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Résumé pa Dansk

Denne athandling omhandler primeert undersggelser af dynamikken af en enkelt laserkglet
40Ca™ ion, som bevaeger sig i et potentiale sammensat af et overordnet harmonisk
potentiale fra en ionfszlde og et hurtigt moduleret periodisk potentiale - et sakaldt
lysgitter - frembragt af en staende lysbglge. Ud over at forstabevaegelsesdynamik i
denne situation under varierende potentialeforhold, danner dette arbejde endvidere
udgangspunktet for fremtidige studier af en raekke kvantefysiske mange-legememodeller,
for strukturelle manipulationer af stgrre ion Coulomb-krystaller, og for optimering af
vekselvirkning mellem lys og stof til brug i forbindelse med kvanteinformatik.

Med udgangspunkt i en lineser rf ionfeelde med et harmonisk potentiale streekkende
sig over flere millimeter, pavirkes *°Ca™ ionen langs en af bevaegelsesretningerne desu-
den af en staende lysbglge med en periodicitet pa ~ 433 nm dannet vha. en optisk
kavitet, som resonerer ved ~ 866 nm. Selve lysgitret opstar pga. vekselvirkning af
dette lys med D3/ — Py /o overgangen i 40Ca™ ionen, som skaber et potentiale hvis
dybde er proportionalt med lysintensiteten og hvor minimum af det inducerede po-
tentiale vil veere at finde ved intensitetsminima og -maksima afhsengig af om lysets
frekvens er hgjere eller lavere end overgangsfrekvensen. En simpel, men grov metode
til at leere noget om en ions bevaegelse i lysgitret bestar i at male hvor ofte ionen
absorberer fotoner fra den staende bglge, da dette vil veere proportionalt med lysin-
tensiteten og vil derfor ved lokalisering veere hhv. lav/hgj omkring intensitetsminima
eller -maksima.

I mit ph.d.-projekt har jeg arbejdet pa at forbedre informationen om iondy-
namikken ved direkte malinger af fordelingen af energiskiftet af D3/, — Py /o over-
gangen pga. ionens bevaegelse i lysgitret. Den benyttede teknik har i sin nuveerende
implementering allerede vist yderligere tegn pa lokalisering indenfor fa hundrede nm
i det optiske lysgitter. Dette kan tyde pa rigere dynamik af ionen i det optiske gitter
end forst antaget. Mere detaljerede studier af iondynamikken forventes muliggjort af
et mere effektivt detektionsskema baseret pa sakaldt “shelvin”. Udover det eksperi-
mentelle arbejde, som ogsa har inkluderet et komplekst kalibrerings- og analysearbe-
jde, har jeg foretaget adskillige teoretiske simuleringer af den forventelige iondynamik
og tilhgrende optiske respons af ionen. Endelig har mit ph.d.-projekt ogsa budt pa
en mere teknisk udfordring med opbygningen af en ny frekvensfordoblet lyskilde til
laserkoling af Ca™ ioner, og som et nyt vaerktgj i forbindelse med en ny generation af
optiske kavitetseksperimenter i Tonfaeldegruppen pa AU.






Résumé in English

The work reported in this thesis primarily focuses on studies of the dynamics of a
single laser-cooled ion, simultaneously confined in the harmonic potential of a linear
Paul trap and a rapidly varying periodic potential - a so-called optical lattice - gen-
erated from an optical standing-wave. Besides providing a better understanding of
the dynamics of an ion subjected to varying trapping conditions, this work estab-
lishes a basis for future studies of various quantum many-body physics models, for
manipulations of the structure of large ion Coulomb crystals, and for optimization
of the interaction between light and matter in connection with quantum information
experiments.

In addition to the deep, three-dimensional harmonic potential of the linear Paul
trap which confines the ion in regions of several millimeters, one of the directions of
the ion motion is constrained by the application of a one-dimensional optical standing
wave with a periodicity of ~ 433 nm generated in an optical cavity resonating at
~ 866 nm. The interaction between the standing wave and the D3/ — P /5 transition
in 4°Ca™ results in a rapidly-varying potential (an optical lattice), whose depth is
proportional to the standing wave intensity, and which pins the ion at a maximum (an
antinode) or at a minimum (a node) of intensity depending on the positive or negative
frequency difference between the standing wave and the D3/5 — Py /o transition. A
simple but coarse method to obtain information on the ion dynamic inside the lattice
is to measure the rate of absorption of lattice photons by the ion, since this rate is
proportional to the standing wave field intensity and thus is high or low depending
on whether the ion is localized at an antinode or at a node of the standing wave.

During my PhD project, I have been working on a method improving the knowl-
edge on the ion dynamics by directly measuring the frequency change of the D3/ — Py /o
transition due to the ion dynamics in the standing wave. This method has provided
further evidence of the sub-wavelength localization of the ion inside the optical lat-
tice, and points at richer dynamics of the ion inside the optical lattice than initially
assumed. Greater accuracy in the measurements enabling in-depth studies of the ion
dynamics is expected through the use of an improved “shelving” detection technique.
Aside from the experimental work which has also involved a complex calibration and
analysis of the detection system, several theoretical simulations of the expected dy-
namics and associated optical response of the ion were undertaken. Finally, a new
laser source based on second harmonic generation was developed in order to per-
form laser-cooling of Ca™ ions, and to serve as a new tool for future cavity quantum
electrodynamics experiments in the Ion trap group at Aarhus University.
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Chapter 1

Introduction

Ton traps constitute an ideal tool to probe, control and manipulate single quantum
systems. Their invention, in the middle of the twentieth century [1], allowed exper-
iments on atomic systems trapped in small regions of space and isolated from their
surroundings - an ideal starting point for high-precision spectroscopy. Due to the
impossibility to trap charged particles using static electric fields only, the trapping
relies on the use of Lorentz forces, and is realized through a combination of dc electric
and magnetic fields in the case of a Penning trap, or dc and rf electric fields in the
case of a Paul trap. In these cases, the confining potential thus created has typical
dimensions ranging from a few tens of micrometers to a few millimeters, and typical
depth of ~ 10° K - enough to trap particles with temperatures of a few hundreds of
degree celsius. The first high-resolution measurement of the atomic hyperfine struc-
ture of trapped *He™ ions was performed in 1969 [2,13]. Soon after, the confinement
of a single electron in a Penning trap was demonstrated [4] and this eventually led to
the measurement of the electron g factor [5]. Following the proposals to cool down
atoms using radiation pressure [6,|7], observation of a single ion via its fluorescence
was realized in 1980 in the group of P. Toschek [8]. The possibility to confine single
particles and observe their fluorescence over extended period of time later led to the
observation of quantum jumps [9H12]. In general, the ability to trap a single ion at
the center of an rf Paul trap where the electric field essentially vanishes, and to cool
it down to a state of near complete rest using the sideband cooling technique [13}14]
opened up new possibilities for manipulations of the ions motion at the quantum
level [15].

Trapped ions as a tool for quantum information

In parallel to the experiments aiming at a better control over a single ion, the late
1980’s were also the time of the first observations of ion Coulomb crystals (ICC)
[16,[17], i.e. crystalline structures obtained by Doppler-cooling gaseous ensembles of
trapped ions to the limit where their thermal energy is lower than the energy due
to the Coulomb repulsion. Small ICC of a few tens of ions in one-dimensional struc-
tures constitute a chain of coupled harmonic oscillators, and retain excellent coherence
properties of single ions. This combination makes them ideal candidates to perform
quantum computation [18]: the ions can be individually addressed with tightly fo-
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cused laser beams; by using optical pumping and shelving techniques [15] their states
can be prepared and detected with near-unit efficiency, and their internal states can
be quantum correlated owing to the existence of common normal modes of vibration.
This excellent control over both the internal and external degrees of freedom of ions
has led to numerous breakthroughs in the field of quantum information: demonstra-
tions of quantum gates [19,/20], generation of non-classical states |21][22] quantum
teleportation [23|, spectroscopy using quantum logic [24], and the implementation of
quantum error correction schemes [25[26]. In 2011, a 14-qubit entanglement in a
string of “°Ca™ ions confined linear Paul trap was reported in R. Blatt’s group [27].

However, despite the great advances in the field of quantum computation during the
past decades, building a universal quantum computer remains an extremely chal-
lenging task essentially because of the difficulty to scale the already existing systems
to larger sizes. Nevertheless, well-controlled systems consisting of chains and two-
dimensional structures of a few tens of ions already provide an interesting setting for
simulating complex fundamental many-body physics models [28]. For example, such
structures were recently used to study a very general model known as the Kibble-
Zurek model [29,30] predicting the occurrence of defects in a second order phase
transition [31H34], thus opening up the way to investigate the physics of nonequilib-
rium dynamics from the classical to the quantum regime.

Following ideas implemented with neutral atoms confined in optical lattices to
simulate quantum many-body physics, it has also been recognized that combining
state-dependent optical forces and Coulomb trapping could significantly broaden the
scope of simulations based on trapped ions. In short, the expected benefits comes
from the variety of optical structures that can be obtained by combining laser fields
of different directions, frequencies and intensities, and that these optical “lattices” can
be applied simultaneously to hundreds of ions. By doing so, complex Ising models
can be simulated, and quantum many-body physics can be investigated [35-42]. In
simulations of the Frenkel-Kontorova model for friction [43|with trapped ions [44-46],
the optical field simulate the substrate onto which a chain of ions slides, or is pinned
depending on the structural mismatch between the two. This sliding/pinned transition
has recently been observed in a three-ion chain [47]. One-dimensional optical lattices
could be used at a profit to study the transport of heat in ion chains [46}/48]|49],
the generalized Dicke models [50] and the dynamical localization [51], or to stabilize
crystalline structure of large Coulomb crystals [52]. In the context of cavity quantum
electrodynamics experiments, the use of cavity-generated optical lattices could be
used to enhance the light-ion coupling [53155], to investigate the dynamics of ions
in quantum potentials [5658], or to study nanofriction in dynamically deformable
substrate [59]. Purely optical confinement of the ions could allow for experiments
without being affected by the micromotion inherent to rf Paul traps, in particular in
cold chemistry experiments involving ions and neutrals [60H63].

Localizing ions in an optical lattice

In this thesis we study the dynamics of a “°Ca™ ion pinned in a one-dimensional opti-
cal lattice. This work builds up on demonstrations of localization of one-dimensional,
two-dimensional and three-dimensional structures consisting of 1 to 8 ions in an opti-
cal lattice performed in the group [55/64]. In a typical experiment, the ion is trapped
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in a linear Paul trap and placed within the mode of an optical cavity which axis
coincide with that of the trap. After a sequence of Doppler cooling bringing the
ion temperature to mK range, an intracavity one dimensional optical lattice is adi-
abatically ramped up to a depth of a few tens of mK. The optical lattice induces a
position-dependent ac Stark shift on the ion’s energy levels which can be measured by
applying a probe field from the side of the optical cavity. By measuring the spectrum
of the pinned ion, we obtain information on its position distribution inside the optical
lattice, on the lattice depth and, provided the ion possess a thermal distribution, on
its temperature inside the optical lattice. The experiments presented here constitute
a proof of principle of methods that could be applied in connection with studies on the
heat transport in chains of ions, and on the competition between optical and Coulomb
forces with a connection to the aforementioned Frenkel-Kontorova model for friction.

Thesis outline

This thesis is organized in three parts. The first part reviews the main concepts and
mathematical tools used throughout the thesis:

The working of a linear Paul trap is described in CHAPTER

A description of the atom-light interaction in terms of the semiclassical optical Bloch
equations is given in CHAPTER [3]

In CHAPTER[@] we use some of the results of CHAPTER [3]to review the main aspects
of Doppler cooling.

In CHAPTER [f we derive the equations describing the dynamics of the field confined
inside an optical cavity, and introduce the dressed-state model which we use to de-
scribe the interaction between the ion and the optical lattice.

The second part is dedicated to the experimental setup: the building of a frequency-
doubled system intended to be used as a source for Doppler-cooling of Ca™ in future
experiments is presented in (CHAPTER .

The experimental setup is described in (CHAPTER .

In CHAPTER [0 an analysis of the working of the detection and imaging system
which will be used to analyze the experimental results is provided.

Finally, the last part focuses on the localization experiments:

We start by giving some historical context in CHAPTER [10]

The localization spectroscopy experiment and a presentation of the results are pre-
sented in CHAPTER [I1l

Finally, in CHAPTER [12| we give a brief outlook and conclude.






Part 1

Trapping and cooling of ion in a
linear Paul trap






Chapter 2

Trapping ions in a linear Paul trap

2.1 Working principles of a rf linear Paul trap

The principle of ion trapping derive from the constraint imposed by Earnshaw’s the-
orem that a charged particle cannot be held in a stable equilibrium by electrostatic
forces alone, and thus relies on the creation of a potential well with combinations of
multipolar electromagnetic fields. Examples of ion trapping technologies include a
combination of magnetic and quadrupolar electrostatic fields in the case of the Pen-
ning trap, and a combination of quadrupolar radiofrequency and static electric fields
in the case of the Paul trap. Details on these traps and examples of other trapping
technologies can be found in, e.g., |1] and references therein. The experiments per-

._g%
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2r,

URF(t) 'URF(t)

(a) (b)

Figure 2.1: (a) Schematic of the linear Paul trap with the applied voltages Upc and U, .
The length of the center electrode is 2z9. The trap axis coincides with the z-axis. (b)
End-view of the trap with the definitions of the inter-electrode distance 2ro, the Z and §
axis.

formed in the Ion Trap Group in Aarhus, and more specifically the ones described in
this thesis use a variant of the Paul trap generally called the linear Paul trap. Histori-
cally, the development of the Paul trap followed the invention of the quadrupole mass
filter by W. Paul in the 1950s [65,66]. However, the development of the linear Paul
trap only followed approximately 30 years later and aimed at improving the existing
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technologies in relation to high precision spectroscopy experiments [67].

A schematic of the linear Paul trap can be seen on figure 2.1j(a). It consists of four
rods placed in a quadrupole configuration. Each of the rods is sectioned in three
electrodes - two end-caps and a center electrode - such that the trap consists in total
of twelve electrodes on which individual voltages can be applied. Applying rapidly-
oscillating voltages Urp(t) = %Urf cos(§,¢t) on a pair of diagonally opposite rods
and simultaneously —Ugp(t) on the other pair produces the radial potential:

(iQ—QQ

o(z,9,t) = —% »f €os(yst) (2.1)

7
with ro the inter-electrode inscribed radius defined on fig. 2.1|(b). Axial confinement
is obtained by applying a static voltage Upc on the end-caps, which results in the
electrostatic potential along the z-axis and close to the center of the trap:

2

P(z) = nUDcz—g (2.2)

where 7 is an axial geometry constant defined by the trap geometry [53], 2zo the
length of the center electrodes. Laplace equation A¢ = 0 implies that the application
of static voltages on the end-caps also results in an additional, defocusing radial
potential. Therefore the total radial potential is given by:

52 ~2 1

. 1 52
¢(xay7t> = _§Urf COS(QTft)izy —_ 7,’7UDC
5 2

)
T +y
—_— 2.3

% (23)
The equations of motion for a charged particle of mass M in such a potential can be
found by applying Newton’s second law Mt = —V¢(r). Defining the dimensionless
parameters:

Qp 5t nQUpc QU
TSy T ThpEee, 9T T WS g (24
the equations of motions in the radial plane take the following form:
O | (= 2qu cos(2r)u = 0 7, (2.5)
— + [a — 2¢, cos(27)|u = 0, u=z, .
or? a4 Y

which are known in the literature as the Mathieu equations (see, e.g. [15/66]). De-
pending on the values of a and ¢, the solutions of the Mathieu equations are either
exponentially-diverging, or oscillating functions of time 7. There exists, therefore,
regions of the (a,q) plane where bounded motion can take place. These regions are
plotted in ﬁga). One can see on eq. that trapping a positively charged particle
- as is the case in the work presented in this thesis - imposes that a be negative if one
wants stable motion along the z-axis. The corresponding stability region is plotted in
fig. 2.2b).

In general the trap is operated such that |al,|¢q| < 1. This allows for the solution of
the equation of motion (eq. to be approximately written as:

u(t) = uo {1 - % cos(Qrft)} cos(wyt) (2.6)
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Figure 2.2: (a) Stability diagram of the Mathieu equation in the (g, a)-space. Regions with
stable solutions are marked with grey. (b) Region of stable motion of a positive particle in
the linear Paul trap. Both diagrams also apply to negative g-values, i.e. stability regions are
mirrored in the a-axis.

by introducing the secular frequency

\/q2/2+aQ

=0, 2.7
w 5 f (2.7)

In this range of parameters, the ion’s motion thus possesses two distincts components:
a high frequency motion at {2,y and a low frequency motion at w, < €,f. The
amplitude of the high frequency motion - termed micromotion - is given by the ¢
parameter and therefore only acts as a small jitter superimposed on the dominant
secular motion. Averaging out the fast motion, the ion’s motion is then only described
by the secular motion which corresponds to the motion in the pseudo-potential ®(r, z)
given by:

D,.(r) = %Mw?rQ (2.8)
Similarly, the axial potential can be rewritten as:
D,.(z) = %wazz (2.9)
with
w? = 2”5?0 (2.10)

The final trapping potential for the ions is therefore given by the sum of the radial
pseudopotential and the axial potential:

1 1
D(r,z) = §war2 + §Mw§z2 (2.11)
It is worth noting that apart from the choices of the voltages and frequency €,
applied on the electrodes, the trapping parameters a and ¢ depend solely on the
charge to mass ratio Q/M of the trapped particle. This implies that different species
can be simultaneously trapped provided the ratios /M are not too different. Another
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important aspect of this trap is its depth: for a radial secular frequency of 27 x 400
kHz and an inter-electrode distance of 2.35 mm, the depth of the radial pseudo-
potential expressed in Kelvin is ~ 10° K, and a similar calculation with a secular
axial frequency of ~ 27 x 100 kHz yields the same order of magnitude for the axial
potential. The depth of the trapping potential is thus much deeper than the typical
temperature (around 650 K) of the calcium atoms produced in the oven (see section
. Anticipating a little on the following chapters, we also note that these trapping
potentials are also many orders of magnitude deeper than typical trapping potentials
created with laser fields - a few tens of mK [6§]-, but their spatial extent (a few mm
in our case) is much larger than that of optical traps - on the order of the wavelength
of the trapping light.



Chapter 3

Atom-light interaction

In the experiments presented in this thesis the ion interacts with several light fields,
which for the most part are well described classically. The goal of this part is to
briefly introduce the framework adapted to the study of such interaction and its main
results, which we will use in the next chapters.

The system we consider here is a two-level atom interacting with a classical monochro-
matic, single mode electromagnetic field. We will start by defining an Hamiltonian for
this system, and go on with establishing the equations describing the evolution of the
atomic internal degrees of freedom. Finally, steady-state solutions of these equations
will be presented.

3.1 Hamiltonian of a two-level atom interacting with a
classical electromagnetic field

We consider a system composed of a two-level atom interacting with a classical elec-
tromagnetic field. The Hamiltonian of such system can be written:
H=H,+ Hr (3.1)
The first term, H 4, corresponds to the atomic part and reads:
H = hwotre (3.2)

where 7. = |e)(e| is the excited state population and wy the frequency difference
between the ground state |g) and the excited state |e) of the two-level atom. The
second term in eq. (3.I), Hyne, describes the interaction between a two-level atom
and an electromagnetic field and reads, in the dipole approximation:

Hin = -D-E(t) (3.3)

where E(t) is the electric field, and D the atomic dipole. We assume that the field
has a frequency wy,, amplitude & and polarization e:

E(t) = €& cos(wpt) (3.4)
The atomic dipole is given by:

D = dgodye + degbeg (3.5)

11
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where dge = deg = d are the dipole matrix elements for the transition and &;; = |7) (j|
with i,j = {g,e} are the lowering and raising atomic operators, which we will refer
to as the coherences in the following. The Hamiltonian H,; can finally be rewritten:

Hint = hg(Gge + 0cg) cos(wrt) (3.6)

with A
hg = —(i|D-€lj)€,  i,j={e g} (3.7)

3.2 The optical Bloch equations (OBE)

As we want to calculate the evolution of the atomic variables in the presence of the
field, we introduce the density matrix p4 and note its elements, in the {|e),|g)} basis:

. Ple Ly
il B (3.8)

The time-evolution of p# is given by the Heisenberg equation % p(t) = = [H, pA(t)].
Note that the off-diagonal elements of the density matrix coincide with the mean
values of the coherences G4, 6.4 introduced above, and similarly P2 is equal to the
mean value of the population of the excited state. For an arbitrary operator 6 we
note the mean value o = (6) and define 7, such that 7, = (74) = p’g“g. Projecting
the Heisenberg equation for p* in the {|e),|g)} basis, adding terms describing the
effect of a spontaneous decay rate I' from the excited to the ground state, and the
decoherence rate of the atomic dipole I'/2, we get:

Te = igcos(wpt)(oeg — 0ge) — I'me (3.9a)

7g = —igcos(wpt)(oeg — 0ge) + I'me (3.9b)
I

Fge = W0 ge — 1g cos(wrt)(me — mg) — 500 (3.9¢)

Oeg = 1Wo0eg + g cos(wrt)(me — mg) — 50¢q (3.9d)

The set of equations - are called the optical Bloch equations (OBE). It
can be shown [69] that, making the RWA in the above system and subsequently
redefining the density matrix elements as 0c, — 0.4€"“4" and o4 — 0g4ce™ Lt while
leaving unchanged the populations suppress all dependence on time in the above set
of equations. Making these substitutions amounts to a change of reference frame,
from the laboratory frame of reference to the one “rotating” with the laser field at the
frequency wy,. We can therefore rewrite the OBE as:

7:"6 = ig(aeg - Uge) - FTre (310&)

7.1-9 = *ig(geg - Uge) + I'me (310b)
T

dge = _iALoge - ig(ﬂ—e - 7Tg) - 50'95 (310C)

r
Oeg = iALOGe + ig(we —Tg) = 50ge (3.10d)
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Steady state values of the populations and coherences can be obtained by setting the
left-hand side of egs. (3.10]) to 0. By doing so, we get for the coherence og.:

ig/2
Oge = _g+iAL (e _779) (3.11)
and likewise, for o.4:
ig/2
Ocg = +——— (e — 7y) (3.12)
T A

Using these expressions, we get for the steady-state population in the excited state:

1 22
o= gr/2 — (3.13)
Ap+Tt+%
1 s
T 21+ (3:14)

where in the last line we used the saturation parameter defined as:

2
2
A7+
We will used these expressions in order to describe the Doppler cooling of ions
in the next chapter, and in the last chapter of this thesis, when we will describe the
interaction of 4°Ca™ with a near-resonant probe field.






Chapter 4

Laser cooling of a trapped “’Ca* ion

4.1 Doppler cooling

As mentioned in chapter 2] the typical temperature of the ions emitted by effusive oven
is 650 K, which corresponds to a speed of little less than 400 m/s. In the context of
experiments aiming at the measurements and the manipulation of atomic parameters
with high precision, the Doppler shifts induced by such speeds are too large, and have
to be eliminated. An efficient way to reduce the speed of the atoms is provided with
laser cooling, a widely used technique and the detailed treatment of which can be
found in, e.g., [70-72]. In this section we will therefore only briefly discuss the basic
idea of laser cooling and focus on the aspects relevant for the cooling of *°Ca™ ions.
Laser cooling depends upon dissipative forces that are velocity-dependent. Its
principle relies on the Doppler effect, i.e. the fact that an atom moving along the z-
axis with velocity v = vX in a laser wave of frequency wy, close to anatomic frequency
and wave-vector kg, “sees” the laser frequency shifted by the Doppler shift —ky, - v. In
the situation of a field counter propagating (kr, = —kpX), the Doppler effect results
in a positive frequency shift kyv, whereas the shift is negative in the case of a field
co-propagating. For laser beams slightly detuned to the red of the atomic resonance
this leads to a higher absorption probability from the counter propagating beam. The
subsequent re-emission of a photon of frequency wg results, in the laboratory frame of
reference, in a decrease of the kinetic energy of the atom by an amount —hkyv: the
atom is therefore cooled down (though only along the direction of absorption) in the
process.
In order to gain further insight in the cooling process, we analyze the force exerted
by two counter propagating laser fields on a two-level atom moving at velocity v as
depicted in fig. The force exerted by a laser beam on an atom can be expressed

+ —
F Atom F
NV aVaVa Ve N it YAV a Ve Wal
Laser v Laser

Figure 4.1: Basic principle of Doppler laser cooling.
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in terms of the momentum exchange between the light and the atom per photon
multiplied by the number of absorbed photons per unit time:

AN
F = 7k x < o >st (4.1)

where <%j>s , 18 the number of absorbed photons per unit time, in steady state.
This number can be re-expressed in terms of steady state population and decay rate

of the excited state: AN
< — > =75t (4.2)
dt /.,

Plugging (4.2 into (4.1)) and using eq. (3.14]) gives:

2
:E‘:hl<E g/2 T2 2
2(AL—k~V)2+T+%

(4.3)

with Ay = wy — wr. In standing-wave field, the total force F*°* is the sum of two
contributions, from the co- and counter-propagating fields:

T g*/2
o 2 2
2 (AL:E]{}U)2+T+%

Expanding the expression for the total force F** = F+ + F~ around v = 0 to

1%t order, the force can be expressed through a friction coefficient 8 as Ft = —Buv,
where

F* = 4+hk

(4.4)

FAL 2s
2
A2 4 2 (11 s)2

Fig. [£:2[a) shows a plot of this friction coefficient as a function of the detuning.
For the force to work as a friction force, f must be positive, which is seen to happen

B8 = hk?

(4.5)

0.4
L Ft
- F
0.2 F
~
=
. =
£ T Op
0.2
0.4
4 2 0 2 4 -3 -2 -1 0 1 2 3
Ap/T kv/T
(a) (b)

Figure 4.2: (a) Friction coefficient in units of hk? versus laser detuning Ay, in units of I, for
various values of the saturation parameter. (b) Velocity dependence of the laser cooling force
on an atom for two counter-propagating lasers (solid line), when the detuning is A, = —I'/2
and the saturation parameter is s = 1. Dashed lines represent the forces of individual beams.
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for Ay > 0. Likewise, 8 is maximized for a saturation parameter s = 1, or in other
words for g = I'. On fig b) we have plotted the total force along with the force
resulting from the co- and counter propagating beams, for these values of 8 and s.

Doppler temperature

So far we have neglected the effect of the spontaneous emission of photons by the
atom during the process. Indeed, each emission of a photon imparts a slight change
in momentum of the atom. However, because the re-emission of photon is directionally
symmetric with respect to the atom, the change in momentum averages out over many
scattering events (p) = 0, and the cooling process does result in a decrease of the atom
momentum along the direction of absorption. Nevertheless, the emission of photons by
spontaneous decay gives rise to a random walk in momentum space, because <p2> #0.
The associated heating rate is independent of the kinetic energy [73], contrary to
the cooling rate which can be expressed as F-v o v2. Therefore, the minimum
temperature - termed the Doppler temperature - which can be attained with Doppler
cooling is finite, and can be shown to be equal to Ty, = 2%; in the simple free
two-level atom scenario considered here [73].

4.2 Doppler cooling of a *°Ca™ ion

The model derived above provides a satisfying picture of Doppler cooling, but is rather
simplistic in that it assumes a free two-level atom. In realistic situations, more levels
generally have to be taken into account. We consider in this section the case of the
40Ca* ion whose reduced energy level diagram is shown on fig. Doppler cooling is
performed on the 452.5; /2 4p? Py /2 transition, with a laser slightly red-detuned from
the resonant wavelength A ~ 397 nm. From the excited state 4p>P; /2 the ion can de-
cay to 3d%2 Dy /2 With a branching ratio of ~ 1 : 12. Since the lifetime in this metastable
state is on the order of the second, the ion needs to be actively pumped back into
4p? Py s2 by an additional repumping laser, resonant with the 3d%Ds /2 4p* Py /2
transition at 866 nm in order to be effectively cooled. The branching ratio implies
that the cooling effect is dominated by the scattering of 397 nm photons and from
the partial decay rate I' = 2w x 20.7 MHz and considering the above, this amounts to
a theoretical Doppler temperature of Tp ~ 0.54 mK. The total decay rate I'p, ,, from
the 4p?P, /2 state is equal to 27 x 22.4 MHz, which is much higher than the secular
frequencies in Paul trap (a few hundred kHz), and therefore the ion can be considered
as “free” during the cooling cycle. More specifically, it can be shown that the effect
of the ion’s motion in the trap is to add sidebands to the absorption spectrum at
the secular frequencies. Since the natural linewidth of the transition is much broader
than these secular frequencies, these are not resolved.

In principle, 3 pairs of laser beam need to be used to perform Doppler-cooling along
all directions, but in the specific case of a bound ion, only one is needed provided its
k-vector has components along the axial and radial components of the trap, and that
the secular frequencies (wy,w,,w,) are non-degenerate |77,[78]. However, in the ex-
periments presented in this thesis we use two counter propagating beams aligned with
the trap axis, and a third beam directed perpendicularly to it, for practical reasons
we detail in the next section. Finally, a bias magnetic of a few Gauss perpendicular
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Figure 4.3: Energy level diagram of *°Ca*, with transition wavelengths in air and transition
decay rate I' taken from [74H76]. The solid lines correspond to the relevant transitions for
Doppler cooling in this thesis, i.e. the 45251/2 — 4p2P1/2 Doppler cooling transition (blue)
and the 3d2D3/2 R 4p2P1/2 repumping transition (red). Picture taken from [64]

to the polarization of the 866 nm field driving the 3D3/5 <+ P /5 is applied to ensure
that all levels are addressed by the repumper.

4.3 Ion Coulomb crystals

So far we have described the trapping and cooling principle in the case of a single
ion, but the same principles apply when many particles are being trapped. However,
when several ions are confined together they are subjected to the Coulomb repulsion
they exert on each other in addition to the trapping potential which tends to attract
them toward the center of the trap. When cooled down below a critical temperature
- typically 10 mK in our case - corresponding to a regime where the thermal kinetic
energy is much lower than the Coulomb energy, the ensemble of ions undergoes a
phase transition to a long-range ordered state termed Ion Coulomb crystals.

The simplest type of ion Coulomb crystal is a linear string of ions along the axis of the
trap. This configuration arises when the axial confinement is much weaker than the
radial confinement. Strings of two and eight ion are shown on fig. On the picture
showing the eight-ion string, it can be seen that the ion spacing is larger on the sides
than in the middle - the last ion feels the repulsion from the other ones. Generally,
as the number of ions increases, the separation between adjacent ions at the center
of the trap reduces, as can be observed by comparing the two- and eight-ion strings.
Raising the axial confinement, or lowering the radial confinement induces a transition
to a two-dimensional zig-zag structure. Loading a larger number of ions result in a
three-dimensional spheroidal arrangement, the exact form of which depends on the
ratio of the axial to radial trapping frequencies.

In a linear rf Paul trap, it is desirable to place the ions along the central axis of trap.
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Z-axis

Figure 4.4: Projection images of (a) one, (b) two, (c) eight ions in a string, (d) four ions in
a two-dimensional zig-zag structure, and (e) a three-dimensional Coulomb crystal consisting
of approximately 6400 ions. The axial and radial trap frequencies are, respectively: 71 kHz
and 388 kHz in (a) and (b), 71 kHz and 350 kHz in (c), 87 kHz and 184 kHz in (d). (e)
taken from [54].

As a matter of fact, the micromotion amplitude for an ion placed on the axis can be
deduced from eq. (2.6) and is given by:

1
AmiCTo = §u0q (46)

ug being the amplitude of the secular motion. This micromotion is inherent of a linear
Paul trap and a consequence of the secular motion carrying the ion back and forth
through the nodal line of the rf-field, and is schematically represented on fig.
It can be minimized by Doppler-cooling the ion which reduces the amplitude of the
secular motion. For an ion whose equilibrium position is not located on the nodal
line, there is an excess micromotion of the same form but with ug replaced with the
mean distance to the trap axis [79]. In the case of a single ion, placing the ion on
the trap axis is one way to reduce the micromotion, however in the case of a two- or
three-dimensional structures there will always be ions placed off-axis.

Laser cooling of large ensembles of trapped ions thus requires some specific consid-
erations. In the case of a string of ions, the Coulomb interaction couples their axial
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Figure 4.5: Schematic of the micromotion at different locations in the trap. Arrows indicate
the direction and amplitude of the micromotion. The dimensions of the electrodes and arrows
are not to scale.

vibrational modes, but the radial and axial motion remain uncoupled and Doppler
cooling has to be performed along both the axial and radial directions. In the case
of three-dimensional structures (corresponding to a less tight radial confinement, as
evoked above), the axial and radial motions are coupled and applying Doppler cooling
light along the axial direction is sufficient to achieve good three-dimensional cooling.
Moreover, for the ions positioned off the trap axis and experiencing excess micromo-
tion, applying a cooling beam along the transverse direction will tend to drive the
micromotion and can have a detrimental effect.



Chapter 5

Atom in an optical potential

In chapter [4] we saw that the mechanical effects of the atom-light field can be used to
drastically slow down an atomic beam. As we will see in this chapter, the atom-light
interaction can also, under certain conditions, lead to non-dissipative forces which
can be used to confine the ion in zones of either high or vanishing field intensities.
The creation of such optical potential necessitates a standing-wave field, which is
realized here by confining the field inside an optical cavity. Therefore we will start by
introducing the concept of the optical cavity, and try to put emphasis on the benefits
one can get by using such a tool. We will, in a second step, derive relevant quantities
describing the interaction of an atom with a standing-wave field.

5.1 Optical cavities

5.1.1 Cavity modes

In its simplest design, a cavity consists of two reflecting mirrors M7 and My, separated
by a distance L. We consider a monochromatic electromagnetic field traveling along
the axis of the cavity. The multiple reflections of the field on the mirrors lead to
a situation where the field interfere with itself, and can therefore exist only if the
resulting interferences are constructive. This is realized if the phase shift imparted on
the field after a round-trip in the cavity is a integer multiple of 2. This condition is
equivalent to impose that the frequency of the light field is an integer multiple of 57
with ¢ the speed of light in vacuum:

c q .
Vg = q— = —,qinteger 5.1

¢ =457 = _dinteg (5.1)

where 7 = 57 is the round-trip time. The frequencies v, are termed the longitudinal

cavity modes. A field whose frequency wy, is equal to one of the longitudinal cavity
modes is said to be resonant with the cavity.

In practice, a cavity made of two plane mirrors is unstable, i.e. a field not propagating
perfectly along the axis escapes the cavity after a few round trips. For this reason,
cavities used in laboratories are generally made of combinations of spherical and plane
mirrors, or spherical mirrors only. In the work presented in this thesis, two types of
cavities are used: a linear Fabry-Perot cavity, made of two spherical mirrors facing

21
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each other and which is depicted fig. This cavity was used in the past to perform
CQED experiments , and in our case its main purpose is to generate the
optical potential mentioned in the introduction, since the multiple retro-reflections of
the field on the mirrors results in the establishment of a standing-wave. The other
type of cavity is the ring “bow-tie” Fabry-Perot cavity, made of two plane and two
spherical mirrors and is sketched on fig. This cavity is used for performing second
harmonic generation of light (see chapter E[)

Our goal in the next section is to derive the equations governing the dynamics of
an electromagnetic field in an optical cavity close to a resonance, in the case of a cav-
ity whose longitudinal modes are well-separated. As it turns out, these equations are
similar for the two types of cavities considered here. Therefore, we will derive them
in the case of the linear cavity and adapt them when needed to take into account
the additional mirrors in the case of the bow-tie cavity. We will then refer, in the
following, to the schematic shown fig[5.]]

5.2 Dynamics of the cavity field close to a resonance

The reflection and transmission coefficients for the fields amplitudes are denoted 1,

t1 and ro, to for the first and second mirror, respectively. The losses due to absorption

and scattering in reflection on either of the mirrors are accounted for by the coefficient

Q. The incident field is denoted F;,, the field inside the cavity F.q,, the field

transmitted after the cavity FEi..ns, the cavity mode frequency we., the frequency of

the incident field wy, - we assume here the field to be monochromatic - and the round
2L

trip time in the cavity 7 = =*. The amplitude of the intracavity field after one

reflection on mirror M, reads:

/!
EC(Z’U

(t) = areEeqy(t — T)e”ei‘Zs (5.2)

The phase shift ¢ = (w.—wp )T = A7 is due to the dephasing of the field with respect
to the incident field during the round trip inside the cavity. The additional 7 phase
shift comes from the reflection on any of the dielectric mirrors. For a given input field

A Tl Q

Ein
_—
Etrans
_—
<«
ETefl

Figure 5.1: Schematic of a Fabry-Perot cavity, with the incident, intracavity and transmit-
ted fields.



5.2. Dynamics of the cavity field close to a resonance 23

Erefl “

«—

E trans

Figure 5.2: Schematic of the bow-tie cavity with the incident, transmitted and reflected
fields. In this setup the optical field is never retro-reflected, as opposed to the situation of
the linear cavity. As a consequence, the field inside the bow-tie cavity is a running-wave, a
property which will be very important for performing second harmonic generation.

FE;p, the intracavity field at instant t after M; must also satisfy:

Eean(t) = t1 Ein(t) + ar1 EL,, (t)e'™ (5.3)
By combining (5.3) and (5.2)), we finally get:
Eran(t) = &2r119Eeqy (t — 7)e 4 t1 By, () (5.4)

In order to find an equation relating the fields inside the cavity at times t — 7 and
t, we subtract Feqy(t — 7) to Eeqo(t) in (5.4), and divide the result by 7:

Ecav t) — Ecav t— 2 -1 i L
() (t—7) _ (aZrira )Em(t —7)e + LB (1) (5.5)
T T T

We can rewrite the above equation in terms of the reflection, transmission and loss
coefficients in intensity. Denoting R;, T; (i = 1,2), and £ these coefficients we have
ri = VRi, t; = /T; and o = /(1 — L£/2). For each of the mirrors, these coefficients
must naturally satisfy R; + T; + £/2 = 1. Using the assumption that 77,75, £ and
¢ < 1 and retaining only first order terms in the expansion, we get:

FEooy(t) — Ecqo(t — 1-L/2)1-T1/2)(1 —T5/2)(1 +1 VI
( ) ( T) _ ( ‘C/ )( 1/ )( 2/ )( +Z¢)Eaav(t_7—)+ lEzn(t)
T T T
(5.6)
If the losses due to absorption and scattering and due to the finite mirror transmission
per round trip are small, it is convenient to transmission and loss rates defined as:

ry =1 — KT, 1=1,2 (5.7)
and similarly, for the loss coefficient:

a=1—KgT, (5.8)
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Figure 5.3: transmission (blue) and reflection (red) around one resonance for a cavity with
similar parameters as used in our experiment versus the detuning in units of the FWHM. The
mirror transmission coefficients are 71 = 1500 ppm, T> = 5ppm and the losses are £=600

ppm

The decay rates of the cavity through the mirrors are therefore given by :

L _1-VI=T, Ti
K = i _ ~—5=1,2 (5.9)
T T 2T

And similarly, for the decay rate associated to the losses :
L
Kp o — (5.10)
27
Assuming the cavity decay rates are small compared to % - which, according to the

definitions (5.9 and (5.10) is valid since T1, 75, £ < 1 - we can assume that the round
trip time is short compared to the dynamics of the field, and take the limit 7 — O:

. 2
Bran(t) = ,/%Em(t) — (ke + K1+ K2 + iA¢) Eeay(t) (5.11)

The steady state of the intracavity field amplitude is readily obtained by setting the
time derivative in (5.11) to 0 and rearranging the terms in (5.11)):

\/5 (5.12)

B
Kr + K1+ Ko +i0,

cav —

The steady state transmitted field amplitude is then :

/2Kr1
Etrans = tQEca'u (t) =t T Ezn (513)

2R+ K1+ Ro + A,
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The steady state transmission from the cavity can now be deduced from the above
equation, and it reads :

2

te ‘E;Jan N (Hzc+nilz22)2+A% (>4
Likewise, the reflection from the cavity can be found by writing:
Ereqi =t E.,, + ariEip, (5.15)
from which the reflection coeflicient in steady state can be readily deduced:
2
R R s S @10

The transmission and reflection coefficients are plotted Fig. [5.3] They are Lorentzian
functions of the detuning, which Full Width at Half Maximum (FWHM) can be found
to be :

0w = 2(ke + K1 + K2) (5.17)

The enhancement factor can be read directly from ([5.12)), as the ratio of the intracavity
field over the incident field :

‘Eccw 2 _ 2% _ 4Tl (5 18)
Ein | |kc+r1+r2+iAJ2 (L4 Ty +T2)% + A2 ’
The finesse of the cavity is defined as:
FSR 2
F T (5.19)

TFWHM T+ T+ L

where FSR stands for Free Spectral Range, and corresponds to the inverse of the
round trip time % The finesse can be seen as the ratio of the stored energy over
the losses during one round trip. While the free spectral range only depends on the
distance between the two mirrors, the FWHM depends on the decay rates of the field
through the mirrors, and on the losses. Measuring the transmission of the different
mirrors is relatively straightforward, but estimating the losses directly by looking at
the discrepancy between the measured transmission and reflection for each mirror can
be more tricky, especially when they are small - we expect them to be less than or
on the order of a percent. Fortunately, the reflectivity spectrum allow for an indirect
measurement of the losses. Defining 8 as the ratio of the reflection from the cavity
on and off resonance, we have:

ﬂ* R(AC:O) 7(%57H1+I€2)27(£7T1+T2)2 (520)
 R(A.— o) (kg k1 +K2)2 (LT +Ty)? '

We can invert the above equality to find:

,_1EVB
C1¥VB

1> (5.21)
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where the upper sign is used if the sum of the losses and transmission through the
output coupler exceed the transmission through the input coupler, i.e. if L+T5 > T,
and the lower sign otherwise. As mentioned in the beginning of this section, the
equations derived above also apply for a bow-tie cavity, by making the following
substitutions: ko — Ko + K3 + K4, and by defining « such that a« = /1 — L/4. The
intracavity field is nonetheless different than that of the linear Fabry Perot cavity, in
the sense that the field in a bow-tie cavity is a running-wave while it is a standing
-wave in a linear cavity. Therefore, eq. gives the appropriate total intracavity
field intensity in a bow-tie cavity, but in the case of a linear cavity this expression needs
to be replaced by |Ecqy + Elyp|? = 4|Ecav|?. Anticipating on the following sections,
we note that, associated with the enhancement factor eq. , this property of
the bow-tie cavity is essential for performing efficient SHG, as in this case the energy
only flows one way. We will come back to this point in greater detail in the relevant
section.

5.3 The Jaynes-Cummings Hamiltonian

We now tackle the problem of the interaction of an atom with a single mode standing-
wave electromagnetic field. We start with the Jaynes-Cummings model and then
introduce the dressed-state picture which will provide us with a description of the
interaction between the ion and the standing-wave cavity field.

The Hamiltonian of a coupled system containing a two-level atom interacting with
a single-mode field is very similar to the one given in chapter [3] the only difference
residing in the definition of the field which we now assume to be quantized:

H=Hjs+Hr+ Hp,: (5.22)

where Hp is equal to:
Hp = hwra'a (5.23)

and describes the field part where we have omitted the zero-point energy for conve-
nience. The interaction part, Hrp,;, is defined as before:

Hi =-D-E (5.24)
the only difference is that E is the single-mode quantized electric field:
E(r) = €& f(r)(a+al) (5.25)

with f(r) a form factor which describes the relative amplitude of the field, and & =

271“;@. is a normalization factor chosen such that ep&Z is equal to the zero-point
energy density of the electromagnetic field ﬁz“"}“, with V' the volume of the cavity.

€ represents the polarization of the field, @ and a' are the usual annihilation and
creation operators, wy, is the field frequency.
Recalling the expression of D defined in (3.5)):

~

D = dgedye + degbeg (5.26)
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with dge = deg = d the dipole matrix elements for the transition and &;; = |i){j|
with 4,5 = {g,e} the lowering and raising atomic operators, we can re-express the
interaction Hamiltonian using ([5.25):

Hint = (640 + 6eg)d - E = —df (r)E(Gge + 6eg)(a+ al) (5.27)

where we have assumed that the field polarization and the dipole are parallel. The
coefficient ¢ introduced in eq. is changed to go(r) = f% f(r), and is known
in the literature as the “vacuum Rabi splitting”. The full Hamiltonian describing the
atom, the light field and the coupling between them therefore reads:

H = Ha+ Hp + Hrpy = hiwofre + hwpala + hgo(r) (64 + Geg)(@+at)  (5.28)

Applying the rotating-wave approximation (RWA), which consists in neglecting non
energy-conserving terms in the equation , that is, keeping only terms describing
the absorption of a photon accompanied with the transfer of the ion from state g to
state e, and the transfer from e to g with the emission of a photon allow us to rewrite

(5.28) as:
HInt = th(r)(a'ged]L + &egd) (529)

The resulting Hamiltonian:
H = hwotte + hiwpata + higo(r)(6geal + Geya) (5.30)

is usually referred to as the Jaynes-Cummings Hamiltonian.

The “uncoupled” eigenstates of the Hamiltonian H4 + Hp are given by the tensor
products of atomic and field energy states |e,n) and |g,n). Their energies are, respec-
tively, given by hwg + nfwy, and nhwy. For a detuning Ay much smaller than wy,
the excited states of H4 + Hp are organized in a ladder of doublets {|g,n + 1), |e,n)}
separated from each other by the energy hwy,. The atom-field coupling H;,; only con-
nects states inside each doublet, and is characterized by the Rabi frequency g defined

as:
g(r) = %(67H\Hint|g,n +1)=—vVn+ 1%]"(1‘) =go(r)vn+1 (5.31)

Thus in principle g depends on n but, following [81], we shall drop this dependence by
assuming that the laser is excited in a coherent state with a Poisson distribution for
n, the width An of which is very small compared with the average number of photons
n.

5.4 The dressed-states

The derivation of the eigenstates and eigenenergies of the Jaynes-Cummings Hamil-
tonian can be found in, e.g. [82[83], therefore we will only reproduce them here. The
eigenenergies read:

hAL RO
By = (n+ Dhog + =5 + 2(1‘) (5.32)

and WA, RO
Eon = (n+ Dhwy, + 122 _ 1@ (5.33)

2 2
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with Q(r) = /g(r)?2 + A%, and A, = wy — wy, is the atom-field detuning. These
energies are associated to the eigenstates:
|n, 1;r) = sinf(r)|n + 1)|g) + cosé(r)|n)|e) (5.34)
[n, 2;1) = cos@(r)|n + 1)|g) —siné(r)|n)|e) (5.35)

where cos 20(r) = AL /Q(r) and sin 20(r) = g(r)/Q(r). The states |n, 1;r) and |n, 2;r)
are termed the dressed states. An important point here is that in an inhomogeneous
laser field these energies and eigenstates depend on the position r. Out of the field,
the dressed states reduce to the bare ones, and their splitting is given by AAp. In the
presence of the field however, the dressed states are a superposition of [n + 1)|g) and
[n)|e), and their splitting is given by h€(r) which is larger than AA . Moreover, as
can be seen on the dressed-state energy diagram shown on fig. [5.4] an ion prepared
in the state g and placed in a red-detuned laser field has a lower energy than outside
the field, and we can intuitively understand that in such configuration the ion will
tend to seek the regions of high-intensity of the field, and hence can be trapped under
certain conditions. On the other hand, in the case of blue-detuned field, the ion will,
for similar reasons, seek regions of vanishing intensity.

With our notations, the energy difference between the bare atomic states is simply
fuwg. For an ion placed in e.g. a red-detuned laser field, the ground state |g,n;r)
connects to |[n — 1,2;r) and |e,n;r) connects to |n,1;r). Thus the energy difference
between these levels is shifted by an amount given by:

(Eln — Egn_l) — hwg = hwy, + hQ(I‘) — hwyq (536)
= —hAp + hQ(I‘) >0 (5.37)

In the case of red-detuned laser field, the frequency of the transition is therefore
increased. In the case of a blue-detuned laser field, the state |g,n;r) connects to
|n —1,1;r), and |e,n;r) connects to |n,2;r), and the energy difference is given by:

(Egn — Eln—l) — hwo = ﬁ/,uL — hQ(I‘) — hwo (538)
= —hAL — hQ(r) <0 (5.39)

The transition frequency is thus decreased. Finally, to conclude this part, let us
mention another very useful result provided by this model. As shown in [81], it is
possible to calculate the steady state populations of the dressed states. Since the
details of the calculation can be found in the article mentioned above, we will simply
recall the notations and main results. First, let us define the atomic populations in
the states |1;r) and |2;r) as:

1=y (n,Lir|pln, 1;t) (5.40)

n

and
a = (n,2:7]pln, %) (5.41)

where p represents the density matrix for the combined ion-laser field system. In
the limit of detunings far greater than the natural linewidth I' of the excite state
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Figure 5.4: Dressed-atom energy diagram. Each of the schematics shows the states of
the combined atom-laser system without coupling (left), and the dressed-states (right). (a)
Energy diagram in the case of an atom placed in a blue-detuned field. In the absence of
coupling, the energy difference between the states |e) and |g) is equal to fuwg. Assuming
the system is prepared in the |g,n) state, subsequently increasing the coupling transfers
the system to the state |1,n — 1). The corresponding excited state is then |2,n), and the
energy difference between them is fwr — AQ(r) < Awo. (b) Energy diagram in the case
of an atom placed in a red-detuned field.In the absence of coupling, the energy difference
between the states |e) and |g) is equal to hwp. Assuming the system is prepared in the |g,n)
state, subsequently increasing the coupling transfers the system to the state |2,n — 1).The
corresponding excited state is then |1,n), and the energy difference between them is hiwr, +
FLQ(I‘) > hwo.

1| > T'), the steady-state values of #; and 75, which we will denote 75* and 75t,
A T'), the steady-stat 1 fa d 7 hich ill denote 7§! and w3t

are given by:

-4
ot sin® 6(r)
= 5.42
T e O(r) + cos* O(r) (5.42)
and »
st = cos” §(x) (5.43)

sin® A(r) + cos* A(r)
The scattering rates from these states can thus be immediately estimated with knowl-
edge of g(r), Q(r) and Ay, since they are directly proportional to the steady state
populations. This will prove useful when we will have to adjust our experimental
parameters in order to minimize the scattering due to the cavity field and maximize
that of the probe beam.

The cavity field

So far we have not taken into account the fact that the field described here is an
intracavity standing wave. This could be a problem since the dynamics of a field
confined inside a cavity obeys the equations derived in section [5.2] and which depend
on the cavity parameters - absorption and scattering losses, transmission through the
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mirrors - in addition to the dynamics arising from the interaction with the atom, and
described by the Hamiltonian . These equations would describe, in the case of a
cavity mode frequency resonant or close to resonance with the atomic transition, the
coherent exchange of energy between the atom and the cavity field at the rate go, and
the decay of the field through the cavity mirrors with the decay rate k = kg + k1 + ka2,
or through spontaneous emission with a rate v = g from the atom into a mode differ-
ent from the cavity-mode. In the case where the frequency go exceeds both (k,7), we
understand that the atom-cavity field dynamics will be dominated by the exchange

of photons between the atom and the cavity field. In the limit where the ratio i—g >1
the system is said to be in the strong coupling regime of cavity QED. In our system,
go = 27 x 0.53 MHz, k = 27 x 2.1 MHz and v =T'/2 = 27 x 11.2 MHz [53|, and thus
a single ion placed at an antinode of the cavity mode is not strongly coupled with the
field. However, with these parameters, the so-called collective strong coupling regime
can be reached by placing ~ 500 cold ions in the cavity mode, and has been demon-
strated in experiments described in [54]. One characteristic feature of this regime is
the modification of the cavity decay rate and mode frequency due to the presence of
the atoms, an effect termed generally backaction of the atoms on light. In particular,
if the shift is comparable to the cavity linewidth, the cavity field intensity can be
resonantly enhanced or suppressed, and so can the backaction on the atomic motion.

In the dispersive regime of cavity QED where the resonant exchange of energy between
the atom and the field is suppressed, the backaction can be used to, e.g., cool down
atoms and molecules [84], and has been studied in a wealth of experiments reviewed
here [85]. Its effect in our experiment can be quantified through the shift of the cavity
mode frequency due to the presence of the atom. This shift is equal to [82]:

2

9
dw, = 1A, (5.44)

Using a detuning Ay, of 760 GHz, we find that dw. = 0.082 Hz, that is, the presence
of an atom shifts the cavity mode frequency by an amount much smaller than the
cavity mode linewidth 2x. We therefore do not expect that the presence of an atom
inside the cavity mode has an observable effect on the field dynamics, and we will
neglect this aspect in the rest of this thesis.
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Chapter 6

Introduction

The following chapters are devoted to the description of the experimental setup used
to perform the experiments described in this thesis. The ion trap and laser systems
have been built over the years by a number of people. Only the parts relevant to the
experiments will be presented with references to the previous theses when needed.
The cavity ion trap was built by former PhD student Peter Herskind, based on the
experience gained by PhD Anders Mortensen with the purpose to serve as a quantum
memory for light using Ion Coulomb crystals (ICC), and is shown on fig[6.1] It is com-
posed of a linear Fabry-Perot optical cavity integrated into a linear Paul trap similar
to the one described in chapter Details on design considerations, and theoretical
analysis of a quantum memory using ICC can be found in their theses [53,/36].
Realizing a quantum memory for light requires, among other things, an optically
dense medium in order to increase the efficiency of storage. Entering the strong cou-
pling regime of cavity QED by placing an ion inside an optical cavity could therefore
be a possible solution, since the optical density of the atomic medium is, in this case,
dramatically enhanced [82]. However, entering the strong coupling regime at the
single ion level is difficult because the integration of an optical cavity with a small
mode volume into a linear Paul trap is not straightforward (see, e.g., section
and [53},/86]), and although a few groups have obtained strong interactions between
single ions and a cavity field mode [87H92], entering the single ion strong coupling
regime has not been achieved yet. An alternative to working with single ions is to
make use of an ion-crystal in order to benefit from the collective enhancement of
coupling to an ensemble of two-level systems, and in 2008 the collective strong cou-
pling regime of cavity QED was demonstrated in the Ton Trap Group [53,/54]. In this
regime an ensemble of two-level atoms interact with a near-resonant single mode of
the cavity in the low saturation regime, and the effective coupling rate gy = govV N
can be made larger than both v and x [82]. In our case, as mentioned in section
this was achieved in our group with ICCs consisting of ~ a few thousand ions.
Besides being technologically less demanding, the use of an ICC placed in the mode
of an optical cavity possess the advantage over single ions that it could in principle
allow for multimode storage of light, and progress in this direction was made with
the demonstration of collective strong coupling regime for different transverse cavity
modes [93]. Another step towards the realization of a quantum memory was taken
when cavity electromagnetically induced transparency (cavity EIT, see [94,95]) and
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Mirror 2 (PT) Electrodes Mirror 1 (HR)

Titanium plate PZT system Ceramics mount Titanium plate

Figure 6.1: Photo of the cavity trap inside the vacuum chambers seen through a view
port. The cylindrical electrodes are made from gold coated copper, and are attached to the
ceramic mount. The cavity mirrors are embedded in dielectric mirror coats used to minimize
the bending of RF-lines due to presence of the mirrors, and mounted on two titanium plates.
The high-reflecting (HR) mirror is attached directly on a fixed titanium plate, while the
partially transmitting (PT) is mounted on a PZT plate to allow for precise control of the
cavity length. On the picture, the mirror coats appear blue because of the scattering of
Doppler-cooling light at 397 nm sent through them.

all-optical switching were observed [30,/96].

Nevertheless, using an ICC placed inside an optical cavity to store photons using cav-
ity EIT imposes several constraints, in particular on the configuration of laser beams
used to address the ions , and on the possibility to keep the ions cold during the
process . Studies carried out by A. Mortensen and master student Kasper Zan-
genberg showed that trapping two components crystals could prove very useful, by
using the inner component to store the photonic excitations, while at the same time
sympathetically cool it with the outer one . Moreover, the outer component can
be used to shape the inner one in order to increase the number of interacting ions
inside the cavity mode . Using for two-components crystal a different isotope of
40Ca™ implies that the cooling transition has a different wavelength, and therefore two
Doppler cooling sources for addressing of each isotope are required. Such sources op-
erate in the UV frequency range, and can be built by using an infrared laser source,
and doubling its frequency in a process called second harmonic generation (SHG).
Building such a source was therefore the first task I was involved in, and this work is
presented in the next chapter.

In the case of a one-dimensional intracavity standing wave the single ion-light cou-
pling varies sinusoidally with the position of the ion along the standing wave (see,
e.g. chapter [5). In the case of an ICC placed in the cavity mode, the positions
of the ions are uncorrelated with the intracavity standing wave antinodes, and the
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light-matter coupling is in this case described through an averaged coupling strength
IN,av = g/+v/2. Controlling the positions of the ions with respect to the antinodes
of the intracavity standing wave can therefore be very valuable, and was the main
motivation for demonstrating localization of ions inside an optical trap, achieved by
PhD student Rasmus B. Linnet on this same experimental setup [64]. The work pre-
sented in this thesis is a continuation of the work on localization, and most elements
of the experimental setup were built prior to my arrival in the ion Trap Group. We
will, in chapter [§] describe them briefly, but with enough details to give the reader
a good overview of the workings and overall functions of the setup. We start with
a description of the cavity trap, in section and subsequently present the laser
sources used in connection with the experiments on *°Ca™ in section Finally, in
chapter [9] we look into the details of our detection and imaging system, and provide
an analysis of the detection process which we use in the last part of this thesis.






Chapter 7

A frequency-doubled laser source
for laser cooling of Ca™ ions

In this chapter we detail the construction of a frequency-doubled laser system, which
is intended to serve in experiments involving ion Coulomb crystals, or two-components
Coulomb crystals. This source is composed of a tapered amplifier diode laser TA pro
(Toptica) generating light at 794 nm, subsequently frequency doubled in a bow-tie
cavity containing a periodically poled KTP (ppKTP) non linear crystal and frequency
stabilized to a reference cavity using a Pound Drever Hall (PDH) scheme. We start
by recalling the theory of second harmonic generation (SHG) in section and
introduce the Boyd Kleinman theory used to calculate relevant parameters of our
setup in section A characterization of the non linear crystal in which the
frequency-doubling process takes place is presented in section As we will see,
the process needs high input power in order to produce frequency doubled light with
high efficiency. This will be provided by the use of a cavity since the intracavity signal
intensity is enhanced with respect to the input power - as we saw in section [5.1] - and
will the topic of section The last section deals with the active stabilization
of the laser frequency.

7.1 Second harmonic generation

7.1.1 Theory

The propagation of an electromagnetic field through a non-magnetic, neutral dielectric
medium induces a polarization, which can be, provided the electric field is not too

strong, described as:
P(t) = eoxE(t) (7.1)

where E(t) is the total electric field, produced partly by free charges outside the
medium, and partly by the polarization itself, ¢y the vacuum permittivity and the
linear susceptibility x is a tensor of rank 2, since the polarization need not be along the
same direction as the applied field. Eq. implies a linear relationship between the
total field and the polarization, and this is the result of an approximation associated
with the fact that one in this case assumes the electrons in the medium to be slightly
pushed away from their equilibrium position around the nuclei. In order words, the

37
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electrons in such case only "probe” the harmonic part of the potential that binds
them to the nuclei. This approximation breaks down when the applied electric field
is strong enough. In such a case, the polarization is better described by an expansion
in powers of E:

P(t) = coxE(t) + dPE(t) - E(t) + - - (7.2)

where d? is a tensor of rank 3. Assuming a monochromatic electric field of frequencey
w E(t) = Eg cos(wt), the second order response of the medium manifests itself by a
time-varying polarization oscillating at twice the applied field frequency

PP (t) = d?[Eg cos(wt)]? = %d(Z)(EO)Z(l + cos(2wt)] (7.3)

The time-varying polarization, in turn, generates an electric field at frequency 2w,
which can be seen from the wave-equation satisfied by the total electric field inside
the medium: ) )

sz—%GE: L (7.4)

2 Ot poc? ot?

In a simple plane wave model, the second order polarization travels through the
medium at a phase velocity —= with a wavevector 2k, since it is generated by the
field oscillating at w. The newly generated field on the other hand oscﬂlates at twice
the frequency and thus possesses a wavevector ko, . Due to the
dispersive property of the non-linear medium, the phase velocities and wavevectors of
these two fields are generally not equal, resulting in destructive interferences between
second harmonic waves generated at different points within the crystal (see Fig. [7.1)).
Denoting Ak = ko, — 2k, (nw — ngy) the so-called phase mismatch, it can be
shown that the second harmonlc intensity, after propagation over a length z in the
crystal and neglecting the depletion of the fundamental field, reads [98]:

sin(3Akz) ) ?

I, 1222 7.5
(e oc 2% (P (7.5)

For a given phase mismatch Ak one can also define a coherence length L
which can be seen as the distance over which the different "waves” interfere construc-
tively, hence producing a finite amount of second harmonic power. Operating at
Ak = 0 thus corresponds to an infinite coherence length. In practice, the fundamen-
tal beam is sent through a crystal of a given length [., and cross section S. We are
interested in the power of second harmonic light at phase matching condition - this
is the physical quantity which can be accessed - so in terms of the light power, the
previous equation can be rewritten:

P2w<lc) = 'VPLE (7'6)

The coefficient «y is called the single-pass conversion coefficient. This coefficient de-
pends on the medium in which the SHG process takes place, but also on the volume
of interaction between the light beam and the medium. As we will see it in the
next chapter, the theory developed by Boyd and Kleinman [99] allows us to explicitly
calculate this coefficient, which depends on the effective nonlinear coefficient of the
crystal and the beam geometric parameters.



7.1. Second harmonic generation 39

Py, Pyp

VAR A
e Y
WA &

Z 8260 Z

Figure 7.1: The incident field at w (wavy red lines) generates the nonlinear polarization
(small vertical arrows) which in turns gives rise to the second harmonic field (blue wavy
lines). Getting an appreciable power at the output of the medium requires having the
second harmonic waves generated at every couple (z, z’) interfere constructively with each
other (phase matching).
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Figure 7.2: Schematic view of the PPKTP crystal, showing the ferroelectrics domains, and
the alternating polarization. For the crystal used in the work presented here, A = 3.15 um.

!

7.1.1.1 Critical versus non critical phase matching

One of the challenges for efficient SHG is to achieve good phase-matching throughout
the medium. Getting to Ak = 0 requires to be able to tune the refraction index of the
material in order to reach a point where 2k,, = ks,,. Two methods are traditionally
used to achieve the phase-matching condition:

e by using a birefringent crystal, and changing its optical axis’ orientation with
respect to the incident field, one can change the refraction index of the field
propagating along the extraordinary axis. This is referred to as critical phase
matching.

e one can also change the refraction index by changing the temperature of the
medium. This is called noncritical phase matching - as the direction of the
incident field is not a critical parameter in this case - and it is this type of phase
matching we deal with in this section.

It is worth noting that each of these methods assume a linearly polarized incident
field.
7.1.1.2 The ppKTP crystal

ppKTP stands for periodically-poled potassium titanyl phosphate, or KTIOPO,4. It
is a ferroelectric crystal, meaning that the material is structured into domains which
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exhibits permanent polarization, in the very same way that a ferromagnetic material
is structured into domains of permanent magnetic field. Furthermore, it is periodically
poled: a periodic structure of regularly spaced ferroelectric domains with alternating
orientations is artificially induced in the crystal by applying a high voltage electric
pulse during the growth process [100].

In practice, the alternating sign of the ferroelectrics domain can be expressed as
a periodic change of the sign of the non linear susceptibility (see Fig. ), the
effect of which being to induce a 7 phase shift of the second harmonic field. The
natural dephasing between the fundamental and second harmonic fields can then be
compensated and set back to 0 after a length corresponding to the width of a layer
- denoted A thereafter. This additional spatial modulation of the second harmonic
field with a period A implies that the phase matching condition has to be replaced by
a quasi-phase matching condition which reads [101]:

2
Ak = 2k, — ko — % =0 (7.7)

This condition can be understood by remarking that the fundamental and second
harmonic fields must be in-phase after traveling over a length A in the crystal:

Uiy A — kA = 27 (7.8)

For the crystal used, manufactured by RAICOL crystals, A = 3.15 ym. The values of
n(w) and n(2w) can be tuned by changing the crystal temperature, which allows to
increase the coherence length, and thereby the conversion efficiency. To achieve quasi
phase-matching, the crystal therefore needs to be actively stabilized in temperature.

7.1.2 Optimization of SHG - the Boyd Kleinman theory

As mentioned in section it is crucial to optimize the single-pass conversion coef-
ficient v in order to generate a substantial amount of frequency double light. Such an
optimization is realized thanks to the theory developed by Boyd and Kleinman, which
allows one to calculate this coefficient. It assumes a purely Gaussian TEMyg mode
for the fundamental light, which is an idealized situation, although fairly close to the
reality as the use of a high-finesse cavity will, in addition to the frequency filtering
mentioned earlier, act as a mode filtering and hence enable the experimentalist to
inject in the crystal an almost “perfect” TEMyg mode. We will first briefly introduce
the Gaussian beam formalism, before presenting the Boyd-Kleinman theory.

7.1.2.1 Gaussian beam - waist - Rayleigh range

A Gaussian beam has an intensity profile of the form :
—2(2” +3%)
w(z)?
i.e., the transverse intensity profile has a Gaussian shape. The quantity w(z) charac-

terizes the transverse extent of the beam is therefore called the spot size. It can be
shown [98] that the quantity £(r) can be written as:

1 +Iz'4z/zo P [ik(;c;(t)yz)} ¢ [—(ZZé)yz)}

Iy, 2) ~ |E@)P = &) exp [ (7.9)

E(r) (7.10)
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where:

e The spot size w(z) depends on z and 2 through w(z) = /14 22/23. It takes
its minimal value for z = zg, and w(z = z9) = wo is referred to as the waist of
the beam.

° 2y = L;’g where X is the wavelength of the field £(r), is the Rayleigh range.

It is the length over which the spot size changes from wg to V2w, so it is a
measure of the length of the waist region. The smaller the waist, the smaller
the Rayleigh range, and conversely.

2
e R(z)==z+ 270 is the radius of curvature of the beam at the position z.
It is common to define a parameter ¢(z) as:

1 1 )
Q(Z) - R(Z) + 7Tw2(z) (7.11)

since, as we will see later, this parameter is sufficient to describe the propagation of
a Gaussian beam through different optics like lenses, mirrors etc...

7.1.2.2 The Boyd Kleinman theory

The Boyd Kleinman theory describes explicitly what efficiency for the production of
second harmonic light one should ideally expect when sending a Gaussian beam of a
giving spot size through a crystal of given length, absorption, and effective nonlinear

0 20 40 60 80 100

Wy [um]

Figure 7.3: Numerical calculation of the single pass conversion coefficient versus the waist
size. The effective nonlinear coefficient used here is 9.50 pm/V [101]. The Boyd-Kleinman
theory predicts an optimal waist of 15um but we use in practice a substantially larger waist to
reduce thermal effects. The crystal length is 10 mm, the refraction indices at the fundamental
and second harmonic frequencies (corresponding to wavelengths of 794 nm and 397 nm) are
ne = 1.8461 and na,, = 1.9711, respectively.
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conversion coefficient d.¢s. The single-pass conversion efficiency + is given by [99):

Py 2w2dgffkw
v= P2\ mn2ng,eoc

) Ih(2,€) (7.12)
where P, P, represent the second harmonic and fundamental power respec-
tively,and h(o, €) is the Boyd Kleinman focusing factor, it contains all the dependence
of Py, upon the optimizable parameters, o and £ representing respectively the phase
mismatch and strength of focusing. The above formula is given in the case of standard
phase matching, but it can be shown - see [99] for example - that the formula
is formally the same in the case of quasi phase-matching, provided that the values
of the non linear coefficient d.ys and of the phase mismatch o take into account the
modifications due to the use of a periodically poled crystal. In particular, this involves
replacing the phase mismatch with the quasi phase-mismatch in formula .

As can be seen on the Figl7.3] the efficiency depends on the waist in a non trivial
way : the optimal theoretical value corresponds to a trade-off between the intensity
and the divergence of the fundamental beam, as strong focusing inside the crystal
is obtained at the expense of a shorter Rayleigh range. Seeing a gaussian beam as
a pencil of diverging plane waves, we can understand this trade-off in terms of the
spread of wave-vectors represented in the field versus the ratio of the wave vectors
effectively contributing to the second harmonic generation.

In practice, the use of very intense laser beams also leads to nonuniform heating of
the crystal, and hence nonuniform phase matching condition throughout the section
of the crystal. This, in practice, will cause the crystal to expand, thus changing the
phase matching condition. This effect can be compensated up to a certain point
by lowering the temperature of the crystal, but at very high intensity it will not be
possible to maintain a homogeneous temperature locally. This sets an upper bound
on the intensities we may use, for a given waist, to get a stable output. The practical
choice of waist will result from a trade-off, which takes these effects into account in
addition to the theoretical ones mentioned above (see for example, [102]).

7.1.3 Characterization of the PPKTP crystal

Before inserting the nonlinear crystal in the cavity, it is important to characterize
its single pass properties. This characterization principally amounts to measuring
the single pass conversion coefficient, and the losses through the crystal, through
measurements of the transmission. The nonlinear crystal has a length [, = 10 mm,
is anti-reflexion coated at 794 nm and 397 nm on both facets, and has absorption
coefficients of argy = 0.5%cm ™" for light at 794 nm and asgr = 15.1%cm ™! for ligth
at 397 nm.

7.1.3.1 Transmission measurement

We chose to perform measurements of the transmission through the crystal at different
points, in order to detect possible position-dependent defects in the crystal structure
or in the anti-reflection coating applied on the surfaces. These defects could, indeed,
have a non negligible impact on the conversion efficiency. The idea is also to determine
the possible good "spots” on the crystal for the production of UV light. To prevent
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any misleading absorption effect due to the production of UV light, the temperature
at which these measurements have been performed has been carefully chosen far away
from the phase-matching temperature. The results we obtained are shown on Fig.
7.4(a). The results clearly displays some features, which can be explained by, for
example, a non uniform anti-reflection coating, or impurities in the crystal structure,
resulting in inhomogeneous absorption of the fundamental light. A possible way to
investigate these possibilities further would be to perform reflectivity measurements.
We did not perform these measurements because of practical technical difficulties, as
these numbers depend on the orientation of the incident beam with respect to the
crystal surface, and also because we were mainly interested in the losses, not in the
detailed crystal structure at that point.

7.1.3.2 Single-pass conversion coefficient

We then went on measuring the infrared to ultraviolet conversion coefficient. This
coefficient depending on the focusing, we chose to perform the measurements using a
waist of 35 pum, as this is the size we intended to use to perform the intracavity SHG.
Recalling that this coefficient is defined as v = P»,, /P2, we got the results displayed on
Fig. b). Once again, the results show some non uniformity over the crystal surface.
Because it seems that there is no correlation between these measurements and the
transmission measurements, this indicates that the poling might not be homogeneous
through the crystal volume [103]. Another striking feature is the low values obtained
for this coeflficient when compared with the theoretical ones calculated using the Boyd
Kleinman theory. Indeed, we expect v to be around 1%, whereas it can be seen from
Fig. b) that its values range from ~ 0.5 % to ~ 0.7 %. We investigated whether
this discrepancy could come from some deviation of the laser beam with respect to the
perfect Gaussian TEMy, mode assumed in Boyd Kleinman calculations. This non-
perfect Gaussian character can be observed on Fig. [7.5[a) where a measurement of
the waist of the laser beam is displayed by noticing the different values for the waists
sizes and positions in horizontal and vertical directions. This astigmatism can also
be accounted for by the value of the beam quality coefficient M? which is specified by
Toptica to be <1.5 in our case - and equals 1 for a perfect Gaussian beam. To test our
hypothesis, we coupled the incoming beam to a single-mode optical fiber, since it acts

X X X X X
87% 999, 99%, 0,74 0,73 0,66 0,62
X
0,61 0,54
X X X X X
949, 97% 96% 0,43 0,48 0,53 0,46

(b)

Figure 7.4: (a) Measurement of the transmission of 794 nm light through the crystal at
different points. (b) Measurement of the single-pass conversion coefficient at different points,
before (black) and after (red) spatially filtering the beam with the optical fiber. The units are
%W L. All the results come with a fractional uncertainty of +12% due to large fluctuation
in the UV power and uncertainty of position of the beam from one measurement to another.
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Figure 7.5: (Both figures) Measurement of the waist size in vertical (blue dotted line)
and horizontal (red solid line) directions. (a) The beam is assumed to be Gaussian in each
direction, but with different focusing parameters. waist value from fit: (34+3) pum (vertical)
and (40 £+ 3) pm (horizontal). (b) After filtering through the fiber. The beam is assumed to
be Gaussian in each direction, but with different focusing parameters. Here the waist sizes

are the same, up to the experimental precision of +5 um on every data points. Waist values
from the fit: (40 £ 2) pm.

as a mode-filter. Comparison of the waist measurements before and after coupling to
the fiber shows the sought-after filtering effect (see Fig[7.5(a) and Fig[7.5(D)).

As can be seen on Fig. b)7 filtering the beam has no noticeable effect on the
efficiency, when taking into account the uncertainty on the different measurements.
However, one could still argue that the values obtained in the second case are slightly
lower than in the first case, but this could probably be explained by the fact that the
beam size after filtering was a bit larger than before filtering.

Mo L M1

T2=0-7%@794nmﬁ > T\ T1=101% @794nm
794 nm

M4 M3

397 nm

H T3=0.7% @ 794 nm

T4= 0.033% @ 794 nm le
=92 % @ 397 nm

Figure 7.6: Schematic of the cavity used for SHG of light at 397nm. Relevant lengths are
L=12 cm Lqgiag=12.07cm and I, = 1 cm.
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7.2 Intracavity SHG

7.2.1 The bow-tie cavity. Modematching.

The cavity used is a bow-tie cavity, and is sketched Fig[7.6] It is made of two plane
mirrors (M, M) and two curved mirrors (Ms and M,). The transmissivity of the
input coupler M is T1 = 10.1%, whereas To = T3 = 0.7% and the output coupler My
is high reflexion coated for ligth at 794 nm, and highly transmissive for light at 397
nm: 74=0.033% at 794 nm and 92% for light at 397 nm. The distance between the
pair of mirrors being the same, the cavity is said to be symmetrical. The steady state
of field corresponds to the beam being focused twice inside the cavity, first halfway
between the two plane mirrors -the waist at this position is referred to as the secondary
waist-, and a second time halfway between the two curved mirrors. The latter being
smaller than the former, we will refer to it as the small waist in the following.

As mentioned previously, the field in such a bow-tie cavity is a running wave, with
benefits in connection to SHG already evoked in section [5.1.1}] Another benefit from
using a bow-tie cavity is the low level of optical feedback to the laser, thanks to the
small angle between the incident and the reflected field. This comes at a price though,
as it implies a non axis-symmetric design, which causes astigmatism in the resonator
mode - the waists along vertical and horizontal directions are not exactly located
exactly at the same point. This can be minimized by placing the two pairs of mirrors
as close to each other as possible, with the limitation that there need to be enough
room for the oven.

During normal operation, the cavity is locked to the laser to achieve stable UV power
output. This is achieved by mounting the mirror M5 on a piezoelectric element, and
by applying a voltage to allow for active control of the mirror position. The locking
scheme is of the Hénsch-Couillaud type [104], and the whole setup is depicted on
Fig[77l In the original proposal from Hinsch and Couillaud a linear polarizer is
placed inside the cavity. In our case two - half- and quarter- - wave plates are placed
outside the resonator. We take advantage of the natural birefringence of the dielectric
mirrors to perform the desired rotation of the polarization axis of the incoming field,
and use the /2 wave plate to rotate the polarization axis with respect to the fast axis
of the A/4 wave plate. The latter is then used in combination with the polarization
beam splitter to analyze the ellipticity of the beam, following the Hinsch-Couillaud
scheme.

In the context of frequency doubling, the property which we are mostly interested
in is the enhancement of the field intensity inside the cavity. Inserting a nonlinear
crystal inside an optical cavity is not completely straightforward though, as several
parameters have to match together. The following section is dedicated to the design
of such a cavity.

7.2.1.1 The ray-matrix method

The size of the small waist depends on the radius of curvature and distance between
the two curved mirrors - which automatically sets the distance between the plane
mirrors in the case of a symmetrical cavity.

The former PhD student who initially designed this cavity used a different laser system
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Figure 7.7: Schematic of the setup used for SHG. A tapered-amplifier diode laser (Toptica
TA Pro) generates light at 794 nm. The laser beam is sent through an optical isolator in order
to avoid backreflections to the diode laser, and is coupled to the bow tie cavity containing the
non-linear ppKTP crystal in which the frequency-doubling process takes place (blue output
after the crystal). The reflected field is used to stabilize the length of the cavity with a
Hénsch-Couillaud scheme.

- a home-built external cavity laser diode, whereas we use a tapered amplifier laser
(Toptica TA PRO) at the same wavelength, but with a different output profile. In
order to mode match the new laser beam to the existing cavity, we use the so-called
ABCD-matrix formalism [105], which allows us to very simply compute the size and
direction of a laser beam, given a specific input, after it has traveled through different
optics. For example, if the ¢ parameter of a Gaussian beam has a value ¢; at some
position in space, then after propagating over a distance d, and then through a lens
of focal length f, the final ¢ parameter ¢y reads:

g +d
94 = 1 a (7.13)
More generally,
Ag; + B
= —— 7.14
U= Gyt D (7.14)
The coefficients A, B, C, D in ([7.13)) can be read-off from the matrix
A B 1 d
e o=l o

7.2.1.2 Modematching

We start by calculating the matrix coefficients over a round trip of the cavity, and
imposing that the beam should be the same after a round trip. Starting at the
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Figure 7.8: (a) Solid and dashed lines: respectively auxiliary and small waists versus
the distance between the cavity-mirrors, in the case of a symmetric cavity. The radius of
curvature of the mirrors is R = 100 mm, the spacing between each pair of mirrors is 1.3
cm. (b) Numerical calculation of the laser’s spot size versus the distance from the auxiliary
waist. The first lens is located 46.5 cm after the auxiliary waist and has a focal length of 75

mm. The second lens is located 65.5 cm after the auxiliary waist, and has a focal length of
100 mm

secondary waist:

The A, B, C, D coefficients over a round trip of the cavity :
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(7.16)

Imposing that the beam should be identical after one round trip is equivalent to the
following stability condition:

—1< %(A+D)§1 (7.17)
the waist wq is given by:
A 1/2 BL/2
== 7.18
v ‘(J = /(A + D) (719

On Fig. a), are plotted several values of secondary and small waists with respect
to the distance between the mirrors. Finally, the laser’s output spot size is matched to
the desired secondary waist by using a set of two lenses in a telescope configuration,
which positions and focal lengths are deduced from a calculation of the same kind as



48 A frequency-doubled laser source for laser cooling of Ca™ ions

the one discussed above. The numerical simulation corresponding to the configuration
of the current setup is shown Fig. [7.8|(b). This configuration results from a choice of
a small waist of about 50 pm and auxiliary waist of 200 pm. We chose a small waist
larger than the previously chosen value of 35 pm, in order to minimize heating effects
in the crystal (see section [7.2.3). It corresponds to a distance between the mirrors L
and Lgi.q of respectively 12 cm and 12.07 cm. Once the cavity is modematched, a
signal like the one presented on Fig. can be observed. On Fig. [7.9] pictures of
the final setup can be seen.

7.2.2 Characterization of the cavity

As mentioned in the beginning of this chapter, the power available inside the cavity
strongly depends on the transmission and reflection coefficients of the mirrors, as well
as the losses in the cavity. In an empty cavity, the losses are only due to scattering off
and absorption in the the mirrors, but in the case of intracavity SHG, the crystal will
also act as a lossy medium. Moreover, we always assumed so far that the incoming
beam was perfectly coupled to the cavity, which is not the case in practice since the
laser output mode is not purely TEMyg. Quantifying the losses, and the proportion
of the incident beam effectively coupled to the cavity will allow us to predict the
maximal attainable enhancement factor, and hence check whether or not the cavity
is well aligned.

7.2.2.1 Quantifying the losses in the case of a non perfect coupling of
the beam to the cavity

The losses can be quantify by measuring the reflection signal from the cavity on
and off resonance, and by using the results obtained section [5.1.1] and in particular
the equations and To explicitly take into account the non perfect mode
matching of the laser field to the cavity, we define |E,¢ |2 as the sum of two incoherent
contributions :

|Eres|? = Ro|Ein|? + R'| B, 2 (7.19)

E!, denoting the amount of light which does not couple to the cavity. Mathematically,
this would amount to decompose the field in all the transverse mode components,
keeping in the F;, term only the TEMg( part of the spectrum while putting the other
modes in the EJ term. These two terms being orthogonal, they do not interfere with
each other and their intensities just add up on the detector. The coefficient R’ then
simply denotes the input coupler’s reflectivity, the coefficient Ry being the resonant
reflection from the cavity:

(L—Th +Tp)?
(L+T +T3)?

To quantify the ratio of coupled over non-coupled light to the cavity we can define a
new parameter 7 as :

Ry = (7.20)

n= |Ezn|2
|Einl? + | EL, |2

It can then be shown that the measured reflection reads :

(7.21)

R=Ron+R(1—n) (7.22)
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Figure 7.9: (a) A general view of the setup. Part of the TA Pro is visible on the right. As
indicated on Fig. [7.7 the beam goes through an optical isolator and two modematching lenses
before entering the cavity. Compared to the Fig. an additional polarizing beamsplitter
associated with a half-wave plate can be seen, and are used to further purify the input
polarization of the beam. The cavity is placed inside a box of plexiglas in order to isolate
it from acoustic vibrations and from heat flow. (b) Close-up of the cavity. The part of the
setup used to stabilize the length of the cavity and composed of a half- and quarter-wave
plates, a polarizing beamsplitter and a detection stage calculating the difference of the input
signals can be seen. Here too, additional elements have been inserted as compared to Fig.
a neutral density (dark plate), and a lense which is used to focus the beam on the
detector. The red and blue arrows indicate, respectively, beam paths for the fundamental
(794 nm) and frequency doubled (397 nm) light fields.
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We get 1 by inverting the previous equality :

R—-FR

= — 2
Ro— R/ (7.23)

n

Our lack of knowledge of the losses inside the crystal and through the mirrors prevents
us from plugging a numerical value for Ry in the above formula and directly solving
for . Fortunately, there exists a possible work around, which consists in measuring
the enhancement factor, and comparing the value for n we can get from these two
measurements. The theoretical enhancement factor indeed reads :

4T,

Pcav Pin:—
/ (Ty + Ty + L)?

(7.24)

which depends on £, while the measured enhancement factor reads P.qy/(Pip, + Pyy,)-
Taking the ratio of these two quantities gives precisely 1. The procedure to find £
then goes as follows :

o first, measure the reflection from the cavity and the ratio of the intracavity
power over the incident power. The latter can be simply estimated by measur-
ing the power of the transmitted field after the cavity and dividing it by the
transmission coefficient of the output coupler T5.

e Choose a value for £ to plug into the formulas for Ry and the enhancement
factor. The measurements on the crystal, though not very precise, gives a value
of about 1%, so it seems reasonable to take this as a starting point.

e Vary £ until the two ’s coincide.

Performing these measurements amounts to measuring the intracavity power, while
the temperature of the crystal is set far away from the optimal temperature for phase-
matching. The expression for the intracavity power also needs to be slightly
changed to take into account the non-perfect coupling to the cavity :

47T
Pcav/Pin = 7]( ! (725)

Ty + 15+ L)?

where we just multiplied the numerator by 7.

The reflection coefficient has been measured to be (67.5 +2.5)% and the enhance-
ment factor can be found from the measurement presented Fig. to be 29.0 £ 1.3,
which gives, following the procedure described above, a value of (1.1 +0.1)% for £
and about (80 £ 5)% for 7.

7.2.2.2 The finesse

A way to cross check the previous result is to measure the finesse of the cavity.
According to its definition, a basic way to measure it could be to look at the signal
obtained when the cavity is scanned across more than 1 FSR, and to measure the
ratio of the distance between the two peaks over the width of one pic. Unfortunately,
the response of the piezoelectric element to a voltage ramp is nonlinear, i.e. the
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Figure 7.10: Black dots with error bars: Intracavity power in the cavity versus incident
power without generation of UV light. Red dotted dashed line : fit to the first four measured
data points using the expression . The free parameters are 7 and £. Blue dashed dotted
line : numerical calculation, using as input parameters for n and £ the values deduced from
the analysis of the whole data, including UV generated power (see text for more details).
Red dots with error bars: Intracavity power versus incident power, at phase matching. Cyan
dotted dashed curve: fit to the first four measured data points. The free parameter is the
single-pass conversion coefficient which is found to be (0.50 4 0.03)%W ~*

width of and distance between the peaks is different for different ramp voltages. To
overcome this difficulty, we decided to use a different strategy to measure the finesse:
the FSR can be known from the distance between the mirrors, with an acceptable
precision - 1 mm over a distance of 13.7 cm, so better than 1% - while the width
can be accessed through a time versus frequency calibration of the reading on the
oscilloscope. To perform this calibration, we first lock the laser’s frequency, and use
an Acousto-Optic Modulator (AOM) to shift the laser’s frequency by 19.2 MHz. We
then measure on the oscilloscope the corresponding shift in time. The signal recorded
on the oscilloscope is subject to important fluctuations due to acoustic vibrations, and
to a slow drift which probably is a signature of the cavity drifting with time. Repeating
the measurements 50 times allows to reduce the uncertainty associated with the first
source of error, and yields a value of about 13.1 MHz for the FWHM. From this, the
finesse is calculated to be approximately 48.5. Using the formula F' = ﬁ, we
find the losses the be £ = 2.6%, a value slightly higher than the one got from the
previous measurements. However, we can state by considering the sources of errors
mentioned above that this is not so surprising, as the observed drift rather acts as
a systematic error in our measurement and tends to give an overestimation of the
width of the resonance, which in turn will lower the measured finesse. A better way
to go would be to modulate the frequency of the laser to produce sidebands in the
transmitted signal or to perform ringdown spectroscopy, and hence make our time to
frequency calibration more accurate.
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7.2.3 SHG results

7.2.3.1 Nonlinear losses

When quasi-phase matching is met, the production of UV light adds an additional
nonlinear source of loss for the cavity. This nonlinear loss depends on the intracavity
power P.., and the single-pass conversion coefficient . This can be accounted for by
replacing £ — L+ vP.,, in the expression for the intracavity power . From this
we find an expression for the ratio for the intracavity power the incident power Pj,.

On resonance, this ratio reads :

4Tyn
Prow/Pin = 7.26
/ (T1+T2+£+7Pcav)2 ( )

As already mentioned, the coefficient ~ is on the order of a percent or less. We can
thus neglect terms of second order in v and rewrite (7.26) as :

_ L+ T)* + V(£ +T1)* +32(L + T1)T1ynPin)

7.2.3.2 (Generation of second harmonic

We performed measurements of the second harmonic power generated by choosing a
waist of about 35 um, but due to the observed instability of the output UV power
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Figure 7.11: (a) Red dots with error bars: UV power versus incident power Cyan dotted-
dashed curve: fit of the first four measured data points. The free parameter is again the
single-pass conversion coefficient, which is found to be (0.4840.05)%W . (b) SHG efficiency
corrected for imperfect coupling to the cavity, and non-unity transmission of cavity’s output
coupler at 397 nm. For an input power of 190 mW, the effectively coupled power is 152
mW, and the efficiency is 43%. This point correspond to optimal input power with respect
to both the efficiency and the output’s stability.
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at high pump power - which we assumed to be the consequence of thermal effects
- we decided to go to a looser focusing configuration and chose a waist of about 50
um. Because this corresponds to the current configuration, and to avoid redundancy
in the presentation, I choose to present only the measurements corresponding to the
latter configuration.

The measurements of the intracavity power in the cavity during the SHG process,
and the amount of UV light produced versus the power injected power are plotted
on Fig. and (a). A fit of these measurements yields of value for n in both
cases of about 0.5%W ! with a fractional uncertainty of about 10%, which shows
consistency between these two sets of data. The decrease of the intracavity power
at higher incident power might be interpreted as a consequence of a process known
as Blue Induced Infrared Absorption (BLIIRA) |106] which has been observed with
similar SHG setups and wavelengths [107,[108].

The nonlinear response of the crystal can be further checked by plotting the UV power
with respect to the temperature of the crystal and the efficiency Py, /P,,. In the first
case, we expect the output power to follow the behaviour explicited in section [7.1.1]
eq. . The results are plotted in Fig. [7.12] and show relatively nice agreement
with the theory. The efficiency is plotted Fig. b)7 and is corrected for the
imperfect modematching to the cavity, as well as non-unity transmission of the cavity’s
output coupler for UV light. The result is comparable to what can be found in the
literature [107}/108].

Finally, we checked for the output’s stability over time. This last measurement is
in practice one of the most important, as it tells us about the possibility of producing
usable UV light for experiments. The result can be seen Fig. where it is apparent
that working at higher power induces unavoidable thermal effects which result in a
slight decrease of the output power over time. However, the instability is on the order
of a couple of mW per hour over a nominal output power of 63mW, and full power can
moreover be recovered by slightly decreasing the temperature of the crystal and/or
moving the crystal a little bit.
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Figure 7.12: a) UV power versus temperature for an incident power of 100mW. b) UV
power versus temperature for an incident power of 190mW.
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Figure 7.13: Blue dotted line : UV power versus time for an incident power of 100mW.
Black and Red dotted lines : UV power versus time for an incident power of 190mW. The
output power decreases slightly over time, but full power can be recovered by tuning the
crystal and/or decreasing the temperature a little bit. This is indicated by the change of
color. Uncertainties are smaller than the circles.

7.3 Stabilization of the laser frequency

To allow for efficient cooling and probing of the Ca™ ions, the UV light source needs
to be stabilized in frequency, which we achieve by locking the tapered amplified laser
to a temperature-stabilized reference cavity. Owing to the narrow linewidth of the
reference cavity, and provided that the cavity is itself stabilized in temperature, it can
be used as an etalon for the laser source, which makes it a natural tool to perform
this frequency stabilization. In our case, the reference cavity has a FSR ~ 600 MHz,
and is made of a quartz tube about 25cm long, which is temperature stabilized via
a PID-circuit that feeds back to a resistive wire wound around the tube and placed
inside a vacuum tube also actively stabilized in temperature. [109].

The stabilization scheme is based on the Pound-Drever-Hall (PDH) method |110,111].
Unlike the Hénsch-Couillaud locking scheme, the PDH scheme does not make use of
the change in polarization between the incoming and reflected signals, but rather
utilizes the fact that the phase of the total reflected field with respect to the incident
field is shifted from —180° to 180° when the laser frequency is scanned over the cavity
resonance. Generally, phase shifts can not be measured directly with devices such as
photodiodes which only record the light intensity, but are rather accessed through the
interferences one can generate between the signal of interest and a reference signal.
In the case of the PDH locking scheme, changes in the phase of the reflected field
will be detected by modulating it which will generate sidebands, and by having these
sidebands interfering with the carrier - the central main frequency. To make this
clearer, we start with a monochromatic incident field:

Eine = Ege™? (7.28)
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Figure 7.14: Schematic of the frequency stabilization setup. The low pass filter, and phase
shifter have not been represented here, in practice they are included in, respectively, the

servo control and the mixer.

The incident signal is sent through an Electro-Optic Modulator (EOM), which mod-
ulates the electric field, and generates sidebands in the transmitted signal from the
cavity. The incident field impinging on the cavity input coupler thus reads:

Eine = Eoei(wt+ﬁ sin(Qt)

In practice €2 is much smaller than w and 8 < 1. We can then approximate

(7.29)

7.29)

by expanding the exponential and be keeping only first order terms. Eq. (7.29)) can

then be rewritten as:

Eine = Eoeiwt(l + Zﬁ sin(Qt) = E, [eiwt + g(ei(w—&-ﬁ)t _ ei(w—Q)t)]

(7.30)

The reflection coefficient of the cavity is given by the ratio of the reflected to the
incident field, and reads, in the case of a symmetric cavity:

E,. r (exp (z o )
F(w) = Zreft dvrsn

_1)

FEine 1—1r2 (exp (2

w
OVFSR

(7.31)

where dvpgg is the free spectral range of the cavity, and r the amplitude reflection
coefficient of each mirror. In our case, the incident field contains three different
frequencies, the carrier and two sidebands. The reflected field will then be given by:

Bropt = Bo[F(@)e™ + F(w + Q)0+t _ gy Q)gei(“’mt]

2

(7.32)



56 A frequency-doubled laser source for laser cooling of Ca™ ions

We measure the intensity of the reflected field, i.e. a quantity proportional to

|Erefl\2. Applying this to gives an intensity which is the sum of the three
intensities corresponding to the carrier and sidebands intensities, plus additional
cross-terms - the interference terms. Owing to the time varying character of the
phase-shift - which is equal to £Qt - these interference terms will oscillate at the
modulation frequency 2. This is different from the situation encountered when
looking at interferences generated in a Michelson or Fabry Perot interferometer,
where the phase shift corresponds to a difference in optical path lengths, and is con-
stant. To measure signals which are o« (F(w)F*(w + Q) — F*(w)F(w — Q) cos(2t) or
X (F(w)F*(w+Q) — F*(w) F(w— Q) sin(Qt) we need to multiply the signal by cos(2t)
or sin(Q)t) respectively, to produce a signal which is a sum of a constant and a time
varying - at 2{2 - signals, and then filter out the time varying signal.
The setup is sketched Fig. Fine tuning of the laser’s frequency is made possible
by sending the beam through an Acousto Optic Modulator (AOM) in a double pass
configuration, before sending it to the reference cavity. In such a configuration, the
18t-order diffraction is reflected back through the AOM with its polarization rotated
by 90° , and the 1%*-order diffraction of the second pass spatially overlaps the incident
beam. Deflection due to tuning of the frequency of the AOM can therefore be avoided.
Finally, a half-wave plate (%) and a Polarizing Beam Splitter (PBS) are positioned
immediately after the laser output to pick off part of the light to a wavelength-meter.
Modulation of the field at TMHz is performed by using a mixer - which also filters
out the non-d.c. part of the error signal and allows for the correction of the phase
delay, while the servo-controller performs the PID stabilization. The whole stabi-
lization scheme requires power in the incident light beam lower than a W, but for
monitoring purposes ~30 W are typically sent to the cavity. The stabilizing signal
from the servo-controller is sent back on the AC and DC current modulation inputs
on the rear facet of the laser. Finally, the remaining short-term fluctuations result
are typically of the order of ~ 100 kHz, while the reference cavity typically slow drift
is ~ 1 MHz per hour.

7.4 Conclusion

In this chapter we have presented a frequency-doubled source for Doppler-cooling
of Ca™ ions. The second harmonic generation process is realized with a non linear
ppKTP crystal placed in a bow-tie cavity.

We have presented a characterization of the relevant crystal properties, and observed
a non-uniform as well as generally low value of the single-pass conversion coefficient -y
ranging from 0.5 %W~ to 0.7 %W !, compared to the expected value derived from
the Boyd-Kleinman theory (v ~ 1%) for a beamwaist of 35 um. We have checked that
the low value does not stem from the deviation of the laser beam from a pure TEMgq
mode, and attribute the non-uniformity to defects in the crystal’s volume due to
inhomogeneous poling. By placing the crystal inside an optical cavity of finesse ~ 48
and corresponding enhancement factor Pe.,/Pi, ~ 30 about 60 mW of frequency-
doubled light can be stably generated with this setup, with an input power of 190
mW of light at the fundamental frequency, and a beam waist inside the crystal of 50
um, corresponding to an efficiency of 43 % when taking into account the imperfect
modematching of the laser beam to the cavity. Instabilities in the generated output
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and deviations from the law P, = 'yP3 at high values of P, are attributed to thermal
effects in the crystal, due to its high absorption at 397 nm, and possibly to an effect
known as Blue Induced Infrared Absorption. Finally, the setup is frequency stabilized
using a Pound Drever Hall setup, which results in short term fluctuations of ~ 100
kHz, and a typical slow drift of ~ 1 MHz per hour.






Chapter 8

Experimental setup

8.1 Cavity Trap

The linear Paul trap is described in the next section, while the optical cavity is the
subject of section [8.1.2

8.1.1 The linear Paul trap

The ion trap is a segmented linear trap formed by four rods each divided in three
electrodes, see fig. A mathematical description of the confinement was given in
chapter The trap electrodes have a radius r. = 2.6 mm, and the inter-electrode
distance is 2rg = 4.7 mm. The end- and center electrodes length are, respectively
Ze = 5.9 mm and 2zyp = 5.0 mm. The trap is operated with a RF field of frequency
Q,; = 2m x 4 MHz. The axial confinement is achieved by applying a static electric
DC potential of 2V on the end-electrodes. With this geometry, the a,q parameters
defined in eq. are ¢ = —0.84 x 1073V~ x Upc and ¢ = 1.38 x 1073V 1 x U,
the axial geometric constant in eq. n = 0.342. The electrodes are made of
copper, coated with a thin layer of gold, mounted on ultra low expansion glass rods
E The whole structure is held together by a monolithic ceramic mount. For more
details on the trap structure, design and assembly, see [53].

The RF trap voltages are produced by a frequency generator and amplified before
being transferred to he electrodes through a resonant circuit. A homemade voltage
driver is used to supply DC voltages to the electrodes and allows for varying the axial
potential by changing the voltage applied on the end-electrodes at the same time,
while making it also possible to alter the DC potentials of each individual electrode
segment separately. The DC potential minimum can thus be shifted both radially
and axially, and the ions positioned at will. The trap acts as the capacitive part of
an LRC-circuit itself coupled inductively to the RF-power supply. Variable external
capacitors allow for tuning the phases of the different RF-chains and the voltage on
individual electrodes. This is crucial for overlapping the trap center with the cavity
axis (see and can be used for minimizing the excess micromotion.

made of Zerodur@®), manufactured by Schott
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8.1.2 The optical cavity

A sketch of the optical cavity integrated into the trap is shown in fig. The optical
cavity is made of two mirrors with a diameter of 1.2 mm and a radius of curvature
of 10 mm. The mirrors are mounted in a nearly confocal geometry with a spacing of
L = 11.8 mm and the cavity axis is parallel to the symmetry axis of the linear Paul
trap. They are made of fused silica and their presence could in principle cause the RF-
lines to bend, hence introducing excess micromotion which would in turn broaden the
atomic transition through the Doppler-effect. A way to minimize this effect is to add
dielectric mirror coats which extend almost all the way to the electrodes [86]. These
coats have a diameter of 4.16 mm, slightly smaller than the inter-electrode distance.
The cavity mirrors are coated for 866 nm and 894 nm with one mirror being a high
reflector (HR) and the other a partial transmitter (PT), with transmittances of 5 ppm
and 1500 ppm at 866 nm, respectively. Two titanium plates hold the cavity together:
the HR mirror is fixed on one plate, while the PT mirror is mounted on a PZT-plate
allowing for control of the cavity length. The choice of optical frequency-bands in
the coatings follows from the requirement to have a high finesse at the wavelengh of
866 nm corresponding to the 3d2D3/2 to 4p2P1/2 transition in “°Ca™ and at the same
time resonant a high finesse at 894 nm with the purpose to lock it. The cavity has a
free spectral range of vpgr = 12.7 GHz and the cavity mode waist size equals 37 pm
at 866 nm. The cavity decay rate at 866 nm is k = 27 x (2.1 £0.1) MHz giving a
finesse F = 3000 = 200 whereas the finesse at 894 nm is about 2000. In principle, up
to 98% coupling into the fundamental T E Mgy can be achieved [53], and we typically
achieve a coupling of > 95%.

8.1.3 Overlapping the cavity and trap axis

Manufacturing of the trap resulted in offset between cavity and trapis axis of about 80
um [53]. Nevertheless precise (~ 1um) overlapping of both axis is a requirement for
experiments involving an ion or a string of ions coupled with a cavity mode of a few
10pm, since minimization of the excess micromotion as well as maximization of the
ion-cavity field coupling need to be fulfilled simultaneously. However, such alignment
cannot be done by simply adding DC offsets on the electrodes, as this would simply
move the ions to a zone of non-zero micromotion. As mentioned in section [8.1.1
external variable capacitors can be used to fine-tune the voltage on each electrode
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Figure 8.1: Sketch of the linear Paul trap with integrated mirrors.
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Figure 8.2: (a) Two electrodes model used in the derivation of the location of the shifted
potential minimum (b):Schematic of the RF resonant circuit. Each electrode is represented
by a capacitance C, and is connected to RF power supply through a toroidal transformer of
inductance L. Displacement of the RF-potential nodal line can be achieved by adding series
and parallel capacitances Cs and C}, (dashed box).

and thereby lead to the desired displacement of the nodal line. Since this is described
in details in [53}[112], we will only recall the main ideas here.

8.1.3.1 Attenuating the voltage on electrodes on one side leads to a
displacement of minimum of the RF potential

In a simple model used in [112], the authors consider two electrodes A and B separated
by a distance 2rg (see fig. a)), with RF amplitudes of respectively U, and U5y
which differ by a small attenuation factor § < 1 such that UE, = 0Usip. At i, the
total potential U(Z) is equal to:

B A
U(s) = 2he_y Yhr (8.1)
ro — & ro+x

and its minimum therefore lies exactly in the middle of the two electrodes in the case
6 = 1. In the case § < 1, it can be shown that the potential minimum is shifted
towards the electrode carrying the attenuated voltage by a quantity (1 — §)rg, and
the potential remains approximately harmonic.

8.1.3.2 Attenuation of the voltages can be done by adding series and
parallel capacitances to the trap electrodes

We consider the schematic depicted in fig. b). The capacitances C; represent the
trap electrodes, which act as the capacitive part of a LRC' circuit which inductance
L is mainly set by the transformer. Denoting U;, the input voltage, the voltage on
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an electrode is given by:
U;
U, = - (8.2)
I+

without any additional capacitances. The circuit then acts as a voltage divider, and
the voltage on the electrode can be attenuated by increasing the capacitance Cy, which
in practice can be realized by adding series and parallel capacitances, denoted Cs and
Cp on fig. b). Considering the schematic of fig. the potential minimum can
be shifted along the z direction by attenuating voltages on electrodes (7-8-9-10-11-12)
by the same amount, while leaving the others unchanged.

In addition to the positioning of ions, having additional variable capacitances
parallel to the electrode capacitance can also be useful in order to compensate for
any asymmetry in the electrode impedances. Such asymmetries would cause the
apparition of unwanted phase shifts between the electric fields produced by different
electrodes, which could lead to, e.g. presence of residual micromotion along the trap
axis [79]. An example of compensation of micromotion is shown in [64].

8.2 The vacuum chamber

The cavity trap setup is placed inside a vacuum chamber with a diameter of 40 cm,
pumped to a pressure of a few 1071% mbar. Outside the vacuum chamber, 2 pairs
of Helmholtz coils produce magnetic fields in the z— and y— directions in order to
compensate the Earth magnetic field, and a third pair is used for producing the bias
magnetic field in the z direction already mentioned in section 1.2} and which creates
a well-defined quantization axis parallel to the trap axis. This is necessary in order
to efficiently repump the ions during Doppler cooling and to optically pump the ions
into specific Zeeman substates of the 3d?Ds /2 state. The vacuum chamber possesses
six view ports, anti-reflexion coated at the appropriate wavelengths, through which
the lasers described above are sent to the trap (see fig.

8.3 Laser systems

In this section the laser sources used in our experiments are described. A global
schematic of the laser sources is depicted in fig. [8:4]

8.3.1 Isotope selective loading laser - 272

The calcium ions are loaded from an effusive oven. The calcium source contains all
stable isotopes, the most abundant of which being 4°Ca, with a fraction of 96.9%,
and is the one used in the experiments. Nevertheless, different stable isotopes can
be selectively loaded [53L{113], which makes possible to trap two-components crystals
[114}/115).

The oven is usually heated to ~ 380 °C, and the emerging thermal beam is collimated
by a set of skimmers and set through the center of the trap at a 45° angle relative
to the trap axis. There it is crossed perpendicularly by an ionization laser beam at
272 nm which allows for the isotope selective loading of the calcium ions, through a
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Figure 8.3: Schematic of the vacuum chamber, with the cavity-trap (center), the main
laser beams and their direction relative to the trap.

resonantly enhanced two-photon ionization process. In this process, a calcium atom
is first resonantly excited to 4s5p' P, and subsequently transferred to the ionization
continuum, either directly from the 4s5p' P state, or can be driven, after spontaneous
decay, from the 4s3d' D, state to the ionization continuum by a non-resonant second
photon at the same wavelength [116], see fig. The isotope selectivity originates
from the first resonant transition, which for 4°Ca is separated from the next closest
isotope #2Ca by ~ 1 GHz [117].

Light at 272 nm is produced from a 1088 nm ytterbium-doped germanosilicate glass
distributed-feedback (DFB) fiber laserE] frequency-quadrupled in two consecutive SHG
stages. The fiber laser is tunable over several GHz, making it possible to ionize any of
the stable isotopes by tuning the frequency of the 272 nm source to resonance with the
45215, to 4s5pt Py transition, and its frequency is locked to the commercial wavelength
meter mentioned above. During loading both Doppler cooling and repumping laser
are on [113]. After loading the desired number of ions, the ionizing beam is blocked
and the calcium oven closed.

2Koheras Boostik
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Figure 8.4: Overview of the laser sources used in the experiments. List of abbreviations :
PDH: Pound-Drever-Hall, PID: proportional-integral-derivative, PBS: polarizing beam split-
ter, PM fiber: polarization maintaining fiber, DM: dichroic mirror, GP: glan polarizer, AOM:
acousto-optic modulator

8.3.2 Doppler cooling laser- 397

A laser source at 397 nm is used to Doppler cool the trapped ions by driving the
452512 <> 4p*Py )y transition. In order to generate light at 397 nm, a Verdi V8
laser generating 5.5W of light at 532 nm pumps a Coherent Ti:Sapph laser producing
typically ~ 200 mW of 794 nm light which is subsequently frequency doubled through
a SHG process using a bow-tie ring cavity similar as the one described above, although
using in this case a type I critical phasematching in a LBO crystal. Part of the 794
nm light is taken out and sent to a temperature stabilized reference cavity to which
the Ti:Sapph laser is locked with a PDH scheme. The reference cavity is made of two
mirrors on a 25 cm long quartz tube mounted inside a vacuum tube, has a FSR of
~ 600 MHz, as described in section [7.3] For more details on this specific part of the
setup, the reader is referred to . Fine tuning of the laser frequency is done using
an AOM in double pass configuration allowing for the tuning of the laser by + 100
MHz, corresponding to a tuning range of + 200 MHz for the frequency doubled light
at 397 nm. When locked to the reference cavity, the laser linewidth is ~ 100 kHz,
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Figure 8.5: Isotope selective two-photon ionization scheme. The lifetime of the 4s5p' Py
and 4s3d' D; states are 17-60 ns and 18 ms, respectively.

and much narrower than the natural linewidth of the 4s2.5; /2 4p? Py /2 transition
n “°Ca’ which is T' = 27 x 22.4 MHz. The frequency doubled light is sent through a
second AOM in single-pass and the -1%¢ diffraction order is coupled to a fiber guiding
the light to the trap table. This AOM is used to switch the Doppler cooling light
on and off, with typical rise times of ~ 100 ns and on-off attenuation > 55 dB after
fiber. On the trap table the light beam is split in three beams: two of them, equally
intense, are sent in counter propagating directions along the trap axis, with opposite
circular polarizations o /o™, and the third, linearly polarized along the y-axis is sent
perpendicular to the trap axis. The balance of axial to side cooling can be adjusted in
order to optimize the cooling of single ions, strings of ions as well as large 3D Coulomb
crystals.

8.3.3 Repumping, optical pumping, and cavity probe lasers -
866-2

As mentioned in the ions need to be repumped the 3d2D3/2 to the the 4p2P1/2
states in order to perform Doppler-cooling. In addition, another source resonant
with the 3d%Djs 2 to 4p? Py /2 transition is needed to optically pump the population
into specific Zeeman substates of the 3d%Ds /2 state for the purpose of localization
experiments described in the last part of the thesis. In order to perform these tasks, we
use a home-built external cavity diode laser system in Littrow configuration [118-120]
which emits light at 866 nm. Active stabilization of frequency of this laser is achieved
by sending light through an AOM in a double-pass configuration with a tuning range
of ~ 100 MHz to another, albeit similar reference cavity than the one described above.
The diode laser output is split into three beams: two of them are used to repump and
optically pump the ions, while the third one is used as a probe of the same transition.
Both repumper and optically pumping beams are sent through AOMs in single-pass,
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and -1%! order coupled to a fiber resulting as before in extinction ratio > 55 dB after
the fiber. The repumper is sent to the trap along the z-direction, with a polarization
parallel to the y-axis, which corresponds to a superposition of ¢+ and ¢~ light. In
this way all four Zeeman sub-states are addressed and repumped during the cooling
cycle. Optical pumping is achieved by sending he 866-2 beam to the trap at 45° with
respect to the z-quantization axis. Polarization after the fiber controlled by a Glan
polarizer and successively a A\/4 and \/2 wave plate adjusted in order to only drive
7w and o7 transitions between 3D3/3 and 4P /5 [53], so as to accumulate ions in the
my = +3/2 Zeeman substate of the D3/ state.

Finally, the part of the 866-2 diode laser output used to probe the 3d>D3 5 to 4p® Py /5
transition is overlapped with 894 and sent through same single-mode, polarization-
maintaining fiber to the trap table. This source was used in the past in experiments
probing localization using a different scheme which we will explain in greater details
in the last section. In our experiments, it is used only to adjust the cavity length
such that it is resonant with the 3d2D3/2 > 4p2P1/2 in the “°Ca™ ion, as mentioned
above.

8.3.4 Cavity reference laser - 894

A diode laser with a wavelength of 894 nm is used to lock the experimental cavity
in experiments described in the last part of this thesis. This laser has the same
design as 866-2 and locked to the same reference cavity using the PDH technique.
As with other lasers, its frequency can be tuned using a double-pass AOM before
the reference cavity. It is overlapped with the 866-1 laser and sent to the trap table
through the same single-mode fiber. By monitoring the transmitted signal of this
laser and comparing its position in a scan with the resonance of the probe laser (see
next subsection), the cavity resonance frequency can be finely adjusted and locked
to the atomic resonance frequency using PDH. The wavelength of 894 nm is not
resonant with any of the transitions in the *°Ca™, but despite its narrow-linewidth it
still contains non-negligible amount of 866 photons that might drive the 3d%Ds /2 &
4p2 Py /2 transition and is therefore spectrally filtered with a diffraction grating (1800
lines/mm).

8.3.5 Optical lattice laser - 866-1

A diode laser similar to 866-2 is used in experiments described in last chapter to
generate the intracavity optical potential. In localization experiments, the laser is
required to follow the cavity vibrations in order to minimize the intensity fluctuations
of the optical potential, and is therefore locked to the experimental cavity itself via a
PDH scheme, and not to the reference cavity. The laser field is circularly o~ polarized,
in order to address the Zeeman substate m; = +3/2 of the 3D3/, state, and is far-
detuned from the atomic transition 3d?Ds /5 <+ 4p*P; /o while at the same time being
resonant with a mode of the experimental cavity.

8.3.6 Probing laser - 866-4

A diode laser similar to the one introduced previously is used to near-resonantly probe
the ion 3d?Ds /2 € 4p* P, /2 transition. The 866-4 laser source is frequency stabilized
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through proportional-integral-derivative (PID) feedback to the PZT controlling the
angle of the grating to a commercial wavelength metelﬂ The wavelength meter is
referenced to a Helium-Neon (He-Ne) laser source, and is therefore not expected to
show long term drifts in frequency. The short term frequency stabilization corresponds
to fluctuations on the order of a few MHz. The 866-4 beam is sent through an AOM
in single-pass, and —1%¢ diffraction order coupled to a fiber before being sent to the
trap table. The AOM is used to shut the beam on and off, does so with a typical
rise/fall-time of 18/55 ns respectively, and an extinction ratio of -50.6 dB. On the
trap table, the beam is sent along the z-axis to the trap, with a linear polarization
parallel to the y-axis, in order to drive o™ and o~ transitions only.
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Chapter 9

Imaging system and detection
analysis

In this chapter we describe the equipment we use to detect and image the ions, and
present the analysis we will later use to infer the most probable numbers of emitted
photons from the detected signals, as well as the uncertainties on these measures.

9.1 Detection and imaging system

In all the experiments presented in this thesis the ions are detected by collecting the
fluorescence they emit at 397 nm when they spontaneously decay from the P/, to
the S/, state on a charge-coupled device (CCD) camera. The detection and imaging
system has two purposes: when light is detected during the cooling cycle, it is used
to take pictures of the ions, in order to characterize the quality of the cooling, the
crystal shape, the positioning of the ions, and, as we will see in chapter the light
collected by the CCD camera can also be used to perform quantitative analysis of
the scattering probability in localization experiments. On figure [0.1] a schematic of
the detection apparatus is shown. It consists in an achromatic lens with a focal
length of 70 mm placed above the trap chamber to collect the fluorescence light. The
ions are imaged with a ~ 22 magnification onto an imaging intensifier which consists
in a photocathode, from which electrons are emitted from the incident light, two
micro-channel plates where the electron number is multiplied before producing an
amplified picture of the ions on a phosphore screen. This picture is in turn imaged
by a commercial objective on the CCD camera with magnification 1/2, resulting in
an overall magnification of ~ 11. The CCD camera is 640 x 480 pixels resulting in a
resolution of ~ 0.85um per pixel [64]. Apart from the amplification, the acceleration
voltage of the intensifier can be gated with well controlled time resolution as short
as 20 ns, which will prove useful in the experiments described in the last part of this
thesis where fast gating times are necessary.

The quantum efficiency of the detection system was measured in previous experiments,
and found to be ~ 10~ [64]. This indicates that a large number of emitted photons
is required in order to record a appreciable signal; since in typical experiments only
a few number of photons (typically a few tens, see section are detected, large
fluctuations in the number of detected photons are to be expected. Therefore, using
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Figure 9.1: (a) Schematics of the imaging setup. A lens placed above the chamber (not
represented on the drawing) collects the light emitted by the ions, and produce an image on
the imaging intensifer. The imaging intensifier is itself imaged by the commercial objective

on the charge-coupled device (CCD) camera, which is used to monitor the fluorescence and
position of the ions.

this detection system in order to measure accurately the scattering probability of the
ion imposes to quantify as well as possible the sources of uncertainty on the number
of detected photons. This is the purpose of the next section.

9.2 Detection analysis

In order to quantify precisely the photon scattering probability given the recorded
signal on the CCD camera, we build a model for the detection system taking into
account its imperfections: non-unit probability that a photon reaches the imaging
intensifier, non-uniqueness of the number of counts on the CCD camera following the
detection of a single photon. To do so, we call Py; the probability that one photon
reaches the imaging intensifier, NpD the number of detected photons on the imaging
intensifier, N, the number of counts on the CCD camera and Nf the number of
emitted photons. With these notations, the probability to detect NpD photons given
Nf emitted photons can be seen as the probability of having Nf “successes” in Nf
trials, the probability of a success being given by Pgye;. It is therefore described by a
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Figure 9.2: Graphical representation of the detection analysis. The ion scatters photons in
every directions, and the probability for NPD photons to reach the imaging intensifier given
that Nf photons are emitted is equal to P(N;P |Nz])E ). The signal is subsequently amplified
and focused onto the CCD camera resulting in NZ° counts, with a probability distribution
given by P(NP|NEY).

binomial distribution:

NE ND NE D
P(NPINP) = ( G ) -

o ) Pt (1= Pae) (91)
p

Additionally, the probability P(NC|NT? = 1) that one detected photon leads to N,
counts on the CCD camera follows a distribution we assume to be well-described by
a normal distribution, with a mean N, and width o:

1 o (N. — N.)?
<D —
TV 2 P

from which we deduce the probability P(N, £°t|NZP ) that Nz? detected photons lead
to Nt counts on the CCD camera [121]:

P(NNP =1) = (9.2)

(Ve = NP R

1
0e\/2NDw 2N o2

Finally, we can compute the probability that N emitted photons result in N[
counts on the CCD camera:

P(NIND) =

(9.3)

P(N'INY) = " P(NS'NY)P(N) N, (9.4)
NDP=1
[eS) 1 Néﬁot _ NDNC 2 NE D
- 76Xp_( QNDPQ ) <N1)D>Pé\£t (1 — Piet) Ny =
ND=10c 2NpPr p ¢

(9.5)
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For the purpose described above, what we actually want is the probability P(NE|N Lot)
that N photons were emitted given N/°*. This probability is related to P(N!/|N[)
through:

P(NI'ING)P(N)

E o
P(Np |N£ t) = P(thot) L (9'6)

In a typical experiment, we measure N°® and in this situation the event “detecting
N[°? is realized, therefore P(N/") = 1. On the other hand, the value of P(N}) is
unknown, and we thus need another strategy to access P(Nf |NZot). The strategy we
choose amounts to “invert” the distribution P(N/**|NF): we calculate P(N/°*|N}F) for
several values of N}, and “reconstruct” a new probability distribution petf (NF|Nkt)
by selecting the P(N°|N,') corresponding to a fixed value of N°*. By doing this, we
assume that the highest value of this selection can be interpreted as “the most probable
number of emitted photons given N CCD counts”. That we are allowed to do so
is not obvious, and in the following we analyze the properties of both P(N[°*|N.F)
and Pef/ (Nf |NZ°t) in order to assess the consistency of such approach. To do this,
we need to find the values of the parameters Pye;, N, and o, which can be measured
experimentally. In the next subsection, we show how we measure these parameters,
and we will come back to the results of this analysis in the final section.

9.2.1 Measurement of P,.;, N, and o,

In order to determine N, and o, we need to access the distribution of CCD counts
for one detected photon, and we also need as many detection events as possible in
order to increase the statistics and hence the precision of our results. In order to
do so, we set up an experimental sequence during which a photon is emitted with
a probability close to one, and at the same time set the camera exposure such that
approximately one photon is detected per image. One image thus consists of a large
number of sequences, and the exposure is chosen in accordance with the timing of
a sequence. Such a sequence is 30 us long and consists in 20 us of Doppler cooling
using the 397nm and 866-2 repumper lasers, followed by 5 ps with the 397nm cooling
laser alone in order to pump all the population in the D3/ state. All the lasers are
then switched off for ~ 4.7 us, after which the imaging intensifier is switched on for
1.5 ps. During this window of 1.5 us, the 866-4 nm probe laser is applied for 1 us on
the 3d2D3/2 to 4p2P1/2 transition, with a power of ~800 yW. The duration of 4.7 us
between optical pumping and probing ensures that no residual charges present on the
intensifier’s photocathode and created during the cooling are present when imaging
takes place. The power and gating time of the 866-4 probe laser are chosen such
that the transition is over-saturated, in order to scatter one photon on the 397nm
with a near unit probabﬂityﬂ Upon emission of a 397nm photon, the ion decays
to the 4525, /2 state and therefore does not take part in the process anymore. In
this situation at most one photon is emitted during each sequence. From a previous
estimation of the detection efficiency described in [64] we can infer that setting the
exposure of the CCD camera to 200 ms should result in an average number of detected
photons slightly higher than one per image.

IThe fact that with these values of power and gating time a photon at 397 nm is scattered with
near-unit probability will be justified in the last part of the thesis
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Figure 9.3: Typical image of a single ion from which we obtain the scattering signal used
for the measurement of P(NC\NIP =1), and Pget.

An example of such image is shown on figure To process the signal we start by
defining a box centered on the ion of ~ 20 x 20 pixels (thus corresponding to ~ 17um
x17pm and shown as the white square on the figure|9.3)). The integrated signal inside
the box is calculated by summing the signal of each pixel, and the average background
signal subtracted to it. The resulting number is saved, and the procedure repeated
for a total of 9015 images. Using this data, we draw an histogram of the number of
CCD counts per image, which is shown on figure The histogram is fitted with
a triple-normal distribution, in order to take into account events corresponding to 1,
2 and 3 detected photons and from which we get N, and ., which are in our case
respectively equal to (2135 £ 17) and (907 & 14). In order to calculate Pge; from
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Figure 9.4: Distribution of the number of CCD counts per 200 ms image versus the number
of CCD counts. In this figure, the bin size is 100 counts.

the above measurements, we calculate the mean number of detected photons during
the whole experiment consisting of all 9015 images, and compare it to the number of
emitted photons. The mean number of detected photons can be obtained by dividing
the sum of the CCD counts over all images by the mean number of CCD counts
per detected photon obtained from the previous analysis, and is found to be ~ 9750.
There are 6600 emitted photons per image of 200 ms, and hence the grand total
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number of emitted photons for the 9015 images is equal to 6600 x 9015 ~ 6 x 10.
Finally, we find Pge; = (1.67 & 0.01) x 10~*. We will now discuss what should be
expected according to the analysis made above.

9.2.2 Results and discussion

In order to analyze in detail the properties of P¢ff (Nf | NZot) we will proceed by steps,
and start by examining the behavior of the probability distribution P(N/*'|N}F) in
three cases: for mean numbers of detected photons NP > 1 (first case), N;P <1
(second case), and finally for NpD ~ 1 (third case). For each of these distributions,
we will determine the most probable number of CCD counts N ™% We will then
turn the problem around, and, as mentioned above, we will “build” the probability
distribution Peff(Nf|N£"t’m“) by plotting P(N/°tm**|NE), for varying N7, and
find the maximum and width of this distribution. We will be able to compare:

1. the number of emitted photons that leads to N°t™%® in the first case

2. the most probable number of emitted photons given Nt determined with
the newly constructed distribution

We will see that these number differ, and try to provide an explanation for it. By
doing so, we will get a deeper understanding of the detection mechanism, and as an-
nounced in the beginning, we will be able to assess the consistency of the effective
probability distribution P/ (NF|Nfet).
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Figure 9.5: blue: probability distribution P(N/°*|NJ) for an average number of detected
photons NIP = 10. Red: probability distribution P(N§°t|NpE) for an average number of
detected photons NPD = 100. The most probable number of counts N2°"™%% are, respectively,
19770 and 213213.

In fig. the distributions P(N!°|NJ) for NP =10 (blue), and N? = 100 (red)
are plotted. They correspond to numbers of emitted photons of, respectively, 59880
and 598800. These distributions have a Gaussian shape, which is expected from the
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fact that the binomial distribution used in eq. tends to a Gaussian distribution
as NF becomes larger [121].

The distributions corresponding to situations such that ]\71? = 0.1,0.5 and 1 and
corresponding to Nf = 599, 2994 and 5988 are shown on fig. The distributions
show almost no shift in the most probable number of CCD counts N°t™a®  hut
become larger and asymmetrical as N;? increases. This is consistent with the fact
that these distributions correspond to situations where the most probable events are
N;? = O or 1, and that it becomes more probable to detect more photons and therefore
more counts on the CCD as Nf gets closer to 1.

Finally, we plot on fig. P(NPYNEF) for NP =1, 2 and 3 (N = 5988, 11976
and 17964). As can be seen on the figure the distribution shows a pronounced
asymmetry in the three cases. Its behavior as Nf becomes larger may be understood
by noting that for higher Nf , a wider range of CCD counts become comparatively
“probable”. All the distributions are normalized, therefore an increased probability to
detect a higher number of CCD counts accordingly results in a decreased probability
to detect 0 counts (not shown on the figures).

We are now ready to look into the “reverse” problem, i.e. inferring the most
probable number of emitted photons given a number of CCD counts, but before we
do so, we can make the following remarks:

e Our model is such that the CCD camera records a non-zero number of counts
only if NPP # 0. On the other hand, the smallest number of photons our system
can detect is, obviously, one. Therefore, detecting one photon leads our model
to predict that most probably 6600 photons were emitted, even in the - unlikely,
but not impossible - case of the detection of one photon following the emission of
much less than 6600 photons. In cases corresponding to Nf ’s such that ]\_fzﬁD <1
this effect leads to a systematic overestimation of Nf AL
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Figure 9.6: Probability distributions P(N%°* \Nf) of measuring NZ°* CCD counts given NpE
emitted photons. Values of NE are 599 (red), 2994 (yellow) and 5988 (blue), corresponding
to, respectively, Nf =0.1, 0.5 and 1 and N!°"™** = 2142, 2192 and 2252.
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Figure 9.7: Probability distributions P(N§°t|Nf) of measuring N:°* CCD counts given
NF emitted photons. Values of N are 5988 (blue), 11976 (red) and 17964 (yellwo), cor-
responding to, respectively, values for N;P of 1, 2 and 3, and N!°>™® = 2252 2412 and
5065.

e Aslong as the most probable event is the detection of one photon, the model will
accordingly predict a number of emitted photons ~ 6600. Since this happens in
situations where N;? > 1 (see fig. 7 we expect in this case to underestimate
the number of emitted photons.

These effects can be traced back to the behaviors of the binomial and normal distribu-
tions from which P(N!°/|N[) is calculated. Accordingly, we expect that the relative
error we make when inferring the number of emitted photons decreases when N!°* or
Nf increases. Because these errors are directly linked to the low detection efficiency
of our setup, we can think of it in terms of a “resolution”: the relative error we make
when guessing Nf is large as long as NpE is not large compared to 6600, and decreases
for an increasing number of emitted photons.

We calculate now the distributions P/f(NF|N!°!) for values of N°* correspond-
ing to the values N determined previously. These distributions need to be
normalized, so we define P¢//(NE|N°") as:

tot E
Peff(NE|N£Ot) _ ooP(Nc |Np ) (97)
P S0 PINCIINE)

where N!° is fixed. Examples of this distribution can be seen, for example, on fig-
ure where the values N!°0™% are taken from the figure As expected, since
Netmar differ very little for NP =1 and N = 2, the distributions show almost no
differences between these two cases. The most probable number of emitted photons
NpE’m‘” are 6650 and 6840, respectively, which shows that in the second case the
number of emitted photons is underestimated by a factor of almost 2. For a number
of CCD counts corresponding to Z\_/pD =3, we find Nf’m‘”: = 14472, corresponding to
a deviation of about 22% from the “true” number of emitted photons (yellow curve
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Figure 9.8: Probability distributions P*//(NZ|N/°") for values of N/°' corresponding to
Nltetmaz ghtained from the analysis presented in fig. The most probable number
of emitted photons is noted NpE‘maz. Blue: Nf°t™® — 2252 and NpE’m‘”” = 6650, red:
Ntetmaz — 94192 and Nf'm“” = 6840, yellow: N °“™® = 5065 and Nf‘m“” = 14472

on fig.

Opposite to this case is the situation where the number of emitted photons is much
larger than the “resolution”. Examples of these cases are shown on figs. where
the values N°t"™% were taken from the figure As anticipated, the relative error
on the estimation of the number of emitted photons gets smaller, being 7.7 % for the
blue curve, and ~ 0.07% for the red curve. In practice, the error on the estimation
of the number of emitted photons is unknown, since the “true” number of emitted
photons is unknown. Therefore we need a way to quantify our lack of knowledge on
this number, and we choose to define the uncertainty on it in a way similar to that
of the standard deviation at 68 % which applies in the case of a normal distribution.
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Figure 9.9: Probability distributions Peff(NpE\thOt) for values of N °* corresponding to
Ntetmaz ghtained from the analysis presented in fig. Blue: NI°t™a% — 19770 and
NE™me® = 55440. Red: N°»™" = 213213 and NJ"™** = 594520.



78 Imaging system and detection analysis

1.6 1.6
1.40 {1.4
1.2 % {1.2
10 11
o ' o
- \ +
0.8 {0.8
0.6F ™ oo 10.6
0.4F S {0.4
L \ ~\“33:;\ 4
0.2 S 0.2
T BT - SN
0 . . ? bk “EEES 7
10* 10° 108 10’

Number of CCD counts

Figure 9.10: Fractional uncertainties o— and o4 on the most probable number of emitted
photons versus the number of CCD counts.

That is, we define ¥_ and X, such that there is a probability of 68 % that a mea-
surement of N falls within the interval [¥_,¥]. The fractional errors on the most
probable number of emitted photons o+ are simply given by |[NEFme* — 5, |/NF-maz
and decrease when the number of CCD counts increases, as expected and shown on
fig. where the values of o1 have been calculated for values of Nt ranging from
2.5 x 10° to 1.0 x 107, and plotted against the number of CCD counts.

9.2.3 Conclusion

In this section we have presented a model for the detection system, which allows
us to infer the most probable number of emitted photons given a number of CCD
counts, and to give an uncertainty on this number. This model is based on the
knowledge we acquired by measuring key properties of the detection apparatus: the
mean number of CCD counts for a single detected photon N, = 2135 4 17 and its
variance o, = 907 + 14, from which we could deduce the detection efficiency of the
setup: Pyer = (1.67+0.01) x 10~%. The behavior of P/ (NF|NE°") is consistent with
what one would expect based on the analysis of P(N/'|NJF) and sheds light on the
detection mechanism, and on its limitations. This model will be used in the next part
in order to analyze the experimental data.
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Localization spectroscopy of an ion
in an optical lattice
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Chapter 10

Introduction

10.0.3.1 General Motivation

Trapping neutral atoms cannot be done by using the techniques described in chapter
and instead requires the use of the force arising from the interaction between an
electric dipole and the electromagnetic field. The first proposal to channel particles
using the so-called optical dipole force was written by Letokhov in 1968 |122]. From
then on, demonstrations of an increased control over the atom’s motion quickly fol-
lowed: in 1970 Ashkin demonstrated acceleration and trapping of micrometer-sized
particle in counter-propagating laser beams [123], Bjorkholm in 1978 the focusing of
neutral atoms with transverse dipole forces in a Gaussian laser beam [124], and finally
three-dimensional confinement of atoms was reported in 1986 [125]. The techniques
of atom trapping then became increasingly attractive due to the new possibilities
they offer [126}/127], in particular to the field of high precision spectroscopy, and the
possibility to access, study and manipulate atoms in the ultra-low energy region [6§].
Confining cold atoms in tailored optical potentials has opened many possibilities for
simulating many-body physics and performing quantum simulations. Because of their
versatility, optical lattices have indeed become a widely used tool, as the lattice ge-
ometry can and depth can be changed almost at will by superimposing several inde-
pendent laser sources and tuning their frequencies and intensities, thereby allowing
fine control over the simulated Hamiltonian’s parameters [128].

In contrast, charged particles can be confined in deep electromagnetic traps which
leaves their internal energy levels essentially unperturbed. Their internal and exter-
nal degrees of freedom can then be manipulated by light fields under well-controlled
conditions. Nevertheless, combining optical potentials and electromagnetic trapping
has recently received a growing interest in the community of physicists experimenting
with trapped ions, because this could allow the study of cold chemistry experiments
involving ions and neutral atoms [60,62,63,/129], of the Frenkel-Kontorova model
for friction [44}H46], the transport of heat in ion chains [46}|48]/49], quantum simu-
lations of many-body physics with ion crystals [35,[37H42], study of the generalized
Dicke models [50] and of dynamical localization [51]. It also potentially opens for
the investigation of ion dynamics in quantum potentials [56-58|, or for the control
of the crystalline structure of large Coulomb crystals [52]. Moreover, the applica-
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tion of cavity-generated optical potentials to trapped ions has natural applications
for ion-based cavity quantum electrodynamics (cavity QED), where it could be used
to optimize the phase matching of ion crystals to optical modes in cavity QED ex-
periments , or the investigation of nanofriction with dynamically deformable
substrates [59].

Following an earlier observation in H. Walther’s group in the 1990’s of anomalous ion
diffusion in a standing wave field , pure optical trapping of an Mg™Tion in a few
micron region of a tightly focused beam , and subwavelength localization of ions
in optical lattices were subsequently demonstrated in various settings .
More recently, studies of the stick-slip friction in a system consisting of a string of three
ions placed in an optical lattice, and demonstration of its tunability from maximal to
nearly frictionless by controlling the structural mismatch between the arrangement of
the ions and the periodicity of the optical lattice have been reported in .

10.0.3.2 State of the art in our group

o [AAAAAAA] L

AAA;-AAAAI =

(© AAA}AAA Latice

Figure 10.1: Three ways to probe the localization. In (a) the ion is placed in a red-detuned
lattice (case illustrated here), or in a blue-detuned lattice, and the resulting fluorescence is
monitored. In (b) the ion is localized at the node of a blue-detuned optical lattice, while a
near-resonant intracavity probe field detuned from the optical lattice by an even or odd (case
illustrated here) number of FSR drives the D5 /5 to Pj/; transition. Observation of increased
fluorescence when the ion is localized at a probe antinode signals localization (see text for
more details). (c) Scheme presented in this thesis: the ion is localized in a blue or red-detuned
intracavity optical lattice and a probe directed orthogonally probes the position-dependent
Stark shift of the Ds/o and Py /o levels.

In our group, sub-wavelength localization in an intracavity standing wave field
of a single and few ion crystals trapped in the linear Paul trap described in section
has been demonstrated . Since the resolution of our imaging system does
not allow for a direct measurement of the position distribution of the ions in the
optical lattice, the localization of the ions was observed using the ion’s fluorescence

in structured driving fields [55,/64]. In a first experiment (see fig. [10.I}a) and fig.
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, a 4°Ca™ ion was placed in the field of an intracavity optical lattice blue- or
red-detuned with respect to the D3,y to Py, transition, and inelastic scattering of
the lattice light by the ion was observed on a CCD camera by monitoring its decay
to the S; /5 state. By comparing this signal for red and blue detuned lattices, unam-
biguous localization signal was obtained, since the effect of a red-detuned lattice is
to pin the ion at the antinodes, increasing scattering beyond the delocalized average,
while a blue-detuned lattice pins the ion at the nodes, where scattering is suppressed.
A difference in scattering between the two scenarios constitutes therefore a signature
of ion localization in the lattice potential, and is shown on fig. b), where the
probability to scatter a lattice photon is measured for various lattice depths. The
observed signal is systematically higher in the case of an ion placed in a red-detuned
field, indicating that the ion is pinned in the lattice’s sites. In this experiment, due to
the branching ratio of the Sy /5 =Py /2 and D35 — P/, transitions, the ion decays out
of the levels affected by the lattice with a large probability when scattering off the lat-
tice. Therefore the scattering probability was evaluated by repeating a large number
of times an experimental cycle starting with Doppler-cooling and optical pumping in
the D35 state, after which the lattice intensity was ramped-up adiabatically and the
emission of 397 nm photons by the ion monitored. An analytical model assuming an
initial thermal distribution in the axial potential of the Paul trap and adiabatic ramp
up of the lattice was developed in order to predict the scattering signals expected in
these experiments, and shows very good agreement with the experimental data. The
scheme was subsequently extended to various structures consisting of strings of up to
8 ions, 2D “zig-zag” chains and 3D Coulomb crystals of 6 ions, shown on fig.
In a second experiment (fig. ), the ion was pinned in an optical lattice and
simultaneously excited with a near-resonant intracavity probe field. The boundary
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Figure 10.2: Illustration of the first localization experiment performed in group and de-
scribed in the text. (a) A blue- or red-detuned (detuning Ay) lattice is applied on the D3/,
to Py, transition. The fluorescence emitted on the Py /; to Sy, transition is collected. (b)
Results obtained in the case of one ion localized in a blue and red-detuned lattice. Solid
symbols: probability to scatter a lattice photon as a function of lattice depth for red and blue
detuned lattices (square and circles respectively.) Solid curves: one-free-parameter model fit
(see text for details).



84 Introduction

Figure 10.3: Projected images of the ion structures for which pinning in the optical lattice
has been demonstrated. From left to right: 1D chains of one to four ions, chains of 6
and 8 ions. Second to last: two dimensional “zig-zag” structure of four ions. Last: three-
dimensional octahedron consisting of 6 ions (the redest spot corresponds to two ions placed
spatially in the plane perpendicular to the image).

-]

o
o
[+]
-]

=]
© © © o 0 0 ©

conditions imposed by the cavity mirrors ensure that, at the ion’s location in the
center of the cavity, the standing wave of the probe field and the lattice are either in
phase when they are separated in frequency by an even number of free spectral ranges,
or out of phase when they are separated by an odd number of free spectral ranges.
Suppression (in the first case) and enhancement (in the second case) of the probe
induced scattering could then be observed. In particular, enhancement of the probe
scattering probability from 50% of its maximum value in the case of a delocalized ion,
to 81% in the case of a pinned ion was reported [55].

In the experiments described in the last part of this thesis, we demonstrate a
method allowing the measurement of the motional probability distribution of an ion
trapped in a far-detuned optical lattice. In these experiments, an ion is placed in
an adiabatically raised optical lattice, and a probe field not coupled to the cavity
mode is applied from the side (see fig. (c)). The effect of the optical lattice
is to induce position-dependent frequency shifts of the D35 — P/ transition, and
measuring the spectrum of the probe field gives information on the energy distribution
of the ion in the optical lattice. Measuring directly the energy distribution of a particle
trapped in a dipolar potential - an ion in an optical lattice in our case - is interesting
in order to gain precise information on the trap and atomic parameters which is
necessary in view of precise control and manipulation of quantum states of individual
atoms [134]. Furthermore, the energy distribution has been shown to be well-described
by a Boltzmann distribution in cases where the lattice potential can be considered
harmonic to a good approximation [134}/135], but a qualitatively different result is
obtained when this assumption does not hold anymore [55,/64]. Measuring the energy
distribution in the latter case could provide direct information on the thermal/non-
thermal assumption and provide a means to assess the adiabaticity of the lattice
ramp-up, for different ranges of atom and trap parameters. In the context of trapped
ions, it could be used to reveal dynamical effects arising from the competition between
the Coulomb force and the localizing effect of the lattice potential.

Our goal for the next chapter is threefold:

1. Develop a simple analytical scattering model in order to account for the obser-
vations. This model is based on knowledge accumulated in the aforementioned
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experiments with ions placed in optical potentials [64].

2. Obtain an independent, absolute and quasi model-free measurement of the op-
tical lattice intensity since the ion acts as a “powermeter” placed in the cavity,
and is thus used to measure the effective lattice depth at its position.

3. Assess the usefulness of experimental methods for further spectroscopy experi-
ments, for example the study of non-trivial dynamics of ion structures in optical
lattices.

This scheme can be related to the one used in [136], where the channeling of an
atom in an optical standing wave is observed by analyzing the absorption spectrum
of the atom. This part is organized as follows: in section we present the basic
concepts of the localization spectroscopy method. In section we apply this
model to a two-level atom. We then consider a more realistic three-level structure
appropriate for the °Ca™ ion in our experiments, and include the oscillatory motion
of the ion inside a lattice well during the probing. In all models we assume the
energy distribution to be thermal. In sections and details on the setup and
experimental results are given. Finally, in chapter we give an outlook and possible
applications of the localization spectroscopy method presented here.






Chapter 11

Model and experiments

11.1 Principle of localization spectroscopy

We consider a dressed two-level atom placed in a red- or blue-detuned light field, and
note its radiative decay rate I' (in accordance with the notation used in chapter (3)).
We recall the expression for the energy of the states |n,1;r) and |n,2;r) (5.32) and

(5.33)) here for convenience:

Eyn = (n+ 1)hwr, + LgL - hQ2(r) (11.1)
and hA Q2
B, = (n+ 1)hwr, + —2L + 2(1') (11.2)

where Q(r) = \/g%(r) + A% was defined in section Es,, is lowered inside the field,
while Fj,, is increased (see fig. |11.1). For a slowly moving atom (i.e. such that it

Bare lon Red detuned lattice Blue detuned lattice
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Figure 11.1: Illustration of the shift in energy of the 3d2D3/2 and 4p2P1/2 levels for an
ion interacting with a red or blue-detuned lattice. On the left, the levels of an uncoupled
ion. Center: in the case of a red-detuned lattice the ion is attracted to high intensity regions
of the field, and the energy difference between the Ds/5 and Pj /5 levels is increased- Right:
In the case of a blue detuned lattice, the ion seeks regions of vanishing intensity and sees a
reduced transition frequency.

travels over a distance small compared to the optical lattice wavelength during the
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radiative-relaxation time I'"!) placed in a far-detuned optical lattice (A > T), it
can be shown [81] that the mean potential energy for the atom in the field reduces to:

hQ(r)

Epor = — (mst — mst) (11.3)

where 75! and 75! are defined according to (5.42115.43)). The force exerted on the atom
is therefore given by (see eq.()):

h
F=-VE,;= —§VQ(I‘)(7T§t — ) (11.4)

In a far red-detuned field, 75 is much larger than 75*. The total force F then reduces
to 2VQ(r)7s' and is directed towards zones of high intensity of the field. Similarly,
in the case of a blue-detuned lattice F ~ f%VQ(r)wft and is directed towards zones
of vanishing intensity. When Ay > ¢(r), the expressions for Ey, and Es, can be
approximated by:

hg*(r)
By, ~ Dhwy, — 11.5
on & (0 + 1)hwy, 1] (11.5)
and . 2( )
g-(r
FEi,, ~ nhw fuw 11.
1 nhwr, + hwo + AL (11.6)

In the case of a far blue-detuned field, similar expressions for Ei,, and F», are
obtained by exchanging the right hand sides in the above equations. Considering
for the optical trapping field the case of a one-dimensional standing-wave, the Rabi
frequency can be rewritten a

9(2) = gsin(k2)

where k = wy, /c is the lattice wave-vector. Finally, by using the results of the section
[5.4] we can now write the energy difference between the [1,n) and |2,n — 1) levels in
the case of a red-detuned lattice:

-~ 592(1') .2 - . 9
By, — Eop_1 =~ hwo + 2Ar| sin®(kz) = hwo + 2Ujq4 sin®(kz) (11.7)
L

and the energy between |2,n) and |1,n — 1) in the case of a blue-detuned lattice:

-~ hg2(r) .92 _ . 9
Es, — E1n_1 =~ hwo — N sin“(kz) = hwy — 2Ujqu sin” (kz) (11.8)
L

where the depth of the optical lattice U4y is defined such that U = %. The
lattice depth can also be characterized by a temperature T}, through Uesr = kTias,
with kp the Boltzmann constant. From the equations and we see that an
ion at the antinode of a red-detuned optical lattice sees its frequency shifted by 2U; 44+,

which can be much larger than I'. In terms of temperature, this shift corresponds to

IWe assume here that the intracavity standing wave can be described as the sum of two plane
waves, and neglect the transverse Gaussian profile.
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2k ~ 27 x 41.7 MHz/mK.

How do these concepts apply in our case? The optical standing wave field is
applied on the 3d2D3/2 to 4p2P1/2 transition, with a detuning of Ay, = +27 x 0.76
THz (see fig. [10.2a)). For a ~ 25 mK deep lattice, the Rabi frequency g is found to
be approximately equal to 27 x 40 GHz. The mixing angle 6 defined in
is then equal to 0.016 in the case of a red-detuned lattice (Ay > 0), or /2 — 0.016
for a blue-detuned lattice (Ay < 0). In the first case, cos ~ 1, and sinf ~ 0,
and therefore the levels |1;7) and |2;7) can be in very good approximation be taken
as the bare atomic levels 4p®P; /5 and 3d*Dj/5 , respectively. For a blue detuned
lattice, the conclusion is reversed, and |1;7) and |2;r) can be identified to 3d2D3/2
and 4p?P, /2 respectively. In the following we will thus simply refer to them as the
bare atomic levels. The steady state populations 75t and 75! can be calculated using
eq , and for a red-detuned lattice 75 ~ 10~7 which justifies that system
spends most of its time in the state |2;7) and is therefore trapped at an antinode of
the red-detuned field. Again, the conclusion is reversed in the case of a blue-detuned
field, and it can be shown that the atom is, in this case, trapped at a node of the
field.

Using the results of the above paragraph we can now write the energy difference
between the 4p® P, /2 and 3d?Dy /2 levels:

2

E(Py)3) — E(D3)3) = hwy ~ hwy + ’;f A(;) sin?(kz) = hwg £ 2Ujay sin?(kz)  (11.9)

in the case of a red (4) or blue (—) detuned lattice, where we have defined wy as

the position-dependent frequency of the Ds/5 to Py transition. These results are
summarized in the figure [I1.1]

For an ion trapped in a red-detuned optical lattice, we therefore expect to see a
shift of the resonance frequency of the D3/, to P, /5 transitions which can be calculated
from the previous considerations, and can be as large as 27 x 1.04 GHz for a 25 mK
deep red-detuned optical lattice. This shift can be observed by, e.g., measuring the
scattering of the ion in the lattice with a probe field applied on the D35 to P2
transition, as depicted in fig. C). In the case of a blue detuned lattice, the
transition frequency is unchanged. Observing the difference in resonant frequencies
corresponding to the three different situations (ion trapped in a red-detuned field,
ion trapped in a blue detuned field, ion not trapped) should therefore provide a clear
signature of the localization. In the following section, we develop a model allowing
us to predict the spectrum one should observe in a typical localization spectroscopy
experiment. For the sake of pedagogy we will start with a simple two-level model,
and go on with a more realistic, three-level model.

11.2 Theoretical models

11.2.1 Two-level atom

Using the steady-state solutions of the OBE derived in chapter [3] we can write the
scattering rate from the level P; o for the effective two-level system depicted on fig.
when the ion is trapped in a far-detuned optical lattice applied on the D3/, to
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Figure 11.2: Energy levels considered in the fictitious two-level model. In this model, the
state P, /o can spontaneously decay to D3/ with a decay rate I'p,,, = 2mx22.4 MHz, such
that the model gives the correct width for this transition. The measured scattering rate from
the state P/ is given by I'sg7 = 27X 20.7 MHz. The D35 <+ P; /o transition is addressed
by a probe field of Rabi frequency W.

Py 5 transition, and driven by a probe field near-resonant with the same transition.
We call W the probe Rabi frequency, and Ar(dp, kz) the position-dependent probe-
ion detuning;:

Ap(6p,kz) = 2Ulg” sin?(kz) + 6p (11.10)

with 0p = wp — wp the probe detuning with respect to the natural P, to Ds3/o
transition where wp is the probe frequency and the + sign accounts for the case of a
red (—) or blue (+) detuned lattice from this transition. For example, the probe field is
resonant with an ion trapped at an antinode of the red-detuned lattice, kz = +mm/2
with m integer, when 0p = 2Ujqu/h and Ar(2Uqe/h, £mn/2) = 0. With these
notations the scattering rate at a given position inside the lattice reads:

W2 /4

Dscatt(kz) = so7 (11.11)

2

(2Yseee sin?(kz) + 6p)” + W2 F’if”?
where I'p,,, = 27 x 22.4 MHz is the total decay rate from the P/, state, and
397 = 2w x 20.7 MHz effectively gives the measured scattering rate of photons at
397 nm. In this simple situation, the effect of the lattice is, as mentioned before, to
shift the frequency of the Py/; <+ Dg/o transition by an amount equal to 2Uju /R
in the case of a red-detuned lattice, while in the case of a blue detuned lattice this
frequency is unchanged.

11.2.1.1 Accounting for the finite temperature of the ion

The theoretical model described in the previous section enables the calculation of
useful parameters for the experiment, such as the expected scattering rate from the
lattice and the expected frequency shift, but does not account for another important
aspect of the experiment related to the non-zero kinetic energy of the ion inside the
optical potential. The non-zero kinetic energy of the ion implies that the ion’s position
inside the trap is not fixed, and must therefore be described through a distribution
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P(kz), which needs to be determined. In such a case, the scattering rate I'sqqs reads:

Fscatt = /Fgcatt(kZ)P(kZ)dk'Z (1112)

In order to choose a mathematical form for P(kz), we consider the following facts:

e the ion is first Doppler cooled and prepared in the |Ds/,m; = +3/2) state
where it is sensitive to the lattice and can be considered as a two-level system.
The ion’s position distribution after Doppler cooling can be considered thermal,
and for the loose axial potential of the Paul trap considered in these experiments,
this distribution extends over many lattice sites. It follows that the change in
the harmonic trap potential within a single site is small compared to the thermal
energy, and hence the potential in each site has approximately the same shape.
Therefore, the ion’s motion can be adequately described using a single site with
periodic boundary conditions.

e The lattice is adiabatically raised - we shall give more details on this specific
aspect below. According to the model developed in [55|64], the ion’s final
position distribution in the lattice is, stricto-sensu, not thermal within the a
lattice site , but for deep lattices can be considered so to a good approximation.

We shall therefore assume that the position distribution of the ion within a lattice
site has an extension given by the corresponding Boltzmann factor, which should be
reflected on the spectrum due to the position-dependent frequency shift of the Dj /o
to Py /o transition. Taking into account the position distribution of the ion inside the
optical potential simply amounts to write P(kz) as:

P(kz) = %exp (=BUjate sin®(k2)) dkz (11.13)
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Figure 11.3: Simulations of spectra in the case of an ion localized in a red-detuned lattice
(red, right), or a blue detuned lattice (blue, left). In these simulations, Tiaxx = 16.5 mK
and Tion = 7 mK, I'p, ,, = 27 x 22.4 MHz, I'so7 = 27 x 20.7 MHz, and W = O.lel/Q/\/i
corresponding to 10% of the saturation intensity in this two-level system. The case of an ion
without the lattice is shown in black for reference.
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0o /2 2
7 = / / exp {B <p + Upart sin%kz))}dkzdp
—oco0 J—7/2 2m

where 8 = 1/kpT;on, Tion the ion’s temperature inside the lattice well, p the ion’s
momentum, and Uy, Sin2(kz) the ion’s potential energy inside the lattice. Therefore,
in the case of a thermal ion, the scattering rate is given by:

with

1 [/ W2 /4 _
Dcatt = I'agr— / o eXp (—BULat sin®(k2)) dkz

Z
—/2 (2—Ulg“ sin2(kz) + 5p)2 + WT2 + 72/2

(11.14)
An example of spectrum is shown on fig. [I1.3] for a probe Rabi frequency W =
0.1I'p, ,, /\/2 corresponding to 10% of the saturation intensity in this two-level system,
Tiarr =16.5 mK and T;,, =7 mK. In the case of a red-detuned lattice, the maximum
of scattering is frequency-shifted by 2Uj.++/2m = 688 MHz, whereas there is no shift
in the case of a blue-detuned lattice. The profiles of the spectra, which are identical
in these two cases, stem from the position distribution of the ions inside the optical
lattice. The maximum of scattering is also identical in the two cases, and smaller than
the maximum of scattering rate for an ion not placed in an optical lattice. To examine
the effect of the temperature of the ion in the lattice, we plot on fig. the probe
spectra for T;,, = 1, 10 and 100 mK. As the ion gets hotter, the probability to find the
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Figure 11.4: Illustration of the change in the spectra for an ion with a temperature of 1
mK (top), 10 mK (middle), or 100 mK (bottom) placed in a 16.5 mK deep lattice. All other
parameters are similar as the ones used in fig.

ion in regions close to the maximum of the potential increases. In the case of a red-
detuned lattice (shown on fig. regions of maximum of potential corresponds to
nodes of the optical lattice, and therefore this corresponds to an increasing scattering
rate at probe detunings dp ~ 0. In the case of a blue-detuning, the conclusion is
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the same, except that the regions of maximum of potential correspond to frequency
detunings 8, ~ —2U441/h. Therefore, by measuring the position of these peaks and
the whole profile, one can get in principle information on both the lattice depth and
the ion’s temperature inside the lattice well.

11.2.2 Three-level atom model
11.2.2.1 Optical Bloch equations

Realistically we have to consider the three-level open system made of the levels Sy /s ,
Py5 and D3/ of 40Ca™ . We will not derive here the OBE describing the internal

4p 2P1/2, m] = +1/2

Ts66
[‘397 w 866 nm

397 nm
3d 2D3/2, m] = +3/2

4s 251/2, m] = i1/2

Figure 11.5: Three-level model consisting of the 3d2D3/2 , 4p2P1/2 and 43251/2 levels in
OCat . The 4p2P1/2 level can decay to 45251/2 with the rate I'sg7 = 27 x 20.7 MHz and
to 3d2D3/2 with the rate I'seg = 27 x 1.69 MHz. The probe field is applied on the D3,5 —
P,/ transition with a Rabi frequency W.

dynamics of the ion by starting from first principles, but rather adapt the ones found in
the case of a two-level atom in chapter[3|to the system shown on fig. We consider
the set of equations The first two (3.10a| and [3.10b|) describe the variation of

populations in ground and excited states due to the application of the driving light
field, and the decay through spontaneous emission from the excited state. In (3.10al),
the spontaneous decay rate is I'p, ,, the decay rate from the Py /; state. In e
D3/, state can only be repopulated due to the spontaneous decay from the P/, state,
with a partial decay rate I'sgs. The evolution of the coherences between the D3/ and
Py /5 states also depend on I'p, ,,. We note mp, ,, 7p,,, and mg, ,, the populations of,
respectively, the P/, , D3/ and Sy, states, opp and opp the coherences between
the states D3/p and P/p . Finally, we add a term describing the population of the
S1/2 state through spontaneous decay from the P 5 state, with the partial decay rate
I'3g7:

7'Tsl/2 = F3977TP1/2 (1115)
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With the notations introduced above, we have I'p, ;2 = L'se6 + I'so7. The new set of
equation therefore reads:

7'TP1/2 = Z'7(UPD —0opp) — Fpl/ﬂpl/2 (11.16a)
. W
TD3/0 = —27(UPD —opp) + Ise67p, ), (11.16b)
. ) . I'p
opp = —iAr(0p, kz)opp — Z?(”Pl/z —TDy) = 21/2 oDP (11.16¢)
75y, = La077p, ), (11.16d)

We emphasize here that this set of equations describes a system where the population
is only transferred from the state D3/, to the state S;,;, via the state P 5 , and is
never pumped back to D3/ . The scattering probability can thus be inferred from
the value of the population in the S}/, state at the end and depends on the Rabi
frequency for the atom-probe coupling, the decay rates from the P/, state, the atom-
probe detuning, the probing time and the position of the ion inside the lattice site.
All parameters except the decay rates can be varied in our experiments, and the
population in the state Si/p corresponding to a probe Rabi frequency W, probing
time ¢ for an ion at the position z inside the lattice is denoted Wsl/z(W, op,kz,ty).
TSy )2 (W,ép,kz,ty) can be seen as the probability that a photon was emitted from
the P/, state after a time ¢y and can be obtained by numerically integrating the set

of equations [T1.16}
tf
71-51/2(‘/1/’ §P7kzatf) = /O 7:{.31/2(‘/‘/7 op, kz,t)dt (11.17)

A particularity of the three-level model considered here compared to the two-level
model of the previous section is that lim;_, 7g, /Z(t) = 1 irrespective of the probe
Rabi frequency, and of the probe-ion detuning. Examples of the evolution of g, , (W, ép, kz,ty)
as a function of ¢ty for various probe Rabi frequencies W and in the case of a probe
resonant with the D3/, — P /5 transition are given on fig. The larger the probe
Rabi frequency, the sooner the population in S;/, saturates. Because of this satura-
tion effect, the choice of duration and power for the probe beam is not trivial, and
requires careful thought. Long probing times can be detrimental if the broadening
of the probe spectrum due to this saturation effect becomes too large. An illustra-
tion of this phenomenon is shown on fig. where a simulated spectrum of the
D35 to Pyjp transition is plotted for different probing times and a Rabi frequency
W = 1.83 x T'ggg (this value corresponds to the experimental one, as explained be-
low). An obvious solution would thus be to work with a low probe power - to the
extent, of course, that an observable signal is obtained. However, during the probing
time the ion is also affected by the optical lattice, which effect is to add a frequency-
independent background noise in our experiments, and which must be kept much
smaller than the scattering from the probe. In order to choose the right parameters
for the probe, we must therefore estimate the background from the lattice. This can
be done by calculating the (steady-state) lattice-induced population in the P; /5 state
which is given by w5t sin? @, where sin® # represents the weight of ket |e) in ket |2)
in eq. . Choosing 6 = 0.016 (this value corresponds to a lattice red-detuned
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Figure 11.6: Dynamics of the population in the S;/; state for different probe Rabi fre-
quencies W, in the case of a resonant probe field Ar(dp, kz) = 0.
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Figure 11.7: Simulated probe spectrum for an ion not placed inside the lattice, a probe
Rabi frequency W = 1.83 x I'sgs and different probing times.
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by 0.76 GHz and 25 mK deep, see section , one finds a steady-state population
in Py, approximately equal to 2.6 x 1074, from which we can deduce the scattering
rate ;41 by multiplying it by I'so7. We find T'jp¢r = 3.4 X 10—2 ,us_l. In a typical
experimental run, the probe is applied while the ion is localized inside the optical
lattice, and therefore the probing time ¢; is at most equal to the time during which
the lattice is held high. Moreover, the gating time of the imaging intensifier can be
chosen to closely match the probing time, in order to reduce the noise from the lattice.
It follows that an upper-bound on the lattice-induced scattering probability can be
obtained by considering the time during which the lattice is applied, which we note
t; and, as we discuss below, is equal to 1 us. The product I'j,+1; is simply equal to
3.4 x 1072 < 1 and therefore gives the sought scattering probability. Compared to
the simulations showed on fig. this is not negligibleEl, and constrains the probe
power which then cannot be too low - otherwise the lattice-induced background would
reach a level where it becomes indistinguishable from the probe-induced scattering.
In an ideal situation, one would choose a short probing time - in order to minimize the
lattice-induced scattering - with a high probe power - to maximize the probe-induced
scattering, and further increase the signal to noise ratio -, but as explained in the
next section, technical constraints led to the choice of a probe duration of 0.5 us.
Finally, we can calculate the expected spectra taking into account the evolution of

the population in the S/, state by rewriting eq. (11.14) as:

1 /2
P(ép) = Z / , s, ,, (0P, kz) exp (—BUsant sin2(kz)) dkz (11.18)

In the above expression, it is implicitly assumed that ¢; = 0.5 us and that the probe
Rabi frequency W is held fixed at a value dictated by the constraints discussed above;
they have been omitted for clarity. The difference with the expression given in eq.
is that the steady state population in the excited state is now replaced by the
population in state Sp/2 at the time ¢;. Accordingly, the expression should be
understood as a scattering probability after a probing time ¢y and not a scattering
rate as was the case for the two-level model.

11.2.2.2 Dynamics of the ion in the optical lattice during probing

For the deepest lattices, the oscillation frequency at the bottom of the well is on the
order of 4 MHz, meaning that for a probing time of 0.5 s the ion completes more than
one period of the oscillation. This means that the position-dependent detuning is also
time dependent during probing. To assess the effect of the motion during probing, we
refine the model by taking into account this oscillatory motion of the ion inside the
optical potential. This amounts to make the following change in the definition of the

probe-ion detuning (11.10f):

Uiatt .
Ar(kz) = Ar(kz(t) =2 ;L‘ sin? (kz(t)) + 0p (11.19)
20n fig. we have plotted the scattering rate as a function of the detuning, not the scattering
probability stricto sensu. However, multiplying the scattering rates by t; = 1 ps simply convert the
y-axis into a scattering probability thereby allowing the comparison evoked in the text.
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where z(t) is the time-dependent position of the ion inside the optical trap, and is
solution of the differential equation of motion of a pendulum:

(1) + FUratt sin(2kz(t)) = 0 (11.20)

m

where we have neglected the axial potential of the Paul tra;ﬂ In order to find z(t),
the above equation is numerically integrated during a time window corresponding
to the probing time ¢, with initial conditions kz(0) corresponding to all possible
starting positions inside the lattice well for a given ion total energy E. Examples
of the populations 7s, ,(kz(t)) obtained by numerically integrating the OBE for the
three-level atom with the time-varying detuning are given in fig. for a lattice
depth of 24.7 mK, a probe frequency equal to the ion’s transition at the bottom of the
potential well, a probe Rabi frequency W = 1.83I'gs¢ and various ion energies. The
oscillatory nature of the motion can be seen on the evolution of 7g, , (kz(t)), and, for
an ion energy equal to kp x 0.01 mK, the dynamics of 7g, , (k2(t)) reduces to the one
calculated in the case of a static ion. The total energy F of the ion is related to the
ion’s velocity 2(t) and position z(t) through:

2k

(k2(t))* 4 w? sin?(kz(t)) = E

Ulatt

E=uw? (11.21)

m

3This is justified since the oscillation frequency of the axial potential of the Paul trap is ~ 80 kHz,
and is therefore much lower than the oscillation frequency at the bottom of the optical potential.
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Figure 11.8: Dynamics of the population in the S;/; state for different probe Rabi fre-
quencies W in the case of an oscillating ion, for a probe Rabi frequency W = 1.83 x I'sgg,
and dp = Ut /h. For an ion whose energy is substantial compared to the lattice depth,
the motion has a large amplitude and the pumping from the D3/, to the S;/, states is less
efficient, than for an ion having a small energy and hence a motion of smaller amplitude.
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where w; = 1/% is the oscillation frequency at the bottom of the lattice. The

probability for an ion with energy E to be found at the position kz(0) when the probe
laser is switched on is noted P(kz|E) and is not constant, but must reflect the fact that
the ion spends more time close to the turning points of its motion where its velocity
vanishes than in the center where its velocity is maximal. This probability is given
by dt/T where T is the period of the trajectory. During a period of its motion, the
ion’ trajectory in phase space can be expressed by isolating 2(t) in equation ,
and expressing it as a function of z(t). It follows that the expression for the period
of the trajectory reads:

kz .
max dk
T=4 / e (11.22)
0 k'Z
4 kzZmaz dk
== : : (11.23)
w E :
LJo \ oy —sin” (k2)
where 24z is the position of the turning point, depends on £— when E < Ujqy, and

Ulatt
is equal to 7/2 otherwise. The period T can be re-expressed in terms of the complete

elliptic integral of the first kind C(E/Uast) if Upgrr > E and K(Ujesr/E) otherwise
(see [137] and appendix [B)):

E
4 ’C( )a E< Ulatt

T=—{ e (11.24)
wy 7ZE“,”K:( I’E“’), E > Ut
From this we deduce the expression for P(kz|E)dkz = dt/T":

dkz , E < Ua
Plie BNk — 2K( 20\ vy —sin? (k2) latt Lo
(Z| ) z = dkz E > U ( : )

U U YT
\/ lgtt /C( Lgtt) Uzb;u —31n2(kz)

Examples of P(kz|E) are shown fig. for various values of E/Ujq4. It is apparent
on the plots shown on this figure that the probability to find the ion in the center is
close to zero, while it diverges for positions close to the turning points, for energies
FE smaller than the lattice depth. For energies larger than the lattice depth, the
probability tends to a constant value, in accordance with the fact that an ion whose
energy is much greater than the lattice depth will be found anywhere with a quasi-
constant probability. Since we cannot use the probability distribution in position given
in eq. in the case considered here, we calculate, in addition to the probability
density P(kz|E), the probability distribution for an ion to have the energy E within
dE, for a given temperature. Formally, this distribution is given by:

1
P(E)AE = Q(E) exp(~BE)dE (11.26)
kzZmax
_ 2w / dk= exp(—GBE)dE (11.27)
ZUlatt | Jo T~ sin?(k2)
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Figure 11.9: Illustration of the probability density P(kz|E) for values of E/Uqs equal to
0.1, 0.9 and 10. For E/Uja: < 1, the probability density diverges at the turning points of
the motion, reflecting that the velocity goes to zero at these positions. For E > Ujqae, the
probability density tends to a flat distribution.

where Q(F) = 22 Femas ——dkz g the density of states (a derivation of
Utatt J0 T2 —sin?(kz)
latt

this expression is given in appendix . This distribution is plotted in fig. [11.10
Finally, the scattering probability reads:

oo kzmaz
P(6p) = / dEP(E) / dkzimy, | Pk E) (11.28)
0
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Figure 11.10: Probability density P(F) versus E plotted here in the case of a lattice depth
of 16.5 mK and an ion temperature of 7 mK.
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where 7@1 P denotes the population in S /5 state at ¢ =t corresponding to a motion
starting at z; € [—Zmaz, Zmaz) 8t t = 0, and where we have omitted the dependence on
0 p for clarity. As an example we plot in fig. a comparison of the results obtained
with the model presented here and with the “static” model of section [11.2.1] in the
case of a lattice with depth 16.5 mK and an ion temperature of 6.92 mK. Although
the oscillatory motion of the ion leads to a less efficient transfer of population from
the Dj/y state to the Sy state (fig. [I1.), the weighting by P(E) and P(kz|E) in
eq. effectively results in a slightly increased scattering probability. It has,
however, no effect on the position of the resonance, nor does it affect the global shape
of the spectrum. Due to the long computation time it requires, this model will not
be used to analyze the data presented in section where instead an “adjusted
two-level atom model” is used, as explained below.

11.3 Experimental implementation

11.3.1 Experimental sequence

Due to the very large shifts the ion undergoes when trapped in the optical potential
it is not possible to continuously cool the ion, or to optically pump it in the desired
state when the lattice is applied. The experiment therefore follows a sequence in
which an ion is first Doppler-cooled by simultaneously applying the Doppler cooling
laser at 397 nm on the fast cycling S/, — P/ cooling transition, and the repumping
diode laser (866-2) at 866 nm on the D3/, — Pj /o transition in order to keep the ion
cycling until it is cooled down. The ion is then optically pump into the m; = +3/2
Zeeman substate of the D3/ state by applying the Doppler cooling laser and the
optical pumping laser (866-2). The circularly o~ -polarized optical lattice (866-1) is
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Figure 11.11: Comparison of the spectra obtained with the three-level model of section
11.2.2]in the case of a static ion (blue), and an oscillating ion (red), for Tjai = 16.5 mK,
and Tion = 6.92 mK, probing time t; =0.5 pus and probe Rabi frequency W = 1.83 X I'sgs.
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then ramped up, and finally the light issued from the circularly o-polarized 866-4
diode laser is used to probe the D3,y to P /5 transition. The choice for the durations
for each of these phases depends on both theoretical and practical reasons:

1. The cooling part of the sequence cannot be too short since Doppler cooling
is not instantaneous after the optical lattice is switched off. Measuring the
temperature of the ions by looking at their profile on the images taken with
the CCD camera for different cooling durations indicate that a 62 ps cooling
time is enough to reach a steady temperature of about 2.5-3 mK, regardless
of the lattice. With an axial trap frequency of 80 kHz, this corresponds to an
ion initially spread over 1.5 pum, much larger than the distance between two
consecutive maxima of the optical lattice, equal to 433 nm.

2. Measurements of the population in the various states Zeeman substates of D3 /o
shows that optical pumping allows to transfer nearly 99% of the population in
the mj = +3/2 state after ~ 50 us [64].

3. After the optical pumping stage, the cooling and optical pumping lasers are
switched off. The intensity of the lattice field is then ramped up during 2 us.
This process is controlled with an AOM and this duration ensures that this is
done adiabatically, as explained in more details below.

4. The lattice is held at its maximum power for a time ¢; = 1 us, and probing takes
place during the last 0.5 us by applying the 866-4 probing laser and opening
the imaging intensifier.

The timing sequence is summarized in fig. [I1.12] One sequence is 114.5 ps. A
given experimental run yields 30 images with 10 s integration time each, and thus
corresponds to a total of ~ 2.6 x 10% sequences. According to the simulations presented
above, the scattering probability per sequence is at most on the order of 20%, and
taking into account the detection efficiency of 1.67 x 10~* this leads to the detection
of typically 90 photons per 30 images. When recording a spectra, many images are
taken off-resonance, thus the number of photons detected is usually much smaller.

11.3.1.1 Optical pumping

In order to have a two-level atom situation and to increase the coupling strength with
the lattice it is necessary to optically pump the ion’s population in the mj; = +3/2
substate of the D3/, state prior to the optical trapping and probing stages. The
interaction strength with the lattice field from this state is three times larger than
from the m; = +1/2 substate (the corresponding Clebsch-Gordan coefficients are
respectively 1/1/6 and 4/1/2, see appendix . In order to optically pump the
population in the m; = +3/2 substate the OP beam is directed at 45° with respect
to the trap axis and passes through a set of half- and quarter- wave plates with
carefully adjusted angles before entering the chamber. The OP beam then possess
both 7 and ¢ polarized components, but no ¢~ component. During optical pumping,
the cooling, and optical pumping beams are switched on at the same time.
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Figure 11.12: Schematic of the laser sequence.

11.3.1.2 Adiabatic ramp up of the lattice

As mentioned above, the lattice is raised slowly enough to be closely approximated
as adiabatic. The reason for this is that it allows making predictions of the final
energy distribution inside the optical potential. Indeed, in the case of a harmonic
potential adiabatically ramped-up, the populations of the different vibrational states
are unchanged before and after the lattice ramp-up, and only the energy and hence
the temperature are re-scaled. Although this is only exactly true for a harmonic
potential, such an assumption constitutes, as we will see in section a reasonable
starting point for our experiments. Adiabatic ramp up is in theory valid only in
the limit |&;/w?| — 0. In practice the rate at which the lattice is ramped up is,
again, the result of a trade-off between a desirable slow raise of the lattice depth,
and the necessity to keep the time-increasing lattice-induced scattering probability
as low as possible. The ramp is chosen to be linear in Rabi frequency and therefore
to vary as t? in intensity, but due to the response time of the AOM the variation
in intensity was found to go as ~ ¢! . For the deepest lattice used, the final
depth was approximately 25mK, and the ramp time was 2 ups corresponding to a
mean rate of 6.25 mK/us? . With these values, the ratio | /w?| is equal to 0.01,
and molecular dynamics simulations show that the ramping is close to adiabatic,
though not quite . Nevertheless, the previous localization experiments described
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in [64] indicated that the scattering signal in this situation still agrees with what one
would expect from a model assuming adiabatic ramp-up. We therefore chose to keep
the same parameters in our experiment. After ramp-up, the lattice intensity is kept
constant for 1 ps. This duration is a compromise choice: it has to be long enough in
order to allow for a detectable probe-induced fluorescence, but at the same time has
to be shorter than the ion’s lifetime in the lattice.

11.3.1.3 Probe scattering and imaging intensifier gate

In order to choose the probe power we were guided by experimental considerations:
as explained above the lattice is held high during 1 ps and the probe time must
therefore be shorter. Additionally, the probe power must be chosen in order to ensure
that the fluorescence signal is dominated by the probe-induced scattering while at the
same time avoiding significant broadening of the transition. Probing times shorter
than 0.5 ps could be chosen in principle, but the AOM response time imposes a
limitation on the pulse length, and in order to keep the pulse as “square” as possible,
the plateau must be somewhat longer than the ramping up and ramping down times.
For these reasons, we chose a probing time window of 0.5 us. With these parameters
we measured the probability to scatter a photon under resonant excitation for different
probe excitations. The corresponding saturation curve is shown fig. [T1.13] where it
is plotted as a function of the probe power, measured with a power meter before
the vacuum chamber. The above considerations concerning the expected scattering
probabilities by the lattice and the probe led to the choice of a probe power of about
100 puW corresponding to an on-resonant scattering probability ~ 67%. The probe
laser frequency is continuously monitored and locked to a commercial wavemeter, as
described in chapter The other utility of the saturation curve shown on fig. [T1.13]
is to precisely calibrate the probe power seen by ion, which, in turn, is necessary in
order to analyze the experimental data. To do so, the saturation signal was fitted
with the solution of the OBE with the probe power seen by the ion written as
ax Pyrope where Pppope denotes the probe power measured before the vacuum chamber
and corresponds to the z-axis on the graph shown in fig. and « is the fitting
parameter. From the fit « is found to be equal to 0.89640.002, and therefore a probe
power measured before the vacuum chamber of 100 W gives a scattering probability
corresponding to an ion “seeing” a probe power of 89.6 + 0.2 uW, which, for waists
in the horizontal and vertical dimensions equal to, respectively, 2.87 mm and 110
wm corresponds to a Rabi frequency ~ 1.83 x I'sgs (see section in appendix [A]).
Finally, the imaging intensifier gate is chosen to be slightly larger than 0.5 us, and
centered on the probe time window in order to ensure that we collect as many photons
scattered by the probe as possible, but at the same time that we collect as few extra
photons scattered by the lattice as possible.

11.4 Results

11.4.1 Calibration of the two-level model

For practical reasons in connection with the very long computation times in the case
of the three-level atom models, all spectra were fitted using the two-level atom model
with the parameter I'p, , adjusted so as to take into account the broadening due
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Figure 11.13: On resonance saturation curve showing the photon scattering probability
versus the probe power measured before the vacuum chamber. The experimental data is
fitted with the three-level atom model with the probe power seen by the ion as the fitting
parameter (see text for details) and probing time ¢ty = 0.5 us.
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Figure 11.14: Spectrum of the Ds/; to P;/o resonance of a bare ion versus the probe
detuning dp. Solid circles: Experimental data. The probe power measured before the
vacuum chamber is 100 pWW. Dashed red line: Numerical simulation using the three-level
“static” model, with a probe Rabi frequency corresponding to an effective power of 89.6 uW,
and a probing time ¢y = 0.5 ps. Solid black line: Fit using the two-level model, with I'p, ,
as fitting parameter, fixed probe power of 89.6 uWW, and maximum scattering probability
normalized to that of the three-level model.
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to the probing time (section , and with the ion temperature and the lattice
depth as free parameters. The adjustment of I'p, ,» was done by fitting the resonance
spectrum of the bare ion shown on fig. with the two-level model, with I'p, , in
eq. (11.11)) as the fitting parameter.

11.4.2 Experimental results

11.4.2.1 Presentation of the results
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Figure 11.15: Spectra corresponding to an ion localized in a red-detuned lattice (red
squares), a blue detuned lattice (blue triangles) and for an ion without an optical lattice
(black circles). All the data was taken with a probe power of 100 uW (measured before
the vacuum chamber). The lines indicate a fit to the two-level adjusted model described
above, with as fitting parameters the ion temperature and the lattice depth. The dashed
lines correspond to the numerical simulations with extreme values of T4+ and Tjoy, as input
parameters.

Figure shows experimental results for blue- and red-detuned lattices of iden-
tical depths of ~ 17 mK. These spectra are plotted along with the spectrum without
lattice shown on fig. for reference. As expected, the spectra corresponding to
the ion localized in the red- or blue-detuned lattices show a pronounced asymmetrical
broadening, and the maximum of scattering probability in the spectrum correspond-
ing to an ion localized in a red-detuned lattice is shifted towards high frequencies
compared to the bare resonance, while this is not the case for the spectrum corre-
sponding to the ion localized in the blue-detuned lattice. Moreover, the maximum
scattering probability in the cases of the ion localized in the lattice is much lower
than for the bare ion. Finally, these spectra are in very good agreement with the
simulations showed on fig. which is a good indication that our simple model
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captures the essentials of the physics of the localization process. In all spectra, the
constant background of typically 2% due to the lattice-induced scattering is indepen-
dently measured by running a sequence without probing the ion with the 866 — 4
laser but keeping the same imaging gate, and by recording the fluorescence. This
background has been subtracted to all the spectra shown in this section.
The spectra are fitted with the adjusted two-level model as indicated in section|[11.4.1]
with T4 and Tj,, as fitting parameters. In the case of a red-detuned lattice, the
fit returns Tjq; = 16.5 £ 0.2 mK and T;,, = 6.6 & 2.4 mK, and the case of a blue-
detuned lattice, Tjo++ = 17 £ 2 mK and Tj,, = 5.4 £ 1.3 mK. The uncertainty on
the lattice depth is much smaller in the case of the red-detuned lattice than in the
blue-detuned lattice, since it is given by the position in frequency of the maximum of
scattering, and, as mentioned in section|11.1] can be determined with a great accuracy
owing to the large value of kp/h. Indeed, an uncertainty of 0.2 mK on the lattice
depth in this case corresponds to an uncertainty of 0.5 MHz on the position of the
peak of scattering probability. The uncertainty on Tj;,,, is larger in both cases, and the
values returned by the fit in both the blue- and red-detuned cases are in reasonable
agreement.

On fig. [11.16] spectra measured in the case of a lattice with T4 ~ 8.5 mK
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Figure 11.16: Spectra corresponding to an ion localized in a red-detuned lattice (red
squares), and in a blue detuned lattice (blue triangles). All the data was taken with a probe
power of 100 uW (measured before the vacuum chamber). The lines indicate a fit to the two-
level adjusted model described above, with as fitting parameters the ion temperature and
the lattice depth. The dashed lines correspond to the numerical simulations with extreme
values of Tiq1+ and Tiorn as input parameters.

are presented. These spectra globally show the same features as the ones discussed
previously, but compared to the previous spectra, the experimental data seems to de-
viate more from the analytical model, which predicts a systematically lower scattering
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probability than what is observed. The depth of the lattice is in the red-detuned case
Tiar: = 8.62 £0.16 mK, and in the blue-detuned case Tj,;; = 8.5 + 0.7 mK, values in
good agreement with each other. However, the ion temperature in the red-detuned
case Tjon = 4.79 + 1.22 mK strongly differs than the one in the blue-detuned case,
which is T;,, = 2.7 £ 0.5 mK. Finally, in all spectra presented here and correspond-
ing to the ion localized in the blue-detuned lattice, the secondary peak in scattering
probability predicted by the model for detuning ép = —2% is small, whereas its
counterpart around dp in the red-detuned lattice is more pronounced.

On fig. a) spectra corresponding to the ion localized in red-detuned lattices of
depths

Tt = 8.5, 12.5 and 24.7 mK are shown together. The positions in frequency of
the maximum of scattering are plotted as a function of the lattice input power on
fig. b)7 where they are shown to be in excellent agreement with the linear re-
lationship between lattice input power and frequency shifting of the resonance (see
eq.)7 and demonstrate the robustness of this method to measure the depth of
the optical lattice.

11.4.3 Discussion

Overall, the data presented above is in satisfying agreement with the analytical model
proposed in this work: the prediction of the scattering probabilities and global shapes
of the spectra are found to match the experimental data, and the lattice depths
returned by the model in the cases of blue- and red-detuned lattices of similar depths,
for the two cases where this comparison is available, agree well with each other. We
can thus be relatively confident that, as stated above, the model developed above
allows for a good understanding of the localization process. However, a closer look at
the data reveals the presence of several discrepancies, between the experimental data
and the numerical predictions, but also between experimental data taken for blue and
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Figure 11.17: (a) Spectra corresponding to lattice depths of ~ 8.6mK (yellow circles),
17 mK (red circles), and 24.5 mK (brown circles). The solid lines are the fit to the two-
level adjusted model described above. The data was taken with a probe power of 100 uW
(measured before the vacuum chamber) (b) The values of lattice depths retrieved from the
fit of the spectra shown on the figure on the left are plotted against the measured lattice
power. The solid line is a linear fit to the data and shows a +2.7% agreement with the
experimental data.
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red detuned lattices of identical depths. Several reasons can be pointed out in order
to understand these differences, and they are reviewed below.

11.4.3.1 Possible reasons explaining the imperfect match between the
analytical model and the experimental data

1. As explained above in this chapter, the effeective two-level atom model used to
analyze the experimental data does not take into account the oscillatory motion
of the ion in the potential. Further analysis using the full three-level atom model
would be necessary.

2. The assumption that the ion’s position or energy can be described by a Boltz-
mann distribution is, strictly speaking, not true; in the case where the lattice
ramp up is truly adiabatic, the analysis made in [64] shows that the energy is not
thermally distributed in the lattice site, even though it is so in the loose axial
Paul trap potential. Discrepancies we observe between the theoretical predic-
tions and experimental data could therefore be an indication of the non-thermal
nature of the ion’s motion inside the lattice.

3. As discussed previously, for the highest lattice depths (Tja4: ~ 17 mK and 25
mK), the ramp-up cannot be considered truly adiabatic. Molecular dynamics
simulations shown in [64] show that the energy distribution then deviates from
the one expected in the case of an adiabatic ramp-up. It is difficult to probe
this effect in our simulations, since there is no analytical expression of the en-
ergy distribution in cases of non-adiabatic ramp-up, but this effect should be
integrated in future and more refined numerical simulations.

4. As shown also in [64], it is of utmost importance that any residual axial micro-
motion be minimized, since micromotion-induced off-resonant parametric and
on-resonance driven resonances can otherwise be excited and strongly alter the
observed spectra. While axial micromotion was compensated as well as possi-
ble [64], some remaining excess micromotion could affect the spectra.

5. In a given sequence, the lattice is ramped up for 2 us, held high for 1 ps and
probing takes place within the last 0.5 us of the lattice high-time. Therefore,
there is a non-negligible probability for lattice-induced excitation before probing
takes place, and this effect is expected to be more pronounced for an ion pinned
at an antinode in a red-detuned lattice, than for an ion placed in a blue-detuned
lattice. However, we checked that this effect alone does not alter the signals we
measure - at least not in an observable extent, but it is yet to be assessed
if, combined with the other possible causes listed here, this could lead to the
differences we observe between data taken in blue and red-detuned lattices of
identical depths.

6. Finally, the frequency-dependent finesse of the optical cavity used to generate
the optical lattice could also play a role in the observed differences. In [30],
measurement of the finesse at 850 nm was performed and yielded a value of
F =~ 4000, whereas the finesse at 866 nm is equal to F = 3000 & 200 [53]. In
our case, the wavelength of the blue-detuned lattice is ~ 864 nm, while that
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of the red-detuned lattice is ~ 868 nm, which, assuming that the finesse varies
linearly within the range of wavelengths from 850 nm to 868 nm, corresponds to
a change of ~ 250. Assuming that this variation can essentially be traced back
to a change in the input coupler’s transmission, this means that for an identical
optical lattice power injected inside the optical cavity, the blue-detuned lattice
is deeper than the red-detuned lattice, by a factor ~ 10 %.

11.4.3.2 Comparison of errors given by the model presented section
or directly by the spread in recorded CCD counts

As pointed out in chapter [0} the detection and imaging system has a very low de-
tection efficiency, and this results in the rather large error bars accompanying the
experimental data. Indeed, in a typical measured spectrum, each experimental data
point corresponds to a set of 30 images, and as mentioned earlier, this corresponds at
most to about 90 photons. The low number of images per experimental point, and the
low number of detected photons per image both naturally lead to a strong dispersion
of the measured fluorescence between each image. However, analyzing the workings
of the detection setup as done in section [0.2] leads to a reduction of the uncertainty
on the results. This is shown on fig. where the spectrum corresponding to a
red-detuned lattice of Ty, =~ 24.5 mK is presented with, on the left, error bars sim-
ply accounting for the aforementioned dispersion in the number of detected photons
between each image, and on the right, error bars calculated by the model presented in
section[0.2] by using the total number of CCD counts of the 30 images. This reduction
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Figure 11.18: (a)Spectrum corresponding to an ion localized in a 24.5 mK lattice, analyzed
without the detection analysis model presented in section (b) Spectrum corresponding
to an ion localized in a 24.5 mK lattice, analyzed with the detection analysis model presented
in section In both graphs, the black solid line indicate the background signal from the
lattice and the black dashed lines the uncertainty on its value.

of the uncertainty on the results can be understood as the consequence of the knowl-
edge used in calculating them - essentially, we measured the exact values of Py, N,
and o, -, whereas in the case of error bars simply estimated from the dispersion of

the results, we actually assume no specific knowledge on the detection setup.






Chapter 12

Outlook and conclusion

12.1 Shelving

As mentioned in section due to the low detection efficiency of the detection
system only a few tens of photons are typically detected per image, and this results
in large error bars. A way to improve drastically the detection efficiency and hence
the data acquisition time is to use a shelving technique similar to the one described
in, e.g. |12]. The relevant diagram of the energy levels is shown in the fig. The
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Figure 12.1: Diagram of the relevant energy levels used to perform a shelving experiment in
order to detect the photon scattering probability from the lattice with a near unit efficiency.

4s2S, ),

idea of the scheme is the following: the ion is prepared in the m; = +5/2 Zeeman
substate of the 3d% D5 /2 state and optically trapped by applying a far-detuned standing
wave on the 3d2D5/2 to 4p2P3/2 transition at 854 nm. The Doppler-cooling and
repumper lasers presented in the previous sections are continously applied, such that
the emission of a photon from the P;/, state to the Sy, state leads to the ion cycling
within the three levels Sy /3, P1/o and D3/, . Due to the high scattering rate on the
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Py /5 to S/ cooling transition, a high number of photons could therefore be emitted
following the scattering of a photon scattered by the probe, bringing the detection
efficiency effectively close to unity provided one monitors the ion’s fluorescence for
a long enough time. As evoked in section [11.4.3] another benefit could come from
the expected slightly higher value of the finesse of the optical cavity at 854 nm, and
therefore the possibility to create deeper optical lattices with the same input power.

12.2 Probing non-thermal motion

The results presented in the previous chapter may already indicate that this method
allows for determining if the ion position distribution inside the optical lattice well is
thermal or not. One could go a bit further, and ask oneself what one would observe
in the case of an ion excited in a strongly non-thermal motional state. As a simple
example, we look at the spectrum produced by an ion having a given energy - as
opposed to a given temperature, the case considered throughout the previous chapter.
The result of a simulation using the model of an oscillating three-level ion is shown
on fig. for a red-detuned lattice 24.5 mK deep and for two different ion energies
corresponding to half the lattice depth, and 90% of the lattice depth, respectively.
The spectra are “reversed” compared to the previous ones, they reflect the probability
distribution P(kz|E)dkz calculated in section For the highest values of
lattice depth - i.e ~ 25 mK, the oscillation frequency at the bottom of the lattice well
is close to 4 MHz, and thus is nearly equal to the rf frequency of the Paul trap 2, ;.
In principle, the micromotion was carefully compensated for these experiments, but,
as mentioned in the section[T1.4.3], any residual axial micromotion can have dramatic
consequences on the localization signal [64], and could drive parametric resonances
of the ion inside the lattice well. Since only the ions with the lowest energies have
an oscillation frequency matching the resonance condition, such parametric resonance
mechanism would only drive a small fraction of the ions, and could therefore lead
to a “squeezing” of the energy distribution, which might, under ideal conditions, be
reflected in spectra similar to the ones shown in fig.

12.3 Two ions in a hybrid trap

A natural extension of the experiments presented in the previous chapter is the spec-
troscopy of two ions trapped in an optical lattice. In this case it could be possible
to visualize the transition from the regime where the effect of the lattice potential
override that of the Coulomb force - the case considered in this thesis, and in which
the ions behave as independent entities -, to a regime where the Coulomb interac-
tion between the ions dominates. This transition occurs for equal Paul trap axial
frequency of and lattice oscillation frequency w, = w;. For an axial frequency of the

1/3
potential of the Paul trap of ~ 80 kHz (inter-ion distance d = <L> ~ 15

2megmw?
pm) this corresponds to a lattice depth T ~ 1.2 X 10~2 mK and would therefore
be difficult to observe, since the associated frequency shift would be on the order of
3 MHz, much less than the natural width of the transition. For an axial frequency
of 1 MHz (inter-ion distance ~ 9 um), the lattice depth at which w, = w; is 1.8 mK
corresponding to a shift of ~ 75 MHz. The transition from w, > w; to w, < w; as we
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Figure 12.2: Simulated spectra using the model of an oscillating three-level ion, in the
case of a red-detuned lattice with Tj4:+ = 24.5 mK, and corresponding to an ion of a definite
energy, equal to 0.9Uq; (maximum of scattering for dp ~ 0 MHz) and to 0.5Ujq¢¢-

ramp up the lattice should therefore be observable, and the two ions independently
observable on our imaging system. In fig. we look at the expected spectra for
two ions placed in a red-detuned optical lattice, in two different situations:

1. shallow lattice: two ions confined via the Coulomb interaction, Doppler-cooled
to 0.5 mK, and with w; < w,, and such that one ion is placed at a node of the
lattice, and the other one at an antinode (fig. [12.3R).

2. deep lattice: two ions pinned at the antinodes of the lattice (fig. [12.3p).

- AAAAAAA

- AAAAAAA

Figure 12.3: (a) Two ions pinned by the Coulomb force, and placed at a node (1) and at
an antinode (2) of a red-detuned optical lattice. (b) Two ions pinned at the antlnode of the
red-detuned lattice.

As shown on fig. the difference in regimes should be readily observable with the
parameters chosen here. This method could therefore be used as a starting point for
experiments exploring the constrained motion of ions placed in an optical lattice, and,
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Figure 12.4: Simulated spectra using the adjusted two-level model for two ions placed in
a red-detuned optical lattice of varying depths, and in a DC axial potential with secular
frequency 1 MHz. The depth at which the oscillation frequency inside the optical lattice
matches that of the axial trap frequency is 1.8 mK. Red, solid line: ion Doppler cooled to
0.5 mK, placed at the node of a 1 mK optical lattice. Red, dashed line: ion Doppler cooled
to 0.5 mK, placed at the antinode of a 1 mK optical lattice. The numbers (1) and (2) refer
to the schematic on fig. m Blue: one ion placed in a 3 mK optical lattice (in this case
the ion is localized). Grey: one delocalized ion in a 1 mK optical lattice, shown here for
reference.

along with experiments aiming at measuring the energy distribution of ions localized
in a lattice well, provide an additional characterization of the optical lattice.

12.4 Conclusion

In conclusion, we have demonstrated a method for spectroscopically probing an ion
placed in an optical lattice which complements the previous methods used in the
group and gives further evidence of the pinning of a trapped ion in an optical lattice.
We have built an analytical model which takes into account the level structure of
the °Ca™ ion, and assumes that the ion distribution of energy and position can be
described by a Boltzmann distribution. We find that this model gives both a satisfying
qualitative and quantitative agreement with the experimental data, by reproducing
the shape of the spectra, and by predicting scattering probabilities and lattice depths
consistent with the measured ones.

Comparing the ion’s temperature in optical lattices of identical depth but different
sign of detuning, we find that the ion seems hotter in red-detuned lattices than in
blue-detuned lattices, and in the case of the 8.5 mK deep lattice, that the measured
ion temperatures are inconsistent with each other. Additionally, we find that the
scattering probabilities are consistently higher than the expected values, and this
effect seems to be stronger at smaller lattice depths. Further analysis is required to
understand these discrepancies between the theory and the experimental data, and a
few ideas for further investigations are given in section [I1.4.3]

In addition, the method also provides a precise calibration of the lattice depth as
a function of the lattice input power, owing to the large frequency shift of ~ 42
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MHz/mK of the peak of maximum scattering probability.

While the uncertainties in the measurements presented here are relatively large due
to the low detection efficiency, combining this method with shelving should allow
for drastically improved precision in the measurements of the spectra allowing, for
example, probing of non-thermal energy distributions and the competition between
the lattice-induced and Coulomb forces.






Chapter 13

Conclusion

This thesis consists of three projects which take place within the broader scope of
experiments using Ion Coulomb crystals as a tool for quantum information and quan-
tum simulations of many-body physics models.

In close connection with prospects of using two-component crystals for the realiza-
tion of a quantum memory [86,/97], a new frequency-doubled source was developed
for Doppler cooling of various isotopes of Cat. The frequency doubled source is de-
scribed in chapter[7} It consists of a source of light at 794 nm generated by a tapered
amplified Toptica TA Pro diode laser, subsequently frequency doubled in a non linear
ppKTP crystal placed inside an optical ring cavity in a bow-tie configuration. The
single-pass conversion coefficient of (0.5 - 0.7) %W ~! was measured with a beam with
a waist of 35 um. The non-uniformity of this coefficient over the crystal surface is
attributed to defects in the poling of the crystal, and indicates the presence of good
and bad spots to perform SHG. By placing the crystal in a bow-tie cavity of finesse ~
48 and corresponding enhancement factor P.q,/P;, ~ 30, a stable output of 60 mW
of frequency-doubled light could be generated by using an input power of 190 mW
at the fundamental frequency. Correcting for the imperfect mode-matching of the
input field to the cavity mode, this corresponds to a doubling efficiency of ~ 43 %.
At higher input powers, the observation of instabilities in the frequency-doubled out-
put are attributed to various effects, such as thermal effects due to the strong UV
absorption inside the crystal, and the presence of BLIIRA.

In chapter 0] we present an analysis of the detection system which aims at quantifying
as accurately as possible the scattering probability given the number of recorded CCD
counts. To do so, we model the probabilistic nature of the detection of a photon onto
the imaging intensifier by using a binomial law, and the distribution of counts on the
CCD camera for a detected photon with a normal distribution. Applying this model
to the real setup imposes to measure the distribution of CCD counts per detected
photon, which we performed by measuring the histogram of CCD counts for an aver-
age of 2 1 detected photons. From this we were able to infer the detection efficiency
of the setup which we found to be equal to (1.67+0.01) x 10~*. Our model allows us
to rigorously calculate the probability P(N!'|NF) to detect N/°* CCD counts given
a number Nf of emitted photons, but is not directly suited to estimate the most
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probable number of emitted photons given a measured number of CCD counts. To
obtain this information, we build an effective probability distribution P¢f/ (N];E | NZot)
by selecting values of P(N!/|NJ) corresponding to a fixed N/°*. Comparing the
behaviors of these distributions enables us to obtain a better understanding of the de-
tection mechanism and to quantify our (lack of) knowledge on the number of emitted
photons given a certain number of recorded CCD counts.

In the chapter we present the results on the localization spectroscopy of a sin-
gle ion inside an optical lattice. In a typical experiment, an ion is trapped in a linear
rf Paul trap and placed inside the mode of an optical cavity whose axis coincides with
that of the trap. An intracavity standing wave far-detuned from the D3/, — Py/o
transition is adiabatically ramped-up, and the induced as Stark shift of the D3, and
P, /5 levels is measured by monitoring the fluorescence on the P; /5 — S} /o transition
resulting from the interaction with a probe field applied from the side of the cavity.
Measuring the spectrum provides an unambiguous signature that the ion is localized
inside the optical lattice, and can in addition inform on the ion dynamics inside the
lattice.

We measured the spectra corresponding to an ion placed in optical lattices ~ 8.6 mK,
12.5 mK, 17 mK and 24.5 mK deep. In order to interpret the spectra we have de-
veloped simple analytical models assuming a thermal position distribution inside the
optical lattice. The spectra overall agree well with the models describing the ion as a
two- and three-level system, indicating that a satisfying description of the physics can
be given by assuming a thermal distribution of the ion’s position inside the optical
lattice. In two cases - lattice depths of 8.6 mK and 17 mK -, we were able to compare
the spectra for an ion trapped in a blue- and red-detuned lattices of identical depths.
In the 17 mK deep lattice, the ion temperatures estimated by fitting the experimental
data with the model agree with each other, while it is not the case for the 8.6 mK
deep lattice. Moreover, the model seems to predict scattering probabilities consis-
tently lower than the measured ones. The reason for these discrepancies is not well
understood at the time of writing, but several reasons which could explain them are
given.

In the last chapter, we give a few suggestions in order to improve the experiment,
and apply the method to address other experimental questions. First, we indicate in
section [12.1how a shelving method could be used at a profit to drastically enhance the
detection efficiency. By using this method, increased precision on the results could
be obtained, and could allow for, e.g., testing how well the ion dynamics inside the
optical lattice can be characterized. In the case of two ions localized inside the optical
lattice, the method presented in this thesis could, in principle, enable to visualize the
transition between a situation where the force induced by the optical lattice dominates
and a situation where the Coulomb force dominates, in close connection to studies
of heat transport in chains of ions [46}/48/|49], and the study of structural transitions
of ion chains in optical potentials [57,/58]. In the case of an ion trapped inside a
harmonic potential, raising the optical lattice adiabatically in principle only affects
the distance between two consecutive energy levels, but does not change the popula-
tions in the different energy levels. It follows that, provided the ion’s distribution is
thermal, measuring the ion temperature inside the optical lattice directly informs on
the temperature of the ion outside the optical lattice, with an improved precision set
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by the stretching or the energy levels. Using the shelving method to measure more
precisely the spectrum of the ion could therefore turn this method into a scheme for
accurate measurement of the ion temperature inside the Paul trap.
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Appendix A

The “°Ca’ ion

A.1 Abundance of Ca-isotopes

Isotope Abundance
40 96.941%
42 0.647%
43 0.135%
44 2.086%
46 0.004%
48 0.187%

Table A.1: Abundance of the stable isotopes of calcium [13§].

A.2 Transition wavelengths and decay rates

Transition =~ Wavelength A I'=2y Lot [mW /cm?]
4851 /2-4 P /5 396.847 nm 27 x 20.7 MHz 43.3
451)9-4P3;5  393.366 nm  27wx 21.5 MHz 46.2
3D5/5-4P1 5 866214 nm  27x 1.69 MHz 0.34
3D3/9-4P3/5  849.802 nm  2mx 0.176 MHz 0.038
3D5/9-4P3/5  854.209 nm 27X 1.56 MHz 0.33
481/9-3D3/5  732.389 nm 27 x 0.16 Hz 5.3x 1078
451/9-3D5/5  729.147 nm 27 x 0.17 Hz 5.7 x 1078

Table A.2: Data for transitions in “°Ca®™ . The first five transitions are dipole-allowed
while the last two are quadropole transitions. Transition wavelengths are measured in air
[75L/76]). T is the transition rate [75,|76]. Saturation intensities are calculated according to

Lot = % [139], using the relevant transition rate I' and transition frequency w.
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The °Ca™ ion

A.3 Clebsch-G

ordan coefficients

The coupling strengths for dipole-allowed transitions between the various sub-levels

are characterized by
coefficients (see, e.g.,

the values of T' given in Table and the Clebsch-Gordan
Ref. [140] for a definition), which are listed in Tables[A.3

481 )2, —1/2 48y, +1/2
4P 9, —1/2 | —\/1/3 2/3
4P j9,+1/2 —/2/3 V1/3
AP35, —3/2 1 -
APy, —1/2 | /2/3 V1/3
AP35, +1/2 1/3 2/3
4Py, +3/2 - 1

Table A.3: Clebsch-Gordan coefficients for transitions between the 45;,, state and the

4Py /5 and 4P5/; states.

3D5/5,—3/2 3Ds5,—1/2 3D3/5,+1/2 3Dg3/5,+3/2
APy, —1/2 V1/2 —\/1/3 V1/6 -
4P j9,4+1/2 - 1/6 —/1/3 1/2
4Pgj5,=3/2 | —\/3/5 V2/5 - -
4P;3/5,—1/2 —/2/5 —/1/15 8/15 -
4P;3/9,41/2 - —/8/15 V1/15 2/5
4P3 )9, +3/2 - - —/2/5 3/5

Table A.4: Clebsch-Gordan coefficients for transitions between the 3D3,, state and the

4Py /5 and 4P5/; states.

4P3/2,—3/2 4P3/2,—1/2 4P3/27—|—1/2 4P3/2,+3/2
3D5/2,—5/2 V2/3 - - -
3Ds9,—3/2 | —\/4/15 V2/5 - -
3D5/9,—1/2 1/15 —/2/5 V1/5 -
3Ds5/2,+1/2 - 1/5 —/2/5 V1/15
3D5 /9, +3/2 - - 2/5 —\/4/15
3Ds5,+5/2 - - - V2/3

Table A.5: Clebsch-Gordan coefficients for transitions between the 3Ds,, state and the

4P3/; state.
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A.4 Zeeman-splitting

Zeeman-substates will experience an energy shift, AEg, when a magnetic field, B, is
present, which is in general given by [139):

AEB :mnguBB (Al)

where mj is the magnetic quantum number, pp is the Bohr magneton, B is the
magnetic field strength and g; is the Landé g-factor:

J(J+1)+S(S+1) = L(L+1)

2J(J +1) (A.2)

gJ:1+

where L, S and J are the quantum numbers corresponding to the angular momentum,
the electric spin and the total angular momentum, respectively. Values of g; are listed
below for the relevant states of the *°Ca™ ion.

State L S J qgJ
480 0 1/2 1/2 2
4Py, 1 172 1/2 2/3
4Py 1 1/2 3/2 4/3
3D3;p 2 1/2 3/2 4/5
3Ds;, 2 1/2 5/2 6/5

Table A.6: Values of g; for the relevant levels of the 40Cat ion.

A.5 Rabi frequency

The coupling strength of a particular (dipole-allowed) transition for an intensity I
of the coupling field is characterized by the Rabi frequency, which for a transition
between the Zeeman-substates |g) and |e) is given by [139):

3nc?T
Qge = age T VI (A.3)

where I' and w are the transition rate and resonance frequency of the electronic
transition (see table[A.2)), and a4, is the Clebsch-Gordan coefficient for the considered
Zeeman-substates.






Appendix B

Complete elliptic integral of the
first kind

In section [11.2.2] we used the complete elliptic integral of the first kind. With our
notations, this integral is defined as:

(B.1)

Ry Sy —"
o V1i—kzsine Jo O —aB)(1 - k22

where ¢ € [0, 3], |k| < 1 and = = sin¢. Note that this convention differs from the
one used, e.g. in |141] or in [137], where the argument of the integral is the elliptic
modulus k, not its square (as is the case here).
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Appendix C

Calculation of the density of states
for the ion oscillating inside the
sinusoidal potential

We consider the situation depicted in section [11.2.2} a particle of energy E, mass m
and position z oscillating inside a sinusoidal potential of depth Uj,s, and wave-vector
k such that the oscillation frequency of the particle at the bottom of the potential

%. The expression relating the energy of the particle to its position

reads w; =
and velocity inside the potential well was given in eq. ((11.21)), and we recall it here

for clarity:

ANV 2 2 2k? o B
(k2(t))° + wj sin®(kz(t)) = —F = wj (C.1)
m Ulatt
By isolating kZ(t) in the above expression, we obtain:
kEz(t) = w —sin?(kz) (C.2)

latt

This constitutes the equation for the trajectory of the ion in the upper quadrant in
the phase space {kz, kZ}. In the lower quadrant, we have:

kz(t) = —wy —sin?(kz) (C.3)

latt
Such trajectories are shown on fig. a). Each trajectory corresponds to a constant
energy E. We want to calculate the density of states Q(E)dFE, i.e. the number of
cells dkzdkz contained between the trajectories corresponding to ¥ and E+dFE. This
corresponds to the infinitesimal surface delimited by two such trajectories (see fig.

b)) and is formally equal to:

Q(E)dE - / dkzdk (C4)
E<M+Uln,tt sin?(kz)<E+dE
2k2
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Using eq. (C.2), we can rewrite dkZ as:

E
dkz = — —sin®(kz) | dE C.5
T O sin”(kz) (C.5)
wy 1
= dE (C.6)
2Vt Uf“ — sin?(kz)
and use it in eq. (C.4)), which gives:
w | [FEmes 1

Q(B)dE = 221 / di dE .7

Ulatt | Jo UIE“ — sin?(k2)

where the factor of 2 comes from the fact that we calculate the surface in the upper-
right quadrant and multiply it by four to get the total surface, since the trajectory is
symmetric about the z and y axis. kzpq, is the upper bound for the motion inside
the potential, and is < /2 for E/Ujq < 1, and is equal to 7/2 otherwise.

E+dE
)

&,

; 3 o 5 } ; 0

kz
(a) (b)
Figure C.1: (a) Trajectories of constant energies in phase-space, for different values of
k = E/Uasz. (b) Two trajectories corresponding to energies F and E + dE. The grey area
corresponds to the density of states Q(E)dE.
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