Nikon
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Figure 5.7: Schematics of the cavity detection system showing a segment of fig. 5.4.

for any birefringence effects imposed by the cavity mirrors or the dichroic mirror used
to combine the cooling light at 397 nm with the cavity beams. The beams are then
injected into the cavity through the PT mirror and the reflected beam is deflected in
the GP that was passed by the incident beam. In order to separate the probe from the
reference in the reflected signal a wave plate thats acts like λ/2 at 866 nm and λ at
894 nm is combined with a polarizing beam splitter (PBS) (see fig. 5.7). The 894 nm
light is reflected off the PBS and sent to a photo-detector where a PDH lock can be
used to stabilize the length of the experimental cavity. The 866 nm light is sent to the
APD through a SM fiber, after having passed a diffraction grating (1800 lines/mm)
removing any remaining 894 nm photons. The resulting detection efficiency of the
reflected probe photons is ∼ 16% [27] (APD@866 nm ∼ 44%, grating ∼ 63%, APD
fiber coupling ∼ 65%, optics ∼ 90%).

On the HR side of the cavity an APD measures the transmitted 894 nm reference
light (see fig. 5.7). The light passes a combination of λ/4 and λ/2 wave plates
at 866 nm, not changing the 894 nm polarization. A part of the reference light is
reflected off a GP, passes a spectrally filtering diffraction grating (1800 lines/mm)
and is coupled via a SM fiber to a second APD.

The standard photo-detectors present on each side of the cavity (see fig. 5.7)
measures reflection and transmission signals of greater intensity, i.e. when not working
on the single photon level. In experiments with the strong 866 nm lattice laser the
transmitted signal is used to monitor the lattice strength by measuring the hight of
the signal in lock and converting it to an intra-cavity field strength. The standard
detector placed in reflection is used to lock the lattice laser to the experimental cavity
(as mentioned above).
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Scanning the cavity

We scan the cavity length by varying the voltage sent to the PZT system at the PT
mirror. Typically we drive the voltage with a triangular shape at a rate of 30Hz and
a variable amplitude allowing for a frequency span of the spectrum of up to 13 GHz.
In the experiments described in sec. 6.1 the cavity reflection signal is repeatedly
measured by the APD with a typical integration time of ∼ 1 µs at a rate of ∼ 50 kHz.
Because of the extremely low photon flux (∼ 106/s), the cavity spectrum is obtained
from an average over several hundreds scans. To compensate for acoustic vibrations,
which are changing the cavity resonance position from scan to scan, the 894 nm
reference laser is used. It is possible to overlap the cavity resonances of the two lasers
in the scan (866 and 894) by slightly changing the frequency of the reference. Thus,
mechanical drifts will affect both signals equally.

Since the amount of 894 nm light injected into the cavity is much higher than
that of the probe, the transmitted 894 nm resonance can easily be observed with the
APD in cavity transmission in a single scan. Hence, the cavity resonance frequency
determined by the reference peak position in each scan can be monitored individually.
This can be used to reference the probe signal to that of the cavity in different scans
and perform an average which is not broadened by the cavity vibrations [27]. From
this referencing technique the final resonance spectrum of the ion-cavity probe can be
determined precisely in accordance to sec. 3.3.2 and 3.3.3.

Locking the cavity

Another option is to lock the cavity at a certain detuning from the atomic resonance
frequency. The reflected 894 nm reference signal can be used to actively stabilize the
cavity length by imposing a PDH lock feedback to the PZT system. Usually, the
frequency of the reference laser is set such that the cavity resonance overlap with the
atomic resonance and the reflected 866 nm probe laser is recorded with the APD.

Again, acoustic noise in the cavity makes the stabilization difficult and the mea-
surements of the reflected probe field will be noisy [73]. To filter this noise we record
the transmitted signal of the reference laser on the second APD at the same time as
we record the reflected probe laser signal. On fig. 5.8(a) the reflected signal of the
resonant 866 nm probe is shown (black squares) when the cavity length is locked,
together with the transmitted signal of the 894 nm reference laser (red circles). It
is evident that noise7 dominates the signal, and makes it hard to get reliable data
directly. We observe variation in the reflected signal from the known on-resonance
count (∼ 25) up close to the completely off-resonant level (∼ 215). The signals are ac-
tually obtained after optimizing the electrical feedback system to react on the known
vibrational frequencies, but the signals are still clearly unusable.

A way to avoid this problem is to exploit that the noise in the two signals are
correlated in time. When the transmitted reference signal (894 nm) drops below a
certain threshold we deduce that the cavity is no longer resonant with the laser. In
the recorded data, a filtering can be performed by only keeping point for which the
reference APD exceeds the threshold limit. This cleaning reduces the useful data

7Measurements of the mechanical spectrum revealed the dominant vibrational resonances around
400 Hz and 2000 Hz. For more detail see [27]
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points and hence increases the measurement time, but eventually it ensures that the
cavity was resonant for the selected data points [27, 73]. On fig. 5.8(b) we see the
cleaned data for a threshold value of 305 counts and we clearly observe a signal with
much less noise and much closer to the correct on-resonance level.

866refl(∆c=0)

894trans

     866refl (∆c=inf)

(a)

894trans894trans

866refl(∆c=0)

866refl(∆c =inf )

(b)

Figure 5.8: Measurements from [27]. (a) APD counts in 50 µs bins when locking the cavity
to the 894 nm laser. Observed is the 894 nm signal in transmission (red circles) and the
reflected signal of the 866 nm probe with another (black squares). The horizontal black line
shows the level of 866 nm reflection when the cavity is completely off-resonant. (b) Corrected
data. All data sets, for which the 894 nm signal is lower than the threshold (here 305 counts)
is disregarded.

5.7 Calibration and overlapping of the cavity and trap axis

For the experiments performed in our setup, it is crucial that the cavity axis and the
trap axis are well-overlapped. This ensures that the ions are addressed efficiently by
the cavity field while being placed on the field-free nodal line of the RF potential.
DC potentials added to some of the electrodes can translate an ion crystal e.g. in
the radial direction, but this causes the symmetry-axis of the crystal to move away
from the nodal-line. The crystal is hence moved into regions of large micromotion
amplitudes (described in sec. 2.3.4) leading to unwanted RF-heating and broadening
of the atomic linewidth.

Another approach is to change the RF-voltages (Urf ) by which the position of the
radial pseudo-potential minimum can be controlled. This will move the ion crystal
with respect to the geometric center but keep it centered on the field-free nodal line.
Fig. 5.9(a) illustrates how lowering the 6 electrodes on one side8 makes the ions move
radially in the x-direction. The curves illustrate the RF-potential at two different
times in the RF-cycle out of phase by π.

The RF-voltage is applied by a frequency generator and amplified by an RF-
amplifier9 before it is transferred to the trap electrodes. The RF power supply is
applied through a ferrite toroid transformer with a single turn on the supply side

8Here the amplitude of the RF-field on the 6 electrodes numbered 7-8-9 and 10-11-12 is decreased
9Amplifier Research, 4W1000
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Figure 5.9: (a) Illustration of moving the ions (in the x-direction) with respect to the
geometric center by decreasing the RF-amplitude of the electrode rods on one side of the
trap compared to the other. Electrodes number 7-8-9 and 10-11-12 are changed by varying
the capacitative loads in accordance to the text. The curves represent the RF-potential
at two times in the RF-cycle out of phase by π and the ions are depicted with an orange
circle. (b) Schematics of the RF resonant circuit. Each electrode has a capacitance Ct and
are connected to the RF power-supply through a toroidal transformer of inductance L. C
represents the capacitance of the remaining circuit. By applying additional loads in serial
(Cs) or parallel (Cp) the RF potential minimum can be moved radially.

and 10 turns on the trap side. The individual trap electrodes acts like a capacita-
tive part of an LRC resonance circuit and the inductance, L, is mainly set by the
transformer. In fig. 5.9(b) a schematic drawing of the circuits is shown, where the
single electrodes have a capacitance Ct and the rest of the circuit is represented by
the capacitance C. Without any other capacitances the voltage on the electrode is
given by Ue = Uin/(1 + Ct/C). The RF-voltage can be adjusted by changing the
capacitative loads of the individual electrodes by adding extra capacitors in series,
Cs, or in parallel, Cp. By modifying the individual electrode loads the ion crystal
can be moved slightly in any radial direction of the trap. For a more comprehensive
description see [27,128]

After the trap was assembled, the potential minimum was displaced in this fashion
by ∼ 90 µm in the x,z-plane and ∼ 80 µm in the y,z-plane [128]. By measuring
projection images of ion crystals or the coherent coupling with the cavity field, it
was found that the trap and cavity axis could be overlapped to within ±1µm. The
whole electrode system acts like one resonant circuit and changing one load affects the
coupling of the RF-voltage sent to any of the other electrodes. Also, the RF resonance
frequency will change and this might induce unwanted phase shift in the RF-fields.
Additional variable capacitors have been added in parallel to the electrode capacitance
(Ct) allowing for fine tuning of the voltage on the individual trap electrodes. This
option is used in the experiments described in chap. 7 where small adjustments of the
loads is used to vary the RF-phase between different electrode segments. This can
remove residual micromotion to which the experiments of chap. 7 are very sensitive.



Chapter 6

Techniques for characterizing large
Coulomb crystals in the cavity

In preparation for the quantum memory implementation this chapter discusses two
techniques for characterizing large ion Coulomb crystals in an optical cavity. The
first technique (sec. 6.1) is a non-invasive measurement of the temperature of cold
ion crystals, making use of the coherent coupling of the crystal with a single mode
cavity field at the single photon level. In addition to directly assessing the effect
of the crystal temperature on the coupling with the cavity field it may also provide
an alternative temperature measurement method to the often-used comparison of
fluorescence images with molecular dynamics (MD) simulations [125, 174–176]. The
second technique (sec. 6.2) demonstrates the possibility of locating the absolute center
of the optical cavity by using a large ion Coulomb crystal as an imaging medium to
visualize the fluorescence pattern from two simultaneously resonant cavity fields. In
this scheme, a probe field, nearly resonant with the ions, and a strong off-resonant
field create a periodic AC Stark-shifting potential. This combination causes a spatial
beat pattern in the ion fluorescence which can be used to determine the absolute
position of the cavity center within less than a micron. In addition to being of general
interest for CQED experiments in which absolute positioning of the atoms with respect
to the cavity center may be required, this capability is needed for the localization
experiments of chap. 7.

6.1 Measuring the temperature of ion Coulomb crystals by
their coupling to an optical cavity

In this section, we will present a noninvasive method for measuring the temperature of
ion Coulomb crystals, which uses the coherent coupling of the ions to the cavity field.
When an ensemble of two-level atoms is present inside the mode volume of the cavity,
the steady state cavity reflection spectrum expresses the absorption and dispersion
induced by the atoms on the cavity field, as described in sec. 3.3.3. How these alter
the cavity field spectrum depends on the velocity distribution of the ions and can
be used to extract information on the thermodynamical state of the ions. Such a
strategy has already been used successfully to investigate collective motional modes

67
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of ion Coulomb crystals [65]. Among other things, it benefits from the collective
coupling enhancement with the cavity demonstrated in [28], and, as probing with
single cavity photons on the 3D3/2 ↔ 4P1/2 transition of 40Ca+ ions essentially leaves
the thermodynamical state of the crystal unperturbed, it is a non-invasive method.

The theory describing the CQED-interaction between an ensemble of N two-level
atoms and a single mode cavity field is found in sec. 3.3.3, and we will apply this to the
presented experiments. In sec. 6.1.1 we introduce the experiment and recapitulate the
theoretical model that is relevant for the measurements. In sec. 6.1.2 we present the
experimental procedure and in sec. 6.1.3 the experimental results are presented. In
sec. 6.1.4 a short introduction to a method for simulating crystal pictures at different
temperatures using MD simulations is given. In the future, the agreement between
the temperature obtained in the simulation and the cavity measurement should be
compared. If successful, this noninvasive method for measuring the temperature of
ion Coulomb crystals could e.g. give insight into the complex heating processes of
such crystals. Finally, in sec. 6.1.5 we provide a small discussion and give an outlook
on the experiments.

6.1.1 Introduction

The thermodynamic state of a large ion Coulomb crystal, described as a non-neutral
plasma (sec. 2.3.2), is determined by the the plasma coupling parameter, defined as
the ratio of the Coulomb interaction energy to the kinetic energy in eq. 2.23:

Γp =
Q2

4πε0 aWSkBT
. (6.1)

When the temperature, T , is increased Γ decreases. As introduced in sec. 2.3.2
large one-component plasmas are in a liquid phase when Γp & 2 and will undergo a
liquid-solid phase transition when Γp ∼ 170 [120]. Determining the temperature of
ion systems is challenging experimentally as well as theoretically. Several methods
have been used so far, e.g. fluorescence imaging of single ions or ensembles of ions,
possibly in combination with molecular dynamics (MD) simulations [125,174–176].

As opposed to using incoherent scattering, the experiments described in the current
section detect the effect of ion motion through the coherent coupling to the optical
cavity field. In the experiments, an ion Coulomb crystal of 40Ca+ ions is trapped
and Doppler-cooled to a certain temperature which can be changed by varying the
detuning of the cooling laser. MD simulations of the system has shown that the
velocity distribution of the ions after Doppler cooling is a Boltzmann distribution,
for the experimental parameters. For the ions to act as two-level systems they are
prepared in a specific Zeeman substate (here |g〉 =

∣∣3d2D3/2,mJ = +3/2
〉
) and then

probed by a weak cavity field at the single photon level resonant with the transition
to the excited state |e〉 =

∣∣4p2P1/2,mJ = +1/2
〉
.

The theoretical description of the coupled ion-cavity system is reviewed in sec.
3.3, where the dynamical equations of motion for the system observables are given
together with the steady-state solutions. In the experiments we measure the reflection
spectrum from the cavity, as it couples to the ion crystal, which is fitted to the model.
From the measured reflection spectra and the model of sec. 3.3.3 including a thermal
motion of the ions, the temperature of the crystal can be extracted. The cavity
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reflectivity is given by

Ratom-cav =
(κ′ − 2κ1)2 + ∆′

2
c

κ′2 + ∆′2c
, (6.2)

where, κ1 is the cavity loss rate of the incoupling mirror, and κ′ and ∆′c are the
effective cavity field decay rate and detuning defined in sec. 3.3.2. As in sec. 3.3.3,
if we assume a thermal atomic ensemble with a Maxwell-Boltzmann distribution, the
effective cavity detuning, ∆′c, is given by eq. (3.55) and the effective decay rate can
be expressed through an integral over the atomic velocity distribution:

κ′(∆l) = κ+
g2
Nγ√

2πγD

∫
ξ(∆l, v) e

− (kv)2

2γ2
D dv , (6.3)

where κ is the total empty cavity decay rate, v is the ion velocity along the cavity
axis (z-axis) and gN = g

√
Neff , with g being the maximum single ion coupling rate

and Neff the effective number of ions coupling to the cavity field. Hence, the total
cavity decay rate (κ′) is the sum of the empty cavity rate (κ), i.a. due to the mirror
coatings, and the decay due to absorption in the ion crystal, which in general depends

on the Doppler broadening. We define the Doppler width as γD = k
√

kbT
m , where m

is the atomic mass, T is the considered temperature, kB is the Boltzmann constant
and k is the wavenumber of the laser field. Furthermore, we have

ξ(∆l, v) =
γ2 + ∆2

l + (kv)2

(γ2 + ∆2
l )

2 + 2(γ2 −∆2
l )(kv)2 + (kv)4

, (6.4)

where ∆l = ωat − ωl is the probe laser detuning from atomic resonance, γ is the
decoherence rate of the atomic dipole.

The variation of κ′ with ∆l is given by a Voigt profile. The temperature of an ion
Coulomb crystal can be determined by measuring reflectivity spectra, from which κ′

can be determined, as function of ∆l and fitted to eq. (6.3). If the values of κ, γ and
gN are known, it allows for extracting T from γD. For ∆l = 0 eq. (6.3) reduces to

κ′(∆l = 0) = κ+

√
π

2

g2
N

γD
erfc

(
γ√
2γD

)
e
γ2

2γ2
D , (6.5)

where erfc(x) is the complementary error function.

6.1.2 The experimental sequence

To measure the coupling between the ions and the cavity field a crystal is first loaded
into the trap and Doppler-cooled to a certain temperature. In the experiments pre-
sented here, various ion Coulomb crystals are loaded with different crystal parameters;
Neff = 100-445 ions, radius R = 55-110 µm, length L = 515-1200 µm. The param-
eters were intentionally chosen not to include a very large number of ions, in order
to be able to perform a tractable comparison with MD simulations. This means that
we are not actually entering the collective strong coupling regime. Once a reliable
connection has been established between the temperatures measured using the cavity
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and the simulations, we can apply the same techniques to study to larger crystals,
in order to find the optimal crystal parameters for CQED experiments with strong
coupling enhancement, like e.g. the quantum memory system described in sec. 4.3.

We then use a specific laser sequence to prepare the ions by optical pumping into
a given Zeeman sub-level of the metastable 3D3/2 state and subsequently probe them
weakly by injecting the cavity with a σ− circularly-polarized pulse, close to resonance
with the 3D3/2 ↔ 4P1/2 transition and such that the mean number of intracavity
photon would be at most one in an empty cavity (to make the two-level situation
of sec. 3.3 applicable). After a short time (0.1 µs), allowing for the cavity field to
build up and reach steady state inside the optical cavity, the reflected probe field is
measured with an avalanche photo detector (APD) [27]. From numerical simulations
of an ensemble of N = 100 ions (described in [27]) it was found that in order to probe
a quasi-steady state regime of the system, the probing should last at most 2 µs to
be short enough, not to cause significant depopulation of the state prepared by the
optical pumping. Hence, the APD measurement is performed on this timescale. The
sequence is repeated at a rate of 33.3 kHz while the cavity is slowly scanned at a fre-
quency of 30 Hz over 1.3 GHz. In fig. 6.1(b) the sequence is shown and in fig. 6.1(a)

Doppler cooling 

4p2P1/2 
-1/2 +1/2 

4s2S1/2 
-1/2 +1/2 

3d2D3/2 
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Figure 6.1: The laser sequence used in our experiments to measure the temperature of
ion Coulomb crystals. (a) shows the relevant energy levels of 40Ca+ including the addressed
transitions in the three parts: Doppler cooling, Optical pumping and Probing. The acronyms
are: laser cooling beam (LC), repumping beam (RP), optical pumping beam (OP), probe
beam (PB). The gray shading represents the state position of the ion population in the specific
sequence part. In (b) the schematics of the experimental sequence is shown, indicating the
on and off timing of each laser and the probing APD.
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a detailed picture of the main energy-levels are shown for the different parts of the
sequence. The magnetic field (a few G) is applied along the quantization axis (z-axis).
A description of the experimental setup is found in chapter 5 where the different lasers
types are specified (see also [27,73]).

Doppler cooling In the first part of the sequence (5 µs) the ions are Doppler cooled,
which has been described in sec. 2.2 and 2.3. Two counter propagating 397 nm laser
cooling (LC) beams are sent along the z-axis with left and right hand circular polariza-
tions, respectively. In this way the ions are scattering photons on the 4S1/2 ↔ 4P1/2

transition. To avoid accumulating ions in a dark state in the metastable 3D3/2 state
a 866 nm repumping laser beam (RP) is sent along the x-direction, polarized along
the y-direction. With optimized cooling parameters (mostly depending on the 397 nm
detuning and power) typical temperatures of the crystals of a few tens of mK can be
obtained.

Optical pumping The second part (22 µs) is the optical pumping stage [168],
which transfers the ion population to the mJ = +3/2 Zeeman sub-state of the 3D3/2

level. After turning off the RP laser an 866 nm optical pumping laser (OP) is sent
onto the ions, while still having the 397 nm cooling laser (LC) on. The OP laser is
resonant with the 3D3/2 ↔ 4P1/2 transition, but consists only of σ+ and π polarized
components. It is sent to the ions with an angle of 45◦ with respect to the z-axis
and with a specific elliptical polarization [27]. At the same time the 397 nm laser is
applied in order to pump the population decaying to the 4S1/2 ground state back to
the 3D3/2 state. As the mJ = +3/2 state is not coupled to any light field, eventually
all population is transferred to it. The efficiency of the optical pumping process can
be optimized by selectively probing the population in the different Zeeman sub-levels
and measuring the fluorescence on the 4S1/2 ↔ 4P1/2 transition (397 nm). A strong
probe field is used to address the population in the mJ = +1/2, +3/2 states (with
σ− circular polarization) or the mJ = −1/2, −3/2 states (with σ+ circular polar-
ization). The population is thus transfered to the 4S1/2 level by a emitting 397 nm
photon. Sending the probe along the x-direction with a π-polarization measures the
population in the mJ = −1/2, +1/2 states. Comparing the obtained fluorescence
levels after several repetitions makes it possible to ensure an optical pumping into the
mJ = +3/2 state with an efficiency of typically ∼ 97% (for more detail see [27] or
sec. 7.4.2 for optical pumping measurements in the few ion case).

Probing In the final part (2 µs) we are probing the system by measuring the cavity
reflection signal. An 866 nm σ− circularly-polarized probe laser beam (PB), resonant
with the D3/2,mJ=+3/2 → P1/2,mJ=+1/2 transition, is injected into the TEM00 cavity
mode and this can be used to mimic the two-level system described earlier. In this
part LC, RP and OP are turned off. From the theoretical description the mJ = +3/2
state now acts like the ground state and the 4P1/2 state with mJ = +1/2 acts like
the excited state. The PB laser has sufficiently low intensity that the mean intracity
photon number is less than one all the time. Because of the low intensity of the light,
it is necessary to measure the reflected signal with an APD (see sec. 5.6.2). The APD
is turned on after a small delay (∼ 0.1 µs), letting the field build up inside the cavity
and the system reach steady state.
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6.1.3 Experimental results

While the sequence is repeated, the length of the optical cavity is slowly varied using
the PZT (see fig. 5.2). This changes the detuning of the ion-cavity system, ∆c. The
cavity is scanned over a range corresponding to ∼ 1.3 GHz at a repetition rate of
30 Hz and the reflection signal is constructed by sampling each cavity scan while
repeating the sequence at a 33.3 kHz rate. The width of the reflection signal can
be determined, for a given ∆l, after averaging a number of scans (normally a few
hundreds of scans). Scan-to-scan drifts of the cavity are compensated by referencing
the probe signal to the transmission signal of the reference laser at 894 nm (see sec.
5.6.2 for more detail).

In fig. 6.2 (a)-(c) typical reflectivity spectra for the cavity have been plotted for
different probe detunings, ∆l, with a 40Ca+ ion crystal of Neff ≈ 445 ions. The
crystal (number 4 of table 6.1) has the parameters: radius R = 100 µm, length
L = 1200 µm, total ion number Ntot = 13000, density ρ = 4.3 × 108 cm−3 and trap
frequencies (ωr, ωz) = (475, 140) × 2π kHz. From each of these spectra an effective
decay rate of the cavity, κ′(∆l) can be found by fitting to the expected Lorentzian
line-shape of eq. (6.2). As can readily be seen on the data, the reflection dip widens
as the probe laser is tuned towards atomic resonance, because the coupling between
the ion crystal and the cavity field gets stronger. A symmetric behavior is obtained
for negative detunings.

Varying the probe laser detuning over a range around atomic resonance, allows
to measure κ′ as function of ∆l. This is plotted in fig. 6.3 and the data has been
fitted to the expected Voigt profile of eq. (6.3), shown as a red line. From the fit to
the model one obtains: κ = 2π × (2.8 ± 0.1) MHz, gN = 2π × (11.2 ± 0.2) MHz and
γD = 2π × (2.0 ± 0.8) MHz, while γ was fixed to the value given in the literature,
γ = 2π × 11.2 MHz [110]. In this example the effective number of ions coupling
to the cavity field, found from the fit-parameter gN , is Neff = 445 ± 15 and the
resulting crystal temperature is found to be T = 14+8

−6mK, by using the definition of
the Doppler width, γD.

If only the temperature of the crystal is changed, keeping all other crystal and
cavity field parameters fixed, then κ′ changes via γD in eq. (6.3). This means that
it is now only necessary to measure κ′, and thereby γD, for one detuning ∆l. When
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Figure 6.2: Typical reflection spectra averaged over 100 scans of the cavity containing
Neff ≈ 445 ions have been plotted for three different atomic detunings: (a): ∆l = 2π ×
36MHz, (b): ∆l = 2π× 10MHz and (c): ∆l = 2π× 0MHz. The solid red line is a Lorentzian
fit which determines κ′ which is seen to vary as expected with the atomic detuning.
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Figure 6.3: A resonance curve of κ′ as function of ∆l is shown for the same crystal as used
in fig. 6.2 and shown on fig. 6.4(b) (Neff ≈ 445). A fit using eq. (6.3) is plotted as a red
line, and makes it possible to extract the crystal temperature; here T = 14+8

−6mK.

∆l = 0 the ion-cavity coupling, and hence κ′, is maximum and this is what we exploit
in the experiments. Also, the equation for κ′ is rather simple here (see eq. (6.5)).

We change the temperature of the ion Coulomb crystal by varying the detuning
of the 397 nm cooling laser, ∆397. If we consider the simple picture on Doppler
cooling of a single two-level ion by two counter propagating beams, as described in
sec. 2.2, the effect of Doppler cooling can be modeled by two forces acting on the
ion moving left or right respectively. It turns out that the optimal cooling occurs
when ∆397 = Γ/2, where Γ is the excited state decay rate. A qualitatively similar
behavior is observed with large ion Coulomb crystals, with the difference that the
optimal detuning, power and resulting temperature are typically higher than for a
single ion because of RF-heating. As not all ions in a large ion Coulomb crystal are
positioned on the trap axis there will be a substantial micromotion in the crystal and
this leads to RF-heating [120] and a resulting equilibrium temperature which can be
substantially higher than the Doppler temperature (see sec. 2.3.4). When lowering
the detuning of the cooling laser, from typically ∼ 2Γ towards 0, a strong increase in
the temperature of the crystal can be observed as the cooling becomes less effective.
A similar behavior would also be observed when increasing the detuning, but then the
optical pumping efficiency would be affected, which would, first, lower the effective
number of ions and, secondly, make the situation more complicated as more levels
should be taken into account in the modeling of the interaction [27].

In the experiment we first load a 40Ca+ ion Coulomb crystal with chosen thermo-
dynamic properties (dimension, density, number of ions). Afterwards, we measure the
Voigt profile κ′(∆l) and extract a value for γD for a close-to-optimal cooling detuning
(low temperature). The cooling laser detuning is then lowered step by step, for which
κ′(∆l = 0) is measured for a resonant probe only. We decrease the detuning towards
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Figure 6.4: (a) The variation in κ′(∆l = 0) when decreasing the cooling detuning from the
optimal value towards zero. The red circle marks the detuning at which Tref was measured.
(b) Projected images of a 40Ca+ ion Coulomb crystal during cooling, detected with the CCD
camera. This crystal (number 4 in table 6.1) is the one used in all measurements presented
in this section and it has: radius R = 100 µm, length L = 1200 µm, total ion number
Ntot = 13000, density ρ = 4.3×108 cm−3 and trap frequencies (ωr, ωz) = (475, 140)×2π kHz.

resonance (< MHz) until the crystal heats up too much to stay crystallized.
The final temperature variation is measured in the following way: First, a res-

onance curve of κ′(∆l) is measured with the optimal cooling laser detuning, ∆opt
397.

From the fit to this curve (fig. 6.3) it is possible to extract a reference Doppler width,
γref
D , which results in a reference temperature, Tref. Now, all other parameters are

known (κ, gN , γ) and the rest of the measurements can be done for κ′(∆l = 0) to
simplify the experiment, i.e. with the cavity on atomic resonance to maximize the
atomic absorption. On fig. 6.4(a) the reflection width κ′(0) is plotted as function of
the detuning of the cooling laser. It is clear that κ′(0) drops significantly as ∆397

approaches zero. On the figure, a red circle marks the cooling detuning where the
complete κ′ resonance has been measured (fig. 6.3), which serves as the reference
for the rest of the data points. On fig. 6.4(b) projected images of a trapped 40Ca+

ion crystal are shown at different cooling laser detunings: ∆397 = 2π × 28.4 MHz,
∆397 = 2π× 4.0 MHz, ∆397 = 2π× 0.4 MHz. This is the crystal used in the measure-
ments presented on fig. 6.2-6.5. On the images we can see that the crystal is melting
and the shell structure disappears as a result of the increase in temperature, as one
approaches the atomic resonance with the cooling laser.

From each point in fig. 6.4(a) the temperature of the crystal can be found through
eq. (6.5) and by using the reference parameters found from the κ′(∆l) resonance fit.
This means that the correlation between the crystal temperature and the cooling
detuning can be constructed and in fig. 6.5 the resulting plot of T as function of
∆397 is shown. Again, the reference detuning has been marked with a red circle. We
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observe a large increase in crystal temperature as the cooling detuning approaches
zero.

By changing the external trapping parameters for various ion Coulomb crystals it
should in principle be possible to gain more insight on the temperature of different
crystals. So far we have measured the temperature, with approximately the same
cooling parameters, as function of ∆397 for a number of different crystals listed in
table 6.1. We have varied the crystal radius R, length L, number of ions N and
amplitude of the RF potential confining the crystals. The numbers presented in the
table are found by inspecting images of the crystals, by considering their shape, the
RF-potential and our knowledge on the imaging magnification [27,73,128].

From this analysis, complemented with MD simulations, we expect to be able to
check variations of the temperature as well as investigate the heating processes taking
place in ion Coulomb crystals in linear RF traps. For instance, one could study
the temperature increase when varying one external parameter, while keeping the
others constant, to see whether this parameter has an effect on the RF-heating and
stability of the crystal. Some studies have been performed on the basis of the different
ion Coulomb crystals in table 6.1. For instance one could study the temperature
increase when varying one external parameter, while keeping the others constant,
to see whether this parameter has an effect on the RF-heating and stability of the
crystal. In fig. 6.6 a plot of the temperature dependence on the cooling detuning for
four different crystals is plotted. The crystals are number 1(green), 2(blue), 3(red)
and 4(black) from table 6.1 and these all have the same aspect ratio and radius, but
different ion number and RF-amplitude. This keeps the the crystal size constant,
but changes the density, which one could expect to have an influence on the crystal
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Figure 6.5: Temperature of an ion Coulomb crystal as function of the detuning of the
cooling laser, ∆397. It is constructed by measuring κ′(∆l = 0), referencing to Tref found
from the fit on fig. 6.3 and using eq. (6.5). The red circle marks the detuning at which Tref

was measured.
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Crystal VRF [V] VDC [V] R [µm] L [µm] α = R/L Ntot Neff
1 155 1,2 100 1200 0,08 4900 150
2 180 1,5 100 1200 0,08 7200 300
3 212 1,9 100 1200 0,08 9200 350
4 248 2,4 100 1200 0,08 13000 445
5 180 1,6 58 640 0,09 900 100
6 220 3,1 55 580 0,09 1100 170
7 200 2,9 58 560 0,10 1000 150
8 200 2,9 58 570 0,10 1000 150
9 220 3,1 58 580 0,10 1250 170
10 220 2,1 58 600 0,10 1550 200
11 180 2,2 60 570 0,11 900 110
12 220 3,6 56 520 0,11 1000 150
13 220 3,7 58 530 0,11 1100 150
14 220 3,6 58 540 0,11 1100 150
15 238 4,1 55 515 0,11 1200 170
16 200 3,0 58 500 0,12 800 120
17 212 1,5 108 900 0,12 9800 250
18 212 2,5 108 800 0,13 5500 200
19 212 4,0 108 660 0,16 5000 200

Table 6.1: The variation of the temperature of ion Coulomb crystals as a function of
the detuning of the cooling laser has been investigated. In this table the thermodynamic
properties of these crystals are listed: applied RF and DC potentials (VRF and VRF ), the
crystal radius (R), the crystal length (L), the total and effective number of ions (Ntot and
Neff ) and the aspect ratio (α = R/L).

stability in the extreme limit. From fig. 6.6 we see that this variation is not changing
the heating process noticeably. Including e.g. much denser ion crystals might show
thermodynamic effects, and thus a more systematic study based on the numerical
simulations described in the next section is under way.

From the obtained temperatures we can calculate the resulting plasma coupling
parameter (eq. (6.1)) of the specific ion crystal (ρ = 4.3×108cm−3). At temperatures
around 12 mK, Γp ∼ 170, corresponding to a completely solid-like crystal structure.
However, already at T = 150 mK we get Γp ∼ 13.5, indicating that the medium is in
the liquid phase and for T > 600 mK, Γp < 3.5 and hence, approaches the liquid-gas
phase transition. Comparing this information with crystal images, shows a qualita-
tively good agreement between the thermodynamic crystal phase and the obtained
temperatures. Furthermore, comparing this information to numerical simulations
could complete the thermodynamic study of the crystals.
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Figure 6.6: Temperature of four ion Coulomb crystals as a function of the detuning of the
cooling laser, ∆397. In the figure crystal 1(green), 2(blue), 3(red) and 4(black) from table
6.1 are plotted.

6.1.4 Comparing with numerical simulations

Using molecular dynamics (MD) simulations one can simulate the dynamics of the
position and velocity distribution of ions in an ion Coulomb crystal for different trap-
ping conditions and temperatures. The obtained projection images of a given crystal,
simulated at different temperatures, can then be compared to images taken in an
experiment and the temperature can be determined. Several ion-trap groups in the
world uses this technique (see e.g. [175–177]).

This work was part of Niels Hygum Nielsens masters project [178]. The program
that he created is an MD program which describes the dynamics and interactions of
the system using classical mechanics. The forces used in the calculations include both
the trapping forces and the Coulomb interaction between all the ions. This makes
the description of the system rather complex, but instead of solving a large number
of coupled differential equations the numerical calculation evolves the system in very
short time steps until the desired steady state is reached. The time steps used in
the integrator needs to be smaller than the shortest timescale of the ion dynamics.
However, as there are actually two timescales present here (micro motion and secular
motion) the total force in the system needs to be described by a slow and a fast varying
part, in a multiple time step integrator [178]. The outcome of the MD simulation is
a position/velocity distribution of all the ions. From the 3D position distribution, an
image that mimics the projection images taken in the experiment can be produced
by adding an optical blurring corresponding to the finite focal depth of the imaging
system which can be calibrated independently [178].

We are under the process of simulating images for the crystals of table 6.1 at
different temperatures in order to compare them with the images taken in the ex-
periments. One could then check the agreement between the temperature extracted
from the cavity measurements to that of the simulations and allow us to estimate the
applicability of this method.
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6.1.5 Discussion and outlook

In this section, we presented a method for measuring the temperature of trapped,
laser-cooled ion Coulomb crystals from the coupling to an optical cavity field. As
opposed to e.g. neutrals where the temperature can be determined from time-of-flight
measurements, our method uses only non-invasive measurements. A general study
using this method to measure temperature and heating rates for different crystal
parameters could give insight into heating mechanisms and the thermodynamics of
cold plasmas. Furthermore, we plan to perform a study comparing temperatures
measured from the cavity signal to temperatures obtained from MD simulations. This
will hopefully confirm the accuracy of the simulation method and give an alternative
approach for temperature measurements. We also expect that the thermodynamic
information about ion Coulomb crystals, gained by this method will be useful for
realizing quantum storage of light in our system, as described in sec. 4.3.

While using the coupling with the cavity field has the advantage of being a non-
invasive method it has the downside that the signal-to-noise depends om the number
of ions, and is obviously highest for crystals with large effective number of ions.
This can be explained by the fact that the interaction benefits from the collective
coupling (eq. (3.46)) between ions and the cavity field and the larger Neff gets, the
larger gN becomes. Moreover, the method essentially relies on measuring the relative
broadening of the natural atomic linewidth. The linewidth of the transition used here
being rather large (∼ 22 MHz), the precision of the measurement could naturally be
improved by using a narrower line from which smaller broadenings could be detected.

Another potential limitation of this method is the applicability of the model. In
sec. 3.3.3 we gave a conservative estimate of the validity of the model by compar-
ing the average velocity of the ion distribution, vD, with the effective rates of the
coupled system on resonance, i.e. kvD � min[κ + g2

N/γ , γ + g2
N/κ]. At very high

temperatures (∼K) these considered timescales no longer satisfy the slow-motion ap-
proximation made in this simple model. For the specific ion crystals considered in the
presented results, the inequality start to break down at temperatures of a few hundred
mK (around 600 mK the rates of kvD and κ + g2

N/γ typically become comparable).
Although our validity estimate is probably conservative, full numerical simulations of
the dynamics would then be required at high temperatures.
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6.2 Finding the center of an optical cavity using an atomic
ensemble

In this section we present a technique for determining the center of a linear cavity
by using an atomic ensemble (ion crystal) placed within it. We demonstrate that it
is possible to position a trapped ion crystal with sub-micron precision with respect
to the absolute center of a standing wave cavity field. In sec. 6.2.1 we describe
the experiment and give a simple theoretical model (sec. 6.2.2). The experimental
procedure is described in sec. 6.2.3 followed by a presentation of the obtained results
(sec. 6.2.4). The last section (6.2.5) discusses the results and their relation to the rest
of our studies, after which an outlook is given.

6.2.1 Introduction

As already introduced in prior chapters, the system of crystallized ions placed inside
an optical cavity is a promising platform for quantum optics experiments, as e.g.
multi-mode photon storage with long coherence times [74,159]. At the same time, the
mechanical interactions of ion crystals with intracavity standing-wave light fields can
lead to localization of the ions in finely-structured optical lattice potentials [80–82]
(see chap. 7). This potentially opening the possibility of studying e.g. the behavior
of particles in quantum potentials [96, 179] or the fine control of crystal ordering by
weak optical forces [180,181].

These studies all rely on carefully characterizing the combined ion-cavity system
spectrally as well as spatially. For instance, the spatial relationship between different
field modes changes along the cavity length, and multi-mode storage will depend
on the precise position of the Coulomb crystal relative to the cavity mirrors. In
the experiments described in this section we present a way to precisely determine
the position of an ion Coulomb crystal relative to the cavity mirrors, by using the
ions as an imaging medium in order to visualize the spatial beating between different
longitudinal modes of the cavity [79]. This absolute measurement of the distance from
the cavity mirrors is different from the studies of probing the longitudinal structure of
the cavity field using single ions in e.g. [15,182,183]. These studies demonstrated the
ability to measure small displacements but can not distinguish between two positions
along the cavity separated by an integer multiple of the field wavelength. That is
possible with the simple technique introduced here.

6.2.2 Theoretical modelling

An atomic ensemble is placed inside an optical Fabry-Pérot cavity and is driven by
two cavity modes. One is near-resonant with an atomic transition and the other is
detuned, essentially giving rise to an AC-Stark shift of the probed energy levels. The
scattering of both light fields from the ions produces a fluorescence signal that depends
on the local spatial phase between the standing-wave patterns of the two modes. Using
pairs of modes separated by an odd or even multiple of the free spectral range (FSR)
of the cavity allows for varying this beat pattern and unambiguously determining the
absolute center of the cavity.

A full description of the applied method for Ca+ ions would have to be based on
an ensemble of multi-state atoms, including the effects of the applied magnetic and
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electrical fields on the various energy levels. However, in order to provide a clear
illustrative physical picture, we construct a theoretical model based on an ensembles
of two-level atoms. More specifically, we consider an ensemble of two-level atoms with
a ground state |g〉 and an excited state |e〉 positioned inside a near-confocal symmetric
optical Fabry-Pérot cavity (see fig. 6.7). The atoms are trapped by some external
mechanism which keeps them confined within the cavity mode-volume (in the specific
experiment we consider an ion Coulomb crystal trapped in a linear Paul trap). A so-
called lattice field, which is far-detuned from the atomic resonance, but on resonance
with a longitudinal mode of the cavity, is applied. One of the cavity modes is kept on
resonance with the |g〉 ↔ |e〉 transition and hence, the lattice is detuned by a whole
number of cavity free spectral ranges (ωFSR) from the bare atomic resonance. The
lattice field has the effect of inducing a spatially modulated AC Stark shift of the
atomic transition, because of its standing wave nature:

∆S(z) = ∆S,0 sin2(klz) , (6.6)

where ∆S,0 is the maximum Stark shift, z the spatial displacement along the cavity
and trap axis, kl = (qlπ)/L the lattice field wavenumber, L is the cavity length and
ql is the longitudinal mode number of the lattice field (see sec. 3.2.1 for more detail).

The effect of this lattice field is monitored by a near-resonant intra-cavity probe
field detuned by ∆p with respect to the bare two-level transition frequency (see fig.
6.7). Both the lattice field and the probe field are simultaneously present in the
cavity, but their intensities are chosen such that the scattering from the lattice field is
negligible with respect to that from the probe field. The spatially dependent photon
scattering rate of the probe field can be expressed through the steady state excited
population of eq. (3.35), as Γscat = Πe(z)Γ, and hence

Γscat(z) =
1

2

s(z)

1 + s(z)
Γ , (6.7)

where Γ is the decay rate of the excited state and s(z) is the spatially dependent
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Figure 6.7: Schematics of the considered atomic two-level medium placed inside an optical
Fabry-Pérot cavity, together with the energy levels and applied fields. The probe and lattice
standing wave fields are detuned from the bare atomic resonance by ∆p and ∆l, respectively.
The energy-levels are AC Stark shifted by ∆S(z) because of the the strong lattice field.
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saturation parameter of the probe standing wave field (see eq. (3.36)), defined as

s(z) =
s0 sin2(kpz)

1 + (2∆(z)/Γ)
2 , (6.8)

with s0 = I0/Isat being the maximum on-resonance saturation parameter for the
probe field, kp = (qpπ)/L the probe field wavenumber expressed in terms of the
longitudinal mode number of the probe field, qp, and the spatially varying effective
detuning is found using eq. (6.6) as

∆(z) = ∆p + ∆S,0 sin2(klz) . (6.9)

The effect of the Stark shifting lattice field on the probe photon scattering rate
(eq. 6.7) is a beating signal arising from the wavenumber difference of the probe and
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Figure 6.8: Illustration of the beating effect, using the parameters qp = 20 and ql =
(22, 23), together with L = 10λ, Γ = 1, ∆S,0 = 10 and s0 = 0.1. The real values of qp and ql
in the experiments are around 2.7×104. The top part of the figures (sinusoidal curves) shows
the probe standing wave (blue) and the effective Stark shifted detuning ∆(z) (red) along the
cavity axis; the two sinusoidal curves in this part of the figure have been rescaled to the same
amplitude in order to better illustrate the spatial beating. The lower part of the figures (blue
peak structure with a wide envelope) shows the variation of the probe scattering, Γscat (from
eq. (6.7)), along the cavity axis, for a lattice detuning of (a) 2ωFSR and (b) 3ωFSR.



82 Techniques for characterizing large Coulomb crystals in the cavity

lattice fields. This is illustrated in fig. 6.8 where the parameters have been chosen to
illustrate the effect (qp = 20 and ql = 22 in (a) and ql = 23 in (b)). In the experiment
the values of qp and ql are around 2.7 × 104. The scattering signal in Γscat shows a
fine peak structure that follows the periodicity of the probe field standing wave, with
a wide envelope arising as a consequence of the AC Stark shift of the energy-levels. In
our experiment, the imaging system is not able to resolve the fine-structured pattern,
as the individual lattice sites are typically separated by only a few hundreds of nm.
The beating envelope signal, on the other hand, occurs on a much larger length scale
(proportional to the inverse of the probe-lattice wavenumber difference) and can be
resolved using standard imaging techniques.

At the center of the cavity (z = 0) the beat pattern has an extremum because
of the boundary conditions imposed by the mirrors. If the lattice detuning is an
even number of free-spectral-ranges (FSR) the scattering rate is minimized, as the
probe and lattice fields overlap so that the transition is shifted away from the probe
frequency wherever the probe field is strong. The exact shape of the beat signal
depends on whether the probe field has an even or odd longitudinal mode number,
but the minimum is always at the same position. A lattice detuning by an odd number
of FSRs produces a maximum of the scattering rate, as the probe field is strongest
where the transition is unshifted. This is illustrated in top part of fig. 6.8(a)-(b) as a
sketch of the probe standing wave (blue) and the effective AC Stark shifted detuning
∆(z) of eq. (6.9) (red), along the cavity axis. From this, the beating between the
two standing waves can easily be visualized and it is clear that at the center the wave
extrema are overlapping.

As mentioned earlier, the two-level description cannot be expected to give a precise
account of the measured scattering rates. However, around the center of the Fabry-
Perot cavity, the scattering rate will always vary periodically with a spatial period set
by the inverse of the probe-lattice wavenumber difference, λbeat ∝ 1/(kl − kp), with a
maximum (minimum) for qp − ql being odd (even). The length scale of λbeat for our
experimental parameters is hundreds of µm.

With an exact knowledge of the center position of an applied optical cavity one
can deterministically switch between having the atoms at a node or anti-node of the
potential, as has e.g. been exploited in some of the experiments reported in [81]. For
large atomic ensembles, it could also be interesting to be perform this with respect to
a corrugated super-lattice created through the interference of two cavity modes.

6.2.3 Experimental procedure

The setup used in this experiment is described in detail in chap. 5. We load a large
40Ca+ ion Coulomb crystal into the trap, where it is confined within the linear optical
cavity. As stated in sec. 5.4 the cavity has a length of 11.7 mm which corresponds to
a free spectral range of ωFSR = 2π × 12.7 GHz, and the TEM00 mode waist radius is
37 µm for light at 866 nm. The 4S1/2 ↔ 4P1/2 transition at 397 nm is used for Doppler
cooling and imaging, while the 3D3/2 ↔ 4P1/2 transition at 866 nm is used either for
repumping during cooling or for interactions with the cavity light (corresponding to
the two-level situation above). The relevant energy levels and transitions are depicted
on fig. 2.2.

As before, the cooling light is applied along the axial (z) direction and the 866 nm
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repump light along the radial (x) direction, but now with linear polarization along the
z direction (see sec. 5.5). The ions are imaged by collecting the 397 nm fluorescence
through the image intensifier and onto the CCD camera (see sec. 5.6.1). The resonant
probe field and the off-resonant lattice field at 866 nm is coupled into the cavity with
circular polarization from the PT mirror side. Furthermore, we apply a bias magnetic
field of ∼ 1 Gauss in the y-direction to ensure that the cavity fields address all four
Zeeman sub-levels of the 3D3/2 state. The cavity length is stabilized by using the
894 nm reference laser, which is itself locked to the external reference cavity. The
probe field is also locked to the same external reference cavity, while the lattice field
is locked directly to the experimental cavity.

The cavity length is set so that one cavity mode is resonant with the unperturbed
atomic transition frequency (i.e. in absence of the lattice field). The experiment is
performed by continuous imaging of the ions. As the cavity probe and lattice fields
are applied, the 866 nm repump beam is blocked, while keeping the 397 nm cooling
laser on. Doing so, all repuming in the cooling cycle is performed through the cavity
fields. Hence, we detect the 397 nm fluorescence which depends on the repumping
rate of the cavity fields, and thus on the scattering rate at 866 nm. The spatially
varying saturation parameter of the probe field (eq. (6.8) or (3.36)) has an amplitude
of AS ≈ 4, while that of the lattice is more than 1000 times smaller. This was chosen
in order to obtain a situation where the measured scattering signal primarily comes
from the probe field and to ensure that the lattice filed only produces the spatially
varying AC Stark shift.

The probe laser is set on atomic resonance (∆p = 2π × (0 ± 2) MHz), while the
lattice Stark shift depends on the lattice field detuning and is in the range ∆S =
2π × (3 − 9) MHz. Furthermore, the 397 nm laser is red-detuned by 40 MHz to
ensure that the Stark shift does not affect its scattering rate substantially and thus,
that the observed fluorescence modulation is dominated by the variation in the probe
repumping rate out of the 3D3/2 state.

6.2.4 Experimental results

In the experiment we used an ion Coulomb crystal containing ∼ 6000 40Ca+ ions,
with a length of 650 µm, a diameter of 150 µm and a density of ∼ 6× 108 cm−3. In
fig. 6.9 projection images of the crystal are shown for lattice detunings of +15FSR
and +16FSR, obtained in continuous imaging from 60 × 200 ms exposures on the
CCD with 224 × 640 pixels. The cavity fundamental mode is clearly visible on the
crystal, as only the ions contained within the cavity mode volume fluoresce. This
is because only these ions participate in the cooling cycle and thus sympathetically
cool the ions outside the cavity mode volume. The top figures show images obtained
when applying both the lattice and probe fields and the beating variation is already
visible, with a maximum at the cavity center in the first case and a minimum in
the second. The middle figures show images with the probe field only, recorded as a
reference, and the actual crystal shape is illustrated by the dashed ellipsoids. After
background subtraction, making the ratio of the image with and without the lattice
allows for correcting for inhomogeneities in the imaging system and thus isolates the
fluorescence modulation pattern due to the lattice. The result of this correction is
shown on the bottom image of fig. 6.9.
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Figure 6.9: Experimental images of a 40Ca+ ion Coulomb crystal with ≈ 6000 ions. Re-
pumping during cooling is only performed by intracavity fields and, thus, only the crystal
part contained in the cavity mode-volume is visible. The dashed ellipsoids outline the ac-
tual crystal shape. The top images show the ion scattering signal when applying both the
probe and lattice fields, the latter being detuned by +15FSR or +16FSR, respectively. After
background subtraction, making the pixel-to-pixel ratio of the top and middle (probe only)
images gives the bottom image, thus isolating the fluorescence beat pattern due to the lattice
field.

We perform a running average across the beat pattern image by setting the single
pixel value equal to the mean of pixel values in a 10 × 10 square around it. By
doing so, unevenness in the crystal structure (from e.g. the shell structures) will be
blurred enough to smoothen the beating signal along the axial direction. We isolate
the central part of the crystal in the axial direction, and sum 37 pixels (33 µm) in the
vertical direction all the way along the crystal length. The resulting signal is a single
curve that represents the axial beat pattern variation. On fig. 6.10 the modulated
signals are shown for four different lattice field detunings: 15 FSR (blue), 16 FSR
(red), 27 FSR (dashed blue) and 28 FSR (dashed red), respectively. As expected,
for a lattice field detuned by an even number of FSRs from the probe field (here, 16
and 28), the fluorescence is suppressed at the cavity center and the envelope beating
has a minimum. For a detuning by an odd number of FSRs (here, 15 and 27) the
suppression occurs half a period away from the cavity center, while the center position
shows a maximum in fluorescence.

The theoretical model introduced in sec. 6.2.2 was based on a simple two-level
system, but the actual experimental system is much more complicated, as it includes
in general 8 levels (all Zeeman levels), and the envelope of the beat pattern is not
given by a simple analytical function. The model was meant as an illustrative picture,
and in stead of fitting the full beat pattern to a numerical model, we fit the points
around the center of the cavity with a parabolic function in order to establish the
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Figure 6.10: The resulting beating signals along the axis of the ion crystal. Depending on
the lattice detuning from the probe the beating signal changes and this is shown for four
different detunings: 15 FSR (full blue), 16 FSR (full red), 27 FSR (dashed blue), 28 FSR
(dashed red). At the center of the cavity maxima and minima line up, as expected. The
black parabolic fit is performed on ±100 pixels around the center.

exact cavity center position which is all we care about in this study.
The purely parabolic fits are performed including ±100 pixels around the approx-

imate cavity center position (shown on fig. 6.10 as black lines). From these, we can
determine the cavity center to be at an axial position of 320.70 ± 0.15 pixels. Con-
sidering the individual measurements, they agree with the mean value within +1.5
and −2.5 pixels and their errorbars are within range of the mean. The resolution of
our imaging system onto the CCD is 0.9 µm/pixel and hence, the fit results can be
converted into a physical length. The uncertainty in the absolute positioning of the
cavity center is thus of only ±135 nm. This is smaller than both the beating periods
(here 400-700 µm) and the periodicity of the two standing waves (433 nm). An even
better precision could be obtained in principle by using more sets of detunings, all of
which should give beat patterns with an extremum at cavity center.

6.2.5 Discussion and outlook

The experimental study, described in this section, has demonstrated a simple method
to accurately find the absolute center of a linear cavity using a spatially modulated
fluorescence signal from an ion crystal, by probing it with two simultaneously resonat-
ing cavity fields. The measurements are based on the beating signal that arises when
one of the fields (lattice) is detuned by a number of cavity free spectral ranges from
the other field (probe) which is on atomic resonance. Constructing a beat pattern
with only one or a few cycles within the length of the cavity can give precise position
information, but does not provide a large position resolution because of the coarse



86 Techniques for characterizing large Coulomb crystals in the cavity

spatial structure. On the other hand, beat patterns containing many cycles within
the cavity length, obtained using a far-detuned lattice field, will provide a fine resolu-
tion, but can not distinguish between positions separated by a whole number of beat
periods. By combining beat patterns for several different lattice detunings, we can
obtain more precise location information anywhere in the cavity without losing track
of the overall position. For example, for the set of beat patterns shown in fig. 6.10,
all maxima and minima line up at the cavity center, as they must. Since e.g. 15 and
28 are coprime, there is only one such location over the entire length of the cavity.
Including even more beat patterns for additional detunings should further improve
the precision with which we determine the cavity center position.

From the beat pattern in fig. 6.10 it is obvious that the curvature for a maximum is
much wider than for a minimum, at the center position. Extending the beat patterns
further, reveals that this pattern of a narrow minimum and a wide maximum contin-
ues. Performing numerical plots of our model (eq. (6.7)-(6.9)) with the real physical
parameters, shows a huge amount of small peaks which together form an envelope
shape qualitatively comparable to the experimental beating shape. Our model only
includes two levels while the physical situation is much more complex and includes 8
levels, where e.g. the repumping process will depend on the exact laser polarization
and the chosen magnetic field strength. Accordingly, the simple numerical fits will
not precisely match the data, and hence, to just obtain the cavity center position,
we use the parabolic shaped fits shown above. In the figure presenting the results
(6.10) the amplitude of the beat pattern is given in arbitrary units, as all we care
about is calibrating the horizontal axis. In order to construct a complete model and
use numeric fits to the data, a careful calibration of the vertical axis would also be
needed.

This method of determining the positioning of single ions or ensembles of ions
with respect to the center of a linear Fabry-Pérot cavity has potential applications to
a wide range of cavity QED investigations with cold ions or atoms. As mentioned, it
is essential for studies of trapping ions in localized optical fields [80–82] where precise
control of the ion position relative to the cavity standing wave field is crucial (see
chap. 7). Localizing an ion in a standing wave cavity field also allows for a better
control of the ion-cavity coupling strength, which can become important in order
to increase the efficiency of a quantum memory for light using our ion-cavity based
system. Additionally, this positioning technique will also be applicable to e.g. cold
neutral atomic species, trapped in magnetic or optical dipole traps, and interacting
with a cavity field mode. The accurate positioning would in particular be beneficial
in single atom quantum dynamics studies [86–88], e.g. examining cavity cooling [184,
185]. It will also apply to cavity QED studies with ensembles, e.g. investigations of
the quantum dynamics of cold atoms in cavity-generated optical potentials [89] or the
simultaneous interaction with multiple standing wave fields [90].



Chapter 7

Localizing atomic ions in an
intracavity standing wave field

In this chapter we will describe how an intracavity standing wave optical potential
can be used to localize ions situated in the center of a cavity ion trap. The ions
are, at all times, trapped in the shallow potential from the linear Paul trap, but as
the far detuned intracavity optical lattice field is applied, they can also experience a
finer-scale, deep optical potential. For the transitions considered here, the frequency
of the lattice field is in the optical regime and this means that the spatial extent of one
standing wave period (433 nm) is much smaller than the size of the external trapping
potential (∼mm). As the depth of the optical lattice is increased, ions can thus be
localized on a sub-wavelength scale in this intracavity potential.

The first section (7.1) introduces the mechanism that provides the localizing force
on the ions, and puts the experiment in context with related studies. In sec. 7.2
we introduce the theoretical modeling of the system and compare it to molecular
dynamics (MD) simulations. Section 7.3 describes the experiment and presents the
results on the localization of a single atomic ion in the intracavity standing wave field.
In the last section (7.4) we describe how ions in small Coulomb crystals with different
structural configurations can be localized in the standing wave optical potential at
the same time.

7.1 Introduction

Trapping neutral atoms in optical potentials (dipole traps, optical lattices) has been
performed routinely for years, resulting in many successful studies within a wide
variety of fields [186–190]. The confining mechanism provided by an optical dipole
force for trapping atoms was proposed by Letokhov in 1968 [191], but a more detailed
theoretical background of dipole forces was not developed until 1980 [192]. In 1986
Chu et al. accomplished the first optical trapping of neutral atoms [91] and in 1999
single atoms were trapped optically [92]. The typical depth of optical traps for neutral
atoms is on the order of 10−3 K, while charged particles can be trapped by electrical
fields, as described in sec. 2.1, which can reach depths of the order of 105 K. Thus, for
ion trapping the use of optical trapping potentials may seem superfluous, but special

87
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interaction conditions can be generated between the ions by including both potentials,
which has lately attracted a lot of attention.

In 2010 Schneider et. al. [94] showed that is was also possible to optically trap a
single ion by using a far detuned dipole field in a focal region of size ∼ 30 µm. In 2012,
in parallel to the experiments reported here, this experiment was improved to achieve
optical trapping of ions in a standing wave field, produced by two counter-propagating
beams with individual polarization control [80]. In both cases, the deep RF-trapping
potential was carefully turned off, and the trapping was achieved purely by optical
means, resulting in trapping conditions quite, similar to neutral atom dipole traps
in terms of both depth and trapping time. In the experiments reported here [81],
the detuned dipole field is used to localize the ions in one node or antinode of an
intracavity standing wave lattice, while still keeping the RF-trap on (see fig. 7.1).
This makes the ions more stable during the measurements, as they can not escape
the deep RF-potential, but it also adds some complexity to modeling the dynamics
of the system, as well as some experimental requirements on the control of parasitic
RF fields. Fundamentally though, it opens possibilities for interesting interactions
between ions that are trapped in a sum of two potentials which can be independently
altered with respect to each other.

In a simple description neglecting scattering forces, the dipolar force on an atom (or
ion) from a far detuned optical lattice field, can be found as the gradient of the lattice
potential, which is caused by the AC stark shift of the atomic energy levels [193]:

Fdip = −∇U(z) . (7.1)

Coupling an optical field resonantly into a mode of a linear Fabry-Pérot cavity, far
from an atomic resonance transition, creates such a standing wave potential, which,

Trap potential 

Lattice potential 

Figure 7.1: A sketch of our implementation of localizing an ion in an optical potential
formed by an intra-cavity standing wave field. We trap an ion in a loose RF-trap (ion
extent 4-5 µm) and laser-cool it to a thermal equilibrium close to the Doppler limit. A
sinusoidal optical potential (sin2(kz)) is adiabatically turned on and can localize the ion
within a fraction of the lattice period (433 nm). We probe the ion position distribution by
observing its scattering as function of the lattice depth.
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close to the center of the cavity, has the form

U(z) =
Ω2

0

∆lat
sin2(kz) , (7.2)

where Ω0 is the Rabi frequency of the lattice field and ∆lat is its detuning from the
atomic transition, k is the field wavenumber and z is the distance to the center of the
cavity. As the potential depends on the lattice detuning the sign of the force can be
changed. For a red detuned lattice (∆lat < 0) the ion will be trapped at an anti-node
of the standing wave (maximum intensity) while for a blue detuned lattice (∆lat > 0)
the ion is trapped at a node of the standing wave (minimum intensity).

Localizing ions in such fine structured optical potentials could make it possible
to perform coherent atom-ion studies with both particles in the same trapping po-
tential [83–85]. Additionally, superposing a steep and short-scale periodic optical
potential to a shallow RF-trap allows studies of structural [179–181] and dynamical
phase transitions (e.g. the Coulomb-Frenkel-Kontorova model [98,99,194]). In cavity
QED experiments the localization mechanism can also be exploited to control (e.g.
enhance or inhibit) the coupling of the ions with another intracavity field (probe),
compared to a non-localized situation [81]. This can be of interest for quantum in-
formation processing applications, such as single-photon generation [16,17], quantum
memory [28, 68], photon counters [77], single ion-photon interfaces [19, 195], or for
cavity-mediated cooling [18].

7.2 Theoretical modelling

In this section we describe a simple analytical model that predicts the energy and
position distribution of a single ion in the lattice potential (7.2.1). Afterwards, we
present molecular dynamics simulations performed on the system with assumptions
closely related to the analytical model (7.2.2).

7.2.1 Simple Analytic Models

We consider a classical particle trapped in a one-dimensional harmonic potential of
frequency ωt (corresponding to the axial trapping potential of a linear Paul trap).
We assume that the particle is in an initial thermal state with mean energy kBT0,
as the ion is Doppler-cooled to a specific temperature before the lattice is applied in
the experiments. Adding an adjustable optical lattice potential of depth U yields the
Hamiltonian

H =
p2

2m
+
mω2

t

2
z2 + U sin2(kz) , (7.3)

where z is the particle position, p its momentum, m its mass and k = 2π/λ is the
wavenumber of the light field used to generate the lattice potential, by which λ cor-
responds to twice the lattice period. Furthermore, we assume that the particle can
only perform classical and conservative motion, i.e. it feels no damping forces and no
work is done on the particle as the lattice potential is raised adiabatically. Based on
these assumptions, we are interested in finding the energy and position distribution
of the particle for different lattice depths.
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The lattice field is ramped up slowly, in the sense that its rate of increase can
be approximated as adiabatic for the dynamics in a single lattice site. We define,
zT0

=
√
kBT0/mω2

t , as the typical thermal position excursion of the particle in the
harmonic potential. The problem can be treated analytically in the two limits:

1. kzT0
� 1: the initial particle temperature is so low that it is always localized

within a single lattice site.

2. kzT0
� 1: the initial particle temperature is high and causes its position distri-

bution to spread over many lattice sites. Thus, the sinusoidal distortion to the
harmonic potential is small compared to the initial thermal energy.

In these cases, we can restrict our analysis to a single lattice site, but obtain
results that apply for the complete system. In case 1 this holds because the particles
probability distribution is concentrated on a single lattice site from the beginning,
while in case 2 this is because all the populated lattice sites behave similarly. We will
in the following consider the second case, as this is the one which is relevant to the
experimental situation.

Hot ion situation (kzT0 � 1)

In this case, the particles initial position distribution is spread over many lattice sites
and we can consider a single particle in a sinusoidal potential with periodic boundary
conditions. We assume that the ion is initially delocalized and ignore the background
harmonic potential. We want to evaluate the energy and position distribution of the
ion as the lattice is raised and, hence, need to identify a quantity which is conserved
during this process. The ion energy is not conserved, as raising the lattice does work
on the ion, and neither is the ion temperature, as the ion is isolated and, hence, not in
equilibrium with a heat bath. Instead, we use the conservation of the classical action
S =

∮
p dz, which is the area enclosed by the ion’s trajectory in phase space. The

Hamiltonian (eq. (7.3)) is symmetric in both z and p, and therefore we can calculate
the area for a quarter of an oscillation and multiply by 4:

S = 4

∫ zmax

0

√
2m(E − U sin2(kz))dz

=
2πU

ωl
σ , (7.4)

where a substitution of zmax by kzmax was performed as an intermediate step. zmax

is the turning point of the ion motion, which becomes π/2k when the ion energy is
greater than the lattice depth. E is the total energy of the ion, ωl =

√
2Uk2/m is the

oscillation frequency at the bottom of a lattice well and σ is a dimensionless function,
given by

σ =
4

π
×

{
E(E/U)−K(E/U)(1− E/U) E ≤ U ,√
E/UE(U/E) E > U ,

(7.5)

where K and E are the complete elliptical integrals of the first and second kind,
respectively (see app. D). In the limit E � U the ion motion is that of a simple
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harmonic oscillator and σ reduces to E/U . When E � U the ion can be regarded
as a free particle, and the trajectory in phase space is a rectangle. In this limit
σ = 2

√
E/U and the action reduces to S = 2π |p| /k. Raising the lattice slowly

enough keeps the action conserved and, hence, for any lattice depth U , it is the same
as in the initial thermal state case. This means that the action can be described by
an appropriately scaled Gaussian distribution at any time. The probability of an ion
being on a trajectory, P (S), whose action is within an infinitesimal interval dS, can be
found from this Gaussian distribution. This can be turned into an expression for the
energy distribution, because we know how to relate action and energy for arbitrary
lattice depth U through eq. (7.4). Thus we can predict the energy distribution in the
lattice to be

P (E)dE = P (S)
dS

dE
dE

=
e
−σ2 U

4kBT0√
πkBT0/U

τ
dE

U
, (7.6)

where

τ =
dσ

d(E/U)
=

2

π
×

{
K(E/U) E ≤ U ,√

U
EK(U/E) E > U .

(7.7)

We note here that this distribution has an integrable singularity at E = U , which we
will discuss later. From τ we can define the period of the ion orbit as

T =

∮
dt =

∮
dz

dz/dt

= 4

∫ zmax

0

√
m

2(E − U sin2(kz))
dz =

2π

ωl
τ . (7.8)

Using this period, we can find the ion position distribution for a given total energy as

P (kz|E)d(kz) =

∫ T

0

δ(kz − kz′(t))dt

T
d(kz) =

2

T

d(kz)

d(kz)/dt

=
d(kz)

πτ
√
E/U − sin2(kz)

. (7.9)

This expression is only valid for sin2(kz) < E/U , otherwise the probability is zero.
The average position distribution, which is of importance for the experimental study,
can be found as an energy integral over the conditional position distribution just
derived and the energy distribution found earlier (eq. (7.6)) as

P (kz)d(kz) =

∫ ∞
U sin2(kz)

P (E)P (kz|E) dE d(kz) . (7.10)

This integral can not readily be solved analytically. We therefore perform a numerical
evaluation to some arbitrary precision when applying the model to the measured data.
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The experimental situation

For typical experimental parameters kzT0
∼ 4 and we are not strictly speaking in any

of the limits introduced above. Nevertheless, the second limit (kzT0 � 1) provides
energy and position distributions close to what we believe fits our system. To test this
conjecture we compare our model with MD simulation results, which we will describe
in the next section.

By ignoring the background harmonic potential, we have made two assumptions.
First, we assume that the harmonic potential does not appreciably distort the ions
trajectory within a single lattice well. This means that the change in background
potential over a lattice needs to be much less that the thermal energy, which is the
case if the initial thermal fluctuations in the ions position is large compared to the
lattice period. Secondly, we assume that the energy distribution for an ion at a given
site is unaffected by the possibility for the ion to travel to or from another site with
a different background potential. This can be understood as a balance condition,
stating that there must be no net flow of ions of any given energy between lattice
sites.

7.2.2 Numerical simulations

In order to make sure that our theoretical model could actually predict the ion energy
and position distribution in the relevant experimental conditions, numerical MD sim-
ulations were performed by Mathieu Marciante1. The simulations were carried out
using molecular dynamics by describing the ion as a classical particle in an initially
harmonic pseudo potential (similar to our trap potential) and ramping the lattice
potential to a certain optical depth. Afterwards, the ion trajectories were recorded
for a large number of time-steps, from which the ion position and energy distributions
could be obtained. Varying different experimental parameters (final lattice depth,
ramp time, initial ion temperature ect.) we could simulate the system under several
conditions and compare this to the simple analytical model introduced above.

In order to test our adiabatic lattice potential ramp model, the simulations in fig.
7.2 show the kinetic energy of the ion in the lattice potential as function of the lattice
depth. These simulations builds on a single one-dimensional ion, initially trapped in
a harmonic trap with frequency 490 kHz, which is subject to a lattice ramp linear in
Rabi frequency (corresponding to its intensity varying as t2). The lattice is ramped
adiabatically with speed 4.7 mK/µs2 to a certain depth, and the kinetic energy of
the ion is determined for different initial velocities and positions of the ion. On fig.
7.2 the results of the simulation performed for ions with initial temperatures of 0.5
mK (red), 1 mK (blue), 2 mK (green), 4 mK (black) and 8 mK (cyan) are shown
together with the model prediction. Note that the plot is double-logarithmic and
that the final kinetic energy and the lattice depth after ramp-up are both scaled with
the initial temperature, in order to better compare the five different cases. Good
agreement is found, and this gives evidence that our model can be used to describe
the experimental system in the adiabatic regime.

1From Aix-Marseille University in Marseille, France
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Figure 7.2: Results of molecular dynamics simulations showing the final kinetic energy of
an ion in an optical lattice potential of different depths. The harmonic trap frequency is
490 kHz. The lattice potential is ramped up adiabatically (4.7 mK/µs2) and the simulations
are performed for various initial ion temperatures: 0.5 mK (red), 1 mK (blue), 2 mK (green),
4 mK (black) and 8 mK (cyan). The solid line is the no-free-parameter prediction from the
analytical model of the prior section.
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Figure 7.3: Simulations of the final energy distribution of an ion which is subject to a
lattice potential ramped at different speeds. The initial ion temperature is 0.5 mK and the
lattice potential is ramped to a depth of 5 mK with the ramp speeds: (a) 0.05 mK/µs2,
(b) 4.7 mK/µs2, (c) 118 mK/µs2, (d) 1890 mK/µs2. The red curve shows the results of the
analytical model introduced in sec. 7.2.1.
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Next, we tested the limit of the adiabatic assumption and performed numerical
simulations of the dynamics of a single ion subjected to a 5 mK deep lattice which
was ramped up at various rates. The results could then be compared to those given
by the single-site adiabatic model described above. In the simulations the initial
temperature was set to 0.5 mK, the harmonic trap frequency was 78 kHz (comparable
to the experimental value), the lattice field had a detuning of 63.5 GHz, and the lattice
ramp was still assumed to be linear in Rabi frequency. The most significant test is to
compare the final energy distribution of the ion, which becomes non-thermal in the
lattice. The simulated energy distribution was obtained from 10000 simulation runs,
each yielding a total energy of the ion after lattice ramp-up. Fig. 7.3 shows histograms
of this final energy for different rates of lattice ramp-up. The four different ramp
speeds are: (a) 0.05 mK/µs2, (b) 4.7 mK/µs2, (c) 118 mK/µs2, (d) 1890 mK/µs2. In
the experiments, we typically use a 2 µs ramp and, as the lattice is ramped linearly in
Rabi frequency to a size corresponding to the 5 mK lattice depth, the ramp speed is
typically 1.25 mK/µs2. The red curve in fig. 7.3 shows the model prediction described
from the prior section, and we see that for the 0.05 mK/µs2 ramp the agreement
with the model is excellent. For faster ramp speeds the energy distribution becomes
distorted, as the ions placed close to an anti-node are lifted up by the potential (5 mK
depth) before they have time to adjust their orbit and fall into the lattice well. In the
analytical model the singularity in energy (E = U) is seen as a hole in the red curve
at the lattice depth, 5 mK. In order to fulfill the adiabaticity criterion, one needs to
operate in the regime between fig. 7.3(a) and 7.3(b) or even slower.

The last simulations presented here apply directly to the parameters used in the
single-ion localization experiments. The initial temperature of the ion is set to 5 mK,
which is more realistic than the prior choice, and the harmonic trap frequency is taken
to be 88 kHz. The lattice potential in this simulation has a final depth of 24 mK,
corresponding to one of the highest values obtained in the single-ion experiments. The
lattice ramp is no longer assumed to rise as t2 in intensity (linear in Rabi frequency),
but rather like t1.4. This was inspired by the measurement of the temporal profile of
the ramp used to produce the lattice potential, which is primarily dominated by the
response time of the acousto-optic modulator (AOM) used to switch the lattice field
on.

Fig. 7.4(a) shows the total energy distribution (green) and the lattice potential
distribution (red). The circles represent the results of a histogram obtained from the
simulations while the lines show the analytical model prediction. The vertical dashed
line represents the top of the lattice where both the simulations and the model predict
a peak in probability, as some ions can still get pushed by the lattice when it ramps
up, and this increases their energy. The energy distribution (green) to the left of this
point represents ions that are localized in a lattice well, while the right side shows
the distribution of ions that have enough energy to pass the lattice wells. Note that
the vertical axis is logarithmic. In fig. 7.4(b) the ion position distribution is shown in
the initial thermal case (red) and in the final localized case (green). The circles show
results from the numerical simulations while the lines give the expected analytical
shapes in the two situations. This illustrates the nature of the localization process,
and we remark that the global uncertainty in the ion position distribution remains
as large in the final stage as in the initial (Gaussian). However, after the lattice is
ramped, the ion has a high probability of being localized in a certain lattice well in



7.2. Theoretical modelling 95

0 0.25 0.5 0.75 1 1.25 1.5
0.01

0.1

1

5

Energy / Lattice Depth

P
ro

ba
bi

lit
y 

de
ns

ity
(a)

−10 −5 0 5 10
0

0.05

0.1

0.15

0.2

Position / Lattice period

P
ro

ba
bi

lit
y 

de
ns

ity

(b)

Figure 7.4: The analytical model (lines) is compared to simulations (circles) with typical
experimental parameters (5 mK initial temperature and a 24 mK final lattice depth). (a)
Probability distribution of the total energy (green) and lattice potential (red) relative to
the lattice depth, on a semilogarithmic scale. (b) Initial thermal position distribution (red
Gaussian) and final position distribution in the lattice (green).

each experimental realization, as there is a great difference in probability between a
lattice well (up to 0.2) and a lattice top (typically 0.01). All the distributions shown
in fig. 7.4 show an excellent agreement between the molecular dynamics simulated
results, which include a finite lattice ramp time and a harmonic background poten-
tial, and our analytical model, which neglects these. This supports our assumptions
and confirms that, with the tested experimental properties, the single-site analytical
model assuming adiabatic ramping of the lattice indeed describes well the essential
physics of the experiment.
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7.3 Single-ion localization experiments

In this section we describe the experiments demonstrating the localization of a single
atomic ion in an intracavity standing wave lattice. In the first part (sec. 7.3.1) we
introduce the fluorescence measurements that are used to infer the localization, and
which build on the analytical model described earlier. In sec. 7.3.2 the experimental
setup and procedure is described including the temporal sequence used. After hav-
ing described an absolute calibration method for the measured fluorescence signals
(sec. 7.3.3), the experimental results are presented in sec. 7.3.4. In sec. 7.3.5 we
describe how the excess micromotion can be measured and minimized, so as not to
impede the localization mechanism, before we conclude in sec. 7.3.6.

7.3.1 Measuring the localization using scattering

Experimentally, we can not directly observe the full energy distribution nor the sub-
wavelength features of the position distribution, as the length scale on which the
localization occurs (less than half a wavelength of the lattice field) is less than our
imaging resolution. Instead, we detect the scattering of the ion from the lattice, which
depends on the potential energy of the ion. At every time during the lattice ramp
we know the expected position distribution of the ion from the analytical model of
sec. 7.2.1. For each ion position the intensity of the lattice field can be found and,
from this, we can calculate a time- and position-dependent scattering rate.

To get a measure of the localization, we can compare the photon scattering prob-
ability for red- and blue-detuned lattices (as introduced in sec. 7.1). These generate
identical potentials, but a red-detuned (∆lat < 0) lattice localizes the ion at lattice
anti-nodes, which increases the scattering, while a blue-detuned (∆lat > 0) lattice
localizes the ion at the nodes, where scattering is suppressed. The difference in scat-
tering between the two situations can then be seen as a signature of ion localization.
This is illustrated on fig. 7.5(a) where the two lattice detunings are shown in a simple
two-level picture and a scattering event takes the ion from the excited state out of
the two-level system.

As a second measure, a near-resonant probe field is applied in order to infer the
position distribution of the ion. This is illustrated on fig. 7.5(b). Because of the
boundary conditions imposed by the cavity mirrors, we know the standing wave struc-
ture of both fields at the ion location at the center of the cavity (see also sec. 6.2).
Let us assume that the lattice field is blue detuned from atomic resonance. When the
frequency separation between the lattice and the probe fields is an even number of
cavity free spectral ranges, their standing waves overlap. In this case, localization of
the ion close to a node of the lattice field suppresses the resulting scattering from both
fields in the same way. When the lattice field is detuned by an odd number of free
spectral ranges, the nodes of the probe field align with the anti-nodes of the lattice
field and the scattering rate from the probe field is enhanced, as the ion sees a high
probe intensity. Measuring the difference in scattering for the two scenarios can give
information on the enhanced or inhibited coupling to the probe field as compared to
the situation without lattice, in which the ion can move freely and effectively has on
average half the maximum coupling strength with the probe field.
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Figure 7.5: (a) A standing wave lattice field is applied detuned to the red or the blue of
an atomic transition of the ion and a scattering process can occur through the excited state.
The lower illustrations show the lattice field intensity pattern and indicates the difference
between a red-detuned lattice (∆lat < 0), from which the ion localizes at anti-nodes (high
scattering) and a blue-detuned lattice (∆lat > 0), localizing the ion at nodes (low scattering).
(b) A near-resonant standing wave probe field is applied to the atomic system together with
a far detuned standing wave lattice field (here blue detuned), and they are resonant with
different longitudinal modes of the cavity. Lower illustration: lattice potential (blue curve),
probe field (red shaded curve). When the detuning between the fields is an odd number of
cavity FSRs the ion has a high probability to scatter from the probe field whose intensity is
high at the ion’s position, whereas for a detuning corresponding to an even number of FSRs
the ion sees almost no probe light and has a low probability to scatter.

The optical transition, on which the lattice potential is applied, is the 3D3/2 ↔
4P1/2 in 40Ca+ (see fig. 7.6(a)). The scattering that we are able to measure with
our imaging system is provided by 397 nm photons produced when the ion decays to
the ground state, 4S1/2 (see details later in sec. 7.3.2). The expected scattering on
this transition for our system is given by the product of the decay rate of the 397 nm
transition, Γ397, and the excited state population in steady state, Πe. By looking
at the steady state solutions for the optical Bloch equations we can obtain Πe (see
eq. (3.35)-(3.37)). We will consider the scattering from the probe standing wave field
when the ion is localized by the lattice field, Γsc,p, and from the lattice standing wave
directly, Γsc,l. With the spatial variation of the fields these can be written as

Γsc,l(z, t) = Γ397
(gl(t)sin(kz))2

Γ2
P1/2

4 + 2(gl(t)sin(kz))2 + ∆2
l

, (7.11)

Γsc,p(z, t) = Γ397
(gpsin(kz + δlp))

2

Γ2
P1/2

4 + 2(gpsin(kz + δlp))2 + (∆p + 2VL(z, t))2

, (7.12)

where ΓP1/2
is the total decay rate out of the 4P1/2 state, gl(t) (gp) is the coupling

strength between the ion and the lattice (probe) field and δlp can be 0 or π depending
on whether the lattice field is detuned by an even or an odd number of FSRs from
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the probe, respectively. ∆p is the detuning of the probe field from atomic resonance
(which is much smaller than a cavity FSR), while ∆l is the detuning of the lattice
field (typically several cavity FSRs). The time and space dependent lattice potential is
defined as: VL(z, t) = U(t)sin2(kz), and is included in the probe scattering as a result
of the ground and excited states being Stark shifted by the strong lattice field. Note
that U is positive for a blue detuned lattice and negative for a red detuned lattice. The
lattice coupling strength and depth have explicit time dependence because we ramp
the lattice adiabatically, and during this time the scattering process has an increasing
rate.

At every moment during the lattice ramp process we have a position distribution
for the ion from the analytical model described in sec. 7.2.1. Using eq. (7.10) we
can average the position distribution over the time- and position-dependent scattering
rate of the two fields and, hence, get the scattering rate as a function of time only:

〈Γsc,i〉 (t) =

∫ ∞
−∞

P (z, t) Γsc,i(z, t) dz where i = p, l (7.13)

where the time dependence in the position distribution, P (z, t)dz again comes from the
variation in lattice depth, U(t). As the oscillation frequency of the ion in the lattice is
fast compared to the ramp (requirement for adiabaticity), it is a good approximation
to assume that the ion sees the average scattering rate for its position distribution
throughout the whole ramp.

The scattering that we measure in the experiments is the probability for the ion to
leave its initial state, while being subject to a certain field strength. At every moment
during this process, we will define the rate for the ion to leave the initial state L(t)
(see fig. 7.6(b)). First, we consider the situation of the lattice being ramped up and

Probe 

Lattice 

P1/2 

D3/2 

433 nm 

(a)

𝑡 = 0 𝑡𝑟𝑎𝑚𝑝 𝑡𝑒𝑛𝑑  

𝐿𝑟(𝑡) 

𝐿𝑙   , 𝐿𝑝 

(b)

Figure 7.6: (a) Schematic of the main concepts of the experiment. A 40Ca+ ion is trapped
at the center of the cavity and is subject to a lattice standing wave field on the D3/2 − P1/2

transition. A near-detuned probe field can probe the ion position distribution (shading).
The 397 nm fluorescence from the scattering off the lattice or probe fields is measured (wavy
arrow). (b) Sketch of the lattice field intensity. During the ramp-time tramp the leaving rate
of the ion (Lr(t)) is time-dependent, while it is constant during the interval where the lattice
intensity is held high (Ll or Lp depending on the experiment).
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hence the “leaving” rate equals the position-averaged scattering rate of the lattice
field: Lr(t) = 〈Γsc,l〉 (t). The probability for the ion to be in the initial state is P (t)
and we assume that P (t = 0) = 1. When ramping the lattice P (t) will decay as

dP (t)

dt
= −Lr(t)P (t) . (7.14)

Here we neglect the scattering back into the initial state which means that, once the
ion has left the initial state, nothing more happens. We can define the integrated
leaving rate after a time t, as: S(t) =

∫ t
0
L(t′)dt′. In terms of Sr(t) the differential

equation for P (t) has the form

dP (t)

dSr(t)
= −P (t) , (7.15)

the solution of which is

P (t) = P (0) exp (−Sr(t)) = P (0) exp

(
−
∫ t

0

Lr(t
′)dt′

)
. (7.16)

After the lattice ramp has ended, the population left in the initial state is P (tramp),
where tramp is total length of the ramp (see fig. 7.6(b)). In eq. (7.16) the decay rate
increases in time because the lattice field intensity is increased and, as the population
does not have a simple analytical form, we handle the calculations numerically.

Secondly, after the ramping, the intensity of the standing wave fields are kept high
for some time, during which we measure the scattering signal. This implies that the
leaving rate is constant in time and, in experiments with the lattice only, Ll = 〈Γsc,l〉,
while, in experiments with both the lattice and the probe fields, Lp = 〈Γsc,l〉+〈Γsc,p〉.

What we indirectly detect in the experiments is the probability of the ion to leave
the initial state (to scatter) in the time between the end of the ramp (tramp) and the
end of our measurement (tend). This can be found as

Pmeasure = P (tramp)− P (tend)

= P (0) exp (−S(tramp))− P (0) exp (−S(tend))

= P (0) exp

(
−
∫ tramp

0

Lr(t
′)dt′

)
[1− exp (−Li(tend − tramp))] , (7.17)

where i = l, p depending on what experiment we are performing.
As mentioned above, the initial state of the 40Ca+ ion is the 3D3/2. When the

ion sees the applied standing wave fields, the dominant scattering process is inelas-
tic scattering to the 4S1/2 level (93% probability) emitting a 397 nm photon. In
the experiments this background-free fluorescence signal can be observed with shot-
noise-limited resolution by the image-intensified CCD camera. The efficiency of the
detection system (∼ 10−4) together with the 397 nm scattering probability needs to
be taken into account in eq. (7.17) to obtain the correct expected fluorescence signal.
Furthermore, in the next section we introduce further corrections due to the multi-
level structure of the transitions when the different Zeeman substates are taken into
account.
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7.3.2 Experimental setup and sequence timing

In the experiment we trap a single 40Ca+ ion in the linear Paul trap with radial and
axial trapping frequencies of 377 and 97 kHz, respectively. The ion is placed at the
absolute center of the cavity using the method of sec. 6.2 and an applied magnetic
field (∼ 1 G) splits the Zeeman sub-levels of the atomic states (see fig 7.7 (a)). A
description of the experimental sequence is illustrated in fig. 7.7 (b)
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Figure 7.7: The laser sequence used in the experiments of localizing a single ion in an
intracavity standing wave field. (a) shows the relevant energy levels of 40Ca+ including the
addressed transitions in the three parts: optical pumping, applying the lattice field only and
applying both the lattice and the probe fields. Furthermore, the sequence contains a cooling
part for which the energy levels can be found on fig. 6.1 (a). The acronyms are: laser cooling
beam (LC), standing wave lattice beam (LB), standing wave probe beam (PB). The gray
shading indicates the ion population in the specific sequence part. In (b) the schematics of
the experimental sequence is shown, indicating the on and off timing of each laser and the
measurement with the CCD camera. The probe beam is shaded, to indicate that it is only
used in some of the measurements.

Doppler cooling The first part (28 µs) consists in Doppler cooling as described
earlier (see e.g. 2.2.1 or 6.1.2). Two 397 nm laser beams (LC), applied along the
longitudinal trap axis with circular polarizations, cools the ion on the 4S1/2 ↔ 4P1/2

transitions while an 866 nm repumper beam (RP), sent from the side of the trap
axis (x) with a linear polarization (along y), returns any population lost to the 3D3/2

states. This scheme is shown on fig. 6.1 (a).
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Optical pumping The second part (14 µs) is an optical pumping stage, where
only the 397 nm cooling laser is present (see fig. 7.7 (a) left). From the spontaneous
emission of the 4P1/2 states to 3D3/2 states, all the population is transferred into the
four Zeeman sub levels of the 3D3/2 state, with roughly equal populations in each,
and hence, the ion is in a statistical mixture of the 4 Zeeman substates before ramping
up the lattice potential.

Lattice ramping The third part (2 µs) is where the far detuned 866 nm lattice
field is applied (see fig. 7.7 (a) middle). This creates a standing wave optical poten-
tial with a period of 433 nm (see fig. 7.6(a)). The D3/2 and P1/2 energy levels gets
a position dependence because of the AC Stark effect imposed by the strong lattice
field, as shown on the figure. We ramp up the magnitude to the chosen level while
keeping the ramp time constant. This time should be long enough for the temper-
ature to evolve roughly adiabatically and to avoid unnecessary heating of the ion,
which will be discussed later. The lattice beam, with the detuning ∆lat, is resonantly
coupled into the cavity trough the PT mirror, and is σ− circularly-polarized. The
exact ramp-shape was found by analyzing the optical lattice signal and it grows like
t1.4, as seen on fig. 7.9. Its shape is primarily affected by the response time of the
acousto-optic modulator (AOM) used to switch the lattice field on.

Measuring the fluorescence The fourth part (5 µs) is where the system is probed.
After ramp-up we can perform two different scattering measurements. By only having
the optical lattice present (fig. 7.7 (a) middle) we measure the scattering from this
field, and using our theoretical model, we can predict the measured level of localiza-
tion. By adding an 866 nm probe standing wave field (shown as a shading on fig.
7.6(a)) we can measure the combined scattering from the probe and the lattice, which
gives us additional information about the ion’s position distribution and the ion-probe
field coupling strength. The probe is near-detuned from the bare 3D3/2 ↔ 4P1/2

transition and is also σ− circularly-polarized (fig. 7.7 (a) right). In either case, some
population from the mj = +1/2 and mj = +3/2 sub-levels of 3D3/2 will be excited
to the 4P1/2 sub-levels from which there is a ∼ 11/12 probability of decaying to the
4S1/2 state, emitting one 397 nm photon. We measure the scattering by detecting
these photons with the CCD camera, so only ions ending up in the 4S1/2 states are
detected. The timing of the CCD camera is controlled using the image intensifier,
which can be shut on and off on a timescale < 100 ns.

The total sequence runs for 50 µs, but we have to expose the camera for 30× 10 s
to collect enough statistics (i.e. in total 6×106 sequence repetitions). On an averaged
image the total scattering signal can now be found by taking the mean pixel number
within a box containing the whole ion spot (see fig. 7.8). The size and position of
this box are kept fixed for every image in each experiment. In the final experiments
the scattering signals are measured for different lattice field intensities. In this way
the depth of the lattice is varied and we find the scattering signal as function of the
lattice depth, corresponding to eq. (7.17) combined with eq. (7.13). We infer gl and
gp from the lattice power transmitted through the cavity, Ptrans as: gi = 2π × 4.4

GHz
√
Ptrans,i/1µW for i = l, p, which can be calculated from the transition strengths

between the considered states of 40Ca+ and the corresponding saturation intensities



102 Localizing atomic ions in an intracavity standing wave field

10µm

0 5 10 15 20 25

0.8

1

1.4

1.2

1.6 x 105

1
d

  p
ix

e
l s

u
m

position   /  µm

1 1.5 2 x 1050

5

10

15

20

25

1d  pixel sum

p
o

si
ti

o
n

   
/ 

 µ
m

Figure 7.8: Typical image of a single ion from which we obtain the scattering probability
during the localization experiment. In this example the lattice potential has a depth of
∼ 20 mK. The sum of all pixels in the red box (30× 30 pixels ≈ 27× 27 µm), subtracted by
the background, represents the scattering signal used in the data-analysis. The two graphs
show the variation along the vertical or horizontal direction within the red box, constructed
by summing pixels in the opposite direction.

(see e.g. [27]). The decay rate of the 397 nm transition is Γ397 = 2π × 20.7 MHz and
the total decay rate of the excited state is ΓP1/2

= 2π × 22.4 MHz.
As indicated above, after the optical pumping stage the ion population is equally

distributed over all four sub-levels, and an ion in the mj = −3/2 and mj = −1/2
sub-levels of the 3D3/2 state does not couple to the lattice field. It can thus be
ignored. Ions in the mj = +1/2 and mj = +3/2 sub-levels will be able to localize, as
they are coupled to the 4P1/2 sub-levels by the lattice field. Ions in the mj = +3/2
substate will experience the strongest transition dipole moment and see a lattice three
times deeper than the ions in the mj = +1/2 substate, because of their difference in

Clebsch-Gordan coefficients (
√

1/2 and
√

1/6, respectively, see app. A.3). In the
result section, we plot raw data obtained by observing both bright levels and analyze
them taking into account the exact contributions from the two states, but report
lattice depths and localization results for mj = +3/2. In the experiments described
in sec. 7.4, where several ions are localized in the lattice field, optical pumping into
mj = +3/2 actually ensures that all ions start in the same initial substate and see
the same lattice potential.

Furthermore, as the lattice field is far detuned from the 3D3/2 ↔ 4P1/2 transition
there can be a non-negligible probability for the ion to scatter on the higher lying
4P3/2 state (see fig. 2.2) and this has to be taken into account in the model used for
fitting our results.

The laser locking scheme

As described in sec. 5.5 we use a specific approach to lock all lasers and the experi-
mental cavity carefully together. Both the probe (866-2) and lattice (866-1) lasers are
resonant with the cavity but with different frequencies, i.e. resonate with different
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longitudinal modes of the cavity. The trap cavity is locked to the 894 nm reference
laser, which is locked to a temperature stabilized reference cavity, together with the
probe laser. The signal from the trap cavity is generally rather noisy (see sec. 5.6.2)
and as these experiments require that the standing wave lattice field (866-1) follows
these vibrations, the laser is locked directly to the experimental cavity, and not to the
reference cavity. This minimizes short-term intensity fluctuations of the intracavity
optical lattice during each sequence.
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Figure 7.9: (a) A lattice field profile recorded with a photo-detector in cavity transmission
during the sequence. The maximum power corresponds to ∼ 20 mK. The lattice field is
ramped for 2 µs with a shape growing as t1.4 and is held high for 5 µs. (b) A measurement of
the reflected lattice power (blue) and the lattice lock error signal (red) during 17 sequential
repetitions. The lattice is locked to the low power signal and, as the lattice power is quickly
ramped up, the lock does not have time to react before the lattice power is at low level again.
Much of the noise in the error signal originates from the noisy trap-cavity.

As shown on fig. 5.7, after reflection from the cavity, a diffraction grating separates
the 894 nm light from the 866 nm lattice light, and the latter is sent to a detector
giving the signal which is used in the Pound-Drever-Hall (PDH) lock for the lattice
laser. In the sequence just described we ramp the lattice field from a low to a high
intensity in a short period of time, after which it is quickly dropped back to the low
level (see fig. 7.9(a)). This violent variation in power (i.e. error signal amplitude)
affects the lock of the laser and it can be difficult to get it reliably stable for fixed
gains in the feedback loop. However, the lattice field is not held at high intensity for
very long (∼ 5-7 µs) in the 50 µs sequence. Accordingly, if we can keep the lattice
pulses short compared to the inverse of the lock bandwidth we never see the steady
state performance of the lock with the lattice on. From these considerations, we are
forced to use a low overall gain to keep the lock stable during the lattice pulses and
to keep fluctuations at a minimum, the error signal offset needs to be optimized to
make sure that the error signal crosses zero when the gain is low2. In other words,
all the important lock performance is at low laser power and once the lattice pulse
begins the lock will have almost no time to react to the change. To make sure that
this is the case, we can observe the reflected or transmitted signal of the lattice laser

2For more information on the PDH technique see [165]
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while running the sequence, and adjust the lock parameters so that the pulse does
not make the optical signal unstable. The choice of the low-power setting, to which
we lock, is made by ensuring that the low-level lattice field does not affect the ion
during cooling and optical pumping in the sequence. In fig. 7.9(b) the reflected lattice
power (blue) and the lattice lock error signal (red) are shown during 17 sequential
repetitions, and this illustrates that the lattice laser can be reliably locked during the
localization experiment. We still observe some noise on the error signal, which mostly
originates from the noisy trap-cavity lock (using the 894 nm reference laser).

7.3.3 Signal calibration with probe saturation

As we only have one ion which can send out at most one photon in every sequence run,
and if we take into account that our imaging system has a low detection efficiency,
the expected scattering measurement needs to be repeated a large number of times.
By only applying the probe field, without the lattice, the highest signal can be found,
whereas when the lattice is applied we typically get a lower signal.

If we set the resonant probe intensity high enough to saturate the 3D3/2 ↔ 4P1/2

transition, taking into account that we only address the mj = +3/2 and mj = +1/2
states of 3D3/2, on average we get the ion to an excited state in every second sequential
run. We can measure the fluorescence signal obtained when the ion is depumped into
the 4S1/2 state, and as this process occurs with 93% probability we know that in mean
every run gives out exactly 0.46 photons. As a typical example, we use a box around
the ion on the images of 30×30 pixels (∼ 27×27 µm) and sum the total CCD counts
within it, resulting in ∼ 91000 counts after background subtraction (see fig. 7.8). The
exposure time on the CCD for a single image is 10 s and the total sequence length
is 50 µs, resulting in 2 × 105 cycles per image. From these numbers, we can deduce
that we collect 0.99 ± 0.05 CCD counts per scattered photon (397 nm). To obtain
a reasonable measured signal, we collect 30 of these images and perform the total
average. In the lattice experiments we collect only a fraction of these CCD counts
(as we are far from saturation), but from the calibration we can calculate exactly
the corresponding photon number and then get the scattering probability for the ion.
Using this calibration, the photon shot noise and the variance of the CCD signal it
is possible to estimate the total quantum efficiency of the detection system, which is
∼ 10−4.

7.3.4 Experimental results and discussion

The purpose of the experiments was to prove that a single ion can be localized in the
lattice potential. Prior to the results presented in this section, various calibrations
and optimizations of the system were performed, some of which will be described in
the following sections.

In the first experiment we only applied the lattice field and observed the scatter-
ing probability as described above. To obtain a clear evidence for localization, we
compare the photon scattering probability for red- and blue-detuned lattices. As de-
scribed in sec. 7.3.1 we expect the red-detuned lattice to increase the scattering above
the delocalized average level, while the blue-detuned lattice is expected to produce a
suppressed scattering signal. On fig. 7.10 the resulting scattering signals are shown
for a lattice detuning of ±0.19 THz (±15 FSR). The probabilities to scatter a lattice
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Figure 7.10: Photon scattering probability from the optical lattice as function of its depth,
for red (full squares) and blue (full circles) detuned lattices. The solid lines are one-free-
parameter fits of our analytical model giving Tini = 5.1 ± 0.6 mK. The open symbols and
dashed lines shows the scattering probability during lattice ramp-up, from experiments and
from the model, respectively.

photon in the 5 µs during which the lattice is kept high (after ramp-up) are shown
as solid red squares and blue circles. The fact that the observed scattering is system-
atically higher in the red-detuned lattice case compared to the blue is a signature of
localization, matching the expectations of sec. 7.3.1.

The analytical model can be used to predict the fluorescence signal, which is
shown as solid lines in fig. 7.10. As seen, this simple model provides a good quan-
titative description of the observed scattering probabilities. The curves are fitted
simultaneously with the initial temperature as the only free parameter, all other
quantities being known from independent calibrations. The obtained temperature is
Tini = 5.1±0.6 mK and, although it is about ten times the Doppler limit, it appears to
be consistent with the observed spread of the ion position after Doppler cooling. The
model accounts for the population loss during lattice ramp-up, but as a cross-check we
also measured the scattering probability (predicted by eq. 7.16 in sec. 7.3.1) during
this process for both detunings (fig. 7.10, open symbols and dashed lines). Again,
the model consistently reproduces the observed variations. These localization experi-
ments require a minimization of any micro-motion in the system, and as we shall see
in sec. 7.3.5 the ion can get completely delocalized by imposing a few nanometers of
motion. In this case, the red- and blue-detuned curves are pushed towards each other
resulting in scattering from a hot free ion (only trapped by the harmonic Paul trap).
In general, increasing the initial ion temperature by any process has the same effect,
and the observed scattering curves would be identical when its temperature is much
larger than the highest lattice depth; hence the ion will be delocalized.

By modeling the experiment with the same initial temperature (5 mK) and final
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lattice depth (34 mK) as obtained from the fit, we infer that the ion is captured
in a single lattice well with over 97% probability. This is the fraction of the energy
distribution which is below the lattice depth. Furthermore, this modeling reveals that
we can (for the same parameters) deduce the approximate ion position spread in a
lattice cite to ∆z ≈ 190 nm (FWHM), corresponding to sub-wavelength localization
(λlat = 433 nm).

We then carried out a second experiment to consolidate the evidence of localiza-
tion. Here, after ramping up a blue detuned lattice field, the near-resonant probe
field is injected into the cavity, as explained in sec. 7.3.2. The boundary conditions
of the mirrors determines the overlap between the probe and lattice standing waves
at the center of the cavity, as described in sec. 7.3.1. The probe field will increase the
scattering in a way that depends on the separation in frequency between the two fields
(even or odd number of FSRs). The scattering from the probe field has an additional
position dependence because of the lattice-induced AC Stark shift on the energy-
levels, since the detuning of the probe from the 3D3/2 ↔ 4P1/2 transition changes by
twice the local lattice depth. This is illustrated on fig. 7.6(a) where the application
of the lattice shifts the levels in opposite directions following the sinusoidal pattern
of the lattice. The probe field has in these experiments been detuned by 0.65 GHz
so as to be less sensitive to this shift and to obtain a more clear splitting between
the signals. In fig. 7.11 the observed photon scattering probability is shown for blue
lattice detunings of 15 FSR (0.19 THz) and 16 FSR (0.20 THz) by the probe, as green
squares and orange circles, respectively. There is only a 6.7% difference between the
two lattice detunings but the figure clearly shows the difference in the probe field
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Figure 7.11: Combined scattering probability for the probe field and a blue-detuned lattice
field separated by 15 (green squares) and 16 (orange circles) cavity free spectral ranges. The
open symbols are scattering from the lattice field alone for both detunings. The full curves
are a fit to the analytical model with two free parameters: probe power and initial ion
temperature (Tini = 3.9± 0.3 mK).
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scattering rate, as the ion goes from being localized near a probe node (16 FSR) to
being localized near a probe anti-node (15 FSR). The open symbols show the scat-
tering probability obtained with the lattice only for the two detunings and, as they
are both on the blue side, they follow each other closely and resemble the blue curve
in fig. 7.10. The model predictions are shown as full lines (probe on) and dashed
lines (lattice only) on the figure, and they agree with the observed scattering. We
fit all four curves simultaneously with two free parameters: probe power and initial
ion temperature (Tini = 3.9± 0.3 mK). The fitted probe power is consistent with the
one measured in the experiments, and corresponds to an intracavity Rabi frequency
of Ωp = 2π × 16 MHz. We can consider the scattering from the probe alone, by
subtracting from the signals obtained with the probe on (solid symbols) the signals
from the lattice only (open symbols). This reveals that changing the lattice detuning
by a single FSR increases the probe scattering with more that a factor of four (for
the highest lattice depth). This shows that the coupling between an ion and a cavity
field mode can be increased by localizing the ion in an optical lattice with a standing
wave structure of a different mode. The average coupling strength squared (related to
the local cavity field intensity) increases from 50%, for a delocalized ion, to 81± 3%
for the ion in the deepest lattice at a cavity antinode. This change in coupling does
not depend on our model as the measured scattering rates are directly proportional
to the cavity coupling strengths squared. The only corrections needed are the loss
during ramp-up (which we have measured independently) and weighting the signals
between the mj = +3/2 and mj = +1/2 sub-states of 3D3/2.

7.3.5 Effect of excess micro-motion on the localized ion

Localizing an ion by a standing wave lattice field while keeping it in a linear Paul
trap requires the ion kinetic energy to be low as compared to the energy of the lattice
confinement. In Paul traps though, excess micromotion could in principle drive the
ion at the RF-frequency and heat it up (see sec. 2.3.4). The lattice potential in our
system is placed along the axis of the trap and, consequently, the ion localization
is very sensitive to parasitic RF-fields in the axial direction. Micromotion in an
ideal linear Paul trap is normally a radial effect, i.e. arising when ions are displaced
radially from the nodal line, but, in a real trap, parasitic RF-fields with a non-zero
axial component cannot be excluded. As introduced in sec. 5.7 we can consider
each individual trap electrode as an LRC resonance circuit and by inserting variable
capacitors in each circuit we can control the relative phase of all the electrodes [128].
In particular, a phase difference between the RF-field of the four end-electrodes in
one end compared to the other could induce excess micro-motion of non-negligible
magnitude in the context of our ion localization. By varying the relative phase of
the two ends we can control this dipolar RF-potential along the trap axis. As the
oscillation frequency of the lattice potential is close to the RF-frequency (2π×4 MHz)
the ion localization will thus be affected and can ultimately vanish.

Our analytical model can not handle the complication of adding a fast varying
micro-motion field and, hence, we examine the effect through numerical MD simula-
tions performed by Mathieu Marciante. At first, we will give some simple considera-
tions on the problem. By including the harmonic trapping potential, the micro-motion
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effect and the localizing lattice field, the ion’s motion is governed by a second order
differential equation:

z̈ + ω2
zz = AMω

2
rf cos(ωrf t)−

∇(U(z, t))

m
, (7.18)

where ωz is the axial harmonic oscillation frequency, AM is the micro-motion ampli-
tude, ωrf is the RF-frequency and m is the ion mass. The force from the micro-motion
can be found as Frf = AMmω

2
rf . The lattice potential is U(z, t) = U(t) sin2(klz),

where kl is the wavenumber of the lattice field and U(t) is the lattice potential depth
which is being ramped up. Note that eq. 7.18 resembles a driven pendulum equation,
which is known to become chaotic when e.g. the drive amplitude is high. Solving this
equation numerically makes it possible to simulate the ion trajectories, from which
the average potential energy can be obtained.
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Figure 7.12: (a) Results for ion trajectory simulation in a sinusoidal lattice potential for
a given micromotion amplitude, giving the average coupling to the lattice cavity field. The
lattice is ramped in 2 µs to a final depth of 28 mK. The results are shown for red- and blue-
detuned lattices by symmetrically mirroring horizontally and vertically. (b) Experimental
results of localizing a single ion in lattice fields with red (−15 FSR - red squares) or blue
(+15 FSR - blue circles) detuning and a depth of 29 mK. The photon scattering probability
is plotted as function of micro-motion amplitude along the cavity axis and shows that the
localizing effect is eliminated with only a few nm of axial micromotion in the system.

For a given RF force we consider the micro-motion amplitudes for a free particle,
the sinusoidal lattice potential is ramped adiabatically to a certain depth U0 and
the simulation runs for a fixed time. The result of a simulation with one 40Ca+ ion
is plotted in fig. 7.12(a) with an initial temperature of Tini = 0.5 mK, a 97 kHz
harmonic trapping frequency and a 2 µs lattice ramp with intensity growing as t1.4

to a final lattice depth of U0 = 28 mK. The 4 MHz RF micro-motion force is imposed
with amplitudes of 0, 0.5, 1, 2, 5 and 10 nm for a free ion. Like before, we consider
the case of having a red- or a blue-detuned lattice field, but ion trajectories are
not distinguishing between the sign of the detuning or the sign of the micro-motion
amplitude since there is a random phase between the initial ion oscillation and the RF-
motion. Hence, for each setting the simulation gives information about four points;
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red- and blue- detuning, positive- and negative-amplitude micromotion. This causes
the symmetry in the curves on fig. 7.12(a). The outcome of the simulations are
the average energy of the ion motion in the lattice, which can be expressed as a
fraction of the lattice depth 〈U/U0〉. For a blue detuned lattice, the average cavity
coupling is g2

cav,b ∝ 〈U/U0〉, whereas for a red-detuned lattice it is the complement,

g2
cav,r ∝ (1−〈U/U0〉). As shown above, in absence of axial micromotion, the localizing

effect causes the red-detuned lattice to increase the ion-cavity coupling, whereas the
blue-detuned lattice decreases the coupling. We see that only a few nm of RF-induced
axial micromotion can change the coupling drastically and in the high-amplitude limit
both couplings approach an un-localized situation of 50% of the maximum coupling.

In order to measure how axial micro-motion can influence the ion localization we
need to calibrate the external modification into a known micro-motion amplitude.
This is done by conventional correlation fluorescence measurements of the excess
micro-motion in the axial direction [113] (see also app. E). In our implementation, a
single 40Ca+ ion is trapped and cooled by mostly illuminating it with a single axial
397 nm cooling beam. A Doppler effect arises between the cooling light and the ion
excess micro-motion and modulates the fluorescence signal. In order to resolve this
fast (2π×4 MHz) modulation we gate our imaging system with a 100ns short pulse at
a rate 0.5 Hz faster than the RF frequency. This pulsed observation aliases the 4 MHz
Doppler modulation down to a 0.5 Hz fluorescence fluctuation easily detectable on
our CCD camera. From a Fourier transform of the signal the amplitude can be found
and the noisy background is subtracted. In Fig. 7.13 the modulation power are shown
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Figure 7.13: Correlation fluorescence measurements of the excess micro-motion in the axial
direction [113], showing the micro-motion modulation as function of the capacitative load
setting of end-cap electrodes. Gating the imaging with pulses close to the RF-frequency
(4 MHz) modulates the fluorescence fluctuation down to a detectable 0.5 Hz signal. Its
amplitude is directly related to the micro-motion amplitude, and hence a calibration between
the load setting and the size of the micro-motion influence is established.
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for a scan of end-cap electrode loads on one side of the trap. Note that changing the
capacitative loads of the circuit changes slightly the RF resonance frequency, and this
needs to be compensated in order for the ion to be stably trapped. The modulation
power is here defined as the square of the modulation contrast. From the quadratic
fit the load position can be related to the contrast signal. From simple considerations
of the effect on the scattering signal obtained from a moving particle affected by an
electrical field it is possible to estimate a connection between micro-motion amplitude
and the contrast signal. In connection with the correlation fluorescence measurements
we eventually find the relation of excess micro-motion to be 3.4 nm per load turn.
With this calibration at hand the micro-motion effect on the localization signal can
be estimated.

To test the effect on the experimental localization we localize a single 40Ca+-ion
in a lattice potential like in the prior section. The experimental sequence is run in the
same way as described in sec. 7.3.2, but we only measure the scattering probability
for a single lattice depth, 29 mK. As before, we compare the scattering signal obtained
from a red (-15FSR) detuned lattice and a blue (+15FSR) detuned lattice, where
a difference indicates that the ion is localized. By varying the electrode loads in
the same way as with the correlation fluorescence measurements, we can observe
the effect on the localization. On fig. 7.12(b) the localization signal are shown for
red- and blue-detuned lattices, as function of the micromotion amplitude for a free
ion, which was obtained from the load settings using the known calibration. We see
clearly that increasing the micro-motion amplitude delocalizes the ion, as the curves
approach each other. Although the kinetic energy of the ion, originating from RF-
amplitudes of a few nm, is much lower than the lattice depth, we still observe that
the ion delocalizes. This is a result of off-resonant excitations of the driven motion by
the ramped lattice. Delocalization occurs even if the effective frequency in the lattice
is lower than the RF frequency, because of the anharmonicity of the sinusoidal lattice
potential. As a comparison, the oscillation frequency in a lattice well can be found
trough ωl =

√
2Uk2/m from sec. 7.2.1, and near ∼ 29 mK lattice depth it matches the

RF-frequency (ωl ≈ ωrf = 2π × 4 MHz). Nevertheless, we still observe micro-motion
induced delocalization at lower depths. Also, note that a micro-motion amplitude of
AM = 5nm corresponds to a parasitic force of only Frf = AMmω

2
rf = 200zN and this

makes a single ion in an optical lattice a sensitive directional probe of stray RF-field
forces in the trap.

Comparing the ion localization signal to the numerical simulations in fig. 7.12 we
see a qualitatively good agreement. The scale at which the micro-motion force destroys
the ion localization (5-10 nm) is roughly the same for both approaches, indicating
that our description of the system is somewhat correct. We have to emphasize that
the vertical scales are not directly comparable, as one gives the ion coupling to the
localizing cavity field while the other gives the probability for the ion to scatter on
the lattice field. Actually this technique can also be used the other way around -
to minimize the micro-motion by making the localization signal as large as possible.
Furthermore, we have checked that moderate radial micromotion does not affect the
ion localization.
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7.3.6 Conclusion

This section addressed the demonstration of localization of a single 40Ca+ ion by
an optical wavelength-scale intracavity standing wave potential. We introduced two
measurement techniques which are both based on the inelastic scattering from the
3D3/2 to the 4P1/2 level followed by a decay to the 4S1/2 ground state by emitting
397 nm photons. By only applying the lattice field, the ion scattering was obtained
for red and blue lattice detunings (±0.19 THz) and can be related through a simple
analytical model to the level of localization. The only free parameter in the model
is the initial ion temperature (here Tini = 5.1 ± 0.6 mK) which agrees with the
independent estimate based on the width of the ion fluorescence spot. Furthermore,
we applied both the lattice potential (blue detuned) and a standing wave probe field,
and obtained additional evidence of localization. This was done for a detuning of
an even or odd number of FSRs between the fields, by which the spatial relation of
the fields is well defined at the cavity center, where the ion is located. The probe
field is close to resonant with the 3D3/2 → 4P1/2 transition and the signals obtained
for a frequency separation between the fields of an even or an odd number of cavity
free-spectral ranges were compared. This revealed that the coupling strength to the
probe field could be either enhanced or diminished when the ion is localized in the
lattice wells. The average coupling between the ion and the probe field was hence
increased from 50% of its maximum value for a delocalized ion to 81% when the ion
is localized.
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7.4 Multi-ion localization experiments

In this section we investigate the possibility of simultaneously localizing several ions
in the standing wave lattice potential. In sec. 7.4.1 we introduce some possible ap-
plications of the study and its limitations. In sec. 7.4.2 we describe the process
of optimization of the optical pumping to a single Zeeman substate to which the
localizing lattice field couples strongly. In sec. 7.4.3 we describe the localization
of one-dimensional strings of ions, first specifying the differences in the experimen-
tal setup and sequence as compared to the single ion localization experiments, and
afterwards presenting the obtained experimental results. In sec. 7.4.4 we consider
localization of multi-dimensional ion crystals. In the last section (7.4.5) we discuss
possible issues associated with the experimental results of localizing multiple ions and
give a conclusion.

7.4.1 Introduction

The previous experiments were limited to the dynamics of single ions in an intracavity
lattice potential. In this section we extend the studies to the case of ion Coulomb crys-
tals composed of several ions. Such a system exhibits a natural competition between
Coulomb and optical forces, which can be used to test cold solid-state models, such as
Ising spin-models [196,197], generalized Dicke models [198] or the Frenkel-Kontorova
model of friction [98, 99, 194]. The latter model is based on a one dimensional de-
scription of friction between two crystals: a chain of atoms from one crystal sliding
along the periodic potential created by the other crystal. A string of ions can be used
to mimic the first crystal, while the optical lattice corresponds to the second crystal.
By increasing the lattice strength, the system can undergo a transition from a regime
where the ion-ion coupling dominates to a regime where the ions form a chain of inde-
pendent oscillators, mimicking the friction between the two crystals. The application
of light induced potentials on two- and three-dimensional crystals is furthermore inter-
esting for e.g. the control of the crystalline structure of large Coulomb crystals [180]
or for the enhancement of the ion-light coupling in cavity QED experiments [28,68].

The experiments we describe in the following demonstrate the simultaneous lo-
calization of ions in multidimensional ion Coulomb crystals by an intracavity optical
potential, and, as such, they represent an important step towards the implementation
of the above mentioned applications. However, let us note that the typical inter-ion
distance in our experiments is ∼ 10− 30 µm, and as the Coulomb force between the
ions is mostly balanced by the trapping potential, the force induced from the lattice
easily overcomes the Coulomb force (for small ion displacements). This limitation
on the interaction-induced delocalization from Coulomb repulsion can be quantified
by comparing the energy scales associated with the different types of ion motion, i.e.
comparing the frequency scales involved. In order to observe a clear localization effect
on the initial thermal motion of the ion, we need a lattice depth of ∼ 10 mK. The
oscillation frequency at the bottom of a lattice well was defined at eq. (7.4), and will
here be on the order of ωl = 2π × 2 MHz. For multiple ions in the trap the stiffest
crystal modes possible will have frequencies on the order of the plasma frequency,
which can be found from eq. (2.21) and which, for typical parameters, is on the or-
der of ωpl = 2π × 500 kHz. In order to observe Coulomb interactions disrupting the
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Figure 7.14: (a) Illustration of the confinement of a 4 ion string in a lattice potential. 1) The
ions are all localized in the lattice potential. 2) One ion scatters on the lattice field and decays
to the ground state emitting a 397 nm photon. 3) The system now contains three ions in
the lattice and one free ion (in the Paul trap potential), and the configuration is therefore
different than in the initial system. To demonstrate simultaneous multi-ion localization, the
measurement thus has to stop before more than one ion have time to scatter, which limits
the total scattering rate. (b) The relevant energy-levels for 40Ca+. The ions are prepared
in the mj = +3/2 sub-state of 3D3/2 by optical pumping and the σ− circularly-polarized
lattice field is applied with either red (∆r) or blue (∆r) detuning from the 3D3/2 ↔ 4P1/2

transition. We measure the lattice induced scattering by again collecting the emitted 397 nm
photons. Furthermore, we indicate the frequency spacing to the 4P3/2 level, as scattering to
this level can become non-negligible when the lattice detuning gets large.

localization, a conservative estimate is that the plasma frequency must be at least as
large as the oscillation frequency of ions in the lattice well. As this is not the case in
the present experiments the ions can be described as independently localized in the
optical potential and our system is in a regime where we can describe the multi-ion
localization physics with our existing single ion model. In order to observe noticeable
Coulomb interaction effects one would have to change the experimental configura-
tion in one or several of the following ways. We could create a stiffer background
potential (to compress the crystal and raise the plasma frequency), but raising the
trap potentials enough to get the frequencies comparable would cause the ion position
distribution in the trap to be on the order of the lattice period, and our model would
break down. We could also create a shallower lattice (lower depth), but this would
require a lower initial ion temperature in order to still observe a localizing effect. Last,
we could create a longer lattice period, which could be achieved through the interfer-
ence between two counter propagating beams with carefully chosen polarizations.

As in the single ion case, we localize a number of ions in red- and blue-detuned
lattice fields, and compare the scattering probability. A complexity arises though,
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if one wants to demonstrate simultaneous localization of several ions. In principle,
the goal of the localization measurement is to have all ions localized in the lattice
potential right up until one of them scatters off the lattice and a fluorescence photon
can be observed. However, as soon as one of the ions scatters it will decay with
93% probability to the 4S1/2 state and will no longer see the lattice potential (as
illustrated on fig. 7.14(a)). This changes the ion configuration in the lattice and the
total potential energy of the system. Thus, in order to demonstrate simultaneous
multi-ion localization, the total photon number scattered by all the ions in the lattice
must be much less than one. In this case, the single-ion model used in the prior section
is still expected to give reliable predictions of the localization, but this quickly limits
the maximum achievable scattering signal, and thereby the maximum number of ions
which can be realistically investigated with this experimental configuration.

To lower the scattering probability we introduce a number of changes to the ex-
periment. The lattice laser is detuned even further than in the single ion case and to
reach comparable potential depths, the intensity of the lattice laser is also increased
(the lattice depth depends on the detuning and Rabi frequency as U = Ω2/∆). As
the lattice detuning (0.76 THz) approaches a considerable fraction of the frequency
difference between the 4P1/2 and 4P3/2 states (6.69 THz), the scattering on the 4P3/2

level becomes non-negligible and has to be taken into account in the modeled scatter-
ing probability. Furthermore, in order to ensure that all the ions see the same lattice
field they have to be in exactly the same state before the lattice is raised. Thus,
we perform optical pumping into the mj = +3/2 sub-state of 3D3/2, as this has the
strongest coupling to the σ− circularly-polarized lattice field. This is illustrated on fig.
7.14(b) and in the following section the optimization of the OP process is described.

7.4.2 Optimizing the optical pumping with few ions

In order to obtain the maximum population in the mj = +3/2 sub-state of 3D3/2 a
careful optimization of the optical pumping process needs to be performed. This state
was chosen, as the 3D3/2,mj = +3/2 ↔ 4P1/2,mj = +1/2 transition at 866 nm has
the highest Clebsch-Gordan coefficient and will hence give rise to the largest coupling
strength to the lattice field. As described in sec. 6.1.2 optical pumping has been
performed on large ion Coulomb crystals with high efficiency (∼ 97%) in our system
(see also [27]). Now, our studies only include a few ions (up to 8 in a string) and the
optical pumping parameters need to be adjusted and optimized accordingly.

As introduced in sec. 5.5 the optical pumping (OP) beam is sent onto the ions
with an angle of 45

◦
from the quantization axis with both σ+ and π polarization

components. This can e.g. be seen on fig. 6.1(a). During the optical pumping
process the 397 nm cooling laser is also applied in order to empty the 4S1/2 state.
Because the OP polarization has no σ− component the only un-addressed state is
the mj = +3/2 sub-level of the 3D3/2 state, and hence all population will eventually
accumulate in this state. In the experiments a magnetic field of ∼ 2.5 G along z
defines the quantization axis for the system and this results in the Zeeman splitting
of the energy levels. The system is described by 8 different levels, as can e.g. be
seen on fig. 7.15, and these all have different magnetic shifts. The equations for the
time-evolution of the atomic state population in this system can be found through its
Hamiltonian, but as the states are coupled using six different electrical fields (in the
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Figure 7.15: Scheme of the relevant levels and transitions for optical pumping of 40Ca+.
Due to the Zeeman effect, the levels are shifted from their unperturbed configuration (dashed
lines). The various transitions are labeled by the polarization of the fields addressing them
and the detunings of the fields from the unperturbed levels are indicated. The decay rates
Γ are distributed among the substates according to the Clebsch-Gordan coefficients of those
transitions and thus, as 3D3/2,mj = +3/2 is not addressed by any field, all the population
can ideally be accumulated there.

quantized picture) the calculations include in general 64 coupled first order differential
equations. For numerical solutions of the system properties and a general description,
see [27]. In practice there are several factors that need to be optimized explicitly
in order to gain a high optical pumping efficiency. The laser intensity and detuning
on the 866 nm and 397 nm transitions need to be well adjusted, together with the
relative polarizations of the fields. Given the relative strength of the two transitions
(ΓPS/ΓPD ' 12) the 4S1/2 ↔ 4P1/2 transition is the most critical and should be
driven strongly.

During the optical pumping process the scattering from the mj = +3/2 state
will decrease, and ideally the state should become completely dark. To measure the
efficiency of the optical pumping process, one can specifically probe the Zeeman states
after the optical pumping has ended, and maximize the scattered fluorescence from
the mj = +3/2 state, i.e. maximize its population. We load an ion string into the
trap and run a sequence in three parts: Doppler cooling (28 µs), optical pumping
(variable duration), probing (5 µs). Between the optical pumping and the probing
the cooling light is left on for 5 µs in order to be sure that all population is distributed
on the substates of 3D3/2. The saturating probe field is applied first with σ+ circular
polarization and addresses themj = −3/2 andmj = −1/2 substates and subsequently
with σ− circular polarization addressing the mj = +1/2 and mj = +3/2 substates.
As in the localization experiments we measure the probe scattering by collecting the
397 nm fluorescence on the 4P1/2 ↔ 4S1/2 transition with the CCD camera, while the
probe field is on. By comparing the height of the scattering signals generated by the
two different probe polarizations (Γσ− , Γσ+) we can give an estimate for the optical
pumping efficiency. The two scattering signals give the combined population of two
Zeeman states as Γσ− ∝ n1/2 + n3/2 and Γσ+ ∝ n−1/2 + n−3/2, and consequently we
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have to also probe with a π-polarized field to measure the population in themj = ±1/2
states independently. The final optical pumping efficiency will be defined as

ηOP =
n3/2

n−3/2 + n−1/2 + n1/2 + n3/2
. (7.19)

By varying one parameter at a time, the optical pumping efficiency is raised as
much as possible, to ensure that all ions are prepared in the same state every time the
sequence runs. In the setup the beam waist of the 397 nm cooling beam is ∼ 0.5 mm
and for the 866 nm OP beam horizontally it is ∼ 1.3 mm (see [27]). In all the
measurements the field on the 4P1/2 ↔ 4S1/2 transition has a detuning of ∆cool =
2π × 28 MHz and the Rabi frequency is ΩSP = 2π × 6 MHz. The optical pumping
field has a detuning close to zero (∆OP ≈ 2π × 0 MHz) and the Rabi frequencies of
the different components are ΩDP

σ+
1

= 2π × 5 MHz and ΩDP
σ+

2

= ΩDPπ =
√

1/3ΩDP
σ+

1

,

because of the difference in Clebsch-Gordan coefficients (for more detail see [27], and
for the coefficients see app. A.3).

Varying the duration of the OP process is an important optimization and a result
of this is shown on fig. 7.16(a). In these measurements the duration of the Doppler
cooling and probing are kept fixed. The red points give the scattering probability
when using a σ− polarized probe field, while the blue points corresponds to a σ+

polarization (as indicated in the illustration on the figure). For every set of points the
sum of fluorescence corresponds to scattering one photon pr. sequence run and from
an average over all the points the scattering probability can be calibrated. With no
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Figure 7.16: Optimizing the optical pumping (OP) process using 6 40Ca+ ions in using
the sequence described in the text. (a) Varying the OP duration in the sequence, after
which the system is probed with either a σ− (red) or a σ+ (blue) circularly polarized probe
field. The scattering probability for σ−increases, while for σ+ it decreased, and thus, the
efficiency of the OP is raised. The insets show the probing process on the considered energy
levels of 4P1/2 and 3D3/2. (b) For increasing OP power the σ+ probed scattering probability
is plotted. With low power the scattering is high, corresponding to a large population in
mj = −3/2 and mj = −1/2, but as it increases this population is decreased. At high OP
power a saturation of the process makes the population increase again.
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OP, the population in all four 3D3/2 substates is practically equal (25% in each) and
thus, the σ− and σ+ measurements give the same signal. As the OP is turned on,
population is transferred into mj = +3/2 state and, thus the σ− (σ+) probe gives
higher (lower) scattering as the the duration is increased. We observe that the OP
efficiency increases with the duration of the OP process until it reaches a steady state.
By choosing a duration of 25 µs the optical pumping will be completed and three of
the substates will be almost empty. Before stating the final efficiency we introduce a
few other optimization possibilities.

With OP duration fixed, the power of the OP light could for example be varied, as
shown in fig. 7.16(b). Here, we only observe a σ+ polarized probe field, as minimizing
a fluorescence signal rather than maximizing has less uncertainty. With low OP power
the population in the mj = −3/2 and mj = −1/2 substates are large giving a high
probe scattering probability. As the power increases we observe an optimal range
before the probability starts to rise again. The process also depends on the power
of the 397 nm cooling laser and thus, this reveals that the process is complicated
and requires several iterations of the laser and timing settings in order to be fully
optimized.

To ensure the right polarization of the optical pumping beam the λ/4 and a λ/2-
wave-plates (see fig. 5.4) on the OP beam-path are varied. The polarization is turned
into an elliptical polarization by the λ/4-plate, while the λ/2-plate are used to com-
pensate for imperfections in the optics and birefringence in e.g. the viewport of the
vacuum chamber. In fig. 7.17(a) the scattering probability for the σ+-probe is shown
as function of the λ/2-plate for a fixed λ/4 setting and shows a clear minimum at
an optimum position, at which the λ/2-plate is then set. A similar variation on the
λ/4-plate is performed (see 7.17(b). Though an iterative procedure, optimizing the
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Figure 7.17: Optimizing the optical pumping process using 6 40Ca+ ions and probing the
system using a σ+-polarized probe field. (a) Turning the λ/2-wave-plate for a fixed λ/4-plate
setting a minimum in photon scattering is observed and this is used as a temporary optimum
setting. (b) The λ/4-wave-plate is turned with the λ/2 kept fixed, again showing a minimum
at some position. By performing an iterative process on the wave-plate variation an absolute
optimum can be reached.
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plates one at a time, an absolute scattering minimum can be reached, by which the
population in the unwanted Zeeman states is minimized.

At this point, what has been measured so far is the relative population in the
mj = −3/2,−1/2 states to the mj = +1/2,+3/2 states of the 3D3/2 level. To mea-
sure the population in the mj = +3/2 only we have to perform another measurement.
By setting the probe field polarization to π relative to the 3D3/2 ↔ 4P1/2 transition we
can measure the combined population of the mj = −1/2,+1/2 states independently,
in order to ensure that the population of the mj = +1/2 state is at a minimum. On
fig. 7.18(a) the π-polarized fields and the addressed transitions can be seen and we
expect a low scattering signal when the OP is optimal while most of the population
is in mj = +3/2. With all parameters optimized through the σ+ and σ− circularly
polarized probe measurements, we measured the probe scattering probability as func-
tion of the optical pumping duration for the π-polarized probe. This is shown in fig.
7.18(b). As in the prior measurements for σ+, the signal is decreased when the OP
duration is increased, indicating that the addressed sub-states are being emptied. For
the optimal OP length of 25 µs we find that the population in the 3D3/2,mj = ±1/2
states is 0.70 ± 0.37%. From the σ-probe measurements we find an optimum com-
bined population in the 3D3/2,mj = −3/2,−1/2 states of 0.45 ± 0.32% and in the

3D3/2,mj = +1/2,+3/2 states of 99.5+0.5
−2.5%. Comparing these three measurements

and assuming equal population in the minimized substates, we can estimate the total
population in the mj = +3/2 using eq. (7.19) to be 99.2+0.8

−1.1%.
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Figure 7.18: (a) A sketch of the π-polarized fields and the relevant Zeeman states used
when optimizing the OP process. (b) Photon scattering probability for 6 40Ca+ ions probed
by a π-polarized field after OP. We only address states with minimum population and thus
expect a low scattering signal. As we increase the OP duration the signal decreases and the
resulting population in mj = ±1/2 states is less than 1%.
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7.4.3 Localization of ion strings

The natural extension of the single ion localization was to proceed with one-dimensional
structures, and hence, we performed measurements on strings with 1-8 ions. In the
following we consider the simultaneous sub-wavelength localization of several 40Ca+

ions, with the same approach as in the single ion case (see fig. 7.7).

7.4.3.1 Experimental setup and sequence timing

A string of ions are positioned at the absolute center of the optical cavity (see sec. 6.2
[79]) and confined in a loose trapping potential with axial and radial trap frequencies
ωz = 2π× 70 kHz and ωr = 2π× 430 kHz, respectively. In the experimental sequence
the Doppler-cooling part is extended to 62 µs, and the axial and radial cooling powers
are adjusted in order to minimize the temperature of the ion configuration. The optical
pumping process occurs for 25 µs and as described above almost all population is
transferred into 3D3/2,mj = +3/2 state (∼ 99%). After the optical pumping has
ended the cooling beam is left on for 5 µs in order to assure that the 4S1/2 level is
emptied completely. After cooling and optical pumping the 397 nm and OP fields
are turned off, and the lattice potential field is applied with a detuning of ±0.76 THz
from the 3D3/2 ↔ 4P1/2 transition, corresponding to ±60 FSRs of the cavity. After
an optimization of the lattice laser and its beam path the available laser power makes
it possible to reach lattice depths of up to ∼ 30 mK. The optical lattice intensity is
ramped up adiabatically in 2 µs and held at maximum depth for 1 µs, in order to keep
the scattering signal low (as mentioned earlier). As in the single ion case, any ion that
is excited to the 4P1/2 state by scattering on the lattice, has 93% probability to decay
to the 4S1/2 state by emitting a 397 nm photon which is detected by the imaging
system. The total sequence runs for 100 µs, but we have to expose the camera for
30×10 s to collect enough statistics, resulting in a total number of sequence repetitions
of 3 × 106 per data point. In the detection we measure the signal only at maximum
lattice depth after ramping, and the collected scattering signal is averaged over all
ions. In order to prove the localization of the ion string we measure the scattering
from red and blue detuned lattices, but the scattering needs to be kept low to fulfill
the requirement of not including multi-ion excitation in the modeling.

As shown on fig. 7.14(b) the lattice detuning (0.76 THz) is now a substantial
fraction of the frequency difference between 4P1/2 and 4P3/2. This causes an increased
scattering probability on the 4P3/2 level and while most of the scattering processes
brings the ion back to the ground state, there is a 6.8% probability to decay into
the metastable 3D5/2 level which has a lifetime of ∼ 0.9 s (see fig. 2.2). An ion
ending here is thus shelved and we can compare the probability of shelving to the
(measured) probability of scattering to 4S1/2 level. In doing so, we include the lifetime
of the different decay channels and, the Clebsch-Gordan coefficients and the relative
strengths of the transition from 3D3/2 to 4P1/2 relative to 4P3/2. The results is a
shelving probability of 60-100 ppm of the probability to scatter a 397 nm photon.
The 397 nm photon scattering probability is typically 5-10% at maximum lattice
depth, and for an experimental cycle of 100 µs an ion is expected to shelve after
10 − 30 s of measurement. As an experimental check, we observed a string of 4 ions
with continuous imaging, but running the laser sequence for localization (i.e. we
obtained mostly fluorescence from the Doppler cooling at the start of the sequence).
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We observed an ion shelve (go dark) in average for every ∼ 10 s of measurement,
when applying a red-detuned lattice. For comparison, without the lattice we observed
a dark ion for every ∼ 25 s of measurement. Since the lifetime of the shelving state
is ∼ 1 s and our localization measurement is based on 30 × 10 s exposures, the
lattice-dependent signal is reduced by 4-10%. In order to avoid this signal loss, we
add a 854 nm laser field which pumps all population out of the 3D5/2 level (see fig.
2.2). This does not change the probability for the ions to be excited to 4P3/2, but
it ensures that after few tens of ns the ion has returned to 4S1/2 from which it can
quickly re-enter the localization sequence.

7.4.3.2 Experimental results

In this experimental study we measured the localization effect on several different ion
strings and all the results can be seen on fig. 7.19, where the measured scattering
probability per ion is plotted as a function of the optical potential depth. The insets
show fluorescence images of the different strings. Comparing the signal obtained with
red- and blue-detuned latices (±60 FSR), we see a clear separation that increases
with the lattice depth, for all strings. The full lines are a one-free parameter fit to the
analytical model, giving the initial temperatures: (a) 1 ion Tini = 1.5± 0.2 mK, (b) 2
ions Tini = 3.2±0.5 mK, (c) 3 ions Tini = 2.5±0.3 mK, (d) 4 ions Tini = 3.1±0.2 mK,
(e) 6 ions Tini = 4.1± 0.5 mK, (f) 8 ions Tini = 3.7± 0.7 mK. We restricted the fits
to only take into account the data with less than 10% multi-ion scattering probability
as a consequence of the requirement of only scattering one ion in mean in every
sequence, as discussed in sec. 7.4.1. This means e.g. for the 4 ion string (d) that
we can only include data points with photon scattering probability < 0.07 and thus,
we have to exclude the measurements at the two highest red-detuned lattice depths
(see app. F). For 8 ions the same requirement puts a limit on the photon scattering
probability of only 0.032, excluding most of the measurements for the red-detuned
lattice. Comparable requirements are applied to fits for the other ion strings (see
app. F).

For the strings of 1-4 ions there is a high resemblance between the data and the
model, even for the data at high lattice depth which is not included in the fit, indicat-
ing that our simple single ion description might be generalized to this multi-ion case.
Considering the 8 ion string, as the scattering probability per ion becomes large at
high red-detuned lattice depths, deviations from the single-ion model become visible.
On the contrary, the blue-detuned lattice data shows very good agreement with the
theoretical expectations, indicating that sub-wavelength localization in the optical
potential is achieved for all the strings. The red and blue dashed lines corresponds
to the expected signal for completely delocalized ions, i.e. at very high temperatures.
Even though the lattice depths are equal, the delocalized scattering probabilities are
not exactly equal, as the blue-detuned lattice scattering contains a higher probability
of scattering to the 4P3/2 state, as discussed.
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Figure 7.19: Photon scattering probability per ion as a function of the optical lattice
depth for ion strings. Circles: measurements with a red and a blue detuned lattice, full
lines: fit to the single ion one-free parameter analytical model of sec. 7.2.1, dashed lines:
theoretical scattering probabilities for delocalized ions. The fits are only applied to the data
with average multi-ion excitation of < 10% (see text), and reults in initial temperature of
(a) 1.5± 0.2 mK, (b) 3.2± 0.5 mK, (c) 2.5± 0.3 mK, (d) 3.1± 0.2 mK, (e) 4.1± 0.5 mK, (f)
3.7± 0.7 mK. The insets show CCD images of the ion strings.
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7.4.4 Localization of multi-dimensional ion crystals

The next step was to localize more complex ion structures of more than one dimension,
and thus we have studied the localization of ions in a two-dimensional 4-ion ZigZag
crystal and a three-dimensional 6-ion octahedron crystal (see insets of fig. 7.20).

7.4.4.1 Experimental setup and sequence timing

The experiments for multi-dimensional crystals are performed in a way similar to the
ion string localization experiments. In the experimental sequence the Doppler-cooling
part is extended to 112 µs in order to stabilize the ion configurations with lower total
397 nm power. The optical pumping length is still 25 µs, but was not tested and thus,
it is unsure whether the efficiency of the OP process was as high as for the ion strings.
The total sequence length is 150 µs, and as the camera is still exposed for 30×10 s the
total number of sequence repetitions is 2× 106. The axial and radial trap frequencies
for the two-dimensional 4-ion ZigZag are 2π× (80 and 160) kHz, respectively, and for
the three-dimensional 6-ion crystal they are 2π × (110 and 180) kHz.

For both crystal structures we applied a small voltage to one pair of diagonal
electrode rods, inducing a small asymmetry in the radial trapping potential, in order
to better stabilize the structures in a fixed configuration as seen by the imaging system.
This small modification leaves only two configurational possibilities for the structures.
The ZigZag structure aligns along one of the diagonal electrode planes ((x̃, z) or (ỹ, z)
planes in fig. 2.1) and thus, the CCD camera images these ions at an angle of 45◦.

(a) (b)

Figure 7.20: Photon scattering probability per ion as a function of the optical potential
depth for two configurations of 40Ca+ ions; (a) a two-dimensional 4-ion ZigZag crystal (inset
shows CCD images of the two possible orientations), (b) a three-dimensional 6-ion octahedron
crystal (inset shows a CCD image and a 3d-sketch of the ions). Measured scattering from
red and blue detuned lattices are plotted together with a fit to the analytical model (full
lines), resulting in initial ion temperatures of: (a) 2.9 ± 0.5 mK, (b) 2.1 ± 0.5 mK. Due to
un-complete optical pumping, these experiments are not completely reliable, but still shows
the splitting that indicates a localized ion system. The dashed lines show the theoretical
scattering probabilities for delocalized ions.
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The octahedron crystal on the other hand is stable in the (x, z) or (y, z) planes (see
inset of fig. 7.20(b)). Swapping between the two possible configurations typically
occurs for the ZigZag at a rate of 1.3/s, while for the 3d structure it is ∼ 0.5/s. If we
assume that the structures relaxes quickly after a swap, it is a good approximation to
assume that the ions are in a comparable configuration in almost every sequence run.

7.4.4.2 Experimental results

Fig. 7.20(a) shows the scattering probability as function of lattice depth for the ZigZag
structure, while fig. 7.20(b) shows the same for the three-dimensional structure. The
scattering levels are comparable to the strings, but the data is more noisy. One
explanation is possibly imperfect optical pumping that could cause the unevenness
seen especially on the red-detuned data. A new optimization of the OP process for
these structures together with new measurements of the localization is under progress.
Nevertheless, we still observe an unambiguous localizing effect on both structures, as
the signals obtained with red- and blue-detuned lattices split up as the lattice depth
is increased. The fits are again performed using the analytical model and only using
the lower points with limited scattering signal (< 0.07 and < 0.04, respectively), and
yield initial temperatures of 2.9± 0.5 mK (ZigZag) and 2.1± 0.5 mK (3d). Again the
red and blue dashed lines indicate the expected level for delocalized ions.

7.4.5 Discussion and conclusion

In order to quantify the degree of localization, the splitting between the red- and blue-
detuned signals are compared for the highest experimental lattice depth of 29.5 mK.
Fig. 7.21 presents the scattering probability per ion vs. the number of ions, for all the
different ion structures that we have studied so far. The data of the two detunings
(full red and blue) are plotted together with the model predicted scattering (light red
and blue). The initial temperatures, obtained from a fit to the single ion analytical
model, are indicated above the figure. The combined results show that all the ion
systems can be confined in an optical potential of a far detuned standing wave lattice
field, as all sets of detunings clearly separate far from the delocalized level (indicated
by the horizontal dashed lines).

We need to emphasize that in all the considered ion structures any excess micro-
motion is expected to have a detrimental effect on the localization, as described in
sec. 7.3.5 for the single ion case. If anything, multi-ion structures, such as the 8
ion string of fig. 7.19(f), are expected to be more sensitive to any residual axial
micromotion than single ions, as the interaction between the ions is more likely to
introduce anharmonicities in the potential seen by the individual ions and as excess
micromotion has to be minimized over a larger region. Multi-dimensional structures
may be even more sensitive, as they contain ions that are located away from the RF
field-free axis and which will always experience a driven micro-motion in the radial
direction. By measuring the distance of the ions from the trap axis and assuming a
driven motion in a harmonic potential, we can use the q-parameter and eq. 2.29 to
estimate the micromotion amplitude and hence find its kinetic energy. The kinetic
energy of the radial micro motion for the configurations of fig. 7.20 is ∼ 160 mK for
the ZigZag and ∼ 750 mK for the octahedron crystal. This is substantially larger than
the axial thermal energy (2-5 mK) and the obtained depth of the optical trap potential
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Figure 7.21: Photon scattering probability for all the ion structures that we have studied so
far. The experimental results are shown for red- and blue-detuned lattices at 29.5 mK lattice
depth. The light red and blue circles represents the fit results to the theoretical model for
this lattice depth, and the fit-parameter of initial temperature is displayed above the graph.
Dashed lines give the theoretically predicted level for completely delocalized ions.

(up to 34 mK). The fact that we still see a localizing effect under these conditions,
indicates that the axial and radial motional degrees of freedom are uncoupled enough
not to substantially disturb the interaction with the lattice potential.

While these experiments clearly demonstrate sub-wavelength localization, the in-
teraction time in the lattice potential were intensionally kept short (µs) in order to
demonstrate the agreement with the theoretical expectations. This time could be
increased by increasing the detuning of the lattice field further (which requires more
laser power) or by lowering the initial ion temperature through better cooling. An
alternative scheme would consist in operating on the 4S1/2 → 4P1/2 or 4S1/2 → 4P3/2

transitions (see fig. 2.2). These offer a larger coupling strength between the ion and
the lattice, but, more importantly, the scattering from the lattice field brings the ion
back to the 4S1/2 ground-state, which is also where the lattice potential is applied.
As demonstrated in [82], this would open the possibility to perform Raman cooling in
the lattice and substantially suppress the diffusion of the ions. With this at hand, in-
vestigations could be performed on the dynamics of ion crystals in dissipative lattices
or ion crystal-based cavity optomechanics experiments.

In conclusion, we demonstrated sub-wavelength localization of multi-dimensional
ion structures in an intracavity optical lattice potential. The effect was investigated
for one-dimensional strings of ions (1-8), a two-dimensional 4 ion ZigZag structure
and a three-dimensional 6 ion structure. The results are in agreement with a simple
one ion scattering model, as a requirement in the experiments was on average to only
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scatter much less than one ion per cycle. At the same time it demonstrates that
the localization effect is not inhibited by the crystal structural dimensions and the
residual micromotion, even when the kinetic energy of the radial RF motion is much
larger than the ion energy in the lattice potential. Consequently, this study is an
important step towards the implementation of cold solid-state models with ions or
the control of the crystalline structure of Coulomb crystals.





Chapter 8

Future aspects

In this chapter we consider some possible future aspects of the experimental projects
described in the thesis. First (sec. 8.1) we will discuss how to implement the localizing
lattice potential into experiments with large ion Coulomb crystals, and what will be
needed in order to actually increase the strong coupling to an intra-cavity probe
field. In sec. 8.2 we will describe how we intend to implement experiments with the
quantum memory of light in the current experimental setup. In doing so, we describe
an optical setup build to produce the probe and control field pulse-shapes, which has
partly been tested to fulfill our requirements, and furthermore, we will introduce the
expected limitations on our ability to detect any out-going photon states from the
memory.

8.1 Enhancing the cavity coupling with localized ions in a
Coulomb crystal

One of the most important future aspects for the localization of ions in a standing
wave field is to apply the scheme to a large ion Coulomb crystal, in order to increase
the coupling to a probe standing wave field. Doing so, the strong coupling could be
increased further than possible for randomly positioned ions. By applying the lattice
field along the axial direction as in the experiments described in this thesis, the ions in
the crystal can localize in pancake-shaped slices in the radial direction, with a number
of ions in each well.

Using the same lattice properties as for the localization of a few or single ions (in
sec. 7.3-7.4) will not make this possible though. The length of the coulomb crystal
(> 1 mm) will cover an area that is typically bigger than the beating between the lat-
tice standing wave and the probe standing wave (for ∆l = 60 FSR, λbeat ∼ 200 µm);
see e.g. sec. 6.2. This dephasing effect is what we employ to find the center of the
cavity using the ion crystal as an imaging medium. In this context though, if we
assume that all ions in the crystal have been localized in the lattice potential along
the cavity axis, the dephasing will smear out the probe field coupling as the field
intensity seen by the ions will vary for the different lattice sites along the crystal
length. On fig. 8.1 a lattice potential (red) is illustrated and we imagine that some
ions (green) have been localized in each lattice well along the potential. On the top
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Figure 8.1: Illustration of localization for many ions (green), e.g. in an ion Coulomb crystal,
in a lattice potential (red) and simultaneously interacting with a resonant probe field (blue).
Top: a dephasing between the lattice potential and the probe field standing wave arises when
the difference in wavelength is smaller than the probe wavelength. This will smear out the
increase in probe coupling induced by the localizing effect on the ions. Bottom: When the
lattice wavelength is exactly twice the probe wavelength, the localized ions will be situated
at every second probe-field anti-node, always seeing a high probe field and the coupling will
be significantly increased.

figure the lattice detuning is small compared to the wavelength of the probe field (like
in the experiments described in this thesis), thus the two wavelengths only differ by a
small δλ. This causes the dephasing to average out the increased probe coupling and
the collective coupling to the whole ion crystal will be comparable to a completely
delocalized situation. When increasing the detuning of the lattice field, the beating
period gets smaller and smaller and hence, this issue gets destructive.

A possible solution to this dephasing effect is to apply a lattice standing wave
field with a wavelength twice the wavelength of the probe field. In this way all the
localized ions have a well-defined position that is correlated with every second anti-
node of the probe field standing wave (see fig. 8.1 lower illustration). This will ideally
increase the ion-cavity coupling to the probe field. For the single ion localization
we found that the coupling could be increased from 50% (delocalised) to ∼ 81% in
the highest lattice potential. We can try to apply this result to the ion Coulomb
case, assuming that each ion is localized as a single ion and is unaffected by Coulomb
interactions. This results in an effective change in the single ion coupling rate as:
g2 → ξg2, where ξ = 80%/50% = 1.6 is the increased coupling parameter. Hence, the
cooperativity, C = (Ng2)/(2κγ), will increase through the same factor. Related to
the quantum storage process of chap. 4, the maximum combined write-read efficiency,
η = (2C/(1 + 2C))2, will hence grow. As found in e.g. [158, 159] the efficiencies can
be expected in theory to exceed 90%

For the present storage scheme, where the 3D3/2 ↔ 4P1/2 transition at 866 nm is
used, the double wavelength optical lattice should be produced by a 1732 nm laser
field. This can be achieved e.g. using a commercial laser diode. In order to reach
lattice depths comparable to what was studied in the current experiments (∼ 30 mK),
we need a Rabi frequency on the order of > 2π × 105 GHz and thus, if we assume
a focused beam-waist of ∼ 40 µm the laser power needs to be > 500 W. It is hard
to achieve this using free-running counter propagating beams and hence, in order to
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create this standing wave lattice field the cavity mirrors would have to be exchanged
to very high reflecting mirrors, coated for 1732 nm light.

As an alternative, we are at the moment building up a new cavity trap incorporat-
ing a high finesse optical cavity (F > 104) resonating at the 4S1/2 ↔ 4P1/2 transition
at 397 nm (see fig. 2.2). At the same time the coating on the cavity mirrors has been
designed so as to also be resonant for the double frequency, 794 nm. The trap design is
quite similar in terms of dimensions and geometry to the one described in this thesis.
In this trap-cavity setup the optical lattice with twice the probe wavelength is directly
applicable. One of the advantages in using the 397 nm transition for the cavity-ion
coupling is the stronger achievable force as a result of the stronger dipole element of
this transition. This results in a higher coupling strength g and unit cooperativity
(C=1) should be achievable for ≤ 10 ions. Furthermore, when creating an optical
lattice in this trap longer interaction times can be obtained as all scattering on the
lattice field will bring the ions back into the ground S1/2, which is exactly the state to
which the lattice is applied. In fact, using Raman cooling processes in the lattice pro-
vides a way of lowering the temperature of the ions, and hence, enhance the localizing
effect. This might make it possible to study simulations of solid-state systems such as
the Frenkel-Kontorova model [98, 99]. Other interesting studies that are expected to
be performed in this trap system is more precise investigations of thermodynamical
properties of Coulomb crystals compared to sec. 6.1, optomechanical studies of the
interaction between ion Coulomb crystals and the cavity field [37,38,199] and cavity
assisted cooling of ion Coulomb crystals [200].

8.2 Considerations and future prospects for quantum storage

In this section we present some preparative steps and considerations for the future
quantum storage experiments in the existing setup. In sec. 4.2.4 we introduced the
general impedance matching conditions between the probe and control fields that
constrain their temporal shapes and in sec. 4.3 we described the practical quantum
memory implementation in the current ion-cavity trap system. As a typical choice
for the probe pulse shape we use the sech function with width T [61,158,159]:

Φin(t) =

√
1

T
sech

(
2t

T

)
. (8.1)

The optimal control field shape that maximizes the mapping of the incoming probe
photon-pulse into the atomic excitation during the writing phase (i.e. that maximizes
the dark state amplitude) can be found using eq. (4.7), and gives

|Ωc(t)| =
√
γab(C + 1)

|Φin(t)|√∫ t
−∞ dt′ |Φin(t′)|2

(8.2)

=

√
γab(C + 1)

T

2√
1 + e4t/T

, (8.3)

where γab is the atomic dipole decay rate of the probe field transition (see fig. 4.2).
This is thus the control pulse-shape that theoretically gives the highest writing effi-
ciency, if ground state decay is neglected during the writing phase. For an illustration
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Figure 8.2: Expected experimental sequence for performing quantum storage of light pulses
within our ion crystal-cavity system. Doppler cooling of the ions lasts ∼ 5 µs followed by
optical pumping for ∼ 25 µs into the 3D3/2,mj = +3/2 sub-state. The quantum memory
part can have various lengths, mostly depending on the storage time (µs−ms). The lower
lines show the temporal shapes of the probe field pulse (red) and the control field (blue)
during all three parts of the storage process.

of the shapes see fig. 4.4 where the complete storage process is shown. During the
read-out, the evolution of the control field is reversed, by letting t → −t, and the
stored photon is released with a similar shape as the incoming photon. Using a differ-
ent control field shape during read-out would result in a different probe output shape
related through the impedance matching condition (eq. (4.7)).

The expected experimental sequence for the quantum memory studies is illustrated
on fig. 8.2. The medium is a large ion Coulomb crystal with as large a number
of interacting ions as possible, eventually obtained by using a two-component ion
Coulomb crystal. Similar to the experiments of sec. 6.1.2 and prior EIT studies [73],
the cooling and optical pumping parts can be expected to have durations of a few
tens of microseconds. After having pumped all ions into the mj = +3/2 substate of
3D3/2 the quantum memory protocol is performed. The high control field amplitude is
lowered with the chosen temporal shape at the same time as the probe pulse is injected
into the cavity. During read-out the control field amplitude is increased again to the
high level with the reversed temporal shape. Experiments should be performed as
function of the length of the storage time, which we should ideally be able to vary
from ∼ µs to ∼ms, and hence observe how the efficiency of the total protocol depends
on dephasing effects during storage.

8.2.1 Pulse-shaping setup

In order to produce the quantum memory pulses in a flexible way, we have built an
optical setup with two fast switching AOMs1, with the possibility of controlling the
two fields independently in frequency and amplitude (see fig. 8.3). Due to the fact that
EIT is achieved between Zeeman sublevels, the frequency difference between control
and probe fields is small (∼MHz) and if one can use the same laser to generate them

1Produced by Brimrose, Model no: TEF-270-100-.800, see appendix G
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it is easier to ensure a high relative phase stability. As seen on the figure an additional
shutter AOM is placed just after the fiber that transfers light from the laser, in order
to improve the extinction in the switch-off phase. This is especially important in the
sensitive time between storage and retrieval where the collective excitation in the ion
crystal should not be perturbed by stray light fields. Then the laser beam is split onto
a PBS, and directed to each pulse shaping AOM. On the figure, AOM1 is used to
produce the probe field pulse while AOM2 produces the control field pulse. To allow
for scanning the frequencies of the probe and control fields independently, we place
both pulse-shaping AOMs in a double-pass configuration, by which the beams can be
stably coupled into SM fibers although the diffraction angle of the AOM is changed.
After each AOM passage we isolate the -1st diffraction order using pinholes, and after
the first passage the field polarization is rotated 90◦ by passing a λ/4-wave-plate twice
through reflection on a flat mirror. This lets the fields pass the PBSs to the direction
of two SM fibers transferring the light fields to the experiment. In addition, the probe
field is overlapped with the cavity reference field at 894 nm and both fields are sent
into the experimental cavity from the PT side (see fig. 5.4). The control field is
coupled into the cavity from the HR side.
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λ/4 
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AOM 1 

PBS 
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AOM shutter 

λ/2 f=100 f=50 

From laser 
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894 nm 

Figure 8.3: Schematics showing the pulse-shaping setup. The control and probe pulses are
generated using two AOMs in double pass together with an additional shutter AOM that
minimizes the any remaining field during the storage-time. Each beam is coupled into a fiber
that transfers the light to the trap-table, where the pulses enters the cavity from opposite
directions.
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In the experiments the expected temporal pulse variations are on the µs scale and
consequently the AOMs need to be able to shut much faster, by which we require
their rise-times to be < 100 ns. The AOMs are connected to an RF-amplifying
Direct Digital Synthesizer (DDS)2 box on separate channels (DDS1 and DDS2) and
through an input in this box the control voltage can be varied. DDS1 generates an
RF-signal with a frequency between 215-265 MHz and is connected to the probe field
AOM, while DDS2 (connected to the control field AOM) has frequencies between 200-
255 MHz. The DDS has a linewidth < 10 Hz and a frequency resolution of ' 1 Hz
and this is sufficiently smaller than the width of the EIT window (a few kHz) to
employ the system in the quantum memory experiments. The exact frequency of the
individual DDSs can be set from a computer (connected trough a RS232-port). The
size of the amplification can be set manually on the DDS box using a dial while the
control voltage is applied through an external BNC-input between 0V and 5V. To
produce the pulse-shapes we connect to this input a function generator3 connected to
a computer interface, where the time-variation can be preset very accurately (1-2 ns
between amplitude points). The same generator is used to control both pulse-shaping
AOMs and the shutter AOM which receives a simple TTL signal. The whole pulse-
shaping system can be triggered from the existing sequence used in prior experiments.

Single pass [%] Double pass [%] Rise time [ns]
AOM1 44.0± 0.6 18.4± 0.4 43± 2
AOM2 51.8± 0.7 26.6± 0.5 45± 3
Shutter 51.7± 0.8 - 160± 11

Table 8.1: The AOM diffraction efficiency in single and double pass for the pulse-shaping
setup, together with the rise-time of the individual AOMs. The values are an average of
several measurements, which also accounts for the uncertainty.

All three AOMs were optimized and the resulting diffraction efficiencies are shown
in table 8.1. The pulse-generating AOMs are specified to have optimal efficiencies for
RF-powers of about 2 W, but unfortunately the DDS-box can only deliver a maximum
power of 0.47 W (DDS1) and 0.57 W (DDS2), respectively. The diffraction efficiencies
are thus not optimal, but as the laser intensities are well above what is required for
the quantum storage experiments this is not a problem. The shutter AOM is driven
with a 32 MHz driver with 4 W RF-output. Furthermore, the rise-time of each of the
AOMs have been measured by applying a square pulse from the function generator,
going from 0 to 5 V in ∼ 19 ns. In table 8.1 the time from 10% to 90% of the maximum
signal has been specified for each AOM. The results are obtained from several scans
and the rise-time of the electric signal has been removed by fitting to a convolution
of two rising-signals from error-functions. The response time of the detector4 is small
enough to be ignored (max 1 ns). From the data sheet of the pulse-shaping AOMs the
rise-time is specified to 42 ns (see app. G), which is comparable to our measurements,
and this will be sufficient to create experimental pulses on time-scales of & 0.5 µs, for
the quantum memory protocol. The rise-time of the shutter AOM is not as low as the

2A type of frequency synthesizer used for creating arbitrary waveforms from a single, fixed-
frequency reference.

3TTi Arbitrary Waveform Generator - TGA1244.
4Thorlabs, DET10A
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other AOMs, because the beam size inside it is relatively large (unfocused), but as it
only needs to shut the beams on or off outside the pulse-period in order to ensure a
good extinction, its rise time is not critical.

On fig. 8.4 a time scan of the whole pulse-shaping sequence, created using the
AOM setup and measured optically using fast photo detectors, is shown. The blue
curve shows the control field shape and the red curve shows the probe pulse, both
created with the shapes defined above and with the width T = 2 µs. In the quantum
memory experiments the timing between the probe and control field pulses needs to
be optimized, by moving one pulse compared to the other in time. The green TTL
signal shows the electric signal which is sent to the shutter AOM and the time between
the rise of this signal to the rise of the optical control field signal shows the delay of
the shutter AOM (∼ 1.8 µs). Using a self-written software the function generator
can be set to create the needed pulse widths of 0.1 µs−10 µs and vary the storage
length between 1 µs and 1 ms. On the figure all the signals have been normalized to
illustrate the shapes, but in the actual quantum memory experiments we can achieve
the correct amplitudes of the pulses, by inserting ND-filters in the beam paths.
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Figure 8.4: Optical measurement of the quantum memory pulse sequence as function of
time. The pulse width was set to T = 2 µs and the storage time is 45 µs. Blue curve:
Control field variation, Red curve: probe pulse shape, Green curve: electric signal sent to
the AOM shutter. All signals has been normalized to unity amplitude.

To optimize the pulse-shaping and in order to determine the AOM’s ability to
reproduce the signals applied from the function generator we have performed some
tests on the system. In a first test we measured the sech-pulse from the probe AOM
as a function of the voltage input signal amplitude. On fig. 8.5 a number of scans
can be seen. To the left, the electrical voltage signal is plotted as function of time,
normalized to the maximum value. The corresponding amplitudes for each curve is
plotted on the y-axis at the intersection with the low-point of the curves, with values
between 0.5 V and 6 V. The red curves show the obtained optical time-variation of the
AOM pulse-shape, normalized and placed in equivalence to the electrical curves. It is
evident that the optical shape gets distorted if the voltage amplitude is set too high
and consequently we choose the maximum voltage amplitude of 3.5 V. Having fixed
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Figure 8.5: Sech pulse profiles for various input voltage amplitudes (0.5V to 6V). Left: the
electrical signal. Right: the optical signal from the probe field AOM. Both are normalized
to unity hight and the black dotted line is a fit to the applied sech shape. The optical pulse
(red) is distorted for large voltage amplitudes.

this input voltage, the amplitudes of the optical signals can be varied using wave-plates
followed by PBSs or by using various different ND-filters in the beam-paths.

In a second test we varied the AOM input laser power for a fixed pulse width
and electronic voltage amplitude. Here we observed no deviation in the AOM output
shape for input power up to 4 mW which will result in a laser field magnitude beyond
what is required in the experiment.

Thirdly, through other tests we observed clear difference between the applied volt-
age signal width and the width of the actual optical signal. In order to know exactly
the shape applied in the experiments we thus need to create a calibration of the shape
set by the computer software. Hence, we created pulses using the function generator
with widths Tsig and passed the voltage shape on to one of the AOMs. The optical
output was measured with a fast photo-detector and the width (Topt) could be found
from a fit to the data. On fig. 8.6(a) a single pulse-scan of the probe AOM (through
DDS1) is shown for an applied sech signal of width Tsig = 5 µs. The fit to the mea-
surement gives the optical width of the pulse Topt = 3.6 µs. This relative difference in
width needs to be accounted for in order to reliably produce the correct shapes for the
experimental studies. On fig. 8.6(b) Topt, found from fits to the optical signal as the
above, is plotted against Tsig for widths varying from 0.5 µs to 10 µs. The errorbars
from the optical shape fits are within the markers. The blue line on the figure repre-
sents a linear fit to the data, that gives the connection Tsig = 1.374(2)Topt−0.044(8),
hence we have created a calibration that makes it possible to find the electrical volt-
age signal that should be sent to the AOM in order to obtain a certain optical signal
width. Performing the same calibration on the control-field AOM (using DDS2) we
found the calibration Tsig = 1.417(4)Topt − 0.052(9).
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Figure 8.6: (a) A single optical pulse scan from the probe AOM. The applied electrical
signal has a width of Tsig = 5 µs while the fit to the optical signal (black line) gives a width
of Topt = 3.6 µs. (b) The connection between the applied electrical signal widths Tsig and
the resulting optical width Topt of the probe pulse. The blue line is a linear fit to the data
that gives a calibration curve which is applicable for the quantum memory experiments.

In the final quantum memory experiments it is crucial that the pulses arrive at the
medium with a well-defined temporal relation. Consequently, another important test
is to determine the magnitude of the time jitter between pulses generated from the
two AOMs. The function generator will be triggered using a single input and hence,
the jitter in the optical signal is entirely due to the individual response time of the
AOMs. Preliminary measurements have shown jitters on the order of tjitter = 0.6-
1.5 ns, depending on the pulse widths. These values are much smaller than the pulse
widths and therefore they do not raise any concerns in achieving reliable pulses.

A last crucial test that needs to be performed on the system is a measurement
of the extinction of the probe and control fields after the pulse-generating setup and
subsequent fibers. This measurement should be performed carefully before starting
the quantum memory experiments in order to ensure that the field intensities are low
enough during the storage time.

8.2.2 Expected photon detection during read-out

To estimate the signal that we can obtain during the read-out process, we have to
consider the expected field strengths of the probe and control fields. Ideally, we want
the probe field to only contain one photon per pulse on average. This means that
we can define the incoming temporal photon shape, proportional to the probe Rabi
frequency squared (like in eq. 8.1), as

np,in(t) = np,max
1

T
sech2

(
2t

T

)
, (8.4)

where we can choose np,max = 1 when the pulse contains only one photon on average.
To get the total number of photons in the probe pulse for a time-interval t1 → t2 we
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integrate this:

Np,in = np,max
1

T

∫ t2

t1

sech2

(
2t′

T

)
dt′ . (8.5)

Integrating over the complete pulse (−∞→∞) we obtain Np,in = np,max ≡ 1.
To give an estimate of the photon number in the control field we note here a result

obtained by simulating the quantum memory protocol from [158, 159], where the
optimal control field Rabi-frequency during read-out was found to have the temporal
shape

Ωc(t) = AΩ

√
γab(1 + 2C)

T

2√
1 + e−4TΩt/T

, (8.6)

where AΩ = 2.4 and TΩ = 1.2 has been found trough the numerical optimizations
[158]. The number of control field photons in the cavity can be found as the square
of the Rabi frequency:

nc(t) = nc,max
1

1 + e−4TΩt/T
. (8.7)

Here the number of control field photons when the field is at maximum can be found
as nc,max = (

√
6Ωc,max/g)2, where the

√
6 comes from the Clebsch-Gordan coefficient

of the considered 3D3/2,mj = −1/2 sub-state. For the control field, the total number
of intra-cavity photons in a time-interval is

Nc =

∫ t2

t1

nc(t
′)dt′ . (8.8)

For the future quantum memory experiments we can now estimate the expected
detection efficiency and especially we are interested in comparing the number of pho-
tons exiting the cavity during read-out from the two fields. A sketch of the setup is
shown on fig. 8.7. During read-out the probe field output exits the cavity trough
the PT mirror, is reflected off the Glan polarizer and coupled to the APD using a
single-mode fiber. If we assume to have stored a single probe photon in the quantum
memory system we can take the efficiency of both the writing and reading process

into account by multiplying the photon number with ηmem =
(

2C
1+2C

)2

and in addi-

tion we can include losses of the cavity field by multiplying with ηcav =
(
κ1

κ

)2
. Here,

κ1 = 2π × 1.5 MHz is the decay rate through the PT mirror and κ = 2π × 2.2 MHz
is the total cavity field decay rate. Thus, the detected number of probe photons read
out from the memory is

Ndet
p (t2) = ηmemηcavnp,max

1

T

∫ t2

t1

sech2

(
2t′

T

)
dt′ . (8.9)

Here, the start time of the integration t1 is fixed, while the end-time t2 can be varied.
The control field is coupled into the cavity trough the HR mirror with a σ+ circular

polarization. During read-out, ideally, the number of control field photons arriving
at the detector (on the other side of the cavity) should be negligible because of the
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Figure 8.7: Sketch of the detection of the probe and control fields during the read-out
phase of the quantum memory protocol. The control field enters the ion-cavity medium
through the HR mirror and interacts with the medium by which the out-going probe pulse
is created. We detect the photons exiting the cavity on the PT mirror side. The probe field
is σ− circularly polarized, while the control field is σ+, and the Glan polarizer filters 1/3000
(A) of the control field photons away from the detector. Another 1/10 (B) loss of control
field photons occurs at the coupling into the SM fiber transferring light to the APD detector.

Glan polarizer (see fig. 8.7). The polarization of the probe field is σ− and the Glan
polarizer should be able to filter the polarizations of the two fields better than 1 : 105.
In the experimental setup though, the extinction is only 1 : 3000, which is attributed
to birefringence effects in the mirror substrates that might lead to changes in the
polarization of the fields. Furthermore, when the control field enters the SM fiber
that goes to the APD detector there is an additional 1 : 10 loss because of mis-
matching in size and direction of the control beam compared to the probe beam. In
total, the number of control field photons arriving at the detector is 1/30000 smaller
than the photons number exiting the cavity, and thus, the detected number of control
field photons is

Ndet
c (t2) =

2κ1nc,max
30000

∫ t2

t1

1

1 + e−4TΩt/T
dt′ . (8.10)

Integrating over the whole pulse of both fields reveals that the number of detected
control field photons is greater than the number of probe photons. Instead we can
choose to end the detection before the pulses have ended and hence, hope to detect
substantially more probe field photons than control field photons.

As an example we consider a crystal with an effective number of ions N = 1500 and
a pulse-width of T = 2 µs. From this the cooperativity is C = (g2N)/(2κγ23) ≈ 8.5
which gives a maximum number of intracavity control field photons of nc,max ≈ 4000.
On fig. 8.8 the integrated photon numbers (Ndet

p and Ndet
c ) is shown as the shaded

area under the graphs of np(t/T ) and nc(t/T ) for t1 = −2.0T and t2 = 0.6T . It is
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Figure 8.8: The outgoing photon number of the probe (np(t)) and control field (nc(t)) are
shown as function of time, from eq. (8.9) and (8.10) without the integral. The shaded area
under the graphs represents the total number of photons in the time span from t1 to t2 for
the two fields (Ndet

p and Ndet
c ). All losses described in the text are included in the curves.

clear that the area under the control field curve is much bigger than that under the
probe field curve, and hence the control field photons will dominate our detection. By
keeping t1 fixed while varying t2 we can compare the total photon number of the two
fields. In fig. 8.9 the signal-to-noise (S/N) corresponding to “probe-to-control field
photon ratio” is shown, defined as

S/N =
Ndet
p

Ndet
p +Ndet

c +Nbg
, (8.11)

where we added a background detection noise Nbg, of 100 photons/s due to the APD
dark count rate, essentially. Through the variation of the t2 on fig. 8.9 we can see
that the maximum signal-to-noise ratio can be obtained by stopping the measurement
at −0.9T , and the S/N can be made almost unity. However, we have to take into
account the finite efficiency of the detection system (∼ 16%) that sets a limit to
how low signals we can measure. Using t2 = −0.9T the average number of probe
photons getting to the detection is only 0.01. If we put a bound on the S/N of
0.8 (only 20% of the detected photons come from the control field) the detection
should stop at t2 = −0.3T which results in an average number of probe photons of
0.1. When starting up the experimental study of this quantum memory system, this
quantity (S/N) should be measured in order to determine the best possible probe field
detection.
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Figure 8.9: The signal-to-noise of eq. (8.11) is plotted as function of the end-time of the
measurement (t2) for a fixed start-time (t1 = −2T ). A background noise of 100 photons/s
has furthermore been taken into account.





Chapter 9

Summary and outlook

This thesis contains the work that I have done on the CQED experiment with trapped
ions during my time as a PhD student in the Ion Trap Group at Aarhus University.
The content describes different methods for probing and controlling ion Coulomb
crystals by using optical intra-cavity fields which should be applicable to many other
experimental studies. My experimental work can be divided into three main subjects:
measuring the temperature of ion Coulomb crystals using an optical cavity field at
the single photon level, determining the absolute center of a linear Fabry-Pérot cavity
using an atomic ensemble as an imaging medium, and localizing single ions and ion
structures in a standing wave optical potential.

First, experiments with the purpose of determining the temperature of trapped
laser cooled ion Coulomb crystals by coupling the ions to an optical cavity were
described. This non-invasive probing method uses the strong coupling of the ions to
a single mode cavity field at the single photon level [28]. The coupling scales with
the number of ions and, therefore, the method benefits from operating with large
ion Coulomb crystals. From changes observed in the cavity resonance spectra the
coherent ion-cavity coupling can be determined and using a simple CQED model for
the light-matter interaction including the effect of the thermal velocity distribution of
the ions one can infer the temperature of the ions. By changing the cooling parameters
of the system the ion temperature can be controlled and measured by this technique
(see fig. 6.5). So far, we have performed extensive temperature measurements of
various crystals with different thermodynamical properties from which we hope to
gain knowledge about heating mechanisms in ion Coulomb crystals. A general study
of crystal heating at different trapping parameters would be relevant e.g. for the
implementation of photon storage in the ion-cavity system in order to determine the
optimal crystal shape and size. Furthermore, ongoing studies of the temperatures
of the same crystals obtained through independent molecular dynamics simulations
should hopefully allow us to conclusively determine the accuracy of the method.

The second set of experiments uses the simultaneous interaction between two res-
onant intra-cavity fields and an ion Coulomb crystal trapped inside the cavity, to
determine the absolute center of a linear Fabry-Pérot resonator. One field is intense
and far detuned from an atomic resonance of the ions by which a spatially varying
AC stark shift of the energy levels is imposed along the cavity axis. The second field
is weaker and close-detuned to the bare atomic transition. In combination, the two
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fields create a spatial beating pattern in the fluorescence of the crystal medium that
depends on their relative detuning and which can be imaged on a CCD camera. Com-
bining various sets of detunings, and thereby of beat patterns, we have shown that
it is easily possible to find the absolute center with a precision of ±135 nm. Com-
paring this to the length of the cavity (11.8 mm), the beating patterns (400-700 µm)
or the periodicity of the two standing waves (433 nm) shows that this very simple
approach is actually rather precise, and could be useful for CQED experiments with
cold neutrals or ions.

Another set of experiments described in this thesis presents a method for localizing
ions in a standing wave optical lattice potential inside the cavity. The lattice is
produced by an intra-cavity field far detuned from atomic resonance, which produces
a dipole force on the ions that confines them at nodes or anti-nodes of the standing
wave. To find out whether the ions are localized in a lattice well we measured the
scattering signal arising when the ions are excited from their internal state in the
lattice to another state from which they can again decay down to the ground state.
To obtain a clear localization signal, we compared the photon scattering probability
for red- and blue-detuned lattices of equal depths. These produce identical potentials
as seen from the ions, but a blue-detuned lattice localizes the ions at the nodes, where
scattering is suppressed, while a red-detuned lattice localizes the ions at lattice anti-
nodes, increasing the scattering. By considering the difference in scattering rates we
could infer that a single ion was localized in lattice potentials of up to 34 mK depth,
with a capture probability of ∼ 97%. By adding another, weaker standing wave
field, close to atomic resonance, we were able to show an enhancement in the ion-
cavity coupling of this field from the delocalized level coupling (50% of the maximal
coupling strength) to > 80%. Similarly, the procedure could be used to decrease the
coupling strength between the field and the ions in order to control the interactions
with additional potentials from e.g. optical fields, trapping fields, other ions or neutral
atoms.

Furthermore, we investigated the possibility of localizing ions in small ion Coulomb
crystal structures in the lattice potential. We verified that simultaneous sub-wavelength
localization could be achieved for strings of up to 8 ions and have strong indication of
localization of two- and three-dimensional structures of up to 6 ions. An interesting
application of localizing ions in periodic optical potentials is in the simulation of cold,
solid-state models, such as the Frenkel-Kontorova model of friction. Localized ions
in an optical lattice could be used to study the sliding-to-pinning phase transition
in this model [99, 194]. Another potential application of the ion localization could
be to extend it to large ion Coulomb crystals in order to control their macroscopic
structure. As proposed in [180] the interaction with the optical potential could be
used to steer a phase-transition between various crystalline structures in the crystal,
by continuously varying the trap frequencies for a fixed optical potential. So far, only
simulations has been performed, but with the current localization tools at hand it
might be possible to carry out these experiments in the near future.

The long-term goal of the project I have been working on is to construct a quantum
memory for light and the experiments presented in this thesis can also be seen as steps
to characterize and improve the ion-cavity system interactions in order to achieve this
future goal. The storage of single photon fields in our system has been theoretically
investigated initially by PhD student Anders Mortensen and more recently by masters
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student Kasper Rothe Zangenberg. Based on the knowledge on the system acquired in
past experiments [28,68,74] extensive numerical simulations were performed by Kasper
in order to optimize the expected performance of such a quantum memory [158,159].
The next step is to implement this protocol into the existing experiments. Previously
obtained experimental results together with the simulations indicate that realizing a
quantum memory with both high efficiency (high probability of retrieving an injected
photon) and long storage time (∼ms), should be possible with our system. Moreover,
due to the probability of coupling to different cavity modes [74], multi-mode storage
could also be investigated.

A special application, proposed for the quantum memory system, is a photon
number detector [75–77]. Related to our experiments the proposal of [77] is to use a
Coulomb crystal of 40Ca+ ions placed inside an optical cavity to study a high-efficiency
photon number resolving detector, by converting a single stored photon into many
fluorescence photons. First, the ions in the ensemble are prepared in their ground
state, and a number of photons are subsequently converted into collective excitations
in a metastable state of the ions, using EIT based light storage. Finally, the number
of collective excitations (corresponding to the initial photon number) is probed by
collecting resonance fluorescence on a closed transition to a fourth level. This leads
to a noiseless detection with high efficiency and repetition rate.
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Acronyms

AOM acousto-optic modulator

APD avalanche photo detector

bcc body-centered cubic

CCD charge coupled device

DFB distributed feedback

EIT electromagnetically induced transparency

FSR free spectral range

FWHM full width at half the maximum

MD molecular dynamics

PBS polarizing beam splitter

PDH Pound-Drever-Hall

PZT piezo-electric transducer

RF radio frequency

SHG second harmonic generation

SM single mode

CQED Cavity Quantum Electrodynamics

RWA rotating wave approximation

TC Tavis-Cummings model

JC Jaynes-Cummings model

GP glan polarizer

STIRAP Stimulated Raman Adiabatic Passage

DDS Direct Digital Synthesizer
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Appendix A

The 40Ca+ ion

A.1 Abundance of Ca-isotopes

Isotope Abundance
40 96.941%
42 0.647%
43 0.135%
44 2.086%
46 0.004%
48 0.187%

Table A.1: Abundance of the stable isotopes of calcium [201].

A.2 Transition wavelengths and decay rates

Transition Wavelength λ Γ = 2γ Isat [mW/cm2]
4S1/2-4P1/2 396.847 nm 2π× 20.7 MHz 43.3
4S1/2-4P3/2 393.366 nm 2π× 21.5 MHz 46.2
3D3/2-4P1/2 866.214 nm 2π× 1.69 MHz 0.34
3D3/2-4P3/2 849.802 nm 2π× 0.176 MHz 0.038
3D5/2-4P3/2 854.209 nm 2π× 1.56 MHz 0.33
4S1/2-3D3/2 732.389 nm 2π× 0.16 Hz 5.3× 10−8

4S1/2-3D5/2 729.147 nm 2π× 0.17 Hz 5.7× 10−8

Table A.2: Data for transitions in 40Ca+, as shown in Fig. 2.2. The first five transitions
are dipole-allowed while the last two are quadropole transitions. Transition wavelengths
are measured in air [110, 202]. Γ is the transition rate [110, 202]. Saturation intensities

are calculated according to Isat = ~Γω3

12πc2
, using the relevant transition rate Γ and transition

frequency ω.
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A.3 Clebsch-Gordan coefficients

The coupling strengths for dipole-allowed transitions between the various sub-levels
are characterized by the values of Γ given in Table A.2 and the Clebsch-Gordan
coefficients (see, e.g., Ref. [147] for a definition), which are listed in Tables A.3–A.5.

4S1/2,−1/2 4S1/2,+1/2

4P1/2,−1/2 −
√

1/3
√

2/3

4P1/2,+1/2 −
√

2/3
√

1/3
4P3/2,−3/2 1 -

4P3/2,−1/2
√

2/3
√

1/3

4P3/2,+1/2
√

1/3
√

2/3
4P3/2,+3/2 - 1

Table A.3: Clebsch-Gordan coefficients for transitions between the 4S1/2 state and the
4P1/2 and 4P3/2 states.

3D3/2,−3/2 3D3/2,−1/2 3D3/2,+1/2 3D3/2,+3/2

4P1/2,−1/2
√

1/2 −
√

1/3
√

1/6 -

4P1/2,+1/2 -
√

1/6 −
√

1/3
√

1/2

4P3/2,−3/2 −
√

3/5
√

2/5 - -

4P3/2,−1/2 −
√

2/5 −
√

1/15
√

8/15 -

4P3/2,+1/2 - −
√

8/15
√

1/15
√

2/5

4P3/2,+3/2 - - −
√

2/5
√

3/5

Table A.4: Clebsch-Gordan coefficients for transitions between the 3D3/2 state and the
4P1/2 and 4P3/2 states.

4P3/2,−3/2 4P3/2,−1/2 4P3/2,+1/2 4P3/2,+3/2

3D5/2,−5/2
√

2/3 - - -

3D5/2,−3/2 −
√

4/15
√

2/5 - -

3D5/2,−1/2
√

1/15 −
√

2/5
√

1/5 -

3D5/2,+1/2 -
√

1/5 −
√

2/5
√

1/15

3D5/2,+3/2 - -
√

2/5 −
√

4/15

3D5/2,+5/2 - - -
√

2/3

Table A.5: Clebsch-Gordan coefficients for transitions between the 3D5/2 state and the
4P3/2 state.
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A.4 Zeeman-splitting

Zeeman-substates will experience an energy shift, ∆EB , when a magnetic field, B, is
present, which is in general given by [193]:

∆EB = mjgJµBB (A.1)

where mJ is the magnetic quantum number, µB is the Bohr magneton, B is the
magnetic field strength and gJ is the Landé g-factor:

gJ = 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(A.2)

where L, S and J are the quantum numbers corresponding to the angular momentum,
the electric spin and the total angular momentum, respectively. Values of gJ are listed
below for the relevant states of the 40Ca+ ion.

State L S J gJ
4S1/2 0 1/2 1/2 2
4P1/2 1 1/2 1/2 2/3
4P3/2 1 1/2 3/2 4/3
3D3/2 2 1/2 3/2 4/5
3D5/2 2 1/2 5/2 6/5

Table A.6: Values of gJ for the relevant levels of the 40Ca+ ion.





Appendix B

Collective coupling strength

B.1 Single ion coupling strength

The coupling strength for a single ion at position r in the cavity is given by

g(r) = gΨ(r) , (B.1)

where Ψ(r) is the modefunction of the standing wave TEM00 mode of the cavity field
and where g is the coupling strength of a single ion at the waist and anti-node of this
cavity field.

The coupling strength of a particular (dipole allowed) transition for a certain
intensity I of the coupling field is characterized by the Rabi-Frequency, which for a
transition between the Zeeman-substates |g〉 and |e〉 is given by [193]:

Ωge = age
Γ

2

√
I

2Isat
= age

√
3πc2Γ

2~ω3

√
I, (B.2)

where we have inserted the expression for the saturation intensity Isat =
~Γω3

eg

12πc2 [147],
Γ and ω are the transition rate and resonance frequency of the electronic transition
(see tab. A.2), and age is the Clebsch-Gordan coefficient for the considered Zeeman-
substates.

For a single photon cavity field and a single atom the coupling rate g corresponds
directly to the Rabi frequency. The single photon intensity in the cavity can be
calculated using the normalization condition IV = ~ωc, where ωc is the resonance

frequency of the cavity, V =
∫
|Ψ(r)|dr =

πw2
0

4 Lc is the mode-volume of the cavity,
w0 is the waist of the TEM00 mode and Lc is the cavity length. Inserting this into
eq. B.2 we find

g = age

√
6c3Γ

ω2w2
0Lc

. (B.3)

In our experiments we will use the
∣∣3D3/2,mj = +3/2

〉
↔
∣∣4P1/2,mJ = +1/2

〉
transition at 866 nm as the probe transition. With the dipole decay rate ad wavelength
given in tab. A.2, the Clebsch-Gordan coefficient in tab. A.4 and using the length and
waist of the cavity in our experiment, Lc = (11.8± 0.3) mm and w0 = 37 µm [27,73],
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we can calculate the expected single ion coupling rate of the probe transition for an
ion located at the anti-node of the standing wave cavity field:

g = 2π × (0.532± 0.007) MHz. (B.4)

B.2 Collective coupling strength

The collective coupling for an ion crystal of uniform density ρ0 and length L is found
analogously to the modevolume

g2N =

∫
g2(r)ρ0d(r)

= g2ρ0

∫
Ψ2(r)dr

= g2ρ0
πw2

0

2

∫ L

0

sin2(kz)dz

= g2ρ0
πw2

0

4
L . (B.5)

The effective number of ions is defined as the sum over all ions in the crystal
weighted by the field mode function Ψnm of the TEMnm mode considered (see sec.

3.2.1), Neff =
∑Ntot
j=1 Ψ2

nm(rj). Ion Coulomb crystals in a linear RF trap are to good
approximation spheroids with length L and radius R and a constant ion density, ρ0,
throughout the whole ensemble (see sec. 2.3). Therefor, we can treat the system as a
continuous medium and Neff becomes an integral over the crystal volume V

Neff = ρ0

∫
V

Ψ2
nm(r)dr (B.6)

The exact expression of eq. B.6 can in general be evaluated numerically for an
arbitrary TEMnm mode, by knowing the crystal dimensions, its density and the cavity
mode geometry. In most of our experiments we only consider the fundamental TEM00

Gaussian mode (see eq. (3.6)).
A typical crystal with large radial extension as compared to the cavity waist

(R � w0) and a length smaller than the Rayleigh range (L � zR) the coupling to
the TEM00 can be expressed in a simple way extracted directly from eq. (B.5):

Neff ' ρ0
πw2

0

4
L. (B.7)

This definition can be used when estimating the number of ions in the cavity mode
in e.g. chap. 6.

This definition does not, however, take the spheroidal shape of the crystal into
account and, hence, overestimates the number of ions for very prolate crystals. The
correct number of ions within the cavity modevolume is found from a convolution of
the crystal shape and the cavity modefunction. For a crystal of length L and diameter
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2R the expression reads:

Neff =ρ0

∫
crystal

Ψ2
00(r− r0)dr

=ρ0

∫ x′

−x′

∫ y′

−y′

∫ z′

−z′

w2
0

w2(z)
e−2((x−x0)2+(y−y0)2)/w2(z) sin2(kz) dx dy dz, (B.8)

where x′ =

√
1− y2

R2 − z2

R2R, y′ =
√

1− z2

(L/2)2R and z′ = L/2. x0 and y0 are the

offset between the center of the crystal and the cavity mode in the radial plane. This
expression has been used when evaluating the number of ions interacting with the
cavity field in sec. 6.1. For a more detailed description see [27,73].





Appendix C

Laser systems

Laser Purpose Max power Typical power Linewidth

272 Photoionization 50 mW 5-30 mW ∼ 35 kHz

397 Laser cooling / OP 10 mW 0.1-10 mW ∼ 100 kHz

866-1 Laser cooling / Lattice 20 mW 1-6 mW ∼ 100 kHz

866-2 Laser cooling / OP / Probe 20 mW 1-5 / 10−9 mW ∼ 100 kHz

894 Cavity reference 20 mW 10−3 mW ∼ 100 kHz

Table C.1: Data on various laser systems used in this work. The power level is that
available for the experiment.
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Appendix D

Complete elliptical integrals of first
and second kind

Elliptic integrals originally emerged in integral calculus trough problems of determin-
ing the arc length of an ellipse. In modern mathematics an elliptic integral is defined
as any function f which can be expressed on the form:

f(x) =

∫ x

c

R
(
t,
√
P (t)

)
dt , (D.1)

where P is a polynomial of degree 3 or 4 with no repeated roots, c is a constant
and R is a rational function of two arguments in which both the numerator and the
denominator are polynomials. For a comprehensive description see e.g. [203,204].

Incomplete elliptic integrals are functions of two arguments, whereas, complete
elliptic integrals are functions of a single argument. The arguments can be expressed
in a variety of different but equivalent ways. Two arguments that are often used is φ
and x, the so-called amplitude, which are connected through: x = sin(φ). Specifying
the value of one quantity determines the other. Elliptical integrals are said to be
complete when the amplitude is φ = π/2 and thus x = 1.

Complete elliptic integral of the first kind

This integral is in general defined as:

K(k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

=

∫ 1

0

dt√
(1− t2)(1− k2t2)

, (D.2)

where t = sin θ. A special value used in this thesis is K(0) = π/2 and the integral can
be expressed as a power series like:

K(k) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2

k2n . (D.3)
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The integral has the asymptotic expression to third power:

K(k) ≈ π

2
+
π

8

k2

1− k2
− π

16

k4

1− k2
, (D.4)

for which the precision is better than 3× 10−4 when k < 1/2.

Complete elliptic integral of the second kind

This integral has the form:

E(k) =

∫ π/2

0

√
1− k2 sin2 θ dθ =

∫ 1

0

√
1− k2t2√
(1− t2)

dt , (D.5)

where two special values are E(0) = π/2 and E(1) = 1. The integral can also be
expressed as a power series:

E(k) =
π

2

∞∑
n=0

[
(2n)!

22n(n!)2

]2
k2n

1− 2n
. (D.6)



Appendix E

Correlation fluorescence
measurement of excess
micro-motion

To manipulate the interaction between micro-motion and ion localization we control
the micro-motion amplitude by adjusting the phase of the RF-drive at the different
electrodes (see sec. 7.3.5). In order to measure how micro-motion can influence the
ion localization we needed to calibrate the external modification that was imposed
on the system into a known micro-motion amplitude. This was done by conventional
correlation fluorescence measurements of the excess micro-motion in the axial direc-
tion [113].

In our implementation, this was done by trapping a single 40Ca+ ion and cooling
it by mostly illuminating it with a single axial 397 nm cooling beam. A Doppler
effect arises if the ion has excess micro-motion and modulates the signal measured
by our imaging. Compared to the cooling beam the ion motion is driven by the RF-
frequency giving rise to a modulation of the observed scattered during cooling. In
order to resolve this fast (4MHz) modulation we gated our imaging system with a
∼ 100ns short pulses at a rate 0.5 Hz faster than the RF frequency. This pulsed
observation aliases the 4 MHz Doppler modulation down to a 0.5 Hz fluorescence
fluctuation easily detectable on our CCD camera, as illustrated on fig. E.1. From
a Fourier transform of the signal the amplitude can be found, but because of noise
non-vanishing Fourier components at the gate-trap offset frequency is expected even
with perfect micromotion compensation.

With both random phase noise and a contrast-signal of unknown size, the resulting
measure is a sum of the power of the two because the phase between the noise and the
signal is random. Signal power scales with the contrast squared and the background
can be estimated from Fourier-components different from the signal. The square of
the contrast we measure is the square of the noise contrast (background) plus the
square of the actual micromotion signal contrast. In this way we can estimate the
noise-free signal by subtracting the background noise from the squared of the contrast
signal.

By varying the specially designed capacitive loads on the trap electrodes [128] it is
possible to add a phase difference between the two axial ends of the trap. This phase-
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Figure E.1: (a) An ion experiences a fast RF-varying motion (blue curve) which is too fast
for our imaging system to resolve. Therefor, we gate the imaging with short pulses (∼ 100ns)
at a frequency close to the RF-frequency but with a known offset (here exaggerated for
illustration), shown as the black vertical lines in (b). This detection aliases the Doppler
modulation of the ions down to a slower fluctuating fluorescence signal (red dashed curve
in (a)), whose amplitude is measurable trough Fourier transformation, and which resembles
the actual RF-amplitude of the ion.

difference will give rise to excess micro-motion in the axial direction. In Fig. 7.13 the
results are shown for a scan of end-cap electrode loads from one side of the trap giving
rise to a beat-pattern of a certain amplitude. This amplitude is plotted as the squared
contrast minus background. From the quadratic fit the load position can be related to
the contrast signal. From simple considerations of the effect on the scattering signal
obtained from a moving particle affected by an electrical field it is possible to estimate
a connection between micro-motion amplitude and the contrast signal. In connection
with the correlation fluorescence measurements we can, eventually, find the relation
of excess micro-motion to be 3.4nm pr. load turn. With this calibration at hand the
micro-motion effect on the localization signal can be estimated.



Appendix F

Acceptable signal levels in multi-ion
localization experiments

One of the challenges of localizing multiple ions in the scheme presented in this thesis
is that, in order to keep all ions in the lattice potential right up until the observation
of a fluorescence photon, the total photon number scattered by all the ions in the
lattice must be much less than one. To quantify how low this scattering should be we
present here a simple calculation.

We assume that each of N ions in a lattice potential has equal probability p of
scattering a photon in our experiment. From binomial statistics the average number
of photons scattered in an experiment is Np and the probability of scattering no
photons in an experiment is:

P0 = (1− p)N . (F.1)

The average number of first scattered photons in their experiment is:

Pfirst = 1− P0 = 1− (1− p)N , (F.2)

since any experiment where we scatter more than 0 photons produces 1 first-scattered
photon. So the fraction of detected photons due to first-scattered photons is:

Rfirst =
Pfirst
Np

=
1− (1− p)N

Np
. (F.3)

We can now set a limit for how large a fraction of non-first-scattered photons (1 −
Rfirst) is acceptable in the experiments and through eq. (F.3) the single ion scattering
probability (p) can be determined. As an example, for N = 4 ions, if we want to keep
the contamination of the signal from second and subsequent photons (after one ion
has scattered) below (1 − Rfirst) = 10%, then the single-ion scattering signal must
be less than p = 7%. This was exploited for the model fits presented in sec. 7.4.3.2
and 7.4.4.2.

Fig. F.1 shows the fraction of fluorescence due to second and subsequent photons
(1−Rfirst), as a function of single-ion scattering signal, p, for N = 2, 3, 4, 5 ions.
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Figure F.1: (1−Rfirst) as function of p for 2 (dark blue), 3 (green), 4(red), 5 (light blue)
ions.



Appendix G

Brimrose Corporation of America -
AOMs for pulse-shaping
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