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Preface

This thesis summarizes my work as a PhD-student in the Ion Trap Group of Michael
Drewsen at the Department of Physics and Astronomy at the University of Aarhus.
The past four years have introduced me to a number of interesting problems and
tasks of a diversity ranging from the understanding of ion trapping and quantum
information science to basic milling and soldering.

The work presented here could not have accomplished without the help, guidance
and support from both colleagues, collaborators, teachers, friends and family.

During the four years I have been involved with this project it has grown from
a small, at times one-man effort, to being a full group within the Ion Trap Group.
It has been truly amazing to experience a project grow from being drawings on a
computer screen to a whole group of colleagues and friends with whom you can enjoy
a cold beer with at the end of the day. Not solely because of their pleasant company,
the members of the Ion Trap Group, past and present, deserves a great amount of
credit for present state of this project.

About five years ago, in the spring of 2003, Anders Mortensen came up to me
and asked if I would like to go trap some ions with him. A year and a half later,
after I had spent six months in the Ion Trap Group as an undergraduate student and
another year abroad, Anders was finishing up his PhD-studies and I returned to the
group to pick up where he had left. I am grateful to Anders for trusting me with
his project and I feel privileged to have been given the responsibility to continue his
work. I am also grateful to my supervisor Michael Drewsen for accepting me as the
PhD-student for this project and for introducing me to this exciting field of physics.
Our many discussions and his guidance and enthusiasm over the past four years have
been invaluable.

After about two years, I was joined in my efforts, toward the construction of a
new ion trap, by Aurelién Dantan. I had met Aurelién by chance at a conference in
Copenhagen and after a visit to our group he agreed to join as a postdoc after the
summer 2006. Today, I do not believe it would have been possible to find a better man
for the job. Aurelién immediately added momentum to the project and by Christmas
we had trapped the first ions in our new trap. Shortly after, Maria Langkilde-Lauesen
started working as a master student, both in the lab and later on simulations for the
experiments, which became a great resource to us.

In one of the first experiments we worked on with the new trap we joined forces
with Rich Hendricks and David Grant, also from the Ion Group, who were working
on loading of ion traps by laser ablation. Rich lead these experiments with great skill
and other than the fact that they were very successful I also remember them as being
some of the most fun experiments to do.
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Since then we have been fortunate to have Joan Marler join our team as a postdoc.
Once again, it was a perfect match. The project was facing some heavy programming
tasks to get the experimental control system working, which was something neither
member of the team at the time were too experienced in, and we were both amazed
by the swiftness with which Joan turned our “old school” manually operated project
into a fully computer controlled modern experiment. Shortly after Magnus Albert
joined as a PhD-student and has since taken over from me with great enthusiasm and
skill. It is indeed a privilege, both to be part of such a team but also to be leaving a
project knowing it is in the best hands possible.

During the past four years I and the project have benefited from the collaboration
with several people. Christoph Clausen and Peder Møller were a great help in the
development of the UV light source that we needed to produce the ions. Gregers
Gjerlev Poulsen, Rasmus Haahr Bogh and Nis Dam Madsen all contributed to the
development of diode lasers need for the experiment. And Ulrich Busk Hoff worked
with us on the single photon detection system. During my first two years in the lab, I
had the pleasure of the company of fellow PhD-student Ditte Møller, who was always
helpful and also made the time there very enjoyable. During this time I was also
fortunate to work in the same lab as Assistant Professor Jens Lykke Sørensen whose
knowledge of physics and especially of lasers I have benefited greatly from.

I would also like to thank all the technical staff that contributed. Especially Henrik
Bechtold who helped design the ion trap and Finn Rander who machined all the parts.
The entire electronics department lead by Poul Erik Eriksen, where in particular the
assistance of Erik Søndergaard and Frank Mikkelsen have been invaluable. Torben
Hyltoft Thomsen who was always helpful with the operation of the machines in the
student work shop and everyone from the workshop of Uffe Simonsen who helped
manufacture several of the parts of our experiment. Grete Flarup, our secretary, who
has saved me on many occasions, and especially on those where I would otherwise
have been locked out of my office or even the building.

Our experiment has gained a lot from the fruitful collaboration with the theory
department, both when they were part of the QUANTOP research center but also
since they have become the LTC research center. From this group of people I am
especially grateful to Professor Klaus Mølmer who has always had the time and the
patience to explain things that where not always immediately obvious to me.

Although the Ion Trap Group is composed of several experiments it really is just
one group and I would like to thank all of the members, past and present, for making
the past four years so enjoyable. Our lab is located right next to the Quantum Gas
Lab, which has also led to a very fruitful collaboration. From this group I would in
particular like to thank Henrik Kjær Andersen. Other than being a great help in the
lab he has also been a great office mate over the past four years.

In writing my thesis I have benefited greatly from discussions with Aurelién Dantan
and I am grateful for his willingness to undertake the enormous task of proofreading
my thesis.

Finally, I thank all of my friends and family for all of their support and for sticking
with me over the past four years.

Peter Herskind, September 2008.
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Chapter 1

Introduction

Quantum electrodynamics establishes the coupling between light and matter at a
fundamental level. Even in the vacuum an atom is influenced by the fluctuations of
the electromagnetic field, which give rise to well-known effects such as spontaneous
emission and the Lamb shift [1]. The effect of spontaneous emission, for instance,
arises as the result of the atom being coupled to the vacuum field and in this sense
the notion of an isolated atom is fundamentally unphysical. As the vacuum contains
an infinity of modes for the atom to decay to, the process is irreversible and the
emitted photon is incoherently added to the reservoir of the vacuum. In 1946 Purcell
noted that this description of spontaneous emission is only valid stricto sensu in the
absence of finite boundary conditions for the electromagnetic field. More specifically,
he pointed out that if boundary conditions are imposed on the system, e.g. in the
form a cavity surrounding the atom, the associated change in the density of states
available for the atom to decay through would lead to a change in the spontaneous
emission rate of the atom [2]. In 1974 Drexhage reported the first observations of
this effect by studying fluorescent organic dyes in the vicinity of a conducting plate
acting as a reflecting mirror [3]. He observed changes in the fluorescence from the
dyes depending on their distance from the mirror, signifying a change in the coupling
between the emitter and the electromagnetic field as a result of modified boundary
conditions for the field. In the present context of interactions with a cavity field, we
would characterize Drexhage’s cavity as only half a cavity and, hence, a very poor
one. For this reason no drastic changes in the fluorescence were observed in these
experiments. Later studies, with atoms in both microwave [4–6] and optical [7, 8]
cavities, have, however, demonstrated dramatic changes in the spontaneous emission
rate, both in the form of enhancement as well as inhibition.

Since these pioneering experiments the field has evolved rapidly and is now known
as the field of cavity quantum electrodynamics (QED) [9]. Within this field, a fun-
damentally different regime from the perturbative one to which the above mentioned
experiments belong, is the one in which the coupling between the atom and the field
mode of the cavity exceeds that of any dissipative processes in the system, such as
spontaneous emission and cavity field decay due to the finite quality of the cavity. In
this regime, single quanta of excitation may be transferred coherently back and forth
between the atom and the cavity field and the emission of a photon by an atom can
thus become a reversible process.
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2 Introduction

g
√

N

γ

κ

Figure 1.1: Schematic of the generic cavity QED experiment. γ is the decay rate of the
atomic dipole, κ is the decay rate of the cavity field, g is the single atom coupling strength
to the cavity field and N is the number of atoms.

The generic cavity QED experiment is drawn schematically in fig. 1.1. Here γ
denotes the decay rate of the atomic dipole, κ is the decay rate of the cavity field
and g is the coupling strength of a single atom to the cavity field. For a collection
of N atoms as depicted here, the relevant coupling rate is given by the collective
coupling strength of g

√
N . If for a single atom, the criterion g > γ, κ is fulfilled, the

system is in what is commonly referred to as the strong coupling regime of cavity
QED, in which excitation, as described above, can be coherently mapped from a
quantum state of an atom to a quantum state of a photon and vice versa. This
regime has been realized by a number of experiments with neutral atoms in Fabry-
Perot resonators both in the microwave [10] and the optical regime [11,12], as well as
in more exotic systems, such as single atoms coupled to monolithic resonators [13],
quantum dots coupled to micro resonators [14,15] and superconducting qubits coupled
microwave cavities [16]. In systems where N > 1 one can define a so-called collective
strong coupling regime, conditioned upon g

√
N > γ, κ. This regime was originally

studied with clouds of atoms passing through optical Fabry-Perot cavities [17] and
has recently been explored with Bose-Einstein condensates for which the combination
of optically dense atomic samples and high finesse cavities gave rise to formidable
coupling strengths [18, 19].

In general, all of the above systems rely upon the use of a high-Q resonator for the
electromagnetic field while at the same time having a low modevolume of the cavity
field as compared to the wavelength of the atomic transition. This was exactly what
was pointed out by Purcell in his 1946 letter.

The strong coupling regime of cavity QED provides a playground for light-matter
interactions, which is interesting to explore from a fundamental physics perspective
alone. Furthermore, cavity QED has recently attracted much attention due its po-
tential within quantum information science [20]. The motivation for developing tech-
niques that can be applied in quantum information science is driven by the promises
held by this field for realizing communication and computation beyond the limits of
classical information science. While quantum communication allows for instance for
fundamentally secure transmission of information [21], quantum computation offers
the possibility of solving problems that are intractable on a classical computer [22,23].
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At the heart of most applications within quantum information science is an efficient
interface between light and matter [24–26]. Whereas photons are excellent entities for
transmission and distribution of quantum information [27], stationary atomic systems,
such as laser cooled ions or atoms, are well-suited for processing [28,29] and storing [25,
30] of quantum information. Within the framework of cavity QED, neutral single atom
systems have made great progress in engineering of quantum interfaces for light [31–33]
making the field very active.

Cold trapped ions are currently state-of-the-art in quantum information process-
ing. Examples include quantum gate operations with outstanding fidelities [29, 34],
production of highly entangled states [35, 36], realization of small quantum algo-
rithms [37, 38], and the first realizations of teleportation of atomic systems [39, 40].
Also within metrology ions are now an established reference [41] providing precision
at the seventeenth decimal place. Combining the fields of cold ions and cavity QED
is thus very attractive as it allows the prime techniques developed within ions based
quantum logic and cavity QED based light-matter interactions to come together. Fur-
thermore, one avenue for scaling of present day quantum computation capabilities is
believed to be through the establishment of quantum networks [24, 26, 42] allowing
different processing units, consisting of e.g. few ions, to interconnect. In this respect,
an ion-photon interface would be a key element.

In recent years there has been much progress in interfacing single ions with optical
cavities [43–47], however, the regime of strong coupling between ions and photons has
remained an elusive goal for many years. As mentioned above, the strong coupling
regime is realized by the use of very high Q cavities and low modevolumes relative to
the wavelength of the atomic transition. In the optical regime this implies that a very
short cavity with very low internal losses must be employed. This makes the strong
coupling regime an extremely challenging goal to achieve in general. With ions it is
further complicated by the influence of the mirror substrates on the confining fields
of the ion trap, which may perturb or even impede trapping.

For applications within quantum information science, it has been pointed out
that the requirement of single-atom strong coupling can be relaxed for ensembles of
atoms [48, 49]. The regime of interest is then the collective strong coupling regime,
defined as g

√
N > γ, κ. This allows for the use of a longer and technically less

demanding cavity while still allowing strong interaction between the atomic ensemble
and single photons. In this regime, the performance of the system is often quantified

by the so-called cooperativity parameter C = g2N
2κγ , which, for many applications in

quantum information science, is the parameter of interest. For instance, it has been
shown that the performance of a quantum memory for light scales as 2C

1+2C [50, 51]
and with a cooperativity of e.g. 5, quantum states of light can thus potentially be
mapped onto the state of the atomic ensemble with more that 90% fidelity.

Recently, there has been much focus on such collective states in neutral atom sys-
tems and their interfacing with single photons [25,33,52,53]. For instance, storage of
excitation and subsequent conversion to single photons have been demonstrated [52]
as well as the full phase-coherent transfer of single quanta of excitation between dif-
ferent atomic ensembles via a cavity photon [53]. These experiments showed excellent
capabilities of the atom-photon interface in terms of the efficiency by which conver-
sion between atomic and photonic form of excitation could be achieved. However,
as many other experiments based on neutral atoms [25, 54], the storage time of the
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coherent atomic excitation was limited to microseconds. Although, progress to fight
this issue in neutral atom systems is ongoing, ion trap based systems are still un-
rivaled, with typical coherence times of milliseconds [55] and even seconds for some
schemes [30,56]. The many orders of magnitude separating the values of this param-
eter in neutral- versus ion-based experiments represent one obvious motivation for
embarking on a campaign to develop an ion-photon interface.

Additional advantages in working with ions are that they can be extremely well-
confined spatially [57], and that they are generally easily prepared in a given internal
state. As typical densities of ensembles of ions in ion traps are ∼ 108 cm−3 absorption
effects across the ensemble is negligible in optical pumping for instance.

Inspired by the benefits offered by ions and the potential of the collective regime,
we have developed an experiment capable of confining large ensembles of laser cooled
ions inside an optical cavity. This has allowed us to achieve the first realization of
collective strong coupling with ions. The cooperativity obtained in this experiment is
comparable to that used in neutral atom based quantum memories [25,33,52,58,59],
which is very promising for the use of this system as a tool for quantum information
science.

The thesis is organized as follows:

• Ch. 2, 3 and 4 are devoted to establishing the theoretical framework for the
following chapters. In ch. 2 we put the light-matter interaction sketched in the
above on firmer ground and derive equations for the interaction between atoms
and laser fields as well as derive expressions for physically observable parameters
in the cavity QED interaction. In ch. 3 we describe the ensemble of ions, which in
our experiments form so-called ion Coulomb crystals. Special emphasis is made
on the physical properties of such crystals that are of particular relevance for a
cavity QED type experiment. In ch. 4 we then describe how such ion Coulomb
crystals are cooled to millikelvin temperatures by Doppler laser cooling.

• The laser systems used in the experiments are described in ch. 5. Among these
is a 272 nm uv laser source that was developed specifically for the production
of the ion Coulomb crystals. The system relies on two consecutive stages of
frequency doubling and is described in some detail.

• In ch. 6 we describe the experimental setup. This rather technical chapter
covers both the design and construction of the ion trap used to confine the
ions, as well as the optical resonator and its characterization. Furthermore, the
measurement schemes employed in the later study of the cavity QED interaction
are also described.

• Ch. 7 describes how ions are loaded into the trap. We present results on loading
via two different methods: a “traditional”method using a thermal atomic beam
derived from an effusive oven, and a novel method, based on laser ablation of a
calcium target, that was recently developed in our group.

• The trap is characterized in ch. 8. The trapping parameters are calibrated
using the theory of ch. 3 and the performance of the system for cavity QED
type experiments is estimated.
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• As the final step in the process toward achieving collective strong coupling, the
preparation of the ensemble of ions in a specific state is treated both theoretically
and experimentally in ch. 9.

• In ch. 10 we present the first results on collective strong coupling of ion Coulomb
crystals and a cavity field at the single photon level. We evaluate quantitatively
the performance of the system by a series of measurements of the effect of the
coherent coupling between the ion Coulomb crystal and the cavity field.

• Finally, in ch. 11 we conclude and give an outlook for further studies with this
system.





Chapter 2

Atom-light interaction

This chapter will review the basic theory of atom-light interaction. We shall begin in
ch. 2.1 by considering an ensemble of two-level atoms interacting with a near-resonant
single-mode light field. This will later be extended to more complex systems, however,
much of the physics in this thesis will be well-described by such a simple two-level
model. In ch. 2.2 we introduce the theoretical treatment for the evolution of the field of
an empty optical resonator (a cavity). Finally, in ch. 2.3 we consider the interaction
of the cavity field and the atomic ensemble. In the actual experiments which will
be presented later in the thesis, a so-called ion Coulomb crystal will constitute the
atomic ensemble. These crystals will be described in detail in ch. 3. For the purpose
of introducing the theory for the interaction of these crystals with a light field, we
shall treat them here as simple two-level atoms.

2.1 Interaction of two-level atoms with a light field

The interaction Hamiltonian in the dipole approximation for N atoms interacting
with a single mode light field can be written as

Ĥint(t) = −
N∑

j=1

Dj ·E(t), (2.1)

where E(t) is the electric field and Dj is the dipole operator for the jth atom, which
are given by

E(t) = E cosωlt = E0ε̂Âe−iωlt + E0ε̂
∗Â†eiωlt, (2.2)

and
Dj = dj

eg
|g〉j 〈e|j + dj

ge
|e〉j 〈g|j . (2.3)

In the above equations, E0 is the electric field amplitude, ε̂ is the polarization vector,
Â and Â† are the annihilation and creation operator for the electromagnetic field, ωl

is the frequency, dj
eg

(= dj
ge

≡ dj) is the dipole matrix element of the transition and
|e〉j 〈g|j and |g〉j 〈e|j are the atomic raising and lowering operator, respectively. Note

that in eq. 2.2 we have absorbed the factor 1
2 into E0 to avoid carrying it through all

7



8 Atom-light interaction

the equations to follow. This means that the intensity of the light field is defined as

I ≡ 2ε0cE2
0 . (2.4)

In the rotating wave approximation, that is, omitting non-energy conserving terms,
the interaction Hamiltonian reads,

Ĥint(t) = −~

∑

j

[

gjÂ
† |g〉j 〈e|j eiωlt + gjÂ |e〉j 〈g|j e−iωlt

]

, (2.5)

where the coupling strength of the jth atom gj has been defined as (here assuming
linear a polarization such that ε̂ = ε̂∗ and parallel to dj),

gj =

∣
∣dj
∣
∣ E0

~
. (2.6)

Assuming all atoms have equal coupling strength g and defining the atomic coherences:

ˆ̃P =

N∑

j=1

|g〉j 〈e|j ; ˆ̃P † =

N∑

j=1

|e〉j 〈g|j , (2.7)

the interaction Hamiltonian becomes,

Ĥint(t) = −~gÂ† ˆ̃Peiωlt − ~gÂ ˆ̃P †e−iωlt. (2.8)

As the atomic coherences, the atomic populations are defined as:

Π̂k =

N∑

j=1

|k〉j 〈k|j ; k = {g, e} (2.9)

In addition to the interaction Hamiltonian we have the atomic Hamiltonian

Ĥatom = ~ωegΠ̂e. (2.10)

Using Hamilton’s equation of motion for the time evolution of an operator Q̂,
˙̂

Q =
i
~

[

Ĥ, Q̂
]

(in the Heisenberg picture) [60], we can find the equations of motion for

the atomic operators. The full set of equations for the operators are known as the
Heisenberg-Langevin equations, from which all properties of the atoms can be cal-
culated. In this thesis we shall only be interested in the mean values of the atomic
operators and the resulting set is equations is then given by

Π̇g = ig
(

A∗P̃ eiωlt − AP̃ ∗e−iωlt
)

Π̇e = −ig
(

A∗P̃ eiωlt − AP̃ ∗e−iωlt
)

˙̃P = −iωegP̃ − igAe−iωlt (Πe − Πg) ,

where Q ≡
〈

Q̂
〉

and Q∗ ≡
〈

Q̂†
〉

. Rewriting in terms of slowly varying variables P

and P ∗ defined through

P = P̃ eiωlt ; P ∗ = P̃ ∗e−iωlt (2.11)



2.2. A single mode optical cavity 9

and adding the effect of a spontaneous decay rate Γ from the excited to the ground
state and the decoherence rate of the atomic dipole γ = Γ/2 the equations of motion
for the atomic operators become

Π̇g = ΓΠe + i (Ω∗P − ΩP ∗) (2.12a)

Π̇e = −ΓΠe − i (Ω∗P − ΩP ∗) (2.12b)

Ṗ = − (γ + i∆)P − iΩ (Πe − Πg) , (2.12c)

where we have introduced the detuning

∆ = ωeg − ωl, (2.13)

and inserted the Rabi frequency Ω = gA.
Eq. 2.12 are commonly referred to as the optical Bloch equations in the literature.

In steady state we find for the atomic coherence:

P = − iΩ

γ + i∆
(Πe − Πg) . (2.14)

Inserting this in the steady state expression for the excited state population Πe, this
can be expressed as

Πe =
1

2

s

1 + s
, (2.15)

where s is the saturation parameter, defined as

s =
2 |Ω|2

(Γ/2)
2
+ ∆2

=
s0

1 +
(

2∆
Γ

)2 , (2.16)

and where s0 is the on-resonance saturation parameter given by,

s0 = 2
|Ω|2

(Γ/2)2
≡ I

Isat
, (2.17)

where Isat =
~Γω3

eg

12πc2 is the saturation intensity and Γ =
ω3

eg|d|2
3πε0~c3 [61]. Note that our

definition of the on-resonance saturation parameter and, hence, the Rabi frequency
differs by a factor 4 and 2, respectively, from what is used in some texts [62–64]. This
can be traced back to our definition of the field intensity in eq. 2.4.

2.2 A single mode optical cavity

We consider the case of an empty cavity as depicted in fig. 2.1 and wish to find an
expression for the cavity spectrum, that is, a relation between the incoming field
Ein(t) and the outgoing fields Eout

1 (t) and Eout
2 (t) as a function of the frequency of

the field and the cavity parameters. The field E(t) after the first mirror is given by

E(t) = t1E
in(t) + αE′′(t)r1e

iπ, (2.18)

where eiπ is the phase shift associated with the reflection on the mirror, ti and ri

are the field transmission and reflection coefficients for the two mirrors (i = 1, 2)
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Ein(t)

Eout
1 (t)

Eout
2 (t)

E(t) E′(t)

E′′(t)

t1 t2

lcav

Figure 2.1: Schematic of a cavity of length lcav and with two mirrors with field transmission
coefficients t1 and t2. E(t) represent the field at different locations. See text for details.

and the factor α accounts for the scattering and absorption losses in a reflection on
either of the mirrors. If L is the total intra-cavity losses per round trip for the field
intensity, we can write this as α =

√

1 − L/2. Likewise, the field intensity coefficients
associated with transmission and reflection are related to the amplitudes by ti =

√
Ti

and ri =
√

Ri and for each mirror the intensity coefficients must naturally satisfy
T + R + L/2 = 1. The field E′′(t) inside the cavity is given by

E′′(t) = αr2E(t − τ)eiφeiπ, (2.19)

where τ = 2lcav
c is the round-trip time and φ = (ωl − ωc)τ = −∆cτ is the phase

change for a field of frequency ωl after one round-trip and where ωc is the resonance
frequency of the cavity. Inserting eq. 2.19 in eq. 2.18:

E(t) = t1E
in(t) + α2r1r2E(t − τ)eiφe2iπ

=
√

T1E
in(t) + (1 − L/2)(1 − T1/2)(1 − T2/2)(1 + iφ)E(t − τ)

=
√

T1E
in(t) + (1 − L/2 − T1/2 − T2/2 − i∆cτ)E(t − τ), (2.20)

where we have expanded according to the assumption that L, T1, T2, |φ| � 1 and
retained only first-order terms1. The decay rate of the field through the mirrors is
given by

κi =
1 − ri

τ
=

1 −
√

1 − Ti

τ
' Ti

2τ
. (2.21)

Similarly, we may define a decay rate of the cavity field associated with the intra-cavity
losses as κL = L

2τ . Rearranging and dividing eq. 2.20 by τ , we get

E(t) − E(t − τ)

τ
= − (κL + κ1 + κ2 + i∆c) E(t − τ) +

√

2κ1

τ
Ein(t),

which for τ → 0 becomes

Ė(t) = − (κL + κ1 + κ2 + i∆c) E(t) +

√

2κ1

τ
Ein(t). (2.22)

1For the cavity used in our experiments, this is a valid assumption as L, T1, T2 < 1% and, since
we are interested in the cavity spectrum around resonance, the phase shift φ will also be close to
zero.



2.2. A single mode optical cavity 11

This is the equation of motion for the field inside the cavity. It contains the passive
losses of the cavity due to the mirrors and a phase shift depending on the cavity
detuning ∆c, as well as a source term originating from the input field Ein(t). Later
we shall see how the introduction of ions inside the cavity changes the field evolution.

In steady state the field amplitude becomes

E(t) =

√
2κ1

τ

κL + κ1 + κ2 + i∆c
Ein(t), (2.23)

The output fields can be found from: Eout
1 (t) = t1αE

′′

(t) + r1E
in(t) and Eout

2 (t) =
t2αE

′

(t) for the reflected and the transmitted field, respectively. The transmission
and the reflection are then described by Lorentzian functions of the form:

trans =

∣
∣
∣
∣

Eout
2 (t)

Ein(t)

∣
∣
∣
∣

2

=
4κ1κ2

(κL + κ1 + κ2)
2 + ∆2

c

, (2.24)

and

refl =

∣
∣
∣
∣

Eout
1 (t)

Ein(t)

∣
∣
∣
∣

2

=
(κL − κ1 + κ2)

2
+ ∆2

c

(κL + κ1 + κ2)
2

+ ∆2
c

. (2.25)

In fig. 2.2 both transmission and reflection has been plotted for the parameters appli-
cable to our cavity.

As a measure of the quality of the optical resonator, we introduce the cavity finesse

F =
FSR

FWHM
, (2.26)

where the free spectral range (FSR), given by 1/τ , is the frequency spacing between
the cavity resonances (i.e. the detuning necessary for the cavity field to acquire a phase
shift of 2π) and the full width at half the maximum (FWHM) of the empty cavity
is given from the Lorentzian of eq. 2.24 or eq. 2.25 as 2 (κL + κ1 + κ2) /2π. From

-4 -2 0 2 4

0

0.2

0.4

0.6

0.8

1

∆c [FWHM]

refl

trans × 100

Figure 2.2: Transmission and reflection of the empty cavity for T1 = 1500 ppm, T2 = 5 ppm
and L = 600 ppm. The cavity transmission signal has been multiplied by a factor 100 to
compensate for the small transmission T2 of the output mirror and the frequency scale is in
units of the FWHM of the cavity.
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the relation between the cavity decay rate and the mirror transmission (eq. 2.21) the
finesse can thus be written as:

F =
2π

L + T1 + T2
. (2.27)

The finesse of the cavity can therefore be found from a measurement of either the
FSR and the FWHM (eq. 2.26) or the cavity losses L (eq. 2.27) if both transmission
coefficients are known.

The reflection signal provides a simple way of estimating the losses. Let us define
the parameter β as the ratio of the reflection on and off resonance. Then from eq. 2.25,

β =
refl(∆c = 0)

refl(∆c → ∞)
=

(κL − κ1 + κ2)
2

(κL + κ1 + κ2)2
=

(L − T1 + T2)
2

(L + T1 + T2)2
, (2.28)

where we have used eq. 2.21 in the last step. Taking the square root on both sides
and isolating L then gives an expression for the losses,

L =
1 ±√

β

1 ∓
√

β
T1 − T2, (2.29)

where the upper sign is used when the total cavity losses exceeds the input coupler
transmission, L + T2 > T1, and the lower sign is used in the opposite case, when
L + T2 < T1. For the reflection signal in fig. 2.2 we would evaluate the losses to be
about 600 parts per million (ppm) by use of eq. 2.29.

2.3 Interaction of a two-level atom and a single mode cavity

field

In this last section of the chapter we combine the results of the two previous sections
to obtain a description of an ensemble of N two-level atoms interacting with a cavity
field. This will provide the theoretical framework for our experiments with clouds of
cold trapped ions inside an optical cavity that we will describe in ch. 10.

Including an ensemble of ions in the cavity, the field equation (eq. 2.22) is modified
by the addition of a term describing the interaction with the atomic medium, which
via Hamilton’s equation of motion for the mean value of the field operator A can be
evaluated to igP . Furthermore, with our definition of the interaction Hamiltonian
(eq. 2.8), the field equation can be written in terms of the mean values of the field
operators by making the substitutions E → A and 1√

τ
Ein → Ain, such that

Ȧ = − (κ + i∆c)A + igP +
√

2κ1A
in, (2.30)

where, for simplicity, we have substituted κ = κL + κ1 + κ2. Note that with this

definition |A|2 is a (dimensionless) of number of photons, whereas
∣
∣Ain

∣
∣
2

is a photon
flux (photons/s).

In our experiments we will study the interaction between an atomic ensemble and
a light field composed of single quanta. In terms of field strength this corresponds
to the low saturation regime (s ' 0) and the population inversion Πe − Πg ' −N .
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Combined with the expression for the steady state atomic coherence (eq. 2.14), the
solution to the cavity field equation (eq. 2.30) in steady state becomes:

A =

√
2κ1

κ′ + i∆′
c

Ain, (2.31)

with
κ′ = κ + g2N

γ

γ2 + ∆2
(2.32)

and

∆′
c = ∆c − g2N

∆

γ2 + ∆2
. (2.33)

These represent the effect of absorption and phase-shift of the cavity field due to the
interaction with the atomic ensemble. The lineshape is still a Lorentzian but with a
half-width κ′ and a detuning parameter ∆′

c dressed by the atoms. On resonance (at
∆ = 0) the absorption dominates and can be expressed as:

Abs(∆ = 0) =
γg2N

γ2
= 2κC, (2.34)

where we have introduced the cooperativity parameter defined as [65]

C =
g2N

2γκ
. (2.35)

Eq. 2.33 represents the phase-shift due to a dispersive interaction off resonance. It
attains its maximal value for ∆ = ±γ where it is equal to κC. The performance
of our system may thus be evaluated, in terms of cooperativity, by measurements of
absorption or phase shift. We shall return to this in ch. 10. As in the previous section,
from the intra-cavity field we can derive an expression for the transmission and the
reflection of the cavity. Fig. 2.3 shows a plot of the transmission coefficient for a
cooperativity of C = 10 as a function of cavity detuning ∆c and atomic detuning ∆.
The effects of atomic absorption around ∆ = 0 and large phase-shift around ∆ = ±γ
are clearly seen.

It is illustrative to return for a moment to the time-dependent equations for the
atomic coherence and the cavity field. Setting the population inversion Πe−Πg = −N
as in the above, these follow from eq. 2.12 and eq. 2.30

Ṗ = −(γ + i∆)P + igNA (2.36a)

Ȧ = −(κ + i∆c)A + igP. (2.36b)

By solving this set of coupled equations we find directly the eigenvalue spectrum of
the combined atom-cavity system. An interesting case is that for which the atomic-
and cavity detuning are both zero. The eigenvalues then follow straightforwardly from
eq. 2.36 as

λ = −
(

γ + κ

2

)

±

√
(

γ − κ

2

)2

− g2N (2.37)

and the solution to the coupled set of equations for the system is then of the form eλt.
From this we see that the first term gives rise a to decay of the system excitation as
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Figure 2.3: Transmission of a cavity for C = 10 as a function of cavity detuning ∆c

and atomic detuning ∆ in units of cavity half width κ and atomic coherence decay rate γ,
respectively. Parameters used are applicable to our experiment.

expected since κ and γ represent the decay rates of the field and atomic coherence,
respectively. The square root term can, however, become imaginary and thus give
rise to an oscillatory behavior if g2N > |γ − κ| /2. Physically, this can be interpreted
as a coherent exchange of excitation between the cavity and the atoms and it is this
process that allows for the realization of e.g. quantum memories for light based on
cold atomic ensembles [48, 66]. In the context of quantum information science one
may think of the collective coupling (at rate g

√
N) as the coherent interaction that

transfers information from a photonic to an atomic system and of the decay (at rates
γ, κ) as sources of loss of information.

Obviously, the regime in which the coherent evolution is faster than any dissipative
evolution is very interesting. Within the field of cavity QED, this is commonly referred
to as the strong coupling regime. In our system where a collective interaction is at
play, one defines the collective strong coupling criterion as [9]

g
√

N > κ, γ. (2.38)

Note that this collective regime is fundamentally different from the single atom strong
coupling regime for which g > κ, γ. One obvious difference is that for a single atom
to absorb a photon it must be in the ground state and a single photon may thus
saturate the transition. This establishes a certain “memory” in the system which is
different from the case of an ensemble of atoms. Indeed, in our derivation of the
optical Bloch equations (eq. 2.12), when including the effect of spontaneous emission
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in the form of a phenomenological rate Γ, we neglected this effect 2. One consequence
of the collective nature of the coupling in our system is that an effect such as photon
anti-bunching [32, 68, 69] is not expected.

The collective strong coupling regime does thus not exhibit behavior that is truly
quantum, which is also reflected by it being well-described by a semi-classical model.
In this respect, the transmission coefficient of fig. 2.3 simply corresponds to the linear
susceptibility response of the system. Nevertheless, as pointed out in the introduc-
tion, in the context of quantum information science, the collective regime has great
potential for producing efficient light-matter interfaces [24, 25, 33, 52, 58]. Indeed, a
commonly used figure of merit for such systems is the cooperativity parameter C
and for quantum memories and entanglement generation, the fidelity of such schemes
often scales as 2C

2C+1 [50, 51]. A system such as that modeled in fig. 2.3 with C = 10
may thus potentially allow fidelities close to 95% in such applications.

The usefulness of the collective interaction for quantum information science il-
lustrates that, although the interaction may be accounted for semi-classically, this
does not imply that it does not facilitate coherent interaction with quantum states,
e.g. quantum states of light. To treat a system comprised of an atomic ensemble
interacting with a single photon, we describe the state of the system in a restricted
basis spanned by only two states: |g, 1〉 and |e, 0〉. These represent configurations
where either all the atoms are in the ground state and there is one photon in the
cavity (|g, 1〉) or one atom is in the excited state, with the remaining atoms in the
ground state, and no photons are in the cavity (|e, 0〉). The atomic basis states are
the symmetric, so-called, Dicke states [70]

|g〉 = |g1, ...gN 〉 (2.39a)

|e〉 =
1√
N

N∑

i=1

|g1, ...ei, ...gN 〉 , (2.39b)

which were first introduced by Dicke and have been used e.g. in the context of
superradiance [71]. In this picture, the atomic coherence may thus be written as

P = |g〉 〈e| =
1√
N

N∑

i=1

|g1, ...gN 〉 〈g1, ...ei, ...gN | ,

which, for N identical atoms, results in

P =
√

N |g1, ...gN 〉 〈g1, ...ei, ...gN | , (2.40)

where, once again, the
√

N factor appears due to the collective interaction with the
ensemble.

The quantity g
√

N will be referred to as the collective coupling strength through-
out this thesis and it is the scaling of this parameter with the number of atoms that
allows us to enter a regime where single photons can interact strongly with an atomic
ensemble. The value of g can be found from eq. C.3 and eq. 2.6 based on the dipole
matrix element of the relevant atomic transition and on the mode-volume of the opti-
cal cavity. From this, the collective coupling strength can evaluated for a given atomic
system and a given cavity geometry. This is done, for our system, in appendix C.

2this is known as the Markov approximation [67]





Chapter 3

The physics of ion Coulomb crystals

in a linear Paul trap

This chapter will provide the basic theoretical tools required for an understanding
of the physics of ion Coulomb crystals, both in a general sense and in the context of
cavity QED experiments with this form of matter. We begin by a review of the theory
of the linear Paul trap used to confine the ion Coulomb crystals and then move on to
describe the physical properties of ion Coulomb crystals relevant for this thesis.

3.1 The linear Paul trap

All experiments presented in this thesis have been performed with trapped charged
particles confined in a linear Paul trap. This type of trap combines static and radio-
frequency (rf) electric fields to create a time-averaged harmonic potential. The use of
a time-varying field is necessary as Laplace’s law prevents us from obtaining a three-
dimensional extremum for the electric potential φ(x, y, z) using only static electric
fields. Specifically, from Laplace’s equation

∂2φ(x, y, z)

∂x2
+

∂2φ(x, y, z)

∂y2
+

∂2φ(x, y, z)

∂z2
= 0 (3.1)

it follows that all three terms cannot have the same sign, e.g. positive, which would
be necessary to create a potential minimum.

The linear Paul trap is closely related to its predecessor, the quadrupolar mass
filter [72], invented by Wolfgang Paul in the 1950’s, however, the linear Paul trap in
its present form was not invented until 1989 [73]. Other types of related traps include
the hyperbolic Paul trap [74], the race-track trap [75] and the Penning trap [76], the
later differing from all the former by the use of a static magnetic field instead of the
oscillating rf-field. For a comparison of these traps see e.g. [77, 78].

This section will review the basics of the linear Paul trap and introduce some of
the concepts and parameters, needed for the remainder of the thesis.

17
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ỹ
ẑ
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Figure 3.1: (a) Linear Paul trap electrode configuration with applied voltages. We will
refer to the ẑ-axis as the trap axis (dotted line). (b) End-view of the Paul trap with the
definitions of the x̃ and ỹ axis (black). The x̂ and ŷ axis (grey) are used elsewhere.

3.1.1 A single ion in a linear Paul trap

Fig. 3.1 shows a schematic of the linear Paul trap. The trap consists of four sectioned
cylindrical electrode rods placed in a quadrupole configuration. Confinement in the
radial plane (xy-plane in Fig. 3.1) is obtained by applying time varying voltages
1
2Urf cos(Ωrf t) and 1

2Urf cos(Ωrf t+π) to the two sets of diagonally opposite electrode
rods, where Urf is the peak-to-peak amplitude of the rf-voltage and Ωrf is the rf-
frequency. This gives rise to a potential in the radial plane of the form:

φ(x̃, ỹ, t) = −1

2
Urf cos(Ωrf t)

x̃2 − ỹ2

r2
0

, (3.2)

where r0 is the inter-electrode inscribed radius, defined in fig. 3.1. The sectioning
of each of the electrode rods allows for application of a static voltage Uend to the
end-electrodes, which provides confinement along the z-axis. The electric potential
along the z-axis is then well described by

φ(z) = ηUend
z2

z2
0

, (3.3)

where η is a constant related to the trap geometry and 2z0 is the length of the center
electrodes. A requirement of Laplace’s law is that the confinement along the z-axis,
provided by this static field, is accompanied by a defocussing effect in the radial plane.
The total electric potential in the radial plane is then given by

φ(x̃, ỹ, t) = −1

2
Urf cos(Ωrf t)

x̃2 − ỹ2

r2
0

− 1

2
ηUend

x̃2 + ỹ2

z2
0

. (3.4)

The sectioning of the electrode rods also allows for individual dc-offsets to be applied
such that the ion can be shifted radially with respect to the quadrupole minimum.
This has been omitted in eq. 3.4 for the sake of simplicity.

From eq. 3.3 it follows immediately that the motion of a single charged particle
along the z-axis is that of a simple harmonic oscillator. The equations of motion in the
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radial plane for a single charged particle can be found from eq. 3.4 via Newton’s second
law but are somewhat more complicated and require a bit more work. Rewriting the
resulting second order differential equation in terms of more convenient parameters,
the equations of motion in the radial plane can be described by the so-called Mathieu
equation, after the French mathematician Emile Mathieu,

∂2u

∂τ2
+ [a − 2qu cos(2τ)] u = 0, u = x̃, ỹ. (3.5)

Here we have introduced the following dimensionless parameters:

τ =
Ωrf t

2
, a = −4

ηQUend

Mz2
0Ω

2
rf

, qx = −qy = 2
QUrf

Mr2
0Ω

2
rf

, (3.6)

where Q and M are the charge and mass of the particle, respectively.
For the particle to exhibit stable motion in the radial plane, the solutions to eq. 3.5

must be non-diverging and the resulting amplitude of its motion must be bounded by
some maximum, set by the physical surroundings, e.g. the trap electrodes. The stable
(non-diverging) solutions to the Mathieu equation can be found in e.g. ref. [79]; in
fig. 3.2a) the regions of stable motion in (a, q)-space have been plotted in accordance
to this.1 In general both positive and negative values of a can result in stable motion
in the radial plane. However, from the definition of a (eq. 3.6), it is evident that, once
the choice has been made to trap e.g. positively charged particles, a will be limited
to negative values only, in order to obtain stable motion along the z-axis. Fig. 3.2b)
shows this area in (a, q)-space. More details can be found in ref. [81].

The region of stable motion depends linearly on the charge-to-mass ratio, Q/M ,
of the trapped particle through the a and q parameters as seen from eq. 3.6. As a
result of this and the relatively broad area of stability in (a, q)-space, different atomic
species can be trapped simultaneously provided that their charge-to-mass ratio is not
too different. For instance, all singly-charged isotopes of naturally abundant calcium,
as will be the focus of this thesis, can be trapped simultaneously.

In general the trap is operated such that |a| , |q| � 1. This allows the equation of
motion for the ion (eq. 3.5) to be rewritten as

u(t) = u0

[

1 − qu

2
cos (Ωrf t)

]

cos (ωrt) , (3.7)

by introducing the secular frequency

ωr =

√

q2/2 + a

2
Ωrf . (3.8)

The ion’s motion is now comprised of two distinct types of motion: A high frequency
motion at Ωrf and a low frequency motion at ωr � Ωrf . Note that the amplitude of
the high frequency motion, the so-called micromotion, is given by the q parameter,
which means that its amplitude is small and, hence, only acts as a jitter superimposed

1Adding a friction force, as to include e.g. laser cooling, will obviously affect the motion of the
charged particle and the stability diagram will be modified accordingly [80]. The effect is quite small,
however, and has been neglected here for the sake of simplicity.
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Figure 3.2: (a) Stability diagram of the Mathieu function in the (q, a)-space. Regions with
stable solutions are marked with grey. (b) Region of stable motion of a positive particle in
the linear Paul trap. Both diagrams also apply to negative q-values, i.e. the stability regions
are mirrored in the a-axis.

on the dominant, so-called secular motion. When averaging out the fast motion, the
secular motion can be described as motion in a harmonic so-called pseudo-potential :

Φr(r) =
1

2
Mω2

rr
2, (3.9)

where ωr can be expressed as

ω2
r =

Q2U2
rf

2M2r4
0Ω

2
rf

− ηQUend

Mz2
0

, (3.10)

through eq. 3.6 and eq. 3.8.
Likewise, the harmonic potential along the z-axis (eq. 3.3), may be expressed

through the frequency ωz as

Φz(z) =
1

2
Mω2

zz2, (3.11)

with

ω2
z =

2ηQUend

Mz2
0

. (3.12)

From eq. 3.9 and eq. 3.10 it is seen that the radial potential depends inversely on
the mass of the trapped particle 2, whereas the axial potential, described by eq. 3.11
and eq. 3.12, is independent on the mass. As a result, heavier particles are confined
less tightly, radially, an issue we shall return to when discussing the trapping of two-
component ion Coulomb crystals later in this thesis.

3.2 Ion Coulomb crystals

When several ions are confined in a linear Paul trap, the individual ions experience
not only the electric potential of the trapping fields, but also the Coulomb interaction
with the other ions. The system is then best described as a plasma and in terms of

2This forms the basis for the quadrupole mass filter.
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collective parameters such as temperature and density. The ion plasma confined in
our linear Paul trap is obviously a non-neutral plasma as its constituents are all of the
same sign of charge. Another example of this type of plasma is the valence electrons
in a metal. The electrons form a strongly coupled plasma confined in a neutralizing
background of positive metallic ions, in the same way as our positive ions are confined
in the neutralizing fields of the linear Paul trap.

Before describing ion Coulomb crystals, we begin by introducing a few basic con-
cepts and parameters from plasma theory [82]. First, we shall consider the fundamen-
tal time and length scales appropriate for such systems. Here a brief example may be
helpful: If we imagine a plasma of some density ρ and consider the effect of displacing
a sheet of charge within the plasma by some amount δx, that is, a one-dimensional
charge displacement. The sheet then experiences the field associated with its own
displacement from equilibrium corresponding to twice the field from a sheet of charge
Qρδx. The electric field is then [83]:

|E| =
Qρδx

ε0
.

From the force F = QE we can find the potential energy U associated with the charge
displacement as,

U =

∫

Fdx =
Q2ρδx2

2ε0
.

Approximating the potential by a harmonic potential U = 1
2Mω2δx2, we can extract

the frequency of oscillation, the plasma frequency, as

ω2
p =

Q2ρ

ε0M
, (3.13)

which is sets the most fundamental time scale for plasma physics. We may interpret
the corresponding period as the minimal time scale, on which plasma behavior is
observed.

From ωp a complementary length scale termed the Debye length λD can be defined
by use of the Virial theorem for a harmonic potential U = K and equating the kinetic
energy by 1

2kBT ,

λD =

√

kBT

Mω2
p

=

√

ε0kBT

ρQ2
. (3.14)

There are a number of ways to interpret the physical significance of the Debye length.
It is considered the fundamental length scale for Debye shielding, which is the shielding
of external fields by rearrangement of the space charge. The electric field of a test
charge Q is thus screened out by the rearranging of the particles within the plasma
over the distance λD.

In general, the collective behavior of a plasma is only observed on length scales
larger than the Debye length and the spatial extend of the collection of charged
particles must thus be greater than this characteristic length for plasma theory to
apply. This is indeed the case for ion Coulomb crystals such as those confined in our
linear Paul trap where λD < 1 µm, which is much less than the inter-ion spacing of
several µm.
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The last physical quantity that we require from plasma physics for our under-
standing of ion Coulomb crystals is the plasma coupling parameter Γp, which for a
one-component plasma of particles of charge Q and at temperature T is defined as3

Γp =
Q2

4πε0awskBT
. (3.15)

Here we have introduced the Wigner-Seitz radius aws, defined as the radius of a sphere
that has a volume corresponding to the volume per particle at zero temperature:

4

3
πa3

ws =
1

ρ0
, (3.16)

where ρ0 is the zero-temperature density of the ion plasma.
From the coupling parameter, which is essentially the ratio of the Coulomb interac-

tion to the thermal energy, the thermodynamic state of the plasma can be determined.
For instance, simulations predict that at Γp ' 2, short-range order within the plasma
arises and a phase-transition from a gas to a liquid phase occurs [84], while around
Γp ' 170 a phase-transition to a solid state will occur [85, 86], indicating the on-
set of long-range order within the plasma. The simulations predict a body-centered
cubic (bcc) lattice structure in this crystalline state. Such crystallized structures,
termed ion Coulomb crystals, are believed to be present in the interior of cooling
white dwarfs, as two-component crystals of carbon and oxygen nuclei embedded in a
neutralizing degenerate electron gas [87].

In the laboratory, conditions for crystallization can be achieved e.g. in experiments
with laser cooled ions in Paul traps [88,89]. From eq. 3.15 and eq. 3.16 it is seen that
the conditions for crystallization are governed by the density and the temperature of
the ion plasma. As we shall see later in this chapter and in ch. 4 both parameters can
be controlled in the experiment. In our experiments, typical densities are of the order
of 108 cm−3, corresponding to a critical temperature for crystallization of around
10 mK, which is above the minimum temperature that can potentially be reached
by Doppler laser cooling, which for our atomic system of Ca+ is about 0.5 mK (see
ch. 4). The plasma coupling parameter has been plotted in fig. 3.3 as a function of
temperature for typical trapping parameters of our experiments.

3.2.1 The zero temperature charged liquid model

Two important parameters in our experiments are the density of the ion Coulomb
crystal and its shape. In order to quantify the interaction between the cavity field
and the ions we need to be able to evaluate the density of the ion Coulomb crystal
as well as calibrate our trapping parameters. This section will review the necessary
theoretical tools required for this.

Although ion Coulomb crystals are structured forms of matter, many of their char-
acteristics, and specifically those of immediate interest such as shape and density, are
well accounted for by a zero temperature charged liquid model [90]. For a cylindri-
cally symmetric potential, like that of the linear Paul trap, such a model predicts the

3This is often denoted by Γ in the literature but to avoid confusion between this and the spon-
taneous decay rate of an atom we have added the subscript p and otherwise retained the standard
notation for both these parameters.
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Figure 3.3: Plasma coupling parameter Γp versus temperature T for typical trapping
parameters (ρ0 ' 6 × 108 cm−3).

equilibrium shape to be a spheroid of constant density [91]. In general, the shape
of a spheroid can be described by its aspect ratio, defined as the ratio of the crystal
radius to its length: α ≡ 2R/L. We distinguish between three different shapes (see
fig. 3.4): Spherical for α = 1, prolate for α < 1 and oblate for α > 1. Within the
zero temperature charged liquid model a relationship between the ratio of the trap
frequencies ωz/ωr and the aspect ratio of the crystal α can be derived. Following
ref. [91] and assuming the electric potential from the charge distribution to vanish
at infinity, this electric potential can be written (as a function of r and z inside the
crystal) as

φcharge(r, z) =
ρ0Q

4ε0
R2L

[

2

(R2 − L2)
1
2

sin−1

(

1 − L2

R2

) 1
2

− r2f(R, L) − z2g(R, L)

]

, (3.17)

2R
L ẑ

(a) Spherical (α = 1)

ẑ

(b) Prolate (α < 1)

ẑ

(c) Oblate (α > 1)

Figure 3.4: Possible spheroidal shapes of the ion Coulomb crystal. The aspect ratio is
defined as α ≡ 2R/L. The z-axis corresponds to the trap axis in the linear Paul trap.
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where the functions f(R, L) and g(R, L) are given by

fα<1(R, L) = −
[

1

(L2 − R2)
3
2

sinh−1

(
L2

R2
− 1

) 1
2

− L

(L2 − R2)R2

]

gα<1(R, L) =

[

2

(L2 − R2)
3
2

sinh−1

(
L2

R2
− 1

) 1
2

− 2

(L2 − R2) L

]

,

in the prolate case and

fα>1(R, L) =

[

1

(R2 − L2)
3
2

sin−1

(

1 − L2

R2

) 1
2

− L

(R2 − L2)R2

]

gα>1(R, L) = −
[

2

(R2 − L2)
3
2

sin−1

(

1 − L2

R2

) 1
2

− 2

(R2 − L2)L

]

,

in the oblate case. The total potential inside the crystal will be given by the sum
of the trap potential Φtrap(r, z) (eq. 3.9 and eq. 3.11) and the potential from the ion
plasma Qφcharge(r, z) (eq. 3.17)

Φtot(r, z) = Φtrap(r, z) + Qφcharge(r, z)

=
1

2
Mω2

rr2 +
1

2
Mω2

zz
2 +

ρ0Q
2

4ε0
R2L ×

[
2

(R2 − L2)
1
2

sin−1

(

1 − L2

R2

) 1
2

− r2f(R, L) − z2g(R, L)

]

.

Since the total potential inside the crystal must be constant, it follows that the two
terms depending on r must cancel out and likewise for the two terms depending on
z. Hence,

1

2
Mω2

rr
2 =

ρ0Q
2

4ε0
R2Lr2f(R, L)

1

2
Mω2

zz2 =
ρ0Q

2

4ε0
R2Lz2g(R, L).

Finally, taking the ratio of the two equations we arrive at

ω2
z

ω2
r

=
g(R, L)

f(R, L)
=







−2
sinh−1(α−2−1)

1
2 −α(α−2−1)

1
2

sinh−1(α−2−1)
1
2 −α−1(α−2−1)

1
2

, for α < 1

−2
sin−1(1−α−2)

1
2 −α(1−α−2)

1
2

sin−1(1−α−2)
1
2 −α−1(1−α−2)

1
2

, for α > 1

(3.18)

Fig. 3.5 shows a plot of this relation (solid line). For comparison, a plot corresponding
to a weakly coupled plasma in thermodynamic equilibrium is shown also (dashed line).
In most of our experiments we will be working with prolate crystals of relatively low
aspect ratios (α ∼ 0.1) in order to increase the optical depth of the ion Coulomb
crystal along the trap axis. We shall return to this issue in ch. 8.
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Figure 3.5: Ratio of the axial and radial trap frequencies vs. aspect ratio for a zero
temperature charged liquid (solid line) and for a plasma of weakly coupled particles in ther-
modynamic equilibrium (dashed line).

The second parameter of interest in this section is the (average) density of the
ion Coulomb crystal. The equilibrium requirement of a constant potential inside the
crystal, also used in the previous derivation, allows us to write the following relation:

φtot(r, z) =
Φtrap(r, z)

Q
+ φcharge(r, z) = constant

⇓

∇2φtot(r, z) =
∇2Φtrap(r, z)

Q
+ ∇2φcharge(r, z) = 0. (3.19)

Inserting Poisson’s equation, ∇2φcharge(r, z) = −Qρ0/ε0, then gives:

∇2Φtrap(r, z)

Q
=

Qρ0

ε0
. (3.20)

Finally, by inserting the expression for the trap potential (eq. 3.9 and eq. 3.11) and
taking the Laplacian, we get (after some algebra) an expression for the (average)
density of the ion Coulomb crystal at zero temperature:

ρ0 =
ε0U

2
rf

Mr4
0Ω

2
rf

. (3.21)

The density of the ion Coulomb crystal can thus be controlled by varying the rf-voltage
applied to the electrodes. For technical reasons the value of the rf-voltage on the trap
electrodes is not known as precisely as other parameters for the trap and requires an
independent calibration. The relation between the ratio of the trap frequencies and
the aspect ratio of the crystal, derived above, provides the basis for such a calibration:
Given that the aspect ratio α can be measured with sufficient precision, Urf can be
calibrated via eq. 3.18, keeping in mind that ωr ∝ Urf (c.f. eq. 3.10). We shall return
to this in ch. 8 where we present results on characterization of the trap.
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3.2.2 Effects of micromotion

In our discussion of ion Coulomb crystals we have so far ignored the effects of the
micromotion and only considered the secular motion in the time-averaged potential.
This description has assumed a form of equilibrium for the ion plasma and made use
of thermodynamic concepts such as temperature to account for transitions between
different thermodynamic phases. This seems somewhat ill defined, however, when
considering the fact that the ions themselves are subject to the time-varying forces of
the rf-field, causing their kinetic energies to change violently on the time-scale of this
field. Here we will not consider an interpretation of this4 but focus on what physically
observable effects arises as a result of this micromotion and on how these might affect
our experiments. Primarily, the effect manifests itself in two ways:

• There will be inhomogeneous broadening of the atomic transitions due to the
position and time dependent velocity distribution of the ions [93].

• Coulomb collisions within the crystal will couple kinetic energy associated with
the driven rf-motion into the secular motion, thus heating the crystal. This
effect is also called rf-heating [94].

Fig. 3.6 shows a schematic illustration of the direction of the micromotion. It shows
how the micromotion vanishes on the trap axis and increases the further away from
the trap axis the ions are located. The fact that the micromotion vanishes at the trap
axis, means that this axis holds a favored position in experiments with ions in linear
Paul traps since there is no Doppler broadening of the atomic transitions of the ions
due to micromotion. Furthermore, if the micromotion is not coupled to the motion
along the z-axis, it will only give rise to a second-order Doppler shift when addressing
the ions along this direction. This is also true along the x- and y-direction but only
for ions located on the x- or y-axis, which as seen from fig. 3.6 have their micromotion
perpendicular to the respective axes.

From eq. 3.7 it is seen that the micromotion amplitude is in fact non-vanishing
even on the trap axis, where it is given by Amicro = 1

2u0q, with u0 being the amplitude
of the secular motion. This type of micromotion is inherent in a linear Paul trap and a
consequence of the secular motion carrying the ion back and forth through the nodal
line of the rf-field. It can, however, be minimized by cooling the ion which lowers the
amplitude of the secular motion; hence the notion of a vanishing amplitude on the
trap axis in the above. For ions not in the nodal line of the rf-field, that is ions that
have their equilibrium positions off the trap axis, there is an excess micromotion of
the same form as that due to the secular motion, but with u0 replaced by their mean
distance from the trap axis. For a single ion, this can be minimized by moving it to the
trap axis [93], but for a three dimensional ion Coulomb crystal, where there are always
ions off the trap axis, excess micromotion will be present. To minimize this effect,
the crystal must be in the minimum of the quadrupole potential, which is ensured by
adjusting the radial dc-offsets on the trap electrodes such that the quadrupole poten-
tial coincides with the minimum defined by this radial dc-potential. This adjustment
is optimized by loading a two-component crystal and making the heavier component
appear in equal ratios on both sides of the central core of the lighter isotope. As the

4For a discussion of this see e.g. [92].
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heavier component is confined less tightly by the radial quadrupole potential, a dc-
offset will have a larger influence on this and it will not appear symmetrically around
the lighter component. In the images of fig. 4.4 the potential has been optimized in
this way.

Since the micromotion is dependent on the distance of the ions from the trap axis,
rf-heating will predominantly affect crystals of high aspect ratios, where more ions
are located further away from the traps axis, than low aspect ratio crystals. By the
same line of reasoning, increasing the number of ions within a crystal of a given aspect
ratio, will increase the heating rate and ultimately limit the number of ions and the
crystal size.

It is obvious that the above mentioned effects, Doppler broadening and rf-heating,
will have a major influence on our experiments and we shall return to them several
times throughout the thesis, especially in ch. 8.3 when we characterize our trap with
the purpose of optimizing the number of ions in the cavity mode.

3.2.3 Aspects of temperature and structure

As mentioned earlier in this chapter, from molecular dynamics (MD) simulations the
ions are expected to form a bcc lattice structure when the plasma coupling parameter
Γp (eq. 3.15) is above 170 [85,86]. These simulations are, however, based on an infinite
plasma, where surface effects can be neglected and until recently, such structures had
only been observed in Penning traps with large crystals of more than ∼ 5 × 104

laser cooled ions [95,96]. Simulations on finite sized plasmas have shown that surface
effects do contribute to the structure and predict that the crystals should be composed
of concentric shells of ions with a two-dimensional hexagonal structure within each
shell [97].

In passing, we mention that this shell structure may serve as a means for measuring
the crystal density and can thus provide a complementary calibration to that discussed
in ch. 3.2.1 based on measurements of the crystal shape. Specifically, MD simulations
predict that for infinitely long crystals of more than three shells, the radial inter-shell
spacing δr should be constant across the crystal and proportional to the Wigner-Seitz
radius as [97]

δr = 1.48aws (3.22)

x̂

ŷ

ẑ

Figure 3.6: Schematic illustration of the micromotion at different locations in the trap.
Arrows indicate the changing direction of the force on the ions. The dimensions of the
electrodes and arrows are not to scale.
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From the expression for aws (eq. 3.16) the crystal density can thus be found. We shall
return to this in ch. 8.

The ordering of ions confined in linear Paul traps into concentric shells have been
confirmed experimentally in several experiments [90,98], and, in both simulations [97]
and experiments [98], it was found that the ordering into shells could occur at a plasma
coupling parameter of only Γp ∼ 10, although there was no sign of a phase transition
per se. Rather, the shell structure became increasingly pronounced, in a continuous
fashion, as Γp was increased. This means that the observation of shell structure in
ion Coulomb crystals does not provide precise information of the temperature, only
that it lies below that corresponding to the gas-liquid phase transition at Γp ' 2. If
we assume the shell structure to occur only for Γp > 10, we get an upper bound for
the temperature of ' 230 mK (c.f. fig. 3.3). For large ion Coulomb crystals, where a
considerable number of ions may reside in regions of large micromotion amplitudes,
it is then expected that rf-heating may lead to temperatures well above the Doppler
limit of 0.5 mK and previous measurements have also found values of the order of a
few tens of mK [99]. From the perspective of studying the coupling of ion Coulomb
crystals to the cavity field mode, this effect will give rise to Doppler broadening of
the atomic transition. Assuming a Maxwell-Boltzmann distribution for the velocity
of the ions, the width (FWHM) of the Doppler profile due to the finite temperature
of the ions can be expressed as [63]

δνD =
2

λ

√

2kBT

M
ln2, (3.23)

where λ is the wavelength of the atomic transition and M is the atomic mass. Fig. 3.7
shows this relation for the transition relevant for the cavity QED experiments of this
work. The effect of a finite temperature is quite significant even for a few tens of
mK, although we will see that it is not a serious limitation for entering a regime
of strong collective coupling between the ion Coulomb crystal and the cavity field.
In appendix D we calculate the effect of inhomogeneous broadening on the coherent
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Figure 3.7: Doppler width in units of the natural linewidth Γ = 2π × 22.4 MHz versus
temperature for the relevant transition for the cavity QED experiments with 40Ca+ in this
work (the 3D3/2 ↔ 4P1/2 transition).



3.2. Ion Coulomb crystals 29

coupling strength. Here we find that this can be accounted for by defining an effective
decay rate Γeff which for temperatures below 100 mK is increased by less than 20 %.

It is interesting, however, to turn the issue around and, rather than regarding tem-
perature as a limiting factor in cavity QED experiments with such systems, consider if
the light-matter coupling provided by the framework of cavity QED may be utilized
as a means to measure the temperature of ion Coulomb crystals. As cavity QED
effects within this system are observed at the level of single photons, such a system
enables a single photon to act as a temperature probe for a macroscopic ensemble of
particles and in this way provide a completely non-invasive scheme for temperature
measurements of cold trapped ions. The subject has been treated in appendix D and
we shall return to it in ch. 10.

On account of rf-heating, it has not been obvious that three-dimensional long
range order would be observed in rf-traps. However, in a recent report from our
group it was demonstrated experimentally that three-dimensional long range order
could indeed persist in crystals confined in linear Paul traps, even for relatively small
crystals of less than 1000 ions where surface effects cannot be neglected [100]. Good
agreement with MD simulations was found for low number of ions where the predicted
bcc structure was in fact observed.

For higher number of ions a more rectangular pattern in resemblance of an fcc
structure was observed and, more recently, experiments with ion Coulomb crystals of
two different isotope species have shown highly pronounced periodicity in the rect-
angular structure of the inner component of the two-component crystal, which was
attributed to an effective anisotropy of the inter-particle interaction induced by the
rf-field [101]. Fig. 3.8 shows an example of such a crystal where the periodicity is
clearly seen. From such periodic rectangular structure one might speculate on new
means of engineering the coupling between the crystal and the cavity field. Since
the cavity in the experiment is in a standing wave configuration, a periodic density
distribution of the atomic medium might allow for an increased (or decreased) overlap
between the ions and the anti-nodes of the standing wave cavity field. If the inter-ion
distance (∼ 10 µm), which is controlled by the rf-voltage, can be adjusted such that
it becomes an integer value of the anti-node separation of the cavity field (∼ 0.4 µm),
this overlap could be tuned by translating the ion crystal axially via the end-voltage
of the trap.

200 mµ

z

Figure 3.8: Image of two-component crystal consisting 40Ca+ (inner, red component) and
44Ca+ (outer, blue component). The ions are shown in false colors. The three-dimensional
shape can be visualized by rotating the crystal around the z-axis (cavity and trap axis in
the experiments). Courtesy of Anders Mortensen.
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To what extent the structure of the ion Coulomb crystal can be made to match the
standing wave field in practice, will depend on the localization of the ions. Previous
experiments with single ions in Paul traps have indeed been able to map out the
standing wave pattern of the optical resonator [45, 57]. In these experiments the
localization of the single ion was extremely high (30-40 nm) as micromotion in single
ion experiments can generally be minimized quite efficiently [93]. To estimate the
localization of the ions in the Coulomb crystal, we can make use of the Debye length.
Given by eq. 3.14 this is effectively the root-mean-square of the amplitude of the ions’
motion about their individual “equilibrium” locations 5. Fig. 3.9a) shows a plot of the
Debye length in units of the cavity field wavelength versus temperature for typical
trapping parameters of our experiment. If we assume that the ions form a periodic
lattice as described above, where they all experience the same phase of the cavity field,
we can treat them as being distributed along the cavity axis according to a Gaussian
distribution with a width given by the Debye length

ρ(z) = ρ0

√

1

2πλ2
D

exp

(−z2

2λ2
D

)

. (3.24)

The choice of the Debye length as the width is obvious as it was derived in eq. 3.14
as the root-mean-square of the amplitude of the ions motion in a harmonic potential.
For typical parameters of our experiments, the period of the plasma oscillation will
be around 1 µs. As we shall see later (ch. 6.6.2) we will generally probe the system
for longer times and over the measurement time, or at least over several averages of
measurements, the ion’s position is expected to be smeared out over the Debye length.
Furthermore, due to the aforementioned Debye shielding, the motion of the individual
ions within the ion Coulomb crystal is completely uncorrelated within this length scale
and on this time scale, and for this reason, even measurements on time scales shorter
than the plasma oscillation period would be subject to a Gaussian distribution of the
ions with a width set by the Debye length.

If we evaluate the convolution of this Gaussian distribution with the standing wave
field, sin2(2π

λ + φ), for different values the displacement of the ions with respect to
the nodes of the cavity field, φ, we get a measure of how well the standing wave field
is mapped onto the collective coupling strength. Fig. 3.9b) shows a few plots of this
relation for various temperatures of the ions ranging from the Doppler cooling limit
of 0.5 mK to 4 mK. The conclusion is that unless the heating rates in the crystals are
very low and the Doppler limit can be approached, effects of the standing wave field
and the crystal structure are not expected. Certainly, for crystals not exhibiting such
long-range order but rather a shell structure, these structural aspects may largely
be ignored. In our treatment of the interaction between the cavity field and the ion
crystal later in this thesis, we shall thus simply average out the standing wave pattern
of the cavity over the crystal. This calculation of g

√
N is performed in appendix C.

5Of cause, again the notion of equilibrium is a bit artificial as the ions may be driven by the rf-
field. However, here we are considering motion along the trap axis, where the micromotion amplitude
is expected to be quite low.



3.2. Ion Coulomb crystals 31

0 2 4 6 8 10

0.0

0.1

0.2

0.3

T [mK]

λ
D
[λ

]

(a)

0.2

0.4

0.6

0.8

1.0

0.0

0           π                         2π
φ

re
la

ti
v
e

co
u
p
li
n
g

(b)

Figure 3.9: a) Debye length in units of the cavity wavelength (866 nm) versus the tem-
perature of the ions for typical trapping parameters of our experiment (ρ0 ' 6× 108 cm−3).
The dashed line indicates the limit of Doppler laser cooling. b) Relative coupling strength,
assuming all ions see the same phase of the standing wave field, versus their displacement
relative to the cavity nodes. The plotted curves are for temperatures, T=0.5 mK, T=1 mK,
T=2 mK and T=4 mK in order of decreasing modulation visibility.





Chapter 4

Laser cooling of Ca+

As outlined in the previous chapter, for the ion plasma to crystallize and form an
ion Coulomb crystal, thermal energy has to be removed from the system. In our
experiments, we make use of Doppler laser cooling to achieve this and the present
chapter will review the basics of this technique, with special emphasis on laser cooling
of Ca+ ions in a linear Paul trap. For further details about laser cooling see e.g. [62,
64, 102].

4.1 Laser cooling of a two-level atom

LaserLaser

Atom
F+ F−

v

Figure 4.1: Basic principle of Doppler laser cooling. See text for details.

The basic principle of Doppler laser cooling is illustrated in fig. 4.1. The tech-
nique relies upon the velocity dependent Doppler shift of an atom (or ion) moving
at velocity ~v. In the rest frame of the laboratory, the resonance frequency of the
atom is shifted according to the Doppler formula: ωA(v) = ωA(0)(1 ± v/c), where
+/- is used depending on the motion of the atoms being towards (-) or away from
(+) the laser beam. By tuning the laser frequency slightly to the red of the atomic
transition, atoms moving towards the laser beam are shifted into resonance and will
preferentially scatter photons from this beam. As a result of the frequency depen-
dence, the net energy absorbed by the atoms is less than the energy that is emitted.
The difference corresponds to a decrease in the kinetic energy of the atoms after the
scattering event.

To gain further insight in cooling process, we analyze the force exerted by two
counter propagating laser fields on an atom moving at velocity ~v as depicted in fig. 4.1.
Each photon transfers a momentum ~k with k = 2π

λ being the wave number. The
atom scatters photons at a rate given by the product of the spontaneous decay rate
Γ and the excited state population Πe, such that the force (in one dimension) can be

33
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written as

F = ~kΓΠe =
1

2
~kΓ

s

1 + s
, (4.1)

where we have inserted the expression for the steady state population Πe found in

ch. 2 (eq. 2.15). The saturation parameter s = 2|Ω|2
(Γ/2)2+∆2 (eq. 2.16) depends on the

Doppler shift through the detuning ∆ and the force can therefore be written as

F+ = ~kΓ
|Ω|2

(Γ/2)
2

+ (∆ + kv)
2 ·

1

1 + 2|Ω|2
(Γ/2)2+(∆+kv)2

,

for a beam co-propagating with the atom, and

F− = −~kΓ
|Ω|2

(Γ/2)2 + (∆ − kv)2
·

1

1 + 2|Ω|2
(Γ/2)2+(∆−kv)2

,

for a counter-propagating beam. Combining the two, the total force reads

F = F+ + F−

= ~kΓ

[

|Ω|2

(Γ/2)
2

+ 2 |Ω|2 + (∆ + kv)
2 − |Ω|2

(Γ/2)
2
+ 2 |Ω|2 + (∆ − kv)

2

]

.

Expanding this expression around v = 0 to 1st order, the force can be expressed
through a friction coefficient 1 β as F = βv, where

β = 4~k2 Γ∆ |Ω|2
[

(Γ/2)
2

+ 2 |Ω|2 + ∆2
]2 = 4~k2 s0 (2∆/Γ)

[

1 + s0 +
(

2∆
Γ

)2
]2 . (4.2)

Fig. 4.2 a) shows a plot of this friction coefficient as a function of the detuning. For
the force to work as a friction force, β must be negative, which is seen to happen
for ∆ > 0. With our definition of the detuning (eq. 2.13) this corresponds to a red
detuning in agreement with our qualitative analysis given at the beginning of this
chapter. In fig. 4.2 b) the forces from the two cooling beams as well as the total force,
has been plotted for a detuning of ∆ = Γ/2 and s0 = 2.

The cooling process can also be viewed as a result of momentum conservation, in
that, the momentum transfer associated with the absorption process is preferentially
in the direction opposite to the motion of the atoms. The subsequent re-emission
of a photon via the spontaneous decay of the atom, is directionally symmetric with
respect to the atom2 and the momentum transfer associated with this process will thus
average out over many scattering events, i.e. 〈p〉 = 0. Though the net momentum
transfer due to spontaneous decay averages to zero, this emission process does give
rise to a random walk in momentum-space. As a result

〈
p2
〉
6= 0, which means that

the final momentum spread
〈
p2
〉
− 〈p〉2 will have a finite value and, thus, so will the

temperature.

1In general, there will also be terms independent on the velocity, however, for balanced cooling
beams these will cancel out.

2The exact emission pattern is determined by the induced dipole and, hence, polarization depen-
dent.
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Figure 4.2: (a) Friction coefficient versus laser detuning, ∆ (in units of Γ), for various
values of the saturation parameter, s0. (b) Velocity dependence of the laser force on an
atom for two counter-propagating lasers (black line), when the detuning is ∆ = Γ/2 and the
saturation parameter is s = 1. Gray lines represent the forces of the individual beams.

The final steady state temperature can be found analysis of the diffusion coefficient
D [62]. From this it follows that the rate of momentum diffusion can be written as:

Rdiff = 2D = ~
2k2Γ

s

1 + s
. (4.3)

Basically, the diffusion coefficient stems from a random walk in momentum space with
a step size of ~k at the scattering rate ΓΠe. The cooling rate, in terms of momentum,
depends on the friction coefficient and the momentum as

Rcool =
β

M

〈
p2
〉

=

〈
p2
〉

M
4~k2 s02∆/Γ

[
1 + s0 + (2∆

Γ )2
]2 , (4.4)

where we have inserted eq. 4.2 for the friction coefficient. If we consider the case of
low intensity, where we are far from saturating the transition (s0 � 1), and optimal
detuning of ∆ = Γ/2, we find

Rdiff =
1

2
~

2k2Γs0, (4.5)

Rcool = 2

〈
p2
〉

2M
~k2

0 . (4.6)

In steady state Rcool = Rheat and one finds

TD =
~Γ

2kB
, (4.7)

where TD is the so-called Doppler temperature, defined through 1
2kBTD =

〈p2〉
2M . The

minimal temperature that can be reached with Doppler laser cooling is thus set by the
width of the transition Γ. At the same time this also determines the capture range
of the cooling force, as can be seen from fig. 4.2. A broader transition may allow for
cooling at a higher rate and of a wider range of velocities, but the higher scattering
rate also increases the diffusion rate and, hence, limits the minimal temperature.

Having established the basic principles of Doppler laser cooling we now turn our
attention to laser cooling of calcium ions confined in a linear Paul trap.
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4.2 Laser cooling of Ca+

The analysis of the principles of laser cooling given above assumed a free atom, how-
ever, our ions are not free but rather they are confined in a linear Paul trap as described
in ch. 3. Nevertheless, as we shall see in the following, for the parameters of our sys-
tem the assumption may still be valid in regards to Doppler laser cooling. Fig. 4.3
shows the level scheme of Ca+. The thick, colored lines indicate the transitions used
for Doppler cooling, where the main cooling transition is the 4S1/2 ↔ 4P1/2 transition
(blue). The 3D3/2 ↔ 4P1/2 transition (red) is also needed to make it a closed scheme.3

Since the 4P1/2-state has a decay rate of ΓP1/2
= 2π×22.4 MHz the time scale associ-

ated with Doppler cooling (1/ΓP1/2
) is much less than the time scale associated with

the secular motion of the ions in the harmonic trapping potential of the linear Paul
trap. Typical trap frequencies for our trap are ∼ 100 kHz (c.f. table 6.1) and the ions
may thus be regarded as free particles on the time scale of the Doppler cooling. From
a frequency point of view, the effect of the ions’ motion is to add sidebands to the
absorption spectrum at the trap frequency. But as the cooling transition is orders of
magnitude broader than any of the trap frequencies, these sidebands are not resolved
and we shall pay them no attention in this work.4

The use of a fast dipole transition such as the 4S1/2 ↔ 4P1/2 transition is generally
needed in order to achieve a high scattering rate. The momentum of a single photon

3We shall use this color code in figures and diagrams throughout the thesis to make the reference
to these transitions obvious.

4In cooling schemes where this is not the case and the sidebands can be resolved (the so-called
resolved sideband regime) there exist clever schemes for cooling also the quantized vibrational motion
of the ions to the ground state. This was first demonstrated in 1989 [103] and is termed sideband
cooling.

4s2S1/2

4p2P1/2

4p2P3/2

3d2D3/2

3d2D5/2

Figure 4.3: Level scheme for Doppler cooling of Ca+ with wavelengths and partial decay
rates for the dipole allowed transitions (see appendix A). The thick colored lines indicate
the transitions used for Doppler cooling of Ca+. This color coding will be used for the 397
nm and 866 nm throughout the thesis.
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is far below that of the ions prior to any cooling and for this reason many scattering
cycles are required to cool the ions below the crystallization limit.5 As mentioned in
the previous section, a broad linewidth of the dipole transition also limits the final
temperature that can be reached by Doppler laser cooling and for our cooling scheme,
using the 4S1/2 ↔ 4P1/2 transition, the Doppler limit is about 0.5 mK.

In general, to cool atoms in three dimensions requires three sets of counter-
propagating beams. In a confining potential, such as that of the linear Paul trap,
cooling is only necessary in three directions as the ions reverse their motion with the
trap frequency, and can actually be accomplished with a single beam, provided that
this beam has a component of its k-vector in all three dimensions.

For the case of ion Coulomb crystals in a linear Paul trap the situation is both
more complicated and easier at the same time. The fact that some ions are outside
the trap axis, in regions of non-vanishing micromotion amplitude, means that cooling
should preferentially be applied axially in order to avoid driving this micromotion.
Since the axial and radial degrees of freedom are coupled in a three dimensional ion
Coulomb crystal, all motional degrees of freedom will thermalize and cooling only one
motional degree of freedom will be sufficient. This is contrary to ions in a string (a
one dimensional ion Coulomb crystal) where radial cooling is also necessary. In all
experiments with ion Coulomb crystals, we will use two counter-propagating beams
along the trap axis. More details will be given in ch. 6.

Finally, we mention that due to the magnetic sub-structure of the 3D3/2 state,
we generally work with a bias magnetic field of a few Gauss perpendicular to the
polarization of the 866 nm beam, driving the 3D5/2 ↔ 4P1/2, to ensure all magnetic
sub-states are addressed by this repumping laser.

4.3 Sympathetic cooling and two-component crystals

As mentioned in ch. 3.1.1, different ion species can be trapped simultaneously provided
that their relative charge-to-mass ratios are not too different. This is the case, e.g., for
different isotopes of a given atomic species, like 40Ca+ and 44Ca+. When cooled below
the critical temperature, both components crystallize to form a two-component ion
Coulomb crystal and, as a result of the mass dependence of the radial trapping poten-
tial, the two components separate radially. An example of this is shown in fig. 4.4a).
The lighter 40Ca+ ions form an inner core surrounded by a crystal constituted by the
heavier 44Ca+ ions. The full three-dimensional shape can be visualized by rotating
the crystal around the z-axis (trap axis). In fig. 4.4a) both isotopes are being cooled
simultaneously; however, due to their mutual Coulomb interaction, thermal energy
is transferred between the two components and it is therefore only necessary to cool
one component. Examples of this are shown in fig. 4.4b) and c) where laser cooling is
applied only to one of the two isotopes (44Ca+ or 40Ca+, respectively). The other iso-
tope is then sympathetically cooled via its Coulomb interaction with the laser cooled
isotope [105,106].

Such two-component crystals are appealing as a medium for CQED studies since
they allow for laser cooling of the outer, radially separated component, while having
the other inner, cylindrical component interacting with the cavity field only.

5Recently, however, our group has demonstrated Doppler cooling on a dipole-forbidden transition,
specifically the 4S1/2 ↔ 3D5/2 of 40Ca+. For details see [104].
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Figure 4.4: a) Image of a two-component crystal consisting of ∼ 2000 40Ca+ ions (inner
component) and ∼ 13000 44Ca+ ions (outer component) that are being laser cooled simulta-
neously. b) 44Ca+ laser cooled, 40Ca+ sympathetically cooled. c) 40Ca+ laser cooled, 44Ca+

sympathetically cooled. The full 3-D shape can be visualized by rotating the crystal around
the z-axis (trap axis). Details about the camera system can found in ch. 6.4

The relevant transition for the cavity QED experiments with this system is the
3d2D3/2↔4p2P1/2 transition of 40Ca+. The isotope shift of this transition, relative to
40Ca+, is 4.5 GHz for 44Ca+, which means that the state of the 40Ca+ ions should not
be affected by the cooling lasers when this component is being sympathetically cooled
by the 44Ca+ ions. Alternatively one may also choose to work with 48Ca+ instead of
44Ca+ which has an even larger isotope shift of 8.3 GHz. The reason for considering
these two isotopes, rather than other naturally abundant isotopes of calcium, is that
relatively higher loading rates into the trap can be achieved for these (see ch. 7). The
isotope shifts on the various transitions can be found in appendix A



Chapter 5

Laser systems

In the experiments presented in this thesis a number of laser systems have been used.
Some had been developed previously in our laboratory while others were developed
specifically for the purpose of these experiments. The account within this thesis will
naturally reflect this, however, all relevant laser systems will be described, albeit in
different detail. References to past thesis’ from the Ion Trap Group will provide for
further reading if necessary.

In this chapter we will describe the laser systems for production of the following
wavelengths:

• 272 nm used for photoionization of Ca.

• 397 nm used for Doppler laser cooling and optical pumping of Ca+.

• 866 nm used for Doppler laser cooling and optical pumping of Ca+ as well as
a probe laser in the cavity QED experiments.

• 894 nm used for diagnostics and locking of the experimental cavity for the
cavity QED experiments.

In addition, we have a commercial pulsed laser at 1064 nm, which may be used for
loading the linear Paul trap by ablation of atomic Ca. This will be described ch. 7.3.
In appendix F the specifications on the various laser systems have been summarized.

The wavelength of all lasers can be measured using two home-build λ-meters based
on an interferometric setup [107]. These have a 7 digit precision, which is precise
enough to achieve a coarse, adjustment of the frequency for e.g. Doppler laser cooling
of Ca+. Furthermore, a setup for optogalvanic spectroscopy [108,109] is available for
finding the atomic resonances of Ca+.

We shall begin this chapter with a description of the 272 nm laser system. It has
been described in [110] but in this chapter we shall treat it in more detail. As it relies
on second harmonic generation (SHG) the theory behind this will be reviewed briefly,
also.

The infra-red diode laser systems for 866 and 894 nm will then be described in the
following section. The probe laser used in the cavity QED experiments is essentially
the same as the 866 nm laser system used for laser cooling, but as it holds an important

39
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position in these experiments, we shall treat this in some detail. The setup for this
laser greatly resembles those of the other diode lasers found in our lab, e.g. a 397 nm
and another 866 nm diode laser used for Doppler cooling as well as the 894 nm diode
laser used in the experiments with the cavity. For this reason, we will not describe
these diode lasers in the same detail as the first 866 nm laser, but merely give their
basic characteristics and point out their differences (if any) from this.

Finally, the 397 nm laser systems will be covered, briefly, as well as the stabilized
reference cavities used for locking the lasers.

5.1 272 nm laser system

Our ion production scheme, as we shall see in ch. 7, requires a 272 nm coherent
light source with a linewidth preferably below 1 MHz. As such a laser system was
not commercially available one had to be developed specifically for this purpose. In
the past, the Ion Trap Group has relied on an Ar-ion pumped dye laser at 544 nm,
frequency doubled to produce light at 272 nm [111]. However, with the increasing
complexity of the ion trap based experiments, a laser system offering a higher degree
of ease-of-use and reliability was in high demand and, to this end, we decided to
develop an all solid-state laser system.

There is a general demand for continuous wave (CW) coherent light sources in
the visible and ultra violet (UV) range for applications in both science and industry.
Today, the most common sources in the blue-green wavelength range are based on
frequency doubling of light from rare-earth element doped solid state lasers [112–114].
Indeed, commercial systems have traditionally been based on Nd-doped solids, which
have proved very successful in delivering high power and single frequency light in the
green and blue wavelength range through efficient SHG [112]. Furthermore, light from
the strong 1064 nm line of Nd:YAG has been converted into 1.1 W at 532 nm with a
record holding intra-cavity conversion efficiency of 89 % [113], and a 2.8 W source of
473 nm light based on the 946 nm line of Nd:YAG has also been reported [114].

Sources of this type are at present an obvious choice for further frequency doubling
into the UV range, and recently, a record high power of 5 W at a wavelength of 266
nm has been achieved using two stages of frequency doubling of light from a Nd:YVO4

laser [115].
As single mode (SM) rare-earth element doped distributed feedback (DFB) fiber

lasers have become commercially available, [116] an alternative to the Nd-based sys-
tems has emerged. With a linewidth of a few tens of kHz and an output of several
Watts, these lasers constitute an excellent starting point for SHG into the visible part
of the spectrum. Given that this can be performed with a high efficiency and with-
out any appreciable distortion of the beam profile, further SHG into the UV range
is feasible. For applications in science, these fiber lasers are attractive as their broad
gain profile allows for a far broader spectrum to be addressed, as compared to what
is at present possible with rare earth doped laser systems using a crystal matrix,
such as those based on Nd:YAG. Since laser action can be achieved with Yb doped
germanosilicate glass fibers over a wavelength range of ∼ 975 to ∼ 1200 nm [117],
SHG will provide access to a fairly large part of the spectrum around 550 nm and 275
nm. The present chapter describes a 272 nm laser system based on two consecutive
SHG processes using light from an Yb doped DFB fiber laser, however, the techniques
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involved are fairly general and could easily be extended to other wavelengths.

5.1.1 Second harmonic generation

When an electric field E(t) propagates inside a non-linear medium it induces a polar-
ization of the form

P(t) = χ(1)E(t) + χ(2)E(t) ·E(t) + ... , (5.1)

where χ(i) is a susceptibility tensor of rank (i+1), implying that the response of the
non-linear medium need not be along the same direction as the applied field. Assuming
a harmonic input field, E(t) = ε̂E0 cos(ωt), the second order response of the medium
manifests itself as a time-varying polarization at twice the frequency

P(2)(t) = ε̂pχ
(2)(E0cos(ωt))2 =

1

2
ε̂pχ

(2)E2
0

(
1 + cos(2ωt)

)
, (5.2)

where ε̂p is the polarization vector of the second order polarization, determined by
χ(2) and ε̂. From Maxwell’s equations we can derive a wave equation for the electric
field in the medium

∇2E − 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
, (5.3)

from which it is evident that the non-linear polarization term will act as a source for
an electric field oscillating at the second harmonic frequency 2ω. This provides the
basis for SHG.

Phasematching

Due to the dispersive properties of the non-linear medium used to generate the sec-
ond harmonic frequency, the two fields E(ω) and E(2ω) will in general propagate
at different phase velocities, resulting in destructive interference between the sec-
ond harmonic waves generated at different locations within the crystal. However, as
mentioned above, the second order susceptibility tensor allows for the field E(2ω)
to propagate with its polarization orthogonal to the field E(ω), which in conjunc-
tion with the birefringence of the medium can be used to keep the two waves in
phase. Through the dependency of the refractive index on either the direction of
propagation with respect to a certain optical axis in the non-linear medium or on the
temperature of the medium, a phase relationship between the two fields can be main-
tained, such that ∆k = k2ω − 2kω = 2ω

c (n2ω −nω) = 0. The two methods (angle- and
temperature-based) are commonly referred to as critical and non-critical phasematch-
ing, respectively. Finally, one can show that any interference due to phase mismatch
∆k will translate into a power dependency of the SHG light field of the form

P2(∆k) ∝
(

sin(1
2∆klc)

1
2∆klc

)2

, (5.4)

where lc is the length of the crystal [63].
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Figure 5.1: Schematic of the setup used for SHG of light from the DFB fiber laser. OI:
optical isolator, EOM: electro-optic modulator, F: mode-matching lenses, M: cavity mirrors,
PZT: piezo-electric transducer, PD: photo detector.

5.1.2 Production of light at 544 nm

The setup for this first frequency doubling stage is shown in fig. 5.1. The DFB fiber
laser (Koheras BoostikTM) provides light at 1088 nm, with a linewidth specified to
be < 35 kHz (averaged over 125 µs), coupled through a polarization maintaining
(PM) fiber 1. By controlling the length of the fiber laser cavity with a piezo-electric
transducer (PZT), the frequency can be tuned over a total range of 5.8 GHz at 1088
nm and through the temperature the it can be tuned about 2.3 GHz/K at 1088 nm.
In order to prevent optical feedback from, e.g. the cavity, an optical isolator (OI)
with ∼ 55 dB optical isolation is inserted immediately after the fiber laser.

For the generation of light at 544 nm from 1088 nm we have chosen LiNbO3 as
our non-linear medium.2 LiNbO3 was chosen instead of e.g. LiB3O5 (LBO) due to its
higher non-linear coefficient and a 7% Mg-doping was chosen to ensure a low degree
of photorefractivity [119]. Furthermore, it allows for type I non-critical phasematch-
ing at a temperature of ∼ 157◦C, as can be calculated from the Sellmeier equations
for LiNbO3 (see appendix G.1). This is important since the two fields will then be
co-propagating and deterioration of the beam profile, common to critical phasematch-
ing, where the two beams cannot overlap for the entire length of the crystal, can be
avoided. The resulting near-Gaussian beam profile, will serve as an ideal source for
further SHG to produce light at 272 nm.

1This has later been changed to a non-PM fiber. DFB fiber lasers can be very sensitive to
stimulated Brillouin scattering in the fiber which causes optical feedback [118]. The use of a PM
fiber made this effect more pronounced and changing to a non-PM fiber improved the laser stability.
We have found that even with this non-PM fiber the polarization remains stable once the laser has
been on for about an hour.

2Our crystal was supplied by Castech, www.castech.com.
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Phasematching

To achieve phasematching, the crystal is mounted inside a homebuild oven (see
fig. 5.2). A series of resistors inside a copper block heats the interior of the oven
to ∼ 150◦C and a PT100 temperature sensor monitors the temperature and a peltier
element in a feedback regulating circuit maintains the temperature to fulfill the phase-
matching condition. In this way the temperature can be tuned and held stable to
within a few hundreds of a degree. The oven is isolated by a teflon housing and
mounted on a five axis translation stage for alignment purposes. Fig. 5.3 shows the

Temp sensor
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Crystal

Teflon
housing

Cu bars

Figure 5.2: Picture of the oven with part
of its teflon housing removed.
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Figure 5.3: Plot of the measured SHG power
as a function of temperature. The fit is a sinc-
function modified to account for absorption of
SHG light (see text).

relative level of SHG power as the temperature is tuned across the phasematching
temperature Tpm. The asymmetry in the sinc-function predicted by eq.(5.4) can be
accounted for by a temperature increase associated with absorption of SHG light.
Below Tpm this will bring the effective temperature inside the crystal closer to Tpm

giving rise to a higher power level, whereas above Tpm it will push the temperature
further away from Tpm and result in a lower power level. The fit takes this effect into
account to first order and shows nice qualitative agreement. The measurements indi-
cate a phasematching temperature of ∼ 164.7◦C. The discrepancy between this value
and the value calculated in appendix G.1 can be ascribed to the lack of calibration
of the PT100 thermal sensor and to the empirical nature of the coefficients in the
Sellmeier equations used in the calculation.

Optimal focusing

To estimate the optimal focusing and the single-pass conversion efficiency for SHG in
LiNbO3, we employ the theory developed by Boyd and Kleinman [120]. In brief, the
second harmonic power P2 is related to the fundamental power P1 through

P2 = γP 2
1 , (5.5)
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where γ is the single-pass conversion coefficient, depending on both properties related
to the crystal as well as the intra-cavity field. To calculate the SHG power, the non-
linear crystal is divided into small segments and the second harmonic field generated
within each segment is then propagated to the far-field where the Poynting vector
is averaged over an optical period to give the power. The final expression for the
single-pass conversion coefficient reads (in cgs units):

γ =
128π2ω2

1d
2
eff lk1

c3n2
e−α′lch(σ, B, ξ) (5.6)

where α′ = α1 + 1
2α2 is the total absorption and where 1 and 2 indicate whether

quantities are related to the fundamental or the second harmonic field. deff is the
effective non-linear coefficient, lc is the crystal length, n is the refractive index (at
phasematching), k1 is the wave vector of the fundamental field in the crystal, c is the
speed of light in vacuum and h is a function that contains all the information about
focusing and walk-off through the parameters ξ and B, respectively. These are given
by

B = ρ

√
lck1

2
and ξ =

lc
w2

0k1
. (5.7)

For the special case of non-critical phasematching employed here, B = 0 and ξ =
2.84 [120], which from eq.(5.7) gives an optimal waist of ' 21 µm for a crystal length
of 15 mm.

Cavity design

The single pass conversion coefficient γ can in principle be calculated from eq. 5.6
if crystal parameters, such as absorption and second order susceptibility, are known.
The values given by crystal manufacturers are, however, generally associated with
some uncertainty and, in practice, γ is not known until measured. As we shall see
later, in this case, it is of the order of 10−3 and for this reason it is evident from
eq.(5.6) that high conversion efficiencies in continuous wave (CW) SHG can only be
achieved if an enhancement cavity is employed to allow for the power to build up.
The most common geometry for efficient SHG is the bow-tie resonator, with two plane
mirrors (M1 and M2) and two concave mirrors (M3 and M4), as depicted in fig. 5.4.
The specific geometry of the cavity was designed to support stable oscillation of a
Gaussian TEM00 mode with a minimum waist of ' 28 µm.3 Using the ABCD-matrix
formalism for Gaussian beams [121] we can find a cavity configuration that results in
that particular waist at the center of the cavity. The ABCD-matrix for a round-trip
in the cavity, starting and ending at the minimum waist inside the crystal, is given

3This is a little higher than the 21 µm calculated from Boyd-Kleinman theory above. Quite
often in SHG the choice of focusing is a trade-off between achieving a high conversion efficiency and
a stable output. By choosing a larger waist the conversion efficiency may go down slightly but high
intensity effects such as photo-refractivity and thermal effects may be less pronounced.
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Figure 5.4: Schematic of the cavity used for SHG of light at 544 nm. Relevant lengths are
L1=300 mm, L2=150 mm and L3=63 mm (see text below). The folding angle of the cavity
is 10◦. The LiNbO3 crystal has a refractive index of 2.22 and a length lc=15 mm.
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where cr. and surf. abbreviate crystal and surface, respectively.
The bow-tie cavity has two waists: One minimum waist between M3 and M4

and a larger, auxiliary waist between M1 and M2. It can be can shown that these
are related to the elements of their respective ABCD-matrices through the following
relation [121]:

w0 =

∣
∣
∣
∣

(λ

π

)1/2 B1/2

[1 − (1
2A + 1

2D)2]1/4

∣
∣
∣
∣
. (5.8)

In fig. 5.5 these are plotted as a function of the separation between the M3 and M4,
subject to the condition for stability of the resonator mode

− 1 ≤ 1

2
(A + D) ≤ 1 . (5.9)

The remaining mirror separations in the cavity were chosen to give the smallest pos-
sible angle of incidence on the concave mirrors, in order to minimize astigmatism in
the beam, while at the same time leaving enough room for the oven. From fig. 5.5
we see that, for L3 = 63.2 mm, the minimum waist is predicted to be 28 µm with a
corresponding auxiliary waist of ' 400 µm. By using a set of two lenses, F1 and F2
in Fig. 5.1, the input beam can be shaped to match this waist and all the light will
couple to the TEM00 mode of the cavity. When this is achieved, the cavity is said to
be modematched.

Once the cavity is properly modematched, the single-pass conversion coefficient
can be measured by removing the mirrors M1 and M4 and in this way maintain the
focusing used in practice. This gave a value of gamma of 1.62 × 10−3 W−1.
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Figure 5.5: Plot of the small waist (solid line) and the large waist (dashed line) as a function
of the separation, L3, between the two concave mirrors M3 and M4.

Optimal input coupler transmission and power build up

In general, the optimal value of the transmission of the input coupler TM1 is defined
by an impedance matching condition equating TM1 with the total intra-cavity losses
(see eq. 2.28). When the cavity is perfectly impedance-matched, the reflectivity on
resonance drops to zero and all the power is transferred to the cavity. The total intra-
cavity losses are comprised of both linear and non-linear losses. The linear losses are
associated with scattering on the mirrors and the crystal surfaces, as well as absorp-
tion in the crystal and losses due to the finite mirror reflectivities. The three mirrors,
M2, M3 and M4, all have a reflectivity of 99.9% at 1088 nm. The output coupler M4
has been anti-reflection (ar) coated for light at 544 nm (T = 96%) to allow for the
second harmonic field to exit the cavity. The crystal surfaces have been ar coated to
< 0.2% reflection and in total, the passive losses inside the cavity were measured to
be L ' 1.5% by the method described in ch. 2.2.

The non-linear losses are related to the generation of second harmonic light and
depend thus on the intra-cavity power Pc and the single-pass conversion coefficient
γ. This can be accounted for by replacing L → L + γPc in the equation for the
intra-cavity field derived in ch. 2.2 (eq. 2.23). From this we can find an expression for
the ratio of the intra-cavity power to the incident power P1. On resonance (∆c = 0)
this ratio reads:

Pc

P1
=

4TM1

(L + TM1 + γPc)2
. (5.10)

As γ is generally only of the order of a percent or less, we can neglect terms of second
order in γ and rewrite eq. 5.10 as

Pc =
−L2 +

√

L4 + 32LTM1γP1

4Lγ
. (5.11)

The intra-cavity power is plotted in fig. 5.6 as a function of TM1 for different incident
powers. Typical power levels are 1.0-1.5 W where the optimal transmission is around
0.04. The fact that our transmission coefficient is 0.06 and, thus, a little higher, makes
little difference as seen in the plot of fig. 5.6.
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Figure 5.6: Plot of the intra-cavity power Pc as a function of transmission coefficient for
the input coupler TM1 for various input power levels P1. The linear and non-linear losses
used in the calculation are L = 0.015 and γ = 0.00162 W−1, respectively.

The aforementioned impedance-matching condition can be understood in qualita-
tive terms as a destructive interference condition. If the incident field, reflected of the
input-coupler, and the intra-cavity field, transmitted through, are equal in magnitude
and out of phase by π, they interfere destructively. No field is then reflected and all
the energy is transferred to the cavity. The former condition (equal in magnitude)
led us to an optimum value for input coupler transmission. The latter condition (out
of phase by π) leads to the requirement that the total cavity round-trip phase shift
must be an integer number of 2π, since a phase shift of π is already there due to
the reflections off the mirrors. If the total phase shift is an integer number of 2π
the cavity is said to be resonant. To ensure this, the mirror M2 is mounted on a
piezo-electric transducer (PZT in Fig. 5.1) and controlled by a servo loop using the
Pound-Drever-Hall locking technique [122, 123]. This locking technique requires a
phase modulation of the input field, which can be performed with an electro-optic
modulator (EOM). The EOM used is homebuilt and based on the same non-linear
crystal used for SHG. A 20 MHz rf-signal with an rms amplitude of ' 200 V is put
across the LiNbO3 crystal of the EOM, which produces the required phase modula-
tion. The error signal, used for feedback via the servo loop, is generated by mixing the
20 MHz signal with the signal from the photo detector positioned after the M3 mirror.

Conversion efficiency

From the expression for the intra-cavity power (eq. 5.11) we can find the SHG power
as

P2 = γP 2
c = γ

(

−L2 +
√

L4 + 32LTM1γP1

4Lγ

)2

. (5.12)

Fig. 5.7a) shows the measured SHG power P2 as a function of the fundamental power
P1 incident on the cavity. For a maximum input power of 1540 mW at 1088 nm about
845 mW of usable 544 nm light is generated, corresponding to a conversion efficiency
of ' 55%. Taking into account a 4 % loss at the output coupler, this gives an internal
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conversion efficiency of 57 %, as can be seen from fig. 5.7b).
Also plotted are the theoretical predictions based on eq. 5.12 (solid line) as well as

predictions based on a full numerical solution for Pc (dashed line) in which no higher
order terms in e.g. γ, have been omitted. As expected, the numerical solution shows
better agreement with the measurements for higher powers than the solution in which
higher order non-linear losses has been neglected. The remaining discrepancy is not
well understood, but could be a result of impaired modematching due to changes in
the refractive index of the crystal at higher power levels. With the Mg-doped LiNbO3

crystal used here, photorefractive effects are expected to be quite small [119], although
probably not completely negligible. Thermal effects may also be present.

The graph in Fig. 5.8 shows the SHG power measured over a little less than two
hours. Over that period of time the power level decreased by ' 2.5 %. The decrease
is mainly caused by limited stability of the temperature controller itself and by ad-
justment of the temperature setting on the controller at the end of the measurements
the power increased back to its initial level.

Beam quality

The beam quality is commonly evaluated by a comparison with a perfect Gaussian
beam profile. A quantitative measure of this is the M2-parameter, which for a perfect
Gaussian beam is equal to 1. It is defined as M2 = πw0θ/λ, where w0 is the minimal
beam waist, and θ is the beam divergence. The most widely accepted method4 for
evaluating M2 is by focusing the beam and measuring the waist at the focus and the
beam divergence beyond the Rayleigh range.

In our measurements we focused the beam with an f = 100 mm lens and measured
the waist to be ' 38 ± 2 µm in both the vertical and the horizontal direction. The
Rayleigh range is about 8 mm and fig. 5.9 show the results of measurements of the
divergence angle from which we deduce an M2 of 1.08 ± 0.5 and 1.05 ± 0.5 in the
vertical and the horizontal direction, respectively. As expected for a SHG beam
originating from a non-critical phase-matching process, the beam profile is almost a
perfect Gaussian, which makes it a good starting point for the generation of light at
272 nm as it can be coupled into an enhancement cavity with high efficiency.

5.1.3 Production of light at 272 nm

The second cavity for frequency doubling of the 544 nm light to 272 nm is shown in
Fig. 5.10. This cavity was originally designed and constructed by Jens Lindballe, a
former master student of our group, and the setup is well-described in his thesis [124].
Here in brief:
At this wavelength non-critical phase-matching can not be obtained, so type I critical
phase-matching in a BBO crystal is employed.5 The walk-off associated with this pro-
cess is about 85 mrad and as a result the SHG beam will be non-Gaussian. The crystal
is 8 mm long and has been ar coated on both end-faces at the relevant wavelengths,
with residual reflections of 0.2 % and 0.6 % at the fundamental and the second har-
monic, respectively. The cavity (see fig. 5.10) is in a bow-tie configuration (distance
M5-M6, M7-M8: 13.6 cm, folding angle: 6.3◦) with mirrors M5 and M6 both being

4ISO Standard 11146.
5This crystal was supplied by Newlight Photonics.
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Figure 5.7: a) SHG power vs. incident power. b) Conversion efficiency vs. incident power.
Error bars are 5% of data values. The data has been corrected for a 4 % loss at the output
coupler M4. The solid line is the theoretical prediction based on eq. 5.12 and the dashed line
is based on a full numerical calculation of Pc. Parameters used for the theoretical curves are
T = 0.06, L = 0.015 and γ = 0.00162.

plane mirrors with a reflectivity at 544 nm of 99.0 % and 99.9 %, respectively, and the
two remaining mirrors M7 and M8 both having a radius of curvature of 10 cm and a
reflectivity of 99.9 % at 544 nm. The out-coupling mirror, M8, has a transmission of
85.0 % at 272 nm. Total passive losses amount to '1 %. The crystal is located at the
waist ('29 µm) between the two curved mirrors, near the optimum value evaluated
from Boyd-Kleinman theory [120]. From the parameters given by the manufacturer,
we expect a single-pass conversion coefficient of γ ' 18×10−5 W−1. The cavity is kept
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Figure 5.8: 544 nm power versus time.
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Figure 5.9: Vertial (a) and horizontal (b) beam waists measured versus the distance from
the focusing lens. The slopes are measured to be 4.88×10−3 and 4.81×10−3 for the vertical
and horizontal, respectively.

resonant with the 544 nm light by using a Hänsch-Couillaud type polarization locking
scheme [125]. The results of this second frequency doubling step are summarized in
fig. 5.11. For an input of 730 mW at 544 nm, we achieve a conversion efficiency of
16 %, corresponding to 115 mW at 272 nm. Taking losses at the output coupling mir-
ror of 15 % and imperfect modematching (95 %)6 into account, the internal conversion
efficiency is found to be close to 20 %. The considerably lower conversion efficiency of
the second frequency doubling stage is due to several parameters: The input power,
which is much lower than for the first SHG stage. The non-linear coefficient of the
BBO crystal at 544 nm, which is inferior to that of the LiNbO3 crystal at 1088 nm.
And finally, the walk-off due to the critical phase-matching situation, which leads to
partial destructive interference of SHG light produced along the crystal. However,

6This is partly due to the slightly eliptical beam profile of the 544 nm light, as indicated by the
difference in the measured M2-values



5.1. 272 nm laser system 51

272 nmBBO

PZT

F3

F4

PD

PDPBS

λ/2

M5 M6

M7 M8

λ/2 λ/4 Servo
controller

544 nm

Figure 5.10: Schematic of the setup used for the second frequency doubling stage. F: mode-
matching lenses, M: cavity mirrors, PZT: piezo-electric transducer, PD: photo detector, λ/2:
Half Wave Plate, λ/4: Quarter Wave Plate.

the measured efficiency is far below that predicted by the Boyd-Kleinman theory for
the parameters quoted earlier (T = 0.01, γ = 18 × 10−5 W−1 and L = 0.01), which
is shown by the the solid line in fig. 5.11. This discrepancy might be due to slightly
higher passive cavity losses. Since γ is expected to be about an order of magnitude
lower for BBO at 544 nm compared to LiNbO3 at 1088 nm and the fundamental power
is about half, non-linear losses are significantly lower in this second SHG process. The
impedance matching condition for the input coupler transmission T = L+γPc is then
mainly determined by the passive losses L and changes in these will reflect heavily
on the intra-cavity power and, hence, the conversion efficiency. The dashed line in
fig. 5.11 shows the theoretical prediction for increased losses of L = 0.018 and is in
nice agreement with the obtained results. Finally, the non-linear coefficient might
also be lower than that specified by the crystal manufacturer.

In terms of input power to usable output power conversion, the overall efficiency
(1088 to 272 nm) is 8 %, which is similar to that of a previously reported 175 mW
272 nm source based on a Ti:Sapphire laser operated at 817 nm [126].

The power stability of the UV light reflects that of the 544 nm source. At input
powers above 700 mW, changes of up to 20 % are seen over several hours, whereas
on a timescale of tens of ms the fluctuations are below 5 %. The frequency stability
of system is set by the temperature stability of the DFB fiber laser which results in
drifts in frequency at 272 nm of ∼100 MHz/K.

5.1.4 Outlook

As mentioned in the introduction of the present chapter, the broad gain profile of
Ytterbium (∼ 975 to ∼ 1200 nm) makes Yb-based DFB fiber lasers very attractive
for frequency doubling into the visible and further into the UV. Other than the laser
system presented here, a 275 mW source at 280 nm also based on two consecutive
frequency doubling stages of light from a commercial Yb-doped DFB fiber laser has
been reported [127], and recently, a 4 W laser source at 546nm also based on SHG of
light from a Yb-doped DFB fiber laser, was developed [128]. Furthermore, DFB fiber
lasers based on Erbium (emission range ∼ 1500 to ∼ 1600 nm) [129] and Thulium
(emission range ∼ 1700 to ∼ 2100 nm) [130] may further enlarge the accessible wave-
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Figure 5.11: a) Generated second harmonic power at 272 nm as a function of incident
light power at 544 nm. b) Internal power conversion efficiency. Error bars correspond to
an estimated 5 % uncertainty in the measured powers. The data has been corrected for a
15 % loss at the output coupling mirror, M8, and a modematching of 95 %. The two lines
are from a theoretical prediction based on eq. 5.12 for T = 0.01, γ = 18 × 10−5 W−1 and
L = 0.01 (solid line) and T = 0.01, γ = 1.8 × 10−5 W−1 and L = 0.018 (dashed line).

length range in the visible and near-UV region. Consequently, we expect rare-earth
element doped DFB fiber lasers in combination with SHG to be applied extensively
in the future.
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5.2 866 nm laser systems

Light at 866 nm is used in laser cooling of all Ca+ isotopes and in experiments with
two-component crystals, such as those presented in fig. 4.4, two laser sources, each
one tuned to a different isotopic resonance, were used. Other experiments, that we
shall consider later in this thesis, also required the use of two different 866 nm lasers
and we thus have two diode laser systems producing light at 866 nm. These are,
however, more or less identical. The following is a description of the 866 nm laser
used for probing the ion Coulomb crystal-cavity system, specifically. This laser will
henceforth be referred to as the 866-1 or the probe laser. The other, mostly used for
Doppler cooling and optical pumping of Ca+, will be referred to as the 866-2, the
repumper or the optical pumping laser.

The 866-1 laser is based on an ar-coated diode, as are all diode lasers used in this
work. The advantage of using ar coated diodes, rather than Fabry-Perot diodes, is
that they have a very broad gain profile and can thus be aligned for lasing over a broad
range of wavelengths, if necessary. Feedback to achieve laser oscillation is provided
via an extended cavity, where the output coupler is a grating (1800 lines/mm) placed
in a Littrow configuration. A drawing of a typical diode laser found in our laboratory
is shown in fig. 5.12. The laser diode itself is not seen as it is hidden by the lens which
collimates the horizontal beam axis. Frequency tuning can be achieved via the diode
current, the temperature, which is controlled by a peltier element under the laser base
plate, or by a PZT that controls the angle of the grating and the length of the cavity
(See fig. 5.12).

Peltier element

laser diode

Grating
mount

Gating on PZT

lens

Figure 5.12: Drawing of a typical diode laser used in the experiments. See text for details.
Not shown is the cover as well as a styrofoarm housing, which helps the temperature stability.
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Figure 5.13: Schematic of the 866 nm laser system used for cooling of Ca+. PBS: Polarizing
beam-splitter, λ/4: Quarter-wave plate, PD: Photo detector. See text for details. There are
two such laser systems in our laboratory, which allows for cooling of both 40Ca+ and 44Ca+

at the same time. Furthermore, the part of the setup in the black frame in the upper right
corner, can be duplicated allowing for several beams to be sent to the experiment for different
purposes such as optical pumping (ch. 9) and probing the atomic states (ch. 10).

Setup

A schematic of the general setup is shown in fig. 5.13. A pair of anamorphic prisms is
used to reshape the otherwise elliptical beam profile at the output of the laser. An OI
ensures minimal optical feedback to the laser and frequency stabilization is done by
locking the laser to a temperature stabilized reference cavity (see ch. 5.5) using the
Pound-Drever-Hall (PDH) locking scheme [122,123]. The phase-modulation required
for this scheme to work is provided by an EOM, which modulates the light at 8 MHz
before the reference cavity. For locking, the error signal is divided such that a high
frequency, ac-part, is fed back to the laser current, while a low frequency, dc-part,
is sent to the PZT, which generally makes for stable, low noise locking over several
hours. Once locked, fine tuning of the frequency can be done using an acousto-optic
modulator (AOM) inserted in the locking setup. The AOM has a tuning range of ±50
MHz and is placed in a double-pass setup, which effectively, results in a total tuning
range of ±100 MHz.

The 866-1 laser actually has two OIs each providing ∼ 35 dB attenuation of back
scattered light while for most other diode lasers a single OI, as indicated in the draw-
ing of the setup, suffices. The need for such high attenuation arises when the 866-1
laser is used as a probe for the optical cavity, used in the cavity QED experiments.
Since this cavity is in a standing wave configuration and is very accurately aligned, it
is prone to cause optical feedback to the laser.

Shutters

In some experiments it is necessary to turn the 866 nm light on and off on a very short
time scale and with a very high degree of extinction. This is achieved with an AOM in
a single-pass setup as shown in the black frame of fig. 5.13. The radio frequency (rf)
driving field can be turned on and off with a rise/fall time < 100 ns and with an
attenuation of ∼ 80 dB. This effectively turns the 1st order beam off. However, even
with good optical quality of the AOM crystal and surfaces, there is still some scatter-
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ing of the 0th order beam, which ultimately limits the optical attenuation to about
40 dB after the AOM. The optical fiber used as a practical means to guide the light to
the experiment then serves a second purpose, namely as a pinhole providing spatial
filtering of this scattered light. This usually increases the total optical attenuation to
55-60 dB in our setups. Depending on the experiment, there may be several beams
with shutters and fiber couplers as in the setup in the black frame of fig. 5.13.

Linewidth

Finally, the linewidth of the 866-1 laser should be considered. The linewidth of the
atomic transition is set by the decay rate of the 4p2P1/2-state to 2π × 22.4 MHz and
as we shall see in ch. 6.6, the cavity linewidth (FWHM) is about 2π × 4.2 MHz.
Since the 866-1 laser is used to probe the interaction between the cavity field and an
atomic dipole on this transition, the 866-1 linewidth must be narrower than both of
these. Fig. 5.14 shows the result of a linewidth measurement of the 866-1 laser in free
running mode (black data points) and when locked to the stabilized reference cavity
(red data points). The red and black curves show Lorentzian fits to the data with
widths (FWHM) of 458± 12 kHz and 214± 4 kHz, corresponding to laser linewidths
of 279 ± 6 kHz and 107 ± 2 kHz for the free running and locked data, respectively.

The linewidth is measured using a self-heterodyne setup [131], where the laser
beam is split into two, and one beam is shifted in frequency by 270 MHz with respect
to the other. When re-combining the two beams, a beat node occurs at this frequency
with a width reflecting the time correlation between the fields of the two beams. In
this measurement, one beam was sent via an optical fiber through a delay line of more
than 20 km. This is well beyond the coherence length of the laser itself, which based on
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Figure 5.14: Beat nodes obtained by self-heterodyning of the 866 nm laser using a 20 km
delay fiber. Black data: Free running. Red data: Locked to reference cavity. The width
of the Lorentzian fits are 458 ± 12 kHz and 214 ± 4 kHz, corresponding to laser linewidths
of 279 ± 6) kHz and 107 ± 2 kHz for the free running and locked data, respectively. This
linewidth is typical for our diode laser (see appendix F over an overview).
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our measurement of ∼ 100 kHz is Lcoh = c
∆νlaser

' 3 km. The beat node thus reflects
the linewidths of two uncorrelated fields, which assuming a Lorentzian linewidth, is
exactly twice the linewidth of the laser. More details can be found in [131].

5.3 894 nm laser system

The 894 nm laser is used in the cavity QED experiments in two ways, which will be
described in detail in ch. 6.6:

• To lock the cavity and control the length and, hence, the detuning of this cavity
with respect to the atomic transition in the ions.

• To monitor drifts and acoustic noise of the cavity when scanning the cavity.

These two points make this laser a crucial piece of equipment for our experiments.
Any noise inherent in this laser will be transfered to the cavity and the quality of our
data will degrade as a result thereof.

As already mentioned, this laser system greatly resembles that of the 866-1 laser
and for details regarding the general setup and performance we refer to the above
section covering the 866-1 laser and appendix F where the specifications have been
summarized. As for the 866-1 laser, the fact that the 894 nm laser is used together
with the trap cavity means that special precautions must be taken to avoid optical
feedback from this. For this reason the 894 nm laser also has two OIs each providing
about 35 dB attenuation and with this it performs with low noise and stable output. A
quantitative measure of the stability is again the linewidth, which has been measured
similarly to the 866-1 laser to 163± 8 kHz in the free running case and 89± 5 kHz in
the locked case.

For the 894 nm laser to function as a locking laser for the cavity and a means of
diagnostics for this, three requirements must be met:

• The linewidth of the cavity at 894 nm must not be too different from the
linewidth of the cavity at 866 nm.

• The linewidth of the 894 nm laser must be narrow compared to the linewidth
of the cavity at 894 nm.

• The 894 laser should have low long-time drifts in frequency.

The first requirement relates directly to the cavity itself and will be considered in
ch. 6.6. The second requirement is easily satisfied by the low linewidth of the 894 nm
laser and the third is satisfied by locking it to a temperature stabilized reference cavity,
provided this does not drift over the time it takes to perform the measurements. This
drift has been measured to be ∼ 1 MHz/hour (see ch. 5.5), which is low enough for
most practical purposes.

5.4 397 nm laser system

We have two laser systems producing light at 397 nm in our laboratory. One is based
on a 794 nm Titanium Sapphire (Ti:Sapph) laser and makes use of SHG to produce
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Figure 5.15: a) Schematic of the 397 nm laser system based on SHG of light from a Ti:Sapph
laser used for cooling of 40Ca+. b) Schematic of the 397 nm diode laser system used for
cooling of 44Ca+. PBS: Polarizing beam-splitter, λ/2: Half-wave plate, λ/4: Quarter-wave
plate, PD: Photo detector. See text for details.

light at 397 nm. The other is based on a 397 nm diode laser in an extended cavity.

The Ti:Sapph source

The Ti:Sapph based setup is depicted in fig. 5.15a). A Verdi V8 pumps a 899 Co-
herent Ti:Sapph laser producing light at 794 nm, which is subsequently converted
into 397 nm light via SHG in an external enhancement cavity. Immediately after the
Ti:Sapph an OI (∼ 35dB attenuation) prevents optical feedback from the SHG cavity.
The 794 nm beam is mode-matched to the external enhancement cavity using a set
of lenses and converted into 397 nm light in a 12 mm long Lithium Triborate (LBO)
crystal. The cavity is in a bow-tie configuration and is kept resonant using a Hänsch-
Couillaud polarization locking scheme [125]. This generates an error signal that is fed
back to one cavity mirror mounted on a PZT, which controls the length of the cavity.
For LBO at this wavelength, the SHG is a type I critical phase-matching process,
which implies that the produced 397 nm light has a non-gaussian beam profile due to
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walk-off. This is corrected using a set of cylindrical lenses. For more details on this
SHG cavity see ref. [132]. Typically, the Ti:Sapph is pumped by 5.5 W producing
∼ 300 mW 794 nm light, which gives ∼ 40 mW 397 nm light. Of this, about 10 mW
is available for the experiment after the optical fiber.

Before the SHG cavity, part of the beam is taken out on a window and used for both
wavelength measurement and frequency stabilization. The frequency stabilization is
done by locking the Ti:Sapph laser to a temperature stabilized reference cavity (see
ch. 5.5) using a PDH locking scheme [122, 123] similar to the 866-1 laser described
above. Once locked, fine tuning of the frequency can be done using an AOM inserted
in the locking setup. The AOM has a tuning range of ±50 MHz and is placed in
a double-pass setup. Effectively, this corresponds to a total tuning range of the
frequency doubled 397 nm light of ±200 MHz.

The linewidth of the Ti:Sapph has been measured previously to be ∼ 100 kHz [133],
which is sufficiently low for the purpose of Doppler laser cooling and optical pumping
of Ca+, where the linewidth of the transition is 22.4 MHz.

The 397 nm diode source

The 397 nm diode is an ar coated diode. The setup resembles that of the 866-1
laser described above except that phase modulation is achieved through modulation
of the laser current at 6 MHz (see fig. 5.15b)). The laser delivers about 10 mW of
power, 30% of which is coupled through a PM fiber and sent to the experiment. The
linewidth of this laser has not been measured at the time of writing, but is estimated
to be below 1 MHz. At any rate, for the purpose of Doppler laser cooling, which has
been this laser’s primary objective within this work, it has been found to work well.

5.5 Stabilized reference cavities

As mentioned several times throughout this chapter, the frequency stability of the
lasers is maintained by locking them to temperature stabilized reference cavities.
For the lasers described above, there are three such reference cavities: One for the
Ti:Sapph laser at 794 nm, one for the diode laser at 397 nm, and one for the remaining
three infra-red diode lasers (866-1, 866-2, 894). Apart from having cavity mirrors
with different coatings, the three reference cavities are identical. They consist of a
horizontal quartz tube with mirrors at each end forming the optical resonator. The
length of the tube is 25 cm, which corresponds to a FSR of about 600 MHz. Quartz
has a relatively low, but nevertheless, non-vanishing thermal expansion coefficient
(0.55 × 10−6 K−1) and the length of the cavity can thus be adjusted through the
temperature. The temperature is controlled and stabilized by a PDI-circuit that feeds
back to a resistive wire wound around the quartz tube. The cavity itself rests in an
evacuated vacuum tube (pressure ∼ 10−5 mbar), which is also temperature controlled.
The stability of the cavity is ∼ 1 MHz/hour. For further details see [134].



Chapter 6

The experimental setup

In this chapter we describe the setup that has been developed for the realization of
cavity QED experiments with ion Coulomb crystals. We shall detail both the design
and construction of the ion trap as well as the integrated cavity. Also covered in
this chapter are the ion imaging system, the magnetic field control setup, the cavity
detection system and the computer control system. We then conclude and summarize
the main points of the chapter.

6.1 The cavity trap

The first cavity trap was originally designed by former PhD-student Anders Mortensen
in collaboration with engineer Henrik Bechtold at the Department of Physics and
Astronomy at the University of Aarhus. It was designed with the specific goal of
implementing a quantum memory for light based on ion Coulomb crystals. Aspects
of this as well as theoretical and practical work on the design and construction of the
trap are well described in the thesis by Anders Mortensen [66] and we shall refer to
it many times throughout this chapter. In early 2005, it was decided that a new trap
should be developed and it is this second trap that we will describe in the following.
The final version of the new trap, however, is very much inspired by the design of
its predecessor and owes its new features largely to the experience accumulated by
Anders Mortensen. These features are primarily related to aspects regarding trap-
and cavity alignment precision.

6.1.1 Design considerations

For ion Coulomb crystals to enter the regime of strong collective coupling of cavity
QED, one must design and implement an experiment where the coherent coupling
strength of the crystal to a single photon dominates over all dissipative processes in
the system. In ch. 2.3 we formulated this as the strong collective coupling criterion:
g
√

N > γ, κ, where g is the single ion-photon coupling strength, N is the number of
ions, γ is the decay rate of the atomic dipole and κ is the decay rate of the cavity field.
As described in appendix C the coupling strength of a single ion to the cavity field,
scales as 1/

√
V , where V is the cavity modevolume. It is therefore appealing to try

to make the cavity as small as possible, by positioning the mirrors closely together
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so as to achieve the highest possible coupling strength. This has indeed been the
approach in experiments with neutral atoms where cavities of only a few tens of µm
have been implemented and enabled the fulfillment of the strong coupling criterion
even for single atoms [11, 12]. Since the cavity decay rate κ ∝ T/lcav (neglecting
mirror losses), where T is the mirror transmission and lcav is the cavity length, as the
cavity is made shorter to increase the coupling strength, κ is increased unless mirror
transmission losses are reduced. For this reason the above mentioned experiments
were forced to use extremely high finesse cavities, which are in general technically
very challenging both to implement and to operate.

With ions the situation is quite different. The perturbing effect of the dielectric
mirrors will be likely to impede trapping of ions when the mirrors are brought very
close together and stable confinement thus becomes extremely challenging to achieve.
Efforts to overcome this, by use of traps with very small trapping volumes combined
with high finesse cavities, are currently made e.g. in the group of Wolfgang Lange at
the University of Sussex and may eventually allow single ion experiments to enter the
strong coupling regime.

In this work, we choose a different approach which is to scale up the coupling
strength by increasing the number of ions interacting with the cavity mode field. As
we mentioned already in ch. 2.3, here we are dealing with a collective interaction
that in certain aspects is fundamentally different from the single ion/atom systems.
However, this type of collective, ensemble-based experiments benefits from the fact
that the challenges related to the implementation of short, high finesse cavities can
be avoided. Since we do not require single ion strong coupling (g > γ, κ), a longer
cavity can be employed, which means that only a moderately high finesse cavity is
needed to achieve a sufficiently low value for κ.

For the D3/2 ↔ P1/2 transition of 40Ca+ the decoherence rate of the atomic dipole
is γ = 2π× 11.2 MHz. By choosing a cavity with a finesse of about 4000 and a length
of about 1 cm the cavity decay rate becomes κ ' 2π × 2 MHz. Since γ is by far the
dominant decay rate in the system already, not much is gained by a cavity of higher
finesse for the purpose of achieving strong collective coupling. In appendix C we cal-
culate the coherent coupling strength for a 1 cm long cavity, with the parameters of
our system, to be around g ' 2π × 0.5 MHz, which means that about 500 ions are
required to enter the regime of strong collective coupling. These numbers will guide
us in the following design of the cavity.

At the time when the cavity trap was first designed, only two groups in the world
had successfully combined the techniques of ion trapping with small optical cavities
to study the interaction between a cavity field and ions. These were the groups of
Rainer Blatt [44, 45, 135] in Innsbruck and Herbert Walther in Garching [43, 46, 57]
who pioneered the field of cavity QED with ions. Our design has to some extent
been guided by their advances, however, in certain aspects, the task of confining ion
Coulomb crystals rather than single ions in the mode of an optical resonator imposes
further challenges to the design. Here we list some of the main issues that must be
considered for the successful implementation of a cavity QED experiment based on
ion Coulomb crystals:

• The effect of the mirrors on the motion of the ions, and specifically the effect of
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micromotion.

• The trap geometry, which must allow for a large enough number of ions to be
confined stably within the cavity mode volume, for the system to satisfy the
requirement for strong collective coupling (∼ 500 ions).

• Achieving precise alignment of the trap, the cavity, and the trap with respect
to the cavity.

• UHV environment and non-magnetic materials, which are necessary to achieve
long life- and coherence times of atomic states.

• Avoiding mirror contamination during loading of the trap, which is necessary
to maintain the quality of the optical resonator.

We shall address most of these issues in the present section on the design of the trap.
In ch. 6.2 we will describe the vacuum chamber and how the UHV environment is
achieved and maintained. To minimize stray magnetic fields, we have only used non-
magnetic materials, such as titanium, copper, ceramics and glass for the trap and the
vacuum chamber and the trap table is made from low-magnetic stainless steel. To ad-
dress the final issue of avoiding mirror contamination, the trap is loaded via resonant
photoionization, which generally provides for clean and efficient loading. This will be
described in ch. 7.

The effect of the mirrors

The introduction of cavity mirrors into the trap requires some careful thought. The
mirror substrates are made from fused silica, which for static electric fields and the
rf-fields of the linear Paul trap has a dielectric constant of 3.78 × ε0 [136]. This will
obviously affect the electric field lines of the trap and may cause the rf-fields to have
a component along the trap axis. This will give rise to axial micromotion, which
as mentioned in ch. 3.2.2, will result in unwanted Doppler broadening of the atomic
transitions. The previous experiments combining an optical cavity with an rf-trap
have focused on single or few ions [45, 57], where micromotion is less critical as the
ions can be positioned in the rf-minimum [93]. For ion Coulomb crystals the situ-
ation is different as there will always be some ions that are not in the rf-minimum.
Simulations done by Anders Mortensen [66] confirmed that the effect of the cavity
mirror substrates could be substantial but also revealed that it is possible to design
the mirrors such that the effect would be diminished. The simulations indicated that
a viable strategy is to make the mirror substrates flat and extend as far as possible to
the electrodes. A simple explanation for this can be found by considering a trap with
four infinitely long electrodes in a quadrupole configuration. Everywhere the electric
field lines will be perpendicular to the trap electrodes and no component along the
trap axis exists. If the region between the electrodes is filled completely with a di-
electric medium in one end of the trap, this does not change the electric field since it
already fulfills the necessary boundary conditions at the interface of the dielectric and
the vacuum. This will not be the case should the dielectric not extend all the way to
the electrodes and the rf-field lines will then bend toward the dielectric medium, thus
causing axial micromotion.
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Figure 6.1: (a) Sketch of linear Paul trap with integrated mirrors. (b) End-view of the
trap.

Cavity trap geometry

Based on the above analysis, dielectric filling in the form of mirror coats are added
around the mirror substrates. A schematic drawing can be seen in fig. 6.1. The cavity
axis coincides with the trap axis to minimize the effect of radial micromotion. When
analyzing which trap geometry would result in the most harmonic potential, the ef-
fect of the mirrors was also included in the simulations. The final dimensions for the
trap electrodes along with other trap parameters have been summarized in table 6.1.
Also guiding the design process was the experience within the Ion Trap Group with
similar traps. The final geometry therefore reflects a relatively conservative estimate
for what would allow for stable confinement of ion Coulomb crystals of the required
density and length. For further details, see [66].

Mirror radius (incl. coat): rm = 2.08 mm
Electrode inscribed radius: r0 = 2.35 mm
Electrode radius: re = 2.60 mm
Center-electrode length 2z0 = 5.00 mm
End-electrode length zec = 5.90 mm
Axial geometrical constant: η = 0.342
rf-frequency: Ωrf = 2π × 4.0 MHz
a-parameter(40Ca+): a = −0.84 × 10−3 V−1 × Uend

q-parameter(40Ca+): q = 1.38 × 10−3 V−1 × Urf

Table 6.1: Reference table of the trap-parameters. The trap dimensions are shown in
Fig. 6.1. Note that the values for the a and q parameters are the theoretical predictions
based on the trap geometry (c.f. eq. 3.6) and that the actual values will differ slightly.
Measurements of these are presented in ch. 8.2. Uend and Urf are typically between 1-15 Volt
and 150-400 Volt, respectively.

6.1.2 Alignment and assembly

The final design of the cavity trap is shown in fig. 6.2. The cavity mirror mounts are
held by an outer construction, which consists of two end-walls, made from titanium,
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Figure 6.2: Drawing of the new cavity trap. All metal parts are made from titanium or
copper to minimize magnetic field effects. See text for details.

separated by two pieces of low expansion ceramics1 that ensures minimal changes in
the cavity length with temperature. One cavity mirror is mounted directly in the
end-wall, while the other is mounted on a PZT-plate allowing for control of the cavity
length and aligned via the three alignment screws on the PZT-plate (see fig. 6.2). The
PZT-plate has three PZTs 2 which in hindsight was an unnecessary complication. The
motivation was that it could allow for fine alignment of the cavity, however, in the
end it turned out that the PZT-plate was too rigid for this to have any effect. An
important feature of the PZT-plate, though, is that electric fields from the PZTs are
efficiently shielded by grounding the plate and the outer walls of the PZTs.

The trap electrodes are of gold plated copper and mounted on rods of zerodur3,
which are held in a monolithic macor4 mount. This construction gives a very high
degree of precision, as the final alignment of the electrodes with respect to one another
is determined only by the machining accuracy of the zerodur rods and the holes drilled
in the electrodes and in the macor mount for these rods. In other words, no tightening
or gluing of pieces is required during the assembly of the trap electrodes (see fig. 6.3).
All pieces simply slide in together and are then aligned with a precision set by the

1MC-LD from MarkeTech International Inc.
2Ferroperm pz27
3an ultra low expansion glass manufactured by Schott.
4a machinable ceramic
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machining process, which for all parts is better than 10 µm. In their final position the
electrodes are fixed by titanium screws that connect the wires for the trap voltages
to the electrodes as can be seen in fig. 6.3.

(a)

1 cm

(b)

Figure 6.3: a) Pictures of the assembly process. Electrode mount, zerodur rods and elec-
trodes. Also seen are the mirrors (here, without the mirror coats). b) Picture of the fully
assembled trap including electrode wires. See text for further details.

Before the electrodes were inserted, the electrode mount was aligned with respect
to the cavity axis, using a home made tool consisting of two plates, each with 100 µm
diameter holes, mounted on four rods. These rods fitted into the holes in the macor
for the zerodur rods that would later hold the electrodes. With the aide of this tool,
the electrode mount could be aligned with respect to the cavity axis by adjustment of
three screws on the base plate of the electrode mount, such that the cavity mode was
not cut by the plates of the alignment tool. This was to ensure that once the electrodes
had been inserted, the trap axis would coincide with the optical axis of the cavity.
This alignment is critical both to achieve the highest possible number of ions within
the cavity mode, but also to ensure that the ions within the cavity mode are those
exhibiting the least micromotion and, hence, the least Doppler broadening. We shall



6.2. The vacuum chamber 65

return to this issue in ch. 8 when we present measurements on the characterization of
the trap.

6.2 The vacuum chamber

Fig. 6.4a) shows a picture of the trap chamber viewed from above. The dimensions
can be seen from the holes in the plate, which are 1 cm apart. Below we will go
though the main parts of the trap chamber.

• The trap itself is positioned at the center of the vacuum chamber. Wiring for
the trap electrodes and the PZTs is done through two feedthrough flanges and
via four macor connector blocks. The wires used for the trap electrodes are 1
mm diameter copper wires without isolation and the wires used for the PZTs are
0.25 mm diameter copper wires isolated by a UHV compatible capton coating.

• Optical access is available through seven view-ports, anti-reflexion coated for
the appropriate wavelengths.

• The 397 nm beams for Doppler laser cooling are sent in along the trap axis
(z-axis in picture) to avoid driving the radial micromotion. This is possible for
the 397 nm beams since the cavity mirrors are transmitting at this wavelength.
This is, however, not the case for the 866 nm beams and unless the cavity is
held resonant, repumping cannot be done through the cavity. For Doppler laser
cooling the angle of the 866 nm repumper is less critical than the 397 nm beam,
however, and it can in principle be sent in at 90◦ or 45◦ as shown in fig. 6.4a).
By an alternative beam path, however, the angle can be as small as 11◦. This
is done via the mirror M1 after which it is reflected off the surfaces of the two
mirror coats inside the trap. For alignment purposes, the beam then exits the
trap and is reflected by the mirror M2 out of the chamber, where it can be
detected.

• 866 nm beams sent in along the trap/cavity axis are used as probe beams for
the cavity and the 894 nm beam, likewise sent in along the trap/cavity axis, is
used for locking the cavity and monitoring drift and vibrations. This will be
described in more detail in ch. 6.6.

• For loading the trap, a 272 nm beam intersects with a beam of atomic calcium
at the trap center. A series of skimmers prevents material from this beam from
being deposited on the trap electrodes or the mirror substrates. The calcium
beam is produced from a small oven and measures about 1.5 mm horizontally
and 1.0 mm vertically in the trap center (further details are given in [66]).
Alternatively, the calcium beam can be produced by ablating material off a
calcium target using a pulsed 1064 nm laser, injected via the mirrors M3 and
M4. For further details see ch. 7. Both target and oven as well as a shutter for
the oven beam can be seen in the close-up of fig. 6.4b). The shutter consists of
an aluminum plate mounted on a rotary motion feedthrough that allows it to
be moved in and out of the oven beam.

• For alignment of the optical beams with respect to the trap center, an optical
fiber (80 µm diameter) can be moved in and out of the trap. Light scattered
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from the fiber is then detected by the imaging system. This is also used for
calibration of the imaging system, which will be described in ch. 6.4.

As there is a lot of material inside the chamber, achieving a good vacuum can be
difficult and in general requires some time. Prior to assembly, all parts were cleaned in
an ultra-sound bath and in a soap solution5 and baked separately at 150◦C, after which
they were cleaned again with solvents such as ethanol and isopropanol. Everything
was mounted on a stainless steel plate and aligned inside a pre-cleaned box that had
a small pump attached to maintain a slightly elevated pressure that would prevent
dust and dirt from entering. Access to align the trap was provided through sets of
gloves attached to openings in the box. Prior to installation, the plate, along with
the entire setup, was baked out at 150◦C for a few hours after which the alignment
of the cavity was checked. This was repeated several times to ensure the setup would
remain aligned during the following bake-out.

Once installed and connected, the entire chamber was baked out for about a week,
slowly increasing the temperature to ∼ 150◦C and then maintaining it there for a few
days, while a turbo pump connected to the chamber would pump out. The calcium
oven was slowly heated to ∼ 600◦C over one day to remove oxidized material and air
trapped in the porous calcium lumps. To maintain low pressure after the bake-out,
an ion pump and a titanium sublimation pump are connected to the trap chamber.
These were also degassed during the bake-out and so were the filaments of the ion
gauge used to monitor the pressure.

During the entire bake-out procedure we monitored the quality of the cavity inside
the trap by measuring its finesse (see ch. 6.6). After degassing the ion pump, we
observed that the finesse had dropped by an amount corresponding to additional
mirror losses of ' 400 ppm. Obviously, this is very unfortunate, but for the purpose
of most of our experiments, by no means devastating. We shall return to this in
ch. 6.6. In the future, we plan to avoid this contamination from the ion pump by
inserting a valve between the pump and the main part of the trap chamber. This will
allow us to first bake out the entire chamber and degas the ion pump while pumping
with the turbo pump. The ion pump can then be valved off and kept under vacuum
while the cavity trap is installed in the main part of the chamber. The chamber can
then be baked out again and the valve to the ion pump opened after which the effect
of degassing should be minimal.

After the bake-out the pressure in the chamber was ∼ 8 × 10−10 mbar with the
calcium oven turned off. However, when increasing the oven temperature to ' 400◦C,
which is the typical temperature in many of our experiments, the pressure would rise
to ∼ 3.5 × 10−9 mbar. Since then (January 2007), the oven has been on for many
hours and the sublimation pump has also been used many times. At the time of
writing (August 2008) the pressure has dropped to ∼ 1.5× 10−10 mbar with the oven
turned off and only rises to ∼ 3 × 10−10 mbar when the oven is heated to ' 400◦C.

5For all parts except aluminum we used RDS 2%. For aluminum, we used isopropanol.
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Figure 6.4: a) Picture of the vacuum chamber with the trap and all the beams used in the
experiments. The alignment fiber is glued on to the end of a titanium rod and can be moved
in and out of the trap center and used for alignment of the various beams. The dimensions
can be seen from the holes in the plate, which are 1 cm apart. b) Picture of the oven setup.
See text for further details.
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6.3 Trap voltage supplies

The rf-voltage for the trap electrodes is supplied by a frequency generator and ampli-
fied before being transferred to the trap via a resonant circuit. In this circuit the trap
itself acts as the capacitative part of an LRC-circuit which is coupled inductively to
the rf-power supply through a ferrite toroid transformer. A diagram of this circuit for
the voltage supplies (rf and DC) to all trap electrodes is shown in fig. 6.5.6 It consists
of two separate circuits with opposite phases, which are created from a single rf-input
by winding the output wires in the ferrite toroid transformer in opposite directions.
The two rf-signals are each coupled to a set of six trap electrodes through serial ca-
pacitors (capacitors 2,4,6,8,10,12,14,16,18,20,22,24 in fig. 6.5). Variable capacitors
(capacitors 39 and 52 in fig. 6.5) allow for tuning the two rf-chains with respect to
each other and may also be used to change the overall resonance frequency of the
circuit. Likewise, the capacitors connected to ground immediately before the trap
electrodes (capacitors 40-51 in fig. 6.5) may be adjusted for fine tuning of the voltage
on the individual trap electrodes. However, the entire circuit behaves as one resonant
circuit and any changes in the load on one electrode will affect the coupling of the
rf-voltage into the whole circuit and hence, all electrodes. Similarly, any attempt to
directly measure the voltage on the individual electrodes, will be accompanied by an
additional load, which will alter the resonance condition. Optimization is therefore a
non-trivial process; in practice the only measure of symmetry is provided by the ions
once they have been trapped and cooled. We have the possibility to read out a 100:1
signal of the overall voltage across the two rf-chains via the two monitor outputs in
fig. 6.5, but not the voltage on the individual trap electrodes.

As we shall later return to this rf-circuit to make modifications to the load (see
ch. 8), we give here a short analysis to gain a bit more insight into the behavior of
the circuit. Fig. 6.6a) shows a simplified diagram with a single trap electrode with
some capacitance Ct. Capacitors C1 and C2 are the variable capacitors for each phase
and the individual electrodes, respectively, and Cs is the serial capacitor. L is the
inductance of transformer and Rin is the input resistance seen by the amplifier. A
resistor R has been included to account for the finite Q-value of the resonator (due
to ohmic losses). An analysis of this simple diagram gives a resonance curve as the
one shown in fig. 6.6b), as expected from a classic LRC-circuit. The actual circuit
is, however, far more complicated than the diagram of both fig. 6.6a) and fig. 6.5.
In reality, there is always some capacitative coupling between the different electrode
circuits and this coupling may change the resonance curve substantially. From the
picture of the trap shown in fig. 6.3b), it seems likely that electrodes on the same
rod will experience some capacitative coupling to their neighbors, thus changing the
capacitative load and, hence, the resonance frequency. Also visible in the picture are
some of the wires for the trap electrodes. These are all fed into the vacuum chamber
through the same flange and there may also be capacitative coupling in between these
wires and, for this reason, the two circuits of opposite phases may be coupled. This
is modeled in the simplified schematic in fig. 6.7a) where a second LRC-circuit is
coupled to the original one of fig. 6.6a) through a coupling capacitor C̃c. Depending
on the coupling strength, that is, the size of C̃c, this may give rise to a splitting of
the resonance curve into two as shown in fig. 6.7b). This is not surprising as the

6This was developed in the electronics department at the institute by Erik Søndergaard.
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Figure 6.5: Diagram of the voltage supply-trap interface with 1 rf input and 12 DC input.
See text for details.

overall circuit can now be considered as two coupled harmonic oscillators, much like
a 3-level Λ-system in atomic physics, where a splitting of a resonance line into two is
also observed when a third state is coupled to the excited state.

In fig. 6.8 we have plotted the result of a measurement of the circuit frequency
response when all electrodes are connected. It clearly shows the predicted splitting of
the resonance peak into two. Intuitively, this may seem like a problem, as the Q-value
of the resonances and, therefore, the amount of voltage we couple to the electrodes,
will be lower. However, even with a lower Q-value, our rf-amplifier is still powerful
enough for the voltage on the electrodes to reach the values required for our experi-
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Figure 6.6: a) Simplified diagram of the rf-voltage supply and trap electrodes. Ct is the
trap electrode capacitance. Vin is the input rf-voltage and Vmon is the voltage going to the
monitor (capacitors omitted for simplicity). See text for further details. b) Resonance curve
for a single trap electrode.
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Figure 6.7: a) Simplified diagram of the rf-voltage supply and trap electrodes with capac-
itative coupling to an additional LRC-circuit (dashed box), through the capacitor Cc. Ct is
the trap electrode capacitance. Vin is the input rf-voltage and Vmon is the voltage going to
the monitor (capacitors omitted for simplicity). See text for further details. b) The solid
line shows the resonance curve in the case of capacitative coupling to other LRC circuit (of
the order of pF). The dashed line shows the case for no coupling.

ments, and the fact that the circuit has two resonances only means that we have more
freedom in choosing the rf-frequency. In all experiments within this thesis we have
worked at the lower resonance. The exact value may change if the capacitative load
on the electrodes is changed, as we shall see later, but in general the trap is operated
around 4 MHz.

Finally, DC-offsets can be supplied to all trap electrodes via the inputs on the right
hand side in the diagram of fig. 6.5. For each input, a capacitor and a resistor form
a low-pass filter which prevents the rf-signal from leaking into the DC-supply. The
DC-voltage can be supplied individually to each of the electrodes or to groups of
electrodes. For instance, the eight end-electrodes are all connected to the same DC-
supply, which allows for adjustment of the end-voltage Uend (see fig. 3.1).

Typical values for the end- and rf-voltages are Uend = 1 − 15 V and Urf =
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Figure 6.8: Ratio of trap voltage to input voltage versus rf-frequency.

150 − 400 V, corresponding to axial and radial trap frequencies in the range of ∼
2π × 80 − 300 kHz and 2π × 200 − 800 kHz, respectively.

6.4 Ion imaging and detection system

The ions are detected by measuring the fluorescence they emit when scattering pho-
tons during the cooling cycle. Two camera systems are available to image the ions by
collecting this fluorescence and, in this way, we can produce images of the ions from
two directions. In addition, a photo-multiplier tube (PMT) produces a signal propor-
tional to the fluorescence rate of the ions, which is very convenient when optimizing
e.g. laser detunings for laser cooling. Fig. 6.9 shows a drawing of the entire setup.

The camera system that takes images along the y-axis is the highest resolution
imaging system and most of the images presented in this thesis have been produced
with it. An achromatic lens with a focal length of 75 mm is located outside the vacuum
chamber about 8 cm above the trap center and collects the light scattered by the ions.
This is imaged with a ×10 magnification onto an image intensifier and finally onto a
charge coupled device (CCD) camera by an objective lens with a magnification of 1

2 ,
which results in an overall magnification of 5. The CCD camera has a pixel size of
9.9 µm × 9.9 µm and each pixel thus corresponds to about 2 µm × 2 µm.

Directly in front of the lens an iris diaphragm is inserted to minimize background
light due to Rayleigh scattering from the 397 nm cooling beams passing through the
mirror substrates. With a resulting numerical aperture NA ' 0.06, the iris is the
limiting factor in the resolving power of the imaging system, which is then calculated
to [137]

Res = 1.22
λ

2NA
= 1.22 × 397 nm

2 × 0.06
' 4 µm. (6.1)

The pixel size in the recorded images is calibrated from images of the (80± 1) µm
wide optical fiber, shown in fig. 6.4a). Fig. 6.10 shows such an image where the fiber
has been moved into the center of the trap and illuminated with the 397 nm beams.
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Figure 6.9: Drawing of the camera and PMT setup. The images shows the same crystal
viewed along the y-axis with a magnification of 5 and along the x-axis with a magnification
that can be varied from 1-3. See text for details.

From this we find a value for the pixel size of (1.98±0.05) µm in accordance with the
value expected from the magnification of the imaging system.

A special feature of this imaging system is the image intensifier. It consists of
a photocathode, from which electrons are emitted as a result of the incident light.
These electrons are then accelerated and amplified through two micro channel plates
before producing a fluorescent image on a phosphor screen. It is this image that is
imaged by the objective onto the CCD camera. The fact that the signal is dependent
on the acceleration voltage after the photocathode means that gating this voltage will
allow for production of image sequences of very high time resolution. In this way a
time resolution of 20 ns can be achieved.

The camera system that records images from the side along the x-axis is used
mainly for determining the length of crystals that exceed the field of view of the
first camera system and for determining the location of the crystals in the xz-plane.
However, due to geometric constraints imposed by the dimensions of the vacuum
chamber and the surrounding optics, the numerical aperture of this imaging system
is considerably lower and only low resolution images can be produced. Nevertheless,
for determining e.g. the length of mm long crystals it is sufficiently accurate with
typical pixel sizes around 10 µm, depending on the magnification set by the zoom
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Figure 6.10: Fiber inside the center of the trap (width= 80 µm). This is used for calibration
of the pixel size as well as for alignment of the laser beams. The entire image corresponds
to the 640 × 480 pixels of the CCD camera.

lens. Another advantage of having two cameras is that it allows us to take images
with a high magnification and a resolution that reveals the crystal structure, while at
the same time taking images of the entire trapping region.

6.5 Magnetic field compensation and control

In all experiments it will be important to have a well-defined quantization axis. It
is generally chosen to be along the cavity axis, as circularly polarized light will then
be a well-defined polarization when propagating in this direction. This quantization
axis is defined by an external magnetic field that is created by two current loops in
a Helmholtz configuration. However, the earth magnetic field is also present and has
a strength of about 0.5 Gauss along the y-axis. This means that in order to define
the quantization axis along z better than 1 %, a magnetic field of about 50 Gauss
must be applied in this direction. As our magnetic field coils are outside the vacuum
chamber (about 30 cm from the ions) this can be a bit demanding from a technical
point of view and, in addition, it will lead to a substantial Zeeman splitting of the
energy levels, which may not be desirable in all experiments.

Instead, we compensate the magnetic field along the directions perpendicular to
the quantization axis using two additional pairs of current coils, also set up outside
the vacuum chamber in a Helmholtz configuration. On account of the orientation
of the trap with respect to the earth magnetic field, the magnetic field along the x-
direction is negligible and we only need to consider the y-direction. We compensate
the earth magnetic field along this direction, by trapping and cooling the ions with the
866 nm repumper sent in along the x-axis and polarized along z as shown in fig. 6.11.
When the quantization axis coincides with the z-axis, the 866 nm field drives only
π-transitions on the D3/2 → P1/2 transition. As a result, the ions accumulate in

the D3/2, mJ = ± 1
2 states outside the cooling cycle, where they do not scatter any

photons, and the fluorescence drops accordingly. Fig. 6.12 shows the result of such a
measurement where a magnetic field of about 3 Gauss is applied along the z-direction
and the magnetic field along y is varied. The plot shows the fluorescence from the
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Figure 6.11: Setup for testing compensation of the earth’s magnetic field. The magnetic
field along y is varied until the quantization axis, defined by the total magnetic field, is along
z at which point only π-transitions are driven on the D3/2 → P1/2 transition. The ions then
accumulate in the D3/2, mJ = ± 1

2
states.

ions versus the current in the coils defining the magnetic field along the y-axis and
from this we find that the magnetic field along y is most efficiently compensated for
Iy = (−0.10± 0.01) Amps, which does indeed correspond to applying a field of about
0.5 Gauss, given the coil configuration.

6.6 The optical resonator

In this section we characterize the cavity in the linear Paul trap and present measure-
ments of its FSR, finesse and intra-cavity losses. The equations derived in ch. 2.2 will
serve as the theoretical background for the analysis of these measurements.

Furthermore, we will describe the cavity detection system and the measurement
schemes employed in our experiments.

6.6.1 Cavity characterization

Fig. 6.13 shows the spectrum of the trap cavity7 at 866 nm, when scanning across
one FSR using the PZTs. Higher-order transverse modes are barely visible in the
scan, and the cavity is mode matched such that 98% of the power is coupled into
the fundamental TEM00 mode. To measure the FSR of the trap cavity, we scan the
frequency of the laser over one FSR of the trap cavity and count the number of FSR
of a reference cavity with a known and smaller FSR. The reference cavity we use for
this is one of the stabilized reference cavities described in ch. 5.5, which has FSR= 596
MHz, and we count (21.3 ± 0.5) FSR for one FSR of the trap cavity, corresponding
(12.7± 0.3) GHz. The measurement was repeated by scanning the frequency both up

7Whenever ambiguity is possible, we shall refer to the cavity incorporated into the trap as the
trap cavity to distinguish it from e.g. the stabilized reference cavities.
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Figure 6.12: Variation in fluorescence with current for magnetic field coils along y A
magnetic field of about 3 Gauss is applied along the z-axis which defines the quantization
axis. See text for details.

and then down to check if either of the cavities had drifted during the measurement.
Relating the FSR to the length via FSR= c

2L , we find that the trap cavity is (11.8±0.3)
mm long.

Fig. 6.14a) shows a scan around the cavity resonance, when the 866 nm light is
modulated at 5.4 MHz with an EOM. The resulting sidebands provide a frequency
calibration (see insert fig. 6.14a)) and from a multi-pole Lorentzian fit we deduce a
cavity width of FWHM= (3.1±0.1) MHz, corresponding a cavity decay rate of about
2π×1.6 MHz. From eq. 2.26 the finesse is found to be F = 4100±100, which assuming
mirror transmissions of 1500 and 5 ppm for the input coupler and the high reflector,
respectively, corresponds to intra-cavity losses of (30 ± 30) ppm. This is consistent
with the value deduced from the reflection signal (fig. 6.14b)), using eq. 2.29, of about
50 ppm.

As already mentioned in ch. 6.2, during the degassing of the ion pump, the mirrors
were contaminated and the finesse was lowered as a result thereof. By an analysis
similar to the one given above, the finesse after this incident was found to be ∼ 3300
and the losses were evaluated to ∼ 400 ppm. Since then, we have observed a slow
increase in the losses over time. In terms of hours of running the experiment with
the oven turned on, we estimate this increase to be about 0.1 ppm/hour. Fig. 6.15
shows the cavity transmission and reflection at the time of writing. At this time
we did not have an EOM available for phase modulation of the input beam and
the laser current was modulated instead. Only first order sidebands are resolved,
which, nevertheless, this still suffices for a frequency calibration. From the multi-
pole Lorentzian fit shown in fig. 6.15a) the width is found to be (4.2 ± 0.2) MHz,
corresponding to a cavity finesse of 3000±200. Fig. 6.15b) shows the reflection signal
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Figure 6.13: Transmission of the cavity when scanning the cavity over more than one FSR.
Higher order modes are barely visible and constitute less than 2% of the total power coupled
into the cavity. Also shown is the scan signal sent to the PZTs (gray line).

which is seen to extend significantly further towards zero on resonance due to the
increased intra-cavity losses. The value for these losses derived from the reflection
signal is about 600 ppm, in agreement with the finesse of 3000 found from the cavity
width.

Regrettably, the source of the increase in the losses since the bake-out is still
unknown to us. As mentioned in ch. 6.2, the background pressure in the vacuum
chamber after the bake-out was around ∼ 3.5 × 10−9 mbar when the oven was on
and has since then dropped by an order of magnitude to around ∼ 3 × 10−10 mbar.
Although difficult to evaluate, this seems too low to contribute significantly to the
increased intra-cavity losses and indeed, no correlation between the pressure value
and the contamination rate has been observed. The oven beam might also contribute,
although, first, it should in principle be sufficiently narrow to pass through the trap
and, second, the mirror coats, seen e.g. in fig. 6.1, provide further protection from
the oven beam as they extend further out than the mirrors themselves. Nevertheless,
we can not rule this out at present. Finally, there is the possibility that ions lost
from the trap during experiments may have contributed to the mirror contamination.
In certain experiments performed to characterize the trap, ions were often lost at
low axial- and high radial potential, meaning they would preferentially move in the
direction of the mirrors when lost. However, no systematic data on the finesse during
these experiments is available and the source of the slow increase in losses over time
remains an issue for further studies.

The cavity width of FWHM= (4.2± 0.2) MHz corresponds to a cavity decay rate
of κ = (2.1 ± 0.1) MHz. Although this increase is unfortunate, from the point of
view of entering the regime of strong collective coupling, it is by no means critical.
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Figure 6.14: a) Transmission signal of the cavity for an input field modulated at 5.4 MHz
with an EOM. The insert shows the position of the peaks found from a multi-pole Lorentzian
fit. The slope of the linear fit is ' 0.37 MHz/µs and this is used for a frequency calibration
of the scan. The width of the center peak is 3.1 ± 0.1 MHz. b) Reflection signal without
modulation. From the ratio of refl(∆c = 0) and refl(∆c → ∞) the intra-cavity losses are
found to be 50 ppm (eq. 2.29).

Basically, the result of having 600 ppm losses is that only about 70% of the intra
cavity photons will be available for detection (mirror transmission 1500 ppm) and
with an overall detection efficiency of ' 16% for the photons leaving the cavity (see
ch. 6.6.2), these losses actually makes little difference. This incidentally illustrates
how the experiment has been simplyfied by using a longer cavity with a moderate
finesse. Had it been necessary to use an extremely high finesse cavity with mirror
transmission coefficients of, e.g. 15 and 5 ppm, zero intra-cavity losses would result
in a finesse of > 300.000 and we would still get at most 75% of the photons out in one
end of the cavity. For such a cavity, 600 ppm losses would be absolutely devastating.
The finesse would be lowered to ' 10.000 and only about 2% of the photons would
leak out of the cavity for us to detect.

6.6.2 Cavity detection system

The cavity spectra shown in the previous section (fig. 6.14 and fig. 6.15) were recorded
by sending ∼ 1 mW power to the cavity and detecting the transmitted and reflected
signal with standard silicium photodiodes. In later experiments we will study the
interaction of the cavity field and the ion Coulomb crystal at the single photon level
and the cavity signal will therefore be significantly weaker. With an average photon
number of 1 inside the cavity, the number of photons leaking out of the cavity per
second is given by the decay rate of the mirror. We will always be detecting the
photons on the side with the higher transmission to get the most signal, both when
probing transmission and reflection. When probing e.g. reflection we will thus send
in the probe from the partial reflector side. From eq. 2.23 we find that to have on
average a single photon in the cavity (|A|2 = 1) on resonance, the number of photons
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Figure 6.15: a) Transmission signal of the cavity for an input field modulated at 5.0 MHz
by modulating the laser current. The insert shows the position of the peaks found from
a multi-pole Lorentzian fit (red curve in main graph). The slope of the linear fit is ' 0.26
MHz/µs and this is used for a frequency calibration of the scan. The width of the center peak
is 4.2 ± 0.2 MHz. b) Reflection signal without modulation. From the ratio of refl(∆c = 0)
and refl(∆c → ∞) the intra-cavity losses are found to be 600 ppm (eq. 2.29). Both graph
were produced at the time of writing (after ' 2000 hours of operation) and clearly shows
the increase in the intra-cavity losses.

sent to the cavity should be

|A|2 =

(
κ1 + κ2 + L

2τ

)2

2κ1
|A|2

=
(2π × 2.1 MHz)

2

2 × 2π × 1.5 MHz
× 1 photon ' 9.2 × 106 photons/s,

which means that off resonance, about 9 million photons are reflected every second,
corresponding to a mere 2 picowatts at 866 nm for us to detect.8 Furthermore, if we
want a time resolution of e.g. 1 µs, only 9 photons are available for detection and
single photon detectors are therefore a requirement.

We use two avalanche photo detectors (APDs) to measure both the transmitted
and the reflected photons. In most of the experiments within this thesis, we have
coupled the 866 nm light in from the side with the partial transmitter (T = 1500 ppm)
and measured the reflection signal, as shown in fig. 6.16.9 As mentioned previously,
an 894 nm laser is used to lock the cavity and to monitor its drifts and vibrations.
This laser is coupled in along with the 866 nm probe laser and the reflected field
thus consists of both 866 nm and 894 nm photons. Since the 894 nm beam is used
for locking the cavity, it is much stronger than the 866 nm probe beam and must be

8In transmission, that is, injecting from the high reflector side and detecting on the partial
reflector side, the number of photons, leaving the cavity through the partial transmitter for detection,
is about 18.8 million per second, when there is a single photon in the cavity on average.

9In the setup as it is drawn in fig. 6.16, the 866 nm beam probes the reflection spectrum of the
cavity, however, we also have the possibility of coupling the 866 nm beam in from the side of the
cavity with the high reflector (T = 5 ppm), and probe the transmission spectrum of the cavity.
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filtered out before the 866 nm APD. A half-wave plate for 866 nm, that does not have
an effect on the polarization of the 894 nm field, and a polarizing beam splitter (PBS)
provides an extinction of the 894 nm photons of about 20 dB. This also allows the
894 nm beam to be sent to a silicium photodetector that is used for locking the cavity
(see ch. 6.6.3). After the PBS, a grating (1800 l/mm) then separates the 866 nm and
the 894 nm beams, spatially, which in combination with a SM fiber further minimizes
the amount of 894 nm photons that reach the 866 nm APD. The fiber coupler and the
APD are covered by black plastic and the SM fiber is wrapped in a black rubber tube
to avoid detection of room light photons. A symmetrical setup detects the 894 nm
photons on the opposite side of the cavity and provides for monitoring of the cavity
drift and vibrations. We shall describe how this is done in practice in ch. 6.6.3

As mentioned in ch. 5 we use ar-coated laser diodes for both the 866 nm and the
894 nm lasers. These have gain profiles that are several tens of nm wide and for this
reason, there will always be photons at wavelengths far from the laser line due to
amplified spontaneous emission. In general, this is not a problem but for the 894 nm
laser it means that there are still some photons at 866 nm in the beam and since
our detection setup relies on efficiently guiding all the 866 nm photons to the 866 nm
APD, the 866 nm photons in the 894 nm beam will also be detected. To prevent
the locking laser from interfering with the ions, a grating is set up before the fiber
incoupling for the 894 nm laser, similar to the grating setup before the APDs. With
this addition, ∼mW 894 nm light can be sent to the cavity without being detected
by the 866 nm APD.

Table 6.2 summarizes the photon collection budget. In total we detect about 16 %
of all 866 nm photons leaving the cavity through the partially reflecting mirror. The
losses originate from the optics, the grating used to filter out 894 nm photons, the
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894 locking
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Figure 6.16: Schematic of the setup for single photon detection of 866 nm and 894 nm
photons. HR: high reflector (T = 5 ppm), PT: partial transmitter (T = 1500 ppm). The
filters in front of the SM fiber for the 894 nm APD are needed to avoid saturating the APD.
See text for further details.
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coupling to the SM fiber and the detection efficiency of the APD.

optics grating SM fiber APD total
90% 63% 65% 44% 16%

Table 6.2: 866 nm photon collection budget.

6.6.3 Locking vs. scanning

We have mentioned several times already that we have the possibility to either lock
the cavity to the 894 nm laser or to scan the cavity using the PZTs and then use the
894 nm laser to monitor drifts and vibration of the cavity. In the following we shall
describe both schemes.

6.6.3.1 Locking the cavity

Locking scheme

To control the cavity detuning ∆c with respect to the 866 probe laser we require a
scheme for controlling the length of the cavity. The FSR of the cavity is, as we have
seen above, 12.7 GHz. Scanning the cavity length across one FSR in a standing wave
cavity corresponds to a change in length of λ/2 = 433 nm and from this we find that
the cavity length only changes by ' 0.14 nm across the 4.2 MHz resonance at 866 nm.
Clearly, some form of active stabilization of the cavity length is needed to control ∆c

with a precision better than the cavity width.
To this end we employ the 894 nm laser described in ch. 5.3. The cavity mirrors

are still highly reflecting at 894 nm and for this reason the cavity width at 894 nm
is still sufficiently narrow. With the additional 600 ppm losses the finesse at 894
nm is around 1800, corresponding to a width of about 7 MHz. At the same time,
the wavelength of 894 nm is sufficiently far from the atomic resonance that enough
power can be sent into the cavity for the lock to work, without perturbing the Ca+

ions. In practice we only require ∼ 10 µW for the cavity lock and with a build-up
factor around 1000 at 894 nm this corresponds to a saturation parameter (eq. 2.16)

of only s ∼ Ω2

∆2 ∼ 10−7 at 894 nm for the D3/2 ↔ P1/2 transition. The light shift is

of the order of ∼ Ω2

∆ ∼ 0.1 MHz, however, if the power is stable, this will only give
a constant shift of the resonance and not have any real effect on the experiments.
Should the power of the 894 nm field inside the cavity change, the light shift will of
cause vary accordingly. However, the shift should be compared with the ' 23 MHz
wide D3/2 ↔ P1/2 transition and minor fluctuations will thus have negligible effect.

In an ideal setup the cavity should be locked to an atomic transition. This could
in principle be done by locking the 894 nm laser to the D1-line in atomic cesium and
then locking the cavity to the 894 nm laser. A problem then arises when tuning the
cavity to resonance with the probe at 866 nm: since the frequency of the 866 nm
probe is set by the 3D3/2 ↔ 4P1/2 transition of 40Ca+ it might not be possible to
make the cavity resonant with it. In a worst case scenario the two lasers could be
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separated by half the FSR of the cavity corresponding to about 6.4 GHz.10 This is far
beyond the tuning range of commercially available AOMs and in our present setup
for the 866 and 894 nm lasers these only have a tuning range of ±100 MHz.

To avoid this scenario, we use a temperature stabilized reference cavity (see ch. 5.5)
with a FSR of only 600 MHz. This gives us a comb of frequencies separated by 600
MHz to lock the 894 nm laser to. It will then always be possible to find a mode to
lock the 894 nm laser to, such that when the cavity is subsequently locked to this
laser, the 866 nm laser will be at most 300 MHz out of resonance with the cavity.11

By also locking the 866 nm laser to the same reference cavity, the cavity and the
866 nm probe laser are effectively fixed with respect to each other. Relative detuning
of the cavity with respect to the 866 nm laser and of the 866 nm laser with respect
the 3D3/2 ↔ 4P1/2 transition of Ca+ is then accomplished through the AOMs in the
setup for these lasers (see ch. 5.2). Fig. 6.17 shows a schematic of the entire setup.
One drawback of this scheme is that if the reference cavity itself drifts, the two lasers
will drift relative to the 3D3/2 ↔ 4P1/2 transition of 40Ca+. As mentioned previously,
this drift has been measured to be < 1 MHz/hour.12

Locking the cavity

Fig. 6.18a) show the reflection of the 866 nm probe (black data) when the cavity
is locked and the the 866 nm probe resonant with it, as well as the transmission of
the 894 nm locking laser (gray data). Both signals are recorded using the APD setup
shown in fig. 6.16. Clearly there is a lot of noise and an analysis of the mechanical
spectrum of the cavity has revealed several resonances at relatively low frequencies.
By scanning the cavity with a sine function and varying the frequency, these me-

10In principle one has the possibility to shift by the Cs ground state hyperfine splitting of 9.2 GHz,
making the worst case scenario ' 2.8 GHz.

11For the FSR of 12.7 GHz it is actually better than that. Since there are 12.7
0.6

' 21.2 FSR of the
stabilized reference cavity across one FSR of the cavity in the trap, the worst case scenario is only
0.2 × 600 MHz= 120 MHz.

12We have recently constructed a 852 nm laser with the purpose of locking the reference cavity
to this laser. The 852 nm laser can then be locked to the D2-line of atomic cesium and the 866
nm probe laser and the 894 nm locking laser will then be referenced to an atomic transition via the
reference cavity.
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Figure 6.17: Schematic of the setup for locking the cavity and the cavity probe laser to
the same reference.
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Figure 6.18: a) APD counts pr 50 µs bin when the cavity is locked to the 894 nm laser,
the 866 nm laser is resonant with the cavity and both lasers are locked to the temperature
stabilized reference cavity. Gray circles are the transmission signal of the 894 nm laser,
whereas the black squares are the reflection signal of the 866 nm laser. The black horizontal
line at 215 counts pr bin indicates the level of the 866 nm reflection signal when the cavity is
off-resonant with it. b) “Cleaned” data. The threshold for the 894 signal is set to 305 counts
pr bin.

chanical resonances of the cavity can be mapped out. Their exact locations have
been found to vary slightly depending on the position in the PZT-scan, however,
we typically observe pronounced resonances around 400 Hz and 2000 Hz in addition
to some minor, less critical resonances in between and at higher frequencies.13 As
these resonances are in the acoustic range, background noise from pumps etc. in the
laboratory are expected to drive vibrations at these frequencies which due to their res-
onant nature makes them difficult to compensate by electronic feedback to the PZTs.
Feedback is further complicated by the phase-shifts required around the mechanical
resonances in order to avoid driving rather than damping the vibrations. In principle
compensation is possible if one constructs a feedback circuit that allows for individual
adjustment of both phase and amplitude around all resonances, however, in practice
it is an extremely difficult task, which is further complicated by the fact that the
resonances do not always appear at exactly the same frequencies. The signals shown
in fig. 6.18a) are actually the result of an optimized feedback system consisting of
a low frequency (<400 Hz) and a high frequency feedback as well as high Q filters
around the resonances where a carefully tailored feedback is applied.

Even so, the locking signal in fig. 6.18a) is still far from satisfactory and must be
improved. One way around the proplem is to make use of the fact that the noise
in the two signals (866 probe and 894 reference) originates from the same acoustic
noise and is, thus, correlated in time. The signals can then be cleaned as shown in
fig. 6.18b). Here the 894 signal is used to to monitor the acoustic noise and when this
noise causes the 894 nm level to drop below a certain threshold value (here 305 counts
pr. bin) the points in both the 894 and the 866 data are removed. The higher we set

13These low frequency resonances are suspected to originate from the relatively massive PZT-plate
(see fig. 6.2). Plans for a smaller PZT mirror mount as well as passive damping in order to minimize
the sensitivity to acoustic noise, in future versions of the trap, are underway.
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this threshold, the closer the 866 nm probe signal comes to the on-resonance level,
expected from the intra-cavity losses and mirror transmission. For 600 ppm losses
and 1500 ppm transmission, this level should be ' 18 % of the off-resonance level (c.f.
eq. 2.29). From fig. 6.18b) we evaluate this to be 40

215 ' 19 %. The trade-off inherent
in this method is that we get less data points for the same measurement time, which
means that a longer measurement time is needed to acquire the same statistics.

In many of our experiments, the parameter of interest will be the cavity width (see
ch. 2.3). One way to measure this is by varying the probe detuning ∆ when the cavity
is locked and recording the reflection level for each value of ∆. Fig. 6.19 shows the
results of such measurements for increasing values of the threshold used for the data
cleaning. Fig. 6.19a) is a plot of the data for four different threshold values including
their corresponding Lorentzian fits. The cavity width (fig. 6.19b)) is seen to approach
the dashed line indicating 2π×4.2 MHz corresponding to the value deduced from the
cavity losses in ch. 6.6.1. The increasing error bars reflect the fact that less points are
available for the fit as the threshold is increased.

6.6.3.2 Scanning the cavity

An alternative to the locking scheme described above is to scan the cavity by applying
a ramp voltage to the PZTs. Since the amplitude of the acoustic noise is still significant
on a kHz scale, the scan should be done considerably faster than a ms and we should
allow ourselves at most a few hundred µs to record the cavity spectrum. In many
experiments it is even necessary to reduce the probe time, i.e. the bin-time of the
866 nm ADP system, to about 1 µs. As mentioned in the discussion of the cavity
detection system (see ch. 6.6.2), with an average intra-cavity photon number of 1,
only about 9 photons will be leaving the cavity within a µs and, of these, only 16 %
are detected. To produce a cavity spectrum thus requires averaging several scans.
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Figure 6.19: a) Reflection spectrum of cavity versus detuning of the probe laser when the
data has been “cleaned” as in fig. 6.18. th is the threshold level of the 894 transmission in
counts pr. bin. b) FWHM of the reflection signal found from Lorentzian fits to the data in
a) as a function of increasing threshold in the data cleaning. The dashed line indicate the
value expected the analysis of ch. 6.6.1.
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Due to acoustic noise in the system, the spectra recorded at different times are,
however, not correlated in the sense that the peak might appear at different times in
the scan as the cavity is not locked to a specific length. In other words, the timebase
is shifted from one scan to the next. This means that if we try to average over many
scans, the peak will be smeared out and the value deduced for the cavity width will
be artificially broadened.

This noise induced broadening of the cavity width can be avoided by simultane-
ously recording a scan for the transmission of the 894 nm beam. As for the cleaning
in the locking scheme described above, we may assume that if the two lasers are res-
onant with the cavity at the same time, the noise in their spectra due to vibrations
will be correlated. To obtain a correct average of the 866 nm reflection signal, we
therefore compare the location of the 894 nm peak in each scan with the location
in the first scan of the data set and shift the time-base accordingly. In a manner of
speaking, the locking of the cavity is done post-detection wise: the analysis of the 894
spectrum provides an error signal that shifts the timebase of the 866 spectrum. The
basic principle is illustrated in fig. 6.20. After the averaging is done, the timebase in
the averaged spectrum is shifted in accordance with the average value of the 894 nm
peak position during the entire averaging period.

Note that this referenced averaging can not be accomplished via analysis of the
866 nm signal alone for two reasons. First of all, the resonance of this may be shifted
due to the interaction with the ions, and second of all, the 866 signal is too weak
to provide any information about the location of the resonance based on a single
scan. This is clearly seen in fig. 6.21a) which shows the cavity reflection spectrum
when probed at 866 nm after just a single scan. The y-axis displays the counts per
bin and, as expected for a single photon detection system, the data only has integer
values, which means that for an average value of 2 counts per bin, no structure can be
resolved. Fig. 6.21b)-f) shows the resulting reflection spectrum in order of increasing
number of averages. 100 scans were averaged to produce fig. 6.21f) which takes about
3 seconds in total.

As a test of the averaging system we evaluate the cavity width for different number

shift by ∆tn

1st scan nth scan

∆tn

timebaset1 tn

894 APD

timebase

∆tn

nth scan

866 APD

tn

Figure 6.20: Illustration of the principle behind the averaging scheme. Gray peaks corre-
spond to individual scan results while the black curve represents their average. See text for
details.



6.7. Experimental control system 85

a) b) c)

d) e) f)

Figure 6.21: Cavity reflection scans after averaging. Number of averages: a) 1, b) 5, c) 10,
d) 20, e) 50 and f) 100.

of averages. Fig. 6.22 shows the cavity width (FWHM) versus number of averages
found from Lorentzian fits to scans such as those of fig. 6.21. The error bars indicate
the uncertainty in the width derived from the fit, which as expected decreases with
increasing number of averages.

There is, however, an additional effect that contributes to the final value for the
uncertainty. In appendix H we account for the spread in repeated measurements,
where we have found that there is a systematic effect on the width that we ascribe
to the acoustic noise. In brief, we observe experimentally that the uncertainty in our
measurements depends on the time it takes to scan across the peak in the experiment.
This uncertainty is included in the evaluation of the data via the methods described
in appendix H.

6.7 Experimental control system

The entire experiment is controlled by a LabVIEW software, which handles both
acousto-optic shutters and frequency shifters for the lasers, the data acquisition via
the PMT and the APDs as well as subsequent averaging and cleaning of the data.
Two synchronized counter/timer cards14 are used to interface the various hardware
with the experimental control software for the computer. This allows for control of
the various laser beams and the readout of the APD signals with a precision of 0.1 µs
(limited by the AOMs rise-time).

A typical experimental sequence is shown schematically in fig. 6.23. It consists of
a cooling phase, an optical pumping phase to prepare the ions in the right state (see
ch. 9) and a probing phase, which is the actual measurement. The delay between the

14National Instruments PCI-6602
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Figure 6.22: Width of the cavity resonance at 866 nm derived from Lorentzian fits to scans
such as those of fig. 6.21. The error bars are seen to decrease with increasing number of
averages as expected.

probe and the APD is to allow the field to build up and reach steady state inside
the optical resonator. We shall return to this in ch. 10. The final result of our
measurements is a scan such as those of fig. 6.21 where each point then corresponds
to such an experimental sequence.

In our experiments, the cooling and optical pumping time are typically around
∼ 10 µs and the probe time ∼ 1 µs. We shall return to the experimental sequence
and give the exact values in the description of the experiments in ch. 9 and 10.

6.8 Conclusion

This chapter has covered two main aspects of the experimental setup. The design
and assembly of the linear Paul trap has been described and in ch. 8 we shall give
a characterization of the trap itself based on measurements performed with trapped,
cold ions.

The second part of this chapter has revolved around the optical resonator. Two
important quantities were measured: the first was the cavity decay rate, which was
found to be κ = 2π×(4.2±0.2) MHz. The second was the cavity length of 11.8±0.3 mm
from which we can evaluate the single ion coupling strength. From eq. C.12 this is
found to be g = 2π × (0.532 ± 0.007) MHz. These numbers should be compared
with the decay rate of the atomic dipole, which for the D3/2 ↔ P1/2 transition is

γ = 2π × 11.15 MHz. From the criterion for strong collective coupling g
√

N > κ, γ
we deduce that about N ' 500 ions must be confined within the cavity mode volume.
We shall examine to what extent this is possible in ch. 8.3.

Toward the end of this chapter we described two different measurement schemes,
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Figure 6.23: Schematic of typical experimental sequence. Opt. pump abbreviates optical
pumping. See text for details.

that will both be used in later chapters, along with some methods for circumventing
the effects of acoustic noise on the data.





Chapter 7

Loading the trap

In order to efficiently load large crystals into the trap we employ the technique of
resonance-enhanced photoionization. Since first demonstrated by our group within
this field of physics [111], it has been adopted by many groups, thus expanding the
list of ionic atomic species loaded to include Mg+ [111, 138], Ca+ [111, 139–142],
Sr+ [143,144], Cd+ [145], Ba+ [146] and Yb+ [147,148]. As compared to conventional
electron bombardment, this method has several advantages which are all essential to
a cavity QED experiment:

• The problem of charging surrounding isolating materials, e.g. mirror substrates,
is greatly reduced as only a single electron is produced per ion [111,143].

• The ionization efficiency can be made much higher, leading to loading rates
which are significantly higher than what can be achieved with electron bom-
bardment [142].

• The technique can be extremely isotope selective [149] allowing for loading of
different isotopes in well-controlled ratios.

The first point is critical in order to be able to produce nicely shaped crystals that are
not perturbed by stray electric fields from locally charged regions in the trap. The
second point makes loading at a lower atomic flux practical [139] and thus reduces the
risk of contaminating both the trap electrodes and closely spaced delicate objects, such
as the mirrors, integrated into the ion trap. Deposition of material on the electrodes
is suspected to give rise to heating of the ions [150, 151], which will eventually limit
the number of ions that can be confined and crystallized within the cavity mode
volume, hence lowering the maximally attainable coupling strength of the crystal-
cavity system. Contamination of the mirrors will lower the quality of the resonator
and may likewise limit the performance of the system (c.f. ch. 2.3). Finally, the third
point must be fulfilled in order to be able to do experiments on two-component ion
Coulomb crystals and benefit from the advantages of sympathetic cooling as described
in ch. 4.3.

This chapter deals with loading of Ca+ ions into the cavity trap. The scheme is, as
we have already mentioned above, based on resonance-enhanced photoionization of a
beam of atomic calcium and we shall begin by a brief review of this scheme in ch. 7.1.
A standard loading method employs a small oven, heated to a few hundred degrees

89
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Celsius, to produce the atomic beam and in ch. 7.2 we present results on loading
via this method. Recently, we have developed a novel, all-optical loading technique
in which the beam of atomic calcium is produced through pulsed laser ablation of a
calcium target. This will be the topic of ch. 7.3.

7.1 Isotope selective loading scheme for Ca+

For production of Ca+ ions, one strategy has been to use a single UV light source
at 272 nm which can lead to two-photon photo-ionization through excitation on the
4s21S0→4s5p1P1 transition followed by absorption of a second 272 nm photon from
either the 4s5p1P1 or the 4s3d1D2 state into the continuum (see fig. 7.1a) [111,149].
The lifetimes of the 4s5p1P1 and the 4s3d1D2 states are 17-60 ns [152] and 18 ms [153],
respectively and the branching ratio for the decay channels of the 4s5p1P1 state is
∼ 1

54 in favor of decay to the metastable 4s3d1D2 state [154]. The three levels form
a closed system where, provided that the 272 nm laser is resonant and sufficiently
powerful, most of the population will be in the 4s3d1D2 state from where absorption
of a second 272 nm photon will ionize the atom.

In an alternative scheme (fig. 7.1b), involving two lasers operating around 423 nm
and 390 nm, ionization is achieved via resonant excitation of the 4s21S0→4s4p1P1

transition (423 nm) followed by excitation to a field ionizing Rydberg state (390
nm) [139, 140]. Originally, this scheme has benefited from using wavelengths which
can be provided by commercial violet diode lasers in extended cavities. However, as
the production of these lasers has been refined to meet the industrial standard of 405
nm, the 423 nm diodes are no longer commercially available and the simplicity of the

Continuum

4s2 1S0

4s4p 1P1

423 nm

390 nm

Continuum

4s2 1S0

4s5p 1P1

4s3d 1D2

272 nm

272 nm

272 nm

(a) (b)

Figure 7.1: a) Two-photon resonant photoionization scheme used in this work. The lifetime
of the 4s5p1P1 state is 17-60 ns and the lifetime of the 4s3d1D2 state is about 18 ms. b)
Alternative scheme based on diode lasers.
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scheme is thus reduced by the addition of frequency doubling of light from diodes
operating around 846 nm.

The advantage of using the scheme of fig. 7.1b) over 7.1a) is the higher oscilla-
tor strength of the 4s21S0→4s4p1P1 transition as compared to the 4s21S0→4s5p1P1

transition. Combined with the resonant character of the second transition, this gives
rise to a higher ion production efficiency.

Both schemes are isotope selective due to the isotope shift on their first transition.
However, the degree of selectivity is higher in the scheme of fig. 7.1a) [149] as compared
to that of fig. 7.1b) [155], due to a larger isotope shift and narrower linewidth.1

The enhanced selectivity is highly desired for experiments with two-component ion
Coulomb crystals, where the 40Ca+ is to be sympathetically cooled by a heavier ionic
calcium isotope. In such experiments there should ideally only be enough 40Ca+ to
fill the cavity mode with the remainder of the ions being of a different isotope that
can be Doppler laser cooled.

Ultimately, the ratio in which the various isotopes are produced is limited by
the natural abundance of the calcium isotopes (see table 7.1) where 40Ca is by far
the most abundant. However, with our loading scheme, the production rate of e.g.

40Ca 42Ca 43Ca 44Ca 46Ca 48Ca
96.941% 0.647% 0.135% 2.086% 0.004% 0.187%

Table 7.1: Natural abundance of calcium. Values are taken from [157].

44Ca+ can still be about three orders of magnitude higher than 40Ca+, which is more
than adequate in terms of producing two-component ion Coulomb crystals of suitable
ratios. Fig. 7.2 shows measurements of the photoionization rate versus the frequency
of the 272 nm laser taken in our lab a few years ago [149]. It clearly shows the ability
of this scheme to resolve the individual isotopes of calcium. The measurements were
done using a laser system based on SHG of light from an Ar-ion pumped dye laser.
For the experiments presented in this thesis we have used the 272 nm laser system
based on SHG of light from a DFB fiber laser that was described in ch. 5.1.

7.2 Loading the cavity trap I: Oven beam method

7.2.1 Setup

In this section we present results on isotope selective loading of Ca+ into the cavity
trap through photoionization of a beam of atomic calcium produced by a small oven.
A picture of the entire setup can be found in fig. 6.4. In fig. 6.4b) a picture of the
oven is shown. The thermal beam is produced by resistive heating of metallic calcium
inside a small graphite container. Vaporized calcium then effuses through a small
aperture in the container and a set of skimmers ensures that the beam occupies a
small enough solid angle to pass through the trap without depositing large amounts
of calcium. The beam dimensions at the center of the trap are ∼ 1.5 mm horizontally

1Extensions of the scheme of fig. 7.1b) exists, where the second transition from the 4s4p1P1 state
to the field ionizing Rydberg state at 390 nm is replaced by two or more resonant transitions in the
infra-red, which results in even higher isotope selectivity [156].
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Figure 7.2: Photoionization rate of all naturally abundant calcium isotopes. The three
peaks at the 43Ca resonance are due to the nuclear spin of 43Ca of I = 7/2 which leads
to hyperfine levels of the 4s5p1P1 with total spins F = 5/2, 7/2 and 9/2. The figure is
reproduced from the results of [149]. Courtesy of Anders Mortensen.

and ∼ 1.0 mm vertically [66]. Here it intersects with the 272 nm beam at an angle
of 90◦ in order to minimize Doppler broadening. A schematic drawing of the setup is
shown in fig. 7.3

During loading, the 272 nm beam typically has a power of about 10 − 20 mW
and it is focused to a waist of ∼ 160 µm at the trap center. The ions produced are
then Doppler laser cooled as described in ch. 4.2. Typically, 8-10 mW of 397 nm light
detuned by ∼ 20 − 40 MHz below resonance is used during loading. Both power and
detuning are then decreased upon completion of the loading in order to optimize the

397 nm 397 nm

272 nmCa beam 866 nm
ẑ

x̂

ŷ

Figure 7.3: Schematic of the setup for loading by photoionization. 397 and 866 nm beams
are used for Doppler laser cooling as described in ch. 4.2.
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cooling. The number of ions loaded can then be deduced from the recorded images
and the trapping parameters. From the recorded images, the crystal volume is found
by the method described in appendix B. The density of the ions in the crystal can be
evaluated from the results of the zero temperature charged liquid model described in
ch. 3.2.1. Specifically through eq. 3.21,

ρ0 =
ε0U

2
rf

Mr4
0Ω

2
rf

,

the density can be deduced from the value of Urf .
2

7.2.2 Results

Fig. 7.4 shows the number of loaded ions versus time when the frequency of the 272 nm
light source is tuned close to the resonance of the 4s2 1S0→4s5p 1P1 transition of 40Ca.
The end- and rf-voltages were Uend=3.9 V and Urf=130 V 3, which corresponds to
radial and axial trap frequencies of ωr = 2π × 225 kHz and ωz = 2π × 160 kHz, re-
spectively (c.f. eq. 3.10 and 3.12). The oven temperature during the loading sequence
was ' 400◦C. As can be seen from the figure, we are able to load in the excess of 3000
ions/s at this relatively low oven temperature. The linear loading rate also shows that
even with ∼ 50000 ions loaded there is no indication that the trap is saturating and

2There are various methods for calibrating this density measurement, which will be covered in
ch. 8.2.

3A relatively low rf-voltage is used during loading to minimize rf-heating, which can make it
difficult to crystallize the ions from the thermal beam.
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Figure 7.4: Number of ions loaded versus time when the ionization laser frequency is tuned
close to the 4s2 1S0→4s5p 1P1 transition of 40Ca. The UV-power used for ionization was
20 mW and the oven temperature 400◦C. The loading rate deduced from the linear fit is
∼ 3200 ions/s.
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in principle the line in fig. 7.4 could be extrapolated much further. Due to frequency
drifts of the free-running fiber laser, the loading rate was observed to vary on a longer
time scale, though. Indeed, under the same conditions as above, the loading rate,
when measured every minute for 10 minutes, was found to be 2700± 500 ions/s. Ac-
tive stabilization to e.g. a stable reference cavity, via electronic feedback to either the
PZT or the temperature of the DFB fiber laser, should greatly improve the stability in
loading. Nevertheless, even without such stabilization, the loading is achieved easily
and quickly and with our present system, ion Coulomb crystals with more than 105

ions can be produced within a minute. Fig. 7.5 shows an example of such a crystal,
where the total number of ions is about 80000 and the density and length of the
crystal are 6.1 × 108 cm−3 and 3 mm, respectively.

As we have mentioned a few times already, a potentially attractive feature of ion
Coulomb crystal based Cavity QED is the possibility to work with two-component
crystals since they allow for laser cooling one component (outer, radially separated
component) while having the other component (inner cylindrical component) inter-
acting with the cavity field only. By tuning our 272 nm light source to resonance
with the respective transitions of specific isotopes of calcium, we have loaded such
two-component crystals consisting of 40Ca+ and isotopes of higher mass numbers.
When producing MCa+, where M > 40, 40Ca+ ions are also created through an
electron charge transfer process between atoms in the atomic beam, dominated by
40Ca, and the ions in the trap [66, 149]. This process has the form, 40Ca+MCa+ →
40Ca++MCa+∆EM and is nearly resonant in the sense that ∆EM lies much below the
energy associated with the thermal collisions leading to the exchange process. The

Figure 7.5: Image of a 3 mm long 40Ca+ Coulomb crystal with 80000 ions. The rf-voltage
is 300 V corresponding to a density of 6.1 × 108 cm−3. Also visible are the trap electrodes
and the mirror substrates, which are slightly out of scale as compared to the crystal due to
the fact that they are not in the focal plane. The scattering of the 397 nm light in these are
due to Rayleigh scattering in the fused silica mirror substrates.
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relative content of 40Ca+ and less naturally abundant isotopes in the crystal can be
controlled to a high degree by turning on the atomic beam after the ionization laser
has been turned off and thereby converting the outer isotope into 40Ca+ until the
desired ratio has been achieved.

By tuning the frequency of the 272 nm laser system via the PZT voltage on the
DFB fiber laser, we are able to selectively load specific isotopes of Calcium. The
resonances have been found by varying the PZT voltage until the maximum loading
rate was obtained. Along with the isotope shifts for the 4s21S0→4s5p1P1 transition
given in [149], this has been used to calibrate the tunability of the 272 nm laser
system. Fig. 7.6 shows a linear relationship between the applied PZT voltage and the
detuning from the 40Ca resonance. From the measured slope of 82 ± 2 MHz/V we
deduce a total tuning range of the laser system of 16.4 GHz (at 272 nm) over the total
PZT-range of 200 V.4 The inserts in the graph are images of typical two-component
crystals loaded into the trap, where an ellipsoid has been superimposed to indicate
the boundary of the whole two-component crystal. Missing in fig. 7.6, is 46Ca+, which
due to its low natural abundance (table 7.1), is loaded at a comparatively lower rate,
even at higher oven temperatures (> 500◦C). Combined with the before-mentioned
drift of the fiber laser, this made it difficult to locate the excact resonance of this
isotope. Furthermore, although the graph of fig. 7.6 shows a nice linear dependence
in frequency with the PZT voltage, the system does exhibit some degree of hysteresis
and all points are taken relative to the 40Ca+ resonance, which was found again
after each measurement. The horizontal error bar on 40Ca+ reflects this issue. We
note that we confirmed the location of the 44Ca+ isotope by also cooling this isotope
and comparing the measured isotope shift on its 3D3/2 ↔ 4P3/2 transition with the
expected value (see appendix A, table A.3).

An important conclusion to draw from fig. 7.6 is that the 272 nm laser system is
capable of covering the entire spectrum of naturally abundant calcium and therefore
allows for easy loading of a specific isotope, which makes Cavity QED studies with
such two-components crystals practical.

As mentioned previously, compared to electron bombardment, the method of res-
onant photoionization minimizes charging effects as well as trap contamination and
formation of patch potentials. From the images presented (e.g. in fig. 7.6) there
appears to be no visible perturbation on the shape caused by such effects. In the
two-component crystal of fig. 7.7 the upper and lower boundaries of the inner com-
ponent have been measured to be parallel to within ±0.1 mrad which also indicates
that the introduction of cavity mirrors inside a linear Paul trap does not significantly
perturb the trapping of such crystals, even when they are produced directly between
the mirrors.

7.3 Loading the cavity trap II: Ablation method

In the loading scheme described in the previous section, the atomic beam was contin-
uous and cannot be switched on and off rapidly, which means that the flux of atoms
through the trap is much higher than required. Over time this can lead to accumula-

4Inferring the frequency shift, from the number of free spectral ranges scanned across over this
voltage range, in the two frequency doubling cavities used to generate the light at 272 nm, is consistent
with this number to within ±4 MHz/V.
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Figure 7.6: Frequency detuning with respect to the 40Ca resonance vs. voltage applied
to the fiber laser PZT. The three points around 43Ca correspond to the different hyperfine
splitting of the 4s5p1P1 level and the frequency shifts of the various isotopes with respect to
the 40Ca resonance are taken from Ref. [149]. The fit indicates a frequency shift of 82 ± 2
MHz/V at 272 nm and the error bars reflect the uncertainty in determining the peak of the
ionization resonance. Inserts show typical two-component crystals of the various isotopes, for
the same rf-voltage of 220 V, but unequal end-voltages. The dimensions of the black frames
are 1.4 mm × 0.5 mm and the ellipsoids indicate the boundaries of the outer component of
the two-component crystals.

150 mm

Figure 7.7: Image of a two-component crystal where only 40Ca+ is cooled. The upper
and lower boundaries of the inner component have been measured to be parallel to within
±0.1 mrad. The exposure time was 5 ms.

tion of material on trap electrodes and nearby surfaces such as our cavity mirrors. A
cleaner loading technique that would result in contamination is therefore highly desir-
able both from the point of view of our present context but also for implementations
of microtrap architectures [158, 159] where the small trap size makes heating effects
extremely pronounced [150]. This heating is attributed to patch potentials due to the
presence of contaminants on the trap electrodes, which is indeed often deposited by
the atom sources used to load ion traps [151].

We have already emphasized one of the advantages of the photoionization method
over electron bombardment being its cleanliness. A key point here is its high efficiency
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which leads to a the possibility of working with a lower atomic beam flux. A different
philosophy to approach this issue by, is to lower the atomic beam flux altogether.
Using an atom source that can be turned on and off more rapidly would allow for
having a low average flux during experiments while maintaining a high flux during
the loading of the trap.

In this chapter we present a general all-optical technique for loading ion traps
that relies on a pulsed laser source to ablate material from a calcium metal target.
The atoms produced are directed through the trap, where they are photoionized as in
the previous chapter. Through rapid switching of the ablation laser, short pulses can
be produced on demand [160]. This reduces the overall amount of material passing
through the trap and, hence, reduces risk of electrode and mirror contamination.

7.3.1 Laser ablation

Laser ablation is a broad and complex field and we shall only provide a brief overview
here. For further reading we refer to Ref. [161, 162]. Basically, there are two distinct
regimes in which nanosecond pulsed laser ablation occurs, distinguished largely by
the laser fluence (energy deposited on a surface per unit area by each pulse). Here we
are principally concerned with the low fluence regime, in which thermal processes are
dominant. If the laser pulse duration is much shorter than the timescale for thermal
conduction processes then the region of the target that is irradiated by the laser may
be locally heated to high temperatures [163]. This can result in melting, sublimation or
desorption of material in the affected region. Laser ablation in this thermal regime has
previously been used to reduce the amount of source material required for resonance
ionization mass spectrometry [160] and our motivation is therefore similar. As the
laser fluence is increased, multi-photon excitation will eventually lead to ionization
of material at or near the target surface, resulting in the formation of a plasma
phase [164]. This can dramatically increase the rate at which energy is absorbed
from the laser beam. In this high fluence regime there are a variety of mechanisms
by which material can be ejected from the target surface, some of which occur on
a macroscopic scale [161]. For the purposes of loading ion traps the plasma regime
may be undesirable because a significant number of atoms can be produced in the
excited state. As the isotope selective transition in our scheme is the 4s21S0→4s5p1P1

transition, the loading will not remain isotope selective for these excited state atoms.
In practice this means that ablation should be carried out in the thermal regime,
where plasma effects are not observed.

7.3.2 Setup

A pure calcium metal target is placed close to the thermal oven source with an identical
set of skimmers leading to the center of the trap (see figure 6.4). The surface of the
calcium target is aligned such that it is perpendicular to the path toward the trap
center. Due to geometric constraints, this path is aligned at an angle of about 12
degrees relative to the ionization laser.

The ablation laser used in these experiments is a 1064 nm pulsed Nd:YAG laser5.
The maximum pulse energy is about 80 µJ and remains constant for pulse repetition

5CrystaLaser QIR-1064-500
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rates up to about 3 kHz. For higher repetition rates the maximum energy decreases,
and at about 15 kHz it falls as the inverse of the repetition rate. Pulse durations are
also dependent on the repetition rate, but are in the region of 30-50 ns for the rates
used here. The maximum repetition rate is 200 kHz. The laser is focused onto the
calcium target with a waist of about 75±15 µm. In our current setup we are restricted
to using an angle between the laser propagation direction and the normal to the
calcium surface of approximately 30 degrees. For this reason, the region illuminated
by the ablation laser will be slightly larger than the measured beam waist in one
direction.

Alignment of the ablation laser is performed by imaging the target with a CCD
camera directed parallel to the beam path (see fig. 7.8). With a low pulse energy
but large repetition rate, scattered light from the calcium target is clearly visible and
allows for accurate positioning of the beam. By placing a filter in front of the CCD
camera, this light at 1064 nm is eliminated. The pulse energy can then be gradually
increased until light from the calcium target is once again seen on the camera. This
light at a wavelength other than 1064 nm is a clear indication of the generation of
plasma on the calcium surface. The focusing of the ablation laser beam can then
be optimized by finding the point at which plasma is observed with the lowest pulse
energy. Once the position of focus has been optimized, we find that plasma can be
clearly seen with ablation laser fluences above about 600 mJ/cm2. In all experiments
presented here we have worked at lower fluences to remain in the thermal regime.

To ensure that the ablation beam covers the region of the calcium target that is
aligned with the skimmers and the center of the trap, a PZT controlled mirror is used
to dither the beam position over a region of about 1 mm2. We have found that this
also helps to keep the ablation rate stable.

calcium
target

CCD
camera

PZT
controlled

mirror

1064 nm
ablation

beam

30◦

Figure 7.8: Setup for alignment and control of the ablation laser beam. The CCD camera
images the target surface, and is used for initial laser alignment. By filtering out light at
1064 nm it can also be used to monitor the extent of plasma formation at the target. The
PZT controlled mirror is used to dither the beam position in the vertical and horizontal
directions.
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7.3.3 Results

In our setup, ions can be loaded into the trap by irradiating the calcium target with
the ablation beam whilst the photoionizing laser is operating continuously. Fig. 7.9
shows the calculated number of ions present in the trap as a function of time, whilst
the ablation laser is periodically gated with regular ‘on’ and ‘off’ periods of nine
seconds. The number of ions is seen to increase during the ‘on’ periods. This increase
stops abruptly whenever the laser is switched off, indicating that ion loading is indeed
due to ionisation of calcium atoms emitted by the ablation process.

The loading rate is found to be dependent on the ablation laser fluence. Rates as
high as 125 ions per second have so far been observed, using a fluence of 240 mJ/cm2

at a repetition rate of 25 kHz. There are many other parameters that can affect
the loading rate, such as the ablation beam positioning and the photoionization laser
wavelength and intensity. Furthermore, as mentioned above, geometric constraints
prevent the 272 nm beam for photoionization to intersect the atomic beam at a 90◦

angle. For a thermal beam this can lead to substantial Doppler broadening which
will lower the ionization rate. It is expected that with further optimization and a 90◦

beam configuration even greater loading rates could be achieved, whilst still keeping
the ablation laser fluence well below that required to generate plasma.

In order to demonstrate the ability of the ablation loading technique to load in-
dividual ions in a controlled manner, which would be relevant for loading of e.g.
microtraps for quantum information processing, experiments have been carried out
with laser fluences as low as 120 mJ/cm2. In this regime ions are loaded rather slowly,
and it is a straightforward task to shutter the ablation laser once a desired number
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Figure 7.9: Number of ions present in the trap as a function of time, when the ablation
laser is periodically gated on and off. The ion number is seen to increase only during the
‘on’ phase of the gating cycle, indicated by the double-headed arrows. The inset images
are examples that show the state of the crystal at the indicated times. The ablation laser
fluence used is 240 mJ/cm2and the repetition rate is 25kHz. The 272 nm power used is
about 15 mW.
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of ions is reached. Fig. 7.10 shows a number of frames taken from a series of CCD
images recorded during continuous ion loading at this laser fluence. The number of
ions present in the string is clearly apparent in each frame. Also shown in fig. 7.10
is the overall fluorescence as determined by integrating the signal in a fixed area of
each of the CCD images. The time at which each of the ions is loaded is clearly
marked by a discrete step in the fluorescence level. Brief drops in fluorescence are
sometimes observed shortly before a new ion is observed. These transient drops are
due to heating of the ions already in the trap by the new, much hotter ion. Drops in
signal are sometimes seen at other times, when an ion is excited into a non-fluorescing
state through collisions with atoms passing through the trapping region.

Although the rate at which ions are loaded in this example is intentionally rather
small, it would be relatively straightforward to implement a loading scheme in which
the fluorescence rate is continually monitored and the ablation laser is automatically
shuttered when an ion is loaded. With such a system, individual ions could be con-
trollably loaded at higher fluences and hence much more rapidly.

In order to achieve a well controlled loading of the trap, it is important that the
loading rate be stable over time. That this is the case is demonstrated in fig. 7.11,
which shows the number of ions in an ion crystal during more than fifteen minutes
of continual loading. The very slight oscillation in the loading rate can probably be
attributed to drifts in the wavelength of the photoionizing laser, which is also observed
during loading with the thermal source.

An additional benefit of the laser ablation-based ion-loading technique is that the
pressure rise during loading can be kept relatively small. Thermal atom sources must
necessarily be maintained at some high temperature during operation. This raised
temperature often leads to a significant increase in the background pressure within
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Figure 7.10: Fluorescence detected from the center of the trap as a function of time during
continuous ablation with a laser fluence of 120 mJ/cm2 and repetition rate of 50 kHz. With
these parameters the loading rate is extremely small and single ions can easily be loaded.
The intensified CCD images show the ion string shortly after each ion is loaded.
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Figure 7.11: Number of ions present in the trap as a function of time during continuous
ablation with a fluence of 240 mJ/cm2 and repetition rate of 25 kHz. The photoionization
parameters are set such that the loading rate observed is rather small, but it is seen to be
almost constant for a period of more than fifteen minutes.

the vacuum chamber. Even after loading is completed it can take several minutes for
the pressure to return to its initial level. During laser ablation, the surface area of
the target that is strongly heated is governed by the size of the ablation beam. Since
this can be very small, it is possible to avoid large pressure rises during loading and
obtain much more rapid recovery times.

Upon first ablating the surface of the calcium target in our ion trap setup, the
pressure was observed to rise as high as 10−8 mbar. This initial increase is ascribed
to evaporation of contaminant material on the surface layer of the target. As abla-
tion continued, much of this contaminant layer was removed and the pressure in the
chamber improved.

The typical pressure response during ablation of the calcium target with a rela-
tively large laser fluence of 270 mJ/cm2 and a repetition rate of 23 kHz is shown in
fig. 7.12. The ablation continues for a period of ten seconds, during which the pressure
rises to a new equilibrium level that is approximately 1.5 × 10−10 mbar greater than
the base pressure. The pressure returns to its initial value within a few seconds of
switching off the ablation laser. Although the pressure rise observed during ablation
is actually comparable to that expected from a thermal source that has been used for
some time, the situation might have been improved by stronger heating of the calcium
target to remove contaminants. This could have been achieved by resistively heating
the target during bake-out of the vacuum chamber. Even now it is possible that the
pressure rise will be reduced over time as more contaminants have been removed from
the target surface.
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Figure 7.12: Response of ion gauge pressure measurement to a ten second period of ablation
loading with a laser fluence of 270 mJ/cm2 and repetition rate of 23 kHz. An increase in
the equilibrium pressure of about 1.5 × 10−10 mbar is observed. The pressure returns to its
initial value within a few seconds of switching off the ablation laser.

7.3.4 Photoionization of Rydberg atoms

Besides the trap loading technique described in the previous sections, we have also
observed that at relatively high ablation laser fluences ions can be loaded into the trap
even without the use of the photoionization laser at 272 nm. The loading rates for
this process can be as high as 25 ions/s. Although it is not fully understood how the
various experimental parameters affect the loading rate we do find that at relatively
low fluences it is possible to eliminate this loading process altogether. Indeed, during
collection of all the data presented in the previous section no loading was observed
without the 272 nm laser.

This loading of the trap without the 272 nm laser is surprising, especially since it
occurs even if the 866 nm repumper laser is blocked. This eliminates the laser cooling
force and makes it extremely unlikely that an ion generated outside the trap should
be captured. It follows that the ions must be generated near the center of the trap as
a result of photoionization by the Doppler cooling or repumper lasers. By blocking
each of these beams in turn, it has been determined that only the 397 nm cooling
beam can be responsible for this photoionization.

Since it takes some time for the ablated atoms to reach the center of the trap, they
must necessarily be produced in some long-lived excited electronic state. An obvious
candidate could be the metastable 4s3d 1D2 state, but the photon energy at 397 nm
is insufficient to ionize from this level (see fig. 7.13c). Alternatively, it is possible that
the atoms are produced in bound Rydberg states, from which resonant transitions to
some auto-ionizing atomic states exist at 397 nm, but not at 866 nm.

The outer electron in a high-lying Rydberg state atom can be considered as a
spectator that does not significantly interact with more tightly bound electrons. The
transitions that are available to an atom in such a Rydberg state are therefore very
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Figure 7.13: a) Partial energy level diagram of Ca+. b) Partial energy level diagram of
atomic calcium. c) By superimposing the ionic energy levels onto each of the atomic Rydberg
levels, we obtain approximate values for some of the doubly-excited auto-ionizing states of
atomic calcium.

similar to those available to the primary ion. The energy levels of the doubly-excited
states can be approximated by superimposing the ionic energy level system onto each
of the singly-excited Rydberg levels (see fig. 7.13). It follows that regardless of the
exact initial Rydberg state of the calcium atoms there will always be a transition to
an auto-ionizing state at close to the 397 nm ion cooling wavelength. The validity of
this approximation is confirmed by detailed calculations and measurements of such
an auto-ionizing series in calcium [165].

We have studied the rate at which ions are loaded by this process as a function
of 397 nm laser power. The results are presented in fig. 7.14. An initially linear
relationship is observed which then shows signs of saturation at higher powers.

Since the auto-ionizing resonances are rather broad, this trap loading technique is
not expected to be isotope selective and is therefore of more restricted use compared
to resonant photoionization of ground state calcium atoms. We note, however, that
the same loading effect would be expected for any element that has a rapid Doppler
cooling transition available to it in the ionic state. The technique may therefore be
particularly useful for elements that only possess one isotope, such as beryllium, or
whenever isotope selectivity is not required. The fraction of atoms produced in the
Rydberg states, and hence the overall efficiency of this loading process, has yet to be
determined.
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Figure 7.14: Ion loading rate as a function of 397 nm laser power. An initially linear
relationship is observed, with possible saturation effects beginning to occur at higher powers.
The ablation laser fluence used is 300 mJ/cm2, with a repetition rate of 20 kHz.

7.4 Conclusion

In this chapter we have presented results on loading of the cavity trap. In the first
part of the chapter we demonstrated that by photoionizing a thermal beam of calcium
atoms loading rated of more than 3000 ions/s could be achieved. These observations
of large loading rates into the trap are encouraging for the perspectives of producing
large ion ensembles inside the cavity and, hence, enter the regime of collective strong
coupling of cavity QED.

We furthermore demonstrated the ability of the 272 nm laser system that we
described in ch. 5.1, to load specific isotopes of Ca+ into the trap. At the same time
this conveniently provided a frequency calibration of this laser system.

In the second part of the chapter we described a novel method for loading via
ablation of material off a calcium target. Although considerably lower loading rates
were observed by this method, the study demonstrated the method as a viable tech-
nique for ion trap loading. For our present experiments with highly reflective mirrors
integrated into the trap the possibility of working with a substantially lower average
atomic flux is obviously highly desirable and it is possible that with further optimiza-
tion experiments with larger crystals, such as those needed to achieve collective strong
coupling, might become practical. In particular, the effect of Doppler broadening is
believed to cause lower loading rates and a setup in which the atomic beam produced
by ablation and the 272 nm beam can intersect at 90◦ is thus expected to lead to
improvement in the loading rate. Furthermore, Doppler broadening will deteriorate
the isotope selectivity of the scheme dramatically and, indeed, we have not been able
to achieve isotope selective loading by this method thus far.



Chapter 8

Characterization and optimization

of the cavity trap

In this chapter we will focus on optimization of the trap from the point of view of
maximizing the number of ions in the cavity mode. The motivation for this comes
from the scaling with the number of ions of the collective coupling strength g

√
N ,

where g is the single ion coupling strength and N is the number of ions interacting
with the cavity field. Maximizing N is thus crucial to achieve a high coupling strength
and to potentially satisfy the criterion for strong collective coupling, which as we saw
in ch. 6.8 should be possible for N > 500.

We begin by describing a general method for moving the minimum of the quadru-
pole potential in the radial plane of the trap, such that it can be made to coincide
with the cavity mode. We then present experiments aimed at characterizing the trap.
Special attention will be given to the calibration of the density of the trapped ion
Coulomb crystals, as knowledge about this parameter is a prerequisite for extracting
the number of ions interacting with the cavity field from the recorded images of the
crystals. Finally, an empirical study of various effects limiting the maximal attainable
number of ions is presented. Based on these observations, we draw conclusions about
the optimal trapping parameters for the trap.

8.1 Cavity mode - ion crystal overlap

In ch. 6.1 we described how the cavity trap was designed, and later assembled and
aligned. The aim there was to achieve an alignment with a precision in the overlap
between the center of the cavity mode and the geometric center of the linear Paul trap
of ±10 µm. To measure the final overlap, a crystal is loaded and cooled by sending in
the 397 nm beam along the trap axis and the 866 nm repumper at 90◦ from the side
as shown in e.g. fig. 7.3. By subsequently turning off the 866 nm beam from the side
and instead coupling it into the resonant cavity, only the ions within the cavity mode
are cooled, while the remaining ions are being sympathetically cooled by these. From
the recorded images the location of the cavity mode with respect to the ion crystal can
be found. To ensure that this is in fact in the minimum of the quadrupole potential,
a two-component crystal is loaded and the radial dc-offsets on the trap electrodes are
adjusted such that the heavier component appears in equal ratios on both sides of the
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central core of the lighter isotope, as described in ch. 3.2.2.
Fig. 8.1a) shows such a two-component crystal in the quadrupole minimum, where

only the central 40Ca+ component is being laser cooled. From fig. 8.1b), where the
866 nm repumper is coupled into the cavity, we estimate that the cavity mode is offset
with respect to the center of the trap by ' 90 µm in the xz-plane. From images taken
with the side camera (not shown here) we estimate the offset in the y′z-plane to be
' 80 µm.

100 µm

(a) (b)

ẑ

x̂

ŷ

Figure 8.1: Two component crystal in the quadrupole minimum, where only the 40Ca+

component is being directly laser cooled. a) 866 nm repumper sent in from the side (along
x). b) 866 nm repumper coupled into the cavity mode (along z). The cavity mode is offset
by ' 90 µm with respect to the center of the crystal.

The discrepancy between this measurement and our initial estimate, based on our
method of alignment, is at present not well understood, but nevertheless the resulting
poor overlap of the cavity mode and the ions is an issue that must be addressed before
pursuing experiments with the interaction between the cavity field and the ions. For
typical crystal sizes this imperfect overlap can result in a substantial reduction in the
collective coupling strength and a method for moving the ions into the cavity mode
must therefore be developed.

8.1.1 Moving the quadrupole potential minimum

Moving the ions requires that special attention be paid to micromotion. In particular,
it is crucial that it is the minimum of the quadrupole potential that is moved. Simply
“pushing” the ions by applying static dc-offsets will move the ions into regions of large
micromotion amplitudes and thereby induce heating as described in ch. 3.2.2. The
basic principle of this is shown schematically for one dimension in fig. 8.2. From
this illustration we are guided to seek for means to either lower the rf-voltage on one
electrode or to increase it correspondingly on the other; both will cause the potential
minimum to be shifted towards the electrode of lower rf-voltage, as shown in fig. 8.2c).
Before proceeding to the practical implementations of this, we give a more rigorous
justification of the method.

Again, we consider the one-dimensional situation, as depicted in fig. 8.3. Here the
two electrodes, A and B, can give rise to different field amplitudes. The zero-point on
the x-axis indicates the location of the geometric center at a distance r0 from both
electrodes (c.f. fig. 3.1). The potential from either electrode falls off with the inverse
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Figure 8.2: Illustration of the basic principle behind moving the ions with respect to the
geometric center of the trap. The curves illustrate the rf-potential at two different times in
the rf-cycle (out of phase by π). a) Ions in the minimum of the quadrupole potential at the
geometric center. b) Ions moved with respect to the geometric center by application of a
static dc-potential into a region of large micromotion amplitude. c) Ions moved with respect
to the geometric center by lowering the rf-amplitude on one electrode with respect to the
other.

of the distance and the total potential at x may thus be written as:

φ(x) =
A

r0 + x
+

B

r0 − x

' A + B

r0
− A − B

r0

x

r0
+

A + B

r0

x2

r2
0

, (8.1)

where we have only retained terms to second order in x in the expansion, based on
the assumption that x � r0. This is justified by the fact that the inter-electrode
inscribed radius r0 = 2.35 mm (table 6.1), is significantly larger than the 80-90 µm
shift required for the quadrupole minimum to coincide with the cavity. To find an
expression for the location of the minimum x0 we set the derivative of φ with respect
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to x equal to zero and solve for x0,

d

dx
φ(x)

∣
∣
∣
∣
x=x0

= −A − B

r2
0

+ 2
A + B

r3
0

x0 = 0

⇓

x0 =
A − B

A + B

r0

2
=

UA
rf − UB

rf

UA
rf + UB

rf

r0

2
, (8.2)

where we have used the fact that A and B are proportional to the rf-voltages to
rewrite the expression in terms of these. If we consider a situation where the voltage
amplitudes on A and B differ by some attenuation factor δ < 1, such that UB

rf = δUA
rf ,

then

x0 =
1 − δ

1 + δ

r0

2
, (8.3)

which for a small attenuation (δ ≈ 1), applicable to the situation here, means that
x0 ∝ 1 − δ.

Finally we check that the resulting potential is still harmonic around the shifted
minimum x0. If we make the substitution x → x + x0 in eq. 8.1 we find

φ(x) =
A + B

r0
− A − B

A + B

A − B

4r0
+

A + B

r3
0

x2, (8.4)

which is indeed a harmonic potential.

Based on this analysis our strategy will be to lower the amplitude of the rf-voltage
on the electrodes in the direction where we wish to move the ions. In ch. 6.3 we
described the electric circuit used to transfer the rf-voltage on to the trap electrodes
(see fig. 6.5). This circuit is a resonant circuit where the rf-signal, for all electrodes of
both phases, is derived from the same frequency generator. This has the advantage
that the phase of the rf-field on the individual electrodes is not subject to relative
changes over time but it also means that the rf-voltage can not be adjusted on the
individual electrodes independently, without modifying the circuit.

The basic principle behind our method for adjusting the individual voltages on
the electrodes can be illustrated by considering the circuit corresponding to a single
trap electrode, as shown in fig. 8.4a). There are 2 × 6 such circuits in parallel in the
whole circuit. Cs is the series capacitor of 2.2 nF and C2 is the variable capacitor
(1.5-40 pF) both present in the main diagram of fig. 6.5 and discussed in the analysis
given in ch. 6.3. The individual trap electrodes typically has a capacitance of some

0

A B

x

r0r0

Figure 8.3: Two electrodes used in the derivation of the location of the shifted potential
minimum. See text for details.
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tens of pF including wires. An analysis of the circuit of fig. 8.4a), which is basically
a voltage divider, gives the following expression for the voltage on the electrode:

Ve =
Vin

1 + C2+Ct

Cs

. (8.5)

From this relation, the reason for the comparatively high value for Cs is quite obvious,
in that the amplitude on the electrode becomes less dependent on the exact value of
the trap capacitance Ct and for Cs � C2, Ct we find Ve = Vin. From our present
purpose of lowering the voltage, eq. 8.5 also shows that this can be achieved either
by increasing Ct or by decreasing Cs and in the following we will describe how this is
done experimentally in both cases. To move the ions radially, we will make identical
changes to the capacitative load on all three electrodes of a given electrode rod (e.g.
electrodes 1–2–3 in fig. 8.6). Here we only analyze a single electrode and the situation
is of course more complicated when all 12 electrodes are coupled to the same resonant
circuit.

8.1.1.1 Parallel load

Increasing Ct can be achieved simply by adding a load C̃p in parallel as shown in

the diagram of fig. 8.4b) such that Ct → Ct + C̃p in eq. 8.5. This method is easily
implemented by inserting BNC cables of various lengths 1. Increasing the variable
capacitor C2 will have the same effect but its variation is limited to 40 pF. The
attenuation factor δ in eq. 8.3 is given by the ratio of the resulting to the initial gain
(eq. 8.5) and may thus be written as:

δp =
1 + C2+Ct

Cs

1 +
C2+Ct+C̃p

Cs

'
(

1 +
C2 + Ct

Cs

)(

1 − C2 + Ct + C̃p

Cs

)

' 1 − C̃p

Cs
,

where we have expanded the expression and neglected terms according to Cs �
C2, Ct, C̃p. From this, we will expect the quadrupole potential minimum (eq. 8.3) to

1Capacitance: 110 pF/m.

(a) (b) (c)

VinVinVin VeVeVe

C2C2C2

CsCsCs

CtCtCt C̃pC̃p

C̃s

Figure 8.4: Simplified diagram of a single trap electrode. Cs and C2 refer to the capacitors
introduced in ch. 6.3. Ct is the capacitance of the trap electrode. a) No changes to the
load. b) Added load C̃p in parallel. c) Added load C̃s in series. In practice this will always
be associated with the addition of a small, parasitic parallel load C̃p. See text for further
details.
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move linearly with increasing value of C̃p as

x0 ∝ C̃p

Cs
. (8.6)

This is shown in fig. 8.5a) where this minimum is moved in the xz-plane by as much
as ±100 µm. The capacitance C̃p was added to either electrodes 1–6 or to electrodes
7–12 as defined in fig. 8.6. The red line is a linear fit to the data.

This method works well in terms of moving the ions, however, the increased capac-
itance results in a substantially lower resonance frequency of the rf-circuit. Qualita-
tively, the resonance frequency is given by ω = 1√

LC
, where L is the circuit inductance

and C is the capacitance of the entire circuit. Since we are increasing C the resonance
frequency will decrease as 1√

L(Cother+C̃p)
, where Cother represents the other capacitors

in the circuit. Fig. 8.5b) shows measurements of the resonance frequency for both
resonances of the circuit (c.f. ch. 6.3) for various values of C̃p. As for the displace-
ment, the effect is symmetric with respect to adding capacitance on either side of the
trap. The solid lines represent fits to the data of the form 1√

Cother+C̃p

, which are seen

to agree well with this.
In practice, lowering the resonance frequency is not ideal. For instance, as Ωrf

is lowered and becomes comparable to the radial trap frequency ωr (eq. 3.10), the
description of the motion as comprised of secular motion and micromotion becomes
inadequate. Furthermore, the experience in our group with similar traps suggests
that an rf-frequency of around 4 MHz should result in more stable trapping, and we
thus sought an alternative method for lowering the rf-voltage on these electrodes.

8.1.1.2 Serial load

The alternative method consists in adding a capacitor C̃s in series, as shown in

fig. 8.4c), thus changing the serial capacitance as Cs → CsC̃s

Cs+C̃s
. In practice there

will always be some coupling to ground associated with this, which is accounted for
by the parallel capacitor C̃p (∼ 10 pF).2 The resulting attenuation factor may now
be written as,

δs =
1 + C2+Ct

Cs

1 +
C2+Ct+C̃p

CsC̃s
Cs+C̃s

' 1 − C2 + Ct + C̃p

CsC̃s

Cs+C̃s

' 1 − C2 + Ct + C̃p

C̃s

, (8.7)

where as before, in the expansion, we have neglected terms according to Cs �
C2, Ct, C̃p, C̃s. The resulting displacement is then inversely proportional to the added
capacitance:

x0 ∝ C2 + Ct + C̃p

C̃s

. (8.8)

The advantage of this method is that it has a smaller effect on the resonance
frequency of the circuit. The effect of the added capacitances may be viewed as

2To allow the dc-voltages, e.g., Uend to go through to the trap electrodes there is also a 3.3 MΩ
resistor added in parallel to the series capacitor C̃s, which has been omitted here for the sake of
simplicity
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Figure 8.5: Moving of the quadrupole by adding a capacitative load C̃p in parallel either
on the left- of right-hand side electrodes (when viewed along the z-axis). The dashed line
indicates the division with respect to this. a) Displacement along the x-axis versus added
load and linear fit. b) Resonance frequencies of the circuit versus added load. The red data
is for the higher frequency resonance while the black data is the lower frequency resonance
used in our experiments (c.f. ch. 6.3). Solid lines are from fits of the form 1√

Cother+C̃p

.

giving rise to an effective trap capacitance,

Ct → Ceff
t =

Ct + C̃p

1 +
Ct+C̃p

C̃s

'
(

Ct + C̃p

)
(

1 − Ct + C̃p

C̃s

)

' Ct + C̃p. (8.9)

Provided the serial capacitor C̃s can be inserted without the addition of significant
parasitic parallel capacitance C̃p then the resonance frequency will not be changed
significantly. This is indeed what we observe and fig. 8.7 shows the resulting dis-
placement of the crystal for various values of C̃s. Black points correspond to the
displacement in the xz-plane where C̃s is added to electrodes 1–6 while the red point
are for displacement in the yz-plane where C̃s is added to electrodes 1–2–3 and 7–8–9.
The solid line is of the form 1

C̃s
, based on the simple model of eq. 8.8 and shows nice

qualitative agreement.
These measurements indicates that the necessary displacement of 80–90 µm in the

two planes can be achieved for C̃s ' 170 pF added to electrodes 1–9. In the final
configuration we have added a capacitative serial load of 120 pF only to electrodes
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Figure 8.6: Overview of the Paul trap electrode numbering and a sketch of the crystal
displacement when the rf-voltage is attenuated symmetrically on electrodes 1–2–3 and 4–5–
6.
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Figure 8.7: Moving the quadrupole by adding a capacitative load C̃s in series. Black points
correspond to the displacement in the xz-plane (added C̃s to 1–6) while the red point are
for the y′z-plane (added C̃s to 1–3 and 7–9). The solid line is of the form 1

C̃s
.

1–3, which results in an identical displacement at 45◦ in the xy-plane. Note that this
load is exactly a factor 1√

2
of the 170 pF, as expected from a displacement at 45◦.

Further fine adjustment can be facilitated through the capacitors C2 and fig. 8.8 shows
the crystal in its final position in the xz-plane. Here the mode-crystal overlap is only
off by 15 µm in along y and 3 µm along x. For typical crystal sizes this will result
in a reduction in the coupling strength of at most a few percent (c.f. appendix C).
When evaluating the coupling strength in ch. 10 we shall take this into account. The
trap frequency has not changed significantly and is still 4.0 MHz in this final position
as expected from our simple analysis.
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Figure 8.8: Final position of the crystal with respect to the cavity mode. From image a)-c)
the 866 nm repumper is shifted from the beam illuminating the entire crystal from the side
(along x) to the cavity mode (along z).

8.2 Trap calibration

The objective of the study within this section is in two parts: First, to check that the
trap behaves as expected, which means that the trapped ion Coulomb crystals are
well-described by the zero temperature charged liquid model of ch. 3.2.1. Secondly, as
knowledge of the exact number of ions interacting with the cavity field is important
for a cavity QED experiment, we require some form of calibration of the density of
the ion Coulomb crystals.

In ch. 3.2.1 we derived the following expression for the density:

ρ0 =
ε0U

2
rf

Mr4
0Ω

2
rf

.

Here, for the purpose of achieving an accurate calibration of the density, we are
principally concerned with the rf-voltage Urf . As described in ch. 6.3 the electronics
for the transfer of the rf-voltage onto the trap electrodes, has a 1:100 monitor output,
but as we have seen in the previous section, the exact voltage on the electrodes will be
dependent on their capacitance, which might not be identical for all electrodes. By all
accounts, the changes made to the circuit in order to move the quadrupole minimum,
will have rendered the initial 1:100 calibration of the monitor output faulty and some
form of calibration is thus required. With the analysis of the previous section in mind,
it is clear that a direct measurement is not possible as it will inevitably add some
load to the electrodes and change the circuit response altogether. Instead, an obvious
probe for the calibration of the trapping parameters is the ion crystals themselves.
In practice this means that we should measure quantities that can be compared with
predictions made by the zero temperature charged liquid model.
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8.2.1 Trap frequencies

In our initial treatment of ion Coulomb crystals and the zero temperature charged
liquid model, we derived a relation between the ratio of the trap frequencies ωz

ωr
and

the crystal aspect ratio α (c.f. eq. 3.18 and fig. 3.5). In our characterization of the
trap, we first verify that this relation provides a good description of the crystals by
measuring α for a broad range of trapping parameters in the configuration where no
additional load has been applied to any of the electrodes. From α we deduce ωz

ωr
via

eq. 3.18, which we then compare with the value predicted by the expression for the
trap potentials derived in ch. 3.1.1. From these the ratio of the trap frequencies is
given

ωz

ωr
=

√ −a

q2/4 + a/2
, (8.10)

where a and q are given by (eq. 3.6):

a = −4
ηQUend

Mz2
0Ω

2
rf

= a′Uend (8.11a)

q = 2
QUrf

Mr2
0Ω

2
rf

= q′Urf , (8.11b)

where a′ and q′ are both constants.
In the experiment we trap and cool ion Coulomb crystals of 40Ca+ and deduce

their aspect ratios from the recorded images by measuring their radius and length,
as described in appendix B. This is done for trapping voltages in the range Urf =
150 − 300 V and Uend = 2 − 20 V. From the measured values for α we calculate ωz

ωr

via eq. 3.18 and this data is then fitted to the expression of eq. 8.10. Using a′ and q′

as free parameters their values can be deduced from the fit.
In practice the data is fitted to the following expression:

ωz

ωr
=

√
√
√
√

−(Uend − Uoff)

q′2

a′

U2
rf

4 + 1
2 (Uend − Uoff )

, (8.12)

where Uoff has been included to account for any voltage offsets in the end-voltage.
Writing the expression in this way shows that a′ and q′ are dependent variables in this

equation and a fit can therefore only give us information about the ratio q′2

a′
, which

is given by (c.f. eq. 3.6),

q′2

a′ =
q2

a

Uend

U2
rf

=
−Qz2

0

Mηr4
0Ω

2
rf

. (8.13)

From the fit we find Uoff = 0.92 ± 0.05 V and q′2

a′
= −(2.311 ± 0.016) × 10−3 V−1.

Using these values we then calculate ωz

ωz
and plot this versus α. The result is shown

fig. 8.9a) and is seen to agree well with the theoretical prediction of eq. 3.18 based
on the zero temperature charged liquid model (solid line), which confirms the validity
of this model and hence the fit result. The fact that Uoff 6= 0 can be ascribed
to charging effects caused by the UV laser during loading or the trap. Finally, the

value for q′2

a′
, obtained from the fit, agrees well with the theoretical prediction of
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−(2.29±0.06)×10−3 V−1, based on the trap parameters quoted in table 6.1, where the
uncertainty comes from the machining and alignment precision of the trap structure
(±10 µm).

These measurements thus show that the aspect ratio of the trapped ion Coulomb
crystals follows very accurately the predictions based on the zero temperature charged
liquid model, which indicates that the trap is working as expected. This leads us to
the conclusion that the dielectric mirror substrates have been integrated into the trap
without significantly perturbing the trapping fields.

Furthermore, the nice agreement between the prediction based on the trap dimen-

sions and the fit result for q′2

a′
, signifies that the reading of the rf-voltage on the 1:100

monitor output is correct, as expected for this case, where no additional load has been
applied to the trap electrodes. This measurement may thus be used as a reference for
calibration of the rf-voltage when the loads on the electrodes are altered.

Fig. 8.9b) shows the result of a similar measurement after the quadrupole potential
minimum has been moved through the addition of a 120 pF serial load on electrodes
1–2–3. Again, nice agreement with the zero temperature charged liquid model is seen,
which supports our arguments in the previous section that the trap potentials should
not be distorted by any appreciable amount from their initial harmonic form. From

the fit we find Uoff = (0.99 ± 0.05) V and q′2

a′
= −(1.991 ± 0.014) × 10−3. Since

only the rf-voltage is modified by our scheme for moving the quadrupole potential
minimum, it is expected that the offset in the end-voltage is unchanged and that the

ratio q′2

a′
is modified as a result of the attenuation of the rf-voltage. By comparison

with the value found without any additional load, we deduce that the reading on the
1:100 monitor output of the rf-circuit must be scaled by a factor 0.928± 0.007.

Alternatively, we may rewrite the expression for the density (eq. 3.21) in terms of

ωz

ωr

α

(a)

ωz

ωr

α

(b)

Figure 8.9: Ratio of trap frequencies versus crystal aspect ratio. a) For no additional load
on the trap electrodes. b) For 120 pF load on electrodes 1–2–3. The solid black line is the
theoretical curve based on the zero temperature charged liquid model (eq. 3.18) and the red
points are data where α has been measured directly from images of crystals and ωz

ωr
has been

deduced from a fit to eq. 8.12. See text for further details. The errorbars are within the
point size.
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the q′2

a′
ratio as

ρcal
0 =

ε0η

Qz2
0

q′2

a′ U2
rf (8.14)

and use the reading on the 1:100 rf-voltage monitor output directly. In the two cases,
without additional load and with 120 pF load on the three electrodes, the density of
the trapped ion Coulomb crystals is then:

ρcal
0 =

{

(6.92 ± 0.12) × 103 cm−3 × U2
rf [Volt] ; for no load,

(6.01 ± 0.09) × 103 cm−3 × U2
rf [Volt] ; for 120 pF load,

(8.15)

where we have included an uncertainty of ±10 µm in the geometric constants of
eq. 8.14.

8.2.2 Inter-shell spacing

In ch. 3.2.3 we mentioned how measurements of the radial inter-shell spacing of the
ion Coulomb crystals may be used to deduce the crystal density. Combining eq. 3.16
and eq. 3.22, the inter-shell spacing can be expressed through the density as

δr = 1.48 ×
(

3

4πρ0

)1/3

. (8.16)

The pre-factor of 1.48, which is based on MD simulations of infinitely long crystals [97],
has previously been determined experimentally by our group to be 1.35 ± 0.15 [98].
To this author’s knowledge, no experiments has since been reported which has found
agreement with the theoretical prediction with a lower uncertainty in the measure-
ments. In the previous section, we found very good agreement between experiment
and theory in our measurements of the crystal aspect ratio, in the configuration where
no load had been added to the electrodes. Using the value we deduced for the density
based on those experiments (eq. 8.15), we should thus be able to produce a better
bound on the pre-factor of eq. 8.16.

Fig. 8.10 shows the result of measurements of the inter-shell spacing δr for different
values of the rf-voltage. To mimic the notion of“infinitely long”in the MD simulations
we used very prolate crystals of 1.5-2 mm length. δr is determined from the recorded
crystal images as described in appendix B and the red line shows the result of a fit to
the data of the form

δr = x ×
(

3

4πρ′

)1/3

× 1

U
2/3
rf

, (8.17)

where we have used the value for the density factor found in the previous section of
ρ′ = (6.92±0.12)×103 cm−3V−2 (c.f. eq. 8.15). The fit gives a value for the pre-factor
of x = 1.484 ± 0.010, which is indeed quite an improvement in the determination of
this factor and which strongly supports the MD simulations of ref. [97].

If we instead assume that 1.48 is the correct value and deduce the density from
the fit, we find ρ′ = (6.88 ± 0.13) × 103 cm−3V−2, which agrees well with what we
found from the measurements of the trap frequencies.

As a cross-check of the density calibration in configuration where the additional
load, required to move the quadrupole minimum, is applied, we perform the same
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Figure 8.10: Intershell spacing δr measured as a function of the rf-voltage Urf when no
additional load is applied to the electrodes. The red line is a fit based on eq. 8.17 from which
the pre-factor is determined to be x = 1.484 ± 0.010.

experiment in this configuration. Fig. 8.11 shows the result, where this time the
pre-factor is fixed to x = 1.48 and using ρ′ as a fit parameter. This gives ρ′ =
(6.09± 0.14)× 103 cm−3V−2, which also agrees well with the value deduced from the
trap frequencies in the previous section.

Combining our results for the density calibration of ch. 8.2.1 and those of the
present section, assuming the pre-factor in eq. 8.16 may be fixed to 1.48, we find the

Urf [Volt]

δr
[µ

m
]

Figure 8.11: Intershell spacing δr measured as a function of the rf-voltage Urf when a
120 pF load is applied to electrodes 1–2–3. The red line is a fit based on eq. 8.17 with
x = 1.48 from which the density is found to be ρ′ = (6.09 ± 0.14) × 103 cm−3V−2.
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following for the density of the ion Coulomb crystal as a function of rf-voltage:

ρcal2
0 =

{

(6.90 ± 0.09)× 103 cm−3 × U2
rf [Volt] ; for no load,

(6.03 ± 0.08)× 103 cm−3 × U2
rf [Volt] ; for 120 pF load,

(8.18)

which represents our final calibration of the density and, hence, that used in the
remainder of the thesis.

8.3 Maximizing the number of ions in the cavity mode

As mentioned in the introduction, one of the main challenges for the realization of
a cavity QED experiment with ion Coulomb crystals is to confine a large number of
ions within the cavity mode to enhance the collective atom-light coupling. For our
trap, with the optical cavity axis coinciding with the trap axis, the highest number
of ions in the cavity mode is achieved when the product of the crystal length and the
density ρ0 is maximized. The length is controlled by both the end- and rf-voltage,
whereas the density is determined solely by the rf-voltage (c.f. eq. 3.21). Ideally,
we would therefore wish to work at a very low Uend and a very high Urf , so as to
produce crystals of very low aspect ratio α and high density ρ0. However, due to the
complex interplay between the trapping fields and the heating and cooling rates of the
three-dimensional ion Coulomb crystals, the optimal parameters for the system are a
priori not known and must be determined experimentally. The results presented in
the remainder of this chapter have all been obtained with the trap operating without
any additional load on the electrodes and any reference to e.g. densities are thus based
on the calibration applicable to this configuration. At the time of writing, a similar
study has not been conducted for the configuration where the quadrupole minimum
is moved, but our experience with the trap in that configuration does not suggest any
significant deviations.

We first investigate the dependence of the minimal attainable aspect ratio αmin on the
cooling power. This is done by loading crystals of a fixed density and number of ions
and then lower the end-voltage Uend until the trapping becomes unstable and ions are
lost from the trap. Fig. 8.12 shows the aspect ratio as a function of the end-voltage,
for three different values of the 397 nm cooling power, all other parameters being kept
constant. To the right are shown images of crystals corresponding to the 7 mW data.
For each curve, the point furthest to the right corresponds to the crystal right before
it is lost and, hence, to αmin for that particular level of cooling power. The conclusion
we draw from this graph is that increasing the power helps in trapping crystals of
lower aspect ratios.

As the aspect ratio is lowered toward it’s minimal value, we usually observe one of
two scenarios by which the ions are lost. In one, the crystal heats up instantaneously
(explodes) and all ions are lost, whereas in the other, the crystal shrinks in size, but
remains crystallized. In qualitative terms, we interpret the first scenario, as being
governed principally by rf-heating in the crystal. As we discussed in ch. 3.2.2, the
cooling light at 397 nm is only supplied along the trap axis to avoid driving the radial
micromotion of the trap (see e.g. fig. 7.3), and Doppler cooling therefore only cools
the axial degree of motion leaving cooling of the radial motion to be achieved solely
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Figure 8.12: Aspect ratio as a function of the end-voltage Uend for different powers of the
397 nm cooling laser (total power of both beams) and for a fixed detuning of ∼ 20 MHz.
To the left are shown images of crystals corresponding to the 7 mW data. The rf-voltage is
Urf = 300 V (ρ0 ' 6.2× 108 cm−3) and the number of ions is ∼ 65000. For this crystal size,
the range of aspect ratios corresponds roughly to crystal lengths ranging from 2–3 mm.

via the Coulomb interaction within the crystal. The coupling between axial and radial
motion, that this interaction facilitates, is weakened as the aspect ratio is lowered and
compensation of rf-heating, which drives the radial motion of the ions, is thus less
efficient for low aspect ratios.

The second scenario is usually observed when the number of ions is quite low.
In this case there will be less ions in regions of large micromotion amplitudes and
therefore less rf-heating to be compensated for by cooling. Stable confinement of low
aspect ratio crystals are thus easier achieved, however, ultimately the finite depth of
axial trap potential will limit αmin. As the end-voltage is lowered, and with it the ax-
ial potential (c.f. eq. 3.3), the finite temperature of the ions will allow them to escape
from the trap. Since rf-heating influences the temperature, αmin is also dependent on
the rf-heating within this scenario.

To study the dependence of αmin on crystal size we load crystals of various num-
ber of ions and let them expand axially until they become unstable and are lost. αmin

is then determined for each number of ions from the last stable crystal image as in
the previous experiment. Fig. 8.13 shows the results for two different power levels
of the 397 nm cooling laser beams. Initially, as the number of ions in the crystal
increases, αmin increases slowly until a threshold is reached and it suddenly jumps to
a much higher value, beyond which the slow increase is continued. The observation
of an increase in αmin is a strong indication that rf-heating is at play. Increasing the
number of ions for a given aspect ratio will result in more ions in regions of large
micromotion amplitudes and, hence, more rf-heating. It is therefore expected that
the crystals become unstable at a higher aspect ratio when the number of ions is
increased.

The points before and after the threshold represent two different regimes. Below
threshold the ions are lost at very low end-voltages via the scenario interpreted as
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Figure 8.13: Minimal attainable aspect ratio versus the number of ions in the crystal for
two different powers of the 397 nm cooling laser (total power of both beams) and for a
fixed detuning of ∼ 20 MHz. The rf-voltage is Urf = 300 V corresponding to a density
ρ0 ' 6.2 × 108 cm−3.

a result of a low trap potential in the above analysis, whereas above threshold the
ions are lost via the scenario interpreted as a direct result of rf-heating. Presumably,
the appearance of a threshold may be accounted for as a result of a runaway heating
process (hence the sudden loss of all ions), due to the rf-heating, although these simple
qualitative arguments does not provide a deeper understanding of this threshold and
it remains a subject for further studies.

At any rate, from our analysis of the effect of cooling power, it is not surprising
that a lower value of αmin is found at higher power (red curve in fig. 8.13) and that
the threshold is shifted to a higher number of ions when the cooling power is increased.

The final parameter that is studied is the rf-voltage, which, as it determines the
density via eq. 3.21, is an important parameter to optimize. In this experiment the
cooling power is kept constant and αmin is again found for different crystals sizes but
this time for various values of the rf-voltage. As seen in fig. 8.14, for most values
of the rf-voltage we find the same type of behavior as in the previous experiment.
The location of the threshold is seen to depend strongly on the rf-voltage, which also
points toward rf-heating as the primary limitation for αmin in this system.

The 400 V data shows an entirely different behavior, where the minimum in αmin

does not occur at the lowest number of ions. However, at this high voltage the crystals
are generally less stable and a less systematic behavior might therefore be expected.
Nevertheless, the 350 V data also shows some signs of deviation from the general
trend similar to the 400 V data, although far less pronounced. These observations
illustrate that although there are regions for the trapping parameters where general
trends can be identified, these do not apply to the entire parameter space and one
should be careful about making predictions based on extrapolations for this type of
trap.
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Figure 8.14: Minimal attainable aspect ratio versus the number of ions in the crystal for
different different rf-voltages.

From the above measurements of αmin, we can estimate the number of ions within the
cavity modevolume from eq. C.17 For each value of the rf-voltage the optimal settings
are generally those corresponding to the region preceding the appearance the thresh-
old. Fig. 8.15 shows the maximal attainable number of ions in the cavity modevolume
Nmax as a function of rf-voltage Urf . The number of ions in the cavity modevolume
is found to be maximal for rf-voltages near 350 V (ρ ' 8.5 × 108 cm−3). Here, more
than 2000 ions are in the cavity modevolume, which in principle corresponds to a
collective coupling strength of g

√
N ' 2π × 24 MHz (c.f. eq. C.12). The dashed line

in the figure indicates the level above which the number of ions becomes large enough
to satisfy the strong collective coupling criterium.

8.4 Conclusion

This chapter has addressed issues regarding the optimization of the trap in order to
maximize the number of ions interacting with the cavity field. We have presented
a general method for moving the quadrupole minimum of a linear Paul trap in the
radial plane and shown results achieved via two different implementations of the
general scheme. Both methods allowed us to move the quadrupole minimum with
respect to the cavity mode by as much as ±100 µm and facilitated a near perfect
overlap between the ions and the cavity field mode. As this method is quite general
it may find use in other experiments; e.g. cavity QED experiments with single ions
or in rf-traps where design constraints allows only limited room for adjustments via
dc-offsets.

In the second section of this chapter we presented results on the characterization of
the trap. Here we found excellent agreement with the theoretical prediction for crystal
aspect ratio as a function of the ratio of the trap frequencies. These observations leads
us to conclude that the integration of the optical cavity into the linear Paul trap has
been accomplished without perturbing the trapping fields.



122 Characterization and optimization of the cavity trap

N
m

a
x

Urf [Volt]

Figure 8.15: Number of ions in the cavity mode volume versus rf-voltage. The interval from
150 V to 400 V corresponds to ion densities between 1.6×108 −1.1×109 cm−3. The dashed
line indicate the level above which the criterion for strong collective coupling is potentially
satisfied.

Furthermore, based on the trap characterization, the relative uncertainty in our
determination of the crystal density is below 2 %, which combined with our present
precision in measuring the crystal volume (see appendix B) results in a relative uncer-
tainty in the number of ions of only 2− 4 %. For typical crystal sizes this precision is
better than 1/

√
N . More details can be found in appendix B. In this respect we have

not yet considered two-component crystals, where under certain trapping conditions
the structure can be strikingly regular and simply counting the ions in the images
might lower the uncertainty in the number of ions even further. Fig. 3.8 shows one
example of such a crystal.

During the course of this characterization we were also able to confirm, with very
high accuracy, a prediction made by MD simulations on the structure of ion Coulomb
crystals [97]. With these measurements we can give the following experimental bound
on the expression for the inter-shell spacing in an ion Coulomb crystal: δr = (1.484±
0.010)aws, where aws is the Wigner-Seitz radius (c.f. eq. 3.22).

Finally, we conducted an experimental study on the various limiting parameters
for achieving the highest possible number of ions in the cavity mode. This allowed
us to deduce the optimal trapping parameters for our experiments. The optimal rf-
voltage for maximizing the number of ions was found to be around 350 V, although
for most of the experiments described in the following chapters we have used an rf-
voltage of 300 V as we generally find the long term trapping to be more stable at this
value.

For all values of rf-voltage ranging from 150-400 V, we found that the criterion for
strong collective coupling (eq. 2.38) could be met and collective coupling strengths
of up to 2π × 24 MHz was predicted. In terms of cooperativity for our system, this
would correspond to C ' 12.

During the optimization of the trap, we observed the appearance of a threshold-
like behavior in the maximally attainable number of stably confined ions, which we
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ascribed to a complex interplay of the heating and cooling rates within the system.
Although not fully understood at present, we suspect this feature to be governed
principally by rf-heating.





Chapter 9

State preparation

This chapter deals with the state preparation of the ensemble of the trapped cold
ions. This represents an important step in the experiments on the coherent coupling
between the ion Coulomb crystal and the cavity field that will be the focus of the suc-
ceeding chapter. We begin in ch. 9.1 by a theoretical analysis of the optical pumping
scheme employed to realize efficient state preparation. Supplementary information
can be found in appendix E. In ch. 9.2 we describe the experimental setup and in
ch. 9.3 we present measurements on the optical pumping efficiency achieved by this
scheme. In ch. 9.4 we discuss the lifetime of the prepared state and the coherence
time of our system. Finally, in ch. 9.5 we conclude on the state preparation.

9.1 Optical pumping of 40Ca+

Fig. 9.1 shows the level scheme of Ca+ including the magnetic sub-levels of the 4S1/2,
4P1/2 and the 3D3/2 states. The objective of the state preparation considered in this
chapter is to accumulate as many ions as possible in the 3D3/2, mJ = +3/2 state in
the shortest amount of time. This is motivated by the following:

• The 3D3/2, mJ = +3/2 ↔ 4P1/2, mJ = +1/2 transition at 866 nm has the
highest Clebsh-Gordan coefficient (see appendix A) and will hence give rise to
the largest coupling strength to the cavity field.

• It is highly desirable to have as many ions as possible in this state due to the
scaling of the collective interaction strength g

√
N between the ions and the field

(see ch. 2.3).

• The time-issue is especially critical in experiments where the cavity is scanned.
Each point in the cavity spectrum is the result of an experimental sequence
(see ch. 6.7) which consists in cooling, state preparation and probing. To avoid
excess acoustic noise, the scans have to be taken at a high rate, while at the same
time, there should be enough points within a scan to do a proper Lorentzian fit
to the data and extract e.g. the width with enough accuracy. This means that
only a limited amount of time is available to record each point in the spectrum.
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9.1.1 Theory and simulations

To achieve efficient state preparation, we employ the technique of optical pumping. As
indicated in fig. 9.1 a σ+- and a σ−-polarized field at 397 nm drives the 4S1/2 ↔ 4P1/2

transition, while a σ+- and a π-polarized field at 866 nm drives the 3D3/2 ↔ 4P1/2

transition. The 3D3/2, mJ = +3/2 state is not coupled to other states and the ions
will thus accumulate here.

The Hamiltonian describing the dynamics of this 8-level system is given by:

H = Hatom + HL + HB. (9.1)

The state populations Πi and the coherences Pij are defined as in eq. 2.9 and eq. 2.11.
With these definitions, the atom Hamiltonian Hatom is given by,

Hatom = ~ωsp (Π2 + Π3) + ~ (ωsp − ωdp) (Π4 + Π5 + Π6 + Π7) , (9.2)

with ωsp and ωdp being the frequency of the 4S1/2 ↔ 4P1/2 transition and the 3D3/2 ↔
4P1/2 transition, respectively. The interaction with the laser fields is described via

HL = −~
(
Ωsp

+ P30 + Ωsp
+

†P03

)
− ~

(
Ωsp

− P21 + Ωsp
−

†P12

)

−~

(

Ωdp
+1P24 + Ωdp

+2P35 + Ωdp
+1

†P42 + Ωdp
+2

†P53

)

−~Ωdp
0 (P25 + P52 + P36 + P63) , (9.3)

where Ω is the Rabi frequency with the superscript indicating the transition and the
subscript indicating the polarization (+/-: circular, 0: π). The additional subscript
1,2 is added to account for the different Clebsch-Gordan coefficients on the two circular
3D3/2 ↔ 4P1/2 transitions (c.f. appendix A). In all of our experiments an external
magnetic field along z defines the quantization axis for the system. We shall assume
that the magnetic field along x and y has been efficiently minimized as described
in ch. 6.5 and only treat the effect of the magnetic field along z, which results in a
Zeeman splitting of the energy levels accounted for by the final term in eq. 9.1,

HB =
1

2
gsµBB (Π1 − Π0) +

1

2
gpµBB (Π3 − Π2)

+
1

2
gdµBB (3Π7 + Π6 − Π5 − 3Π4) , (9.4)

where µB is the Bohr magneton, B is the magnetic field strength and gs,p,d is the
Landé factor, with the subscript indicating the state (see appendix A).

The equations governing the time evolution of the atomic state populations in
this eight-level system are derived from the above Hamiltonian H using Hamilton’s
equation of motion in the rotating wave approximation and including the effect of
spontaneous emission, as done for the simple two-level system in ch. 2.1. The result is
given in appendix E. Including the coherences, there are 64 coupled first order differ-
ential equations which we propagate in time using a classic Runge-Kutta algorithm.
Fig. 9.2 shows the time evolution of the atomic population for typical parameters of
our experiment where all of the ions are pumped into the right state within 12 µs
(dashed, blue line). For technical reasons, that are accounted for in appendix E,
the Rabi frequencies of the various polarizations of the 866 nm fields are related via
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Figure 9.1: Level scheme of the relevant levels and transitions for optical pumping of 40Ca+.
Due to the Zeeman effect, the levels are shifted from their unperturbed configuration (dashed
lines). Ω denotes the Rabi frequencies of the various transitions, ∆ the detunings with respect
to the unperturbed transitions and the decay rates Γ are distributed among the magnetic
substates according to the Clebsch-Gordan coefficients of those transitions (see appendix A).
Γds is set equal to zero due to the long life time (' 1 s) of the 3D3/2 state. The state
designation |i〉 where i = 1, 2, 3, 4, 5, 6, 7 is used in the equations of motion (see text).

Ωdp
0 = Ωdp

+2 =
√

1
3Ωdp

+1 and for simplicity we shall therefore define Ωdp ≡ Ωdp
+1, which

is the quantity we will be refering to in the following.
In practice there are several factors making the actual experimental conditions

different from the idealized scenario modeled here, and deviations from the theoretical
predictions are naturally expected. Nevertheless, the simulations may still serve as
a useful guide for optimizing the various parameters. To this end, we study the
dependence of the optical pumping efficiency on parameters such as Rabi frequencies
and detunings. In the simulations, optical pumping is on for 12 µs after which the
population in the 3D3/2, mJ = +3/2 state (Π7) is measured. Fig. 9.3a) shows the
dependence of the optical pumping efficiency on the Rabi frequencies of the fields for
∆sp = 2π× 28 MHz, ∆dp = 0 MHz, which are the typical detunings used for Doppler
cooling of the ion Coulomb crystals. The first thing to notice is that the optical
pumping efficiency does not vary much with Ωdp and, for Rabi frequencies on the
4S1/2 ↔ 4P1/2 transition above Ωsp = 2π×10 MHz, a plateau close to 100% is found.
Fig. 9.3b) and c) show the the dependence of the optical pumping efficiency on the
detunings of the fields for Ωsp = 2π × 15 MHz and Ωsp = 2π × 7 MHz, respectively.
In both figures Ωdp = 2π× 14 MHz. The conclusion is that the optical pumping does
not depend very strongly on ∆dp and that only for low values of Ωsp does ∆sp become
critical. Given the relative strength of the two transitions (Γsp/Γdp ' 12) it is not
surprising that the 4S1/2 ↔ 4P1/2 transition should be the critical one and that, in
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Figure 9.2: Time evolution of the atomic population starting from 50% in each of the two
4S1/2 states (Π0 and Π1) and resulting in 100% accumulation in the 3D3/2, mJ = +3/2
state (Π7) after 12 µs. Perfect coherence is assumed between all fields and the parameters
used in the simulation are Ωsp = 2π × 15 MHz, Ωdp = 2π × 14 MHz, ∆sp = 2π × 28 MHz,
∆dp = 0 MHz and B = 3 G.

order to achieve efficient optical pumping, this transition should be driven strongly.

9.1.2 Limiting effects

In all simulations we have assumed perfect coherence between all the fields. In reality
the two lasers at 397 nm and 866 nm are locked to different reference cavities and can
not be expected to exhibit perfect phase coherence over longer times. The effect can
be included in the equations of motion by adding a phenomenological decay term in
the optical coherences between the 4S1/2 and the 3D3/2 states. For decay rates up to
∼MHz the effect seen in the simulations is still quite small and has thus been omitted
here.

The fields driving the σ and π transitions on the 3D3/2 ↔ 4P1/2 transition are, as
we shall see below, derived from the same laser and may thus be expected to exhibit
good phase coherence on the timescale of the optical pumping. From measurements of
the linewidth of this laser (see ch. 5.2) we expect coherence times of ∼ 10 µs which is
indeed comparable to the optical pumping time. Stimulated Raman processes might
thus be expected to be driven by the Ωdp

+ and Ωdp
0 fields, giving rise to dark states and

coherent trapping of population [166] in the states |4〉 , |5〉 , |6〉 (c.f. fig. 9.1). To avoid
this, and, hence, a lower optical pumping efficiency, it is critical that a magnetic field
is applied to Zeeman shift the magnetic sub-states and, thereby, destroy the otherwise
perfect two-photon resonance between the Ωdp

+ and Ωdp
0 fields. Our simulations show

that the effect is significantly diminished at magnetic field strengths around 1 G, for
typical Rabi frequencies and detunings, and at a magnetic field of 3 G, which we
commonly use, the effect can safely be neglected.
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Figure 9.3: Population in 3D3/2, mJ = +3/2 state (Π7) after 12 µs of optical pumping (a)
as a function of Rabi frequencies for ∆sp = 2π× 28 MHz, ∆dp = 0 MHz, (b) as a function of
detunings for Ωsp = 2π×15 MHz, Ωdp = 2π×14 MHz and (c) as a function of detunings for
Ωsp = 2π × 7 MHz, Ωdp = 2π × 14 MHz. In all simulations B = 3 G and perfect coherence
is assumed between all fields.
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Finally, there is the effect of imperfect polarization of the 866 nm optical pumping
field, which may lead to a non-vanishing σ− component. This will depopulate the
3D3/2, mJ = +3/2 state (|7〉) and lower the optical pumping efficiency. Fig. 9.4
shows how the population accumulated in the 3D3/2, mJ = +3/2 state after 12 µs of

optical pumping decreases as the Rabi frequency Ωdp
− is increased. At a Rabi frequency

of Ωdp
− = 0.02Ωdp

+ , the optical pumping efficiency has dropped below 90%. This means
that to stay above 90%, the power in the different polarization components has to be
controlled to the level of 4 × 10−4. The simulations also reveal that the result of an
imperfect polarization of the optical pumping beam at 866 nm is that more population
is left in the 4S1/2 state. To some extent, the effect can therefore be compensated by
increasing the Rabi frequency Ωsp on the 4S1/2 ↔ 4P1/2 transition.

9.2 Setup

Fig. 9.5 shows a drawing of the setup used for optical pumping. The quantization
axis is defined by a magnetic field along the trap axis as described in ch. 6.5. Cooling
is done as discussed previously with the 397 nm beams counter propagating along
the trap axis with σ+/σ− polarization and the repumper along the x-axis linearly
polarized along y. In appendix E.1 we show that a single 866 nm beam at 45◦ with a
specific polarization can be used to drive the σ+ and π transitions necessary for optical
pumping. The scheme is then achieved by turning off the repumper and turning on
another 866 nm beam at 45◦ (866 OP in fig. 9.5). An alternative scheme would be
to use two independent beams, one propagating along the x-axis, polarized along z,
driving the π transitions and one propagating along the z-axis, circularly polarized,
driving the σ+ transitions. Implementing the latter beam is complicated in practice
however, as it requires the optical resonator in the trap to be resonant with this beam,
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Figure 9.4: Population in 3D3/2, mJ = +3/2 state (Π7) after 12 µs of optical pumping

as a function of Ωdp
− in units of Ωdp

+ . Perfect coherence is assumed between all fields and

the parameters used in the simulation are Ωsp = 2π × 15 MHz, Ωdp = 2π × 14 MHz,
∆sp = 2π × 28 MHz, ∆dp = 0 MHz and B = 3 G.
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Figure 9.5: Setup for optical pumping. The insert shows the cooling and the optical
pumping scheme, respectively. See text for details.

which is not possible in all experiments.
A problem with using a beam at 45◦ to the trap axis is that the transitions are

Doppler broadened due to the radial micromotion of the ions. This results in a lower
effective Rabi frequency as well as in the detuning not being well defined in neither
time nor space. However, the conclusion from our simulations on the optical pumping
efficiency is that neither the Rabi frequency nor the detuning of the 866 nm laser are
particularly critical. At least for the ions within the cavity mode volume, we do not
expect the 45◦ geometry to be a problem. The reason is that these ions exhibit the
least amount of micromotion due to their proximity to the nodal line of the rf-field,
contrary to the outer ions of the crystal.

To ensure the right polarization of the 45◦ optical pumping beam, a λ/2-plate
and a λ/4-plate are set up following a PBS. The PBS ensures near-perfect horizontal
polarization which is subsequently turned into an elliptical polarization by the λ/4-
plate, by an amount calculated in appendix E.1. The λ/2-plate is there to compensate
for imperfections in the optics and birefringence in e.g. the viewport of the vacuum
chamber. When the polarization is such that the beam only drives the σ+ and the π
transitions and the 397 nm beams are on, the ions are optically pumped into the 3D3/2,
mJ = +3/2 state. As a result they no longer scatter photons and the fluorescence
drops. This effect is seen in fig. 9.6 which shows the measured fluorescence from the
ion Coulomb crystal for various orientations of the λ/4-plate. The horizontal axis is
calibrated with respect to the optimal value such that this is at 0◦. Here the ions are
lost due to heating as a result of the low scattering rate.

9.3 Optical pumping efficiency

The measurements presented in fig. 9.6 were steady state measurements of the scat-
tering rate. This rate is proportional to the exited 4P1/2 state population and does
not provide any information about the population in the desired 3D3/2, mJ = +3/2
state or about the optical pumping time. For such measurements we make use of the
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Figure 9.6: Fluorescence vs. wave plate orientation.

PMT (see fig. 6.9) to detect the fluorescence in time and probe the 3D3/2, mJ = +3/2
state by injecting an 866 nm σ−-polarized probe into the trap cavity, resonant with
the ions. The full sequence is drawn in fig. 9.7 and, throughout the entire sequence,
the fluorescence is monitored with the PMT, which then provides time resolved data.
Also indicated is a time-delay between the end of the optical pumping and probe.
This is used in measurements of the population lifetime (see ch. 9.4) and is set to
zero, otherwise.

Fig. 9.8 shows examples of such measurements. In a) and b) the cooling lasts
for the first 5 µs, corresponding to the level around 2 counts per bin, after which the
866 nm repumper is turned off. The optical pumping beam is then on for 12 µs during
which the fluorescence level decreases as ions are pumped into the 3D3/2, mJ = +3/2
state. The optical pumping beam is then turned off along with the 397 nm beams
which causes the fluorescence to drop to zero. At time t=20 µs the probe is turned on
and pumps the ions back into the 4S1/2 state. The fluorescence at 397 nm collected
during the probing is a measure of the population in the magnetic sub-state addressed
by the probe. The inserts in the upper right corner of each graph shows which states
are probed and how the population is expected to be distributed based on the optical
pumping. The fact that the signal recorded by probing with σ−-polarized light (a)
is significantly higher than the signal for σ+ (b) indicates that the optical pumping
scheme is working well.

Fig. 9.8c) and d) are based on measurements where the optical pumping beam was
not turned on 1 and the ions are then distributed evenly among the four magnetic
sub-states due to the relative branching ratios of the decay channels between the 4P1/2

and the 3D3/2 state (c.f. appendix A). This means that both the σ− and σ+ probe

1The non-zero fluorescence count rate of about 0.25 pr. bin during this time corresponds to the
background level of the 397 nm beams, due to Rayleigh scattering in the mirror substrates.
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Figure 9.7: Experimental sequence. The delay is only used in measurements of the popu-
lation life time and is otherwise set to zero.

should produce a signal corresponding to half the ions. By comparing the height of
the signals generated by the probe in all four graphs, we can give an estimate for the
optical pumping efficiency. If we denote the height of the fluorescence signal due to
the probe by Π(i) with i = a, b, c, d corresponding to each of the four graphs, then
we can express the optical pumping efficiency as either

ηOP =
Π(a)

Π(a) + Π(b)
, or (9.5a)

=
Π(a)

Π(c) + Π(d)
. (9.5b)

Note that these expressions actually overestimates the efficiency, though, as ions in
the 3D3/2, mJ = +1/2 state also contributes to Π(a), which should ideally only have
contributions from the 3D3/2, mJ = +3/2 state. A way around this would be to
apply a strong magnetic field to split the magnetic sub-states such that they can
be resolved by the probe. However, as the width of the transition is Γ = 2π ×
22.4 MHz this would require a magnetic field stronger than what can be achieved in
the present experimental setup. Alternatively, one can probe with a π-polarized field
to measure the population in the two 3D3/2, mJ = ±1/2 states, however, since the
quantization axis coincides with the cavity axis, it requires probing with a beam that
is perpendicular to the cavity. This means that it does not probe the exact same ions
as the σ± probe, making this method non-ideal for comparison of the different probe
signals. Nevertheless, to provide an estimate, we have performed measurements with
a π-polarized field. By comparing signals obtained with and without prior optical
pumping, we find that the population in the 3D3/2, mJ = ±1/2 states is around 2%.
From this and from measurements similar to those of fig. 9.8 we typically find optical
pumping efficiencies of (97+3

−5)%. Increasing the optical pumping time beyond the
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Figure 9.8: Fluorescence measurements during optical pumping sequence based on an
average of 100 sequences. The inserts show the probing scheme in each experiment. a) and
b) are from measurement with optical pumping whereas c) and d) are based on measurements
without optical pumping. All graphs are based on an average of 100 experimental sequences.
The parameters during the experiments were, ∆sp = 2π × 28 MHz, ∆dp = 0 MHz, Ωsp =
2π × 15 MHz, Ωdp = 2π × 14 MHz and B = 3 G. The Rabi frequencies are calculated based
on the formulas in appendix E.2.

12 µs is not found to increase the efficiency further, which indicates that the system
has reached steady state and that there is some competing process depopulating the
3D3/2, mJ = 3/2 state. This could originate from imperfect polarization of the optical
pumping beam as discussed in ch. 9.1.2.

The main contribution to the uncertainty in the above measurements is the rel-
atively low signal strength. To ensure that we are probing the ions that will later
interact with the cavity field, we only probe through the cavity and for this reason
at most a few thousand ions can contribute to the signal. With the small numerical
aperture of our imaging system (see ch. 6.4) the collection efficiency is quite low and
we are detecting less than a photon on average during the PMT bin time of 0.5 µs.
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9.4 Lifetime and coherence time of the 3D3/2 states

An interesting parameter to measure is the lifetime of the population in the 3D3/2,
mJ = +3/2 state after the optical pumping has been completed. This is commonly
referred to as the T1 time and is closely related to the T2 time, which describes the
coherence time of the system, here the coherence between magnetic sub-states of the
3D3/2 state [167]. If the experiment is perfectly shielded from external perturbations,
T1 is set by the spontaneous decay rate of the state, which for the 3D3/2 state makes it
about 1 s. Likewise, if external perturbations results in only homogeneous broadening,
signified by Lorentzian lineshapes of the atomic transitions, the T2 time will be equal
to the T1 time.

In reality, effects such as stray magnetic fields and collisions may potentially limit
the life- and coherence times. These effects contribute in different ways to the time
evolution of the atomic population and we shall give an estimate of their effect and
relevance for the experiment in the following.

• Magnetic fields can give rise to oscillatory motion between the different mag-
netic sub-states due to Larmor precession induced by magnetic field components
perpendicular to the quantization axis. Furthermore, stray magnetic fields can
not be expected to be perfectly homogeneous across the ∼ 1 mm crystal and
different ions will thus have their states precess at different rates, eventually
redistributing the atomic population evenly among all four magnetic sub-states
of the 3D3/2 state. This will be observed as a decay of the 3D3/2, mJ = +3/2
state toward a steady state value of 1/4.

For the 3D3/2 state, the Larmor frequency is ∼ 1 kHz/mG, however, with a
strong magnetic field defining the quantization axis, the effect can be suppressed
further. With a bias field of ∼ 1G and stray fields of the order of ∼mG the effect
should be significantly diminished, as least to the level of the ∼ 1 Hz spontaneous
decay rate of the 3D3/2 state.

The effect of stray magnetic fields has indeed previously been estimated to a
level around or below 1 mG and with gradients below 0.1 mG/mm for this
experiment [66]. It was, however, only based on measurements of magnetic
fields and gradients arising from local magnetic sources and from fields induced
by the currents of the rf-voltage for the trap and has not yet been confirmed
by spectroscopic measurements on the trapped ions. It should the pointed out
that the effect of fluctuating magnetic fields, e.g. induced by the rf-fields of the
trap, will impose limitations on the T2 time that are not compensated by the
bias magnetic field. Basically, it gives rise to fluctuating energy levels, which
dephase the atomic dipoles, resulting in a loss of coherence. We expect this to
be the main source of decoherence in our system [55].

• Collisions may occur either between ions within the crystal or via background
gas collisions. As the ions are confined in a crystal lattice, the former type
is expected to be very low. For inelastic collisions, which will be dominant
in this case, the effect will primarily act as a dephasing of the atomic dipole,
hence lowering T2 [167]. Inelastic background collisions will depend on the
background pressure as well as on the composition of the background gas and
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have been studied extensively for the case of Ca+ ions confined in ion traps [168,
169]. These studies have focused on two types of collisions, either so-called
quenching collisions, resulting in population transfer to the 4S1/2 state, or J-
mixing collisions, transferring population to the 3D5/2 state.

In our present setup we do not have a background gas analyzer and no quan-
titative analysis of the effect of background gas collisions can thus be made.
Experiments measuring the metastable D-states’ lifetimes generally find the ef-
fect to be of the order of 10−2 − 10−4 Hz [170–172] depending on background
gas composition and pressure. Our experiments have been performed at a pres-
sure of ∼ 3 × 10−10 mbar, which is generally comparable or about an order of
magnitude larger than in those experiments. By comparison, it seems reason-
able to assume that the effect of both J-mixing and quenching collisions will be
negligible compared with the 1 Hz spontaneous decay rate, in our experiments.

Background collisions may of cause also result in mixing within the J-manifold,
transferring population between different mJ sub-states of the 3D3/2 state. As
with the quenching and J-mixing collisions, this is not expected to contribute
significantly on a ∼ s timescale. Indeed, experiments on a single 40Ca+ ion in
an ion trap at a similar background pressure as in our experiments and where
optical pumping also prepared the ion in a specific magnetic sub-state, have
found background gas collisions to have a negligible effect on the lifetime of
that state [135].

9.4.1 Lifetime of the 3D3/2,mJ = +3/2 population in the cavity

mode

To perform measurements of the lifetime of the 3D3/2, mJ = +3/2 state we employ
an experimental sequence similar to that used for the measurements of the optical
pumping efficiency (fig. 9.7) but, this time, varying the delay between the optical
pumping and the probing. Similarly, we probe with σ− and σ+ polarized light to
measure both the population in the mJ = +1/2 and mJ = +3/2 states (blue data
points in fig. 9.9) as well as the population in the mJ = −1/2 and mJ = −3/2
states (red data points in fig. 9.9). Both sets of data have been normalized to a total
population, which we define to be the average value of the data where no optical
pumping was done (smaller, green and brown data points). As only one measurement
can be taken in each experimental run, the signals are not correlated and will not
necessarily add up of 1 due to fluctuations as a result of low count rates.

The data taken by probing without prior optical pumping (green and brown data),
shows that the total population in the 3D3/2 state remains constant on the timescale of
the 5 ms of the graph and shows no indication of a decay on a ∼ 10 ms timescale. This
confirms our assumption that neither quenching nor J-mixing collisions are relevant
on this time scale.

Since the population in the 3D3/2 state is conserved, any decay of the population in
the mJ = +1/2 and mJ = +3/2 states, measured by the σ− probe (blue points), must
be accompanied by an increase in the population in the mJ = −1/2 and mJ = −3/2
states, measured by the σ+ probe (red points). Although the data is quite noisy, this
is in fact observed and from exponential fits we deduce a rate of 12 ± 8 ms for the
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Figure 9.9: Population versus time after optical pumping was completed. Blue data are
for a σ− probe and red data are for a σ+ probe, both after optical pumping. Exponential
fits to both the data sets gives T1 = (13 ± 3) ms. Green data are for a σ− probe and brown
data are for a σ+ probe, both measured without prior optical pumping. These are used to
normalize the data.

decay of the blue data and 13± 3 ms for the growth of the red data, which combined
gives an overall rate of 13 ± 3 ms.

Based on the analysis, given in the introduction of ch. 9.4 of possible limitations
in the system, it is surprising to observe a decay on this short a time scale. One
effect that could potentially be a problem (and the reason for only taking data up to
5 ms) is the fact that as the delay was increased the ions would begin to heat up.
The reason for this is that once a relatively large part of the experimental sequence
consists of a delay, the average cooling power applied over the sequence becomes too
small to compensate the heating rates within the system and typically we begin to
loose the ions after approximately 5 ms. Although this heating might give rise to an
increase in the elastic collision rate within the crystal, hence lowering T2, the inelastic
collision rate should still be very low and there is no reason to expect that this should
effect the T1 time.

On possible explanation could be that what we are observing is in fact radial
diffusion within the ion Coulomb crystal. If we assume that optical pumping is less
efficient further away from the trap center, which could be due to the radial micro-
motion of the ions, then as the delay is increased we will be probing a larger fraction
of these less efficiently pumped ions, as they diffuse into the cavity mode. In this case
the notion of a T1 time is a bit misleading and diffusion time is then the correct term.
This remains to be confirmed, however, given the expected influence of other possible
limiting effects, as we have discussed above, it seems highly probable that the decay
we have measured is in fact due to diffusion of the ions in the crystal.
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9.4.2 Coherence time

At the time of writing no measurements on the coherence time T2 has been performed.
For all coherent processes and e.g. for the purpose of using the ensemble as a quantum
memory [48,49,173] T2 is the parameter of interest. The coherence properties of single
40Ca+ ions have been studied by the Innsbruck group, where the coherence time of
a qubit based on the 4S1/2 ↔ 3D3/2 transition has been measured [55]. Coherence
times of ' 1 ms were found and magnetic field- and laser frequency fluctuations were
identified as principal limitations. Indeed, experiments on Bell states of two 40Ca+

ions that are insensitive to magnetic field fluctuations have reported coherence times
that were essentially limited by the ' 1 s lifetime of the 3D5/2 state [56]. Furthermore,
the (first order) magnetic field insensitive systems, such as the hyperfine clock states
of 43Ca+ [174, 175] and 9Be+ [30], have demonstrated coherence times of 1 − 10 s.

As described in ch. 6.5 the earth’s magnetic field is compensated via external field
coils, but no passive shielding, e.g. by µ-metal, or active stabilization, by e.g. a Hall
probe and feedback setup, is installed at present (see e.g. [55, 176]). We may thus
expect fluctuating magnetic fields to impose limitations on the coherence times as
found in [55], although this remains to be investigated.

The issue of heating found for our lifetime measurements described above could
potentially impose limitations to coherence time measurements. For instance, mea-
surement schemes relying on longer time sequences, such as decay of either Rabi
oscillations or contrast of Ramsey fringes as done in e.g. Ref. [55], will also be sub-
ject to heating effects during the measurements. An electromagnetically induced
transparency (EIT)-type experiment [177], on the other hand, may be able to provide
direct information about the decoherence rate between two magnetic sub-states of the
3D3/2 state since the absorption at two-photon resonance depends on this quantity.

9.5 Conclusion

In this chapter we have presented the scheme used for the state preparation of the
ensemble of ions. The scheme was first analyzed through numerical simulations and
then tested to find that about 97% of the ions can be optically pumped into the
3D3/2, mJ = +3/2 state within 12 µs. This will serve as the starting point for
the experiments to follow where we will study the interaction of such an ensemble
of optically pumped ions with the field of an optical resonator in the framework of
cavity QED.

We have also presented measurements of the lifetime of the population in the
3D3/2, mJ = +3/2 state. We stress that the obtained data is quite preliminary and
further investigations should be conducted to clarify if the observations stem from
diffusion within the crystal. For this reason, the value of 13 ± 3 ms can only be
interpreted as the lifetime of 3D3/2, mJ = +3/2 population within the cavity mode.
The actual T1 time is expected to be much higher and, in the ideal case, given by
the 1 Hz spontaneous decay rate of the D3/2 state. Further studies, e.g. using a two-
component crystal that would allow for continuous cooling during the experiments,
as described in ch. 4.3, would be advantageous in this respect. This would enable
measurements with considerably longer delay times and ensure a constant diffusion
rate by having the cooling independent of the delay time.



Chapter 10

Cavity QED with calcium ion

Coulomb crystals

In this chapter we will study our system of ion Coulomb crystals in the context of
cavity QED. We begin in ch. 10.1 by a theoretical analysis to justify the treatment
of our multi-level 40Ca+ ions as simple two-level systems. Following this, we briefly
sketch the experimental setup in ch. 10.2 after which, in ch. 10.3, we present results on
the observation of collective strong coupling of ion Coulomb crystals in the context of
cavity QED. Here we evaluate the system and measure parameters such as the single
ion coupling strength and the cooperativity parameter. In ch. 10.4 we measure the
optical pumping efficiency - this time through the collective interaction between the
ions and the cavity field. Finally, in ch. 10.5 we conclude.

10.1 Reduction to a quasi- two-level system

In ch. 2.3 we established the theoretical framework for a collection of two-level atoms
interacting with a cavity field. However, 40Ca+ ions are not ideal two-level systems
but contain a much richer level structure, as can be seen, e.g., in fig. 9.1. To mimic
the two-level scenario, we prepare our ensemble of ions in the 3D3/2, mJ = +3/2
state as described in ch. 9 and probe on the 3D3/2, mJ = +3/2 ↔ 4P1/2, mJ = +1/2
transition with the cavity field. The level scheme applicable to this scenario is shown
in fig. 10.1. We shall consider the 3D3/2, mJ = +3/2 state, denoted by |g〉, as the
ground state, which is a meaningful designation as the ∼ 10 ms decay time measured
in the previous chapter is still orders of magnitudes longer than all other time scales in
the system. The excited 4P1/2, mJ = +1/2 state, denoted |e〉, can decay back to the
ground state at a rate Γ′ or to any of the other states in 40Ca+, such as the remaining
magnetic sub-states of the 3D3/2 state or the 4S1/2 state (see e.g. fig. 9.1 of the
previous chapter). This occurs at a rate Γother. With a single photon in the cavity,
the Rabi frequency on the 3D3/2, mJ = +3/2 ↔ 4P1/2, mJ = +1/2 transition is given
by g for each ion1. In the theoretical framework for the cavity QED interaction that
we established in ch. 2.3, we assumed a steady state situation in which N ions were in

1In reality the ions are coupled with different strengths to the field depending on their location
in the standing wave TEM00 mode of the cavity. We account for this by weighting the number of
ions N by the cavity mode function. See appendix C for details.
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3D3/2, mJ = + 3
2

4P1/2, mJ = + 1
2

|g〉

|e〉

g
Γother Γ′

∆

Figure 10.1: Quasi two-level scheme of 40Ca+ prepared by optical pumping to the
3D3/2, mJ = + 3

2
state. Γ′ is the spontaneous decay rate on the 3D3/2, mJ = +3/2 ↔

4P1/2, mJ = +1/2 transition, wheras Γother represent the decay to all other levels.

the ground state and could thus derive measurable parameters such as a transmission
or a reflection coefficient. However, due to the irreversible coupling to states outside
the two-level system, the long-term steady state solution will be one in which no ions
are in the 3D3/2, mJ = +3/2 state and the coupling to the cavity field will thus vanish
on longer time scales. This prompts a study of the different time scales in the system
to examine if one may identify a time domain in which a form a quasi-steady state
exists that allows the use of the two-level steady state formalism of ch. 2.3.

10.1.1 Quasi-steady state probing scheme

We begin by recalling the equations for the atomic population and coherence (eq. 2.12)
and the cavity field (eq. 2.30), which now read (neglecting the effect of the magnetic
field):

Π̇g = Γ′Πe + i (gA∗P − gAP ∗)

Π̇e = −ΓΠe − i (gA∗P − gAP ∗)

Ṗ = − (Γ/2 + i∆)P − igA (Πe − Πg)

Ȧ = − (κ + i∆c)A + igP +
√

2κ1A
in,

where Γ = Γ′ + Γother. As for the ideal closed two-level system, for a weak probe,
almost all the population will be in the ground state. In this low saturation regime
the populations evolve slowly and the atomic coherences follow these adiabatically.
The condition for this to be valid is that Γ � Rd, where Rd is the depopulation rate
of the ground state due to the probe. By inserting the steady state solution for the
atomic coherence into the equation of motion for the ground state population and
assuming that the excited state population can be neglected, we find a rate equation
for Πg:

Π̇g(t) = −Rd(t)Πg(t), with Rd(t) =
Γ |gA(t)|2

(Γ/2)2 + ∆2
, (10.1)

where we have included the time dependence implicitly to remind ourselves that the
cavity field and, hence, the Rabi frequency gA(t) are not constant. However, as for
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the atomic coherences, in the low saturation regime, A evolves much faster than the
atomic populations if κ � Rd, and will therefore also follow these adiabatically. To
justify our assumption that the depopulation rate Rd is low compared to all other
rates, we consider the case where it attains its highest value, namely for ∆ = 0.
Typically, we will probe the cavity with a field of about one photon, i.e. |A|2 = 1,
and with a coupling strength of g = 2π × 0.53 MHz we find Rd = 2π × 0.05 MHz,
which is well below both κ = 2π × 2.1 MHz and Γ = 2π × 22.4 MHz for our system.

Fig. 10.2 shows the result of a numerical simulation, which models exactly the
above scenario of a single ion resonantly coupled to a cavity field (∆ = ∆c = 0),
where the input field has been adjusted such that it corresponds to a single photon on
average in an empty resonant cavity. It clearly shows the relative time scales for the
different processes. The population (dashed blue line) decays as expected on a time
scale of 1/Rd ' 3 µs and the cavity field (red solid line) builds up on a time scale
of 1/κ ' 0.1 µs. Since Γ � κ, the atomic coherence (blue solid line) initially follows
adiabatically the cavity field, while the ground state population is constant. Then,
as the cavity field reaches the 1 photon level and the population begins to decay, the
atomic coherence follows the atomic population, as expected. Note that we have only
plotted the imaginary part of the atomic coherence, since the real part is zero on
atomic resonance.

The results of fig. 10.2 shows that it is difficult to define a quasi-steady state
regime on a µs time scale. However, the simulation was performed for a single ion for
which a single photon field induces a significant depopulation on this time scale. If
more ions are interacting with the cavity field, the effect is reduced as a single photon
can only remove one ion at the time and so, for the collective regime that we wish to
study, one can expect the population to remain at the initial value for long enough
time to probe the interaction.
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Figure 10.2: Time evolution of the ground state population Πg, the imaginary part of
the atomic coherence P and the cavity photon number |A|2. All parameters have been
normalized to their maximal values. Parameters used in the simulation are: N = 1, ∆ =
∆c = 0, g = 2π × 0.53 MHz, Γother = 2π × (20.7 + 1.7/2) MHz, Γ′ = 2π × (1.7/2) MHz and
κ = 2π × 2.1 MHz.
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Fig. 10.3 shows a similar simulation to that of fig. 10.2 but, this time, for an
ensemble of N = 100 ions. Three time domains can be identified: As in the above,
at short times (< 0.1 µs) the cavity field builds up (first frame of fig. 10.3), however,
the interaction with the ions now damps the field. The atomic coherence follows the
cavity field as before, and both reach a form of steady state after this initial build-up.
P and Πg remain close to constant during the second time domain (second frame of
fig. 10.3), which lasts until around 2 µs after the sequence started. It is this second
time domain that we identify as the quasi-steady state. Due to the lower cavity field,
the atomic population decreases slowly with respect to the 1 ion simulation. However,
it still decays over longer time scales allowing the field to build up, hence causing a
more rapid decay (c.f. eq. 10.1). This self-reinforcing process eventually leads to a
complete depletion of the population, at which point the cavity field reaches a value
corresponding to a single photon (third frame of fig. 10.3).

The conclusion from the simulations is that in order to probe the quasi-steady
state regime, the measurement should be taken with a short (∼ 0.1 µs) delay following
the probe and last for at most 2 µs. This will give the field the necessary time to
reach quasi-steady state, while at the same time, the probe is short enough, not to
cause significant depopulation of the state prepared by the optical pumping. In the
experiments to follow, we will use a delay of 0.1 µs and a probe time of 1.4 µs. The
average population in the ground state during this time is plotted in fig. 10.4 as a
function of the number of ions initially in |g〉 and confirms that for ensembles of a
few hundred ions, the effect of a 1 photon probe field on the population is negligible.
Since this analysis has been carried out for the resonant case, the conclusion will be
valid when probing in the dispersive regime as well, and we will use this probe time
in our sequence for all of the measurements to follow.

10.2 Experimental setup and sequence

The setup for probing and detection as well as the experimental sequence has already
been described in ch. 6.6.2, 6.6.3 and 6.7. A drawing of the setup with the optical
beams can be found in fig. 9.5 and the experimental sequence is shown in fig. 10.5.
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Figure 10.3: Time evolution of the ground state population Πg, the imaginary part of
the atomic coherence P and the cavity photon number |A|2. All parameters have been
normalized to their maximal values. Parameters used in the simulation are: N = 100,
∆ = ∆c = 0, g = 2π × 0.53 MHz, Γother = 2π × (20.7 + 1.7/2) MHz, Γ′ = 2π × (1.7/2) MHz
and κ = 2π × 2.1 MHz.
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Figure 10.4: Average population Πg during the probe time [0.1; 1.4] µs versus number of
ions initially in |g〉 for a cavity field at the “single photon” level.

The cooling here lasts for 5 µs, followed by 12 µs of optical pumping. As described
in ch. 9 this prepares the ensemble of ions in the 3D3/2, mJ = +3/2, typically with
97% efficiency. The probe is then turned on and after a delay of 0.1 µs the APD
is turned on for 1.4 µs. The sequence is repeated continuously every 20 µs. In all
experiments presented in the following, the 866 nm probe was measured in reflection
and the 894 nm laser was used as a reference to process the data and filter out effects
of acoustic noise as described in ch. 6.6.3.
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Figure 10.5: Schematic of the experimental sequence. opt.pump abbreviates optical pump-
ing. See text for details.
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10.3 Collective strong coupling with an ion Coulomb crystal

10.3.1 Absorption and phase shift

Having identified a quasi-steady state regime in the above, we can make use of the
theory of ch. 2.3 for the steady state interaction between an ensemble of two-level ions
and a cavity field. When the cavity is scanned across resonance (varying ∆c) in the
presence of the ions we found that the interaction retains the Lorentzian lineshape
of the empty cavity but with a half width at half the maximum (HWHM) κ′ and a
detuning parameter ∆′

c dressed by the ions. Specifically, we found

κ′ = κ + g2N
γ

γ2 + ∆2
(2.32)

and

∆′
c = ∆c − g2N

∆

γ2 + ∆2
, (2.33)

where γ = Γ/2 is the decay rate of the atomic coherence. The modifications of κ′

and ∆′
c with respect to their unprimed values correspond physically to the absorption

and phase shift of the intra-cavity field, respectively. Fig. 10.6 shows the result of a
numerical calculation comparing an empty cavity reflection spectrum with one that
has 500 ions interacting with the cavity field at an atomic detuning of the probe of
∆ = γ. Both the effects of absorption and phase shift are clearly seen. In this section
we will present results on measurements of both these parameters.

Fig. 10.7 shows images of a typical crystal used in these measurements. In
fig. 10.7a) cooling is performed with the 866 nm repumper perpendicular to the cavity
axis, illuminating the whole crystal, whereas, in fig. 10.7b) repumping is performed
via the cavity field. The images show that the crystal is located at the center of the
cavity mode, and that the ions within the crystal exhibit a high degree of localization.
The observed shell-structure with emerging long range order effects is an indication
that the Doppler cooling is working well. The number of ions in the crystal used
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Figure 10.6: Cavity reflection signal for an empty cavity (dashed line) and for 500 ions at
∆ = γ (solid line).
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in the experiment is evaluated as described in appendix B to about 6400 and the
number of ions within the cavity mode is evaluated as described in appendix C to be
N = 536 ± 18 and should thus be sufficient to reach the regime of collective strong
coupling as described in previous chapters.

Absorption

We will first measure the effect of absorption. For this, we probe in reflection by scan-
ning the cavity (varying ∆c) and recording the cavity spectrum for different atomic
detunings ∆. When varying the probe laser detuning ∆, the frequency of the 894 nm
laser is varied accordingly to ensure that they are both resonant with the cavity at
the same time. If this is not the case the referenced averaging method described in
ch. 6.6.3 is less efficient as the two signals (886 nm and 894 nm) are not perfectly
correlated in time and acoustic noise is not filtered out properly.

Fig. 10.8 shows examples of the spectra obtained by this method. The reflection
level when the cavity is off-resonant is about 2 counts per bin, with a bin-time is 1.4 µs.
The detection efficiency for the photons reflected off the cavity is 16% (see table 6.2),
which means that this count rate corresponds to about 8.9 photons/µs. Based on
our previous calculation in eq. 6.2 this means that the average photon number in
the cavity on resonance is just below 1. Each point in the spectra corresponds to an
experimental sequence (fig.10.5) and the entire spectrum is the result of an average
of 100 cavity scans. For each scan, a Lorentzian lineshape is obtained and the effect
of absorption is clearly observed in the broadening of the lineshape as the atomic
resonance is approached.2

For every value of ∆ we perform a Lorentzian fit to extract the HWHM of the
cavity resonance κ′. Fig. 10.9 shows a plot of κ′ versus ∆ where each point is based
on an average of the widths of 5 spectra such as those of fig. 10.8 for a total of 500

2The induced absorption can also be extracted from this data by evaluating the increased intra-
cavity losses via eq. 2.29.

(a)

(b)

Figure 10.7: Images of crystal similar to that used in the experiments described in ch. 10.3.1
and 10.3.2. In (a) cooling is performed with the 866 nm repumper perpendicular to the cavity
axis, illuminating the whole crystal. In (b) repumping is performed via the cavity field, hence,
showing the overlap with the cavity mode.
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Figure 10.8: Cavity scans of the reflection signal for various values of the atomic detuning
∆, with the detuning approaching atomic resonance from a)-d). The red lines are Lorentzian
fits to the data from which the width 2κ′ is extracted. The time axis is calibrated by
a measurement without ions by changing the probe frequency with an AOM. This gave
39.7 ± 0.3 MHz/ms. Based on this calibration the widths can be converted to a frequency.

cavity scans. As expected from eq. 2.32 we find a Lorentzian lineshape. The red line
is a fit to the data based on this equation, which gives g

√
N = 2π× (12.2±0.2) MHz,

γ = 2π × (11.9 ± 0.4) MHz and κ = 2π × (2.2 ± 0.1) MHz. With N = 536 ± 18 and
correcting for an optical pumping efficiency of 97+3

−5 % this corresponds to a value for
the single ion coupling strength of g = 2π× (0.530±0.018) MHz in perfect agreement
with the expected value of g = 2π × (0.532± 0.007) MHz (see appendix C, eq. C.12).

The system thus satisfies the requirement for collective strong coupling, namely
g
√

N > γ, κ, as expected for a crystal of about 500 ions. In terms of cooperativity
this corresponds to a value of C ' 2.8.

The slightly higher value of γ compared with the expected value of γ = 2π ×
(11.2 ± 0.3) MHz based on Ref. [178] could be due to the finite temperature of the
ions giving rise to a non-negligible Doppler broadening. Based on the treatment of
this given in appendix D (specifically by comparison with fig. D.3) this would trans-
late into a temperature of T = 24+20

−14 mK assuming γ = 2π × 11.2 MHz, exactly.
From our discussion on temperature in ch. 3.2.3 and from previously reported mea-
surements of a few tens of mK [99] it is not surprising if the final temperature of
the three-dimensional ion Coulomb crystal is above the Doppler cooling limit for a
single ion of 0.5 mK. Furthermore, as discussed in ch. 3.2.2, micromotion may also
contribute to the additional broadening that we observe.
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Figure 10.9: Measured cavity HWHM κ′ versus atomic detuning ∆ for a crystal with
N = 536 ± 18 ions interacting with the cavity field. The red line is a fit to the data
based on eq. 2.32. The values derived from the fit are: g
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γ = 2π × (11.9 ± 0.4) MHz and κ = 2π × (2.2 ± 0.1) MHz.
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Figure 10.10: Measured phase shift ∆′
c−∆c versus atomic detuning ∆ for the same crystal

as in fig. 10.9. The red line is a fit to the data based on eq. 2.33. The values derived from
the fit are: g

√
N = 2π × (12.0 ± 0.3) MHz and γ = 2π × (12.7 ± 0.8) MHz.
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Phase shift

The phase shift induced by the crystal is evaluated by an experiment conducted in the
same way as for the absorption except that we maintain the detuning of the 894 nm
reference laser constant with respect to the cavity resonance. This allows us to mea-
sure the phase shift induced by the interaction with the ions, as predicted by eq. 2.33,
by comparing the location of the 866 nm probe resonance with the location of the
resonance of the 894 nm reference. This method makes our measurements insensitive
to drifts of the cavity during the time it takes to perform the measurement series.

Fig. 10.10 shows the results. As for the absorption, each point is the result of
an average of 5 cavity spectra. For every 100 averages a Lorentzian fit was done to
find the location of the probe resonance with respect to the reference, which would
correspond to the empty cavity resonance. The values from the five Lorentzian fits
were then averaged to give the final value plotted in the graph as a single point. The
red line is a fit to the data based on eq. 2.33, which gives g

√
N = 2π×(12.0±0.3) MHz

and γ = 2π × (12.7 ± 0.8) MHz, consistent with the previous measurements. We
generally observe slightly higher values for γ and slightly lower values for g

√
N when

measuring the phase shift and the data is also more noisy. We ascribe this to the fact
that when the probe and the reference laser are not resonant at the same in the scan,
the time correlation between the acoustic noise in the two signals becomes imperfect,
thus lowering the accuracy of our referenced averaging method (c.f. ch. 6.6.3). This is
also seen in the raw data (not shown here) by the occurrence of additional broadening
of the probe resonance at large phase shifts, where the time separation between the
resonances of the probe and the reference are the largest.3

10.3.2 Vacuum Rabi splitting

Finally, we have studied the interaction between the crystal of fig. 10.7 and the cavity
field in the regime where the two are resonantly coupled, such that ∆ = ∆c. In the
low-saturation regime, the system is then described by

Ṗ = − (γ + iΘ)P + igNA (10.2)

Ȧ = − (κ + iΘ)A + igP +
√

2κ1A
in, (10.3)

where Θ = ∆ = ∆c. We have already treated the resonant case of Θ = 0 in ch. 2.3
where we found the eigenvalues for the combined ion-cavity system (eq. 2.37). The
system can be viewed as two coupled harmonic oscillators, one being the atomic dipole
P , the other being the cavity field A. In the low-saturation regime where the cavity
field and the atoms exchange at most one quanta of excitation, the basis states are
made up of only three possible states: |g, 0〉, |g, 1〉 and |e, 0〉, where |g〉 and |e〉 are the
Dicke states defined in eq. 2.39 and |0〉 and |1〉 corresponds to the cavity field state of
zero and one photon, respectively. In the absence of any coupling between P and A
(g
√

N = 0) the states |g, 1〉 and |e, 0〉 will, in the resonant case ∆ = ∆c, be degenerate
and only a single resonance line is observed when the two oscillators are probed. If,
however, the two are coupled as in eq. 10.3, the coupling will give rise to a splitting of

3This could be remedied, e.g., by modulating the reference beam with an EOM to create side-
bands. The carrier can then be used as the constant reference, while one of the sidebands can be
used for the referenced averaging. Alternatively, an AOM can be used as well.
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Figure 10.11: Level diagram explaining the effect of the coupling in a “dressed” state
picture.

the degeneracy and a double resonance can be observed, depending on the strength of
the coupling relative to the unperturbed linewidths γ, κ. This is shown schematically
in fig. 10.11 and can be interpreted as the ions being “dressed” by the cavity field or
vice versa. In this sense it is analogous to a light shift induced by a strong light field
on an atomic transition [64]. However, in cavity QED, the effect arises already at
the level of a single photon. For this reason the splitting is often referred to as the
vacuum Rabi splitting.

Solving eq. 10.3 in steady state, the expression for the cavity field reads:

A =

√
2κ1

κ′′ + iΘ′′A
in, (10.4)

with
κ′′ = κ + g2N

γ

γ2 + Θ2
(10.5)

and

Θ′′ = Θ − g2N
Θ

γ2 + Θ2
. (10.6)

This is analogous to the expressions for the absorption and phase shift (eq. 2.32 and
2.33), however, here the phase shift (10.6) gives rise to a splitting of the resonance
line rather than a shift of the resonance as measured above.

An expression for the reflectivity of the cavity versus the detuning Θ can be derived
from the above equations (eq. 10.4, 10.5 and 10.6) as was done for the empty cavity
in ch. 2.2. This gives:

refl(Θ) =

∣
∣
∣
∣

2κ1 − κ′′ − iΘ′′

κ′′ + iΘ′′

∣
∣
∣
∣

2

=

[
(κ1 − κL)

(
γ2 + Θ2

)
− g2Nγ

]2
+
[
Θ
(
γ2 + Θ2

)
− g2NΘ

]2

[(κ1 + κL) (γ2 + Θ2) + g2Nγ]
2

+ [Θ (γ2 + Θ2) + g2NΘ]
2 .(10.7)

Fig. 10.12 shows the cavity reflection, comparing the spectra for no ions and for 500
ions. The splitting of the resonance line into two is clearly seen and increases with
the coupling strength g

√
N .
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Figure 10.12: Cavity reflection signal for an empty cavity (dashed line) and for 500 ions
for Θ = ∆ = ∆c (solid line). The graph is produced based on the expression given in eq. 10.7
for γ = 2π × 11.2 MHz, κ = 2π × 2.1 MHz and g = 2π × 0.53 MHz.

To perform the measurement, the cavity is locked on atomic resonance and the
reflection is recorded for different values of the detuning of the probe laser. Each
point in the resulting spectrum is based on 20.000 experimental sequences (each of
20 µs length) and the data is subsequently processed to filter out acoustic noise as
described in ch. 6.6.3.

The resulting spectrum is shown in fig. 10.13. As expected it is split into two
peaks. The red line is a fit to the data based on eq. 10.7. To make the fit converge,
we had to keep the decay rates of the atomic coherence γ and the cavity field κ fixed
to the values derived from the absorption curve shown in fig. 10.9 above. This gives a
value for the collective coupling strength of g

√
N = 2π×(12.1±0.2) MHz in agreement

with the previous measurements. As mentioned above, a spectrum such as that of
fig. 10.13 is commonly referred to as the vacuum Rabi splitting in the literature and
is often considered as the hallmark strong coupling in cavity QED.

10.3.3 Scaling with number of ions

We have also examined the variation of the collective coupling strength with the num-
ber of ions in the cavity modevolume. The number of ions in the cavity modevolume
can be varied by adjusting the trapping parameters, specifically, the end-voltage Uend

and the rf-voltage Urf as we did for the trap characterization in ch. 8.3. Alternatively,
the number of ions can be gradually increased by loading more into the trap.

In one type of measurements we have studied the effect of absorption on resonance,
where from eq. 2.32 the cavity HWHM is related to the cooperativity parameter via

κ′ = κ(1 + 2C) (10.8)

with

C =
g2N

2γκ
. (2.35)
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Figure 10.13: Measured cavity spectrum for Θ = ∆ = ∆c for the same crystal as in
fig. 10.9. The red line is a fit to the data based on eq. 10.7 with γ and κ fixed to the values
found from fig. 10.9. The fit result gives g

√
N = 2π × (12.1 ± 0.2) MHz.

Fig. 10.14 shows the result of the measurements where the cooperativity parameter
C has been plotted versus the number of ions in the cavity modevolume N . Each
point is the result of a measurement of the cavity HWHM κ on atomic resonance, as
in the measurements of ch. 10.3.1. The atomic resonance was determined with high
accuracy prior to these measurements from absorption and phase shift measurements.

The data confirms the expected linear scaling. The red line is a linear fit to the
data and has a slope of C/N = (5.05± 0.05)× 10−3. The highest measured value for
the cooperativity was found for a crystal of about 1570 ions where a value of C = 8.1
was found.

Based on previous measurements of g = 2π×0.53 MHz and κ = 2π×2.1 MHz and
with γ = 2π×11.2 MHz, the expected slope would be about 6×10−3 (dashed line) with
perfect optical pumping. Taking the 97% optical pumping efficiency into account we
would deduce a value for γ of γ = 2π× (12.7±0.2) MHz from this measurement. The
higher value for γ could be due to less efficient cooling on the day of the measurement,
giving rise to a larger temperature and, hence, Doppler broadening as described in
appendix C.

A complementary measurement can be performed by measuring the Rabi split-
ting, as was done in the previous section, for different number of ions in the cavity
modevolume. Fig. 10.15 shows examples of spectra obtained in this way. One clearly
observes the splitting of the resonance for larger number of ions.

Fig. 10.16 summarizes these measurements, by showing the collective coupling
strength versus the number of ions. Each point is the result of a fit based on eq. 10.7 to
a spectrum such as those of fig. 10.15. As in the previous section, we fix the parameters
for the cavity decay rate and the atomic decoherence rate to γ = 2π × 11.9 MHz and
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Figure 10.14: Measured cooperativity parameter versus number of ions in the cavity mod-
evolume. The red line is a linear fit to the data and gives C = (5.05± 0.05)× 10−3 ×N (not
corrected for imperfect optical pumping).

κ = 2π × 2.2 MHz, derived from the absorption spectrum (fig. 10.9), in order to have
the fit converge. The plot shows the expected g

√
N scaling and from a fit to this model

(red line) we deduce a single ion coupling strength of g = 2π × (0.525 ± 0.002) MHz
after correcting for a optical pumping efficiency of 97%. Again, in agreement with
the predicted value of g = 2π × (0.532 ± 0.007) MHz (see appendix C, eq. C.12).

10.4 Optical pumping revisited

In ch. 9.3 we measured the optical pumping efficiency to find that about 97% of the
ions were optically pumped into the 3D3/2, mJ = +3/2 state. This can also be tested
by similar series of experiments as was done in ch. 9.3 but this time exploding the
cavity QED interaction rather than the fluorescence as in the measurements of ch. 9.3.
Specifically, we have performed measurements of the cooperativity C versus N in four
different configurations by probing with both σ−- and σ+-polarized light, with and
without prior optical pumping. The results are presented in fig. 10.14.

The experimental sequence in the experiments without optical pumping is un-
changed except that the 866 nm optical pumping beam is not turned on during this
part of the sequence. As discussed in ch. 9, the result is that the 4S1/2, mJ = ±1/2
states are depopulated by the 397 nm fields and due to the relative Clebsch-Gordan
coefficients on the 3D3/2 ↔ 4P1/2 transition, the four magnetic sub-states of the 3D3/2

state are populated equally. In this case, the interaction is independent on the polar-
ization being σ− or σ+ (if they are both on resonance), as both will probe half the ions
of the 3D3/2 state. If optical pumping to prepare the ions in the 3D3/2, mJ = +3/2
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Figure 10.15: Measured cavity spectra for ∆ = ∆c for crystals of different number of ions
(see insert).

state is included in the sequence, then we will expect the cooperativity to be differ-
ent for the two polarizations and the ratio to scale according to the optical pumping
efficiency. This measurement scheme thus relies on comparing the scaling of the co-
operativity parameter for measurements with and without prior optical pumping.

Fig. 10.17 shows plots of the measured cooperativity versus the number of ions
in the cavity modevolume for σ+- and for σ−-polarized probe, with and without
prior optical pumping to the 3D3/2, mJ = +3/2 state. The level diagrams on the
right indicates the probing scheme and the state preparation with the frame color
corresponding to the respective data. The lines are linear fit to the data, fixed through
zero, and the slopes C/N derived from the fits are listed in table 10.1. The results of
probing with a σ−-polarized probe with prior optical pumping is shown by the red data
and the value of C/N deduced from the fit is consistent with the measurements of the
previous section. When probing the ions after optical pumping with a σ+-polarized
probe (purple data) we observe almost negligible coupling. Both these observations
show that the optical pumping efficiency is indeed close to 100%.

As in the previous measurements, we find a slightly lower value for C/N than the

color in fig. 10.17 OP pol C/N [10−3]
red yes σ− 4.93 ± 0.07

green yes σ+ 0.08 ± 0.01
blue no σ− 1.64 ± 0.03

purple no σ+ 1.44 ± 0.03

Table 10.1: Measured cooperativity slopes C/N from linear fits to the data of fig. 10.17.
OP: optical pumping, pol: probe polarization.
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Figure 10.16: Collective coupling strength g
√

N versus number of ions in the cavity mode.
The red line is a fit to the data and gives g = 2π × (0.525 ± 0.002) MHz when corrected for
the optical pumping efficiency.

optimal. With g = 2π×0.53 MHz and κ = 2π×2.1 MHz this measurement corresponds
to an effective atomic width of γ = 2π × 13.6 MHz. As before we subscribe this to
a higher temperature of the ions, caused by less efficient cooling. Note that the data
has not been corrected for imperfect optical pumping as the objective of this section
is to deduce this number from the data.

Due to the magnetic field necessary in our experiments there is a contribution from
the Zeeman shift that needs to be taken into account when comparing signals based
on different transitions. As we have adjusted the frequency of the 866 nm probe to
be perfectly resonant with the 3D3/2, mJ = +3/2 ↔ 4P1/2, mJ = +1/2 transition it
will not be so, for the other transitions. This explains why the values deduced for the
scaling of the cooperativity parameter are not identical for the two different probes
in the case of no optical pumping.

Before proceeding we will analyze the effect of the magnetic field in the case of
no optical pumping (green and blue data) in which case the probe, regardless of
its polarization, will probe 1

4 of the total 3D3/2 state population on either of the
two transitions. We begin by recalling that the Clebsch-Gordon coefficients on the
3D3/2, mJ = ±3/2 ↔ 4P1/2, mJ = ±1/2 and the 3D3/2, mJ = ±1/2 ↔ 4P1/2, mJ =

∓1/2 transitions are 1√
2

and 1√
6
, respectively (see appendix A). Combined with the

state-dependent detuning due to the magnetic field and assuming the probe laser is
tuned to resonance with the 3D3/2, mJ = +3/2 ↔ 4P1/2, mJ = +1/2 transition, we
can calculate the scaling of the cooperativity parameter C/N as

(
C

N

)

noOP,σ−

∝ 1

4
× 1

2
+

1

4
× 1

6
× γ2

γ2 + ∆2
, (10.9)
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Figure 10.17: Measured cooperativity parameter versus number of ions in the cavity mod-
evolume for σ+- and for σ−-polarized probe, with and without prior optical pumping (OP)
to the mJ = +3/2 state. Red data: σ− probe with OP. Green data: σ− probe without OP.
Blue data: σ+ probe without OP. Purple data: σ+ probe with OP. The lines are linear fit
to the data. The level schemes on the right indicate the state preparation by OP and the
probe polarization with the frame color corresponding to the respective data.

for the σ−-polarized probe and
(

C

N

)

noOP,σ+

∝ 1

4
× 1

2
× γ2

γ2 + (3∆)2
+

1

4
× 1

6
× γ2

γ2 + (2∆)2
, (10.10)

for the σ+-polarized probe, where ∆ = gJµBB/~ is the detuning induced by the
Zeeman shift for a given magnetic sub-state (c.f. appendix A). Taking the ratio of
the two, here denoted WnoOP, one finds after some algebra

WnoOP =

(
C
N

)

noOP,σ+
(

C
N

)

noOP,σ−

=

3
1+(3β)2 + 1

1+(2β)2

3 + 1
1+β2

, (10.11)

where we have defined β = ∆/γ. Inserting the ratio WnoOP found from table 10.1
and solving for B one finds B = 1.6±0.3 G using γ = 2π×13.6 MHz. This is slightly
below the value of 2 − 2.5 G, that we infer from the dimensions of the magnetic field
coils, the distance between the coils and the trap and the current in the coils for that
experiment. The reason for this discrepancy is at present not known, however, more
careful measurements and measurements taken at different magnetic field strengths
might illuminate the issue. For now we merely wish to point to the fact that the
magnetic field can in principle be determined from these measurements.

In the case where optical pumping prepares the ions in the 3D3/2, mJ = +3/2
state such that ηOPN are in this state and (1 − ηOP)N are in the other magnetic
sub-states of the 3D3/2 state, one finds

(
C

N

)

OP,σ−

∝ ηOP × 1

2
+

1 − ηOP

3
× 1

6
× γ2

γ2 + ∆2
, (10.12)
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for the σ−-polarized probe and
(

C

N

)

OP,σ+

∝ 1 − ηOP

3
× 1

2
× γ2

γ2 + (3∆)2
+

1 − ηOP

3
× 1

6
× γ2

γ2 + (2∆)2
, (10.13)

for the σ+-polarized probe. In both expressions we have assumed that the residual
population is equally distributed among the three “wrong”magnetic sub-states of the
3D3/2 state. As in the analysis of the magnetic field strength we may now take the
ratio of the two expressions to compare this with our measurements

WOP =

(
C
N

)

OP,σ+
(

C
N

)

OP,σ−

=

1−ηOP

3
3

1+(3β)2 + 1−ηOP

3
1

1+(2β)2

3ηOP + 1−ηOP

3
1

1+β2

. (10.14)

Inserting the values given in table 10.1 and using B = 1.6 G and γ = 2π×13.6 MHz as
found above, we find an optical pumping efficiency of ηOP = 96.5±0.5% in agreement
with the value found in ch. 9. Of cause, the values used for B and γ in this expression
are associated with some uncertainty, however, in the case of near-perfect optical
pumping this is not critical as the dominant term in eq. 10.14 will be the first term
in the denominator, which is independent of these parameters.

10.5 Conclusion

In this chapter have studied our system of ion Coulomb crystals in the context of
cavity QED.

We first made a brief analytic and numerical analysis of the system composed of
an ensemble of 40Ca+ ions, prepared in the 3D3/2, mJ state, interacting with a cavity
field of a single photon. This analysis justified the two-level description of ch. 2 and,
hence, allowed us to evaluate all measurements based on this formalism.

In the second part of this chapter, we presented results on the first realization of
collective strong coupling with ions. In the most precise of these measurements, the
single ion coupling strength was found to g = 2π × (0.530 ± 0.018) MHz in excellent
agreement with the expected value of g = 2π × (0.532 ± 0.007) MHz, based on our
knowledge of the cavity geometry (c.f. appendix C).

We also studied the scaling of the interaction strength with the number of ions,
both via measurements of absorption and via analysis of the Rabi splitting spectra. In
both cases the system exhibited the expected scaling with the number of ions. For the
largest number of ions that has been probed thus far, the measured cooperativity was
8.1. Extrapolating the performance of this system as a tool for quantum information
science, we note that it would potentially operate as a quantum memory for light [66]
with a fidelity of 94% [50,51].

In the last section we analyzed data on measurements of the cooperativity versus
the number of ions, to extract information about the optical pumping efficiency. This
concluded that 96.5±0.5% of the ions where prepared in the right state by our optical
pumping scheme, in agreement with the measurements of ch 9.

In all of our measurements we found a larger value for the atomic linewidth γ than
expected. Although this requires further studies, we believe this to be related to the
finite temperature of the ions and for one set of data we estimated the temperature
to T = 24+20

−14 mK, based on the model developed in appendix D.



Chapter 11

Summary and outlook

This thesis has covered several aspects of ion Coulomb crystals for the purpose of
cavity QED. The journey toward the successful combination of large ion Coulomb
crystals and a high finesse cavity for the realization of collective strong coupling has
offered many technical challenges and has required the development and construction
of a number of specific tools that now comprise the cavity QED experiment in the
Ion Trap Group at the University of Aarhus. In the following we shall attempt to
summarize the main constituents of this experiment that this thesis has covered.

Seven different laser systems have been used in the experiments (see ch. 5). Some
had already been developed for other experiments in the group, while others had to
be developed specifically for this project. Among these was a UV laser source at
272 nm, based on a CW distributed feedback fiber laser at 1088 nm that has recently
become commercially available. The narrow linewidth and relatively high power of
this type of laser make it ideal for frequency doubling into the visible part of the
spectrum. We demonstrated that light at 544 nm could be generated stably and
efficiently in an external enhancement cavity with a conversion efficiency of 55% and
without deteriorating the Gaussian beam profile. These results allowed for further
frequency doubling in a second enhancement cavity to produce light at 272 nm with
a conversion efficiency of 16%. In total, the conversion efficiency from 1088 nm to
272 nm was about 8% corresponding to a maximum output of about 115 mW. The
results of this work showed that a DFB fiber laser of this type may be used to access a
range of wavelengths in both the visible and the UV that had hitherto been difficult to
access with solid state based laser systems and it is our belief that DFB fiber lasers in
combination with second harmonic generation will be used extensively in the future.

The development of the trap and cavity that would later become the cavity trap,
did not begin on page 1 of this thesis. Several aspects, especially regarding the design,
had already been initiated prior to this work [66] and, as described in ch. 6, these
early studies formed the basis for the design of the cavity trap.

When characterizing the trap in ch. 8 we found very nice agreement with the
theoretical predictions for the physical properties of the trapped ion Coulomb crystals.
While this was encouraging for our confidence in the design and assembly of the trap
it also led to the conclusion that the integration or mirror substrates into the linear
Paul trap had been accomplished without perturbing the trapping fields.

The characterization also provided a precise calibration of the trapping parame-
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ters, which has allowed for an evaluation of the number of ions interacting with the
cavity field in the trapped ion Coulomb crystals with a precision of 2− 4% depending
on the crystal size. Incidentally, the high precision in our calibration enabled us to
claim a value for the prefactor in the expression for the inter-shell spacing of long
ion Coulomb crystals (see eq. 8.16). The value determined by our mesurements was
1.484± 0.010, which should be compared to the best known previous measurement of
1.35± 0.15 [98] and thus strongly supports the value predicted by MD simulations of
1.48 [97].

Toward the end of ch.8 we described the results of an extensive empirical study
launched with the purpose of mapping out the optimal trapping parameters for max-
imizing the coherent coupling to the cavity field. Our findings justified the effort and
an optimum configuration was identified in which more than 2000 ions were expected
to interact with the cavity field. This investigation also revealed what we described
as a threshold-like behavior in the minimal attainable aspect ratio versus number of
ions in the crystal. We believe the issue to be related to rf-heating in the crystal,
however, no thorough study to illuminate the effect has been conducted thus far.

On the whole, the design and assembly of the cavity trap was successful, however,
on three accounts we had unpleasant surprises. First, the immediate contamination of
the cavity during the bake-out along with the following slow increase in the intra-cavity
losses over time, that we described in ch. 6.6.1. Although this was not ideal and should
be accounted for in future studies, the effect is not at a level where it poses any serious
limitation to our experiment. Second, the susceptibility of the cavity to acoustic noise.
This was a more serious problem that has, however, been worked around by schemes to
filter and clean the data. Future versions of the experiment should incorporate some
form of passive damping in the design to isolate the setup from outside vibrations
as well as modify the design to result in higher, less harmful mechanical resonance
frequencies. Third, the overlap between the cavity mode and the ion Coulomb crystal
was imperfect to begin with. To address this issue we developed a general technique
for moving the minimum of the quadrupole potential. We demonstrated that with this
method, the ions could be moved by ±100 µm in the radial plane of the trap, which
facilitated a near perfect overlap with the cavity mode. We note that this technique
is generally applicable and may thus be a convenient technique in experiments where
∼micron positioning of ions without increased micromotion is critical.

In ch. 7 we presented results on loading of the cavity trap by resonance-enhanced
photoionization of a beam of atomic calcium. By this method we were able to achieve
loading rates of more than 3000 ions/s allowing for production of large ion Coulomb
crystals of more than 105 ions in less than a minute. Furthermore, we demonstrated
the ability of the 272 nm laser system used in the photoionization scheme to selectively
load specific isotopes of Ca+. While the issue of high loading rates is of general
importance to the practicality of a cavity QED experiment with ensembles of ions,
the isotope selectivity is especially relevant for the ability to perform such experiments
with two-component crystals.

We also developed a novel, all-optical loading technique in which the beam of
atomic calcium is produced through pulsed laser ablation of a calcium target. A key
motivation factor for this loading scheme is the possibility of working with a lower
atomic beam flux, which can be advantageous for loading of e.g. microtrap archi-
tectures where contaminants deposited on the trap electrodes may lead to unwanted
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heating effects. In the context of the general theme of this thesis, the reduction
of potentially contaminating material passing through the optical cavity would also
be highly advantageous. Although, the loading rates obtained so far by this load-
ing scheme do not promote the method as a viable technique for loading large ion
Coulomb crystals, we have strong belief that further optimization will improve on
this and increase the potential of this method.

Having successfully loaded the trap and optimized its performance we implemented
a scheme to prepare all ions in the 3D3/2, mJ = 3/2 of 40Ca+ by optical pumping.

This we described in ch. 9, where we estimated that 97+3
−5 % of the ions can be prepared

in the correct state.
This series of developments lead us to what is to our knowledge the first realization

of collective strong coupling with ions. In ch. 10 we presented results on the coherent
coupling of our crystals to the cavity field, which we found in excellent agreement
with the theoretical prediction for our system with a measured single ion coupling
strength of g = 2π × (0.530 ± 0.018) MHz. In our characterization of the system in
this chapter, we also studied the scaling of the interaction with the number of ions
by measurements of the cooperativity to find a value of C ' 5 × 10−3 × N and a
cooperativity of C ∼ 8 for the highest number of ions of ∼ 1600.

In all measurements we observed slightly higher values for the atomic linewidth γ
than the natural linewidth, which we attribute to Doppler broadening induced by the
thermal motion of the ions. The result is that the effective cooperativity of the system
is lowered accordingly. However, the fact that the scaling of the cooperativity with the
number of ions is still linear suggests that at least up to the crystals sizes that we have
studied so far there are no size dependent heating effects. This observation gives hope
that increasing the number of ions will increase the cooperativity further. Combined
with optimized cooling we would extrapolate our present data to C ∼ 12. Perhaps,
with further optimization, even more ions can be confined in the trap, however, based
on our measurements of ch. 8.3 where we systematically studied the maximization
of ions in the cavity mode, we do not believe the system to be far from its optimal
performance, already at this stage. One obvious way to increase the cooperativity,
though, would be through a reduction in the cavity losses. For instance, with no
intra-cavity losses in our present cavity, our extrapolations would go beyond C ∼ 15.

For the sake of comparison, we mention that a cooperativity of around 8 is already
in the vicinity of that used in neutral atom based quantum memories [25,33,52,58,59].
Moreover, as we have pointed out previously, the expected scaling of the fidelity in
such applications is 2C

1+2C [50, 51], which potentially allows for 94% fidelity with a
cooperativity of 8. By this measure, the system is, in its present state, already a
promising candidate for efficiently realizing important quantum information protocols.

Besides venturing into the field of quantum information science, one might consider
if rather than exploiting ion Coulomb crystals for cavity QED, one could make use
of the cavity QED interaction to learn about the physics of ion Coulomb crystals.
We have already mentioned the possibility of measuring the temperature of the ion
Coulomb crystal via the single photon field probe of the cavity and in ch. 10 we
quoted a temperature of T = 24+20

−14 mK based on a model of the influence of Doppler
broadening in such measurements. As a temperature measurement that experiment
was quite preliminary, but with further studies on the subject it might become a viable
method. The establishment of such a diagnostic would be of great value for exploring
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the possibilities of observing effects of cavity mediated cooling in our system [179]. In
such a scheme the fact that for our system κ < γ would in principle allow for cooling
below the Doppler limit. Other applications of cavity QED for ion Coulomb crystals
could lie in the possibility of observing changes in the collective coupling strength as
a result of structural phase transitions in the crystal.

Finally, we mention that the use of two-component crystals may further increase
the potential of the system. As we have pointed out previously in this thesis, one
advantage in this is the possibility of continuous cooling during the experiment and,
hence, the prospect of working with even better controlled samples of ions.
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Acronyms

ar anti-reflection

AOM acousto-optic modulator

APD avalanche photo detector

bcc body-centered cubic

CCD charge coupled device

CW continuous wave

DFB distributed feedback

EIT electromagnetically induced transparency

EOM electro-optic modulator

FSR free spectral range

FWHM full width at half the maximum

HWHM half width at half the maximum

LBO Lithium Triborate

MD molecular dynamics

OI optical isolator

PBS polarizing beam splitter

PDH Pound-Drever-Hall

PM polarization maintaining

PMT photo-multiplier tube

ppm parts per million
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PZT piezo-electric transducer

rf radio frequency

SHG second harmonic generation

SM single mode

Ti:Sapph Titanium Sapphire

UV ultra violet

QED quantum electrodynamics
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Appendix A

The Ca+ ion

A.1 Abundance of Ca-isotopes

The natural abundance of the stable isotopes of calcium is listed in Table A.1

Isotope Abundance
40 96.941%
42 0.647%
43 0.135%
44 2.086%
46 0.004%
48 0.187%

Table A.1: Abundance of the stable isotopes of calcium [157].

A.2 Transitions in the 40Ca+ ion

Transition Wavelength [nm] Γ/2π [MHz] Sat. intensity [mW/cm2]
4S1/2-4P1/2 396.847 20.7 43.3
4S1/2-4P3/2 393.366 21.5 46.2
3D3/2-4P1/2 866.214 1.69 0.34
3D3/2-4P3/2 849.802 0.177 0.038
3D5/2-4P3/2 854.209 1.58 0.33

Table A.2: Data for dipole-allowed transitions in 40Ca+, as shown in Fig. 4.3. Transition
wavelengths are measured in air [178,180]. Γ/2π is the transition rate [178,180]. Saturation

intensities are calculated according to Isat = ~Γω3

12πc2
, using the relevant transition rate Γ and

transition frequency ω.
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The isotope shifts for the S ↔ P transitions (397nm, 393 nm) and the D ↔ P
transitions (850 nm, 854 nm, 866 nm) are listed here:

Transition 40Ca+ 42Ca+ 43Ca+ 44Ca+ 46Ca+ 48Ca+

S ↔ P 0 425 688 842 1287 1696
D ↔ P 0 -2350 -3465 -4495 -6478 -8288

Table A.3: Isotope shifts in 40Ca+ in MHz. Values are taken from Ref. [140]

The coupling strengths for dipole-allowed transitions between the various sub-
levels are characterized by the values of Γ given in Table A.2 and the Clebsch-Gordan
coefficients (see, e.g., Ref. [61] for a definition), which are listed in Tables A.4–A.6.

4S1/2,−1/2 4S1/2, +1/2

4P1/2,−1/2 −
√

1/3
√

2/3

4P1/2, +1/2 −
√

2/3
√

1/3
4P3/2,−3/2 1 -

4P3/2,−1/2
√

2/3
√

1/3

4P3/2, +1/2
√

1/3
√

2/3
4P3/2, +3/2 - 1

Table A.4: Clebsch-Gordan coefficients for transitions between the 4S1/2 state and the
4P1/2 and 4P3/2 states.

3D3/2,−3/2 3D3/2,−1/2 3D3/2, +1/2 3D3/2, +3/2

4P1/2,−1/2
√

1/2 −
√

1/3
√

1/6 -

4P1/2, +1/2 -
√

1/6 −
√

1/3
√

1/2

4P3/2,−3/2 −
√

3/5
√

2/5 - -

4P3/2,−1/2 −
√

2/5 −
√

1/15
√

8/15 -

4P3/2, +1/2 - −
√

8/15
√

1/15
√

2/5

4P3/2, +3/2 - - −
√

2/5
√

3/5

Table A.5: Clebsch-Gordan coefficients for transitions between the 3D3/2 state and the
4P1/2 and 4P3/2 states.
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4P3/2,−3/2 4P3/2,−1/2 4P3/2, +1/2 4P3/2, +3/2

3D5/2,−5/2
√

2/3 - - -

3D5/2,−3/2 −
√

4/15
√

2/5 - -

3D5/2,−1/2
√

1/15 −
√

2/5
√

1/5 -

3D5/2, +1/2 -
√

1/5 −
√

2/5
√

1/15

3D5/2, +3/2 - -
√

2/5 −
√

4/15

3D5/2, +5/2 - - -
√

2/3

Table A.6: Clebsch-Gordan coefficients for transitions between the 3D5/2 state and the
4P3/2 state.
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A.3 Zeeman-splitting in the 40Ca+ ion

The Zeeman-splitting of the magnetic sub-levels of 40Ca+ is given by:

∆EZeeman = mJgJµBB, (A.1)

where mJ is the magnetic quantum number, µB is the Bohr magneton, B is the
magnetic field strength and gJ is the Landé g-factor,

gJ = 1 +
J(J + 1) + S(S + 1) − L(L + 1)

2J(J + 1)
. (A.2)

Values of gJ are listed in Table A.7 for the lowest lying states of the 40Ca+ ion.

State gJ

4S1/2 2
4P1/2 2/3
4P3/2 4/3
3D3/2 4/5
3D5/2 6/5

Table A.7: Values of gJ for the lowest lying levels of the 40Ca+ ion.

For B = 1 Gauss, the Zeeman-splitting of the metastable 3D3/2 sub-states are
2π × 1.1 Mhz.



Appendix B

Extraction of crystal parameters

Fig. B shows an image of a crystal recorded with the camera along the y-axis (c.f.
fig. 6.9). L′ and 2R′ denote the length and diameter of the crystal, respectively, both
defined as the distance between the centers of the outermost shell on either side. To
deduce the diameter 2R and the length L as defined within the zero temperature
charged liquid model, one intershell spacing δr must be added. δr may be calculated
from eq. 3.22 or measured as indicated in the figure below the crystal image, which
shows the radial distribution of the ions along the white line in the image. The crystal
aspect ratio as defined in this thesis, is thus derived from images such as that of fig. B
using the relation

α ≡ 2R

L
=

2R′ + δr

L′ + δr
. (B.1)

The volume of the crystal, is defined through the equation for a spheroid, which

crystal
boundary

δr

2R′

L’

x

y z

Figure B.1: Image of a crystal recorded with the camera along the y-axis (c.f. fig. 6.9).
L′ and 2R′ denote the length and diameter of the crystal, respectively, both defined as the
distance between the centers of the outermost shell on either side. To the left of the crystal is
shown the radial density distribution of the ions along the white line in through the crystal.
A part of this has been enlarged below the image, where also the intershell spacing δr and
the crystal boundary, found by adding half an intershell spacing, are indicated.
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in the prolate case (α < 1) reads:

V =
4

3
πR2L/2 =

4

3
π(R′ + δr/2)2(L/2 + δr/2), (B.2)

where again the intershell spacing is added to emulate the density distribution of the
zero temperature charged liquid model. From crystal images such as the one in fig. B,
we are typically able to determine L and 2R of the crystal to within a pixel (± 1

2pix),
which with our typical magnification of 5 corresponds to an uncertainty of δx = 1 µm
(c.f. ch. 6.4). Note that as the crystals are typically comprised of several shells, a
considerably lower uncertainty in δr can generally be achieved. From eq. B.2 the
uncertainty in the crystal volume can be found as

δV =

√
(

∂V

∂R
δR

)2

+

(
∂V

∂L
δL

)2

=

√
(

4

3
πRL

)2

+

(
2

3
πR2

)2

δx

=

√
4L2 + R2

RL
V δx =

√

16

α2
+ 1

V

L
δx, (B.3)

which for low aspect ratio, prolate crystals as is typically the relevant case in this
thesis, gives δV

V ' 4δx
Lα . For a crystal such as the one of fig. B with an aspect ratio

around 0.2 and a length of about 1 mm, the relative uncertainty in the volume is thus
δV
V ' 2 %. For typical crystal sizes in the experiments, this uncertainty is around
1 − 3 %.

Since the number of ions N is determined by the product of the crystal density ρ0

and the volume V the relative uncertainty in N is thus

δN

N
=

√
(

δρ0

ρ0

)2

+

(
δV

V

)2

. (B.4)

Based on the calibration of the density, made in ch. 8.2.1 (eq. 8.18) a conservative
estimate for the relative uncertainty in the density is around 2 % and we thus find a
relative uncertainty in the number of ions in the image of fig. B of about δN/N ' 3 %.
Typically, this will be 2 − 4 %. It is interesting to note that with δN/N ' 3 %, e.g.,
we are able to determine the number of ions to within

√
N for up to about N = 1100

ions. This is illustrated in fig. B.2, where the black line is the
√

N curve and the
grayscale lines are for uncertainties of 2 − 3 %.

When the uncertainty is less critical and large amounts of data need to be ana-
lyzed, we generally use computer software to deduce the crystal volume and, hence,
the number of ions. Image analysis programs such as ImageJ1 or alternatively, a
MATLAB code, can be used to find the boundary of the projection image of the
crystal. Assuming rotational symmetry about the z-axis, the volume can be found
via

V [pix3] =

n∑

i=1

πr2
i × pix, (B.5)

where ri is the radial distance in pixels from the crystal center to the boundary at
the ith pixel along z. With this method we generally have an uncertainty of 5−10 %.
This method is used for e.g. evaluation of the loading rate in ch. 7.

1available at e.g. http://rsbweb.nih.gov/ij/download.html
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Figure B.2: Uncertainty in number of ions for various relative uncertainties. The black
line shows the

√
N curve.





Appendix C

Collective coupling strength

C.1 Single ion coupling strength

The coupling strength for a single ion at position r in the cavity is given by

g(r) = gΨ(r) , (C.1)

where Ψ(r) is the modefunction of the standing wave TEM00 mode of the cavity field
and where g is the coupling strength of a single ion at the waist and anti-node of this
cavity field. Since g is the Rabi frequency corresponding to a single photon it can be
found from eq. 2.17 with |A|2 = 1

g2 =
Γ2I

8Isat
=

3πc2ΓI

2~ω3
, (C.2)

where we have inserted the expression for the saturation intensity Isat =
~Γω3

eg

12πc2 [61].
The field intensity is given by eq. 2.4 as I = 2ε0cE2

0 , where the field strength E0 of
a single photon can be found by equating the field energy within a volume V by the
photon energy

2ε0E2
0V = ~ω

⇓

E0 =

√

~ω

2ε0V
. (C.3)

Inserting into eq. C.2 we find

g2 =
3πc3Γ

2ω2V
, (C.4)

where V is the modevolume of the TEM00 mode defined as V =
∫
|Ψ(r)|2dr.

The modefunction of the standing wave TEM00 Gaussian beam is given by

Ψ(r) =
w0

w(z)
e−(x2+y2)/w2(z) sin(kz) , (C.5)
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174 Collective coupling strength

where k = 2π/λ is the wave number, w0 is the minimal waist and w(z) is the waist a
distance z from the location of w0. From this we evaluate the modevolume

V =

∫
w2

0

w2(z)
e−2(x2+y2)/w2(z) sin2(kz)dr (C.6)

=
πw2

0

2

∫ lcav

0

sin2(kz)dz (C.7)

=
πw2

0

2

[
z

2
− sin(2kz)

4k

]lcav

0

(C.8)

=
πw2

0

2

[
lcav
2

− sin(4πlcav/λ)

4k

]

(C.9)

=
πw2

0

4
lcav , (C.10)

where lcav is the cavity length and where in the last step we used the fact that the
cavity is resonant with the field. Combining eq. C.4 and C.10 we arrive at the following
expression for the single ion coupling strength:

g =

√

3cλ2Γ

2π2w2
0lcav

. (C.11)

In our experiments we will use the 3D3/2, mJ = +3/2 ↔ 4P1/2, mJ = +1/2 transition
at 866 nm. Of the 3D3/2 ↔ 4P1/2 transitions, this has the highest Clebsch-Gordan
coefficient, resulting in decay rate of Γ = 2π × 1.69/2 MHz (c.f. appendix A). With
a cavity waist of 37 µm and a cavity length of 11.8± 0.3 mm (measured in ch. 6.6.1)
we find

g = 2π × (0.532 ± 0.007) MHz. (C.12)

C.2 Collective coupling strength

The collective coupling for an ion crystal of uniform density ρ0 and length L is found
analogously to the modevolume

g2N =

∫

g2(r)ρ0d(r) (C.13)

= g2ρ0

∫

Ψ2(r)dr (C.14)

= g2ρ0
πw2

0

2

∫ L

0

sin2(kz)dz (C.15)

= g2ρ0
πw2

0

4
L . (C.16)

By this we have basically defined the number of ions in the modevolume as

N = ρ0

∫

Ψ2(r)dr = ρ0
πw2

0

4
L. (C.17)
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This definition has been used when estimating the number of ions in the cavity mode
in e.g. ch. 8.3.

This definition does not, however, take the spheroidal shape of the crystal into
account and, hence, overestimates the number of ions for very prolate crystals. The
correct number of ions within the cavity modevolume is found from a convolution of
the crystal shape and the cavity modefunction. For a crystal of length L and diameter
2R the expression reads:

N = ρ0

∫

crystal

Ψ2(r − r0)dr

= ρ0

∫ x′

−x′

∫ y′

−y′

∫ z′

−z′

w2
0

w2(z)
e−2((x−x0)

2+(y−y0)
2)/w2(z) sin2(kz) dx dy dz,

(C.19)

where x′ =

√

1 − y2

R2 − z2

R2 R, y′ =
√

1 − z2

(L/2)2 R and z′ = L/2. x0 and y0 are the

offset between the center of the crystal and the cavity mode in the radial plane. This
expression has been used when evaluating the number of ions interacting with the
cavity field in ch. 10.





Appendix D

Cooperativity parameter for a

Doppler broadened atomic medium

in a standing wave cavity

Due to the finite temperature of the ions their velocities can not be completely ne-
glected in the interaction with the cavity field. To account for this, we rewrite the
atomic dipole for an ion inside the standing wave field of the cavity as,

Ṗ±kv = −
(

Γ

2
+ i(∆ ± kv)

)

P − igA (Πe − Πg) , (D.1)

where we have made the substitution ∆ → ∆± kv in eq. 2.12. Here v is the speed of
the ion and k is the wave vector of the cavity field, which can be either co- or counter
propagating with the motion of the ion. We consider the problem in one dimension,
only, and will treat the field as two counter propagating plane waves each with a
single k-vector. Note that, unlike the case for a traveling wave, where the atomic
dipole is given simply by either P+kv or P−kv , depending on the velocity of ion with
respect to the field, here, the total dipole is given by the sum P = 1

2 (P+kv + P−kv).
Furthermore, we are ignoring the spatial variation of the standing wave field, which
will give rise to an spatial variation in the coupling strength g. This issue is treated
in appendix C, where the collective coupling strength g

√
N is weighted by the cavity

field modefunction. Here we shall therefore assume that any spatial dependence is
absorbed into g.

In the low-saturation regime (Πe − Πg ' −1) the steady state value of the P±kv

of an ion moving at the speed v becomes,

P±kv =
igA

Γ/2 + i(∆ ± kv)
. (D.2)

Assuming the ions have velocities distributed according to a Maxwell-Boltzmann dis-
tribution,

df(v) =

√

M

2πkBT
exp

(−Mv2

2kBT

)

dv, (D.3)
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where a fraction df(v) of the ions occupy velocity classes between v and v + dv, then
the total atomic dipole, averaged over all velocity classes, can be expressed as

P (∆) =
1

2

√

M

2πkBT

∫ ∞

−∞
exp

(−Mv2

2kBT

)

[P (∆ + kv) + P (∆ − kv)] dv. (D.4)

Through the expression for Doppler width:

δνD =
2

λ

√

2kBT

M
ln2, (3.23)

we may define the dimensionless parameters,

ζ =

√
ln 2

π

kv

δνD
ΓD =

√
ln 2

π

Γ

δνD
∆D =

√
ln 2

π

∆

δνD
, (D.5)

and write the real and imaginary parts of the atomic dipole as,

Re [P (∆D)] = −
√

ln 2gA

2
√

π3δνD

∫ ∞

−∞
e−ζ2

[
(∆D + ζ)

(ΓD/2)2 + (∆D + ζ)2

+
(∆D − ζ)

(ΓD/2)2 + (∆D − ζ)2

]

dζ, (D.6)

Im [P (∆D)] =

√
ln 2gA

2
√

π3δνD

∫ ∞

−∞
e−ζ2

[
(ΓD/2)

(ΓD/2)2 + (∆D + ζ)2

+
(ΓD/2)

(ΓD/2)2 + (∆D − ζ)2

]

dζ. (D.7)

The cavity field equation is given by (c.f. 2.3)

Ȧ = − (κ + i∆c)A + igP +
√

2κ1A
in, (2.30)

in which the real part of the atomic dipole produces a phase shift and the imaginary
part results in absorption, which gives rise to a broadening of the cavity resonance,
as discussed in ch. 2.3.

On atomic resonance (∆D = 0) the equations simplify somewhat. The real part
of the dipole is of course zero, as expected for a phase shift, but the absorption is not
and the effect of Doppler broadening will reflect on this. The imaginary part of the
dipole can be written as,

Im [P (0)] =

√
ln 2gA√
π3δνD

∫ ∞

−∞
e−ζ2 (ΓD/2)

(ΓD/2)2 + ζ2
dζ

=

√
ln 2gA√
πδνD

e(ΓD/2)2erfc(ΓD/2), (D.8)

where erfc(ΓD/2) is the complementary error function. In steady state, the resulting
HWHM of the cavity κ̃ for N ions interacting with the cavity under the influence of
Doppler broadening, will be given by

κ̃ = κ

(

1 +
g2N

κδνD

√

ln 2

π
e(ΓD/2)2erfc(ΓD/2)

)

. (D.9)
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Note that since Im [P (0)] is linear in A, and otherwise constant as a function of
∆c, the cavity lineshape is still a Lorentzian and assigning a width κ̃ is therefore
still meaningful in this sense. Comparison with the expression for the cavity width
without the effect of Doppler broadening (eq. 10.8) suggests that we may treat the
finite temperature of the ions as giving rise to an effective width Γ̃ and retain the
form of the cooperativity parameter as,

C̃ =
g2N

κΓ̃
, (D.10)

where

1

Γ̃
=

1

2δνD

√

ln 2

π
e(ΓD/2)2erfc(ΓD/2)

' 1

Γ

(

1 − 1

2(ΓD/2)2
+

3

(2(ΓD/2)2)2
− 15

(2(ΓD/2)2)3
+ ...

)

, (D.11)

where we have expanded the complementary error function going to the second line.
Keeping only the first two terms in the expansion and substituting eq. D.5 for ΓD,

Γ̃ ' Γ

[

1 +

(
2π√
ln 2

δνD

Γ

)2
]

, (D.12)

which will be valid in the limit where Γ >> δνD, that is, for small temperatures.
This is seen in fig. D.1, which shows the dependence of Γ̃ on the temperature, based
on the full expression of eq. D.11 (solid line) as well as the first-order approximation
of eq. D.12 (dashed line). Only for temperatures below ∼ 20 mK is the approximate
expression reasonably accurate.

So far we have only considered the resonant case, where ∆ = 0. In general we would
like know how the finite temperature of the ions affect our system for all values of
the atomic detuning. This requires solving eq. D.7 which we can only do numerically.

20 40 60 80 100

1.05

1.10

1.15

0

1.00

Γ̃
[Γ

]

T [mK]

Figure D.1: Γ̃ in units of the natural width Γ as a function of temperature for ∆ = 0. The
solid line is the full solution of eq. D.11, whereas the dashed line is based on eq. D.12 and
only valid for small temperatures.
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Fig. D.2 shows the resulting absorption and phase shift curves for T = 0 mK and
T = 100 mK. Clearly one sees the effect of the inhomogeneous broadening, although
the choice of temperature in this calculation was higher than expected for the ions to
make the effect easily visible.

In ch. 10 where we study the interaction between the ions and the cavity field by
measurements that produce such curves as those of fig. D.2, it will prove necessary to
to take the effect of broadening into account to understand the data. In principle, to
extract the physical parameters of the system from a fit to such data, one should use a
Voigt profile and in this way isolate the effect of Doppler broadening in the Gaussian
width of that profile. In practice we have often used a simpler Lorentzian fit with a
width modified by the effect of Doppler broadening. To interpret such data, we made
a numerical analysis, performing Lorentzian fits to curves such as that of fig. D.2a).
Fig. D.3 shows the result, where the we have plotted the effective width Γ̃′, deduced
from a Lorentzian fit, as a function of temperature.
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Figure D.2: a) Absorption and b) phase shift in units of κC versus the detuning from
atomic resonance. The solid line is based a temperature of 100 mK whereas the dashed line
is based on a temperature of 0 mK.
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Figure D.3: Γ̃′ in units of the natural width Γ as a function of temperature. The curve is
produced from Lorentzian fits to curves such as that of fig. D.2a) for various temperatures.





Appendix E

Optical pumping of Ca+

Fig. E.1 shows the level scheme of the relevant levels and transitions for optical pump-
ing of 40Ca+. In the optical pumping scheme we aim at accumulating all the popula-
tion in the 3D3/2, mJ = −3/2 state (|7〉), which means that we should have Ωdp

− = 0.
Here we have included this field to allow for modeling of imperfections in the pump-
ing scheme. As outlined in ch. 9.1, the equations of motion for the populations and
coherences are derived from the Hamiltonian described by eq. 9.2, 9.3 and 9.4 us-
ing Hamilton’s equation of motion. We then apply the rotating wave approximation
and add terms accounting for spontaneous emission. In ch. 2.1 we went through the
derivation for the case of a two-level system and the equations of motion for this
eight-level system are found in similar fashion. The result is given here:

Π̇0 = Γ20Π2 + Γ30Π3 − i(Ωsp
0 P ∗

02 − Ωsp
0 P02) − i(Ωsp

+ P ∗
03 − Ωsp

+
∗P03)

Π̇1 = Γ21Π2 + Γ31Π3 − i(Ωsp
0 P ∗

13 − Ωsp
0 P13) − i(Ωsp

− P ∗
12 − Ωsp

−
∗P12)

Π̇2 = −Γ2Π2 − i(Ωsp
0 P02 − Ωsp

0 P ∗
02) − i(Ωsp

−
∗P12 − Ωsp

− P ∗
12)

+ i(Ωdp
0 P ∗

25 − Ωdp
0 P25) − i(Ωdp

+1
∗P ∗

24 − Ωdp
+1P24) − i(Ωdp

−2
∗P ∗

26 − Ωdp
−2P26)

Π̇3 = −Γ3Π3 + i(Ωsp
0 P ∗

13 − Ωsp
0 P13) + i(Ωsp

+ P ∗
03 − Ωsp

+
∗P03)

+ i(Ωdp
0 P ∗

36 − Ωdp
0 P36) − i(Ωdp

+2
∗P ∗

35 − Ωdp
+2P35) − i(Ωdp

−1
∗P ∗

37 − Ωdp
−1P37)

Π̇4 = Γ24Π2 − i(Ωdp
+1P24 − Ωdp

+1
∗P ∗

24)

Π̇5 = Γ25Π2 + Γ35Π3 + i(Ωdp
0 P ∗

25 − Ωdp
0 P25) + i(Ωdp

+2
∗P ∗

35 − Ωdp
+2P35)

Π̇6 = Γ26Π2 + Γ36Π3 + i(Ωdp
0 P ∗

36 − Ωdp
0 P36) + i(Ωdp

−2
∗P ∗

26 − Ωdp
−2P26)

Π̇7 = Γ37Π3 + i(Ωdp
−1

∗P ∗
37 − Ωdp

−1P37)

˙P01 = −i2δsP01 − iΩsp
0 P ∗

12 − iΩsp
+ P ∗

13 + iΩsp
0 P03 + iΩsp

−
∗P02

˙P02 = −(Γ2/2 + i(δs − δp + ∆sp))P02 − iΩsp
0 (Π2 − Π0) − iΩsp

+ P ∗
23 + iΩsp

− P01

+ iΩdp
0 P05 + iΩdp

+1P04 + iΩdp
−2P06

˙P03 = −(Γ3/2 + i(δs + δp + ∆sp))P03 − iΩsp
+ (Π3 − Π0) − iΩsp

0 P23 + iΩsp
0 P01

+ iΩdp
0 P06 + iΩdp

+2P05 + iΩdp
−1P07
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Figure E.1: Level scheme of the relevant levels and transitions for optical pumping of
40Ca+. Due to the Zeeman effect, the levels are shifted from their unperturbed configuration
(dashed lines). Ω denotes the Rabi frequencies of the various transitions, ∆ the detunings
with respect to the unperturbed transitions and the decay rates Γ are distributed among
the magnetic substates according to the Clebsch-Gordan coefficients of those transitions (see
appendix. A). Γds is set equal to zero due to the long life time (' 1 s) of the 3D3/2 state.
The state designation |i〉 where i = 1, 2, 3, 4, 5, 6, 7 is used in the equations of motion (see
text).

˙P04 = −i(δs − 3δd + ∆sp − ∆dp)P04 − iΩsp
0 P24 − iΩsp

+ P34 + iΩdp
+1

∗P02

˙P05 = −i(δs − δd + ∆sp − ∆dp)P05 − iΩsp
0 P25 − iΩsp

+ P35 + iΩdp
0 P02 + iΩdp

+2
∗P03

˙P06 = −i(δs + δd + ∆sp − ∆dp)P06 − iΩsp
0 P26 − iΩsp

+ P36 + iΩdp
0 P03 + iΩdp

−2
∗P02

˙P07 = −i(δs + 3δd + ∆sp − ∆dp)P07 − iΩsp
0 p27 − iΩsp

+ P37 + iΩdp
−1

∗P03

˙P12 = −(Γ2/2 + i(−δs − δp + ∆sp))P12 − iΩsp
− (Π2 − Π1) − iΩsp

0 P ∗
23 + iΩsp

0 P ∗
01

+ iΩdp
0 P15 + iΩdp

+1P14 + iΩdp
−2P16

˙P13 = −(Γ3/2 + i(−δs + δp + ∆sp))P13 − iΩsp
0 (Π3 − Π1) − iΩsp

− P23 + iΩsp
+ P ∗

01

+ iΩdp
+2P15 + iΩdp

0 P16 + iΩdp
−1P17

˙P14 = −i(−δs − 3δd + ∆sp − ∆dp)P14 − iΩsp
0 P34 − iΩsp

− P24 + iΩdp
+1

∗P12

˙P15 = −i(−δs − δd + ∆sp − ∆dp)P15 − iΩsp
0 P35 − iΩsp

−P25 + iΩdp
0 P12 + iΩdp

+2
∗P13

˙P16 = −i(−δs + δd + ∆sp − ∆dp)P16 − iΩsp
0 P36 − iΩsp

−P26 + iΩdp
0 P13 + iΩdp

−2
∗P12

˙P17 = −i(−δs + 3δd + ∆sp − ∆dp)P17 − iΩsp
0 P37 − iΩsp

− P27 + iΩdp
−1

∗P13



E.1. Polarization of 45◦ optical pumping beam 185

˙P23 = −((Γ2 + Γ3)/2 + i2δp)P23 − iΩsp
0 P03 − iΩsp

−
∗P13 − iΩdp

0 P ∗
35 − iΩdp

+1
∗P ∗

34

− iΩdp
−2

∗P ∗
36 + iΩsp

0 P ∗
12 + iΩsp

+ P ∗
02 + iΩdp

0 P26 + iΩdp
+2P25 + iΩdp

−1P27

˙P24 = −(Γ2/2 + i(δp − 3δd − ∆dp))P24 − iΩdp
+1

∗(Π4 − Π2) − iΩsp
0 P04 − iΩsp

−
∗P14

− iΩdp
0 P ∗

45 − iΩdp
−2

∗P ∗
46

˙P25 = −(Γ2/2 + i(δp − δd − ∆dp))P25 − iΩdp
0 (Π5 − Π2) − iΩsp

0 P05 − iΩsp
−

∗P15

− iΩdp
+1

∗P45 − iΩdp
−2

∗P ∗
56 + iΩdp

+2
∗P23

˙P26 = −(Γ2/2 + i(δp + δd − ∆dp))P26 − iΩdp
−2

∗(Π6 − Π2) − iΩsp
0 P06 − iΩsp

−
∗P16

− iΩdp
0 P56 − iΩdp

+1
∗P46 + iΩdp

0 P23

˙P27 = −(Γ2/2 + i(δp + 3δd − ∆dp))P27 − iΩsp
0 P07 − iΩsp

−
∗P17 − iΩdp

0 P57

− iΩdp
+1

∗P47 − iΩdp
−2

∗P67 + iΩdp
−1

∗P23

˙P34 = −(Γ3/2 + i(−δp − 3δd − ∆dp))P34 − iΩsp
0 P14 − iΩsp

+
∗P04 − iΩdp

0 P ∗
46

− iΩdp
+2

∗P ∗
45 − iΩdp

−1
∗P ∗

47 + iΩdp
+1

∗P ∗
23

˙P35 = −(Γ3/2 + i(−δp − δd − ∆dp))P35 − iΩdp
+2

∗(Π5 − Π3) − iΩsp
0 P15 − iΩsp

+
∗P05

− iΩdp
0 P ∗

56 − iΩdp
−1

∗P ∗
57 + iΩdp

0 P ∗
23

˙P36 = −(Γ3/2 + i(−δp + δd − ∆dp))P36 − iΩdp
0 (Π6 − Π3) − iΩsp

0 P16 − iΩsp
+

∗P06

− iΩdp
+2

∗P56 − iΩdp
−1

∗P ∗
67 + iΩdp

−2
∗P ∗

23

˙P37 = −(Γ3/2 + i(−δp + 3δd − ∆dp))P37 − iΩdp
−1

∗(Π7 − Π3) − iΩsp
0 P17 − iΩsp

+
∗P07

− iΩdp
0 P67 − iΩdp

+2
∗P57

˙P45 = −(i2δd)P45 − iΩdp
+1P25 + iΩdp

0 P ∗
24 + iΩdp

+2
∗P ∗

34

˙P46 = −(i4δd)P46 − iΩdp
+1P26 + iΩdp

0 P ∗
34 + iΩdp

−2
∗P ∗

24

˙P47 = −(i6δd)P47 − iΩdp
+1P27 + iΩdp

−1
∗P ∗

34

˙P56 = −(i2δd)P56 − iΩdp
0 P26 − iΩdp

+2P36 + iΩdp
0 P ∗

35 + iΩdp
−2

∗P ∗
25

˙P57 = −(i4δd)P57 − iΩdp
0 P27 − iΩdp

+2P37 + iΩdp
−1

∗P ∗
35

˙P67 = −(i2δd)P67 − iΩdp
0 P37 − iΩdp

−2P27 + iΩdp
−1

∗P ∗
36

Not written are the complex conjugates of the equations of motion for the coherences
and in total there are thus 64 coupled differential equations. In the above equations
we have defined δs,p,d = 1

2~
gs,p,dµBB and ∗ denotes complex conjugation as usual.

All other parameters have been defined in ch. 9.1.

E.1 Polarization of 45◦ optical pumping beam

For the optical pumping to work, the 866 nm beam should only drive π and σ+

transitions between the 3D3/2 and the 4P1/2 levels. With a magnetic field defining
the quantization axis along the z-axis in the unprimed coordinate system (black axis
of fig. E.2), the polarization of the electric field must only consist of linear and positive
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x̂

x̂′
ẑ

ẑ′

ŷ = ŷ′

ε̂

k̂

Figure E.2: Coordinate systems for transformation of polarization of 45◦ optical pumping
beam with polarization ε̂ and propagation vector k̂.

circular components. In the following we will show that this is possible to achieve for
a beam propagating along the z′-axis.

In the primed coordinate system (gray axis of fig. E.2) the polarization of the field
can be written as

ε̂ = ax′ ε̂x′ + ay′ ε̂y′ , (E.1)

where ai and ε̂i are the polarization amplitudes and unit vectors, respectively. With
the k-vector at 45◦ to the z-axis, transforming into the unprimed coordinate system
gives

ε̂ = ax′

ε̂x + ε̂z√
2

+ ay′ ε̂y. (E.2)

We then write the linear polarization components along x and y in terms of circular
polarization vectors ε̂+, ε̂− such that

ε̂ =
ax′√

2

(
ε̂− − ε̂+√

2
+ ε̂z

)

+ ay′

ε̂− + ε̂+

i
√

2

=
ax′√

2
ε̂z −

(
ax′

2
+ i

ay′√
2

)

ε̂+ +

(
ax′

2
− i

ay′√
2

)

ε̂−. (E.3)

For the field not to contain any σ− component of the polarization, the last term in
eq. E.3 must vanish, which means that ay′ = −iax′√

2
. In the unprimed coordinate

system the expression for the polarization then reads

ε̂ = ax′

(
ε̂z√
2
− ε̂+

)

, (E.4)

where ε̂z drives the π transitions and ε̂+ drives the σ+ transitions. This result shows
that optical pumping can indeed be done using a single beam at 45◦ and that the
field will drive π and the σ+ transitions with a relative field strength of 1√

2
.
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The actual ellipticity of the polarization can be calculated from the Stokes param-
eters defined as [181]

S0 = ax′a∗
x′ + ay′a∗

y′ (E.5a)

S1 = S0 cos(2β) cos(2α) = ax′a∗
x′ − ay′a∗

y′ (E.5b)

S2 = S0 cos(2β) sin(2α) = a∗
x′ay′ + ax′a∗

y′ (E.5c)

S3 = S0 sin(2β) = i(a∗
x′ay′ − ax′a∗

y′), (E.5d)

where 2α is the azimuthal angle and 2β the angle with respect to the equatorial plane,
when representing the polarization state on a Poincaré sphere. From the condition
ay′ = −iax′√

2
eq. E.5 then gives

cos(2β) cos(2α) =
1

2
(E.6a)

cos(2β) sin(2α) = 0 (E.6b)

sin(2β) =
√

2, (E.6c)

which means that

α =
π

2
k , for k = 0,±1,±2, ...

tan(2β) =
1√
2

⇒ 2β ' 35◦.

The right polarization state can thus be produced starting from a perfectly linear
polarization (2β = 0) and then changing the angle with respect to the equatorial
plane on the Poincaré sphere by 35◦. In practice, it can be achieved by using a PBS
followed by a λ/4-plate.

E.2 Rabi frequencies of optical pumping beams

The Rabi frequency is defined via eq. 2.17 as

|Ω|2 =
IΓ2

8Isat
,

where Γ and Isat are given in appendix A for the various transitions of Ca+. In the
current setup with beam waists of the 397 nm beam and of the 866 nm beam for
optical pumping of ∼ 1 mm and ∼ 1.3 mm, respectively, we calculate the following
expressions for the Rabi frequencies on the relevant transitions:

Ωsp
+ = Ωsp

− ' 2π × 5 ×
√

P397
MHz

mW

Ωdp
+1 ' 2π × 3 ×

√

P866
MHz

mW

Ωdp
0 = Ωdp

+2 =
√

1
3Ωdp

+1,
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where P397 and P866 denote the laser power of the 397 nm beam and of the 866 nm
beam, respectively. The relationship between the Rabi frequencies on the 3D3/2 ↔
4P1/20 transition is a result of eq. E.4 and of their relative Clebsch-Gordan coefficients
(see appendix A). With the laser power that we have available with our present laser
systems, Rabi frequencies of up to 2π× ∼ 20 MHz can be achieved with both the
397 nm and the 866 nm beams.



Appendix F

Laser systems

Laser Purpose Max power Typical power Linewidth
272 Photoionization of Ca 50 mW 5-30 mW ∼ 35 kHz

397 (Ti:Sapph) Laser cooling / optical pumping 10 mW 0.1-10 mW ∼ 100 kHz
397 (diode) Laser cooling 3 mW 0.1-3 mW <1000 kHz

866-1 Laser cooling / probe 20 mW 1-5 / 10−9 mW ∼ 100 kHz
866-2 Laser cooling / optical pumping 20 mW 1-5 mW ∼ 100 kHz

894 Cavity laser 20 mW 10−3mW ∼ 100 kHz

Table F.1: Data on various laser systems used in this work. The power level is that available
for the experiment.
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Appendix G

Properties of non-linear crystals

used for the 272 nm laser

From the manufacturers (Castech [182] and Newlight Photonics) the following speci-
fications were given:

crystal wavelenghts deff n lc α ar-coating
LiNbO3 1088 → 544 nm 5.1 pm/V 2.22 15 mm 0.15% < 0.2%
BBO 544 → 272 nm 1.78 pm/V 1.67 8 mm 0.2% < 0.2%

Table G.1: Specifications of non-linear crystal.

G.1 Phasematching temperature in LiNbO3

The refractive index for a transparent medium is related to the wavelength of a light
wave propagating in the medium through the so called Sellmeier equation. This
empirical formula can be used to find the phasematching temperature for second
harmonic generation for a given wavelength.
Including the temperature dependence to first order in the Sellmeier equations, the
refractive index of LiNbO3 with 7% Mg dopant, for the ordinary and the extraordinary
axis, is given by [182]

n0(λ, T ) = 4.8762 +
0.11554

λ2 − 0.04674
− 0.033119 ·λ2 + (T − 25) · (−0.874 ·10−6/◦C) ,

ne(λ, T ) = 4.5469 +
0.094779

λ2 − 0.04439
− 0.026721 ·λ2 + (T − 25) · 39.073 ·10−6/◦C ,

where λ is in µm. With the fundamental wave propagating along the ordinary axis
and the second harmonic wave along the extraordinary axis, the phasematching tem-
perature is estimanted to ∼ 158◦C by solving n0(1.08898, T ) = ne(1.08898/2, T ) for
T . Fig. G.1 shows a graphic solution of this.
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Figure G.1: Plot of the refractive index as a function of temperature for the fundamen-
tal wave propagating along the ordinary axis (solid line) and the second harmonic wave
propagating along the extraordinary axis (dashed line).

.



Appendix H

Evaluation of uncertainty in

measurements of the cavity width

Due to the acoustic noise in our cavity, the measured spectra are associated with
some shot-to-shot fluctuations that give rise to a systematic uncertainty in our mea-
surements. To evaluate the final error bars that we should give with our data, this
has to be combined with the error which we obtain from each fit result. By a series
of tests performed to measure the spread in the results of repeated measurements of
the the empty cavity width, we have deduced that this uncertainty is about 7% of
the measured mean value of the cavity width. To combine this with the statistical
uncertainty obtained from fits to the data, we use a so-called unbiased estimator of
weighted population variance, which is a model well-suited for our type of data with
a limited number of measurements.

From n measurements of the width with outcomes xi and associated errors σi, we
define the mean value

〈x〉 =

∑n
i wixi
∑n

i wi
, (H.1)

with wi = 1
σi

. The total error is then given by

σ =

√

σ2
stat + σ2

sys

n
, (H.2)

where σsys = 0.07 × 〈x〉 and

σstat =

√
√
√
√

∑n
i wi

(
∑n

i wi)
2 −∑n

i w2
i

n∑

i

wi (xi − 〈x〉)2 (H.3)
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