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1. Introduction

Since the early days of quantum mechanics, the coheremaatien between light and
matter has been one of the major subjects of quantum phyEicd\hile the coherent
manipulation of the quantum properties of both light andteraherely was of theoretical
interest for many decades, the advent of coherent lightcesuriggered a rapid develop-
ment of technologies that today are used in quantum opticsddories around the world
to trap and coherently manipulate atoms and photons, ewen timthe single particle
level.

The field of quantum information processing (QI) [2] emer§ed this rapid develop-
ment with the ultimate goal of exploiting the properties obgtum mechanics for com-
munication and computation purposes and to tackle probtaaisare difficult, if not
impossible, to solve classically. In quantum communicgtibe use of quantum key dis-
tribution allows to establish secure communication ch&between two distant sites
which, because of the no-cloning theoréri |3, 4], are inh@r@motected against eaves-
dropping [5]. Quantum computing uses fundamental quantwenhanical effects like
superposition and entanglement to reduce the complexitgiéin classes of computa-
tional problems that are practically not solvable on a at@&somputer([6=8]. In both
fields the quantum information itself is represented by alted qubits, where each qubit
consists of a quantum mechanical two-level system, andegeing of quantum informa-
tion is established by unitary quantum gates.

For the purpose of quantum communication, photons arelydaated as qubits, where
the two states of the qubit can be encoded e.qg. into left-ightthanded circular polariza-
tion states of the photonl[9,110]. Photons can be quicklysimtied over large distances
through free-space or optical fibers, while preservingrtimérnal state, due to the weak
interaction with the environment.

Numerous systems are studied as possible qubits for theegsing and storage of
quantum information, e.g. nuclear spiasi[11], supercotidgdosephson junctions [12],
quantum dots[[13], neutral atoms [14], photons| [15] and id®5[17]. In particular,
trapped ions are promising candidates for the implememaif quantum information
devices due to their coherence properties and the excebatitol of both their position
and internal degree of freedom [L18] 19]. Due to their chaimyes can be easily trapped
in Paul traps, where the ions are confined by a combinatioadibrfrequency and static
electric fields, or in Penning traps, where confinement iseaeld by a combination of
static electric and magnetic fields. Sophisticated teakesaf laser cooling can be used
to cool strings of few ions to their motional ground state,[A@. Depending on the in-
ternal structure of the ion, single qubit operations candm®mplished by transitions in
the optical or microwave domain, while phonons can be usedediate two-qubit gate
operations([16, 17]. Many breakthroughs in QI have beeneael with ions, e.g. high
fidelity quantum gate$ [21=24], highly entangled many phetstates [25, 26], implemen-
tations of simple quantum algorithnis [27] 28] and telegimteof quantum state5 [%9,130].
Furthermore, ions have also proven to be well suited forieatibns in metrology, preci-
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sion spectroscopy and frequency standards [31-34] andufortgm simulations [35,36].
While many of the basic requirements for a quantum computrewlemonstrated in
proof-of-principle experiments, scaling these systenszes where a quantum computer
could practically surpass classical computers, remainig tmllenge. For ion traps,
many research groups are designing and testing miniatutizaps, to make ion-based
guantum computer technology scalable to few tens or husdreqgubits [37].

In a more general approach one can envision to attain stigldty interfacing sta-
tionary qubits, which act as a quantum processor, with pisto distribute the quantum
information between distant nodes. In such quantum nedil( 38] the efficient trans-
fer of quantum information between the quantum nodes anddflgubits is crucial and
makes efficient light-matter interfaces an important bingdblock for these quantum in-
formation networks.

If the storage and retrieval of the quantum state of a lighd fian be actively controlled
in a light-matter interface, such devices may, furthermseeve as a quantum memory to
temporarily store the information carried by the light. Buevices can, e.g., be used to
synchronize simultaneously performed gate operationsapiows quantum nodes, or to
produce on-demand photons from heralded single or entéipyleton sources. Moreover,
in the field of quantum communication, when envisioning tbalization of large-scale
networks, chains of light-matter interfaces acting as tuwarrepeaters [10] are required
for the reliable transfer of qubits over long distances.

For a quantum memory used in quantum information science,can identify three
important requirements and criteria, which will determthe quality of such a light-
matter interface [39]:

e The efficient storage and retrieval of the quantum state.
o Sulfficiently long storage times.

e The multimode capacity, i.e. the capability of simultanglgstoring multiple quan-
tum states.

Quantum memories were successfully demonstrated in hotalddatomic vapors via
the storage and retrieval of single photons| [40—44], of egad vacuum stateis [45,46]
and entangled states |47] using free-propagating lasendeue to the small interaction
cross sections in the atom-photon interaction the storffigeeacy is typically very low in
these experiments. Furthermore, for non-stationary attmagiffusion in and out of the
interaction beams, as well as atomic collisions, will gatiglimit the achievable storage
times to the microsecond-range. While sophisticated fecies can extend the storage
times to several milliseconds [43,44], they are typicallyyopossible at the expense of
lower efficiencies.

As an alternative to neutral atomic clouds, solid-statetdight-matter interfaces [48]
should in principle allow for long storage times and claaklight pulses containing many
photons have been stored in rare-earth ion doped crystateferal seconds [49]. Fur-
thermore, the storage of entanglement was recently denaded{{50, 51]. In these ex-
periments, the storage time was limited to few microsecamdisthe low optical density
of the used ion doped crystals limited the efficiency of th@agje and readout. Both
properties depend on the dopants and their concentratibloag storage times [49] and
high efficiencies[[52, 53] have been demonstrated for diffesystems, the combination




of both in one system remains an open challenge. Due to thajtime stability, solid
state quantum memories allow for the simultaneous storgerikiiple photons([54].

The efficiency of a light-matter interface can be substdpmhanced, when enclosing
the atomic medium in the mode volume of an optical cavity. uohsa cavity the elec-
tromagnetic field has well defined spatio-temporal modegtmdoherent interaction be-
tween a material system and specific modes can be subdiahiidier than in free space.
Taking advantage of this enhancement, atomic ensembkraating with a single mode
of an optical cavity were proposed for the realization otthégficiency optical quantum
memories|[[56=57]. A basic requirement for such an cavitsebajuantum-memory is the
realization of the so-callecbllectivestrong coupling regimé[55] of cavity quantum elec-
trodynamics (CQED)[58,59]. For an ensemblé\olentical two-level systems simulta-
neously interacting with a single mode of the cavity fields tiegime is reached when the
collective coupling rategn, at which single excitations are coherently exchangeddetw
the ensemble and the light mode exceeds the dissipationimatee system, namely the
dipole decay rate of the two-level systepnand the decay of the cavity field,[58]. In
this regime, one benefits from a collective enhancementettherent interaction be-
tween an ensemble and the cavity field, which scales withdharg root of the number
of interacting particles. Collective strong coupling, ffiexplored with Rydberg atoms in
microwave cavitied [60], has been realized in the opticatdio with atomic beams[61],
atoms in magneto-optical traps [62+-65] and Bose-Einsiimensates [66, 67].

In the context of quantum information processing, ions redkeady proven to be well
suited for coherent manipulations, due to their excellehtecence properties and local-
ization. They are for the same reasons particularly wellesufor the realization of a
long-lived and efficient light-matter interface. Enclagilons in an optical cavity would
naturally combine the technological achievements of quarihformation science with
those of cavity QED. Much progress has been made towardsicgingle trapped ions
to the light modes of optical cavities [68474], and reaclargirong coupling with single
ions would, in view of their importance for quantum inforneat processing, be very at-
tractive. As the coherent coupling strength is inversebpprtional to the mode volume
of the cavity, reaching this regime requires very small Higlesse cavities. However, the
intersection of dielectric objects, such as cavity mirrarghe vicinity of the trap region
can modify the trapping potentials and makes experimerits iwhs in optical cavities
technically challenging. For larger ensembles of trapmed isimultaneously interact-
ing with a cavity field mode, one benefits from the collectimb@ncement and collective
strong coupling can be achieved with comparatively longeities and lower finesses.

Large clouds of ions can be stably trapped in both PenningPand traps and, when
cooled below a certain critical temperature, undergo a gl@ssition to a long-range
ordered state, referred to as an ion Coulomb crystal[75-#7these objects, the ions
are still well separated and most of the single-particlgoproes which make ions well-
suited for Ql, like long coherence times and well defined adskble optical transitions,
are preserved. In addition, ion Coulomb crystals also msss®ny properties of more
traditional solids, like a uniform density and long-terratstity. lon Coulomb crystals
can contain up to hundreds of thousands of ions and can bg staped for hours [78].

In this thesis we will investigate the potential of large Baulomb crystals in optical
cavities for realizing a high-efficiency and long-livedHigmatter interface which could
satisfy the previously mentioned criteria of réf.[39].
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Our group could recently demonstrate that the collectikangt coupling regime could
be reached witl{°Ca’ ion Coulomb crystals in an optical cavity [79]/80]. In adalitj
we measured coherence times for collective coherencegbrtdeeman substates in the
millisecond range, which illustrates that the good coheegoroperties of single trapped
ions are retained in large ion Coulomb crystals. The regilthese studies will be re-
viewed in chaptel]5 in this thesis. In a subsequent expetimenwill show, how the
solid-like properties of ion Coulomb crystals, such as ¢hgir uniform density, can be
used to strongly couple large crystals to different trarsvenodes of the cavity field,
with identical coupling strengths [81]. This has promisamgplications for e.g. for spatial
multimode storage of multiple photons. The results of thHagestigations will be pre-
sented in chaptéd 6. Moreover, we will in chagfér 7 also destrate how the coherent
light-matter interaction can be used to study the motioregirele of freedom of the ion
crystals. We will present a novel noninvasive spectrosaepiinique that can be used to
investigate normal mode dynamics in these crystals [82] véerich opens up for coherent
manipulations of ion Coulomb crystals’ collective vibatal modes.

Ref. [55] proposes to realize ensemble-based quantum niesrinra cavity by map-
ping the state of a single photon onto a collective excitatibthe storage medium using
the effect of electromagnetically induced transparendY YEB83,[84]. EIT is a quantum
interference effect, where the optical response of a natgystem to a weak probe field
(carrying the quantum information) can be tailored by a sd¢anuch stronger control
field. The resonant absorption of the probe field can be cdelplsuppressed via a
destructive two-path quantum interference effect, whiah also give rise to large non-
linearities. First observed in hot and cold atomic gassBj [8e use of EIT to control
the atomic absorption and dispersion properties was spdatéy demonstrated in slow-
and stopped light experimenis [861-88], where the groupcitslof a light pulse in cold
and warm clouds of neutral atoms was slowed down to few metrsecond and even
stopped([88.89]. In these experiments the stored lighgsutentained several thousands
of photons. However, the same technique can be used at tmeugudimit, where the
probe light pulses contains a single photon [84, 90, 91]hisltmit, the quantum state of
the light can be mapped on a collective excitation of the atonedium and EIT is at the
heart of most quantum memory schemes [39].

An important step towards the realization of a cavity basghtimatter interface is
hence the observation of EIT in the system. Cavity EIT wasassfully observed for
ensembles of cold and hot neutral atoms [92, 93], and, mosently, the enhanced cav-
ity interaction also allowed for the observation of cavityT Bvith few and even single
atoms [94 95]. Moreover, ensembles of neutral atoms cahfineéhe mode volume of
an optical cavity were successfully used to store and tearsshgle photons with high
efficiency [96/97]. However, the achieved storage time widdimited by the thermal
diffusion of the atoms in and out of the cavity mode. Combgntihe advantages of the
cavity enhanced light-matter interaction with a physigatem, for which the thermal dif-
fusion and collisions are sufficiently suppressed, offéraetive possibilities of realizing
a long-lived quantum memory with a high efficiency.

We will in chapte 8 report on the first experimental obsdorabf cavity EIT with
ions. In a novel, all-cavity geometry we demonstrate erceltontrol over the atomic
transparency and observe narrow EIT windows (tens of kHaichvare one to two orders
of magnitude lower than in experiments with neutrals in tegi[92--95]. In combination
with the achievement of collective strong coupling and treasured coherence times of




milliseconds, these results demonstrate that ion Coulaydials in optical cavities are
indeed an excellent candidate for the realization of bottgitived and high-efficiency
guantum memories, with the potential to be used in multincmddigurations.

Beside its importance for a quantum memory, the realizatforavity EIT with very
narrow windows and good control over the atomic transparaitsn has promising ap-
plications for the observation of nonlinear effects|[98]aw light levels or controlled
photon-photon interactions [99, 100]. We will in chagier@sent a promising first step
towards a cavity mediated photon-photon interaction byirtiigementation of an all op-
tical switching scheme, where the transmission of a prolmqrhis controlled via the
nonlinear interaction with an additional weak field in theita

The thesis is structured as follows:

CHAPTERI[Z| contains a review of the trapping and laser cooling of iovit) a focus on
large ion Coulomb crystals. Furthermore, it will introducthermodynamical description
of the crystals in terms of cold nonneutral plasmas.

CHAPTER[3 summarizes the CQED theory for the interaction of an en&zoflidentical
two-level systems with a single cavity field mode.

CHAPTERM briefly explains the experimental setup, the lasers andetection systems.
CHAPTERIH presents results on the realization of collective stroogpting with ion
Coulomb crystals and a measurement of the coherence tinmlettive coherences be-
tween Zeeman substates.

CHAPTERI[El presents a detailed investigation of the coherent cogdatween various
ion Coulomb crystals and various cavity modes.

CHAPTERI[Z contains the results of investigations of collective ational modes of ion
Coulomb crystals using a novel non-invasive spectroscegyrtique at the single photon
level.

CHAPTERI8 presents results on the observation of cavity electromtszally induced
transparency with ion Coulomb crystals.

CHAPTER[Q describes experiments on the realization of an all-opsieéching scheme
with ion Coulomb crystals based on EIT.

CHAPTER[IQ concludes the thesis and gives a brief outlook.







2. lon Coulomb crystals in a linear Paul
trap

In this chapter basic concepts of ion trapping and laserimgalill be introduced, with
the focus on fundamental aspects of the physics of ion Cdulmystals. It is structured
as follows: In sec[2]1 we will start out by introducing théngiples of the linear Paul
traps and their mathematical description. In $ec] 2.2 wkthén turn towards the laser
cooling of*°Ca’ ions and large ion ensembles. In sec] 2.3 thermodynamiepiep of
ion Coulomb crystals will be discussed.

2.1. Principle of a linear Paul trap

J

Figure 2.1.: Schematic drawing of the segmented linear Paul trap uséiisititesis. The
RF voltages are applied to all segments, where the same Ragedbk applied to rods 1-
2-3 and 10-11-12, with relative phaseroWith respect to the voltage on 4-5-6/7-8-9. The
DC end cap voltages are applied to 1-4-7-10 and 3-6-9-12iripliéy the calculations,
the coordinate system in this sectioq §Jis tilted by 45 as compared to the rest of the
thesis &, y).

In 1955 Wolfgang Paul and his student Erhard Fischer dematesthow ions can be
trapped in an oscillating quadrupole field [101,102]. TH&in cage” was a further de-
velopment of the quadrupole mass filter, where in additichéaadially confining radio-
frequency (RF) potential, electrostatic (DC) potentiakrevapplied to two endcaps to
form a 3-dimensional trap for charged particles.

The quadrupole trap used in our experiments consists offetgrof segmented cylindrical
rods, as shown in fig2.1. In this linear Paul trap the axiafioement is obtained by ap-
plying DC voltagedJpc to the outermost sections of the rods. The resulting elstzttic
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potential along the-trap axis for a single particle with char@and mas# is given by
7
®y(2) = nUDCZ% = —I\/Iwzz2 (2.1)

wheren is the axial geometric constant determined by the trap gagr(see([80]), 2 is
the length of the center electrode awglis the harmonic frequency of the axial potential
given by

2nQUpc

Mz

Confinement in the radial plane of the linear Paul trap is ety applying two
oscillating electric potentials with a relative phase sbffrt, U1 (t) = UrpcogQgrt) and
U, (t) = Urpcoq Qret + 1), to the two sets of diagonally opposite rods, as shown in fig.
[Z.1 b. The oscillating fields give rise to a radial potentiahe forntl

(2.2)

&2

~ ~ X )~(2+~2
Prad(X, ¥, 1) = 2 y ———UreCoqQret) — g—yUDQ
0 %

(2.3)
whererg corresponds to the half distance between the diagonallgsifgrods. The first
term in this equation is the potential originating from thie-Roltages, while the second
term comes from the application of DC voltages on the endueldes. The classical
equation of motion for a particle with maksand charg® is given byMi = —QO®(r),
where®(r) = ®,(z) + Prag(X,¥.1) is the total potential. The radial and the axial part
separate and inserting the potential of €q.1(2.3) leadssteditalled Mathieu differential
equations, see e.(. [18]:

16)'4 .
szt [a—2qcog21)]% = O (2.43)
% +[a+2qcoq21)]§ = O. (2.4b)
For convenience, the dimensionless parameters
T = % (2.5a)
—4nQUpc
= — < 2.5b
* T M (250
2QURrr
_ 2.5
q W22, (2.5¢)

were introduced. Depending on the values of these parasp#iersolution of the Mathieu
equations can correspond to non-diverging trajectories,the amplitude of the motion
is bound and the particle is stably trapped, or to divergiagttories, i.e. the motion is
unbound and the particle is expelled from the trap. The l&abf the trapping generally
depends on the charge-to-mass ratio of the parfiele More details on the stability of

1The origin of the coordinate system is chosen at the centéneofrap. To simplify the calculations, the
coordinate system in this sectiox §) is tilted by 45 as compared to the rest of the thesig/).
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linear Paul traps can be found [n]18,103]. In most cases taa@ operated in a regime
where|g| < 1 and|a| < 1 and the Mathieu equations ef.{2.4) have a simple solution i
this regime:

() = )?o{l—kgcos(QRFt)} cogat) (2.6a)
J(t) = o [1-3 cosQret)| cosant), (2.6b)

wherexp andyp are the amplitudes of the secular motion alongxleady axis, respec-
tively. The motion of the ion is a superposition of two pei@uahotions, the slow, so-called
secular motion, at the secular frequency

1 /¢?
= —{/—=+4+aQ
Wy AR + RF

— ( Q%Ugr nQUDC>1/2.

2.7

2M2r3Q2. M7 @17
and the fast, so-called micromotion, at the frequency oﬂﬁaraﬂ Qrr. The slower
secular motion can be understood as an oscillation in thalr@d)-plane in a harmonic
pseudo-potentiab,(r) , which is found by averaging over the fast oscillation in €8):

O (r) = %erzrz (2.8)
The rapid micromotion occurs at the trap frequefgy- with an amplitude suppressed by
a factor% < 1 and appears as a small modulation on the dominant secutaammo
Averaging over the fast micromotion, the trapping potdimiaylindrical coordinates is
given by the sum of radial pseudo-potential (see (&8pnd the axial DC-potential
@, (see eq.[(Z]1)):

Prrap(r)=P2(2) + Py (r) (2.9)

2.2. Laser cooling of 40Cat jons

Laser cooling of atoms and ions is a widely used techniqueday’s atomic and molec-
ular physics and the principles have been reviewed in matgles and textbooks, see
e.g. [107,.108]. Reviews on specific aspects and coolingitgaks for ions can be found
in [T09/110]. In this thesis we will therefore only brieflysduss the basic idea of laser
cooling and focus on the aspects relevant for the coolirf§@&" ions and more specifi-
cally large ion Coulomb crystals.

The principle of laser cooling relies on the velocity depamdabsorption probability
of photons and can qualitatively be understood in a 1-dimo@as model. We imagine
a free two-level atom with resonance frequengy moving in the field of two counter-
propagating laser beams with velocityln the reference frame of the atom, the frequen-
cies of the two lasers are shifted due to the Doppler effect{v) = wp(1+ ¥), where
wp is the frequency of the lasarthe velocity of light and the positive sign applies to the

2As g,a < 1, the secular frequency is much smaller than the RF frequgne Qrr.
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Figure 2.2.:%0Ca energy level scheme, with transition wavelengths in rdr teansition
ratesI” = 2y (taken from [104=106]). The solid lines mark the relevaanhsitions for
Doppler cooling in this thesis, i.e. the ZQ/Z > 4p2Pl/2 Doppler cooling transition

(blue) and the 38D3, <+ 4p?P; /, repumping transition (red).

laser towards which the atom is moving. For laser beamstgfigbetuned to the red of the
atomic resonance the absorption probability will be highethe photons towards which
the atom is moving. In the case of moderate laser intensitiesatom will, after each ab-
sorption process, decay spontaneously and the photonisenididistributed isotropically,
while the longitudinal momentum transfer in the absorppoocess will be directional,
leading to a friction force and an effective deceleratiorth&f atomic motion. The net
force exerted on the atom, for a laser detunliag= wy; — wp and a laser intensity much
lower then the saturation intensity of the transitibr( |sa) can be found to 153

1 1

F= hk"lsat <1+ (BoTK/VE 11 ((Bo—kV)/V)2

> Oo—pv (2.10)

Here,k = wp/c is the wave-vector of the laser field ape- /2 is the decoherence rate of
the atomic dipole of the two-level system, whérés the spontaneous decay rate. The
scheme can easily be extended to three dimensions, wheodlieg of a free atom
requires three sets of orthogonal counter-propagatinmbedhis configuration is used
in three-dimensional optical molasses and magneto-dtagzs [108].

Though the isotropic re-emission of spontaneous photoas dot lead to a net force
on the atom, it leads to diffusion and the temperature thatbeareached by Doppler
cooling is limited by this diffusion. In steady state, onesla equilibrium arising from
the balance between friction and diffusion. In the low sation limit and for an optimal
choice of the detuning =y, the lowest temperature that can be reached is the so-called

3The saturation intensitlty is defined assq = c?(‘;g‘g whereoapd W) is the resonant absorption cross section.
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2.2. Laser cooling of *°Ca™ ions

Doppler limit [107]

_ Ty
-

The simple model of laser cooling described above assunteg &fo-level atom, but
the basic idea also holds for the more complex situation ofglesion confined in a linear
Paul trap. The harmonic oscillation of the ion in the axiadl aadial trapping potentials
leads to a reversion of the direction of motion after eachpatiod of the axial and radial
oscillation. To achieve three-dimensional cooling of aykrion in this configuration it is
therefore in principle sufficient to have one cooling beartkivector components along
the axial and radial directions of the trap [110]. Configimas$ using more cooling laser
beams are possible and might be beneficial in many situatidgfieen Doppler cooling
light along the radial trap direction is applied, speciagaution has to be taken with the
beam alignment as an off-centered beam tends to drive thergunicromotion discussed
in sec[Z.1l. Furthermore, the level structure of a realistids more complex than in the
simple situation of a closed two-level system and effici@aliog requires additional laser
fields. In all experiments presented in this théSBa" ions were used and we will now
consider the specific level scheme of this ion, followed bysauksion of the particular
aspects of laser cooling for large ion ensembles.

T (2.11)

2.2.1. The *9Ca" ion

A reduced level scheme with all energy levels relevant fi tthesis is shown in fig._2.2.
The 4§Sl/2 > 4p2P1/2 transition of4°Ca’ is used for Doppler cooling, with the laser
being slightly red detuned with respect to the resonant leageh of A = 396847 nm.
The excited 4EJPl/2 state spontaneously decays to both théS{l/;, ground state and
the metastable §ﬂ)3/2 state, with a branching ratio ef 1 : 12. As the lifetime of the
metastable state is of the order of a second, ions decaythgststate have to be actively
pumped back into the cooling cycle by an additional repumpaser, resonant with the
3d2D3/2 > 4p2P1/2 transition at 866 nm. Due to the branching ratio and the lawer
mentum of these photons, the cooling effect is dominatechby387 nm photons. The
partial natural linewidth of the 4§, , <+ 4p?Py , transition isl” = 2y = 2mx 20.6 MHz
and the corresponding Doppler limit (see éq. (P.11)) an®tanfy ~ 0.54 mK. The laser
systems used for Doppler cooling and the optical setup wijpkesented in selc. 4.3.

2.2.2. Laser cooling of ion Coulomb crystals

Laser cooling of large clouds of trapped ions requires sopeeific considerations. As
the ions interact via the Coulomb potential, the repulsietween the particles will couple
their individual motional degrees of freedom. In a situatizchere the radial confinement
is much stronger then the axial, small ensembles will arahgmselves in a string along
the field-free trap axis and the axial vibrational modes efitidividual ions are coupled.
However, the axial and the radial motion are still uncougad Doppler cooling has to
be performed along both the axial and the radial directiéns a less tight radial confine-
ment, the ions will arrange themselves in a three dimenbkgtnacture, where some of
the ions are located away from the RF field free trap axis. Ton@nb interaction will

then lead to a coupling of the radial and the axial motionsapylying Doppler cooling

11



2. lon Coulomb crystals in a linear Paul trap

light along the longitudinal axis is sufficient to achieveogahree dimensional cooling.
The ions positioned off the trap axis will indeed experieacegon-vanishing micromo-
tion, as was discussed in sc.]2.1. A cooling beam alongdheverse direction will tend
to actively drive the quivery micromotion and it is theredqireferable, especially large
ensembles of ions, to only cool along the RF-field free trap.ax

In our experiments we use two counter-propagating beanmgalus axis to provide
Doppler cooling light on the $§1/2 > 4p2Pl/2 transition. The repumper light is in most
cases sent perpendicular to the trap axis. Details will beudised along with the descrip-
tion of the experimental setup in dA. 4.

2.3. The physics of ion Coulomb crystals

Figure 2.3.: Projection images of of an ion Coulomb crystal taken with@@D camera
during Doppler cooling. The crystal contairs1600 ions, its aspect ratio and density
were varied between the three images. The trapping paresneeee:a. Ugg = 150 V,
Upc =9.0V b. UrRp =250 V,Upc =6.8V c. UrRp =350 V,Upc =4.7 V

When a trapped cloud of ions is cooled below a certain ctite@mperature (typically
some 10 mK), the ions form a spatially ordered state, refetoeas an ion Coulomb
crystal [76]. The properties of this crystalline structwié be discussed in more detail in
this section. The size of such crystals can reach from soméofes to several hundreds
of thousands'[78]. In figl_213 three pictures of an ion Coulanstal are shown. The
shape of the crystal depends on the axial and radial trapéezies and can be controlled
by the RF and DC trapping voltages.

Though the regular long-range ordered structure of ion @bl crystals mimics the
structure of more traditional solid state systems and atystnany of their thermody-
namic properties in the harmonic confinement potential ohal Bap are very well de-
scribed in the framework of a zero-temperature chargeddiglasma and we will in
the following subsections introduce the basics conceptseotheory of cold nonneutral
plasmas.

2.3.1. Basic theory of charged plasmas

In an ensemble of many ions simultaneously confined in a Pap] €ach individual ion
experiences, beside the force exerted by the trapping f@itehe Coulomb repulsion of
the other ions. For a sufficiently large enserflbtae situation is well-described by a cold
nonneutral plasma and we will briefly sketch the theorebeakground for this model in

4What "large” means in this context will be discussed whennitedj the characteristic length scale in a non-
neutral plasma.

12



2.3. The physics of ion Coulomb crystals

this subsection. We consider an ensemble of identical iarsh with charg€ and mass
M in a pseudo-potential given by ef. (2.9). At equilibrium aminthe force on eachionin
the plasma has to vanish, the total potertigl seen by the ion has to be constant[111]:

F=-QOPu(r)=0 = = const (2.12)

The total potentiafPy is the sum of the trapping potenti@ap (see eq.[(219)) and the
mean electrostatic potential of the plasfa caused by the charge distribution of the ions

Biot(r) = Pyrap(r) + Ppi(r). (2.13)

In thermal equilibrium, and neglecting surface effectsisireasonable to assume the
charge distribution in the plasma and, hence, the atom tygmsto be constant through-
out the ensemble. We can use Poisson’s law to relate the alpstential to the density

_Qpo

€0 '
Inserting egs.[(2]11) an@(2.8) into ed. (2.13) and applyhegltaplace operator we can
deduce an expression for the ion density in the plasma:

[Py = (2.14)

eoURE
= . 2.15
Po MrgQ%F ( )

It is independent of the axial potential and, for a given RégtiencyQgr, controlled by
the amplitude of the RF voltage applied to the trap elecsddee fig[2]3). Measuring
the RF amplitudéJrr seen by the ions precisely, is however, not trivial in piEetiWe
will later in this section present a method to calibrate the t/oltages on the basis of the
properties of the trapped ion Coulomb crystals within these.

The expression for the densify (21 15) also sets the typistdce between neighboring
ions. It can be found by assuming that each ion occupiesaigeftherical volume within
the plasma. The radius of the sphere is the so-called Wiggeitr-radiusws [112], given

by

13 raam 2\ Y3
aws = <i) = (L%) . (2.16)
4Tl'p0 4TIEO URF

Furthermore, the expression for the constant density faued. [2.15) can also be used
to define two fundamental parameters for the physics of taenph, namely the plasma
frequencywp and the Debye lengthp.

In thermal equilibrium, the potential in the plasma is cansas discussed in ef._(21.12).
If a single ion in the plasma is displaced by a distandeom its equilibrium position,
while the position of all other ions is fixed, this ion will expence a force from the
electric field of the other ions. Using e@.(2.14), the fdfce: —Q?®dy, can be found by
integration along the displacemeanand the equation of motion reads

2

. Moo (2.17)
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2. lon Coulomb crystals in a linear Paul trap

which corresponds to a harmonic motion with a characterigtquency

Q%o
Wp = &M (2.18)

referred to as the plasma frequency. It sets the time scalthéodynamics of charge
redistributions within the plasma, caused e.g. by extgredlrbations. The characteristic
length scale in the plasma, the so-called Debye length [t&2]be directly related to the
plasma frequency. At thermal equilibrium, the mean kinetiergy in one dimension is
(Exin) = %kBT, which, using the virial theorem of the harmonic oscillatdl) = (Ein),
translates into a mean displacement of

ADebye= \/ €oks T poQ?. (2.19)

The Debye length defined in ed. (21 19) is commonly interpratethe distance at which
a perturbation by an external field is shielded by a rearnaege of the space charge in
the plasma and has droppedita The Debye length is furthermore one of the defining
criteria for a nonneutral plasma. An ensemble of chargetitpes is considered a plasma
when the spatial extension of the whole ensemble is mucki#ngnpepye With typical
temperatures of the order 6f10 mK and densities of 108 —10° cm 2 ion ensembles as
used in our experiments have a Debye lengthg,ye~ 300 nm which is much smaller
then the typical ion-ion spacing ef 10 um and even ensembles consisting only of very
few ions will fulfill this criterion.

Finally, the Coulomb interaction of the individual paréslin a nonneutral plasma is
characterized by the so-called plasma coupling paranigtgl12]. It is given by the
relative strength of the Coulomb interaction between nigggimg particles and their mean
thermal kinetic energy. For two charged particles at a di#days and a temperaturg
this ratio is

cl)Coulomb _ 1 Q2
(Exin) 410 awsksT

Many of the structural properties of a charged plasma wiléermined by the parameter
I and itis e.g. used as the critical parameter to describegginassitions in nonneutral
plasmas. For an infinite plasma, the gas to liquid transivas predicted to occur for
Mol ~ 2 [113]. Furthermore, for even higher coupling parametéis,p~ 170, the tran-
sition to a solid phase with long-range ordered structuselieen predicted [114, T15].
These crystalline structures are commonly referred to m€imulomb crystals and have
been observed in a linear Paul trap only one year after thention of this type of trap
with aluminum dust particles (diametes20 um) by buffer gas coolind [116]. After the
advent of Doppler laser cooling, Coulomb crystals consistif atomic ions were formed
in linear Paul traps [75,76] and Penning trelps [77].

(2.20)

2.3.2. Zero-temperature charged liquid plasma model

In this subsection we will, based on the framework of the Zeroperature charged liquid
model [111], derive an explicit expression for the plasmgptal in an ion Coulomb
crystals confined in a linear Paul trap, which will allow ugétate the geometrical shape
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2.3. The physics of ion Coulomb crystals

Figure 2.4.: Projection image of an ion Coulomb crystal. The aspect iataefined as
the ratio of the crystal’s half-length and its radaus- %

of the plasma to the trapping parameters. The trapping patém a Paul trap is cylin-
drically symmetric, see eq[(2.9), and it was shown by Tuthat it in this case, the
equilibrium shape of a confined plasma is spheroldall[11t dspect ratio is defined as
the ratio of axial and radial extension of the spheroid

o= — 2.21

R (2.21)
whereR andL are the crystal's radius and half-length, respectively @@g [2.4). The
electrostatic potential arising from the charge distinutvithin the plasma can be written

as [111]

2

0 1/2
P21 arcsin(1—4@) “r2f(RL)-ZgRL)|, (2.22)

2
2¢0 [\/RZ — 412

where the form of the two function§R, L) andg(R, L) depends on the aspect ratio of the
crystal. Inserting the plasma potential of €g. (2.22) iXd8) and applying Poisson’s law
(2.132), the axial and the radial part separate and one catergile axial and radial trap
frequenciesw, andwy, to the two functiond (R,L) andg(R,L):

%'(rv Z) =

> PoQ?
W = 2M€0R2Lf(R, L)
> poQ?
W = ZMSORZLg(R, L). (2.23)

The ratio of the trap frequencies is hence directly giverneyratio off (R, L) andg(R,L).
Explicit expressions forf (R,L) andg(R,L) can be calculated on the basis of the zero-
temperature charged liquid model, where one has to disshdwetween the case pfo-
late spheroids witto < 1 andoblatespheroids witho > 1, for details see [111]:

1 L1112 1/2 L
f(RL) = _msmh (ﬁz_l +(_L2—_RZ)_RZ for a<1
, B - 2\ 1/2
msmh 1<1_|§_) —m for a>1
2 1 (12 1/2 )
g(RL) = msmh (ﬁz - 1) T RL for a<1
7 B . 1/2 ,
_msmh 1(1_§) +ﬁ for a>1
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2. lon Coulomb crystals in a linear Paul trap

The ratio of the trap frequencies defined in égq._(R.23) is tiieen by

sinh1(a—2-1)1/2_a(a—2-1)1/2
s 2 12 xgz gz o A<l (2.24)
sin (1o )2-a(l-a )2 ¢ 1 :
sin~}(1-a-2)Y2-a-1(1-a-2)1/2 or o>

&l

On the other hand, the ratio of the axial and radial trap feegies is directly related to
the trap voltagetlpc andUgrr. Using the expressions for the trap frequencies found in

(2.2) and[(Z.l7) one finds
ﬁ QUi 1

W ANMQEUpcry 2 (2.25)
The two equations for the relative trap frequencies fouretjs. [2.24) and(2.25) can be
used to calibrate precisely the trap voltages as seen bgtiseand we will come back to
that when presenting the experimental setup in[Set. 4.7.

Furthermore, eqs[(2.P4) arld (2.25) provide a direct waysgess the theoretical de-
scription of the ion Coulomb crystals as a zero-temperathaeged liquid by measuring
the aspect ratio of these crystals for various trappingrpatars, and the radio of the trap
frequencies can in this context be used as a figure of merihf®description.

2.3.3. Structure and temperature

As mentioned above, a phase-transition to a long range exldgructure was predicted
for an infinite plasma whehy, = 170 [114,115] and, for infinitely large crystals confined
in a cylindrically symmetric potential, the predicted gnolustate structure was found to
be body-centered cubic (bcd) [114,115]. However, for theemealistic situation of

finite crystal sizes, ground state molecular dynamics satians suggest a distortion of
the long range order and finite size effects should causeotietd arrange themselves
in concentric shells, with a constant radial inter-sheli@dpg é; throughout the whole

crystal [78117]. The inter-shell spacing can be relatatiédNigner-Seitz radius defined

in eq. [216) by
O = Xaws, (2.26)

wherex is a numerical constant. Molecular dynamics simulatiomslt this proportion-
ality factor to bex = 1.48 [117]. The shell structure has been experimentally coeitin
our group for ion Coulomb crystals in linear Paul trapd [Z88J1and the pre-factor was
measured to agree with the theoretical expectations inrapr see [[80, 119].

The inter-shell spacing can be measured from projectiog@ndsee sed_4.4) and
eq. [2.26) provides a second possibility to calibrate thp toltages seen by the ions and
hence the ion density [80, 119,120].

Let us point out that long range ordered structures with bothand face centered cubic
(fcc) structures were observed in our group also in smaldonlomb crystals containing
only some thousand ions in linear Paul trdps [121], evengharound state molecular
dynamics simulations suggest that those structures shewddppressed by surface effects
for crystals with less ther 5000 ions. The regular structures in such small crystals can
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2.3. The physics of ion Coulomb crystals

however, according to molecular dynamic simulations ofasitble ion configurations be
attributed to the finite temperature of the ensenible][121].

In this thesis, we will present experiments using ion Coulamnystals to investigate the
coherent light-matter interaction in cavity quantum aledynamics. For the experiments
described in this thesis the structural properties of ionl@mb crystals will have little
importance. However, we would like to mention that cavityagtum electrodynamics
might offer interesting perspectives to investigate ttetsectural effects in a non-invasive
way, or, conversely, that the crystal structure, if suffitig well controlled, could be used
for cavity quantum electrodynamics studies.

17






3. Cavity Quantum Electrodynamics

The field of Cavity Quantum Electrodynamics (CQED) studresfundamental interac-
tion between matter systems and electromagnetic fieldsraxhfn resonators, in situa-
tions where the quantum nature of the light field is relevariie theory of CQED has
been the subject of many books, e.q.1[58,59], and will treeesibe presented only briefly
in this chapter. However, as many of the general conceptSE will be used in the

following chapters, detail derivations will be given foetimportant equations.

The chapter is structured as follows: In sc.] 3.1 the spatidltemporal field modes
of a linear optical cavity will be discussed. S&c.]3.2 wikmhfocus on the interaction of
motionless two-level atoms with a single cavity field mode e optical Bloch equations
of the system will be derived. Finally, in selc. 13.3 the resultll be generalized to take
into account the motion of the atoms.

3.1. Optical cavities

A
\ 4

-
Figure 3.1.: Schematics of a Fabry-Perot cavity formed by the two mirMgsand M,
with radius of curvaturey and separated by a distandteThe mirrors are characterized
by their transmission, reflection and intensity loss coigffits T;, R and 4 (i = 1,2).
An input field &y, is coupled into the cavity through M&B anda’ are the intracavity
fields propagating to the right and to the left, respectivaly andayansare the reflected
and transmitted field; andk, are the decay rates of the cavity field due to the finite
reflectances of Mand M, the loss rates due to absorption and scattering on the two
mirrors are denoted by4, andk g,.

In this section, the mathematical description of a lightifiednfined in an optical cavity
will be given. The first part will introduce the concept of @gvmodes, followed by a
derivation of the dynamical field equation of the empty gagitd the steady state solution
of this equation, together with the cavity transmission eflction spectrum.
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3. Cavity Quantum Electrodynamics

3.1.1. Transverse cavity modes

In many respects, an optical cavity can be understood asptieabanalogous of an
electrical resonance circuit. The mirrors restrict the imtary conditions for the elec-
tromagnetic field and only certain field modes with well-defirfrequencies and spatial
distributions can build up inside the cavity. The possilgatil field configurations are
commonly decomposed into a basis of mode functions. In thaxgd approximation
these modes are the so-called Hermite-Gaussian modes) at@clerived and discussed
in a comprehensive review by Kogelnik and i [122] or in maeytbooks, e.gl[123,124].
In this thesis only the major results of this description Wwé given and the reader is re-
ferred to these references for more details.

We consider a symmetric cavity formed by two mirroké; and M, with radius of
curvaturery and separated by a distandiesee fig[3 1. The spatial field distributions re-
producing themselves after on round trip are, in the paflayigroximation, the Hermite-
Gauss mode$§ [122]

Enm(r) = EoWmn(r) = EoWn(X,2) Wm(y,2) P(X,Y, 2), (3.2)

with the amplitude of the electric fieley. They are decomposed into two transverse mode
functions,Wh(x,z) andWn(y, z), and one longitudinal mode functio®(x,y, z), where the
Transverse ElectroMagnetic modes (TEM) are characteliyédio non-negative indices

n andm and abbreviated by TEM,. The n-th transverse mode function is given by

(U=xy)
Wo V2u u?
D= g (m) oo -5izz) &2

whereH, is then-th Hermite polynomial with non-negative indexw(z) = wp, /1+ (%)2

the position dependent beam radiug, the minimum waist andg = % the so-called
Rayleigh range. The longitudinal field mode function alspeateds on the transverse in-
dicesn andmand is given by

L z  k(C+Y)
®(x,y,z) = sin (kz— 1+ n+m)arctan2;+T(Z)), (3.3)

where we have used the wavenumker ZT" , and the radius of curvature of the wavefront
R(2) = z[1+ (zr/2)?]. The phase factaps(z) = arctan is the so called Gouy phase
shift and corresponds to the relative phase differenceefuhdamental TEN cavity
mode and a plane wave at the same frequency. Self-congistemgires the phase shift
after one round trip to be an integer multiple af @hd we can define the corresponding
resonance condition for the mode characterized by the fstterse mode indicesand
mand an axial mode numbgre N:

1 d
Vamg=Vrsr: A+ Z(1+ n+m)arcco<1—r—)} , (3.4)
M
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3.1. Optical cavities

where the so-called free spectral ranggr corresponding to the frequency spacing of
two subsequent axial modes is given by the inverse of thedrtiymtime t

1 c
VFSR= = 54 (3.5)
Accordingly, the resonance frequencies of neighboringsivarse mode®, m) and(n’, n),

n+m=n'+n' + 1 differ by

1 d
OVpmym = ——Vgsrarccoy 1— — |. 3.6
nmn’'m T FSR S< . ) ( )
Depending on the cavity geometry, the resonance frequeotieveral transverse modes
can be degenerate. For confocal cavities, where the destafnithe mirrors corresponds

to their radius of curvaturé = ry;, every second transverse mode is degenerate as can be
seen from eq[{314).

The 0-th order Hermite polynomial is given bis(x) = 1, and the fundamental TE}M
mode has a particularly simple form

2+ 2 ] k 2+ 2
Woo(X,Y,2) = % exp(—);v(z)% ) sin ( [kz— arctanziR + %D . (3.7

The mode function is cylindrically symmetric, with a Gawassfield distribution along the
transverse directions.

After having introduced the Hermite-Gauss modes as thevatospatial field config-
urations of the electromagnetic field in the cavity, we wilntry to find the dynamical
equation and the steady state solution for the intraca@tgt 6f these modes for a certain
input field amplitude.

3.1.2. Cauvity field equation

We will now derive the dynamical equation for the intracpvield amplitudea(t) when
a input fieldan (t) is injected into the cavil} A self-consistent equation fa(t) can be
derived by finding the field amplitude which reproduces ftaéter one cavity round trip.
We consider a monochromatic input fiedgy with a frequencyw and an empty Fabry-
Perot resonator, formed by the two mirrdvis and M, where the input field is injected
through mirror M, see fig_3.11.

The two cavity mirrors are characterized by the transmissigflection and loss coeffi-
cients for the intensityi, R and 4 (i = 1,2). The transmission and reflection coefficients
for the field amplitudet; andr;, are related to the corresponding intensity coefficients by
ti = /Ti andr; = /R. Likewise, the mirror losses induced by absorption andedag,

4, will attenuate the field by a facter; = /1 — ;. Obviously, conservation of energy
requiresT; + R + 4, = 1. The amplitude of the intracavity field after one reflectam
mirror M2 reads

a(t) = agra(t — 1)d @t (3.8)

1We will use classical field amplitudes throughout the whag\tion in this section. These equations are the
same for the mean value of the field operators in the semsickldreatment which we will use later.
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3. Cavity Quantum Electrodynamics

whereT is the cavity round trip time anf.t = (w — )T is the relative phase of the
field acquired after one round trip, withe = 21vamq being the resonance frequency of
the closest cavity mode, see €q.13.4). For a certain inddtdig(t), the intracavity field
amplitudea(t) after the first mirror has to fulfil

a(t) = ty&in(t) +arr €ma'(t). (3.9)
A self-consistent solution for the intracavity field can loaifid by substituting eq[[(3.8)
into eq. [3.9):

a(t) = ty&in(t) + agoprirat — 1)efete?m (3.10)
Subtractinga(t — 1) on both sides and dividing byyields

GldzrlrzeiACT -1

alt) —a(t-1 :tl\/fam(t)_‘_fa(t_-[). (3.12)

T
Here, the input fieldy, was related to the round trip time by redefining it in termsmof a
input photon flux per round trip vig,|? = |&1*/r.

If the losses due to absorption and scattering and due tortite finirror transmission
per round trip are small, it is convenient to express thec#¥iéy and loss coefficients as
rates. The reflectivity coefficients can be written as theimlirtion of the field amplitude
by the decay rate through the mirror times the round trip time

rr=1-kt, i=12 (3.12)
In the same manner we can also express the loss coefficiebysloss rates
0i=1-Kg17, i=12 (3.13)

For sufficiently short cavities the cavity decay and losesatill be small as compared
to the inverse round trip time and hencg < 1 andKﬂ>r < 1. In this limit, the rate
coefficients can be related to the intensity transmissiahl@ss coefficients by

1-r 1-VI-T T

- = ~ 3.14a
Ki T T 21 ( )
1-ai 1-V/1-4 4
K4 T T 2T (3.14b)
and we can also express the transmission rate for the fieddghk;
ti =T ~ \/2KT. (3.15)

Furthermore, we are interested in the field amplitude foghtlfield close to cavity res-
onance and can restrict ourselvesdo~ we and assumA.T < 1. Substituting the rates

defined in egs. [(3.12) anf (3]13) into ed._(3.11) and only ikegfhe linear terms in
K1, K2, Kz, A¢ we find the dynamical equation for the intracavity field in lingit T — O

at) = v/ 2K1ain(t) — (K1 + Ko+ Kg +ilc)a(t). (3.16)
Here, the mirror losses were combined into one intracaviy Fate

Kﬂ:Kﬂl+K,’42- (317)
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3.1. Optical cavities

In steady state, ed._(3J16) can readily be solved and one finds

a— VKB (3.18)
(K1 +Ko+Kg+ile)

The intensity of the intracavity field is then given by

2K1

2
—— & A
K2 Ag |a{|’1| ’ (3 9)

where the total cavity field decay ratexis= K1 + K2+ K 4. Using the same approximations
as in the derivation of eq_(3.1.6) and substitutingj andt; by the appropriate rates, we
can find the input-output relations for the transmitted aftécted field amplitudes

el = t101@ —rian ~ \/2K1a—an (3.20a)
arans = todza~ \/2KoTa (3.20b)

The steady state cavity transmitivily and reflectivity® spectra are defined by the trans-
mitted and reflected intensities normalized by the inpurisity

2 2 2
refl (K—2K1)“+ A%
= |—| =—— 3.21a
% - |5 — (3.212)
2
Atrans 4K1K2
T = = . 3.21b
‘ ain K2+Ag ( )

Both transmitivity and reflectivity are Lorentzian funat®of the cavity detuninfc with
a FWHM
K K1+ Ko+Kg

v=2—=2

o o (3.22)

Using egs. [(3.14) one can relate the cavity half-with diyeict the mirror transmission,
reflection, and loss coefficients by

Ti+To+A4

ov~2
v e

(3.23)

In Fig.[3.2 the cavity transmission and reflection as definesdji [3.21L) are plotted as a
function of cavity detunind\.. The finesseF, which is a measure of the quality factor of
the cavity resonance, is given by the ratio of the free spbicinge to the cavity linewidth

VESR . Tt 2n

F ~ :
o  T(Ki+K2+Kg) Ti+T+4

(3.24)

In the following section we will generalize the dynamicabatjon for the field in an
empty cavity to the situation where a matter system intsradth a single cavity field
mode and derive a full set of semi-classical equations desgrthe dynamics of the
coupled matter-cavity system.
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Figure 3.2.: Cavity transmission and reflection around one resonanca @avity with

similar parameters as used in our experiment. The freerspeange is/psr=12.7 GHz,

the mirror transmission coefficients afre= 1500 ppm,T, = 5 ppm and the cavity loss

coefficient is4 = 600 ppm. With these parameters the finesse of the cavity atistan

F ~ 3000.

3.2. Two-level atoms interacting with a single cavity field
mode

The interaction between material systems and the elecgoetiz field inside a cavity
at the quantum level is the subject of Cavity Quantum Elelgtnamics (CQED), see
e.g. [68(59,125,126]. To understand the fundamental gac# is instructive to first
consider the simple case of a single two-level system withugd statdg) and excited
state|e) interacting with a single light mode inside the cavity. Thérat which a single
excitation is coherently exchanged between the field modettaa two-level system is
given by

HgeEo
h
Here, uge is the dipole matrix element of the transition considered Bsnthe electrical
field amplitude. When brought to the excited state, the atamadso couple to the quasi-
continuum of the vacuum states and decay via spontaneogsiemat a rat€ = 2y. As
g determines the rate at which coherent evolution betweeintbdevel system and the
cavity field takes place, it should be compared to the disispaates. For experiments
with light fields in free space the spontaneous decay raterigmlly much higher than
the coupling to a single field modg:> g. The situation is different, though, if the atom
is positioned at an anti-node of a standing wave field insidegical cavity. In the case
of a resonant cavity, the coupling rate to the cavity fielthisr¢ased and can exceed the
spontaneous decay rate [127]. In a realistic situation¢#vity only covers a small solid
angle and the coupling to the other vacuum modes, and, h#respontaneous decay
rate, will be unchanged. Beside the spontaneous emissioitagons can be lost to the
environment when a photon leaks out of the cavity becausheofitite reflectivity or
the mirrors and the decay of the cavity field at a nateonstitutes a second source of
decoherence in the system, see Eq.(3.22).

, (3.25)

g:
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3.2. Two-level atoms interacting with a single cavity field mode

Itis obviously interesting to be in a regime where the coheegchange of excitations
between the two-level system and the cavity field at aga&eceeds both the spontaneous
emission and the cavity field decay raggs. In CQED the regime where

g> (K,Y) (3.26)

is commonly referred to as the strong coupling regimé [58]has been successfully
accessed with neutral atoms [61,11284131] and also with €ougirs [132] and quantum
dots [133].

With the normalization of the vacuum fie®dE2,V = 170 the field in the cavity is

given byEyac= 4/ 2@% whereV is the mode volume of the cavity, ang is the frequency
of the cavity field mode. Substituting into ed._(3.25) the e@mt coupling rate can be

written as

e
9= Hge 26V (3.27)

To realize a situation wheig> v, it is according to eq[{3.27), desirable to minimize the
volume of the cavity field mode. On the other hand, the fingBsavhich is inversely
proportional to the length of the cavity, has to be maintdisefficiently high to also
ensureg > k = “£8, see eq.[(3.24).

3.2.1. The Jaynes-Cummings model

The Jaynes-Cummings model is a widely-used quantum mezddahescription of the
interaction of a two-level system with a single light moded@gprehensive review of the
model can be found in [134].
In this subsection we will introduce the model for the simgiteiation of a single two-
level system interacting with a single cavity field mode ataati-node of the standing
wave field, before extending the model to the cadd afoms in the following subsection.
The Hamiltonian of the coupled system consisting of a tweallsystem and cavity
field mode is given by

H = Hat+ Hi + Hint. (3.28)

The first term of the Hamiltonian is the atomic part, which lie frame rotating at the
laser frequencyy, is given bE

Hat = hATE® (3.29)

wherefi® = |e) (] is the excited state population afd-= wq— w is the atomic detuning.
The second term in ed.(3]28) describes a single mode of tlenfiged) cavity light field
and is given

Hi = hAA'a, (3.30)

2 Note that the time dependence of the electromagnetic fielthited by a unitary transformatids = e~@t
to a frame rotating with the frequency of the light field.
3For convenience, the zero-point energy of the vacuum figdarnisted.
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Figure 3.3.: Schematic level diagram of the vacuum Rabi splitting in #sonant case
for a. a single two-level atom coupled to a single cavity field modd . N atoms
simultaneously interacting with the field mode. For detsds text.

wherel: = we — wy is the detuning of the cavity relative to the frequency ofitipaut field

andd’, 4 are the intracavity field creation and annihilation opersatdhe third term in
eq. [3.28) describes the coupling between the two-levétsysnd the light field. Using
the dipole approximation and in the frame rotating with @sek frequency it is given by

Hint = —geE = —hg(6" + 6)(a" + &), (3.31)

where we inserted the coherent coupling rate defined ir e2j):3
Applying the rotating wave approximation, i.e. neglectihg two non-energy conserv-
ing termsa andGa' in eq. [3:31) we find the Jaynes-Cummings Hamiltonian

H = hATt® + hAc(aT8) — hg(6Ta+ 64a"). (3.32)

It can be readily diagonalized using so-called dresseds{&B.126]. In the experiments
described in this thesis we focus on the investigation ofitiig-matter interaction at the
single photon level and we can restrict the system to thestlorgest stateq,0), |g,1)
and|e0). In this notationg, e refer to the atomic ground and excited states, and the
second quantum numberDdenotes the number of photons in the cavity field mode under
consideration. In the case of a resonant light fielgd= wa, the uncoupled stateg, 1)

and thele,0) are degenerate. The coupling with the cavity field will, hearemix these
two states and give rise to the so called vacuum Rabi sgittinthe cavity spectrum.
The new eigenstates of the coupled system|gu@), |+) = \ifz(|g, 1) +|e 0)) and the
energy difference iIAE = 2g, see fig[(3.B a. The situation is similar to the case when Rabi
oscillations between ground and excited state are drivendiyong laser field. However,

in the situation described here, these oscillations oauight fields at the single photon
level.

3.2.2. Interaction of N atoms with a single cavity light mode

We will now generalize the previous single-atom situatiorthe case wherdlg; ions
simultaneously interact with a single cavity mode. In thgecaf non-interacting ato

4 For the case of an ion Coulomb crystal trapped in a linear Pap| this is a reasonable approximation, as
the ions are well-separated, and the Coulomb interactibncmuples their external degrees of freedom, as
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3.2. Two-level atoms interacting with a single cavity field mode

Figure 3.4.: CQED scheme considered for the description of the interadietween an
ensemble of ions and the cavity field. The situation is simdahe situation depicted in
fig[B.d. The resonator is formed by two mirrors Mnd M, aj, is the input light fielda
the intracavity fieldayansandareq are the transmitted and reflected fields, respectiwaly.
andka are the cavity decay rates through Eind M, all other cavity losses are merged
in the ratex 5. The spontaneous dipole decay rate of the ions is denotgd by

the Hamiltonian in the rotating wave approximation defin@def single two-level system
in eq. [3:32) now reads

Neot Neot
Hy="ha 'S 76+ haa'a—hg Y Won(r;)(6]a+6;a"), (3.33)
=1 j=1

whereﬁ%e) is the excited state population aﬁ{iandc”rj are the atomic rising and lowering

operators of thg-th ion (in the rotating frame) arglis the single-ion coupling rate defined
in (3.Z1). As the ions are not necessarily located at ardies@f the cavity mode, we take
into account the field distributioBgWnhm(rj) of a single cavity Hermite-Gauss mode as
introduced in eq[{3]1) and weight the contribution of eachtd the light-matter coupling
with the field amplitude of the considered mode at the pasitibthe atom.

To gain more insight into the collective behavior, it is, hemer, instructive to first
consider the situation, whehatoms couple with equal coupling strength to a particular
cavity field mode, henc#pm(rj) = 1, Vj. For a weak excitation of the system (at most
one excitation in form of a intracavity photon or a colleetidelocalized excitation of the
atomic ensemble) we can restrict ourselves to the threeskelyimg Dicke states [88],

gy = 19P9?. . Jg9g™n), n=01
L& 0 ) (N)
ey = — S 9 9®@..1e"7..19N0), (3.34)
NN

where|g>“> (|e>(j)) denote the ground (excited) state of th¢h ion. The state vector
|g,n)y represents the coupled system of all ions in the ground atate photons in the
cavity field mode, while the state, 0),, contains no photon in the cavity field mode and
one delocalized excitation which is shared by the whole at@msemble. The interaction
Hamiltonian in eq.[(3:33) couples the two stajigd), and|e, 0),, the expectation value

yields
. <g,1 ghii (cﬁa+ G(aT) e,0>N = %.i " <g,n‘(0i+é+ G(é’r)’e,0>(i)
— hgvnN. (3.35)

explained in chaptdér2.3.
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3. Cavity Quantum Electrodynamics

The situation is similar to the situation of a single twodesystem coupled to the cavity
field mode discussed in the previous section, where thesekstate|e, 0),, of the system
now can be understood as a collective spin polarizationeétisemble and the collective
coupling rate between the ensemble and the cavity field nseietianced by a factefN.
Again, forA =0 andg = 0, the two statefe, 0),, and|g, n), are degenerate. A non-zero
couplingg lifts the degeneracy and the energy levels of the new colkeefgenstates are
separated by@/N, as depicted in fid_3.3 b.

An interesting regime is reached, when the collective cafecoupling rate between
theN-atoms and the cavity field mode exceeds the dissipative rathe system

gv'N > (,K). (3.36)

In the literature it is referred to as as the collective sgronupling regime[58]. It was
successfully accessed with atomic ensembles in the miemregime([60] and also in the
optical domain[[6/1, 62, 135] and, more recently, with Bosestein condensates [66./67].

Collective strong coupling in our system

Based on the above discussion, we can now estimate how masgiie necessary to reach
the collective strong coupling regime in our setup. In oyseximents we investigate the
interaction of*°Ca’ ions with a cavity light field on the 33, <+ 4p?P;  transition
(see fig[2Z.P) and the spontaneous decay rate of tﬁélflgdevel isy=2mx 112 MHz.
The second decoherence rate, namely the cavity field detawes measured to lke=
2 x 2.1 MHz [80].

The single ion coupling ratg can for the given atomic parameters and the known
geometry of the cavity be calculated (see appeindik A.5) aamtivd

Gtheory= 2TTx (0.532+- 0.007) MHz. (3.37)

From these values we deduce thab00 ions effectively interacting with a single cavity
field mode should be sufficient to reach the regime wiggr® > (k, y) in our system.
We will in the next section precise this effective numberasfs in our situation.

3.2.3. The optical Bloch equations

In the previous subsection, we introduced the Hamiltoniescdbing the coherent light-
matter interaction, neglecting dissipative processesderive the time evolution of the
system observables including the dissipative processes,spontaneous emission and
decay of the cavity field, we make use of a standard Heiserltmmngevin approach [126].
It yields the time evolution of the system observables idekithe damping terms and also
the noise operators describing quantum fluctuations. letperiments presented in this
thesis, we are only interested in the mean values of the tipei@nd can restrict ourselves
to the semi-classical mean values of the observables, ohidimg the noise operators.
For an arbitrary observabtetfie semi-classical mean value is denoteoby (6). In the
Heisenberg picture, the time evolution of an observabis given by?ﬂ—é = —+[6,H].
Using the Hamiltonian of eq.[{3.B3), we can calculate theadyical equations for the
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3.2. Two-level atoms interacting with a single cavity field mode

mean values of the system observables and one finds, ingltitBrdissipative terms

1Y = —igWn(r;) (oja’ - ola) - 2ym® (3.382)

it? = +ig¥n(r)) (oja’ -~ ofa) +2ym® (3.38b)

5 = —iagWon(r] (rée rég) (y+iD)o| (3.38¢)
Neot

a = —(k+idc)a+iy gWnm(rj)oj+ /218, (3.38d)
=1

The three first expressions are commonly referred to as tlieabBloch equations [136],
while the last equation is the evolution equation of thetyeield including the interaction
with the atoms and can be regarded as an extension of the fodseempty cavity found

in eq. [3.16).

Low saturation regime

The set of differential equations in egk. (3.38) describedll dynamics of the coupled
atom-cavity system. In the experiments presented in tesshthe light-atom interaction
is studied at the single (or few) photon level and the dynahequations in[(3.38) can
be restricted to the low saturation regime. In this limit,shof the atoms remain in the

ground state and we can assungleé ~0, andnﬁg> ~1Vj. Egs. [3:38c) and(3.3Bd) reduce
to

6, = —(y+iA)0j+igWnm(rj)a, (3.39a)
Niot
a = —(k+ibc)a+iy g¥mm(rj)oj+/2Kiain. (3.39b)

=1

3.2.4. Steady state spectrum of the coupled atom-cavity sys tem

In steady state the dynamical equation$in (8.39) can bélyesadved and one finds

iga
o = y+iAan(rj) (3.40a)
__V2Kiain (3.40Db)
K+iAc—iX '

where the linear susceptibility of the atomic ensemble
= ZNL (3.41)
X=9% T '

was introduced. In this expression the sum over the cortioibwf the individual ions
was replaced by an effective number of interacting ibnsit will be discussed for our
system in the following paragraph.
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3. Cavity Quantum Electrodynamics

The effective number of interacting ions

The effective number of ions is defined as the sum over allimtige crystal weighted by
the field mode functio’,,, of the TEM,, mode considered (see sec. 3.1.1)

Neot
N=Y Win(r)). (3.42)
=1

It can be understood as the situation where the interacfioimed\io; ions in the whole
ensemble with the cavity field mode is mimicked by an ensembl¢ ions all located at
anti-nodes of the fundamental Tklymode.

As discussed in se€._2.3, ion Coulomb crystals in a lineaorfridquency trap are to
an excellent approximation spheroids with half-lengthnd radiusR (see fig[Z}¥) and a
constant ion densityyo, throughout the whole ensemble. It is then convenient tpaao
continuous medium description, in which Elq. (3.42) becoaremtegral over the crystal
volumeV

N = po /V drw2 (r) (3.43)

In our experiment, the crystal radius and half-lengtlandL, are typically much smaller
than the Rayleigh ranga, so that the axial mode function can be simplified

sir? [kz— arctartz/zo) + kr?/2R(2)] ~ sir?(k2). (3.44)

Moreover, for ions randomly distributed along the cavitysaxve can average over the
standing-wave longitudinal structure, which yields arefiive number of ions of

R R
N = p—2° [ ox 1 YRR, (3.45)

The exact expression in ed._(3143) can be evaluated nurtigficaan arbitrary TEMym
knowing the crystal dimensions, its density and the cavigdengeometry. In most of
experiments presented in this thesis, the cavity field modetion considered will be the
fundamental TEMo Gaussian mode, introduced in e_{3.7). For typical crgstath
large radial extension as compared to the cavity wiist-(wp) and a half-length smaller
than the Rayleigh rangé (& zr) the coupling to the TENb can be further approximated
and the exact expression of eg. (3.45) reduces to

N~ poﬁg (3.46)

which is simply the product of the ion density by the volumeta cavity mode in the
Crystaﬁ.
Cavity transmission and reflection spectrum

Using the input-output relations given in ef. (3.20), theityaransmission and reflection
spectrum of the coupled ion-cavity system can be calculédéhg the atomic suscepti-

5The volume is effectively reduced by a factorigd by the longitudinal averaging.
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3.3. The effect of motion

bility into account and one finds

2 2 2
_ | Gefl _ (2k1 —K')" 4 Af
®=30 = aim (3.47a)
[K1— K2 — Kz — Im(X)]2+ [Ac — Re(X)]?
K2+ A2+ [x]2+ 2[KIm(X) + AcRe(X)]

T = ‘ Atrans 4K1K2

= — 3.47b
ain K’2+Aé2 ( )

4K1K2
K24 A%+ |X|2+ 2[kIm(X) + AcRe(X)]

Here an effective cavity decay rate and an effective cavatyuling were introduced:

W = :K+|m(x):K+gZNﬁ, (3.48a)
A
A = Ac—Re(X):Ac—gsz- (3.48b)

Like in the case of the empty cavity in eqE._(3.21) the linepshaf the reflection and
transmission spectra are still Lorentzian when the cawtying is varied. However, the
bare cavity decay rate and detuningnd/ are replaced by the effective cavity decay rate
and detuningk’ andA,. These quantities, dressed by the atoms, result in a broagden
and a shift of the cavity resonance, respectively. The kepid) and shift of the cavity
resonance represent the change in absorption and dispergi@rienced by the cavity
field interacting withN ions and will be used in clfi] 5 to quantify the collective cagl
strength achieved in our experiments. Fig.]3.5 a. shows dligtyctransmitivity as a
function of cavity detuning\. for an empty cavity and for 500 ions coupled to the light
field for a probe laser detuning of=y.

An interesting situation occurs when the length of the gaviistead of being scanned,
is stabilized such that the cavity resonance frequencyualdq the atomic resonance fre-
guencyw = Wyt (hencel; = A). As discussed in seC.3.2.1, varying the probe frequency
amounts to probing the normal mode spectrum of the coupted-aavity system. In this
case, the reflectivity spectrum reads

_ [ki—k2—kKg—Im(X)]*+ [A+Rex)]?
Ro= K2+ A2+ X2+ 2[KIm(X) — ARE(X)] (3.493)

A2 WA —AZ
(K1— Ko —Ka)2+ A2 — N2 L8 og2N (aKe Ky 07
= Nt YT (3.49h)

2 A2 on YKHAZ | giN?
K=+A%+29 Ny2+A2 V2 +A2

As a function of the common detunidyg it exhibits a characteristic double peak structure.
The splitting of the normal modes is commonly referred tohesviacuum Rabi splitting,
and was qualitatively already described by the Jaynes-Angsmodel in se¢_3.2.2 (see
fig. [3.3). An example for the expected cavity reflectivity spem when the cavity is
locked on atomic resonance is shown in fig.13.5 b. for an e¥fectumber of ions of

N =500 and a single ion coupling rate @t 21 x 0.53 MHz.
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Figure 3.5.: a. Calculated reflection spectrum as a function of cavity dietyA; for 500
ions coupled to the cavity mode (red line) and for the emptyjtgdblue line). The probe
detuning was set th = y= 21t x 11.2 MHz. b. Reflection spectrum for a cavity resonant
with the atomic transition = Ac). The red line is calculated for 500 ions effectively
interacting with the cavity mode and a single ion coupling raf g = 2mx 0.53 MHz,
while the blue line corresponds to an empty cavity. The ggutrameters are identical to
those defined in fig._3].2.
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Figure 3.6.: Effective dipole decay rat¢ normalized by the natural widthas a function
of temperaturd. Each data points is the result of a fit to the cavity field effecdecay
rate of eq. [[3.51a) for a certain temperatlire As a fitting function we use the cavity
effective decay rate found for the case of ions at rest (EcZ8€3), where the natural
linewidthy was replaced by an effective linewidghto account for the finite temperature
of the ensemble.
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3.3. The effect of motion

3.3. The effect of motion

The dynamical equations found in eds. (3.38) are only valicifoms at rest. If the veloc-
ity of the ions has a component along the axis of the cavitystAnding-wave structure
of the cavity field and the Doppler shifts due to the finite eélpof the ion have to be

taken into account. For an ion moving along the standing Viiele with a velocityv it

is convenient to define atomic dipole operators arising ftoeninteraction with the two

counter-propagating components of the standing-waveycteid oj+ = %O'j exp(zikz).

In the low saturation limit, taking into account the oppeditoppler shifts, and for a slow
motion, the evolution equations (3140) become

Gjr = —[y+i(ALkv)|ojs+i(g/2)Wam(rj)a (3.50a)
Neot

a = —(K+id)a+i(g/2) 3 Wnm(rj)(0j+ +0j-) +v/2Kan.  (3.50)
=1

For a sufficiently large ensemble and random velocities efittdividual ions given by
a certain probability distributiorfi(v) the steady state mean value of the intracavity field
can be calculated and is still of the same form as in the zeloeity case (Eq[{3.40)).
However, the effective cavity decay rate and the effectandtyg detuning are modified.

Eqgs. [3.4B) become

K = K+gZN/dvE(A,v)f(v)y (3.51a)

AN = Ne—gN / oVE (A, V) F (V) (B — kv). (3.51b)
where the dimensionless parameter

Yo+ A% + (kv)?
(V2 +202)2 4 2(y2 — A2) (kv)? + (kv)*

was defined. In the case of a thermal ensemble, the veloatsltiition is the Maxwell-
Boltzmann distribution, which for a certain temperatuires given by

m mv2
") =1/ 2T eXp(‘ T

For temperatures in the few tens of mK range the variatiorhefdavity field effec-
tive decay rate and detuning withgiven by Eqs.[(3.81) are still well-approximated by
Eqgs. [3.4B) replacing the natural linewidtiy an effective dipole decay raye

Fig.[3:6 shows the effective dipole decay rate as a functidhendetuningh deduced
by fitting the numerically calculated effective cavity fielécay rate for finite tempera-
turesT in eq. [3.51h) by eq[(3.4Ba) calculated for ions at rest aadihg the effective
dipole decay rat§ as a free parameter. This graph will later allow us to appnaxé the
temperature of a certain ion Coulomb crystal from the eiffeaipole decay rate, found
by fitting the measured effective cavity field decay rate by(@ai8a).

£V = (3.52)

) dv. (3.53)
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4. Experimental setup

In this section the setup used for the experiments presantbis thesis will be described.
The setup was to a large extent finished before the start ®fRhD and we will only
give a brief description of the setup. The project was stianigh the goal of building a
guantum memory based on ion Coulomb crystals in an opticatycand a first version
of a linear Paul trap with an optical cavity incorporated \@asigned and built by Anders
Mortensen. Details on the design considerations and fipgtreences with the setup can
be found in his PhD thesis [187]. The project was then coetinby my predecessor
Peter Herskind who developed and constructed of the secapgvthich is the one used
for the experiments in this thesis. A very comprehensivedetdiled description of both
the cavity trap and also the laser systems used for our ewpaets is given in his PhD
thesis[[80)].

Some of the experiments presented in this thesis requiigdtt shanges of the system,
mainly of the optical setup. The relevant modifications Wwéldescribed in the respective
chapters. Here, we will focus on the general aspects and #ie components of the
experiments.

The chapter is structured as follows. In sec] 4.1 we willtstat with an overview of
the setup, before describing the linear Paul trap in E€d. 14.8ec.[4B we will present
the laser systems used for the loading, Doppler cooling tatd preparation of the ions,
followed by the imaging and fluorescence detection systensec.[4.4. In sed._4.5 we
will describe the optical cavity incorporated into the taa in sec[416 give a technical
description of a general technique to geometrically displie minimum of the radially
confining RF potential in order to overlap the cavity and ttag taxis. Finally, we will
describe the cavity detection systems and the data adquisitstem in sed._4.8 and #.9,
respectively.

4.1. Overview

Trapping charged particles in the vicinity of dielectriedts like mirrors is very chal-
lenging, as the insertion of such dielectrics into the tragpegion may significantly
change the boundary conditions and perturb the field linéseofonfining potential. Fur-
thermore, charging effects on the dielectric surfaces nmagrgse to local patch potentials
which also change the effective trapping potential. Théizaon of the strong coupling
regime of cavity quantum electrodynamics necessitatessragll cavity mode volumes
(see eq. [(3.27)) and is therefore difficult with ions. Onlwfgroups have until now
realized ion trap systems incorporating optical cavit@sntzestigate the interaction of
single ions with a cavity field modé [68-74] and the single-strong coupling regime
still remains to be achieved.

The cavity trap inArhus was designed to realize an efficient quantum memongusi
large ion Coulomb crystals. One of the basic requirementsdich a memory is the
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4. Experimental setup

Figure 4.1.:Inside of the vacuum chamber, with the main laser beams. hamber has
a inner diameter of 40 cm. For details see text.

achievement of the collective strong coupling regimeé [S8e( eq.[(3.36)). FdY ions
effectively interacting with the cavity field mode the calliee coherent coupling rate is
enhanced by/N (see eq.[(3.36)). For a sufficiently large number of ionsréagiirement

for small cavity mode volumes therefore becomes less alitis the regime, where the
collective coupling rategy/N exceed the spontaneous dipole decay rate and the cavity
field decay ratey andk, can be reached although (k,Y).

In our setup, a segmented linear Paul trap (sed_sdc. 4.2nisiced with a moderately
high finesse cavity (see séc.4.5). The cavity trap is motintadzacuum chamber under
ultra-high vacuum conditions (pressure —5- 10-1% mbar), with 8 viewports providing
optical access from different sides and from the top. A peetf the inside of the vacuum
chamber with the main laser beams can be seen in[fig. 4.1. Thaivachamber is
positioned on an optical table, which also contains the sgag optics to distribute the
different laser beams to the chamber and the detectionrsgst&ll the laser systems are
located on different optical tables, and the light is braugfhe trap table through optical
fibers.

4.2. The linear Paul trap

The ion trap is a segmented linear Paul trap, formed by folimdrjcal rods, each divided
into three separate electrodes, sedfig. 2.1. A mathemdssatiption of the confinement
potentials was given in seC._2.1. The trap electrodes hagdiag ofre = 2.60 mm and
are diagonally separated byo2= 4.70 mm. The lengths of the central and the outer
segments arezZg = 5.00 mm andzeng = 5.90 mm, respectively (see fig._4.6). The trap is
operated at a frequency &frr = 211 x 4.0 MHz. The radio-frequency field is applied to
all 3 segments of each rod, with a phase differenca bétween neighboring rods, see
fig.2.d.

The endcaps are formed by the four outer segments on eacargideial confinement
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4.3. Laser system

Mirror 2 PT Mirror 1 HR

PZTs Ceramics mount Trap electrodes

Figure 4.2.: Picture of the cavity trap setup taken through one of the \pevis of the
vacuum chamber. The cylindrical trap electrodes are of gtatkd copper and attached
to a monolithic Macor mount. The two cavity mirrors are hejditanium plates separated
by two low expansion ceramics. Mirror 1 is the high reflectdR] and directly mounted
on the titanium plate. Mirror 2 is the partial transmittelf§Rand mounted on a PZT plate
to allow for precise control of the cavity length.

is achieved by applying static potentials (DC) to thesetsdeles. In this geometry, the
a- and g-parameter defined in eqd__(R.5) aid12.5) are —0.84 x 102 UpcV ! and

q = 1.38 x 10 3Urr/v, the axial geometrical constantris= 0.342. The trap electrodes
are manufactured from gold coated copper and mounted ardeidal ultra low expansion
rods (Zerodur), which are held in place by a monolithic cecaname (Macor). The RF
amplitude is provided by a frequency generﬂdmnd amplified by an RF amphfﬁr A
home-built continuous current voltage driver is used topbuthe DC end-cap voltages
(electrode segments 1-4-7-10 and 2-6-9-12, respecta@dfig[[2.11) and, in addition, also
allows for the selective application of DC potentials to goaf the electrode segments
(e.g. 1-2-3 and 4-5-6 can be controlled independently, seffil). More details on the
linear Paul trap can be found in[80] and [120].

4.3. Laser system

In this section the laser systems used for Doppler coolorgzation and state preparation
of the ions are introduced. A simplified schematic overviexrall laser beams and the
optical setup is shown in fi§. 4.3

1Hewlett-Packard, HP 33120A
2Amplifier Research, 4W1000

37



4. Experimental setup

___________ — reference
Tlx Tl T cavity
[9] 10 10
2ls Qs 218
| - — | -
ol (94 |3
© S © = @ £ 9
— — = o O 5,
VO U< VO a SE
T O ioXe) o O < o>
O O o L8
a a) [a) g T
=
= i
A 4 A 4 A 4 n .Jﬂlij
[AOM
PBC |4
I
o)
= o
& g
=
wn
N
866, 894
)

Figure 4.3.: Schematic setup of the cavity trap and the laser system. digation
laser is not shown on the sketch. A more detailed picture @ttvity detection system
is shown in fig.[4B. The abbreviations are: Polarizing beplittar cube (PBC), single
mode (SM), acousto optical modulator (AOM), dichroic mirdM). Pound-Drever-Hall
lock (PDH lock).
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4.3. Laser system

4.3.1. Doppler cooling lasers

The Doppler cooling light on the S, , «» 4p?P; , transition of*°Ca’ at 397 nm (see
fig. [2.2) is produced by a frequency doubled Ti:Saph lasee fféquency of this laser
is stabilized using a Pound-Drever-Hall[138] locking stigeto a temperature stabilized
reference cavity, formed by two mirrors on a 25 cm long quarte. The free spectral
range of the reference cavity Vgsg ~ 600 MHz. The resonator is mounted in an evac-
uated vacuum tube, the frequency stability was measured to b MHz/h, for details
see [139]. The laser light sent to the reference cavity isgdishrough a double-pass
acousto-optical modulator (AOM) allowing for the fine tugiof the frequency of the
Ti:Saph laser by-100 MHz. When locked to the reference cavity the linewidttiref
laser is of the order of 100 kHz and much narrower than the natural linewidth of the
4SS, ), » 4pPPy 1, transition in*Ca which isI = 21 x 22.4 MHz.

The frequency doubled light is then sent through a second A®Ddihgle-pass and the
—15tdiffraction order is coupled to a fiber guiding the light keettrap table (see fig._4.3).
The AOM is used to switch the Doppler cooling light on and efith typical rise times
of the order of~ 100 ns and an on-off attenuation sf55 dB after the fiber. On the trap
table the light is split into two equally intense beams thratsent to the trap in counter
propagating directions along the trap axis, with oppositutar polarizationsg* /o).

4.3.2. Repumping and optical pumping laser

An external cavity diode laser system provides light at 86§ worresponding to the
3cPD3, ++ 4p?Py ), transition of*Ca’. Itis used both to repump spontaneously decayed
ions from the metastable 333/2 level during the cooling cycle and to optically pump
the population to certain Zeeman substates of tﬁ@gg level. The diode laser is also
frequency stabilized to a second temperature stabilizEaenrece cavity (length 25 cm,
Vesr~ 600 MHz) in a Pound-Drever-Hall scheme with a linewidth~0100 kHz. Again,

a double-pass AOM setup allows for the fine tuning of the l&sguency by+100 MHz.

The beam is split into two parts for repumping and optical ping. Both beams are
sent through single pass AOMs to allow for switching the beam and off, the—15-
diffraction order is again coupled to single-mode fibergagporting the light to the trap
table (extinction after the fiber 55 dB).

In most experiments the repumping laser is sent to the tnajecalong the-axis, i.e.
perpendicular to the cavity axis, see fig.]14.3. The poladnas chosen perpendicular to
thez-axis, which, in the basis of the quantization axskis) corresponds to a superposi-
tion of o™ ando~ light. With this polarization, all four magnetic substatéshe 3cFD3/2
level are addressed and repumped to the excitéﬂlﬂ;plevel, from which the atoms de-
cay to the 4%1/2 ground state (with a probability of 12:1). In some experitsalifferent
configurations for the injection of the repumping laser Wil used, e.g. to visualize the
transverse cavity modes (see fig.]5.1).

The optical pumping beam is (in most experiments) sent tardpeat an angle of 45
relative to thez-quantization axis, see fif._4.3. The polarization of théagbpumping
beam after the fiber is controlled by a Glan Polarizer and essicely aA /4 and aA/2
wave plate. It has a suitable polarization, such that ordytthndo™ transitions between
the 3¢D3/, and 4pPy , level are addressed [140]. During optical pumping the Deppl
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4s5p 1Py ¢1
4s3d 1Dy

272nm

452 lSo L

Figure 4.4.: Resonantly enhanced two-photon ionization scheme. Thanhé of the
4s50 Py level is 17— 60 ns, the lifetime of the 4s3WD, state is 18us

cooling beams at 397 nm are sent to the ions to transfer pipuiaf the 4§Sl/2 ground
state to the metastable %1313/2 state. In this configuration, thejm: 4+-3/2 state of the

3d2D3/2 level will not be addressed by any laser and the simultaniedersction with the
repumping and the Doppler cooling laser transfers the @tjon to this quantum state.

4.3.3. Isotope selective loading

Calcium ions are loaded to the trap from a resistively heatezh containing natural
abundant calcium comprising all stable Ca isotopes. Wittaetibn of 969 %, the most
abundant isotope #&Ca, which is also used for all experiments presented in bsis.

However, any stable Ca isotope can be loaded [80, 120], e.fprin bi-crystals of two
simultaneously trapped isotopés [118,1141].

To load calcium into the trap, the oven is typically heated-t410° C, and a thermal
beam emerges from the oven. It is collimated by a set of skirmrmed sent thought the
center of the quadrupole trap at°4®lative to the trap axis, where it is perpendicularly
crossed by an ionization laser beam at 272 nm allowing foistitepe selective loading of
calcium. This is accomplished by a resonantly enhancedaiwaien ionization process,
where neutral calcium is first excited to the 488plevel by a resonant photon around
272 nm and subsequently transferred to the ionization woutn, either directly from
the 4s5pP; level or, after a spontaneous decay, from the metastabiBs3evel by a
non-resonant second photon at the same wavelength (seelligThe isotope selectivity
of the process originates from the first resonant transitidrich for#°Ca is separated by
~ 1 GHz from the next closest isotofyéCa [142].

Lightat 272 nm is produced by a fiber l&3at 1088 nm which is frequency quadrupled
in two subsequent bow-tie cavitiés [143]. The fiber laseunimble over several GHz, and
any stable Ca isotope can be loaded by tuning it to the isappeific frequency of the
42 1Py +» 4s5plP; transition. Both the Doppler cooling and repumping laseesam
during the loading process [120]. After loading the desimachber of ions into the trap
the light of the ionization laser is blocked and the calciurarois closed.

3Coheras Boostik
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Image
intensifier

Beamsplitter: I

. el

- @®
Figure 4.5.: Schematic setup of the imaging system. Two charged couphddelcameras
(CCD) and one photo-multiplier tube (PMT) can be used to noorthe fluorescence of

the ions. The main camera system and the PMT are mounted #ivep, while the
second CCD camera is used to image the ions from the side.

4.4. Imaging and fluorescence detection systems

Two camera systems are used to visually detect the ions itrdipeby collecting the
reemitted fluorescence light during the Doppler coolingcpss. Additionally, a photo-
multiplier tube can be used to monitor the fluorescence Ire@h the trap. All three
systems will be described in the following. A schematic patfithe camera systems is
depicted in fig[4pb.

4.4.1. Top camera

The main camera is mounted above the trap and images theetrapps in the(x, 2)-
plane. All projection images of ion Coulomb crystals in tthesis are taken with this
camera. The imaging system consists of an achromatic lehsafocal length of 75 mm
mounted~ 80 mm above the trap to collect the fluorescence light. The &e imaged
with a magnification of~ 10 onto an image intensif&consisting of two stacked multi-
channel plates. The intensifier produces an amplified madfithe ions on a phosphor
screen, which then is imaged with a magnificatiod/eby a commercial objectiﬁnnto

a charged coupled device (CCD) canffendth a resolution of 64 480 pixels.

Beside the amplification, the image intensifier also prowithee possibility of being
gated, with gating times as shorta20 ns. The gating can be used to take time resolved
images of the ions and to visualize e.g. dynamics of the ioml@wob crystals’ motion.

The resolution of the camera was calibrated using an ogtiad with a known radius
that was moved into the trapping zone. The fiber was illuneidéty Doppler cooling light

4Proxitronic detector systems, MCP-Proxifier
5Nikon
6PCO sensicam
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Figure 4.6.: Sketch of the linear trap with integrated cavity mirrors.

at 397 nm and the scattered light was imaged onto the CCD earRerm this measure-
ment, the resolution was found to beé&+ 0.05 1m/pixel [80]. With this calibration, the
camera can be used to determine the geometrical size of #ygeiion Coulomb crystals,
as well as their transverse position in {txez)-plane.

4.4.2. Side camera

The resolution of 646 480 pixels limits the size of the largest ion Coulomb crysthht
can be fully imaged on the top camera to a length-df.3 mm and to~ 1.0 mm in the
radial direction. In some experiments, crystals with a targf up to~ 3 mm are used
and to be able to also directly image these large crystals;@nsl camera system is used
to monitor the ions from the side. The imaging resolutionhié tamera is considerably
lower mainly due to the geometric restrictions imposed lwdcuum chamber geometry.
The calibration is done by directly comparing images of imutdmb crystals taken with
this camera with images of the main camera. The pixel cdldraepends on the settings
of the camera zoom and, for the measurements in this theas8vim/pixel. Beside the
measurement of the axial extension of large crystals, theecmera can also be used to
determine the vertical position of the trapped ion Coulomysls.

4.4.3. Photo multiplier

In addition to the two cameras, a photo-multiplier tube (BM@n be used to monitor
the fluorescence level of the ions. This is especially usafsltuations where the fluo-
rescence level is used to optimize e.g. laser detunings enilie time dependence of
the fluorescence level is of interest, e.g. when optimizivegdptical pumping prepara-
tion. In principle, time-resolved measurements can alspdséormed with the gateable
image intensifier, however, this requires stroboscopicsmesaments at particular phases
of a measurement sequence, and, hence, many runs to recbtisér fluorescence level
over a longer period. With the PMT, this can be accomplishedmfaster and with a
time-resolution of~ 100 ns. The light sent to the PMT is split of the optical patlhte
top camera, just before the image intensifier on a beamesplitt
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4.5. The optical cavity

In this section the optical cavity incorporated into theptwsill be described. A sketch
of the setup is shown in4.6. The cavity is formed by two mirpositioned on the axis
of the quadrupole trap such that the axis of the cavity isljgta the symmetry axis of
the trap. The dielectric mirror substrates are made of fisdexh. Their presence may
affect the electric fields in the trap and might bend the RIig-fiees and lead to an axial
component of the RF-field, yielding e.g. to axial micromatiavhich would result in a
broadening of atomic transitions through the Doppler effeto avoid this effect, one
strategy is to make the mirror substrates as flat as possillléoeextend them as close to
the electrodes as possible, as was shown by simulationk [EG7this purpose, dielectric
mirror coats are added around the mirror substrates todibiace between the electrodes
almost completely. They have a diameter dfélmm, while the electrodes are separated
by 2rq = 4.70 mm (see fig._4]6). On fif._4.2 the mirror coats appear as Hijeets to the
left and the right of the trap center. Their blue appeararisesfrom scattering of cooling
light at 397 nm. The cavity mirrors themselves have a dianwté.2 mm and a radius
of curvature of 10 mm. They are both anti-reflection coatea awhvelength of 866 nm
corresponding to the 38, <> 4p?Py /, transition in**Ca, with mirror My being partially
transmitting (PT) and M being a high reflector (HR). The transmission coefficients ar
1500 ppm and 5 ppm, respectively. A construction of two titenend-walls, separated
by low expansion ceramics, is used to hold the mirrors intosi While the HR mirror is
directly fixed to the titanium plate, a set of three piezo ®ieactuators (PZT) is holding a
small titanium plate, on which the PT mirror is mounted, fowlfor scanning or actively
stabilizing the cavity length. The cavity is in a close to fumal geometry with a length
of 11.8 mm, corresponding to a free spectral rangergjr= 12.7 GHz and a waist of the
fundamental TEMo mode ofwg = 37um.

The cavity field decay rate was measured t&be2mx (2.1+0.1) MHz, correspond-
ing to a finesse off = 30004+ 200 at a wavelength of 866 nin [120].

4.6. Overlapping cavity and trap axis

For the purposes of CQED a good alignment of the cavity axddlamaxis of the quadrupole
trap, given by the field-free nodal line of the RF potentshecessary to achieve the best
overlap between cavity field mode and the ion Coulomb crygsthl practice, it can be
difficult to achieve a precise positioning of all the elensebéforehand and it is there-
fore desirable to have a method for correcting possible ligisaents once the trap is
assembled.

In principle, additional DC potentials on some of the trapctiodes could be used to
translate the crystals along the radial directions to oggnthe overlap with the cavity
mode. This would, however, move the revolution axis of thestal away from the field-
free nodal line of the RF-trapping potential. The solutitmthe Mathieu equation found
in eq. [2.6) would accordingly have to be changed and, foragiat offset of &5, Vo),
would read

) = (Ro+%cogont) [1+gcos(QRFt)]

JO) = (Jo-+ Sroosert) [1- 2 cos Q)] (4.1a)
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As a consequence, the amplitude of the quiver micromotionldvbe non-zero even if
the secular motion was completely suppressed. This seecakcess micromotion has
an amplitude oflzuoq, (u= X,§) and can be substantial even for small displacements.
might lead to RF heating and, subsequently, to significamédbening of the linewidth of
the atomic transitions and other undesirable effects.

It is therefore desirable to find a general scheme to directhtrol the position of the
potential minimum of the radial pseudo-potential. A salutis to change the loads of the
individual trapping electrodes by adding additional catoas in parallel or in series with
the electrodes. A schematic drawing is shown in[figl 4.7, tethod is described in more
details in [119] or[[80].

In short, the method relies on the selective modificationhef tesonance conditions
for the twelve individual electrodes, which are coupledite RF-power supply through
a 1:10 ferrite toroid transformer. Each electrode forms £LRsonance circuit, with a
capacitanc€ formed by the circuit and the cables and an inductdne®inly set by the
transformer. The electrodes themselves have a capacdit@ncA schematic drawing of
the circuits is shown in fig_4l7. The two opposite phases®RFE are produced by two
separate circuits, both connected to the same RF souroejthuihe windings around the
transformer coil in opposite directions. The capacitarfci® circuit is measured to be
C = 2.2 nF, each trap electrode has a capacitandg of 40 pF and the voltage on the
electrode is hence given by = Ujn /(1 +C;/C). By changing the effective capacitance
of the electrodes by additional serial and parallel lo&dsandCp, the RF-amplitude on
the electrod&Je can be attenuated, as indicated on[fig] 4.7.

Modifying the capacitive loads on the different chains ntiglso lead to a change of
the resonance frequency or to undesired phase shifts betiveeRF-fields. This effect
can, however, be compensated for by an appropriate condminatt parallel and serial
loads and in the limi€ > G, Cy,, Cs, the resonance frequency and the relative phases can
be kept nearly constant for the right ratio@f andCs.

After the assembly of the trap an offsete©0 um in thex — z-plane and of- 80 um in
they — z-plane were measured from projection images. Using thatgqak of moving the
minimum of the RF-potential described here, the trap andycaxis could be overlapped
to within 41 pum [80/119].

To show that moving the minimum of the RF potentialby00um with our technique
has no significant effect on the RF heating as compared toriheodified circuit and
that in both situations the ion Coulomb crystal are well diéscl by the zero temperature
charged liquid model introduced in s€c. 213.2 we perfornaith@ation measurements in
both situations, as will be discussed in the following s®ttiA precise method to measure
the radial offset between cavity and trap axis will be présgin sec[64.

t

4.7. Calibration of the trap

In sec.[Z.3P a thermodynamical description of ion Coulomystals in the framework
of a zero temperature charged liquid plasma model was intedl Based on this model,
an expression for the ion density in the ensemble was foured i{2.15b), which solely
depends on the RF-amplitude of the trapping potential. &eiBe, the amplitudes seen by
the ions will depend on the actual circuit supplying the &gé to the electrodes, making
it difficult to directly measure them. Furthermore, thisattation might be modified by
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Figure 4.7.:Moving the minimum of the RF potential. The electrodes haveacitance
C and are connected to the RF-supply through a toroidal toamsfr with inductancé.
The capacitive load of the remaining circuit is represeitedhe capacitanceS. The
field free nodal line of the RF potential can be moved by ati¢ing the RF-amplitude
on selected electrodes by applying additional serial amdllghcapacitanc€s andCy,
without substantially changing the resonance frequendytiaarelative phases.

the additional capacitances used to overlap cavity andaxép as was described in the
previous section. A calibration of the trap voltages cané&mv be accomplished on the
basis of the plasma model and molecular dynamics calcukgtas explained in sec, 2.8.2.
We will in the following describe the two independent cadition methods.

The first method is based on the zero temperature charged [idasma model intro-
duced in sec[2.3.2. This model allows to relate the asp¢ict o&the ion Coulomb
crystals to the ratio of the trap frequencies, see [eq.J(2vidich on the other hand also
can be deduced from the trapping parameters, sed_eq] (ZB6)aspect ratios can be
precisely measured from projection images, as was exglamsec.[44. From this we
can deduce the ratio of the trap frequencies by Eg. |2.24)iffarent trapping parame-
ters. As the ratio of the trap frequencies also depends omapping parameters, we can
fit them using a modified version df (Z]25)

W a2U2-23Q 1 4.2)
Wy 4I']MQZRF(UDC — Uoﬁ)ré 2 '

to deduce an attenuation factorfor the applied RF-amplitudgrg and an offset)yg
for the axial DC-potential, which might be caused e.g. byrgimay effects on the cavity
mirrors.

The second method uses the dependence of the inter-shetigfiar long ion Coulomb
crystals on the trapping voltages, see €d. (2.26). Heresgheing of neighboring shells
has to be deduced from projection images (se€[sec. 4.4) éittddsby

1/3
3iM Q3. ) / 43

o = 1.48x
' <4Tl£o GZUF%F

where 1.48 is a constant found from molecular dynamics &aioms anda again ac-
counts for a possible attenuation of the RF amplitude.
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Figure 4.8.: Schematic setup of the cavity detection system. The beamoptte 866 nm
probe laser when injected in transmission is indicated byddished line. (PBC), single
mode (SM), Pound-Drever-Hall lock (PDH lock).

It is worth noticing that the first method only relies on thpexdt ratio of the crystal and
hence does not depend on any calibration of the length seakereas the measurement
of the inter-shell spacing requires such a calibration. 3&&ond method might hence
serve as cross-check to test the validity of the model oyrasgy the correctness of the
numerical pre-factor of 28, to check the calibration of the trap and the imaging syste

More details on the two methods can be foundin[119] [80].

4.8. Probing the cavity

In this section, the laser systems and detection setup aggdbe the ion-cavity interac-
tion will be described. A schematic drawing of the setup isvamin fig.[4.8.

4.8.1. Probe and reference lasers
Probe laser

A second external cavity diode laser at 866 nm is used to pttodénteraction of the
coupled ion Coulomb crystal-cavity system. We will in thédwing refer to this laser as
the ”probe-laseE’. The setup of the diode laser is similar to the one used farmgyng
and optical pumping. It is frequency locked to the same teatpee stabilized reference

“In ch. [8 this laser will also be used as the control laser thzeeaavity electromagnetically induced trans-
parency.
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cavity in a Pound-Drever-Hall configuration, the frequenay be tuned using a double
pass AOM by+100 MHz. As the laser is used to probe the coupled atom cay#ies,
the linewidth of the laser should be narrower than both thenat dipole decay rate of
y=21x 11.2 MHz and the decay of the cavity field at a ratekof 2rtx 2.1 MHz. It
was measured in a self-heterodyne setup to bet1®®Hz when locked to the reference
cavity [80].

On the trap table, two independent setups can be used toectigpprobe light into the
cavity either from the PT or the HR side. On the laser tableparfirror is used to switch
the light between two separate single mode fibers guidindigin to the two setups.
Before the fiber incouplers, a single pass AOM is used to shtite beam, with the 15t
diffraction order being sent to the fibers when switched ome @n-off attenuation after
both fibers is> 55 dB.

The optical setup after the two fiber outcouplers will be diegdl in sec.[4.8]2 in
connection with the single photon detection scheme.

Reference laser

An additional diode laser with a wavelength of 894 nm is usedng) the cavity QED
experiments and serves, depending on the measurementsliffer@nt purposes. Its
wavelength is not resonant with any transition48€a’ to suppress a direct interac-
tion of this laser with the ions. The laser is frequency latkegether with the two
diode lasers at 866 nm to the same reference cavity and atsdlaiby means of a
double pass AOM before the reference cavity. The resuliimgnidth was measured
to be 85+ 5 kHz [80]. Despite the narrow linewidth, the light emittedm the diode
in single mode operation still contains a non-negligiblatdbution of photons at the
wavelength of the 3’cD3/2 “~ 4p2P1/2 at 866 nm. As this would substantially disturb the
measurements, the light of the 894 nm laser is spectrakyditt with a diffraction grating
(1800 linegmm). The light is overlapped with the beam path of the prokerao the
PT-side on the laser table and sent through the same opheal fi

When scanning the length of the cavity, the transmissioal lef/the 894 nm laser can
be monitored and the position of the transmission peak sease frequency reference
for the cavity and gives information on cavity drifts and astic vibrations. The second
possibility is to use the reference laser to lock the lengthecavity in a Pound-Drever-
Hall scheme. Both methods will be described and discusseuie details in se¢. 4.8.3

4.8.2. Cavity light detection

Due to the low light levels used for probing the ions, the digba of the reflected/transmitted
photons is performed by two avalanche photo detectors (APDise first APD (probe-
APD) is installed on the PT side of the cavity, to monitor tignal of the cavity probe.
As mentioned above, the probe laser can be injected intaathiydoth from the PT and
the HR side, and the corresponding probe signal will, dejmgnan the incoupling, be
measured in reflection and transmission.

The first configuration, where the probe laser is injectedugh the PT mirror, is used
in most experiments and the probe and reference beam arésicabe guided to the
trap table through the same polarization maintaining fib%fter the fiber a*/2 wave-
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plate and a PBC are used to ensure a well-defined linear pafian. The beam size is
modematched to the cavity by a telescope and a focusing Bafsre the focusing lens,
a polarizing beam splitter cube (PBC) separates the cagfigation from the incident
beam. AMs-waveplate transforms the polarization of the probe light't-polarization
and an additional/>-waveplate allows for small corrections of the polarizatibrection
with respect to the quantization axis. Both waveplates tsmtee used to pre-compensate
birefringence effects, e.g. induced by the cavity mirrdigical coupling efficiencies to
the fundamental TENh) mode are> 95%.

The light reflected from the cavity is separated from thedeot beam on the PBC and
a higher-order waveplatd @894 nm}/2@866 nm) is used to also separate the probe and
the reference laser on a second PBC, where the 894 nm ligktiésted of to a photo-
detector or to the Pound-Driver Hall locking detector arel@66 nm light is transmitted.

Though the transmission of 894 nm light is suppressed 120 dB, the 866 nm probe
light has to be spectrally filtered on a diffraction gratingha 800 lines/mm to remove
any residual photons at 894 nm from the beam. It is then cdupla single mode fiber
guiding the light to the probe APD. Taking the efficiency of hPD at 866 nm-{ 44%),
of the grating & 63%), the fiber coupling+{ 65%) and the opticsy{ 90%). into account,
the detection efficiency of the probe photons amounts to %o [

The transmitted light on the HR side passes a combination/afand a/2-waveplates
at 866 nm leaving the polarization of the 894 nm unchangedagtibn of the reference
light will be reflected off the following PBC and is, after spel filtering on a diffrac-
tion grating (1800ines/mm), it is coupled to the second APD (reference APD). When the
probe light is sent to the cavity from this side, the two wdsigs are used to adjust the
polarization of the incident beam.

4.8.3. Scanning and locking of the cavity

As abovementioned, the 894 nm reference laser may either asra frequency reference
when scanning the cavity length or to lock the resonanceifrqgy of the cavity. The two
procedures will be described in more detail in this subsacti

Scanning the cavity

In several experiments described in this thesis, the leafjthe cavity is continuously
scanned over the resonance at a rate of 30 Hz by a triangiegeolith an amplitude
corresponding te- 1.3 GHz. In these experiments, the cavity reflection (or trassion)
spectrum is measured by repeatedly probing the reflectedaf@smitted) fraction of the
probe laser by the APD at typical rates-060 kHz, with integration times for the probe
APD of the order of~ 1 us. As we want to investigate the light-matter interaction at
the quantum limit, we work with mean intracavity photon nergx< 1. With a cavity
decay rate of R = 21t 4.2 MHz this corresponds to at most 9 photons leaking out of the
cavity during a~ 1 s probe interval, of which, taking the overall detectionaidincy into
account, only 16 % will be detected. To reconstruct the gasiectrum, one therefore
has to average over several scans, typically a few hundreds.

It turned out that the cavity mirrors are sensitive to acicugbrations and some me-
chanical resonances could be identified by deliberatelitiegdhe vibrations. The most
dominant were found around 400 Hz and 2 kHz, however, théirghfrequency depends
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on the voltage applied to the piezo actuators. As the freguen this noise is faster
than the rate at which the cavity length is scanned, the nméchlavibrations will slightly
change the position of the cavity resonance from scan to, snaking it impossible to
directly average the weak probe signal. To compensate ésetkiibrations and other me-
chanical drifts, the 894 nm laser is used as a frequencyemrderin these experiments.
When the frequency of the reference laser is set such thagthty is resonant for both
lasers for the same cavity length, the effect of mechanictibdn both signals will be
directly correlated. For a sufficiently strong referencklfithe position of the cavity res-
onance for the 894 nm laser can be identified on each indivghzm and one can use
it to shift the two signals such that the resonance peakseofdference overlap on the
different scans. As the transmission of the reference issared with an APD, injecting
the cavity with less than 1 nW is sufficient to accomplish tithout influencing the state
of the ions. The referencing to the 894 nm laser was testeddmnistructing the spectrum
of the empty cavity, which can be independently measurell avitrong probe field on a
single scan, se€ [80].

Locking the cavity

A second measurementtechnique uses a cavity that is locklee tesonance frequency of
the atomic transition. In these experiments, the 894 nnr lasesed to actively stabilize
the cavity length by appropriate feedback to the PZTs. Hgudency is set such that it
overlaps on the cavity scan with a 866 nm laser resonant iétatomic transition. The
reflected reference signal is then sent to a Pound-Drevitteldiaand used to stabilize the
cavity length. Though a slightly higher incident power o tleference laser is necessary
as compared to the scanning of the cavity, the locking cancbenaplished with input

powers of the order of 30 nW, corresponding to a mean intracavity photon number of
5.10%

The acoustic noise also perturbs the measurements in thésngcsubstantially. An
active stabilization of the cavity is rendered difficult,there are several mechanical res-
onances which, depending on the relative phase used in¢dbdek loop, can be driven
easily by the stabilization. Instead of stabilizing theitaagainst all mechanical vibra-
tions, the feedback is optimized for frequencies lower ti@iowest resonance at around
400 Hz and we use the transmitted signal of the reference tageost-compensate the
related fluctuations of the probe signal. Again, the acoustise on the two signals
should be correlated and a drop of the transmitted refergigoal monitored by the APD
indicates that the cavity is no longer resonant with the 88dlaiser. The data is then
simply filtered by setting an appropriate threshold for thference APD signal and only
keeping the data points for which the reference level exegdige threshold. Obviously,
this reduces the amount of usable data, but ensures thaatitg was resonant for the
remaining data points. The method was tested for an empitycavd the influence of
different threshold values was examined, for detailss6g [8

49



4. Experimental setup

4.9. Data acquisition

The whole data acquisition process is controlled by a Lab\deftware interface using
two synchronized timing and digital 1/0 modufesThe acousto-optical modulators used
to shutter the different laser beams are controlled by @igiT L signals, the signals of
the APDs and the PMT are directly registered by countersigeavby the 1/0 cards.
The software interface allows for the adjustment of the firpbases of the lasers and
the integration times of the APDs and the PMT. Included in sh#ware are also the
necessary routines to perform the acoustic noise compengat referencing the probe
to the reference signal when scanning the cavity and thedadatselection based on a
certain threshold for the transmitted reference level ftwcked cavity. Details can be
found in [80].

8National Instruments PCI-6602
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5. Realization of collective strong
coupling

This chapter contains a detailed description of the expartal realization of the collec-
tive strong coupling regime with ion Coulomb crystals imi&ing with the fundamental
TEMqg cavity field mode. Some of the experiments (sEc3[5.B-5.6 aleeady described
in great detail in the PhD thesis of my predecessor Peterkither§80]. For the sake of
completeness and comprehensibility the major results alvever, be reviewed in this
thesis and extended by subsequent studies and measurements

The chapter is structured as follows: In s€c.] 5.1 we give atshtvoduction to the
experiments. In se€._3.2 we will explain in more detail how éffective number of ions
is determined in the experiment. SEc.15.3 will then intradihe experimental sequence.
In sec[G.}# and 515 the measurements of the collective cumpite by different methods
are presented. Sdc.b.6 shows experimental measuremérats tiie collective coupling
rate scales with the number of interacting ions. In $ecl Bd7sec.[5.8 measurements
of the coherence time of the collective coherences betweemzn substates and of the
long time stability of the coupling are presented. Finadlye.[5.P gives a summary and
an outlook.

5.1. Introduction

A central challenge in experimental cavity quantum elabtramics is to reach a regime
where the coherent interaction of a matter system with ayc#ght field can be made
faster than the dissipative processes. For a single mitigddevel system this so called
strong coupling regime_[144] is reached, when the rgfeat which single excitations
are coherently exchanged between the two-level systemhenlight mode exceeds the
spontaneous emission rate of the two-level systgrand the cavity field decay rate,
It was first realized with atoms in microwave and optical Gesgi[61/145], and has re-
cently been realized with quantum ddts [133,/146] and swpehacting Josephson junc-
tions [132147].

For an ensemble dfl identical two-level systems simultaneously interactinghva
single mode of the electromagnetic field, the coherent ¢ogphte is enhanced by a
factory/N and the coherent process dominates when the collectivdingupte

on =gVN (5.1)

is larger than botlk andy. This so-called collective strong coupling regirnel[58] Viest
explored with Rydberg atoms in microwave cavities [60], ad since then been realized
in the optical domain with atomic beanmis [61], atoms in magrugitical traps[62—65] and
Bose-Einstein condensates|[66, 67].
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5. Realization of collective strong coupling

Figure 5.1.: Projection image of a crystal used in the collective stromgpding measure-
ments. The trap was operated at a RF voltadérgf~ 300 V, corresponding to a density

of po = (5.440.1) - 10'%m~3. The crystal containsk, = 87804 180 ions, of which

N = 504+ 10 effectively interact with the cavity field. All ions are exposed to cooling
and repumping lightb. Same crystal, but only the ions in the cavity mode are exposed
to repumping light, now injected into the cavity. The ionssde the cavity modevolume
are shelved into the metastabIeZBg/z level and not visible.

In the optical domain, the use of ultra-high-finesse cawiti¢h very small modevol-
umes allows for reaching the confinement required to actsgeag coupling with single
neutral atoms[[128, 181, 144]. With charged particles, h@awnethe insertion of dielec-
tric mirrors in the trapping region makes it extremely ceéadling to obtain sufficiently
small cavity modevolumes, due to the associated pertarbafi the trapping potentials
and charging effects. Although many groups are currentlgingarapid progress in this
direction, the strong coupling regime has not been reacthitdsimgle ions yet [[66—74].
Our group could recently demonstrate that the collectixenst coupling regime can be
realized with large ion Coulomb crystals [79,148]. The Hesof these experiments will
be presented in this chapter.

5.2. The effective number of ions

In sec.[3.2.4 it was mentioned that not all ions in large ioml@mb crystals contribute
equally to the collective coherent coupling and that thespective contributions have to
be weighted by the intensity of the intracavity field at thesifion of the ions. In eq.
(3:45) the effective number of interacting particles wafindel as the weighted sum over
all these contributions. As the ion density is constantugrmut the whole ion Coulomb
crystal (see eq[[(2.15)) and can be calculated from the andplof the RF-field amplitude
applied to the trapping electrodes, the effective numberrtd can directly be determined
from the overlap between the volume occupied by the ion Guhlorystal and the cavity
modevolume. The geometrical size of the crystal is foundalkyng fluorescence images
of the crystal during cooling, as shown in Hig.15.1, from whthe crystal half-length

52



5.3. Experimental sequence

and radiusk can be extracted. The density can be extracted from theatdib of the RF
voltage as explained in sdc. 1.7. In all experiments preséntthis chapter the coupling
of ion Coulomb crystals to the fundamental Tgdtavity field mode was investigated.
The effective number of ions interacting with the TggMnode is then calculated using
the formula

N = (po/2) | chely exp(~2[(x—0)* + (y— o)}/ ) 52)

wherexg andyg allow for an radial offsets between the cavity axis and tlystal revolu-
tion axis. These offsets can in principle be canceled toiwighum as was discussed in
sec[4.6. In ch_6l4 we will present a precise way to detenmittiese offsets, which for
the experiments presented in this chapter, were measubedgo- 3.9 um, yp = 15.7 um.
The uncertainty in the effective number of ions comes froth lloe uncertaintgpg in the
density determination, due to the RF voltage calibratiod, e uncertainty in the crystal
volumedV, due to the imaging resolutiodx. The relative uncertainty in the number of
ions,N = poV, can be expressed as

SEEE)
p

where the uncertainty on the crystal volume is given by theedainty on the determina-
tion of the half-length and the radius from the projectiomgas. It is given by

3V /V = 8x\/16L2 + R2/2RL (5.4)

For a typically prolate crystal as used in many of these ewxptts, with a half-length of
~ 1—2 mm and an imaging resolutiadx ~ um, this results in a relative uncertainty of
2— 4% in the effective number of ions.

Figure[5.1 a. shows a projection image of a typical crystatifer the measurements
presented in this chapter. Since the crystal radial exterisilarger than the cavity waist
(wp = 37 um), only the ions which are positioned inside the cavity mealeme will no-
ticeably contribute to the coupling. A visual impressioritod overlap of the cavity mode
with the ion crystal can be obtained by coupling the repumaser to the TEMy mode
of the cavity. Only the ions inside the cavity mode interaithwhe repumper laser and
the ions outside the cavity light field are subsequentinwatkinto the metastable %3/2
level, which has a lifetime of 1 s. Hence, only the ions inside the mode volume will
contribute to the cooling and fluorescence, while the ionthémetastable state appear
dark. This is illustrated in fig. 5l1 b. Such pictures can &lsaised to deduce the offset
between the RF field free axis of the trap and the symmetryabiise cavity [119] (see
sec.[4.6). The same technique can in principle also be ugtdhva side camera, albeit
with a lower precision, due to the limited resolution. A m@recise way of measuring
the relative offset between the cavity mode and the crysialwill be presented in sec.
0.4.

5.3. Experimental sequence

In the description of the experimental setup in the previch&pter it was mentioned
in sec.[4.8B that the coherent coupling between the crgsilthe cavity field can be

53



5. Realization of collective strong coupling

probing

cooling optical pumping

Doppler cooling laser 397 nm

]
Repumper 866 nm

Optical pumping laser 866 nm

Probe 866 nm

5us 12ps
b. Doppler cooling Optical pumping Probing
4p%Py, 4p2Py), 4p?Py,

an P n» s

— —
@ e e EE

3d?Dy,

s R

45251/2 45251/2

Figure 5.2.: a. Experimental sequence used to measure the collectiveingupalte. b.
Energy levels of°Ca" including the relevant transitions addressed in the thestspf
the experimental sequence. The acronyms are: LC: laseingdoéam, RP: repumping
beam, OP: optical pumping beam, CB: control beam, PB: prebehb
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5.3. Experimental sequence

measured in two different ways, by either scanning or logkire cavity. In both configu-
rations the cavity reflection spectrum is measured at aaypate of 50 kHz using a 2(@s
sequence consisting of Doppler cooling, optical pumping) grobing. This sequence is
shown in fig[5.P a. and the level schemes in[figl 5.2 b. inditatdransitions which are
addressed by the several lasers during the cooling, opticaping and probing phases.

Cooling In the first 5ps of each sequence the ions are Doppler laser cooled on the
4$°S, /, » 4p?Py ) transition, while a repumping laser resonant with théggl, «>
4p2P1/2 transition prevents shelving to the metastablé%qz state. With optimized
cooling parameters typical temperatures of the crystalsmathe few 10 mK range.

Optical pumping  After the cooling a 131s period of optical pumping transfers the ions
to the m = +-3/2 magnetic substate of the%mg/z level.

The optical pumping laser is resonant with théBgyz > 4p2P1/2 transition and has
a polarization consisting only af - andre-polarized components. It is sent to the trap
under an angle of 45with respect to the quantization axis (see $ec. #.3.2). dstdme
time the Doppler cooling laser is applied to pump the popatedecaying to the ¥§1/2
ground state back to the metastabléBg}z level.

The efficiency of the state preparation has previously beeasnred by selectively
probing the population in the different Zeeman sublevelsis Tan be accomplished by
injecting a strong probe pulse with either or o™ polarization into the cavity after the
state preparation and measuring the fluorescence on%Bg/éLs» 4p°P; /2 transition with
the PMT. The probe will address the population in eitherrthe= +1/2, +3/2 states ¢ -
probe) or themy = —1/2, —3/2 states ¢*-probe) and will pump the population in these
states to the excited 351/2 level, from where the ions with a probability ef 12 : 1
decay to the 4?§1/2 ground state. As all other lasers are turned of, each ionemil
at most one photon on this transition and the fluorescenet dénectly reflects the pop-
ulation in the addressed states. Sending the probe lagay #ie transverse-direction
and choosing the appropriate polarization furthermore al®ws for the probing of the
population in them; = +1/2 state. Repeating these experiment with and without opti-
cal pumping and probing with both polarizations allows toe £stimation of the optical
pumping efficiency, which was found to beﬁ% [80].

Furthermore, a similar technique can be used to measurédatimé of the collective
population in them; = +3/2 state in the cavity mode. This is accomplished by gradually
increasing the delay between the state preparation anal thpelarized probe pulse sent
to the cavity and measuring the decrease of the fluorescewekds a function of delay.
As a cross-check, one can also measure the population sgcieahem; = —1/2, —3/2
state as a function of delay using the same technique witbsifgocircular polarization.
Both measurements agree very well and comparing them wecdddlifetime of the
population ofTy = (13+ 3) ms, for details se¢ [80]. Several factors might be attrithtre
the finite life time. First of all, as we only measure the papioln in the cavity mode, ions
diffusing from other parts of the crystal into the mode vo&umight lead to a decrease
of the measured population in the addressed Zeeman suhsateecially if the crystal
heats up with increasing delays. Another possible causgeoay might be the presence
of a non-zero transvergefield which would lead to population transfer to other Zeema
substates. Finally, the finite lifetime of the %313/2 of ~ 1 s will eventually limit the
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5. Realization of collective strong coupling

achievable lifetime of the population, though it shouldyptaly a minor role on the
measured timescales of the decay.

Probing Finally, after the state preparation, the cavity reflectsigmal is probed by
injecting a 14 us o~ -polarized probe pulse, resonant with the?Bgi/z > 4p2P1/2 tran-
sition, into the TEMp mode of the optical cavity. Its intensity is set such thatrirean
intracavity photon number (for an empty cavity) is less thaa at any time. With a delay
of 0.1 ps relative to the probe laser, the APD is turned on. The delayres that the field
has built up inside the cavity and that the system has reaahipthsi-steady state. The
duration of the probing period was chosen so as to minimiegdtal sequence length as
well as to avoid depopulation due to saturation of the ttars[80].

5.4. Absorption profile and resonance shift

In sec.[3.2Z4 we derived an expression for the linear suibdkyt X of the ion ensem-
ble interacting with a single cavity field mode, see €g._(B.4The atomic absorption
and dispersion modifies the effective cavity linewidth aetlding according to (see eq.

(E.48))

K = K+Im(x)—|<+g§yzjr/Az
A
Ac = AC—RG(X):Ac—gﬁm-

These two relations both depend on the square of the colemtiupling ratgyy and hence
provide two methods to investigate the coherent couplirtg®fons with the cavity field.
We first perform measurements of the atomic absorption asmkdsion for a given crystal
with N ~ 500, which according to eq[(3136) should be sufficient t@etite collective
strong coupling regime. The crystal used in these expeisngsimilar to the one shown
in Fig.[5. With a density ofig = (5.4+0.1) x 10°cm~3, half-lengthL = (5114 1) um

and radiusR = (75+ 1) pym the total number of ions in the crystal is calculated to be
Niot = 65004- 200 and the effective number of ionsNs= 536+ 18 (see eq.[{512)). The
broadening and the shift of the cavity resonance are thesuned as a function of the
detuning of the probe lasek, This is accomplished by scanning the cavity length over a
range corresponding te 1.3 GHz at a repetition rate of 30 Hz, for a fixed valug\ofThe
reflection is reconstructed by sampling each cavity scaeatipy the sequence shown in
fig. at a rate of 50 kHz.

The width of the reflection dip for a given detunidgs found by averaging over 100
cavity scans, where the reference laser is used to comgeiosalrifts of the cavity and
acoustic noise, as was explained in §ec. #.8.3. In[Eig. SiBumcavity reflection scans
are plotted for different detunings. Each data point cqoesls to the average of 100
20 ps-measurement sequences as showed i Elg. 5.2. For eacindeseveral of these
reflection spectra are taken, and for each the effectiveycdeicay rate<’ is found by
fitted the data with the expected Lorentzian lineshape dgiven. [3.47h). As expected
from Eqg. [3.48h), the broadening of the intracavity fieldapton reflects the two-level
atomic medium absorption. Fifl._5.4 shows the modified ca¥ityHM, k’, as a function
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5.4. Absorption profile and resonance shift
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AL — Oc (2TTMHZ) A: — Oc (2TTMHZ)
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O — Ac (2TTMHZ) O: — Ac (2TTMHZ)

Figure 5.3.: Typical cavity reflection scans for various values of ther@todetuning

A. The probe detunings were & ~ 21 x 54.3 MHz, b. A =~ 211x 24.3 MHz, ¢c. A~
21tx 8.3 MHz and d.A = 21t x 0.3 MHz. Solid lines are Lorentzian fits to the data, the
effective cavity field decay rate is deduced from the fit.

K/ [2tMHZ]

A [2TMHz]

Figure 5.4.: Measured cavity field effective decay rateversus probe detuningy for a
crystal withN = 536+ 18 ions interacting with the cavity field and an optical pungpi
efficiency of 97%. The blue solid line is a fit to the data usigg @&.484).
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5. Realization of collective strong coupling

A — Ac [2mTMHzZ]

-60 -40 -20 0 20 40 60
A [2TMHZ]

Figure 5.5.: Measured phase shiff, — Ac versus atomic detunintyfor the same crystal.
The blue line is a fit to the data using elg. (3.48b).

of detuning of the probe lasek, Each point is the average of 5 measurements, the solid
line is a fit according to Eq[[(3.4Ba). From the fit we deducelkctive coupling rate

of gy = 21mtx (12.2+0.2) MHz, in good agreement with the theoretical expectation of
ON,theory = 2TTx (12.1+0.3) MHz, calculated folN = 536+ 18 ions interacting with the
cavity mode, an optical pumping efficiency ofﬁ% [79)/80] and a single ion coupling
rate of gneory = 21 x (0.532+0.007) MHz, see eq. [(3.37). Furthermore, the effective
dipole decay ratg is left as a fit parameter to account for finite temperaturectsf as
discussed in sed_3.3, ed._(3.b1a). The fit yiglds 2t x (11.94 0.4) MHz, which,
according to Figl_316, would correspond to a likely tempanabf T = 24f§2 mK. The
natural half-width of the cavity is also left as fitting paret@r and we fine = 21tx (2.2+

0.1) MHz, in good agreement with the value deduced from an indé@etrmeasurement
of the FSR and the finesse of the cavity- 21 x (2.14+0.1) MHz [120].

For the measurement of the effective cavity detunijgthe frequency of the 894 nm
laser is kept at a fixed position in the cavity scan, e.g. t@atbenic resonance frequency.
The frequency shift is then measured by comparing the positi the probe and the ref-
erence signal resonances in the cavity scan. The effe@iityaetuning as a function of
probe detuning is shown on Fig. b.5. One observes the expéisigersive frequency-shift
corresponding to the real part of the linear susceptibiftg two-level system probed in
the low saturation regime, see efl. (3148b). The data is fitt¢lole theoretical model ac-
cording to Eq.[(3.48b) and yields a collective coupling @ftgy = 211x (12.04+0.3) MHz
and an effective dipole decay rateyof= 21 x (12.7 + 0.8) MHz. Both values are consis-
tent with the previous measurement and the theoreticalotajiens. As in the previous
measurement, the 894 nm resonance laser is also used to meapaystematic drifts
and acoustic vibrations (see sec. 4.8.3). However, sinsetimpensation method relies
on the temporal correlations of the drifts in both signalsd ¢hereby on their relative
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5.5. Vacuum Rabi splitting spectrum

-40 -20 0 20 40
A [2TMHz]
Figure 5.6.: Reflection signal of the probe as a functionfof Ac for the empty cavity

(red triangles) and with a crystal withh = 536+ 18 effectively interacting ions present in
the cavity mode volume (blue circles). The solid lines aretitthe theoretical expectation

of eq. [3.49).

positions in the cavity scan, the compensation become®féagive at large detunings.
This is reflected in the bigger spread and the larger errar &alarger detunings, which
renders this method slightly less precise than the firstrptism measurement to evaluate
the collective coupling rate.

5.5. Vacuum Rabi splitting spectrum

A third complementary method to measure the collective togppate is based on locking
the cavity on atomic resonancec = wy, as was described in se€._418.3. Since the
coupled atom-cavity system is probed at the single photasl ttne expects to observe a
splitting of the normal-mode as discussed in €qg. (3.49rrefl to as the vacuum Rabi
splitting.

The response of the coupled atom-cavity system is probedwsction of probe de-
tuningA, which in this case is equal to the cavity detunilg The cavity reflection for
a particular probe detuning is found by continuously rejpgahe sequence shown in fig.
at a rate of 50 kHz. Here, we use the post data selectibnitpee described in sec.
[4.8.3 to keep only the data point for which the cavity was mesw. For each probe detun-
ing, 2-10* data points are acquired and averaged. The result of thisuremaent is shown
on Fig.[5.6. The red triangles are obtained with an emptytgawihile the blue circles
were taken with the same ion Coulomb crystal as used in thequeexperiments. The
results are fitted using the theoretical expectations of&g3b) (solid lines in Fid_516)
and yieldgy = 2mtx (12.2+0.2) MHz, a value that is in good agreement with the previous
measurements. To facilitate the more complex fitting furctd converge’ andk were
set to the value deduced from the previous absorption mesasnt.
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5. Realization of collective strong coupling

The collective coupling rates found for the three methodsagyithin their error bars
and when combining the three results, we fgpd= 2mtx (12.16+ 0.13) MHz.

Conversely, using the measured value dgarand the effective number of ion¥ =
5364 18 extracted from the projection image of the crystal, tbgetvith the measured
optical pumping efficiency of 917?%, we can now deduce a single ion coupling rate of
Jexp = g—m = 21 (0.53440.010) MHz.

This value is in excellent agreement with the expected val@geory = 211 x (0.532+
0.007) MHz, calculated according to ed._(3]127) from the knowledihe cavity geome-
try and the atomic dipole moment of the considered transitio

5.6. Scaling with the number of ions

To check further the agreement between the theoreticalqgtimis and the experimen-
tal data we investigated the dependence of the collectivplowy rate on the effective
number of ions. An attractive feature of ion Coulomb crystalthat the number of ions
effectively interacting with a single mode of the opticaVitacan be precisely controlled
by the trapping potentials. While the dengityonly depends on the amplitude of the RF
voltage (see Eq[{Z2.15)), the aspect ratio of the crystaddep on the relative trap depths
of the axial and radial confinement potentials which can ldependently controlled by
the DC voltages on the endcap electrodes. This allows fdralting the effective number
of ions down to the few ion-level.

5.6.1. Cooperativity parameter

In Fig.[5.7 the dependence of the cooperativity paramegdined as

C=gn/2vY, (5.5)

is plotted as a function of the effective number of ions iat¢ing with the TENMp mode.
The cooperativity was deduced by measuring the effectiviycfield decay ratek’ =

K (1+2C) =K+ %, for a probe field tuned to atomic resonanfe=( 0), and for dif-
ferent aspect ratios and densities of several crystals. effieetive number of ions in
each crystals was deduced applying the method describeddd52. The blue data
points were obtained using -circularly polarized probe light, hence probing the popu-
lation in themy = +3/2 substate, and show the expected linear dependence on ¢lee eff
tive number of ions. From a linear fit (solid blue line) we de€wa scaling parameter
% = (4.9340.07) x 10 3. The black dashed line indicates the limit where collective
strong coupling is achieved which is the caseMor; 500 interacting ions, in agreement
with the expectations.

The largest coupling observed in these experiments wasurezh$or a crystal with a
half-length of~ 1.5 mm and a density of 6 x 108 cm3, corresponding to an effective
number of ions oN = 15704+ 50. The cooperativity of this crystal was measured to be
C =7.9+0.3 and exceeds previously measured cooperativities withilooptical cavi-
ties by roughly one order of magnitude [68][69, 71].
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5.7. Coherence between collective Zeeman substates

0 400 800 1200 1600

Figure 5.7.: Cooperativity as a function of the effective number of iofke blue circles
correspondt@— polarized probe light, while the red triangles are obtaingidgo™ light.
The solid lines are linear fits, the dashed line indicatestiung collective coupling limit

oN > (K,Y).

As a check of our measurement method, the polarization qirthiee light was changed
too* to address the populations in thrg = —3/2 andm; = —1/2 substates of the §ﬂ>3/2
level (red data points). Here, no effect of the coupling efitins is observed, as expected
due to the optical pumping preparation in the= +3/2 Zeeman-substate.

5.6.2. Vacuum Rabi-Splitting spectra for different number s of ions

A similar measurement of the collective coupling rate wadqgeened by recording vac-
uum Rabi splitting spectra, such as the one presented irfSHg.for several crystals
with different aspect ratios. Examples of such measuresnamt depicted in Fig. 3.8,
showing clearly the increase in the separation betweenahgled crystal+cavity normal
modes as the number of ions is increased. The collectivelioguategy can be derived
from fits to the theoretical expressidn (3.49). In fig]5.9 deeluced collective coupling
rate is plotted for various crystals with different effeetinumbers of ions. The curve
is fitted with the expected square root dependency and takmgjnite optical pumping
efficiency of 97f§% into account. From this fit we deduce a single ion couplirig od

g = 21 x (0.5254+0.002) MHz. This value is in agreement with the previous measure-
ments and the theoretical expectation.

5.7. Coherence between collective Zeeman substates

The realization of the collective strong coupling is a calictep on the way to an effi-
cient light-matter interface [55]. However, the storagegointum states in the system

61



5. Realization of collective strong coupling
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Figure 5.8.: Vacuum Rabi splitting spectra\(= Ac) obtained for increasing effective
number of ions [0 (blue circles), 243 (green stars), 601 (rethgles), 914 (orange
squares)].

On [2TiMHZ]
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Figure 5.9.: Collective coupling ratgy versus effective number of iod$deduced from
reflectivity spectra, such as shown in Hig.15.8, obtainedh wiystals of different shape
and density. The solid line is a fit to the data and gives a siiwi coupling ratey =
21 x (0.52540.002) MHz when corrected for the optical pumping efficiency.
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5.7. Coherence between collective Zeeman substates

requires persistent coherences between the various Zesubatates that would be used
to encode the quantum information. To evaluate the prosgecthe realization of such
coherent manipulations among these states, we measureéedag time of collective co-
herences between different Zeeman substates of ﬁ%;glevel. The coherences were
established by Larmor precession of the magnetic spin ediby an additionaB-field
transverse to the quantization axis. In presence of thimganalB-field, the population
of the different substates undergo coherent oscillatiaiéch are measured at different
times in their free-evolution by directly probing the codetrcoupling between the cavity
field and the ions. In order to be able to resolve the coher@ptlation oscillations in
time using the previous technique (probing timé ps) the amplitude of the longitudinal
B-field was lowered td,; = 0.15 G to obtain oscillation periods in the 10 us range,
and the optical pumping preparation was modified as to mierttie effect of the trans-
verseB-field. The reduce®-field along the quantization axis could in principle make th
sample more sensitive B ield fluctuations. Since these fluctuations might be onéef t
factors eventually limiting the achievable coherence timeeexpect the coherence time
measured by this method to be a lower bound as compared todgtieps configuration
with a larger longitudinaB-field of B, = 2.5 G.

5.7.1. Experimental sequence

The coherence time measurements required the experinoemtayuration and the mea-
surement sequence to be slightly modified as compared toditective coupling rate
measurements described in Sec] 5.3. The Larmor precessiadticed by an additional
B-field component along the transvessdirection, while the longitudinal magnetic field
componenB; was lowered to optimize the contrast of the coherent pojulaiscilla-
tions. It turned out that the optical pumping preparatioedisefore was substantially in-
fluenced by the additional transveiBdield component and the state preparation scheme
was therefore changed. The optical pumping light now praepegalong the-axis. It is
T-polarized, hence transferring the atomic population sytnically into the two outer-
most magnetic substates of the’-B@]/z level,my = +3/2.

The experimental sequence used to measure the cohererds strown in Fig[5.70.
The ions are Doppler laser cooled during the firgs5followed by a 12us optical pump-
ing period. After the optical pumping, all lasers are turédor a timet, allowing for
the free evolution of the system. Finally, a weak-circularly polarized probe pulse is
injected into the cavity, addressing the ions intite= +1/2 andm; = +3/2 substates. The
steady state cavity reflection is measured by collectinggfiected photons with the APD
for 0.5 ps. The additional delay time between optical pumping pra@m and probing
obviously lowers the repetition rate of the sequence sicamfily, especially for long de-
lay times, and the number of data points for each sweep ofabhigyowill decrease. To
compensate for this, the data points at longer delays had &véraged over more cavity
sweeps, which substantially increased the acquisitioe timd eventually limited these
measurements to delays of a few hundredssof

5.7.2. Theoretical description and expectations

Based on a simple four-level model the free Larmor precassiduced changes in the
populations of the Zeeman substates; = +1/2, +3/2), of the 3&D3/2 level can be cal-
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Figure 5.10.: a.Experimental sequence used to measure the coherence tookeative
Zeeman substate coherences in théC8g, level. b. Energy levels of°Ca’ including
the relevant transitions addressed. In the third phaskasalis are turned off during a time
T and the system evolves freely in presence of a transverseeatiagield componery.
The acronyms are: LC: laser cooling beam, RP: repumping b@dnoptical pumping
beam, CB: control beam, PB: probe beam.
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5.7. Coherence between collective Zeeman substates

culated. For an homogeneoBdield with component8, andB, the Hamiltonian of the
four-level system can be expressed in terms of collectiyrifations

Niot

Zml (my|) (5.6)

and spin operators

Niot . .
Oty = my) ) <”{J\(J), my # mj. (5.7)
=

Here, |m]> and|rr{J> are the state kets of thigh-ion with magnetic quantum number
my andm;, respectively. The sum extends over the total number of ibnthis notation,
the Hamiltonian of the free evolution reads

He = hoo,y molm (5.8)
my

+he S S 4/ Momb By (CTmJ,mJJerJ,mJ),
my TT{]

where the sums extend over the four Zeeman-substates. &jgrg, is the Kronecker
delta and the Larmor frequencies and wy corresponding to the and x component
of the magnetic field are given by the product of the magnegicl famplitude by the
gyromagnetic ratiggm:

w; =YemBz, Wy = YemBx. (5.9)

For ac~-circularly polarized probe, the measured collective dimgpto the cavity light
mode after a certain delay tintebetween optical pumping and probing will depend on
the collective populations in they = +1/2 andm; = +3/2 substates. For a non-vanishing
population in them; = +1/2 state, the effective cavity decay rate defined in Eq.(3.48a)
modified to

K/ =K+ gf/le/Z (510)

+03 Nsfo>——
g, e

1/2

where the subscripts indicate the magnetic substate. [@tluythe expectation values
for the collective population in these states, one can shmat the cooperativityC(T1)
measured at timeis expected to vary as

C(t) =acoqwLT) +bcog2w. 1) +c, (5.11)

where the combined Larmor frequency

02 + 0 (5.12)

was defined. The parameterd, c are constants depending on the efficiency of the optical
pumping preparation, the Clebsch-Gordon coefficients hadrtagnetic field amplitudes
B, andBx.
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5. Realization of collective strong coupling

0 5 10 15 20
T [ps]

Figure 5.11.: Calibration of the Larmor frequency for different currenfshe By coils.
Shown is the cooperativity as a function of delay timier different transvers8-fields:
Ix = 0 mA (open diamond)lx = 10 mA (open squares)y = 16 mA (solid stars)|x =
26 mA (open circles) antj = 36 mA (open triangles). The solid lines are fits according

to Eq. [&.11).

5.7.3. Experimental results

The amplitudes of the magnetic field&,andB;, at the position of the ions were calibrated
by measuring the dependence of the Larmor frequenayith the intensity of the current
used to drive the transverse magnetic field coils (see EQ®). 46d [5.IPR)). The obtained
coupling as a function af is shown for different currents on Fig.[5.I1. The curves are
fitted according to Eq[{5.11) yielding the Larmor frequeridyese frequencies are shown
as a function of the current passing tBgcoils in Fig. [5.I2. Using the gyromagnetic
ratio yom = MUsd3/2/h (U is the Bohr magnetorgs/, the Landé factor of the §ﬂ>3/2
level), we deduce the magnetic fields along the two &is= (0.134+ 0.002) G and
Bx = (4.91+0.09) G x Ix/A.

To achieve an optimal contrast of the Larmor oscillatiohs,measurement was carried
out with moderat@-field valuesBy = B, = 0.15 G and the variation of the cooperativity
was measured for 12@0s. To compensate for slow drifts during the measuremenh eac
data point was normalized to the mean cooperati@yveraged over one oscillation pe-
riod. The normalized cooperativity is shown in Hig._3.13agether with a fit of the form
(5.113), in which decoherence processes are taken into atbgunultiplying the oscillat-
ing terms with an exponential decay term éxf'z.), which would be expected e.g. for a
homogeneous broadening of the energy levels. From thisdijeduce a coherence time
of Te = 1.7'%% ms. This value is comparable to previously measured cobertémes for
single ions in linear Paul trap in equivalent magnetic fieldsstive states [149] and might
be further improved by an active control of stray magnetild§ier state configurations
that are less sensitive to magnetic field fluctuations. Fooimogeneous broadening, due
to magnetic field gradient over the crystal, the decoherpnaeess would be better de-
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5.7. Coherence between collective Zeeman substates
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Figure 5.12.:Larmor frequency as a function of current through Byecoils. The solid

line is a fit of the formuy. = /w2 + a2l2 and we deducey, = 21 x (0.150+0.002) MHz
andwy = 21t x (5.540.1) KHZ 5
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Figure 5.13.: a.Coherence as a function of delayDue to the presence of a non-z&o
field component orthogonal to the quantization aBis-€ By = 0.15 G), coherent Larmor
precessions are observed. Long term drifts are compenisatedrmalizing to the mean
of one oscillation period. The solid line corresponds to aaf#suming an exponential
decay and yields a coherence timetgt= 1.7{%98 ms. b. Cooperativity as a function of
delay with only theB-field along the quantization axis preseBf & By =0, B,=0.15 G).
The data points are normalized to the mean cooperativi{Zpt 1.43+ 0.02.
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Figure 5.14.: Cooperativity for the crystal shown in fig._5]15 measuredr dwe hours.
The coupling is constant within the error-bars. For detedl text.

scribed by a Gaussian decay][41]. Fitting the data assun@auasian decay expt/12)

in Eq. (511) yields a coherence timetgf= 0.5"9-5 ms. Due to the limitation of our mea-
surement to time delays of< 120us it is at present not possible to distinguish between
the two decay mechanisms.

For comparison the cooperativity as a function of probeyd€lér), was measured with
only the bias field along the quantization axis presptf 0, B, = 0.15G), as shown in
Fig.[5.I3 b. Here, the values are normalized to the mean catiyigy averaged over alll
points(C). Within the error bars the deduced cooperativities agréle asconstant value
of (C) =1.43+0.02.

5.8. Long term stability

To prove the capability of performing experiments using shene ion Coulomb crystal
for long times, we monitored the cooperativity for a single Coulomb crystal over more
than 2 hours. The result is shown in fig. 5.14. The coopetgativas measured on atomic
resonancé\ = 0 and stays constant withiil%, although we observe the formation of
darkions on the surface of the crystal. These dark ions agt likely formed by reactions
of 40Ca’ with residual hydrogen or oxygen atoms in the trap. As thesk ns have a
higher mass, they see according to €. 1(2.8) a shallowealradpping potential and,
hence, form a dark shell around the central component. Hewmvéor crystals with a
radius much larger than the cavity waist, as used in thisréxjat, the dark ions appear
in the wings of the fundamental transverse Gaussian modéepand do not influence
the coupling to the cavity.

Moreover, these dark ions can be “recycled” by irradiatimgd¢rystal with UV light from
the ionization laser, most likely by photo-dissociatiomeTinset of fig[5.14 shows four
projection images of the same crystal taken during the lamg measurement of the
cooperativity. The dark shell can be clearly seen on imagdsifter 1 h) and c. (after
2 h), whereas it disappeared again on image d., after theéatnyas exposed to UV
light. The crystal contains 124@0250 ions of which 514t 10 interact with the cavity.
From the projection images the production rate for the dak ican be deduced and we
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5.8. Long term stability

Figure 5.15.:Projection image of the crystal at the beginning of the measuremént
after one hourc. after two hoursd. after flashing the UV laser. On imade andc.

a shell of dark ions is present emerging from chemical reasti The crystal contains
124004 250 ions of which 514 10 interact with the cavity
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5. Realization of collective strong coupling

find Ryark = (10.2+0.2)min~%. This rate will, however, depend on the geometry and
the density of each individual crystal, and also on the casitpm and pressure of the
background gas in the chamber. The described recyclingited could have promising
applications for reaction studies using cold single ion®orensembles [150].

5.9. Conclusion

To conclude, we have demonstrated the possibility to opénahe collective strong cou-
pling regime of CQED using large ion Coulomb crystals posi¢id in a moderately high-
finesse optical cavity. We measured cooperativities asdsgh~ 8, which is comparable
to those used in neutral atom based quantum memaries [4964¥7]. Moreover, to as-
sess the prospect of realizing a long-lived quantum menvegymeasured the decay of
collective coherences between magnetic Zeeman substatdsund coherence times in
the millisecond range, which is of the order of what previpugas measured for single
ions in equivalent magnetic field sensitive states [149]e €kcellent agreement of the
experimental results with the theoretical predictions ad as the long-term~ hours)
temporal stability of the coupling makes ion Coulomb crissfromising candidates for
the realization of quantum information processing deviegsh as quantum memories
and repeaters [10,88]. Using for instance cavity EIT-bgs@docols [55557], the ob-
tained coupling strengths and coherence times would makerupe realization of both
high-efficiencyandlong life-time quantum memories [66,/67,151]. Experimeshiswing
how cavity EIT can be realized in the system will be preseireaxh.[8.

The nice properties of ion Coulomb crystals also open upifembanipulation of com-
plex multimode photonic information [81] and we will preseesults on the coupling to
various transverse cavity modes in the following chapter.

Furthermore, the collective interaction can also be usdadititate non-invasive spec-
troscopy of the collective vibrational modes of ion Couloomstals[[152]. These exper-
iments will be presented in chl 7.
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6. Coupling to different transverse
cavity modes

In this chapter, to assess the potential of ion Coulomb alysis a medium for multimode
light-matter interfaces, we investigate the possibiliycbuple ion crystals to different
spatial (transverse) modes of the cavity. We present a tigbraharacterization of the
coupling of various ion Coulomb crystals to the Tgdand TEMg o1 transverse cavity
modes.

The chapter is structured as follows: First, in dec] 6.2 tie®tetical expectations for
the coupling of ion Coulomb crystals to these modes is dssdisfollowed by a brief
description of the experimental setup in sec] 6.3. Thenem[§.4, the transverse pro-
files of the cavity modes are mapped out by moving small, eltedjcrystals along the
transverse directions and monitoring the change in thecible coupling rate. In sec.
we present experiments in which the scaling of the cagmtrength with the radial
size of the crystals is investigated, followed by a measerdrof the collective coherent
coupling rate of large ion Coulomb crystals to the two moaeseic[6.6. Finally, in sec.
we summarize the results and give a brief outlook.

6.1. Introduction

lon Coulomb crystals combine properties of solid stateesyst such as a uniform ion
density (see sec[2.3) and long time stability (see $ecl \&itB) features commonly
attributed to single isolated particles, i.e. excellerftar@nce properties and no significant
internal state perturbation due to ion-ion interactior® (sec_5]7).

This uniqgue combination makes ion Coulomb crystals pas#ibin the mode vol-
ume of an optical cavity ideal candidates for the realizattb multimode quantum in-
terfaces, where, in contrast to the traditional frequenay @olarization degrees of free-
dom [153] the encoding of the photonic information can béqrered in the spatial degree
of freedom, i.e. the orthonormal transverse modes of thigaptavity. Such a system
would provide an interesting basis for e.g. the realizatibmultimode quantum memo-
ries [55[96], where several flying qubits could potentidley stored simultaneously in a
single physical system, or for the cavity enhanced gererd@9, 73/ 154, 155] of non-
classical (spatially) multimode states of light [156-159]

The simultaneous coupling to multiple modes may also hapkagtions, for e.g. quan-
tum imaging [157=160] and cavity-mediated coolihg [1613J16For the latter, an en-
hancement of the dynamical cooling effect by the use of Mitie geometries has been

predicted([[164].

In this chapter we will present results on the coherentautison between ion Coulomb
crystals of several sizes and transverse cavity modes [8&]demonstrate how small,
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6. Coupling to different transverse cavity modes

needle-shaped crystals can be used to map out the transtersteire of various cavity
modes and investigate the effect of the size of the crystalthe collective coupling
to different transverse modes. Finally, we demonstrateitientical coupling rates for
various modes can be achieved for sufficiently large ion @uobl crystals.

6.2. Theoretical expectation

In the previous chapters, we focused our theoretical aisabfghe coherent interaction
between ion Coulomb crystals and the cavity fundamental Jggkhbde. For the exper-
iments presented in this chapter, we will make use of diffecavity modes and will in
this section modify the theoretical description of §eclt8.Righer-order TENM, modes.

For an arbitrary transverse cavity mode the effective gdigtd decay rate, introduced
for the fundamental TEW) mode in Eq.[(3.48a), is given by

2 Y
v

whereGn, denotes the collective coupling rate with the TRMmode considered is
the cavity field decay ratey is the optical dipole decay rate addis the detuning of
the probe laser with respect to the atomic transition fraqyeIn its general form, the
collective coherent coupling rate, introduced for the faméntal Gaussian mode in eq.

(3.45), reads

K'=k+G (6.1)

G2\n(%0,Y0) = %P0 /V dr W2 (x — x0,2)W2(y — Yo, 2)D*(X— X0,y — Yo, 2) (6.2)

whereg is the maximum single-ion coherent coupling rate (see[e@4fR po is the ion
density (see eq.[(2115)) aneh(x,2), Wn(Y,2), P(x,Y,2) are the two transverse and the
longitudinal mode functions defined in ef.(3.2) and €q.)(3espectively. The integral
extends over the volume of the spheroidal crystak %nRZL, with half-lengthL and
radiusR, andxp andyp account for possible radial offsets of the crystal revolutaxis
with respect to the cavity axis. As in e._(3.45) we can aveager longitudinal effects,
and eq.[(6R) reduces to

2 R R
GEnlo.y0) = T2Lpo [ _dxWBx—xa2) [ aywEy—y0.0). (6.3)

Of particular relevance for our experiments are two appnations that can be made
for ion Coulomb crystals with a radial extension that iseittnuch smaller or much larger
than the waist of the fundamental Tymode wp. In the first caseR <« wp) the radial
integral in eq. [[EB) is trivial and the transverse mode fioms are simply evaluated at
the position of the crystdko, yo)

Ghn(X0,Yo) O W (x0,0)Wa(yo,0). (6.4)

Changing the radial offse{so, o) will accordingly modify the cavity field effective decay
rate of eq. [[611) via eq[{8.4) and one can directly map outrtnesverse profile of the
cavity mode by measuring as a function of xo, yo).
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In the second case, where the radius of the crystal is mughrénan the cavity waist
(R> wp), the integral over the transverse mode functions yields

R )
/ du W2(u—up,0) ~ / du W2(u,0) = \/gwo, vn, whereu = x,y. (6.5)
"R P

The collective coupling is then independent of the trarswenode function considered
and substituting this result inth (6.3) and averaging olvelddngitudinal sinusoidal yields

™R
Gin=g’Po—"L, vnm (6.6)

which is consistent with the result found for the Tgdvnode in eq.[(3.46).

In the limit R > wp, the coherent coupling rate is hence simply proportionah&
volume of the cavity mode in the crystal and since the trars®venode functions are
orthonormal, this volume is the same for all of them. Forégign Coulomb crystals one
thus expects the collective coupling rate to be the samdlféiEM ,,, modes. However,
for large crystals there will always be ions which are lodde from the RF-field free
trap axis and which will experience strong micromotion, @swliscussed in seck._K4.6
and46. The collective coupling rate to different TEMmode will hence be equal only
if there is no significant effect of this micromotion on theupting with the cavity field.

As can be seen from eg_(#.1) the micromotion is in principleefy radial and one
expects it not to couple into the axial motion of the ions.sIniediction is also supported
by molecular dynamics simulatioris [165].

One therefore expects the effect of micromotion on the ctile coherent coupling to
be negligible. However, this assumption is only valid foreafpctly symmetric trap and
if the cavity and the trap axis are entirely parallel. The sueament of the collective
coupling rate of large ion Coulomb crystals with differersrtsverse modes thus allows
to test the validity of these predictions and the qualityhaf tavity trap setup.

The issue of micromotion is also important when displacimg$ elongated crystals
radially into regions with large amplitudes of the microimatand measuring their cou-
pling with the cavity field. Such measurements will provid®ther sensitive test of the
effect of micromotion on the collective coherent coupling.

6.3. Experimental setup

The main parts of the experimental setup were already inted in ch.[# and we will
here only describe the necessary changes and some spepéftsafor the experiments
presented in this chapter.

The results of the previous chapter were all obtained byciimjg the cavity through
the PT and measuring the cavity reflectivity spectrum withghobe APD. When measur-
ing the collective coupling to higher order cavity modeg fobe laser has to be mode
matched to the cavity mode in question. However, this beaal@@aussian profile, corre-
sponding to the transverse profile of the Tggvihode and coupling this beam to a higher
order mode will result in a lower coupling efficiency. Thedtian of the beam not over-
lapping with the cavity mode in question will be reflected loé tcavity and would lead
to a background for measurements in reflection. To avoicetipesblems, we inject the
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Figure 6.1.: End-view schematic: The crystals (red circle) can be degalan the X, y)-
plane by application of appropriate DC voltages to two ofgegmented electrode rods,
their position and size are monitored using two CCD cameras.
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Figure 6.2.: Cavity transmission, scanned over one free spectral ramgjen@asured by

a photo detector. The TE§d, TEM1001 and TEMq 2 transmission peaks are clearly
visible and marked by the red arrows. Though not resolvechimnscan, the resonance
frequencies of TENp and TEMy; are slightly non-degenerate, most likely due to bire-
fringence of the mirror substrates.
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6.4. Mapping out the transverse cavity mode profiles

probe laser for the measurements in this section througHhside into the cavity (see
fig.[4.8) and measure the transmitted signal with the probe.AP

In some of the experiments, we want to deliberately traagte ion Coulomb crystal
along the radial directions. As was briefly discussed in[d&t,.this is possible by apply-
ing additional DC voltages to two of the electrode rods. Aesohtic is shown in fid_6]1.
The ions are moved along the horizontaxis when applying equal voltages of the same
polarity to the two rods, and along the vertigadixis for voltages of opposite polarities,
but equal magnitude. The position in thez)- and the(y, z)-plane can be deduced from
projection images obtained with the top and the side canseeged. 414), respectively.

The cavity transmission spectrum is measured by scannengawity over the atomic
resonance at a rate of 30 Hz, see sEc. 1.8.3, where the redelaser at 894 nm is
used to compensate for thermal drifts and mechanical vt During each sweep, the
transmission is probed by repeating the experimental segughown in fig_5]2 with the
probe laser being mode matched to the transverse cavity imagigestion. The probe
intensity is as before set such that the mean photon numtitlee icavity is about or less
than one at any time and the probe polarization is left-h@edlarly-polarized.

In the description of the optical cavity in se€._14.5 it was timmed that the cav-
ity mirrors (radius of curvature of 10 mm) are mounted in aseldo confocal geome-
try with a inter-mirror distance of 18 mm, corresponding to a free spectral range of
Vrsg =127 GHz. The frequency of the different transverse mode fonstiare non-
degenerate, according to ef._{3.6), and the expected fnegspacing of two neighbor-
ing transverse modés + m= n' 4+ m + 1) amounts t@vmyn = 7.08 GHz, In fig.[6.2
the cavity transmission spectrum when scanning the camityth over more than one free
spectral range is shown. The spectrum is obtained by meagsiiné transmitted intensity
of a relatively strong probe field injected into the cavityiwa photo-detector. The trans-
mission peaks corresponding to the TEYMTEM1001 and TEMo o2 modes are clearly
resolved on the scan, and separated in frequency, as edfente(3.6).

Though according to ed.(3.6) the resonance frequencigsdarEM, g and TEMy; mode
should be equal, we measure a slight differencé&af o1 ~ 1 MHz, which is most likely
due to birefringence effects in the substrates of the camityors.

To facilitate mode matching to a particular transverse matk especially to distin-
guish the spatial orientation of e.g. the Tidvand TEMy; mode, a CCD camera was
inserted into the probe beam path before the APD to directigitar the beam profile of
the transmitted cavity signal while modematching.

6.4. Mapping out the transverse cavity mode profiles

In a first series of experiments, we explore the collectiveptiog of a small, elongated
ion Coulomb crystal to various cavity field modes when tratsg it along the horizontal
x- and the verticay-directions. A projection image of the crystal is shown in 3. It
has a half-length of = (240+ 1) ym and a radius oR = (21+ 1) um. With a density
of (3.4+0.1)- 10° cm~2 the crystal contains a total dfo; = 238+ 18 ions. The position
of the crystal’s revolution axis is determined from projestimages taken with the two
CCD cameras. In fig._6.4 the horizontal position for differemlues of the additional DC
voltages applied to the two rods with equal polarity as deducom projection images
is shown. The solid line is a linear fit to the data points arelds (140+2) §7. The
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6. Coupling to different transverse cavity modes

Figure 6.3.: Projection image in théx,z)-plane of the thin needle-shaped crystal used
for mapping out of the transverse cavity mode. From a prigiedmage we deduce a
half-length and a radius df = (240+ 1) pm, R= (214 1) ym. With a density opo =
(3.44+0.1) - 108 cm 3, the total number of ions in the crystalNg,; = 238+ 18.
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Figure 6.4.: Horizontal position of the center of a needle-shaped ckystavarious DC
voltages applied to two of the trap rods. The position of thestal is deduced from
projection images. The solid line is a linear fit and yieldssplhcement of140+ 2) @

precision in reading the position of the crystalif.8 ym [119].

In fig. [6.3 the measured coupling strengths using the Coulométal of fig.[6.7 is
presented in terms @2, normalized taG3,(xo = 0, yo = 0) for the TEMyo and TEMg
modes, when translating the crystal along the horizontaid the vertical directions.
For each position of the crystal, the coherent couplingngfiteis measured through the
broadening of the probe pulse transmission signal (Eq))(@ith the probe tuned to the
atomic resonancé\(= 0). The solid lines in fig_6]5 are theoretical predictionsgkated
according to eq.[{6l1). For the calculation we use the gedcaésize as deduced from
the projection image and a densitymf = (3.8+0.1) x 10° cm ™! determined from the
trapping parameters (see e, (2.15)). Though the field of Bid19 mode drops to zero
at the center of the mode, the coherent coupling does naglvémi zero displacement of
the crystal, because of its finite radial extension.

The experimental data is shown to agree very well with theristécal predictions and
since the amplitude of the radial micromotion increaseb it ions’ distance from the
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Figure 6.5.:Normalized coherent coupling strengtB%‘o (solid) ande0 (open) as afunc-
tion of the displacement of the needle-shaped crystal aloag (circle) andy (square)-
axes. The solid lines are derived from the theoretical esgiom given in Eq[{6]3), taking
the radial extension of the crystal into account. The red tinrrespond to the TE}
mode, the blue line to theand the green line to thedirection of the TEMg mode.

RF-field freez-axis (see eq[{4l 1)), strong systematic deviations woaNe: bheen expected
at large displacements if excess micromotion was an isshe.eXcellent agreement of
the measured data with the theoretical predictions indgttat the radial micromotion
of ions does not couple significantly into their axial motiowhile reassuring for the
behavior of our trap, these findings are in agreement witlliptiens from molecular
dynamic simulationg [165].

The experiments presented in this section provide, fumloee, a very sensitive tech-
nigue to measure the relative offsets between the RF-fieldtfap axis and the symmetry
axis of the cavity. By translating small, elongated crysiaong the transverse direc-
tions and measuring their coupling to the fundamental jEMode as a function of
displacement, these offsets can be measured with very heglisppn (better than im).

In combination with the scheme to modify the position of tleeemtial minimum of the
radial pseudo-potential of the trap discussed in[se¢. &&owmld, using this measurement
technique, reduce the radial offset in both transverse iiioes to less than a microme-
ter [119].

6.5. Effects of the size of the crystal on the cavity
coupling
To check further the agreement with the theoretical pratistof eq. [[6.8) we performed

measurements of the collective coupling rate of crystath ¥ixed position, but varying
radii with different transverse modes.
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Figure 6.6.: (color online.) Normalized coherent coupling streng8s (solid) andG2,
(open) as a function of the crystal radiRs The length and density of the crystals are
fixed toL = (3364 1)um andpo = (3.840.1) x 10° cm™1, respectively. The solid lines
are derived from the theoretical expression given in EQS)(6The three insets show
the three crystals with different radial extensions (fraft to right, R= (23+ 1) um,
R= (634 1) ym andR = (149+ 1) um).

For narrow crystals witlR < wg a significant difference in the coupling with the T/
and TEM mode is expected. However, these differences should vémishcreasing
crystal radii and the collective coherent coupling ratexjsexted to converge towards the
same value for big crystals witR > wp, as discussed in ed_(6.5). This prediction was
tested using crystals with a fixed half-lengthlof (336+ 1) um and a constant density
of po = (3.8+1) x 10° cm3. The radial extension was changed by successively loading
more ions into the trap while at the same time increasing xied aonfinement potential
to keep the length of the crystal constant.

In Fig.[6.8 the measured coherent coupling rates for the Jgg@vid TEMo mode are
shown for various crystal radii. The rotational symmetrisao{ the various crystals was
positioned to coincide with the axis of the cavikg & yo = 0). As expected, the coherent
coupling rate increases with the radius, and this increaskwer for the TEMy mode ,
since most of the ions are positioned along the field free @ixisis mode. As the radius
of the crystals is further increased, the coupling rate itkh modes converges to the
same value, in good agreement with the theoretical predistof Eq.[(6.B). The solid
lines are the expected coupling rates for those modes, awdgbhod agreement with the
experimental data. The inset in f[g. 6.6 shows projectiongiesaof three crystals with
radiiR= (23+1) pm, R= (63+ 1) ym andR= (149+ 1) um
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Figure 6.7.: Projection images in théxz)—plane of the 12 mm-long Coulomb crystal
used for the measurements in Hig.]Ga8The whole crystal is illuminated by 866 nm re-
pumping light along the-axis. b. andc. The repumping light at 866 nm is predominantly
injected into the TEMp (b) and TEMg (c) cavity modes, for enhancing the fluorescence
level within these modes.
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Figure 6.8.:(color online.) Broadening of the probe signal half-wieth- k as a function
of the probe detuning, for the TEMyg (solid) and the TEM (open) modes, obtained
with the crystal of Fig_6]7. The collective coupling rates deduced from Lorentzian fits
according to EJ._6]1 (solid lines).
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6.6. Coupling with large crystals

Finally, to carefully check the prospect of using large imu®mb crystals as a media for
multimode light-matter interfacing, we performed preaiseasurements of the coherent
coupling rates for both the TE§J and the TEMo mode. To obtain a sufficiently large
coupling, much larger crystals with a higher density wereduslin fig.[6.Y projection
images of the crystal are shown. The three images are takkrifferent configurations
for the repumping laser. In fi§.8.7 a., all ions in the Couloonstal are exposed to
repumping light and contribute to the fluorescence, wherefig.[6.7 b. the repumping
laser is mode matched to the Tlgdmode of the cavity and only the ions inside the
cavity mode will contribute to fluorescence, while the remiag ions will decay to the
metastable 3D, state. Fig. [6]7 c. is acquired in a similar configuration hvite
repumping laser now being mode matched to the TiEMode and one can clearly see
the nodal line of this mode. From the projection image, weudech half-length of ~
600um, a radius oR ~ 300um. With an ion density opo = (5.4+0.1) x 10° cm2 the
effective number of interacting ionsié ~ 590.

The coherent coupling rate was measured analogously td5sdcby measuring the
broadening of the effective cavity decay rate for a seriededfinings of the probe pulse
from atomic resonancd,. The results of the measurements is shown ir{fid. 6.8 together
with Lorentzian fits to the data based on Egl 6.1. V@ith, andy as free fitting parameters,
we obtain Goo = 21tx (11.6+0.1) MHz, y = 21t x (11.3+ 0.3) MHz) for the TEMyo
mode and Gio = 21tx (11.54+0.1) MHz, y = 2rtx (11.4+ 0.3) MHz) for the TEMgo
mode, respectively. The experimentally deduced colleatwupling ratestsoo and Gy,
are equal within their error bars and confirm the theoreggpkctation of eq[{8.5). This
also shows that the radial micromotion does not couple imaaixial degree of freedom,
and does hence not influence the coherent coupling, andoorate the findings of sec.
0.4.

Moreover, the achieved coupling rates also show that thieatsle strong coupling
regime can be reached for higher-order cavity modes. Fumibve, we also observed
equal coupling strengths between large crystals and the;§ENd the TEN; modes,
which opens up for e.g. the possibility of storing photonibits encoded in a spatial
basis spanned by these two modes.

6.7. Conclusion

In conclusion we have performed a series of measuremenigéstigate the coupling of
ion Coulomb crystals with various sizes with different saerse cavity field modes.

In a first experiment, we demonstrated how small, elongatgstals can be used to
map out the transverse profile of the cavity modes by trangl#éte crystals in the radial
plane and measuring the coherent coupling rate to the ciwitly The results show very
good agreement with the theoretical expectations, eveuifplacements between the
revolution axis of the crystal and the field-free nodal lifi¢le RF potential as large as
~ 60 pm.

This experiment is to some extent reminiscent of [68], wresingle*°Ca’" ion was
used as a hano-scopic probe to reconstruct the transvedsdi$igibution of several trans-
verse modes of an optical cavity. The main difference isithaur experiment the trans-
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verse field distributions are measured not by detectinghiaent fluorescence light, but
directly via the coherent coupling of the ions to the cavigydi

In a second experiment, the effect of the size of the crystahe coupling strength to
various transverse modes was investigated by measuringptieetive coupling rate of
crystals with varying radii to these modes. The experimatdta is in good agreement
with the theoretical expectations and we find the prediotedrsy with the radius for both
the TEMyo and the TEMg mode.

Finally, we demonstrated how large ion Coulomb cryst&Is{wp) can be used to real-
ize collective strong coupling to various transverse madés equal coupling strengths.
These results are very promising for e.g. the realizationamfiplex quantum memory
schemes, where one can envision the simultaneous stordgetenval of photonic states
in various cavity modes$ [96].

For all experiments, we find very good agreement between #dasured coherent cou-
pling and the theoretical expectations, even when dispiesinall, elongated crystals into
regions of high micromotion or for crystals with large rddatensions, where some of
the ions are positioned far from the RF-field free axis anceepce strong micromotion.
These results show that the coupling of the inherent radiatamotion into the axial
degree of freedom is sufficiently small to have no signifieffect on the coherent cou-
pling between the ion ensemble and the cavity modes, in ggakeeent with molecular
dynamics simulation$ [165].

Our results, combined with previously measured long ctilecZeeman sub-state co-
herence times (see s€c.15.7), suggest that large ion Cowlgrstials could serve as near-
ideal media for high-fidelity multimode quantum informatiprocessing and communi-
cation devices.
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7. Noninvasive spectroscopy of
vibrational modes

The measurements in this chapter will exploit another degifefreedom in the light-

matter interaction, namely the collective motion of traghpen Coulomb crystals. We
will present a novel noninvasive spectroscopy techniguehnirectly uses the collective
coherent coupling between the ions and a cavity field at thglesiphoton level to gain

information about the collective motion of the ion crystdlhis measurment technique
will be used to study the normal mode dynamics of cold ion Goild crystals in a linear

Paul trap.

The chapter is structured as follows: We start by giving aftintroduction and moti-
vation in[Z1. Then, in sed._1.2 a theoretical model for thiiective vibrational modes
of a cold nonneutral plasma will be introduced, along witlheotretical investigation of
the influence of vibrational modes on the coherent lighttemdhteraction. In sed_4.3
we will present the experimental technique to perform a measie spectroscopy of vi-
brational modes using the coherent coupling with the cdiétg. In sec 7K some first
applications of this technique will be presented along itliminary results, before we
conclude in se¢_715.

7.1. Introduction

In the past decades, the physics of cold confined plasmaseotioal charged parti-
cles [166] has been the subject of many theoretical and empatal studies. While the
availability of fast computers allowed for detailed sintidas of these systems [165-170],
the structural properties and equilibrium states of stlpognfined plasmas in the form
of ion Coulomb crystals was investigated both in Pennindl{flZ5] and in Paul traps
[75£78[121.141.176].

When these strongly confined plasmas are subject to exfgenalrbations, theoretical
studies of the collective dynamics treating the plasma as@temperature charged liquid
predicted collective normal mode dynamics|[82.]167] 168].

In Penning traps, the normal mode dynamics of magnetizeersjatal shaped charged
plasmas have experimentally been observed in a series clumegaents using cold laser-
cooled plasmas of Beions [I71.5174]. In these experiments, the excitation ofrtiqaar
normal mode was detected by observing changes in the fllaresdevel of the ions due
to the Doppler effect. The normal modes were excited by apglappropriate driv-
ing fields to the trap electrodes with a frequency matchiregésonance frequency of the
mode. The Doppler shifts of the atomic resonance by the drivetion lead to observable
changes in the fluorescence. Using this so-called Doppleciveetry spectroscopy tech-
nigue [173], a number of normal modes could be observed anddtresponding mode
frequencies could be related to spedffien)-modes theoretically predicted for these mag-
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7. Noninvasive spectroscopy of vibrational modes

netized spheroidal charged plasniad [82]. A phase-coheetattion of the fluorescence
at certain phases of the modulation, furthermore, allovsedaf direct imaging of the
axial-velocity eigenfunction of the modes [173].

While strongly confined plasmas in Penning and Paul trapsiamiéar in many respects,
the trapping environment is known to influence the propgniethe trapped ensembles.
The RF-trapping fields are e.g. expected to lead to much higgeting rates for the un-
magnetized plasmas in Paul traps as compared to the magghptesmas confined in the
static potential of a Penning trap_[165,177]. Furthermtre,lack of a rotational sym-
metry axis in Paul traps has been found to be responsiblééoolbservation of specific
crystalline structures [141].

However, the normal mode dynamics of cold unmagnetizedydasn linear Paul traps
are still expected to be governed by the zero temperaturgetidiquid model and collec-
tive vibrational modes were also predicted for these plagiB2167]. The experimental
investigation of these normal modes in an unmagnetizednada the form of an ion
Coulomb crystal in a linear Paul trap will hence in many resgpeontribute to the under-
standing of the influence of the trapping environment on thesjes of these crystals.

Moreover, since our previous studies indicate that largegdoulomb crystals confined
in a linear Paul trap are promising candidates for the ratidin of both high-efficient and
long-lived quantum memories for light [79,181], a study oé thormal mode dynamics
of these crystals might reveal important implications @ éxcitation of collective vibra-
tional modes and temperature on the fidelity of such an iordgsantum memory. On
the other hand, the knowledge of the normal mode dynamidseset ensembles might
also open up for the prospect of storing several photoniaiguma bits through coherent
excitation of specific vibrational modes.

In addition, collective normal mode dynamics of large ioru@monb crystals might also
open up for using these systems for performing quantum sitionls, as was recently
proposed[178.179].

Finally, ion Coulomb crystals also represent extremelgriesting systems to study cav-
ity optomechanics phenomena with a cold atomic medium|[181), since, in spite of
their solid nature, they possess free atomic resonancegiepand can hence be made
very sensitive to the radiation pressure force exerted igadields. In this contextion
Coulomb crystals could serve as model systems for moretitradl solids like micro-
mechanical oscillators [182].

In this chapter, we will present experimental studies ofational normal mode dy-
namics in cold*®Ca’ ion Coulomb crystals in a linear Paul trap. We use a novelimon
vasive technique which is based on monitoring the respohgedon plasma to a single
photon optical cavity field [152]. This is accomplished byamering the effect of the col-
lective motion on the coherent coupling between the ion rb$e and a standing wave
cavity field, while deliberately exciting the normal modéss the coherent light-matter
interaction is sensitive to very small changes of frequesydhe Doppler shifts induced
by the ions’ motion is directly reflected on the coherent dimgprate. Since the probing
does not rely on the observation of incoherently scattehedgns as, e.g. in the Doppler
velocimetry, the measurement can in principle be purelgeatisive and does not require
any excitation of the ions. This technique can thereforedm o noninvasively study
thermodynamical properties of cold plasmas.
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7.2. Theoretical model

In sec.[2.B the zero-temperature charged liquid model wasdunced to account for the
shape and density of cold ion Coulomb crystals in a lineat #ap. We will now extend
this study to the plasma dynamics and its collective vibral modes. For the description
of the collective motional behavior we will follow the appwh of ref. [82, 167, 168].

7.2.1. Normal modes of a charged liquid plasma

Despite the solid-like structure of cold ion Coulomb cristahe thermal equilibrium
state of a sufficiently large ion ensemble trapped in thendyical symmetric trapping
potential of a linear Paul trap was in sEc.]2.3 found to be gmatby a zero-temperature
charged liquid plasma model. The cylindrical symmetry eftonfinement potential (see
eq. [2.9)) imposes a spheroidal shape of the nonneutrahplgd11] with half-length_
and radiusR (see fig.LZH4). In the equilibrium state, where the force arhéadividual
ions has to vanish, the total potential in the plasma has twhstant (see ef|._2112) and
the density of the ensemble, which is related to the plasntential through Poisson’s
law, was also found to be constant. A perturbation of the ldujiuim state, e.g. by a
small time-dependent variation of the end-cap voltagel,iimduce small oscillations in
the spheroidal plasma, which, for sufficiently small pesaitions, can be treated using the
linear fluid theory[[168].

For a non-magnetic zero temperature charged liquid pﬂs&h&se perturbations are
described by the (linearized) continuity, momentum andg$m equations

0 N
0 = aE‘)po+D~(po?3v) (7.1a)
0 . Q
5 = e (7.1b)
Dd = —96p0, (7.1c)
€0

wheredpg, v and® are the perturbed density, velocity and potential, resgagt po is
the fluid density, equal tpg within the plasma and 0 outside. Standard manipulations of
eqs. [Z1) yields the differential Maxwell equation

e’® = 0. (7.2)
The frequency dependent isotropic dielectric tergsgrgiven by

1 outside the plasma
€ — (7.3)

1- %22 inside the plasma

wherewy, is the plasma frequency defined in €g. (2.18). Decomposing/eg) into two
parts for the potential inside and outside the plagiiaand®°'t yields

(1— %) 2l (7.4a)

0 = [MPoout (7.4b)

1For plasmas confined in a linear Paul trap, we can restricsithation to non-magnetic fluids, for details on

the magnetic case sée [B2, 1167.1168]

0
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where the potentials must match across the plasma susface

N (r)|_ = (). (7.5)
Eq. (Z3) can either be fulfilled by = wjp or by a plasma potential fulfilling the Laplace
equatiorl]2®™ = 0. The first case describes perturbations within the plashietvdo not
affect the external potential, and always oscillate at thema frequency. These are the
so-called bulk plasma modes, and examples of such bulk nravdehe breathing modes,
where the surface of the plasma shows breathing oscilitidine bulk modes will not be
investigated further in this thesis. The latter case, witegd_aplace equation is fulfilled
both by ®" and ®°Ut corresponds to surface plasma oscillations. In this Sitnathe
solution turns out to be separable in spheroidal coordinate- (&1, &2, @) which are
related to the usual cylindrical coordinates; (p,®,z), by:

z = && (7.6a)
p = IE-(@)]1-¢, (7.6b)

whered = /L2 — R2. &; can be understood as a generalized radial coordinatézcasla
generalized latitudepis the usual azimuthal angle. In this coordinate systemstince

of the plasma is a constafit surface. The solution to the Laplace equationis in this &am
of reference given by [168]

" = ARM(&1/d) P™ (&2/d) exp(ime) (7.7a)
U — BQ"(&1/d) P™(82/d) exp(im@), (7.7b)

whereR™andQ[" are the first- and second-order Legendre polynomials (seeraii{B),
with cylindrical indices(l,m), | > |m| and with amplitudeé andB. The spatial variation
of a certain mode is characterized by the two indicesdm, where the number of zeros
encountered upon circling the equator of the spherojdhisand|l — m| upon traversing
it from pole to pole along a circle. Substituting elg. (7. #pifiZ.8) yields the frequencies
of the (I, m) modes[[82]

Wp

W) m = ——,
(1,m) a lele,
Vo Qe

whereP™ = P™(1/v1—a?), Q" = Q"(1/v1— a?) and with the prime denoting differ-
entiation with respect to the entire argumeantenotes the aspect ratio of the crystal (see
fig.2.4).

The corresponding spatial modes generally have a noaftdependence on the ions’
position in the crystal. For longitudinal modesr = 0), the displacement from the
equilibrium positionzy, close to the axis of rotational symmetiy £ 0), isdz=z— 2z
and can be found to be

5z PY (/12— R2). (7.9)

2In certain cases, e.g. for spherical, cylindrical and dissmas, the breathing mode happens to also be a
crystal eigenmode.

(7.8)
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a. (I=1,m=0) b. (I=2,m=0) c. (I=3,m=0)

Figure 7.1.: Deformation of the ion Coulomb crystals for the three lowaster axial
modes (a(1,0). b. (2,0), c. (3,0)) The arrows indicate the motional direction at a given
time. The spatial dependence of the potentiflican be found in talh._7.1.
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Table 7.1.: Spatial dependence of the potentdah (p, ¢, z) for the lowest(l,m) normal
modes in cylindrical coordinates.

Hence, the axial modes witim = 0 all have a spatial variation along tkeaxis and an
excitation of these modes will lead to measurable Dopplétssbof the ions resonance
frequency along this axis. We will later use this shift to exmentally measure these
frequencies. In figl_711 are depicted the spatial deformaifdhe spheroidal plasma for
the lowest axial mode@ = 1,2,3,m=0).

The calculated plasma potentials in the spheroidal plasmsoime of the lowest order
vibrational modes are given in tdb. 1.1 in cylindrical cdoedesr = (p, @ z).

7.2.2. Mode excitation

Having derived expressions for the frequencies of the ctile modes and for the spa-
tial dependence of the potential in the spheroidal plasneacam now discuss how these
modes can be excited by a suitable modulation of the trappatentials. In the experi-
ment, this is accomplished by applying additional AC-vgéia to the four pieces forming
the end caps on each side of the trap (seéfig. 2.1) with a fregudose to the resonance
frequency of the mode. For the axial modksn= 0) identical AC-potentials are applied
to the four end pieces on each side, either in phase for thesnaidh evenl or with a
relative phase oft between the two end caps for modes with elefor the three lowest
axial modes, this is depicted schematically in fig.] 7.2. Maetails will be given along

a. (I=1,m=0) b. (I=2,m=0) c. (I=3,m=0)
=1 1 C+ 1 =+ L+ ——1
=1 1 C+ 1 £+ L+ —1

Figure 7.2.:Excitation schemes for the three lowest-order axial modgd.(0). b. (2,0),
c. (3,0)). The arrows indicate the direction of the motion in the plas The appropriate
polarities of the excitation fields are indicated by the sign the electrodes.
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with the experimental setupn 7.8.1

7.2.3. Driven steady state

When a periodic external excitation force with a frequeaogiose to the resonance fre-
guency of a certain mode is applied, the collective motiah &ience, also the motion of
the individual ions will after a certain transient time reacdriven steady state. For an
ion located on the revolution axis of the crystak 0) a simple model can be obtained by
modeling the excitation with a position dependent ampétafithe driving forcégive(2).
The equation of motion reads

d?z  _dz
F"‘B&""*’ﬁ,m)(z_zo) =

Farive(20)

s cosla), (7.10)

wherezy is the equilibrium position of the ion, and where we assuneeamplitude of
the driving force to be constant withdz for each ionFgrive(z) = Farive(20). All damping
mechanisms of the periodic motion of the ion ensemble arebawed in the damping
constan{3. In practise, the damping will be dominated by two mechasisiamely the
the off-resonant coupling to other vibrational modes [1&7d the radiative damping by
the Doppler cooling laser. The damping rate can hence btewids

B = Beool + Bo, (7.12)

where the first ternf8coo cOrresponds to the friction induced by the laser cooling [gnd
accounts for the coupling to other modes.

Eq. [Z.ID) is the well-known differential equation of a @nivdamped harmonic os-
cillator. The solution in steady state is of the fodz(t) = {(w,z) cogwt — ®), where

Fdrive(ZO) '
M \/((,0— (,0(|1m))2 + 2B%0?

{(w,2) = (7.12)

is the frequency and position dependent amplituded@insla phase. Each ion will hence
oscillate with an amplitude that depends on its positioaftequency of the driving force
and the amplitude of the force. Accordingly, the velocitytloé individual ions is of the
form

v(zt) = V(z) cogwt — D) (7.13)
with a velocity amplitude given by
¥(z) = w((w,2). (7.14)

The driven motion of the ions will obviously, through the Ougx shift, also lead to a
modulation of the atomic resonance frequencies of the iddal atoms, with a shift that
depends on the position in the crystal and the instantanesoisity of the ion. We will in
the next subsection discuss how this shift will influencedbkective coupling of the ion
Coulomb crystal with the cavity field and how this can be usddestigate the collective
dynamics of the cold plasma.
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Figure 7.3.: Simulation of the amplitude of the driven motion for tfi 0) mode. A
sequence with cooling light with a lengthaf= 17 ps alternates with & = 83 ps period
of free evolution. The amplitude of the motion increasesniuthe free evolution, and is
damped during cooling. The remaining parameters for thelsition wherew = w0 =
21ntx 90 kHz,B_ = 21tx 20 kHz and3g = 21 x 1 kHz.

cool

Damping in the system and modelling

As mentioned above, the friction term in ed._(7.10) is dongdaby two major contri-
butions, namely dissipation induced by laser cooling andheycoupling to additional
vibrational modes. In our experiment, the Doppler coolmgly applied for a fraction
of the time, as the probing of the coherent interaction beiwtae ion Coulomb crystal
and the cavity field mode requires a sequence of cooling ptaparation and probing, as
depicted if 5.R. In phases where there is no cooling lightgurg the only friction force
will be due to the off-resonant coupling to other normal meaed the equation of motion
in these phases is

d’z dz Fari
g2 Bog + @ m2z= " coswt + ). (7.15)

The experimental sequence is typically repeated at ratesb@® kHz and phases with and
without Doppler cooling will constantly alternBteThe amplitude of the driven oscillation
is hence not expected to be constant, as it will decreasedhe &dditional friction during
cooling phases and will increase again in phases whereighameDoppler cooling. The
steady state solution in €q. 7112 does not include this ahahtie oscillation amplitude.
Nevertheless, after some iterations of the sequence, stersywill obtain a quasi-steady
state, where the amplitude envelope in subsequent secuiitbe the same. This is
illustrated in fig.[Z.B by a simulation of the evolution of tii@dulation amplitude for an

3During the optical pumping period, the effect of the Doppleoling laser will exponentially drop, however,
especially at the beginning of the optical pumping, the iwilkstill experience noticeable cooling.
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alternating sequence shown in fig.]7.3. A cooling phase witéngth oft.oo = 17 s is
alternated with dq.e = 83 s long period of free evolution, where only the off-resonant
coupling to other modes contributes to the damping. Itytithe simulation comprises a
long phase of Doppler cooling free evolution until the sgsteaches a steady state with
a maximum amplitude of the driven oscillation. Then, duting first cooling pulses, the
amplitude of the modulation is drastically reduced. Aftee first cooling phase, it will
increases again during the free evolution, before beingpgaagain during the next cool-
ing cycle. After some iterations of the sequence, a quaadsgtstate is reached and the
evolution of the modulation amplitude is the same in subsatisequences. The modula-
tion frequency for the simulation was chosen taube w0 = 211x 90 kHz, the damping
rates were set to realistic values&f, = 21 x 20 kHz andBp = 21t x 1 kHz [167]. In the
measurement, the sequence time will be much shoxt@0(us) which for typical mod-
ulation frequencies of 21t x 100 KHz corresponds only to few oscillation periods and
to illustrate the effect, the simulation was conducted fonuch longer sequence. How-
ever, the qualitative behavior will be the same in the expent and we will after some
iterations probe the quasi-steady state of the system.

7.2.4. Effect of the motion on the coherent coupling

In our experiment, we want to directly use the coherent dogdetween ion Coulomb
crystals and a single-photon cavity field to gain informatim the collective motion of
the ions. This will be accomplished by the same techniquéd tseneasure collective
strong coupling in se¢._5.4, namely by monitoring the effectavity decay rate’. For
an ion ensemble at rest, this rate is, as a function of theepdatuningl, expected to
vary ask’(A) = K + gﬁﬁ (see eq. [[3.48a), whemy = gv/N denotes the collective
coherent coupling ratg,is the atomic dipole decay rate afidls the detuning of the probe
laser from atomic resonance. Already in secl] 3.3 we disdutseeeffect of motion on
the coherent coupling rate and the effective cavity decéy aad we will start out by
recapitulating some of the results we found there, befoeptitlg them to the situation
of a collective driven motion. Assuming the velocity of ttens in the ensemble to be
governed by a certain velocity distributiofi{v) we found in eq{3.51a) the following
expression for the effective cavity decay rate

< (8) = k468 [ vFEBVY =K+ [ dzi(v@)EB. )y,
where the parameter

Yo+ A% + (kv)?
(V> +42)2 4 2(y? = 82) (kv)? + (kv)*

was defined in eq[(3.52) aikd= ZA—“ is the wave vector.

When a certain collective vibrational mode is excited, teéwity distribution f (v)
will in general depend on the individual mode and will varyeowne oscillation period of
the excitation force and hence also be time dependent. T$igqroand time dependent
velocity of an ion on the crystal revolution adimas found in[714).

&(A,v) =

4Obviously not all the ions contributing to the collectivehepent coupling will be located on the revolution axis
of the crystal. However, for crystals with a radial extensiouch bigger than the waist of the fundamental
TEMop cavity mode it is a good first approximation to treat the motid the ions which contribute to the
coherent coupling, as if they were located on axis.
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7.2. Theoretical model

For simplicity, we will in the following first discuss the etation of the collective
center of mass modg., 0), where all the ions in the ensemble at a certain timsve
with equal velocityv,(t), and generalize the analysis to higher order vibrationadeso
afterwards.

For the center of mass mode, the velocity distribution at gagetimet will only
depend on the phase of the excitation force and is simplyngbse a delta function
f(v(t)) =d(v—Vy(t)), i.e. it does not depend on the position of the individuasiaiong
the crystal axis. In this case, the integral in €9, (3.51a)beasimply evaluated and yields
at a certain time for the effective cavity decay rate

Y[VP + 0% + (kvy(1))?]
(V2 +402)2 +2(y2 — £2) (kvz(1))2 + (kwg(t))4

Already from this equation it can be seen that the motion efitins along the axis will
lead to a lower effective cavity decay rate, as the couplirength is reduced due to the
Doppler-shift of the resonance. Furthermore, the instetdas velocity and hence also
the effective cavity decay rate will through the time depamzk of the excitation force
also depend on. As was explained in sed_5.3, to reconstruct the cavity atifiey
spectrum for a certain detuning of the probe lasghe cavity length is scanned over the
atomic resonance and we measure repeatedly the cavityti@flegnal of a probe field at
the single photon level, using the sequence shown i fig). id2meraging over typically
100 scans.

The measurement sequence is repeated at a rate of typiGakib and has no fixed
phase relation to the periodic excitation of the motion of tbns. However, if the
timescale at which the velocity of the ions changes is slowaspared to the effec-
tive cavity decay time each individual scan will measurelih@adening of the effective
cavity decay rate at an arbitrary phase of the excitatiorerdging over many cavity re-
flection spectra will therefore also imply an average overghase of the excitation field
and we expect the measured mean effective cavity decakfate be given by eq[{7.16),
averaged over one oscillation period, which yields

y[Y? + A2+ (ki,cosp)?]
(Y2 + A2)2 + 2(y2 — A?)(kV,cosp )2 + (kV;cosp)
whereV; denotes the velocity amplitude and where the integratigeiformed over one

oscillation period of the driven motion. For the center ofsmanode, this integral can be
solved analytically and yield5[183]

Kl(Avt) =K+ gﬁl

(7.16)

>
9 [T
21 Jo

A

Kig(B) =K+ do - (7.17)

. A/ AN2 ;)4
< iig VY2 +O2sin( 3 arctarg (y2+A2)§_AF(ka7(Zl;\2’&2_A2>)+arctar§ é))
0=
- N (P02 (k)22 — 7)) + 402 (KT, 4y2) &

|

(7.18)

In general, when exciting an arbitrary collective vibratdmode, the velocity distri-
bution will be more complex and not all the ions in the crystdl at a given instance
move at the same velocity. Each ion in the ensemble willitty out a harmonic oscil-
lations, however, the amplitude of the motiz)" will now depend on the ions’ individual
position within the plasma, see e@. (4.14). Neverthelesswill for each measurement

91



7. Noninvasive spectroscopy of vibrational modes

of the cavity reflectivity obtain an effective cavity decagte, corresponding to an in-
stantaneous velocity distribution in the crystal. Morepas our measurement sequence
is not synchronized to the periodic modulation, averagimgranany scans will imply

a time average. The expected mean effective cavity decayceat hence be calculated
by averaging over the known velocity amplitudes of the ionthie crystal and over one
oscillation perlol

F(9(2) yIy2 + A2 + (ki(2) cosh)?)
/ 4 | 92) 7y +2(v2 12)(ki(z) cosh)? + (ki) cosp)? /19

7K+_/d¢/d ) VIV + A% + (ko (2) cosp)?]

(VP + 02)2 +2(v2 12) (kX (2) cosh)? + (ke (2) cosh)*”
where in the last step, the distribution of the velocity aitoples f(V(z)) was replaced
by the known spatial distribution of the amplitude@)"= w{(z) (see eq. [(7.14), the
frequency dependence is suppressed for simplicity) anderthe integration is performed
over the crystal'g-axis.

Beside th€1,0) mode, analytic solutions of this equation can also be caledlfor the
(2,0) mode [183]. For this mode, the integration over the veloaityplitudesy(z), and
the phase of the excitation yields

ki+A+iy L kV+A—iy

9N ~1 !
~ [tanh Ay Y (7.20)

wherev'now denotes the maximum amplitude of the motion. For highedes, the
integration has to be performed numerically. It can be shthahthe result of the inte-
gration in eq. [[Z.119) for the two lowest axial modes is alsdl wpgproximated by sub-
stituting in eq. [[Z.1B) an effective velocity averaged owee oscillation periodrflffm) =

[(RcoR(wrmt+0))] "% = 75 [183]. This yields
VIV +0%+ (k) )2
(Y +02)2 4+ 2(y = 82) (kT )2+ (kT )2

(I,m

Kio~ K+ 0] (7.21)

7.3. Experimental results

In this section, we will present experimental results orstinely of normal mode dynamics
of ion Coulomb crystals in a linear Paul trap. The excitatbrollective motion will, as
was discussed above, be directly reflected in a loweringaodtiective coherent coupling
between ion Coulomb crystal and a cavity field at the singletqilevel.

The setup of the cavity trap, the laser systems and the d@teststems were already
introduced in ch[4 and we will in this chapter only discuss tixchnique used to excite
the collective vibrational modes of the crystal and briefigapitulate the measurement
method and its application in the context of this chapteoieefurning to the experimental
results.

50ne could, in principle synchronize the measurement segueith the modulation and measure the effective
cavity decay rate at certain phases of the oscillation, kewene would still have to average over the
velocity amplitudes.
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7.3. Experimental results

Figure 7.4.: Projection image of a crystal with a half-lendth= (602+ 1) um, an aspect
ratioa = 0.135+0.002 and a densitgp = (2.62+0.05) x 108 cm 3. It contains~ 4000
ions of which~ 300 effectively interact with the cavity field . The DC and Réitage
amplitudes are 2.36 V and 205 V, respectively.

7.3.1. Experimental Setup

The axial normal modes of the nonneutral plasma predictethbyzero-temperature
charged liquid model can be excited by applying appropsgatasoidal potentials to the
endcaps formed by the four outer electrodes on each sides difwar Paul trap (see fig.
[2.1). Depending on the symmetry of the mode, one has to &ififly AC-fields in-phase

(I even) or with a relative phase af(l odd). The appropriate phases for the three lowest
axial modes are indicated by the signs on the schematicedisst in fig[7Z.1.. A projection
image of a typical ion Coulomb crystal as used in the expartsis shown in fig[“7]4.
With a half-length ofL = (602+ 1) pm, a density ofg = (2.62+0.05) x 10° cm3 the
crystal contains approximately 4000 ions.

The measurement sequence used for the plasma mode diagi®atentical to the one
shown in fig[5.2. During the first fis, the ion Coulomb crystal is Doppler laser-cooled,
followed by a period of 12is, where the ions in the crystal are prepared imthe- +3/2
magnetic sub-state of the long-lived metastabig,Mevel by optical pumping. Finally,
a weak left-handed circularly-polarized pulse (ugtlong) of 866 nm light is coupled
into the cavity to probe the collective response of the idi®e mean intracavity photon
number is, as in the previous experiments, less or about baayatime. During this
probing period, the photons reflected by the cavity are nreddoy the probe APD. The
20 ps sequence is repeated at a rate of 50 kHz while the cavitgfHdagcanned at a
rate of 30 Hz, see se¢._4.8.3, and the cavity lineshape isstewted by averaging a
few hundred scans. When exciting a certain normal mode opthgma, the Doppler
shift induced by the motion of the ions will effectively rezkithe coherent light-matter
coupling in the system, as discussed in €q._(7.16). Thes2Measurement sequence
is continuously repeated and is not synchronized with tloiaion voltage modulation.
On each scan the coherent coupling will hence be measuredaabdrary phase of the
sinusoidal excitation and taking the mean of many scansfdctively also average over
the periodic oscillation. The averaged effective cavitgalerate is thus expected to follow
eq. (Z19).

Fig.[Z3 shows the effective cavity decay for a probe lassomant with the atomic
transition A = 0) as a function of the frequency of the excitation voltagmuad the res-
onance of theg2,0) “quadrupole” mode measured for the crystal shown in[figl 24.
clearly reduced effective cavity field decay rate is obsgmund 142 kHz. The mea-
sured resonance value@ 2%'3‘)3: 21x (14214 0.1) kHz is deduced from a Lorentzian-fit

and in good agreement with the resonance frequex?ﬂ;‘g)e': 21x (1422+1.1) kHz cal-
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Figure 7.5.: Cavity probe linewidth as a function of the mode excitati@gliency applied
to drive the equivalent of thé2,0) mode of the crystal shown in fi._T.4. The probe is
tuned to atomic resonanca &€ 0) and the AC modulation voltage is applied to the two
endcaps in phase with a peak-to-peak amplitude ™ %. The red line is a Lorentzian
fit to the data and yields a resonance frequenuy< , )e': 2mx (14224 1.1) kHz.

culated according to ed.(7.8) for th2 0) mode of a charged liquid crystal with an aspect
ratioa = 0.135 and an ion density @ = (2.62+0.05) x 10° cm™3.

7.3.2. Vibrational mode resonance frequencies

In order to test more generally how well the uniformly chatdiguid model describes
unmagnetized ion plasmas confined in a linear Paul trapefenance frequencies of the
lowest lying axial normal modes of ion crystals with vari@spect ratios are determined
by monitoring the effective cavity decay rate for a probefagsonant with the atomic
transition A = 0). The measured mode resonance frequencies are preserfitiedY.6
together with the predicted values from the charged liquatieh (see Eq[{718)) for the
(1,0), (2,0) and(3,0) modes. The experimentally determined values are consistén
the theoretical prediction to better than one percent flogxgerimental data and clearly
show that the model of a zero-temperature charged liqughpdaappropriately describes
the collective dynamics of ion Coulomb crystals in lineauReap.

The results presented here are another test of the zeronatmmecharged liquid model,
complementary to the measurement of the ratio of axial ad@lré&rap frequencies for
different trapping parameters, as theoretically disaigssec[Z2.312 and experimentally
confirmed in the calibration measurements presented isécThough technically more
challenging, the measurements of the vibrational modesyuke collective interaction of
the ion ensemble with a weak cavity light field at the singletph level give the normal
mode frequencies (and therefore the plasma frequency)exaéllent precision.

The accurate agreement between the measured and the itedlyrptedicted frequen-
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Figure 7.6.: Resonance frequencies corresponding to(1h8) (squares), th€2,0) (cir-
cles) and thé3, 0) (triangles) modes as a function of the aspect rafifor a fixed plasma
frequencywp = 21tx 536 kHz (Uys = 205V). The solid lines show the theoretical predic-
tions of eq.[[ZB). The error bars are within the point size.
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Figure 7.7.:Resonance frequency of tfi2 0) mode as a function of th, 2) mode off-
resonant modulation dep&ﬁgz) (see text) for a fixed aspect ratio= 0.135. The mode
resonance frequency is normalized to that expected forsaaavithout any excitation of
the(2,2) mode and the red lines show the uncertainty in the expecsetiaace frequency
due to the density calibration. The Coulomb crystals conletween 4000 and 12000
ions (of which between 300 and 700 ions effectively intergith the cavity field), with
densities of 6—5.6 x 10°cm 3
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7. Noninvasive spectroscopy of vibrational modes

cies of the normal modes of the nonmagnetic plasma may agpgatising considering
that, during all measurements, tt#2) mode of the plasma is continuously off-resonantly
excited by the linear RF quadrupole field confining the plamaugh the micromotion.
The equation of motion for an ion at the radial positieg, yo) was found in eq.[(2]6).
The micromotion at the frequency of the RF potential modid#he slower secular motion
with an amplitude given by

) = o[+ g cos Qpet)| (7.22a)
) = yo[1- g cosQret). (7.22b)
These equations suggest the definition of a modulation depthe (2,2) mode

rf q_ QUgr
S22 =3 MrgQZ: (7:23)

Depending on the RF amplitude, this modulation depth caeéddamount to up to 20%
of the secular motion amplitude of the radial extension efdtystal. The amplitude of
this radial modulation is hence comparable to typical agialitation amplitudes for the
(1,0) modes and one could expect deviations from the model.

To test the influence of the off-resonant excitation on thqdiency of a particuldi, m)
normal mode of the plasma, we performed measurements fstatsywith a fixed aspect

ratio of a = 0.135 but various RF-amplitudes, and hence different motuladepths
rf

S22

The inset of Fig['716 shows the measured frequency of2n@ mode as a function

of modulation depthﬁg 2" It is is found to be constant within the current experiménta

accuracy and shows no systematic dependenéggp Moreover, this result is consistent
with molecular dynamics simulations from which it has beeedicted that the radial RF

field-driven micromotion in linear Paul traps should havesiiemely weak coupling into

the axial motion of the ion$ [165] and the measurements ptedén sec[_6l4, where the
coherent coupling of needle-like crystals was measureddnous offsets of the crystals
revolution axis from the field free nodal line of the RF potaht

7.3.3. Measurement of the mode temperature

The technique used to measure the frequency of the lowest faggjuency can also be
used to measure the maximum amplitude of the driven moti@engdfen mode and there-
fore the equivalent temperature of this mode. In Eigl 7.6r& Ia, the effective cavity
decay rate with and without exciting resonantly th¢la0) and b.(2,0) mode (resonance
frequenciesy 1 o) = 21 x 94 kHz andwz o) = 21 x 145 kHz) are shown as a function of
the detuning of the probe with respect to the atomic resamahiee crystals used for the
two experiments were similar to the one shown inffig] 7.4 Witk 4000 ions and aspect
ratios ofa ~ 0.13.

Fitting the two profiles in absence of the mode excitatiod @guares in fid._716 a. and
b.) with the expected Lorentzian shaped curve (solid resk)inf eq. [3.48a), where we
beside the collective coupling ratg also left the effective cavity decay rateand the
effective dipole decay ratg as free fitting parameters to account for the finite tempegatu
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Figure 7.8.: Effective cavity decay rate as a function of the probe detgynivithout (red
squares) or with (blue circles) modulation for a modulatiesonant witta. the (1,0) and
b. the (2,0) mode frequency. The crystals were similar to the one predantFig [7.4,

with a aspect ratio oft ~ 0.13, a density opg = (2.624 0.05) - 10°.cm~* andN ~ 4000.
The solid lines are fits according to eg.(4.19).
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Figure 7.9.: Stroboscopic projection images of ion Coulomb crystalsiietd while res-
onantly exciting thg1,0) normal mode at three different phases of the modulation. The
blue lines indicate the amplitude of the motion. The ions enby +-9 pm around their
equilibrium position.

of the sample (for a discussion see $ecl 5.4). The valuesaueddrom the fit to the data
in fig.[Z.8 a. are arégn,K,Y) = 21t (8.2+0.1, 2.2+ 0.1, 12.3+0.5) MHz), while the
fitin fig. [Z.8 b. yields(gn,K,Y) = 21 x (8.4+0.2, 2.3+0.1, 12.740.6) MHz), in good
agreement with the first fit.

When the(1,0) or the (2,0) mode are resonantly excited, the effective cavity decay
rate as a function of the probe detuning is in both cases neddifi a non-Lorentzian
profile (blue circles in figl_716 a. and b.). To determine theekic energy of the periodic
motion, we fitted the data to eq_(7]119). From these fits, wedeatuce the maximum
velocities of the periodic driven motion to lvgg) = (5.84+1.0) m/s for the (1,0) mode

and ofv”(fgio) = (8.4+0.8) m/sfor the (2,0) mode.

To cross-check the maximum velocities deduced from thedisgcond technique can
be used to directly determine the oscillation amplitudehaf ions from projection im-
ages. As the typical integration times of the CCD camera itheforder of~ 100 ms,
the camera itself is not fast enough to resolve the normaknosdillations at frequencies
of ~ 100 kHz. To circumvent this limitation, we can gate the imagensifier which is
incorporated into the imaging system, to acquire strobpisdmages of the ion Coulomb
crystals, as was explained in s€c._4.4.1. In this configumathe supply voltage of the
image intensifier is provided by a very short pulseZ0 ns) and the image intensifier
will only during this short period be sensitive to fluoresceright. By synchronizing
these pulses to the modulation voltage on the trap electtbdeons can be monitored
at well-defined phases of the oscillation. The CCD camerhthdén simply obtain the
averaged fluorescence of many gating cycles. The detectm@gicence level is substan-
tially lower and the images have to be integrated over lotigegs. This obviously limits
the achievable duty cycle and this method is not as fast totfiadesonance frequency
of large crystal modes. However, once the modulation fragués determined by mea-
suring the broadening of the effective cavity field decag rtite stroboscopic imaging of
the ions is a direct way of measuring the amplitude of theedrimotion. In fig[ 7.0 three
stroboscopic projection images obtained at different eha$ the modulation are shown.
The images were taken while resonantly exciting(th®) normal mode, at phases of the
modulation ofp = -2, ¢ =0 anddp = +7¥2and a clear displacement of the ions at the tip
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of the crystal can be observed.
Using this technique, we deduce amplitudes of the periodiian of z”{'}g’ =(9.0+

1.0) pm for the(1,0) mode andzzﬂjéo = (9.5+ 1) ym for the(2,0) mode, corresponding

to maximum velocities o¥{}'s) = (5.3:0.6) ms " andv[}'s = (8.7£0.9) ms %, respec-

tively. The results of the fluorescence based measurements sery good agreement
with the previously measured values and prove that quamétanformation about the
ions’ motion can reliably be obtained from the ion-cavitypbting without the need for

observing directly the fluorescence signal.

7.4. Outlook and Applications

In the previous sections we described how the coherent tmupétween ion Coulomb
crystals and a cavity field can be used to reveal informatmuathe collective motion
of the cold plasma. In this section, we will give an outlooklgmesent some applications
and preliminary results on how this measurement technigoéoe applied to investigate
various aspects of the physics of strongly confined plasmas.

7.4.1. Measurement of temperature

Already in sec[3]3 we discussed the effect of motion, inipalgr thermal motion, on
the coherent interaction between ion Coulomb crystal anaviycfield mode. In this
chapter we refined the simple model which was given there anttldemonstrate how
we can use this model to measure the kinetic energy and hemtenhperature of a certain
normal mode (see sdc. 7.B.3).

In principle one can envision to measure more complex andilplgsunknown veloc-
ity distributions in a similar fashion, and e.g. use thisht@que to study the thermal
Maxwell-Boltzmann distribution of an unperturbed ion GCamlb crystal. This would
make it possible to determine the translational tempegadfilarge ion Coulomb crys-
tal, which is a difficult task in practice and e.g. relies omgarison of projection images
to molecular dynamics simulatioris [184].

The precise knowledge and possibly also control of the teatpee of the sample
would be valuable, e.g. for the study of possible implicagidor the realization of a
ion Coulomb crystal-based quantum memory or for the ingatitn of optomechanical
effects in the coherent interaction between ion CoulomBtafyand cavity light field.

Our measurement of the translational temperature of pdatizibrational modes are
promising first steps towards a more direct measurementeofhtérmal kinetic energy
of large ion Coulomb crystals. However, further systemexigerimental and theoretical
investigations are required to approach this goal.

7.4.2. Investigation of Plasma thermodynamics

The noninvasive nature of our measurement technique, w$icbt based on incoherent
scattering of photons and can be purely dispersive in natwsald furthermore make it

possible to measure other characteristics of the coldgly@monfined plasmas, which are
not easily accessible with fluorescence based detectionote{171=173]. Examples
are the investigation of the intrinsic coupling between thgous normal modes of the
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7. Noninvasive spectroscopy of vibrational modes

cold fluid plasmal[168] and related correlation effects, @ study of the dependence
of damping and coupling effects with various parametexg, the density, the number
of ions, the size or the temperature of the plasma. In thevatg, we will present
preliminary results for two of the envisioned applicationamely a study of the intrinsic
damping and of the influence of the density.

Off resonant-mode coupling

1.05 , , , : : ,

0.95¢

o
©

normalized coupling
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0O 2 4 6 8 10 12 14 16
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Figure 7.10.: Normalized coherent coupling rate for various delays betweptical
pumping and probing for thé€1,0) (squares) and2,0) (circles) modes, both for the
case when the modes are excited by an external driving field (snarkers) and for
unperturbed crystal. (open markers). The values are naedato the mean value
without modulation. The crystal parameters ake= (589+ 1) um, R= (80+ 1) pm,
Po = (2.6240.05) - 108 cm~3, N = 310+ 10.

As mentioned is se€._7.2.3 the damping of the periodic matiben exciting a certain
normal mode is dominated by two friction forces. On the onedhaff-resonant en-
ergy exchange with other normal modes will lead to dissguatif kinetic energy to these
modes, on the other hand, the motion of the ions will be danbyddoppler laser cooling
forces. The measurement of the coherent coupling betwee@aoolomb crystals and the
cavity field naturally takes place in a phase of the expertailesequence, where there
is no cooling light applied, as the ions initially have to breared in suitable Zeeman
substates of the metastableng/z level. In most experiments, the coherent interaction
is then probed directly after the optical pumping. Howevieis possible to allow for
of a free evolution of the system between the optical pumpimd)the probing. Similar
measurement without a driving force were performed to stodyemporal stability of co-
herences between collective Zeeman substates, as diddénssz [5.]7, where the probe
pulse was delayed up te& 100 ps after the end of the optical pumping. When driving
a collective vibrational mode by applying appropriate ohivfields to the endcaps, the
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amplitude of the driven motion will, after cooling and o@igpumping laser are switched
off, increase. During this free evolution, only the intimsoupling to other motional nor-
mal modes of the plasma will damp the periodic motion and bgydieg the probing with
respect to the optical pumping it should be possible to tireneasure the effect of the
internal damping in the plasma. In fig._7110 first measuremehthe coherent coupling
for various delays between optical pumping and probing epated. The measurement
is performed by measuring the effective cavity decay ratafeesonant probe beam and
for a crystal with half-length and radilis= (589+ 1) pm andR = (80+ 1) um, a density

of po = (2.6240.05) - 10° cm~ 3. The effective number of ions and the aspect ratio are
N = 310+ 10 anda = 0.136. The study was carried out both for ttie0) (squares) and
the (2,0) (circles) mode where in both cases the effective cavity yleg# on resonance
(1,0) = 21 x 94 kHz andw, o) = 21 x 145 kHz) was measured with (solid markers) and
without modulation (open markers). In these measuremkeatsieasurement sequence is
extended to 5Qus, where the ions are initially cooled for 28 and with a variable delay
between the optical pumping and the probing. The couplingpisnalized to the mea-
sured mean value of the unmodulated data sets. While thdiegug constant when no
modulation field is present, one observes a decrease of ttexertt coupling, when ex-
citing either of the two motional modes. This illustrateattbne can in principle directly
observe the dynamical evolution of the plasma (withoutdishg it), when no external
cooling forces are present. This should allow for the ingesion of various plasma char-
acteristics in absence of external damping forces and it orathis basis, be possible to
study coupling mechanisms and correlation effects in coltheutral plasmas [168].

Effect of density

A second attractive application of the measurement teckenilgscribed above is the per-
spective of a direct investigation of damping effects in #ggtem as a function of the
various parameters that will determine the physics in thedoulomb crystal. A first step
in this direction is the measurement of the influence of timedensity on the damping,
and we will here present preliminary results on this issue.

Fig. [Z11 shows the normalized coupling as a function of nfetthn amplitude for
a. the(1,0) and b the(2,0) mode, measured for two different crystals with identical as
pect ratiosa ~ 0.14, but different densitiegp = (2.62+ 0.05) - 108 cm2 (red squares)
andpo = (5.6740.11) - 16® cm2 (blue circles). The coupling is measured for a reso-
nant probe lase?\= 0) and normalized to the coupling without modulation acauydo

(S’(%:\)kl\ch For both plasma modes, we observe a decrease of the measugihg for
both crystals when the amplitude of the AC modulation vatégincreased. However,
the coupling remains substantially higher for the crystigthwigher density, indicating a
increased damping of the driven motion.

From the simple model of a damped harmonic oscillator oneespthe modulation
amplitude to scale linear with the excitation force, and deerease of the measured
normalized coupling should, according to ef|._(¥.19), nqiethel on the density, if the
damping rates are assumed to be constant.

Changing the density of the crystal will, however, also ieflae other thermodynamic
properties of the crystals, and the larger damping rateifgrdr density might be caused
by e.g. an increased coupling to other plasma maded [167Y @ffbcts induced by a
higher temperature of the ensemhle [168] and the clarifinaif the effect requires more
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Figure 7.11.: Effect of density. Shown is the normalized coupling as a fimmcof the
modulation voltage applied to the endcapsdothe (1,0) and. the (2,0) mode The two
sets of data correspond to two different crystals with igahtaspect ratio oft ~ 0.14
and half-length. ~ (560) pum, but different densitiego = (2.62+0.05) - 10° cm 3 (solid
black squares) anph = (5.67+0.11) - 16 cm 2 (open red squares). The solid lines are
fits to the theoretical model.
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thorough studies. Our measurement shows, neverthelassithmeasurement technique
could be well suited to investigate thermodynamical propsiof cold plasmas.

7.5. Conclusion

In this chapter we presented a novel method to investigatemalomode dynamics in
cold nonneutral plasmas in the form of ion Coulomb crystala iinear Paul trap. The
method is based on the probing of the collective couplingvbeh the electronic state
of the ions and an cavity field mode with a weak probe field atsihgle photon level.
We found excellent agreement with the predictions of a zenoperature charged liquid
plasma mode[[82,167,168] when measuring the resonarpedneies of various plasma
modes for crystals of different shape, size and density.

Furthermore, the technique was used to measure the kimegtigyeand hence the tem-
perature for two deliberately excited modes. This was agiisined by measuring the
effective cavity decay rate as a function of probe detufimgd comparing to our model.
The amplitude of the periodic motion deduced from theseistucbuld be compared to a
direct measurement of the oscillation amplitude of thequici motion by a phase-locked
imaging technique and we found good agreement between themethods. In principle
it should on this basis also be possible to measure more exnglocity distributions
and, eventually, the thermal Maxwell-Boltzmann distribatof unperturbed ion crystals.

The detection technique used in our experiments uses aamesprobe field and is
hence still performed in the absorptive regime. Howeveg, fist repetition of the ex-
perimental sequence in which at most one photon is absoelb@dd the thermal state of
the crystal unchanged and the technique can still be carsld®ninvasive provided the
identical preparation of the ion ensemble at the start ofi s@guence. Since the prob-
ing does not rely on the observation of incoherently soattgrhotons as e.g. the case
in Doppler velocimetry[[171=173] and in Sympatheticallgalzd Single lon Mass Spec-
trometry [185], the detected signal can in principle be puilespersive in nature and does
not require any excitation of the ions.

Due to the present experimental parameters, investigatiomlimited to crystals con-
taining at least a few hundred ions and to vibrational amgés of the order gfim. It
should, however, with optimal atomic transition and cayigrameters, in principle be
possible to apply this measurement technique to few-ioataly and also to situations,
where the quantum nature of the vibrational excitation coeo play. In this regime,
our measurement technique should also be applicable tow@bsey. radiation pressure-
induced cavity optomechanical phenomena [L80} 181] wittl,cmlid-like objects or to
investigate classical and quantum phase transitions [[ASBH--

Finally, further investigations of higher-ordér,0) modes can be envisioned to study
mode excitations using spatial- and time-modulated ramligiressure forces. FfCa"
ions this can e.g. be achieved through the combined apiplicat a 866 nm repumper
beam with a spatially modulated intensity profile along theity axis and a time-varying
intensity of one of the 397 nm cooling beams [185]. Eveny, & the high spatial mod-
ulation of modes with largk the liquid model should cease to apply. Further applicatio
could be measurements of ion Coulomb crystal temperatmeaeating rates$ [191] and
more detailed investigations of the coupling between tli®ua normal modes at various
temperatures and structural phases of the plasmal[167, 168]
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8. Cauvity electromagnetically induced
transparency

In this chapter we report on the experimental observatiaadtromagnetically induced
transparency (EIT) with ion Coulomb crystals in an opticavity. In connection with
the results of the previous chapters, the observation ofvitii ion Coulomb crystals in
optical cavities is a major step towards the realization guiantum memory based on
ions in an optical cavity [55]. We will provide a theoretictscription of the system and
compare the experimental results to the expectations®htbidel.

The chapter is structured as follows: We begin in dec] 8.h wibrief introduction,
before presenting a theoretical model of the interactiomrofensemble of three-level
atoms with two light fields in se¢€._8.2. In sdc. 813.1 we déscthe experimental setup.
In sec[ 8% we present the results of the observation ofycaldéttromagnetically induced
transparency with ion Coulomb crystals and, finally, in give a conclusion and a
brief outlook.

8.1. Introduction

Electromagnetically induced transparency is a widelydugeantum interference effect
where the absorption and dispersion of a weak probe fieldggatng in an otherwise
opaque medium are controlled via the coherent interactidheomedium with a more
intense control field [83, 84]. Under certain circumstantes resonant absorption of the
probe field can be suppressed by the coherent interactidmntiagt control field and the
medium becomes transparent for the probe light, justifyiregname of the effect "elec-
tromagnetically induced transparency”. EIT has been afeskin hot and cold atomic
gasses [85], and particularly impressive applicationssbow- and stopped light experi-
ments[[86=88], where the group velocity of a light pulseéthng through an EIT medium
is drastically reduced and even stopped.

At the quantum limit, when the probe pulse only contains @lsirphoton, the ver-
satile control of the absorption and dispersion propeitiean EIT medium has impor-
tant applications in the framework of quantum informatioagessing, as long-lived and
high-efficiency quantum memories are a key ingredient ferdalization of e.g. complex
guantum networks [10,38].

Quantum memories were successfully demonstrated viadhegst and retrieval of sin-
gle photons[[40-44], squeezed vacuum statel$ [45, 46] and@et state$ [47] in atomic
gases using free-propagating fifldsAs the interaction of free-space laser beams with
an atomic medium is typically very weak, the efficiency ingbschemes is usually low.
Furthermore, due to either particle-particle interadionrandom motion of atoms in va-
pors, the achievable storage times are generally limitdléqsrange. This limitation

1The storage of entanglement was recently also demonsirasedid state system5 [H0.51].
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8. Cavity electromagnetically induced transparency

can be overcome using more complex scherned [43, 44], oftdreatxpense of lower
efficiencies.

For an atomic medium enclosed in the mode-volume of an dptaty, the interac-
tion with the well-defined spatio-temporal cavity modesstahtially enhances the light-
matter interaction. In combination with the coherent colhtf the atomic absorption and
dispersion provided by electromagnetically induced fpansncy, atomic ensembles in-
teracting with a single mode of an optical cavity in the cdfilee strong coupling regime
were proposed for the realization of high-efficiency ogtareantum memories$ [55-57].

Cavity EIT was successfully observed for ensembles of caldl faot neutral atoms
in cavities [92[ 98], and, most recently, the enhanced aatésn even allowed for the
observation of cavity EIT with few atoms [94,95]. Moreovensembles of neutral atoms
confined in the mode volume of an optical cavity were succdlgstised to store and
transfer single quanta [86,97] with higher efficiency. Tlehiavable coherence time in
these systems is, however, still limited by the atomic nrotio

Using ion Coulomb crystals confined in an optical cavity coloé a possible route to
circumvent both limitations in the efficiency and the achige coherence times. Operat-
ing in the strong coupling regime (see ¢h. 5) and with meakooberence times of the
order of~ ms our system is a promising candidate for the realizatiomotti long-time
and high-efficiency storage and retrieval of quantum infation, even with the potential
to explore multimode applications using various degredseefdom, like spatio-temporal
cavity modes (see ch] 6) or specific collective vibratiormhmal modes (see chl 7).

In this chapter we will report on the first experimental olaéion of cavity electro-
magnetically induced transparency with ions, an impontaifestone on the way towards
a high-efficiency quantum information tool. We use a novdl-¢avity” EIT scheme
where both the control and the probe field are in the sameasgatvity mode and cre-
ate EIT between Zeeman substates. We demonstrate fulbtontr transparency of the
ionic medium and observe EIT windows as narrow as a few teksinffor a probe field
at the single photon level.

8.2. Three-level atoms in a cavity

The essential features of EIT can be described in a sensicidgheory, similar to our
description of two-level atoms interacting with a singleitafield mode given in se¢.] 3.
The goal of this section is to adapt this description to théasion where an ensemble of
identical three-level atoms interacts with two light fielttowever, before deriving a full
set of dynamical equations for the system, we will begin Hyoitucing EIT in a simple
guantum mechanical picture using dressed-states [84, 85].

8.2.1. Dressed and dark states in a three-level system

We consider a single atom in free-space witi\dype energy level configuration, as
depicted in fig.[81l a. ThA system is formed by two long-lived ground statés and

|2) and an excited stat8) which is coupled to the two ground states via a non-vanishing
dipole element and can decay to the two ground states or exitennal levels at a rate
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8.2. Three-level atoms in a cavity

Figure 8.1.: a. Schematic\ scheme as used for the realization of electromagnetically
induced transparency. It is formed by two long-lived grostates|1) and|2) and an
excited stat¢3). Stateg1) and|3) are coupled by a weak probe field with Rabi frequency
Q,, while stateg2) and|3) are coupled by the stronger control field with Rabi-freqyenc
Qc. The excited state can decay to the two ground states or ettemal levels at a rate

y. b. Dressed state picture, where the excited state is splisimtioublet of dressed states
|£).

We assume the atom to be initially in stat®. Both ground states are coupled to the
excited state by close to resonant laser fields, wher&her |3) transition is driven by
a strong, (close to) resonant electromagnetic field withi RauencyQc (referred to as
control field), while stategl) and|3) are coupled by a weaker field with Rabi frequency
Qp (referred to as probe field). In the dipole approximation asitig the frame rotating
at the frequency of the probe field the Hamiltonian of theeysis given by

Hint = hA033+ 78022 — hQp (031 + G13) — hQc (G324 023), (8.1)

whereA = wz1 — Wy is the detuning of the probe laser with respect to|fhe- |3) tran-
sition, Az = w2 — Wyl is the detuning of the control laser with respect to [@je« |3)
transition,d = A — Az is the so-called two-photon detuning. Furthermore, we ddfthe
atomic operator§,, = |a) (b] (a,b=1,2,3).

The Hamiltonian can be diagonalized in the basis of the #edcddressed” states.
They are related to the "bare” states of the atom by

[0) = cosB|1)—sinB|2), (8.2a)
|[+) = sinBsin® |1)+ cosBsin®’|2) + cosd' |3), (8.2b)
|-) = sinBcosd |1)+cosBcosd |2) —sinb’ [3), (8.2¢)
with mixing angles and®’, which on two-photon resonancg-£ 0) are given by
Qp
tand = o (8.3a)

1
tan® = 1\/03+0% (8.3b)

The new eigenkdD) is a superposition of staté) and|2) and has zero eigenenergy. An
atom initially prepared in this state is never excited tdesf8), which is the only state
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8. Cavity electromagnetically induced transparency

that can spontaneously deca@) is thus referred to as the "dark’-state of the system.
The contribution of the staté$) and|2) to the dark state depends on the mixing argle
which is given by the ratio of the Rabi frequencies of the tvedds. On the other hand,
the two state$+) are a superposition of all 3 bare states and their energywithifted

by h(A+ /A% + Q§+ Q%). The emergence of EIT can be understood when considering

the case of a weak probe fiely, < Qc, where the first mixing angle i8 < 1. The
level scheme in this case is depicted in fig.]18.1 b. In this ctheeprobe ground state

is the dark state of the systef®) ~ |1). An atom that is initially prepared in this state
has no contribution of stat8) which is the only state that can spontaneously decay. The
two stateg+) can be regarded as two excited states and the absorpticese states will
cancel when the frequency of the weak probe field is tuneddmithe two states, i.e. to
A=0.

In the bare state picture this corresponds to the interéerdretween two pathways.
The light fields will transfer a small but finite population plitude to statd2) and the
absorption from statfl) to state|3) can occur either directly or via the coherent indirect
path|1) — |3) — |2) — |3). As the Rabi frequency of the control field is much stronger
than that of the probe, the probability amplitude of theiiadi path will be comparable to
the direct way. However, on two-photon resonance, it is @fagite sign and will hence
interfere destructively with the amplitude of the directtpa

8.2.2. Dynamical equations

We will now turn to a semi-classical analysis, which willall us to derive a full set
of dynamical equations for the relevant observables of ftstesn. We will from the
beginning focus our description on the situation of a lafy@a’ ion Coulomb crystals
confined in an optical cavity and will reuse many of the equregiand approximations
that were already discussed in Eh. 3.

In the experiments presented here, fheystem in*°Ca’ is, as depicted in figl 8.2,
formed by two Zeeman-substates of tdzD3/2> level constituting the two ground states
and one Zeeman-substate of qM@2P1/2> manifold corresponding to the excited state.
A straight forward and logical extension of the scheme inghevious chapters is the
following choice of levels:

1) = [3cdDg, My =+3/2) (8.4a)
2) = |3Dgjp, my=-1/2) (8.4b)
13) = |4p°P1j2, my=+1/2). (8.4¢)

The transition frequencies are for t{ie + |2) transition denoted bgos: (as before) and
for the|3) «+ |2) transition bywsz = w4+ we, where the degeneracy is lifted by a longi-
tudinal B-field giving rise to a frequency shift alg by the Zeeman effect (see appendix
[A3). State|1) can spontaneously decay to the two ground and other stedesiay, and
we model decoherence between the two (metastable) groates|dh and|2) by adding

a phenomenological decay rate.

We consider in analogy to se€._B.2, the situation where theCoulomb crystal is
confined in a linear optical cavity formed by two mirrorg nd M, and characterized
by the cavity field decay rates through the two mirrersandk; (see eql_3.14), and the
intracavity loss rat& 4, (see eq_3.17).

108



8.2. Three-level atoms in a cavity

2)

— P2

3d?Dy),

Figure 8.2.:Level scheme for the realization of electromagneticaltiuiced transparency
in 4%Ca’. TheA system is formed by the metastaltg = +1/2 andm; = -1/2 Zeeman
substates of thi8c?Ds ) level and themy+1/2 state of the4p?P; ,) level.

A weako ™~ -polarized probe field With frequencyw, close to resonance with the) <>
|3) transition is injected into the fundamental Tlgdvmode of the cavity through mirror
M;. States|2) and|3) are coupled by the stronges,'-polarized control field with a
frequencywy and a detuning from atomic resonanee = wz2 — Wey. In a first step,
we will assume the Rabi frequency of the control field to bea¢épr all ions. However,
for the experiment presented later in this chapter, thisnbedl also be injected into the
cavity and we will in sed_8.213 take into account the effeftthe transverse profile and
the longitudinal standing wave structure of the controtffiélo facilitate the comparison
between the two scenarios, we will here rescale the Rahbiié&ecy of the uniform control
field by a factorl/v2, to account for the lower mean interaction strength in thading
wave field in the latter configuration.

The interaction Hamiltonian in the frame rotating at thelgrdield frequencyy, and
applying the rotating wave approximation (see_(B.32)) vegiby

Niot Nlot
Hint = —hgz Woo(r;)(631ja+ 6134") — \/— z 032+ 023), (8.5)

where the atomic spin operatarg, j Eﬁ (b|] (a,b=1,2,3) were defined and whefe.
is chosen real without loss of generdlity

Following the Heisenberg-Langevin approach introducexkim[ 3.2 we can deduce the
equations of motion for the mean values of the operatorsdrHisenberg picture. The
dynamical equation of the mean value of the probe field opeéas of the same form as
in the 2-level case in ed. (3.38d) and reads

Niot
a=—(k+iAc)a+i Z gWoo(rj)o13j + v/ 2K1ain. (8.6)

2]t is worth noticing that by writing this expression, we asmithe phases of the probe and the control field to
be stable with respect to each other.
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8. Cavity electromagnetically induced transparency

For the atomic operators, we will restrict ourselves to teakprobe regimg|a| < ¢/v2,
where all the ions remain in sta®) (011 = 1, 022 = 033 = 0) and, to first order, only
the mean values of the probe dipalg; and the ground state coherermge are non-zero.
Their equations of motion are

. ) _ iQ

013 = —(y+iA)owzj+igaWool(rj)+ 7201271- (8.7a)
. . iQc

O12j = —(Yi2+id)012j+ 720130 (8.7b)

where we introduced the two-photon detundng A — Az, and included the phenomeno-
logical decay rate of the ground state cohergnge

For the remaining derivation, it is convenient to define thiéective operator$;s =
z?‘g"l Woo(r)813j andS;o = z?‘g"l Woo(r)812j. The dynamical equation of the mean value
of the field and the two collective spin operators read

a = —(K+iAc)a+igSiz+ v/ 2K1ain. (8.8a)
. . . iQ

Sz = —(v+|A)Sls+lgNa+'7§Slz (8.8b)
. . Q

Si2 = —(Yi2+i0)Si2+i 735137 (8.8¢)

where we make use of the effective number of iddss= z?‘g"l%o(r)z, defined in eq.

E.42).

Adiabatic elimination

In the relevant situation for the experiments we will disclager, we can assunye < y, K
and the control field Rabi frequency is such that the slovigt tonstant in the dynamical
equations is given by that &»(t). We can therefore perform an adiabatic elimination
of a(t) and S3(t), which on the relevant timescale will follow the evolutioh $i2(t).
Settinga(t) = d13(t) = 0 in egs. [8B) yields

ig V/2K18in
alt) = S+ (8.92)
1 ch igN\/Z_Klam
)y = — —— | — )+ —-——1. 8.9b
Sia(t) V+iA+ SN \/Eslz()Jr K+iAc (8.9b)

K+iAc

Substituting these equations into ef._(8.8c) the dynaneigahtion of the ground state
coherence becomes

Si2(t) = —YerrSiz(t) + Bain, (8.10)
where we defined

: QZ/2
YeIT = Y12+i0+ (8.11)

yHin+ N

K+iAc
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and
Q2 Ny/2K
B= 07— ggzN L (8.12)
(y+ iA+ m) (K+iAc)

Assuming the input field to be constant and to be immediatglicked on at = 0 and
assumingri2(t = 0) = 0 the dynamical equation is readily solved and one finds

_ Pain
YEIT

Sia(t) lexp(—yerrt) — 1], (8.13)

Accordingly, the temporal evolution &2 will be set byyg;r which on one and two-
photon resonance for the fields and for a resonant catiity fc = & = 0) reduces to

v G N Q%/2
YEIT = Y12 i Y12 v+ 20)

N = (8.14)
K
In the last step, the cooperativity parameter defined in&§) (vas inserted. As the time
evolution ofoy3(t) and also the intracavity field(t) will be dictated byo1,(t) (see egs.
(8:9)), these quantities are also expected to follow theesaxponential form with the
same time constang . The build up of the intracavity probe field, which for an egnpt
cavity is given by, will hence in the three-level case be steeregdyy and may becomes
much slower than the cavity decay rate. It should be notedtiadiabatic elimination is
only valid in a regime whergz ;T < Y, K, i.e. for moderate Rabi frequencies of the control
field.

Steady state solution

In steady state, the mean value of the intracavity field annbdia reduces to

a— _V2Kidn (8.15)
K+ I1Ac—I1XA
This equation is of the same form as in the two-level situa(gee eq.[(3.40b)), with the
linear susceptibility being replaced by its counterpathefthree-level\-system
.
~ ig°N 1
XA y+iAl+s (8.16)

where we introduced the effective saturation parametdrefwo-photon transition

_ %P 8.17
> Yz oy o

and used the effective number of ioNs= po%L (see eq.[(3.46)) For a vanishing Rabi-
frequency of the control field the effective saturation paeter is zero, and eq[(8]16)
reduces to the two-level susceptibility of €. (3.41).
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8.2.3. Effect of the transverse mode structure

As abovementioned, the control field will in our experimelsoabe mode matched to
the cavity and we will in this subsection include the effetthe spatial profile of this
field into the model. In all the EIT experiments presentechia thesis we make use of
the fundamental TENh mode for both the probe and the control field and we will for
simplicity restrict the model to this case.

To distinguish the two fields we will denote the mode funcsi@oerresponding to the
control and the probe field BYoo(r j, keti) andWoo(r j, ko), wherekey andk, are the wave
vectors of the control and the probe field, respectively. Wefurthermore still assume
the Rabi frequency of the control field to be in steady Staf@e interaction Hamiltonian
now reads

Niot Ntot
Hine=—hg 3 Woo(rj, kil )(631,j8+613j8") — hQc > Woolrj,ke)(Gazj +0G23)), (8.18)
=1 =1

whereQc now denotes the control field Rabi frequency at an anti-nédieeacenter of
the fundamental TE) mode.

The Zeeman splitting of the two ground statgsand|2) is of the order of some few
MHz and we can assume the frequency of the probe and the téietdbto be almost
degenerate, hende= k, ~ kc. Furthermore, for large radii and half-lengths of the crys-
tal, we can approximate the longitudinal mode function bg(kg, as discussed in the
derivation of [3.4b). With these approximations, the cawitode functions of the probe
and the control field can be written as

Woo(rj,ki) = Woo(rj, kc) = cogkz)Wo(xj)Wo(yj) = cogkzj)Woo(r;)- (8.19)
In this common standing wave configuration for the contral #e probe field, it is con-
venient to introduce dipole operators associated to thedia and backward propagating
waves of both field§qs j+ = Gq3 j €xp(£ikzj), a = 1,2. Substituting into the interaction
Hamiltonian in eq.[(8.118) yields
Nrot
M= = 12y Woolr))[(&(@awjs +831;) +8!(B13j: +813,)]  (8:20)
=1

Qc Niot ~ ~ ~ ~
- h= D Wool(rj)[(G32j+ +032j-) + (G23j+ + 023 )]-
=1

Using the Heisenberg-Langevin formalism, we can derivelimamical equations for the
mean values of the operators in the weak probe approximatidriind

ig Mot

& = —(<+ibc)a+ Dy Woolr)(Banjs +831 )+ v2adn.  (8.21a)
=1
O13j+ = —(y-f—iA)O'lS’ji-f—ig;.woo(rj)[l-i-eXF(iZiij)] (8.21b)
+i970012,jw00(rj) [1+ exp(+2ikz;)]
O12j = _(y12+i5)012,j+mTCqJOO(rj)(O'lS,j++013,j_). (8.21¢)

3In the experiment, the time constant for the build up of theta field is set by the cavity decay rate and we
will ensure the steady state condition by switching on thetrob field slightly before the probe field.
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If the timescale at which the atoms move along the standingvisfaster than the
build-up time of the fields in the cavity we can average overltmgitudinal effects and
all higher-spatial frequency components in exfikz) average out [192—=194]. This as-
sumption is as already discussed for the two-level sitndticeq. [3.4b) satisfied for ion
Coulomb crystals with a thermal energy ©f10 mK. For atoms well-localized within
the standing wave pattern of the probe and the control fiea#iculation would lead to
different results and we will discuss this case in appehdiwBere we also compare our
experimental findings to the predictions of the two scergario

When averaging over the longitudinal structure, the equatbf motion will only de-
pend on the transverse profile of the probe and control fielideduce to

iy Niot
. . i
a = —(K+|Ac)a+gzqJOO(rj)(031,j++0'31,j—)+\/2Klain~ (8.22a)
=t
) . iga .
O13j+ = —(V+IA)013,ji+7¢00(Fj)+ch012,jllJoo(fj) (8.22b)
. . iQ
612) = —(yi2+i8)012j+—5° (0134 + 013 ) Woo(r ). (8.22c)

Steady state solution

These equations can be solved in steady state and we finddanéfan value of the
intracavity field amplitude

a— V/2K18in
K+ iAc—ixp’

which is of the same form as eqB._(3.40b) dnd (8.15). TheHlerad susceptibility is now
denoted by and is given by

(8.23)

02 Neot lIJZ ri
=3y — Yool (8.24)
LY +HIA+ Vool )

For large ion Coulomb crystals with a uniform density, it @weenient to apply the con-
tinuous medium description introduced in €q. (3.43), angpdace the sum over the ions
by the integral over the crystal volume V. We will furtherre@ssume to be in the regime,
where the crystal radiuRis much larger than the waist of the cavity made With these
assumptions, the three-level susceptibility can be wridie

. EXF(—ZLJZ)
ig w5
Xn = 7po/df > o2
v i+ <2 exp(— k)
y+i Y12:+id w3
ig®N In(1+s
_ viiA (S ), (8.25)

where the effective saturation parameter of the two-phttmsition (see eq[(8.117)) and
the effective number of ionkl = po%L (see eq. [([3.46)) were inserted and where we

usedy,(rj) = exp(—%j) (see eq.[(3]7)).
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Adiabatic elimination

Instead of directly solving eqs[(8122) in steady state, cane gain information on the
dynamic evolution of the intracavity field by performing thdiabatic elimination with
respect to the slowest time evolution @f,, as was done for the homogeneous control
field in eq. [8). Due to the transverse dependence of theaidield Rabi frequency,
the dynamical evolution of the EIT of the individual ions ldepend on their radial
position in the transverse plane. As a consequence, therdyakfield equation does not
possess a simple analytic solution in the time domain. Hew@erforming the Laplace
transformation of eqs[_(8.22) one can solve the set of difféal equations in the Laplace
spac. The full derivation can be found in appen@ik C and we willyogive the main
results here. The Laplace transform of the mean value ofthadavity fielda reads

-1

~ . : exp(—2rf /w2
alp) = /2ksgnlp) |+ e + oy — XTI (8.26)
T Y40 SR 2i/v0)
Yi2—i0+p

wheredi,[p] denotes the Laplace transformation of the input field. Theesponding
dynamical evolution of the intracavity field amplitude irettime domain can be calcu-
lated from eq. [[8.26) by the inverse Laplace transformatidrich has to be performed
numerically.

8.2.4. Reflectivity and transmittivity spectrum

In sec[3.Z4 we calculated the probe reflection and trarssmnispectra in steady state for
a cavity containing an ensemble of two-level system (sed®E47a)) and we will briefly
recapitulate the results and extend them to the three-$#tvedtion of this chapter. The
interaction between the ensemble and the cavity field modeincduded in eq.[(3.47a)
through the two-level atomic susceptibility. Substitgtite three-level susceptibility of
eq. [8.16) orl(8.25) into the equation directly yields thel transmission and reflectivity
spectrum of the cavity, which is locked on atomic resonafce {\c)
R = [Kzl—Kg—Kﬂ—;m(X/\)]z‘F[A—RG(XA)]Z (8.27)
K2+ A%+ [Xal* + 2[KIM(XA) — ARE(XA)]
4K K2
K2+ 02+ [Xal2 + 2[KIM(XA) — ARe(XA)]

For simplicity, we denoted the three level susceptibiliyxia, though it can be substituted
by either of the two expressions in eds. (8.16) and (8.25).

In fig. [B:3 a. are depicted the calculated cavity reflectigipgctra of a locked cavity
(A = Ac) for the three-level susceptibility of a control field in thavity (solid line, see
eq. [8.25)) and a uniform control field (dashed dotted liee, eq.[(8.16)), along with the
expected vacuum Rabi spectrum for only the probe field beieggmt (dashed line) and
the spectrum of the empty cavity (dotted line). The calcorest were performed for an
effective number of ionkl = 500 and a control field Rabi frequency@§ = 21tx 3 MHz.
The remaining parameters are set to the values of our exeetiry = 211x 1.53 MHZ,
Kgq = 21tx 0.67 MHz,Ko = 211x 7.85 kHz,A23 = 0 MHZz,y = 211x 11.2 MHzZ.

(8.28)

4For a definition of the Laplace transformation see EQ.](Q4pipendiX €
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8.2. Three-level atoms in a cavity
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Figure 8.3.: Cavity reflection spectrum as a function of probe detuniriguated ac-
cording to eq. [(8.27) foa. a range of+25 MHz andb. a zoom around two photon
resonance:350 kHz. The individual spectra were calculated for an ensptyity (N = 0,
dotted line), for 500 interacting ions when the control fisloff (N = 500,Q¢c = 0 MHz,
dashed line), for the same number of ions and a control RaguncyQc = 21x 3 MHz
for the two cases of a uniform control field Rabi frequencysfual dotted line) (see eq.
(8.18)) and when taking the transverse profile of the coffigtsl into account (solid line)

(see eq.[(8.25)).

For large detunings of the probe laser, the reflectivity figrthree-level case is similar
to the two-level vacuum Rabi spectra. However, when apviogdhe atomic (and two-
photon) resonance, the probe reflectivity drops drasgicalis effect is present for both
the uniform control field and when the transverse profile kemainto account. In this
region, the absorption of the atomic medium is cancelled By &s discussed in sec.
and the probe field is transmitted. A zoom on the specfar small detuning is
depicted in fig[ 8.8 b. and reveals the difference betweemthacavity and the uniform
control field. In the first case, the reflectivity dip appeasgiier, and exhibits shoulders
for larger detunings as opposed to the standard EIT Lorem{ziofile.

For the case, where both the atomic and the two-photon dejame zerof = Ac =0
and d = 0) the susceptibility becomes in both cases purely imagiaad eqs. [(8.27)
reduces to

[K1—K2—Kg —Im(xa))?

R (A =0) T (8.29a)
4K1K2

Using these expressions, we can now also calculate the@t@nsparency on resonance,
defined by the ratio of the transmission of the cavity coritgjtthe mediuniZ to that of
the empty cavitylyp

T 1
Tatom* ?O = (l—i—T(X)/K)Z (8.30)

For a vanishing control field Rabi frequency, the transpares hence simply given by

Tatom= m whereC is the cooperativity defined in edq._(5.5).
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8. Cavity electromagnetically induced transparency

Using eq. [(8.29a), the transparency can be related directlye probe reflectivity on
resonance by

2
Tatom= (L) <1Z|Z VR (L= 0))2, (8.31)
2K1

where the sign of thg/® (A = 0) term is positive for Infx) < K1 — K2 — Kz and negative
otherwise.

8.3. Experimental setup

The experimental setup used for the EIT experiments is \B1{es to the setup described
in ch.[4 with only few modifications which will be describedrae

As abovementioned, the realization of EIT experimentsiregwontrol and probe light
fields with a stable phase relation. For systems where thdramsitions are addressed
by two different laser sources this can be experimentalbllehging. However, in our
scheme fof%Ca" we use a two photon transition between Zeeman-substatésatsihe
atomic resonance frequencies for the probe and control diler only by few MHz.
Phase stability on the relevant time scales can hence barmied by using the same
laser source to address both the control and the probettoamsirhis is accomplished
by splitting the light of the probe laser (see séc._4.8.1) d?B&. Both the reflected
and the transmitted portion of the light are first sent thtoA@QMs, which are used for
switching the beams on and off. Thel-diffraction order of each AOM is then sent
through a double-pass AOM configuration, to allow for theejpendent control of the
frequency of the two light fields. As the width of the EIT winti®is expected to be as
narrow as some few kHz a frequency resolutiorcof kHz for these AOMs is required
to resolve these narrow features. Experimentally this &ied by the use of two direct
digital synthesizers (DDS), with linewidth 10 Hz and a frequency resolutionsfl Hz
providing the driving frequency for the AOMs. The frequemdythe DDSs is set by the
experimental control computer.

In the experiments the frequency of the control beam is séted@esonance frequency
ofthe 3fD3,, My = ~1/24+ 4p?Py p, My = +1/2transition of**Ca’, while the frequency
of the probe beam is scanned over théD3g,, my = +3/2 <> 4p?Py p, My = +1/2 reso-
nance. On two photon resonance, where probe and controldaseesonant with the
respective transitions, the detuning of the two fields candleulated from the Zeeman
splitting between then; = —1/2 andm; = +3/2 states of the 3?@3/2 level. For aB-field
of 2.5 G as typically used in these experiments, the splittinguantsoto~ 21 x 4.4 MHz
(for detail see appendixA.3).

As the frequency of the cavity is locked on the bare atomiomaace of the probe tran-
sition, the control laser will be injected into the cavitytiva detuning corresponding to
the Zeeman splitting. The intracavity Rabi frequency of¢batrol field can accordingly
be calculated by

2K P
qtheory _ fla2— 9 [ K2 . 8.32
c dey/ lac /3 K2+Aé23 Ao, ( )

wheregc denotes the single ion coupling rate of the control tramsiiisee appendix
A%), |ac|2 is the intracavity photon number for the control fieli; 23 = tc — We ~
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8.3. Experimental setup

21t x 4.4 MHz is the detuning of the control laser with respect to taty and set by the
Zeeman splitting an&, is the control power injected into the cavity. In the secoteghs

we used eq.[{3.18) to calculate the intra cavity control fattplitude for a certain input
field Py, injected through mirror 2. The cavity decay rate throughRflevas measured to
bek, = 21 x (7.85+0.08) kHz at a wavelength of 868 nm.

As the efficiency of the double-pass AOMs depend on the frecyye¢he probe AOM
is driven by a voltage controlled RF-amplifier and calibdadeer the scanning range of
+25 MHz by finding the necessary voltage to keep the power lefvlie probe sent to
the cavity stable for certain frequencies and extrapaldtirthe remaining range.

However, the intensity of the probe beam turned out to bétjidess stable in this
configuration than in the previous and measuring the intgmdithe cavity reflection
signal for an off-resonant cavity with the APD revealed msi¢y fluctuations of the probe
intensity level of 34% which we account for in the error calculations. The insegh
fluctuations can most likely be attributed to drifts of thdtage controlled RF-amplifier
and the more complex optical setup.

8.3.1. Probing the cavity

The probe and the control beam are sent to the trap tableghrbie two fibers to the PT
and the HR side on the trap table, respectively. The referkaiser at 894 nm is overlapped
with the probe beam on the laser table and (as before) sem wavity from the PT side.

Though it is simpler, both conceptually and experimentatiymeasure EIT spectra in
transmission, the cavity spectra presented in this chaplidre obtained in reflection and
we will briefly discuss the reasons for this. First of all, wheonsidering the extension
of the present scheme to the realization of single photaragtexperiments, it is nec-
essary to inject the single photon pulse from the PT side liiesie the highest possible
efficiency. A measurement of the transmission spectruméemaild have to be carried
out with the APD on the HR side. However, control and probelfigdssess orthogonal
circular polarizations and injecting them from the two opip® sides of the cavity facili-
tates the independent control of the polarization of botinte If one was to measure the
transmission spectrum of the cavity on the HR side, the beftdation of the control beam
would overlap with the transmitted probe signal. Even thoting two beams in principle
posses opposite polarizations the high input power redquoechieve sufficiently high
control field Rabi frequencies when injecting off-resomatitrough the HR mirror would
lead to a substantial background on the low signal at thdesipigoton level which we
want to measure. The second option, i.e. to inject both $aem the PT side would
require a more complex optical setup as the two beams woulkltoebe overlapped on a
non-polarizing beam splitter which would require the setfip completely independent
second beam path on this side. For these reasons, we chogectdhie probe from the PT
side, and to measure the probe reflectivity signal, whileatipg the control beam from
the opposite side.

The setup used to probe the weak cavity reflection of the destee is hence similar to
the one presented [N 4.8. The intensity of the probe beamais @josen so as to have a
field at the single photon level in the empty cavity. Iois polarized with respect to the
guantization axis. The stronger control beam is injectetthéocavity from the HR side
and iso* polarized. On the PT side, the cavity probe reflection sipaalto be separated
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8. Cavity electromagnetically induced transparency

probe,
reference control

Figure 8.4.: Schematics of the modified experimental probe setup for ffieekperi-
ments. Probe and control team are injected into the cavity fspposite sides. For details
see text.

from the control light transmitted through the cavity beftaeing sent to the probe APD.
As the frequencies of the two beams are very similar, thistéde accomplished by the
orthogonal circular polarizations of probe and controltulined out that the extinction
of the PBCs that were used to separate the light sent to thé&Ri&s from the incident
beams in the previous experiments was not sufficient andtdesporthogonal polariza-
tion, a fraction of the transmitted control light made it teetprobe APD and caused a
substantial background. The two PBCs were therefore reglag two Glan polarizers.
Their extinction was measured in a test setup consistingvofdrossed Glan polarizers
and the combination of/4 andA/2 waveplates used in the cavity setup and was found
to be better then 1 : 20 When inserted into the experimental setup, this extinotias
found to be substantially lower(1 : 3- 10%), but still approximately one order of mag-
nitude higher than in the previous configuration using th€®BMonitoring the control
light transmitted through the cavity and reflected of thenGdalarizer with a CCD chip
revealed that the intensity of this beam is inhomogeneoastine Gaussian profile. We
attribute this to birefringence effects in the mirror suatts that might lead to local el-
liptical polarization components. These are most likelysel by tension induced by the
mounting of the substrates and can explain the lower extimcin the Glan polarizers in
the experimental setup.

To account for the additional background on the probe APuded by the control
field, and to check the extinction of the orthogonal polaitwg we measure the back-
ground directly on the APD and adjust the waveplates on thesid&to pre-compensate
the birefringence of the cavity as well as possible. The miamemaining background is
then measured and subtracted from the data.

8.3.2. Experimental sequence

Inall EIT related experiments presented in this thesisfritgpuency of the cavity is locked
to the atomic resonance frequency for the probe, like in teasarements of the vacuum
Rabi spectra in seE_5.5. The locking scheme was descritmstiZ.8.1.
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Figure 8.5.: a. Experimental sequence used in the EIT experiments.p8 Sequence of
Doppler-cooling is followed by 22is optical pumping preparing the atoms in thge =
+3/2 substate of thedeDg/2 level. After the state preparation, the control field anémaft
a short delay of A ps the probe are injected into the cavity for a titag (typically
10— 50us). At the end of the EIT interaction, the cavity reflectivisyneasured by the
probe APD for a timéapp (typically 1.4 ps). b. Energy levels of°Ca’" including the
relevant transitions and polarization for cooling, optipamping and EIT interaction.
The acronyms are: LC: laser cooling beam, RP: repumping pb&dmoptical pumping
beam, CB: control beam, PB: probe beam.
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8. Cavity electromagnetically induced transparency

The experimental sequence used in these experiments stekdpi fig [8.5. It consists
of a 5us sequence of Doppler-cooling, followed by @2optical pumping. Then first the
control field and after a short delay oflQus the probe field are injected into the cavity
for an interaction timég . The short delay ensures that steady state is reached for the
control field before injecting the probe and to avoid atondiated transient effects that
might occur when both lasers are injected at the same time leFtgth of the interaction
time (typically between 10 and 1Q6) will depend on the Rabi-frequency of the control
field, which sets, as discussed above, the time scale fdrles$timg the EIT. At the end of
the interaction phase, the probe APD is turned on and we me#sel cavity reflectivity
for typically tapp ~ 1.4 ps.

The sequence is continuously repeated with a repetitiquércy given by the inverse
sequence time. As describedIn 418.3 the transmissionlsifjitiee reference laser is used
to post-select the data points for which the cavity was rasbnThe cavity reflection is
measured for various detunings of the probe laser, wheredon detuning of the probe,
typically 10* data points are acquired.

8.4. Experimental results

8.4.1. Normal-mode splitting

In a first set of experiments, we measured the cavity specasienfunction of the probe
detuningA for the three cases of i.) an empty cavity with no ions preséhta cavity
containing an ion Coulomb crystal when only probe light istge the cavity and iii.) for
the EIT case, where both the probe and the control field aeetiejl into the cavity. The
expected reflectivity spectrum for the three cases were shofig. [8.3 forN = 500.

Fig. [B:8 shows the three reflectivity spectra obtained ferdtiferent configurations.
The spectrum (red squares) is taken with no ions preseneitrdp and shows the famil-
iar Lorentzian reflectivity dip of the bare cavity. Fittingi$ data set with the expected
lineshape yields a cavity field decay rateof 21tx (2.2+0.1) MHz, in good agreement
with previous measurements.

Then, for the second data set (green triangles), an ion Gdudoystal is loaded into the
trap and the coupled atom-cavity system is probed, and weredthe expected Vacuum
Rabi splitting (see sed._8.5). With a half-lengthlof= (801+ 1) ym, a radius ofR =
(141+1) um and , and a ion density pf = (5.64-0.1) - 10° cm™3, the crystal contains a
total of Nyot ~ 37500. As we will later show, this crystal is in the colleetstrong coupling
regime with a cooperativity of = 3.44-0.1. Using eq. [(8.31) we determine from the
reflectivity level around resonance an atomic transparen@yomic ~ (1.2+ 0.2)% and
the crystal is opaque for the probe field.

Finally, the third spectrum (blue circles) is acquired wite same crystal when both
the control and the probe fields are injected into the cavithie control field is res-
onant width the 3%133/2, my = -1/2 < 4p2P1/2, my = +1/2 transition and has an input
power of 10 yW corresponding to an expected Rabi frequency of the cofigll of
QN _ 211 (4.6+0.2) MHz (see eq.[(8:32)). For large detunings of the probe laser,
the spectrum is similar to the vacuum Rabi splitting. Howet@ small probe detun-
ingsA ~ 0 MHz (when the two lasers are close to two-photon resonanc® MHz) the
cavity reflection spectrum exhibits a sharp dip and the réflealrops drastically around
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Figure 8.6.: Probe reflectivity spectrum for an empty cavity (red squeaesl a cavity
containing an ion Coulomb crystal without (green trianylasd with the control field
present (blue circles). With a half-lengthlof= (801+ 1) pm, a radiuR= (141+ 1) um
and a ion density ofp = (5.6+0.1) - 16 cm 3. The cooperativity was measured to be
C = 3.4+ 1 (for details see text).

A =0 MHz. From the reflectivity level on two-photon resonanceocaulate an atomic
transparency on resonancelgfmic= (84+ 1)% (see eq[{8.31)), which is two orders of
magnitude higher as compared to the vacuum Rabi spectra, thikee is only the probe
laser present.

More quantitative information from the EIT spectrum can lstaed by fitting it to
the theoretical model of eq.[(8]27). Owing to the complexifythe model, we first
characterize the system in order to measure the non-Elfecklateraction parameters
independently. For this purpose, we first measure the broagef the cavity effective
decay ratex’ (see eq.[(3.48a)) as a function of probe deturirity the method described
in sec.[5.4. To account for the finite temperature of the ahyibie spontaneous dipole
decay rate/ as well as the cavity decay rateare left as free fitting parameters (see secs.
B3 and5H). We findgn,Y,K) = 2mx (1364 0.3,12.6+ 0.8,k = 2.5+ 0.2) MHz. The
dipole decay rate found here is substantially higher tham#tural dipole decay rate. This
indicates that the cooling conditions might have been Iptisnal for these measurements
as compared to those presented in e.g.[set. 5.4.

To confirm the coherent coupling rate found from the broaulgof the effective cavity
decay rate we furthermore obtained vacuum Rabi spectras@ed5.b), which were
measured both in reflection and transmission. For the meamnt of the transmission
spectrum, the probe laser is injected into the cavity froeHiR side and the transmitted
signal is measured by the probe APD on the PT side[(sed 4i8d2fails). The two sets
of data can be seen in fif._$.7. Fits to the two curves yielcectille coupling rates of

g™ = 2rx (13.9+0.3) MHz andg\™"™ = 27t (13.80.1) MHz for the reflection

and transmission spectrum, respectively. To facilitateveogence of the more complex
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Figure 8.7.:Vacuum Rabi spectrum measured in reflection and transmisia crystal
with half-length and radiuR = (141+ 1) pm andL = (801+ 1) ym, and a ion density of
Po = (5.6+0.1)-10% cm3. The solid lines are fits to the data and yield collective dingp

rates ofgl"" = 2rrx (13.9+0.3) MHz in reflection andy\"™" = 2rtx (13.8+0.1) MHz
in transmission.

fitting function, the values of andy are set to the previous valuesiof 21 x 2.2 MHz
andy = 21t x 12.6 MHz, respectively.

The collective coupling rates we find for the three differer@asurements all agree
within their error bars and yield a cooperativity 6f= 3.4+ 0.1, corresponding to an
effective number of interacting ions &f ~ 675. For the vacuum Rabi splitting mea-
surements we observe a better agreement of the spectranegastransmission than in
reflection, especially around the lobes of the normal modles.reason for this discrep-
ancy is not completely understood, but might be attribubeitié more sensitive nature of
the measurement in reflection. As the reflected field resuta the interference between
the incoming and the intracavity field leaking out of the tgvit is more sensitive to
mode matching or polarization imperfections. Nevertheldse collective coupling rates
deduced from fits to both spectra agree within their unostited. Furthermore, around
two-photon resonancé = Ac = 0), the reflection spectrum is still well resembled by the
fit to the theoretical model and it is mainly this region whistimportant for the system-
atic studies of the EIT resonance.

Having measured the interaction parameters of the systencaw finally turn back to
the cavity reflectivity spectra of fi§._8.6. A zoom around tploeton resonance is shown
in fig. [B.8, for the empty cavity (red squares), the probe uatRabi splitting spectrum
(greentriangles) and the EIT spectrum (blue circles). Tiid ines in the corresponding
colors represent fits to the theoretical model, using [e@8j8.For the EIT situation, the
transverse profile of the control is taken into account bygishe susceptibility of (8.25).
The narrow EIT window is very well resembled by the fit to thedretical model with a
clearly non-Lorentzian lineshape due to the effect of thadverse profile of the control
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A [21tMHz]

Figure 8.8.: Zoom around two-photon resonance for the probe reflectapgctra of fig.
[B.4. The curves are obtained for an empty cavity (red squaresa cavity containing
an ion Coulomb crystal with a measured cooperativitef 3.4+ 0.1, without (green
triangles) and with control field (blue circles). The solidels are fits to eq. [(8.27),
using the two-level susceptibility of eql_(3]141) for the wvam Rabi and the three-level
susceptibility of eq. [(8.25) for the EIT spectrum. From thedithe EIT spectrum, we
obtain a collective coupling rate @iy = 2t x (13.7+0.1) MHz, a Rabi frequency of
the control field of 21x (4.1+0.1) MHz and a half-width of the central EIT window of
(47.5+2.4) kHz. The atomic transparency on resonance is increased(ft@m-0.2) to
(844 1)%. To illustrate the non-Lorentzian lineshape of the EITdaw a Lorentzian fit
is also depicted (dashed black line).
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8. Cavity electromagnetically induced transparency

field. To illustrate this effect, a Lorentzian fit to the datalso plotted (dashed black line)
and deviates substantially from both the experimental daththe fit to the theoretical
model. The half-width of the EIT windows is found to ba 2 (47.5+2.4) kHz and is
almost a factor 50 narrower than the bare cavity width ef 21t x 2.2 MHz.

Moreover, on two photon resonance we deduce, according.taf@&81), an atomic
transparency ofaom= (84+ 1)%. For this curve, the cavity reflectivity drops below the
value of the empty cavity. Though this might seem surprisihig behavior is expected
and can be understood from the resonant reflectivity- (Ac = 0), given in eq. [[8:29a).
For a certain value of the control Rabi frequerixy the atomic absorption is reduced by
the EIT to the level, where it compensates the differencevéen the cavity decay rate
through the PTk;, and the sum of the decay rate through the KR and the intracavity
loss rate,k 4. In this case, the atomic absorption is given by(xin~ 2m- 0.86 MHz,
corresponding to an atomic transparencyilg@ém ~ 52%. For even higher control field
Rabi frequencies, the reflection level rises again and ageggo the empty cavity level
when the atomic absorption goes down to zero.

Furthermore, the fit to the EIT spectrum yields a collectigapding rate ofgy = 21 x
(13.7+0.1) MHz, a Rabi frequency of the control field oftx (4.1+0.1) MHz and a
ground state decoherence rateygf = 21 x (1.2 + 0.2) kHz, where the effective dipole
decay rate and the cavity field decay rate were fixed to theegaleduced in the previous
experimentsy{ = 21t x 12.6 MHz andk = 2mx 2.2 MHz, respectively). The collective
coupling rate is in very good agreement with the value foumdtfe Vacuum Rabi spectra
and the broadening of the effective cavity decay rate. Therobfield Rabi frequency

deduced from the fit is slightly lower than the theoreticatipected value a@c°" =

2 x (4.6 +£0.2) MHz. This slight discrepancy may be attributed to dnfts Iméﬂaser
power during the measurement, a non-ideal coupling to tkigycar polarization drifts,
resulting in this specific experiment in a slightly loweradavity field intensity. We note
that the value we find foy, in this single fit is rather is an order of magnitude, due to
the complexity of the fitting functidh As we will see in the next section this value is
actually in good agreement with other systematic measurtsmn principle, one could
expect that the decay rate of the ground syateould be as low as the decoherence rate
we found in the measurement of the coherence time of colle@eeman substates in
Sec. . The coherence timemf= 1. 7100 ms we found there would correspond to a
decoherence rate gt ~ 21 x 0.1 kHz, Whlch is much lower as the fitted decay of the
EIT ground state coherenggy, but might still be consistent with the measured spectra.
The issue of the ground state decoherence rate will be fuattdressed in the following
systematic studies and we will discuss possible differeaoel present limitations in sec.

B.44.

8.4.2. Effect of control power

An important parameter for the steady state behavior andyhamics of the EIT inter-
action is the control field Rabi frequency. In this subsettie will study both steady
state spectra and the dynamical build up of the transpaicumalyg the EIT interaction for
various powers of the control field.

The crystal used in these experiments is slightly biggem tha previous one and we

5 y12 only appears in combination witic which leads to strong mutual dependencies of the fittingrpaters.
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Figure 8.9.: EIT spectra for different (selected) input powers of thetoalrfield: 82 nW
(squares), 414 nW (circles), 2057 nW (triangles) and 3490(stAfs). The solid lines
are fits to the model of eq[[{8127). The crystal's half-leng#uius and density ale=
(8634 1) pm, R= (125+1) um andpo = (5.6+0.1) - 108 cm~2 amounting to an effective
number of ions\ = 980+ 20 (taking the optical pumping efficiency of 97% into account
From the fits we deduce control field Rabi frequenciestok21.18+ 0.04) MHz, 21t x
(3.23+0.11) MHz, 21t x (5.91+0.18) MHz and 2t x (8.624+0.26) MHz.
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Figure 8.10.: Control Rabi frequency as deduced from fits to the EIT spaaraus the
theoretical value deduced from the input power of the cotaser. The solid line indi-
cateng't) = Qghe"f”.
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8. Cavity electromagnetically induced transparency

deduce from a projection image a half-lengthLof (863+ 1) um and a radius oR =
(1254 1) pm. With a density opo = (5.6+0.1) - 10° cm™2 the effective number of ions
amounts tdN = 980+ 20 (taking the optical pumping efficiency of 97% into accqunt
corresponding to a expected collective coupling ratg\pf°Y = 2mx (16.6+0.4) MHz.

In a first step, we obtain EIT spectra around two-photon rasoa for various intensi-
ties of the control field. In fig[_8]9 exemplary spectra arotwmo-photon resonance are
shown for four different cavity input powers of the contrasgér: 82 nW (squares), 414 nW

(circles), 2057 nW (triangles) and 3490 nW (stars), comesiing to expected intracavity

control field Rabi frequencie@"*®Y of 21x (1.3+0.1) MHz, 2 (3.0+0.2) MHz,

21 x (6.6+0.4) MHz and 2tx (8.6+0.5) MHz, respectively. The solid lines are fits to
the theoretical model of ed. (8127), and using the lineazespiibility taking the transverse
profile of the control field into account, see dq. (8.25).

As expected, the width of the EIT window increases with higtentrol power. Fur-
thermore, the depth of the EIT dip also increases, and fortainerange of powers of
the control field drops below the reflectivity of the bare taaind reaches a level close to
zero, as mentioned in the previous subsection.

A global fi of the data yields a collective coupling rateggi‘t> =21x (16.2+0.2) MHz,
in good agreement with the value deduced from the effectinelrer of ions and the sin-
gle ion coupling ratgy. The Rabi frequencies deduced from the fﬁg’t), are depicted
in fig. [8.10 versus the theoretically expected values catedlfrom the input powers of
the control field according to eq_{8]32). The solid line esponds th(Cf't) = QQ“E‘””
and we find very good agreement between the experimentaévalnd the theoretical
expectations.

For the fits, the ground state decoherence rate was basea @mevious discussion
set toy;2 = 21t x 1 kHz. To check the plausibility of this choice, we repeates fitting
procedure for values ofi2> = 21t 0.1 kHz andy;2 = 21t 4 kHz. The control field Rabi
frequencies deduced from these fits were then investigatadianction of the expected
Rabi frequency and fitted by a linear function. The lineapsbdeduced for all three
values ofy;» are summarized in the following table

Y12 linear slope
[2rtkHZ]
0.1 0.92+0.02
1.0 1.00+0.02
4.0 1.08+0.02

Based on this comparison, a valueygf ~ 1 kHz seems reasonable and is consistent with
our data. We will, therefore, for the remaining analysighiis thapter stick to this value.

Width of the EIT window

In fig. [B:11 are shown the half-widths of the EIT windows asudmd from the fits in
fig. [B.8 and similar spectra (blue circles, left axis) as acfiom of the square of the
expected control field Rabi frequency for the various inpavers. The blue line is a

6Beside the control field Rabi frequency, all fitting paramei@re assumed to be equal for the various data
sets.
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Figure 8.11.: Left Axis: Half-widths of the EIT windows depicted in fif._8.9 as deduced
form the fits to the theoretical model versus the square oéxpected control field Rabi
frequency (blue squares). The blue solid line is a linearrfit gields a linear slope of
anwnm = (1.740.1) 10 3/2nmHz and an intersection dfiqwpm = 21 x (0.94 0.3) kHz.
Right Axis: EIT build-up time constanygir deduced from fits to corresponding dy-
namical curves as shown in fid,_8l13 versus the square of thected control field
Rabi frequency (red squares). The red solid line is a lingaarfd yields a slope of
ayr = (1.84+0.2) 10%/2nmHz and an intersection diy.; = 2mx (1.04+0.4) kHz. The
two axis are on scale.
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8. Cavity electromagnetically induced transparency

linear fit to the data and yields a linear slopeagfyrm = (1.7+0.1) 10°/2nmHz and a
intersection obpwhv = 21 x (0.940.3) kHz. For small control field Rabi frequencies
Q¢ — 0 one expects the half-width of the EIT window to be limitedthg ground state
decoherence rat@,, which for the analysis of the curves in fif._B.9 was choseneto b
y12 = 21t x 1 kHz. The intersection deduced from the linear fit in fig,_ #hce provides

a further way to independently check the self-consisteridpie assumption. For this
purpose, we repeated the analysis of the half-width of tiief&i the control field Rabi
frequencies fogy2 = 211x 0.1 kHz andy;2 = 211x 4 kHz. The results of linear fits to the
three sets of data are summarized in the following table.

V12 intersectioroWHAM) [ |inear slopea"WHM)
[2TkHZ| [2mkHZ] [1073/2mvHz ]

0.1 0.24+0.2 16+0.1

10 0.94+0.3 17+0.1

4.0 6.2+0.7 1.8+0.1

The intersection we find for choicesaf = 21x 0.1 kHz andy;» = 21tx 1 kHz resemble
these choices, while the value we find fap = 211x 4 kHz clearly deviates from the
assumption. In connection with the analysis of the fittedirdfield Rabi frequency we
infer on this basis that a ground state decoherence rateadrtter of~ 1 kHz is very
likely and will use this choice for the remaining analysise Will turn back to the issue
of the ground state coherence time and possible limitatioaec[8.4.4.

Atomic transparency

An important quantity in connection with EIT is certainlyettransparency of the atomic
medium. Based on the Rabi-frequencies deduced from theni@s;an now, using eq.
(8.30), calculate the transparency of the atomic mediiips on resonance. The result is
depicted in fig 812 as a function of the control field inputvea For comparison, we
plot the theoretical expectation, which is calculated Hame [8.30) and using the Rabi
frequencies found for the input power of the control fieldading to eq. [8.32). The
remaining parameters are the experimentally deduced sjalige a coherent coupling
rategfl = 2mx 16.2 MHz, a cavity decay rate of = 21t x 2.2 MHz, an effective dipole
decay rate off = 2= 11.7 MHz and a decay rate for the ground state coherengg ef
2rx 1 kHz. The transparency increases from a levet d for low Rabi frequencies of
the control field to values above 95% for higher control fielgénsities and we find good
agreement with the expected behavior.

Dynamical build up

To gain insight into the dynamical evolution of the EIT build for various intensities of
the control field, a series of measurements was performeekrenthe probe reflectivity is
monitored at different delays after the control and probddibave been turned on. This
is accomplished by measuring the cavity reflection on twotph resonanced(= 0) by
the probe APD at different times in the EIT interaction pha&eobtain a sufficient time
resolution, the time window for the APD was reduced t6 @5 in these measurements.
Exemplary data sets for the same crystal as used for the nesasnts in fig.[ 819 are
shown in fig[8.IB. The control field input powers are 82 nW ésga), 414 nW (circles),
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Figure 8.12.:Deduced atomic transparency for different input powersefdontrol field.
The solid line corresponds to the theoretical expectaiidres). [8.30), where eq (8.32)
is used to deduce the Rabi frequencies for the input powdreotontrol field. The other
parameters were fixed to the values deduced in the previozalsunzea'nentsg{\‘,t = 21X
16.2 MHz, K = 211x 2.2 MHz,y = 21t1x 11.7 MHZ andy; = 21t x 1 kHz).
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Figure 8.13.: Time evolutions of the reflectivity level for a two-photorsamant probe
field for the same control field Rabi frequencies and the sawstat as in fig[[8.0. The
last points (open symbols) of each curve are taken with tinérabfield switched off to
verify that no significant depopulation of tﬂ@dzDM, my = +3/2> substate has occurred
during the interaction.
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8. Cavity electromagnetically induced transparency
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Figure 8.14.:Numerical simulation of the time evolution of the resonaantity reflectiv-
ity. a. Sample curves calculated from the inverse Laplace tramsftion of eq.[(8.26) for
different intra cavity Rabi frequencie€c = 2 x 1 MHz (squares))c = 21 x 3 MHz
(circles),Qc = 2mx 5 MHz (diamonds)Q¢c = 21t x 7 MHz (stars) and)c = 21tx 9 MHz
(triangles). The time constants of the EIT build up are exted by fitting the beginning
(to the Y/elevel) witha exp(—2ygrt) +c. b. Extractedygr as a function of the square of

2
the control field Rabi frequency. The solid line is a fit acdéogdo Yeir = vi2+ %,
where the scaling factaap is introduced to account for the effective averaging of the

Rabi frequency over the transverse profile. From the fit toviiees deduced from the
simulations we fin"™ = (2.19+0.02).

2057 nW (triangles) and 3490 nW (stars) and also correspotitbse of fig[8.0. One
observes a decrease of the cavity reflectivity signal wighittberaction time, with a time
constant depending on the control field intensity. For tighést intensities, a steady state
level is reached after some few, while it takes several tens ja$ for the lowest measured
control intensities. To prove that no significant depopataof the\3d2D3/2, my = +3/2)
substate occurs during the interaction time, the contréd fe switched off before the
probe field and the last data point of each curve is measutbdsaliely the probe field in
the cavity. The corresponding data points are marked by epeols and reach within
their errors the reflectivity level at the beginning of theaserement, hence indicating
that the population in the; = +3/2 state has not decreased during the interaction time.

As discussed in sed._8.2.3, modelling the dynamical evaiutif the mean value of
the intracavity field is not trivial for an intracavity contrfield, where one has to take
its transverse field distribution into account. For the aafsa uniform control field the
dynamical equations in eqs_(8.6) and [8.7) can be solvechtadabatic elimination,
see egs.[(819). The resulting time dependence of the initadaeld was found to be
exponential, with a time constant, which, in the resonaseda = & = 0), is given by

2
Verr = Vio+ i (see eq.(B14)).

For the more complex situation of an intracavity controkfias used in the experiment,
one can solve the dynamical equations in the Laplace-dgmdiere for the intracavity
field amplitude on finds the expression given in €g. (8.26} ihlierse transformation can,
however, not be performed analytically and has to be catedlaumerically. This method
does, hence, not provide a simple expression that coulddattasit the experimental data
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in fig. [B.13.

Instead, we performed numerical simulations of the dynah&golution of the cavity
reflection signal for various Rabi frequencies of the cdrfiedd Rabi frequency, some
exemplary curves are depicted in fig._8.14 a. A first usefuraxmation for the EIT
time constant can be found by fitting the first feus of the resulting time dependent
cavity reflectivity curves with the exponential form one Wwibaxpect for a homogeneous
control fieldR = a exp(—2ygrt) +cC.

For the case of an intracavity control field, the time evaolutivill depend on the radial
position of the individual ions, since the time constantetefs onQc. As a result, the
dynamical evolution of the cavity reflectivity will be an aage of all these contributions
and one will in general find a slower evolution as compareduoiform control field with
comparable Rabi frequency. In a simple heuristic pictur@m account for this average
by rescaling the Rabi frequency of the intracavity contreldfiby a scaling factosg. In
this simple model, the average time constant is hence eaghéotbe given byye T =

2
Y12+ ;%2;&. Using the numerical simulations, we can estimate thisrsgadarameter
ap. The time constantg T as deduced from the fits to the first part of the simulated
dynamical curves are depicted in fig._8.14 b. as a functioh@&tjuare of the control field

Rabi frequenc;Q% used in the corresponding simulation and a linear fit to theukited

data points yields a scaling facta"™ = 2.19+0.02.

Using the same approach for the experimental data and fittiedirst fewps of the
dynamical curves b = a exp(—2ygTt) + ¢, we can hence also deduce the correspond-
ing time constants for build up of the electromagneticaligticed transparency. On the
left axis of fig. [8.9 are depicted the values deduced fromettiiés as a function of the
control field input power (red squares). The red solid lina imear fit to the build up
time constants and yields a linear slopeagf, = (1.8+0.2) 10-*/2rnMHz, which for the
parameters of the experiment corresponds to a scaling eéeafor the Rabi frequency

of of aéﬂt) = 2.2+ 0.2 in very good agreement with the value found for the simaieti

On the left axis of the same graph are shown the half-widthb®fteady state EIT
windows deduced from the fits in fif._8]11 (blue circles). Tive aixis are on the same
scale and the two sets of data overlap within their error.b&sthermore, the linear
scaling parameter of both fits also agree within their uradeties. Though we cannot,
due to the complexity of the theoretical model, give a spicof of the equivalence of the
time constants and the corresponding half-width, it is fleophysical point of view still
reasonable to expect a correspondence between the timeienaf the EIT build up and
the observed spectral half-width of the EIT resonance, ggested by our experimental
findings. This also provides us with simple analytical esties for the EIT build up time
constants in the range of parameters investigated here.

8.4.3. Varying the number of ions

In a subsequent experiment, we measured the dependence BfTthon the effective
number of ions and hence the collective coherent couplitey r&his is accomplished
by varying the number of ions in the cavity mode by changirgRF and DC trapping
voltages, as was explained in sdc.]5.6, where the dependérlce collective strong
coupling on the effective number of ions was investigated.
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Figure 8.15.: EIT spectra for ion Coulomb crystals with different effeetihumbers of
interacting ions for input powers of the control field @f Pcj, = 576 nW (N = 393
(squares)N = 590 (circles) N = 737 (triangles)N = 938 (stars)N = 938 (diamonds))
andb.. Pcin =103 nW (N = 362 (squares)N = 590 (circles),N = 735 (triangles),
N = 1082 (stars)). The solid lines are fits based on éq.8.27)yaid control field
Rabi frequencies oD = 21 x (4.0+0.2) MHz and Q" = 2 x (1.6 0.1) MHz,
respectively.
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Figure 8.16.: Width of the EIT windows for different effective numbers oftéracting
ions for the two sets of data presented inffig. B.15. The redrsgicorrespond g jn =
576 nW, the blue circles tBc j, = 103 nW. The widths are calculated numerically based
on the collective coherent coupling rates and the contrid fRabi frequency deduced
from the fits, and the previously measured values,gfandyc.

Inset: Collective coherent coupling rate deduced from tteeviersus the theoretically

expected values for the two sets of data. The dashed Iineeimi'g{\‘} = gf\r,‘e"ry.
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Figure 8.17.: Atomic transparency for different effective numbers oeiicting ions for
the two sets of data depicted in fif._8.15 (blue circl®s;i, = 576 nW, red squares
Pcin = 103 nW). The solid lines are the theoretical curves caledl@ccording to eq.

(8.30).

The measurement was performed for two fixed input powerseottmtrol field,P, =
576 nW andR,, = 103 nW. The obtained cavity reflection spectra around twagrho
resonance for the two sets of data are depicted ififig] 8. 1xcah.arespectively. For both
sets of data, one observes a decreasing width of the EIT wisdas the number of ions
and hence also the collective coherent coupling rate igasad, in accordance with the
expectations from the theoretical model (see eq. [8.27)).

The solid lines are fits to the various curves based on the hidq. (8.27) where we
leave the control field Rabi frequency and the collectiveptiog rates as free parameters
and fixing the remaining parameters to the previously meabuellues. The control field
Rabi frequencies are found to be@f" = 21 (4.00.2) MHz andQ{™ = 21 (1.6+
0.1) MHz, respectively, in reasonable agreement with the exgeealues 0" =
21 (3.5 0.2) MHz and Q" — 21 x (1.5+0.1) MHz, calculated based on eq.
(B32).

In fig. [B-16 are depicted the widths of the central EIT windowthe two sets of data,
where the red squares correspond to the curves shown [n3i§.a8.and the blue circles
to the ones in fig_8.15 b. The widths are numerically caledatased on the collective
coherent coupling rates and the control field Rabi frequeteduced from the fits, and
the previously measured valueskgfy andyc, as already discussed above.

The collective coherent coupling rates deduced from thegﬁ?% are depicted in the
inset of (816 versus the theoretical vakg%eor” calculated from the effective number
of interacting ionsN, and the single ion coupling rate= 21t x 0.53 MHz. The dashed
line indicategg™ = g{"*°™ and we find good agreement of the measured values with the
expectations.
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8. Cavity electromagnetically induced transparency

Fig.[8.IT shows the corresponding transparencies for theséts of data (blue circles:
Pc.in =576 nW, red squard% j» = 103 nW), along with the theoretical curves calculated

according to eq[(8.30).

8.4.4. Discussion of the ground state coherence time

In sec.[8.4P we argued that the ground state decohererctorahe experiments pre-
sented here is of the order gf, ~ 21tx 1 kHz. This value was found to agree with the
one found in sed_8.4.1 and, furthermore, provides goodeageet for the control field
Rabi frequencies deduced from fits to EIT spectra and the¢tieal expectations and is
self-consistent when analyzing the half-widths of the Elifidews. A value of around
21tx 1 kHz is hence reasonable, although the complexity of theréteeal model circum-
vents a more precise determination of the value from theraxeatal data. In the future,
a more precise determination of this parameter could be thwaagh a study of very slow
EIT processes, which are more sensitive to the ground sézi@hérence rate.

Ultimately, we expect the achievable coherence time to bieforder of what was
measured ifL5]7 via the decay of the collective coherenceeeba Zeeman substates.
There, we found a coherence timetaf= 1.7:%% ms, corresponding to a decay rate of
Ve ~ 2T1x 0.1 kHz. The value used in this chapter is larger by a factor afriddseveral fac-
tors might be limiting the ground state coherence at thegmtestate of the experiment,
e.g. a slight angle between probe and control field mode,zeon-transverse B-fields,
electronic drifts, a higher temperature of the sample aspesed to the previous mea-
surements or an inhomogeneous light-shift that might baded by the reference laser
field in the cavity, which for the experiments presented is thapter was injected with
a substantially higher power than in the measurements afdherence time presented in
sec[5.V. We will in the following section try to estimate thBuence of the latter.

Light shift induced by the 894 nm reference laser

In all experiments presented in this chapter, the 894 nnr iasgsed to lock the cavity
on atomic resonance, as described in §ec. 14.8.3. In all iexpets, the 894 nm laser
is resonant with the cavity and injected into the Tghode, and, hence, almost per-
fectly overlapped with the control and the probe field. As wwlieady mentioned one
possible limitation for the ground state decoherence raggninibe dephasing of the var-
ious contributions throughout the transverse profile ofalheity mode induced by the
inhomogeneous AC-Stark shift of the reference laser.

To clarify this influence, we will in this section present eximents where we measured
cavity reflectivity spectra for various input powers of th@ém reference laser, using
exaggeratedly high powers to amplify the effect. In fig._8at® depicted spectra around
two-photon resonance for various powers of the referendee durves correspond to
powers of the reference laser aD@5 pW (squares), ®5 UW (circles), 14 pW (stars),
7.9 YW (diamonds), 20 UW (crosses) and 48 pW (asterisks), where the powers are
measured at the position of the locking detector. For irgingapowers, one observes
both a shift of the two-photon resonance and a broadeningeo€éntral EIT window.
The shift is caused by a mean AC-stark shift of the two-phatssonance, while the
broadening directly reflects the different light-shiftstbé contributions throughout the
transverse profile of the cavity mode.

134



8.4. Experimental results

1.4
1.2
3
= 1
[¥]
I
- 0-8
c
>
o
o
0.6
0.4
-100 -50 0 50 100 150 200
A [21kHz]

Figure 8.18.:EIT window for various powers of the 894 nm reference laselinVestigate
the effect on the EIT resonance, artificially high powershef teference laser were used.
The power of the individual curves, measured at the posdfdhe locking detector were
0.025 pW (squares), &5 W (circles), 14 W (stars), 79 pW (diamonds), 24 pW
(crosses) and 48 PW (asterisks).
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Figure 8.19.: Shift of the EIT resonance for different powers of the 894 raference
laser. The solid line is a linear fit and yields a scaling cansbf b = 2 x (3.5+
0.1) kHz/pw.
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8. Cavity electromagnetically induced transparency

Fig.[8.19 shows the shift of the EIT resonance as deducedtfierspectra in fig, 8.18
versus the measured power. The solid line is a linear fit tad#ta points and yields a
scaling parameter df = 21t x (3.5 0.1) kHz/uw. As the reference laser is coupled to the
cavity, this value has to be understood as a mean light shiérnvaveraging the contribu-
tions of the individual ions over the transverse profile.

In our experiment, the locking of the cavity currently remgiat least- 30 nW at the
detector, which, with an estimated detection efficiencyy @0% corresponds te 50 nW
of reference power injected into the cavity. According te $icaling parameter, this would
amount to a shift of the EIT resonance~o®rmx 0.1 kHz.

This is already at the level of the decoherence rate of ddleeZeeman substates mea-
sured in sed._5l7 and the effect of the dephasing inducecetigtit shift might be already
one of the limiting factors at the present state of the expeni.

This could also explain why the ground state decohereneefoaind in this chapter
differs from the measurement of the coherence time of cilie@eeman-substates pre-
sented in sed_H.7. There, the measurement was performezhbgisg the cavity over
the atomic resonance (see sec. 4.8.3) while measuring ¥ty oeflectivity signal for a
resonant probe laser. In this configuration, the 894 nm lasesed to monitor drifts of the
cavity resonance which can be accomplished at powers welMienW. The much lower
power level could hence explains the difference of the nregisground state coherence
rate in this chapter as compared to the measurement df S&c. 5.

Though technical challenging, it should be possible to cediis effect by an opti-
mized locking scheme. A first step could be to use a more sansitcking detector
which would facilitate locking of the cavity resonance foea lower power levels of the
reference laser. Furthermore, one could consider to itfjecteference laser to a high or-
der transverse cavity mode to minimize the spatial overfapeoreference with the probe
and control fields. Finally, using a reference laser withandarger detuning would re-
duce the light shift, but would require a sufficiently higliieetivity of the cavity mirrors
at its wavelength to assure a finesse comparable to the fine$ise wavelength of the
probe transition.

8.5. Conclusion

In this chapter we investigated both theoretically and expentally the realization of
cavity electromagnetically induced transparency with @ulomb crystals. In the first
part, we extended the two-level model derived in Secl 3.héoBIT situation, where
an ensemble of\-type three-level atoms interacts simultaneously withrargt control
field and a weak probe field at the single photon level. We famalytic expressions for
the atomic susceptibility for both the situation of a unifocontrol field Rabi frequency
and the more complex case of a control field coupled to thetycawvhich allowed us
to calculate the expected cavity reflectivity spectra. Far ¢ase of a uniform control
field, we could, furthermore, derive time dependent expoessfor the mean values of
the system observables in an adiabatic approximation.

The second part of the chapter was then dedicated to theiegeal observation of
cavity electromagnetically induced transparency. Weadeimonstrate how the vacuum
Rabi spectra obtained with only the probe laser present @ififad by the additional con-
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trol laser and exhibits a very narrow transparency windowmithe frequency of the probe
field approaches the EIT two-photon resonance. The expetatagata is well reproduced
by fits to the theoretical models and we find good agreemehttivit expectations.

We performed a systematic study of the EIT steady staterspaictl dynamics by vary-
ing the control field intensity or the number of ions effeetivinteracting with the cavity
field mode and found excellent agreement with the theolleticalel.

By studying the time evolution of the resonant transpargmeycould demonstrate how
the build up time constant increases with higher input pswBased on numerical simu-
lations, we estimated the expected dependence of the E€Tdimstant for an intracavity
control field and could based on these simulations relateegperimental data to the
observed widths of the EIT windows.

In a subsequent series of measurements, we analyzed thenicdlof the effective num-
ber of ions on the EIT window for two different control fieldyers. The observed cavity
reflectivity spectra are well resembled by theoretical fitd e find good agreement be-
tween the fitted control field Rabi frequencies and the exiects. We observed for both
control field powers a decrease of the EIT width for an indrepaumber of ions and a
decrease of the atomic transparency, in good agreementheitiheoretical expectations.

Finally, to assess the influence of the AC-stark shift induog the reference laser on
the coherence time, we investigated the shift of the EITmasoe for increasing powers
of the reference laser. For the values typically used toibelcavity on atomic resonance
the expected shift is of the order oftX 0.1 kHz and could already be significant for the
achievable coherence time. Though the complexity of theréteeal model complicates
the precise determination of the ground state decoherateat the present state of the
experiment we could, based on several observations, dstiinto be of the order of
~ 21x 1 kHz.

The observation of cavity EIT is an important step on the wayetrds the realization
of a quantum memory based on ion Coulomb crystals in an dptésaty and the first
realization of the cavity STIRAP (Stimulated Raman Adigb&assage) scheme of ref.
[55]. The storage and retrieval of single light pulses reegithe dynamical control of the
control field Rabi frequency[137], and detailed dynamitadiges are necessary to find the
optimal control parameters for our all-cavity scheme, \ehtee transverse effects of the
control field have to be taken into account. The excellentrobaver the transparency and
the experimental interaction parameters should allowHerealization of high-efficiency
and long-lived quantum memoriés |55/56,151].

Furthermore, the observed EIT windows are nearly two ordensagnitude narrower
than in previous investigations with neutral atoms in ¢agif92+-95], which is important
e.g. for the implementation of EIT based nonlinear effé@8 pr to engineer interactions
between single photonis [99, 100]. Based on these resultwjlinie the following section
implement an EIT-based all-cavity optical switching scleem
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9. All optical switching

In this chapter, we will present a first application of cauyT, namely the implemen-
tation of a low-light level all-optical switching scheme. eWill demonstrate how the
transmission of a probe field at the single photon level thhothe cavity containing the
EIT medium can be controlled by an additional weak switcHialgl. The results will be
compared to an extension of the theoretical EIT model of tegipus chapter to the new
situation of four-level atoms.

The chapter is structured as follows: Sec] 9.1 will starhwiintroduction. In se¢. 9.2,
the three-level theory of the previous chapter will be edtghto the case of four-level
atoms interacting with three laser fields. Then, in dec] %3wil present results on
optical switching experiments in two different schemes findlly, in sec.[3.4, we will
conclude and give a brief outlook.

9.1. Introduction

The control of light by itself, ultimately at the quantum é&yis a long-standing challenge
for quantum optics. In free space or in usual materials, riteraction cross section be-
tween single photons is typically extremely small, requgrihe use of intense laser fields
tightly focused on nonlinear materials. EIT offers an ietting possibility for dramati-
cally enhancing the nonlinearity of an atomic medilm [8499098. 9%, 195-198].

In such a medium the destructive interference of the abisorptvhich makes the
medium transparent, is usually attended by a construatiezference of the dispersion
in the media and a weak probe pulse propagating through suEtifamedium may ex-
perience huge nonlinearities, making EIT based systemkswigéd for the realization
of nonlinear optics at the few and even single photon levedldiAg to the traditional
EIT A-system (see fig._8.1 a.) a fourth level, different scheme&s baen proposed e.g.
for the realization of giant Kerr-nonlinearities [98], agatl switching by absorptive two-
photon processes [195] or, for an EIT medium enclosed in éinaavity, the’photon
blockade” [99,/100[ 199=201], where the transmission of a single phitaoherently
controlled by a second photon. Such effects could be useddaiize quantum optics
devices for single photons, such as single photon tramsi262[208] and single photon
gates[[204], for the generation of highly non-classicatste205] and for the observation
of novel phase transitions for light[206,207]. Photon ldade mechanisms based on the
strong coupling of a single two-level system to a cavity fieldde were proposed [208]
and have been experimentally realized [202] 209}-212].dsatexperiments the statistics
of the photons transmitted through the cavity is conditébbg a nonlinearity of the exci-
tation spectrum of the coupled single atom-cavity systeowéVer, the photon blockade
scheme of ref[[99], which relies on a direct, EIT mediatedlimear (Kerr) interaction of
two photons, still remains to be demonstrated.

Nonlinear effects in such a four level system have been wbde213] and optical
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9. All optical switching

switching of free propagating fields at the few photon lexad been demonstrated using
cold atomic gase$ [196-198].

In this chapter we will present a realization of an all-cawptical switching scheme
based on EIT where all laser beams are in the cavity. Thewarawity EIT resonances
observed in our system (see chép. 8) will be used to mediatadhlinear interaction
between the switching field and the probe photon and we willatestrate how the trans-
mission of a probe beam at the single photon level (at a wagéteof 866 nm) can be
controlled by an additional (weak) switching laser (at 830)n In addition, we will
also demonstrate a more traditional optical switching sthewere a switching field (at
866 nm) is applied in free space. Furthermore, we will based semi-classical analysis
derive the theoretical expressions for the atomic sudgiéifiis in both cases.

9.2. Four-level atoms in a cavity

ga

D
2)

Figure 9.1.:Level scheme for all-optical switching experiments. Thieesne is an exten-
sion of the standard EIT\-scheme depicted in fif._8.1 a., where an additional switchin
field, characterized by its Rabi frequen@y,, couples the stat®) to an auxiliary level,
denoted by4).

In this section we will discuss an extension of the thre@ll&IT model presented in
the last chapter to the four-level situation depicted inffdl. The level scheme is based
on the standard three-level EIT scheme, where the létgls|2), |3) form a/A-system
(see fig[8.11) and where an additional so-called switchiagrlacharacterized by its Rabi
frequencyQsyw, couples staté2) to an auxiliary excited leveld) with a (large) detuning
JANS

In a qualitative picture, one expects the presence of artiaddi switching laser to
change the energy of std@® through the AC-Stark shift and, hence, to modify the two-
photon resonance condition between the control and theegield. The probe detuning at
which the quantum interference occurs will accordingly biéted to a non-zero detuning
A # 0. At the same time, the atomic transparency on resonantel&dtease, as the
AC-Stark shift increases. For appropriate values of theifRauency of the switching
laser it should therefore be possible to deterministicaijtch the cavity in and out of
resonance for the probe field.
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9.2. Four-level atoms in a cavity

3d2Dg,

— )

Figure 9.2.: All-cavity optical switching schemes fdt°Ca". a. Intracavity optical
switching scheme. The switching laser is coupled to the dumehtal TENMo mode and
o' -polarized. Its frequency is close to resonance of th%Dggz > 4p2P5/2 transition
(detuninglAsw ~ 21tx 4.3 GHz). b. Free space configuration. The switching lasen-is
polarized and close to resonance of thé@gz > 4p2P3/2 transition. For details see text.

In the following we will derive a semi-classical model ofgtgcenario, which will be
based on the analysis in séc. 3.2 and §ed. 8.2. We will dérevelynamical equations
of the mean values of the relevant atomic observables anthtreeavity probe field,
along with their steady state solutions. As in the previdwspters, we will focus on the
situation of large’®Ca’ ion Coulomb crystals in an optical cavity. We will investiga
two distinct scenarios: First, where the switching beanigpted to the cavity and has
a well-defined spatial mode, and second, where the Rabidrexyuof the switching field
is uniform throughout the ensemble. Though our focus in¢hapter is on the first case,
implementations of both schemes are possible and will beodstrated.

In the first case, the optical switching is accomplished by gpolarized field address-
ing the[2) = [3PD35, My = ~1/2) < [4) = |4p?P3)p, My = +1/2) transition in“°Ca’.
The switching field is in this case applied along the quatitmaaxis and injected into
the cavity. The appropriat€Ca’ level scheme with the relevant levels is depicted in fig.
a. Itis a implementation of the four-level scheme pregas ref. [99], albeit with
different wavelengths for the probe and the switching fields

In the second case, optical switching with a (close to) unif®abi frequency is real-
ized by a free propagating switching beam applied alongrdresterse-direction. The
appropriate level scheme f6PCa" is depicted in fig.[9]1 b. In this configuration, the
polarization of the light with respect to the quantizatiosisas 1t and couples the state
2) = |3dPDg)2, My = ~1/2) to the staté4) = [4p’P3/,, My = —1/2). In practise, this laser
will also couple the two states 883/,, my = +1/2 and 4p3P;/,, my = +1/2. Accord-
ingly, the excited state will also be light-shifted (and gxtially power-broadened) and
the scheme is not a pure four-level system. For simplicity, will for the theoretical
treatment neglect the effect on thezﬂ’p/z, m; = +1/2 level, and discuss them, when
presenting the experimental results.
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9. All optical switching

9.2.1. Free-space optical switching

The case of a free-propagating switching field with a unifétabi frequency is concep-
tionally easier and we will first derive the atomic susceptibfor this case. For simplic-
ity, we will restrict ourselves to the situation where bdik probe and the control beams
are coupled to the fundamental Tdmode of the cavity, with transverse mode function

2

Woolr}) = exp(d).

Based on the discussion in séc. 8.2.3 and in appéndix D, wéuntthermore assume
a random distribution of the ions and a sufficiently high thaf kinetic energy of the
ensemble such that one can average over the longitudioatste of the cavity field. The
Rabi-frequency of the control fiel@c, and the single ion coupling ragewill accordingly
by scaled by a factot/v2. To facilitate the comparison with the second configuration
where the switching field is also in the cavity, the Rabi-freqcy of the switching field
will also be divided by a factor of/2. Using these approximations and assumptions, the
interaction Hamiltonian reads

Neot -2r 2 . Ata Nlot -2r 2 .
Hinn= — h—Zexp( Wz (61031,j+a 013,j) ZGXP( W2 ) (632 +623)
Q Niot
z (Ga2j+ 624) - (9.1)

As in the previous chapters, we use the Heisenberg-Langewiroach to find the dynam-
ical equations of the mean values of the system observdides. sufficiently large detun-
ing of the blockade field|Qsw| >> v, 0, Qsw) and in the weak probe regimg|é] < Qc)
we can perform a perturbative calculation of the probe. Assg most of the atoms in
level |1) (011 = 1, 022 = 033 = 044 = 0), the dynamical equations read

Niot _
a = —(k+iA)a+i— Z exp( 031J +1/2K18in. (9.2a)

. . r2
O13j+ = —(y+|A)013,ji+|\3zaexp( W% )+|7exp( )crlzJ (9.2b)
. Qc  —2r? Qaw

O12i = +id)012i +i—= ex 013 +i——=041j. 9.2c

12,] —(Y12+18)012 ] 7 p—— Wz L)oa N (9.2¢)
. . .  Qsw

O14j = —(V4+|ASW+I5)O'14,J'+I%O'12’j, (9.2d)

wherelsy is the detuning of the switching laser from the atomic resaedrequency and

y4 is the dipole decay rate of stgt®. Solving these equations in steady state, we retrieve
for the mean value of the intracavity field operator an equeadif the same form as in the
three-level case (see ef1. (8.23))

Vv 2K18in

= 9.3
K+I1Ac —iXalevel ©:3)
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9.2. Four-level atoms in a cavity

where the four-level susceptibility is now given by

~1
ig2 Not . exp(—2r2/w2)Q2 /2
Xdlevel = % Z exp(~2/wg) |y+iA+ IX / 0()25 c;z ‘ (9.4)
j=1 Yi2+id+ WTV\SIW%

We can as in the previous chapters apply the continuous mmedascription (see eq.
(3.43)) and replace the summation over all ions by the imdemrer the crystal volume:

y+iA+

-1
ig? exp(—2r2/w2)Q2/2
Xdlevel = %/\/dr exp(—ZrJ-Z/Wg) P(—25/wp) % :|

H ng/Z
Yi2+ 10+ VB TS

_ ig?N In(1+ 35) ©5)
VAT —— '

Here, we assumed the crystal radius to be much larger thanathty waistR > wg

and, as in eq[(8.25), inserted the effective number of Mﬁspo%L and the effective
saturation parameter of the two-photon transisatefined in eq.[{817). In addition, we
introduced the parameter

ng/z

°- (Ya+iDsw+18) (Y12 +i8) (9.6)

It is instructive to expand ed.(9.5) to first ordersin

_ ig’N 1 14 s
Kdevel = U AT+s 1+s

QZ
= Xn +Xeross o, 9.7)

where in the last step we used the (linear) three-level stigdity of eq. (8.16) and in-
troduced the crossed third-order nonlinear susceptiliigtween the probe and switching

fields [98[204]

Xhss— iGN L2 - 9.8)
922 \2 Ya+iDsw+id '
(v+|A+y12C+i5) =

For a vanishing Rabi-frequency of the switching field, thecgytibility found in eq.
(@:3) reduces to the linear expression of the three-leveaton in eq. [[(8.25). If the
detuning of the switching field is sufficiently larg\éw| > va, 8, Qsw), the susceptibility
becomes
ig2N

o2
V12+i3—1Q8w/ 285w

X4level =

(9.9)
y+in+

and the additional term in the susceptibility solely causeshift of the effective two-
photon detuning. If probe and control field are on bare twotph resonance (without the
switching field present) this switching field can be used teetthe system in and out of
two photon resonance.
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9. All optical switching

9.2.2. All-cavity optical switching

The second configuration, with the switching field beingatgel into the cavity, is slightly
more complex and the transverse intensity distributiorhefdwitching beam leads to a
position dependence of the Rabi frequency of the switchild.fiFor simplicity, we will
restrict the theoretical description to the case were a#idHaser fields are coupled to
the fundamental TENh mode of the cavity, with transverse mode functipgy(rj) =

_r2
exp(W—rOJ). All longitudinal effects are, as before, assumed to averagt and yield a

scaling factor ofy/2 for the Rabi frequencies argl The interaction Hamiltonian now
reads

H 9y ;{2”2>(“ dfoss)) -~ 122y o2 (B30 + B3
nt= - = exXp(—=—)(ad3j+ao013j ) —h—= exXpl——=—) (032 + 023
n \/i,; w3 J J \/51; W b
QSW Niot —2rj2 " N
=S exp(—~) (Gazj + 624j) 9.10
V7 2,50 g ) (Gezi 0z (9:10)

Following the same approach as previously, we can calcthatevolution equation for
the mean values of the system observables. Excetitprandoy4j these are identical
to those found in[{9]2). In the new all-cavity configuratitie dynamical equations for
these two observables are given by

) . Q
O12j = —(y12+ I5)0'121j —HTZ exp(—2r1-2/wg)0137j
Q
+|%"exp(72rj2/m%)o41’j (9.11a)
) . . Q
O14] = —(Ya+iDsw+10)014;j +I%VGXP(‘2H2/W3)012J- (9.11b)

Solving the full set of equations in steady state, we find Hraesequation for the mean
value of the intracavity probe field as in ed._(9.3), wherefthe-level susceptibility is
now given by

-1
iv2 Niot o2 2
_9 o2 - exp(—2r7/wp) /2
X4leveL00 - 7 JZ:LEX[X ZrJ/W%) y+ IA+ eXp(*erz/W%)ng/Z

Va iAo 110

(9.12)
Yi2+id0+

In the continuous medium description (see €d. (3.43)), ardraing (as beford} > wj,
we can replace the sums by integrals over the crystal volurdg@arform the integration.
We find

_ig°N sIn(lJrs—irs’)+ s
X4level00 = 5 (5+9)2 ste |

(9.13)

where we used the same parameters as i ed. (9.5).

It is worth noticing that unlike in the case of the three-lessceptibilities in eqs.
(8.18) and[(8.25), the four level susceptibilities in e@I8) and[(9.5) will for a non-zero
value of the Rabi frequencies of the switching field in geheod be purely imaginary
and accordingly give rise to dispersion, even on atomicriasoe.
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Figure 9.3.: Simulated reflectivity spectra for various Rabi frequea@éthe switching
field: Qs = 0 MHz (solid line),Qgw = 211x 25 MHz (dashed line)Qsy = 211 x 50 MHz
(dotted line) anddsy, = 211x 75 MHz (dashed-dotted line) far. a uniform switching field
andb. for the case, when the switching field is coupled to the pEMode of the cavity.
The parameters used for the simulation were identical aad &, = 211 x 4.3 GHz,
On = 21t x 17 MHz, Q¢ = 21t x 4.35 MHz, y4 = 211x 11.6 MHz, yi12 = 21tx 1 kHz,
y=2nx 117 MHz, K = 21t x 2.2 MHz andk1 = 21 x 1.53 MHz.

9.2.3. Reflectivity spectrum

Knowing the four-level susceptibilities for the two podsilconfigurations of the switch-
ing laser, we can now also calculate the expected cavityctefity spectrum by substitut-
ing these susceptibilities intb (8]27). In fig.19.2 are demmisimulated reflectivity spectra
for various values of the switching field Rabi frequeiy,, where in fig[9.B a. we use
the susceptibility found for an homogeneous switching figkee eq. [(315)) and in fig.
b. we use the susceptibility for an intracavity switchfield (see eq.[[3.13)). In the
first case, the switching field induces mainly a shift of the-hoton resonance, while
leaving the shape of the dip nearly unaffected. For thedatrily switching field the two-
photon resonance is also shifted, however less than cochpathe previous case (for
comparable Rabi-frequencies) and the shape of the EIT winsldistorted and becomes
asymmetric with a sharper rise towards low detunings of thée.

In fig. are depicted the shift of the EIT resonance as atiomof the square of
the switching field Rabi frequency for a uniform Rabi freqog(red squares) and for an
intracavity switching field (blue circles). The solid linase linear fits and yield slopes of
(1164 1) - 10 %/2mvHz and (524 1) - 10-%/2mvHz, respectively. The scaling for an intracavity
field is lower by approximately a factor of 2 and while in théfarm case, the dependence
is fully resembled by the linear dependence, the shift dedfmr the intracavity switching
field deviates from a strict linear dependence. HoweverdierRabi frequencies below
100 MHz, the scaling is still rather linear and facilitatesoenparison of the experimental
findings to the model.

In egs. [[8.2P) we calculated the cavity transmittivity aeflectivity on atomic reso-
nance for the EIT situation, where we assumed the susciggttbibe purely imaginary.
As abovementioned, this is in general not the case for theléwel susceptibilities in egs.
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Figure 9.4.: Shift of the EIT resonance as a function of the square of th&eking field
Rabi frequency for a uniform Rabi frequency (red squareg)ana intracavity switching
field (blue circles). Linear fits to the data yield slopegbf6+ 1) - 10-%/2mmHz and (524
1) - 10-%/2mvHz, respectively.

(@8) (9:I3). On resonance, the cavity transmittivity aeftectivity now read

(K1—K2—Kg— |m(X4IeveI))2 + Re()(4Ievel)2

(Kz +Im(Xalever)) 2 + Re(X4Ieve|)2

T - AK1Kz (9.14b)

(K2+ |m(X4Ievel))2 + Re(Xatevel)? .

R = (9.14a)

The resonant atomic transparency, defined by the ratio affé@msmission of the cavity
containing the mediund to that of the empty cavityfy, (for the three-level case see eq.

(8:30)) is accordingly given by

T K2
Totom = — = . 9.15
aom To (K+ |m(X4IeveI))2 + (Re(X4Ievel))2 ( )

9.3. Experimental realization

In this section, we will present the implementation of arcalVity optical switching
scheme, where all laser fields interacting with the atomscatgpled to the fundamen-
tal TEMgp mode. In the second part, these results will be suppleméytadnvestigation
of a more traditional optical switching scheme with a freacse optical switching field.
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Figure 9.5.: Schematic setup for all-optical switching experimentsthia first configu-
ration of the switching beam (labeled by switching a.p‘apolarized beam at 850 nm
is mode matched to the cavity from the HR side. When the casitgcked on atomic
resonance, the cavity resonance condition for the switchiser implies a detuning from
the 3dD3/, «» 4p?P3, transition ofAsy = 21 x 4.3 GHz. To allow for the independent
control of the polarization of control and switching bearsgaof waveplates designed as
A2 andM4 waveplates at 850 nm and Asit 866 nm are inserted after the Glan polarizer.
In the second configuration (labeled by switching b.) thdocaptswitching is accom-
plished by are-polarized beam at 866 nm injected along the transvexdieection. It is
tuned close to the resonance frequency of th@@@ > 4p2P1/2 transition.
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9. All optical switching

9.3.1. All-cavity optical switching
Experimental setup

The experimental setup used in the optical switching erpemis is almost identical to

the one in the previous chapter, the only difference beiegatiiditional switching laser.

A schematic of the cavity trap setup and the various lasembgimcluding the switching

beam is depicted in fid._9.5. The sequence used in these mauEs is identical to the

previous chapter (see fif._8.5), where the switching lasapjsied at the same time as
the control field.

The level scheme for the intracavity optical switching iswh in fig.[9.2 a. A home-
built grating stabilized external cavity diode laser witivavelength close to resonance of
the 3c?D3/2 > 4p2Pl/2 transition at 850 nm provides the light for the optical switg
field. The frequency of this laser is stabilized using a PeDnelver-Hall locking scheme
to an additional reference cavity similar to the one usedstabilizing the other diode
lasers and is tunable by a double pass AOM configuration ifoitleng branch (similar
to the setups described in s€c.14.3). As for the other lasersise a single pass AOM to
be able to switch this beam on and off. Thést diffraction order is coupled to a fiber
and guided to the optical setup of the probe and control |agesre it is overlapped with
the control beam on a PBC and sent to the HR side of the trap/cavi

Fig.[9.8 shows the beam path of this laser (labeled switchiptp the trap cavity. The
switching beam overlaps with the control field and passesé#mee setup as described
in the previous chapter. However, as we need independetrotoner the polarization
of the control and the switching beam, a set of waveplatessisried before the vacuum
chamber. The plates are designed/agand?/2 waveplates at 850 nm andvaveplates at
866 nm, and hence do not change the polarization of the ddaser. The polarization of
the switching laser is set " to address the :?ﬂ)g/z, my = -1/2 ¢ 4p2Pl/2, m; = +1/2
transition.

In order to achieve the highest possible interaction stieriigs, in principle, desirable
to tune the frequency of this laser close to the atomic ttimmsfrequency. However, as
this laser is coupled to the cavity, the frequency of therlas® has to be resonant with the
cavity. The length of the cavity is, however, set by the atoresonance condition for the
probe laser at 866 nm. It turned out that for the current gdeigth, the closest TEM
mode for the 850 nm laser is red detuned from atomic resorianfig, = 21 x 4.3 GHz.

The finesse of the cavity at 850 nm was measured tgdag~ 4000 and is slightly
higher than at the wavelength of the probe field. The cavitagigate was measured to
bek = 21 x (1.85+ 0.23 MHz).

Despite the large detuning and thié polarization of the switching beam, occasionally
an off-resonant excitation of single ions to the’-ﬂgz state may occur, from where the
ions can decay to the meta-stabIéBg/z state and are shelved. To make sure that this
state is empty after each sequence, an additional repunfgseg at 854 nm, close to
resonance with the s, «» 4p°P; ; state is applied to the ions.

9.3.2. Experimental results

To demonstrate all-optical switching, we loaded a crystétls a half-length ol = (785+
14) um, a radius oR = (147+ 1) and a density ofig = (5.6+0.1) - 10° cm~3. With these
numbers, the crystal contaifbs= 930+ 30 ions effectively interacting with the cavity
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Figure 9.6.: Cavity reflectivity spectra for various input powers of timracavity opti-
cal switching field at 850 nm. The individual curves corregpto OUW (red squares),
18.5 pW (lilac circles), 385 pW (light blue stars), 7® pW (blue diamonds) and 150V
(turquoise asterisks). The solid lines are fits to the themaemodel of eq. [[8.27) and
using the susceptibility in eq[[{9113). To check for direffeets of the switching laser
on the coherent coupling, we also obtained spectra whentbalgrobe beam is injected
(turquoise crosses) and when probe and switching beamsesent (green pentagrams).
The size and density of the crystal used in these experimesrsL = (7854 14) um,
R=(147+1) um, po = (5.6+0.1) - 108 cm3, corresponding to an effective number of
ions of N = 930+ 30.

mode, and the collective coupling rate is expected t@fpe- 2mx (16.2+0.3) MHz.
The experiment is accomplished, by injecting a controlrdigdd with an input power
of Pc = 1.1 uyW, a weak probe field at the single photon level and a switcfieid with
variable powers into the cavity. The probe reflectivity isnthmeasured by the probe APD
at the end of the interaction period (see ffigl 8.5).

Fig. shows the probe reflection spectrum of the cavitydifferent input pow-
ers of the switching lasers. The input powers argiV0 (red squares), 18 pW (lilac
circles), 385 W (light blue stars), 7® uW (blue diamonds) and 15@W (turquoise
asterisks). The solid lines are fits to the theoretical modékre we reduced the pa-
rameter space by fixing the collective coupling rate to theeeted value and the control
field Rabi frequency to the value found from a fit to the unpdxed spectrurrfzg't> =
21 x (4.2+0.1) MHz. Furthermore, the ground state decoherence rate is, thg iEIT
experiments, set tgc = 21 x 1 kHz. The control field Rabi frequency found from the fit
is in good agreement with the value one expects for the inpwep of Pc = 1.1 uW of

Qghe‘”” = 2mnx (4.4+0.2) MHz. For comparison we also obtained spectra when only
the probe beam is injected (turquoise crosses) and where @mod switching beam are
present (green pentragrams). The two curves overlap vittlein error bars and no direct
effect of the optical switching field is observed on the cem¢coupling.
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Figure 9.7.: Shift of the EIT resonance as a function of the square of tipeeed switch-
ing field Rabi frequency. The shift is deduced from the reiflitgtspectra in fig[9.6. The
solid line is a linear fit and yields a slope &3+ 2) - 10 %/2nvHz. Inset: Switching field
Rabi frequency deduced from the fits as a function of the exyrdue, calculated from
the known input power, the transition strength and the ggarameters. The solid line is
a linear fit and yields a slope af= (0.80+ 0.04).

The nonlinear phase-shift due to the cross-phase moduliativiced by the switching
field modifies the frequency of the two-photon EIT resonakcethermore, the transverse
profile of the switching beam leads to a broadening of the Eifidew as expected from
the corresponding four-level susceptibility in efl. (9.1Fhe probe absorption level on
resonance/ = 0) gradually increases as the EIT resonance is shifted arsifficiently
high input powers reaches the absorption level of the ndndilation, when only the
probe is injected and no control field is present.

In fig. the observed shift of the EIT resonance is depiatea function of the square
of the expected switching field Rabi frequency calculatembeding to

2K2 Pswin
cheory: n 2 _ . 2 916
SW 08501/ |Nsw|® = G850 2o o’ (9.16)

whereggsg is the single ion coupling rate of the switching transitisae eq. [([AB)Nsw

is the intracavity photon numbedgsg is the cavity decay rate at 850 nry, is the cavity
decay rate through the HR afyyin is the input power of this field. In the last step, we
used[[3:IDB) to calculated the intracavity power.

The solid line in fig[9.J7 is a linear fit and yields a scalingiaof (23+ 2) - 10°/2mmHz,
This value can be compared to the linear approximation ofsttading we found from
the theoretically calculated shifts in fi._D.4, were we foB2+ 1) - 10°/2mvHz. To
reproduce this scaling of the shift, the Rabi frequenciesld/tiave to be reduced by a

factor 065+ 0.05.
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Figure 9.8.: Atomic transparency on resonance as deduced from the flig t@flectivity
spectra in fig_ 916 versus the switching power. The solid lioeasponds to the theoret-
ical expectations, calculated for the susceptibility of €.13) in eq. [[3.15). The Rabi
frequencies were adjusted by a factor @®as suggested by the measurements shown in
the inset of fig[9.J7. The transparency drops from a level 84% without the switching
field to below 2% for the highest input powers.
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9. All optical switching

To cross-check this systematic deviation, we can comparswiitching field Rabi fre-
quency independently deduced from the fits to the reflegtspectra in fig[[916 with the
theoretical expectation according to €q. (8.32). The spoading data is depicted in the

inset of fig.[9.%, along with a linear fit yieldin@ (f) = (0.80+0.04)-Q (theor” These
two independent findings strongly indicate that the catibreof the intracawty switching
power and hence of the theoretical switching Rabi frequénoyerestimated.

This deviation may be attributed to a slight detuning of thser from the cavity resonance
which would lead to a lower intracavity field intensity, ordn imperfect modematching,
which is quite likely, as the 866 nm control field and the 850 switching beam are
injected via the same path into the cavity, and the moderragdh optimized for the
866 nm laser.

In fig. is depicted the atomic transparency on resonaiee/{c = 0) as a function
of the fitted switching field Rabi frequency. The transpayesaalculated according to
eq. [9:I5)), based on the parameters found from fits to thectifity spectra in fig["9]6.
The solid line is calculated based on the same model, andliegthe intracavity switch-
ing Rabi frequency by a factor.80, as suggested by the inset of fig-19.7. One observes
a drastic decrease of the atomic transparency as the smgtpbiver is increased, and the
transparency drops from 84% for zero switching field to below 2% for an input switch-
ing power of 15QuW. From the plot, we estimate gé&decrease of the transparency for

a Rabi frequency of the switching field ﬁfgv/@ ~ 211x 30 MHz, corresponding to an
2
intracavity photon number ofsy, = (—) ~3-10%

9850
This rather large number of photons could be drasticallyiced by a reduction of

the detuning of the switching laser, which is imposed by #mgth of the cavity length.
However, this is a technical limitation in this particulagperiment and modifying the
cavity length so as to be resonant for both the probe laseB&né and the switching
field at 850 nm would reduce the required number of photonsdoraplish the switching.

A simple estimate based on the scaling of the light shift ediog toA = ng = 985(’”5“”
illustrates that reducing the detuning of the switchingdfigbm Agy, = 211X 4.3 GHz to
some tens of MHz would reduce the number of photons requiradtieve the same light
shift by a factor of~ 1000 and one would expect to be able to control the switchirigeo
cavity transmission of a single probe photon with only fewaoavity switching photons.

9.3.3. Free-space optical switching

In a subsequent experiment, we also implemented the optidéthing scheme, of fig.
b., where a free propagating switching field at 866 nm éxlusVe will in this part
describe the experimental setup and the results of thisrienget.

Experimental setup

The optical setup at the cavity is depicted in flg. 19.5, whéee free-space switching
laser is denoted by "switching b.”. #polarized laser beam at 866 nm with a frequency
close to the 3%133/2 > 4p2P1/2 transition is applied to the ion Coulomb crystals along the
transverse-direction. The light for this beam is provided by the sansetaas is used for
the repumping and optical pumping (see $ec. #.3.2.). Aitmacif the light of this laser
is split on a PBC on the laser table and sent through a siregge-AOM which is used to
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9.3. Experimental realization

switch the beam on and off and, at the same time, to deturanit ftomic resonance. The
beam is then coupled to a fiber and guided to the trap tableenbe use a telescope and
a cylindrical lens to shape the beam in order to optimize trexlap with the elongated
form of the crystal while having a sufficiently homogeneausisity distribution. At the
center of the trap the beam waist~Ns2300um along the trap axis angd 300 pum along
the transversg-direction. Depending on whether thelst or —1st diffraction order on
the switching AOM is coupled to the fiber, the frequency wél detuned to the red or to
the blue of the atomic resonance. The frequency of the AOMnalle by+50 MHz,
with a central frequency o£270 MHz. Both the repumping and optical pumping light
has to be resonant with the atomic transition, and as the A@¥d to switch these lasers
induce a blue-shift of 110 MHz (see sdc._413.2) the bare &reqy of the laser is red
detuned from the transition frequency by this amount. Théyirange of the AOM will
hence correspond to red detunings\af, = 21t x (3804 50) MHz and blue detuning of
Agw = —211x (160=+ 50) MHz for the switching field.

Experimental results

For these experiments, we used a crystal with a half-lenfgth-0 (613+ 1) um, a radius
of R= (139+ 1) um and a density opg = (5.6+0.1) - 10° cm1, corresponding to an
effective number of ions dil = 710+ 20 and an collective coupling rate gf; = 21t x
(14.1+0.2) Mhz. The optical switching experiment was accomplishedviardetunings
of the switching field.

In fig. a. reflectivity spectra are shown for a switchingeladetuned byAsy =
211x 380 MHz to the red of the atomic transition. The powers of thiégching laser were
0 pW (red squares), 2QW (lilac circles), 100uW (pink triangles), 56QuW (light blue
stars) and 1120QW (blue diamonds). From a fit to the reflectivity spectra withswitch-
ing field present, we deduce a control field Rabi frequenc@ef= (2.6 +0.1) MHz,
where the collective coherent coupling rate was fixed to theeeted value ofjy =
21x (14.14+0.2) Mhz. One observes a shift of the EIT window with increasingaiwng
power and, especially for large powers, a slight broadenfrtge transparency dip. In-
duced by this shift, the atomic absorption level on resoagfie= 0) gradually increases
and almost reaches the absorption level of the non-EIT caraign, with no control field
present. For comparison we also recorded spectra withotitai@nd switching field and
only the probe laser present (turquoise asterisks), andeiokcfor possible effects of the
switching laser on the coherent coupling with the probe &edstvitching laser present
(green crosses). The two curves overlap within their eraos nd no significant effect of
the switching laser on the coherent coupling is observed.

In fig b. similar spectra are shown for a switching fielduded byAsy = —21T %
160 MHz to the blue side of the atomic transition. The indidtcurves correspond to
switching powers of W (red squares), 5AW (lilac circles), 150uW (pink triangles),
300 pW (light blue stars), 56QuW (blue diamonds), 125QW (blue pentagrams). A
fit to the unshifted reflectivity spectrum yields a controldi®abi frequency ofdc =
(2.940.1) MHz, where the collective coupling rate was fixed to the prasivalue. To
check for direct effects of the switching laser on the coheceupling we also obtained
spectra with only the probe laser being injected (turquasterisks) and when the probe
and the switching lasers are present (green crosses) amadhspectra overlap within
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9. All optical switching
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Figure 9.9.: Cavity reflectivity spectra for various input powers of thed-space optical
pumping field fora. a switching laser detuned his, = 211 x 380 MHz to the red of
the atomic transition (The input powers arq\/ (red squares), 2QW (lilac circles),
100puW (pink triangles), 56QuW (light blue stars) and 1120W (blue diamonds)) and for
b. a blue-detuning of\syy = —211x 160 MHz (The input powers are|@V (red squares),
50 uW (lilac circles), 150uW (pink triangles), 30QuW (light blue stars), 56Q@W (blue
diamonds), 125QW (blue pentagrams)). In both cases we observe a incredsift@®s
the EIT resonance with higher powers of the switching fielthe Trystal used in these
experiments has a half-length bf= (6134 1) um, a radius oR = (139+ 1) um and a
density ofpp = (5.6+0.1) - 10% cm™1, corresponding to an effective number of ions of
N = 7104 20. Fixing the collective coherent coupling rate to the etpe value for this
number of iongn = 21 x (14.1+0.2) Mhz, we deduce from a fit to the unperturbed EIT
spectra of)¢c = 21x (2.6 £0.1) MHz for the red detuned arfd¢c = 2mx (2.94+0.1) MHz

for the blue detuned case.
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2501

2001

1501

100

Shift of EIT dip [2mkHz]

a1
o

0 100 200 300 400 500 600
Light Shift [2rt kHz]

Figure 9.10.: Measured shifts of the EIT resonance versus the calculégéd $hift

(20 s = 2‘25\‘,’:‘ ) for the individual input powers for a red-detuning/f, = 21 x 380 MHz
(red squares) and a blue-detuningfafy, = —2mx 160 MHz (blue circles). The solid
lines are linear fits and yield slopesigfq= (0.51+ 0.04) andbpye = (0.38+0.02) re-

spectively. The different scalings are attributed to Dephifts induced by the radial

micromotion.

their error bars, and no significant effect is observed. Ahéred detuned situation, the
EIT window is shifted with increasing power of the switchilager, however, to opposite
detunings. The shift of the EIT resonance leads to an intrgasbsorption level on
resonance/ = 0) which, for high powers of the switching laser, almost tescthe non-
EIT level.

According to the susceptibility calculated in ed._{9.9) ahd simulated spectra in
fig. a., the free space optical switching beam shouldysgige rise to a shift of
the EIT resonance, which can be understood in terms of thepdependent light shift
of the addressed level and hence as a shift of the two-phesomance condition, and
our observation reflect this shift. However, in the measgettra, one also observe a
broadening of the EIT resonance for larger switching poweeosh for the red and the
blue detuned case. This effect can be attributed to powederting of the excited state
by the switching laser which also addresses th®3gh, my = +1/2 <+ 4p?Py o, My = +1/2
transition and hence will lead to a shift of the EIT le{@l and a power related broadening
of this state. This broadening is, however, not includechim model of eq. [(3]9), and
fitting the data with the simple model would give inadequatuits, especially for high
switching power. We therefore did not try to compare theselte and we will limit our
analysis on the investigation of the shift of the EIT winddw

The different detunings used for the acquisition of the tets ©f data circumvent a
direct comparison as a function of shifting power. Howetlee, measured shifts of the

1A determination of the atomic transparency (see €q._|9.ft6)) reflectivity spectra relies on the precise
knowledge of the various parameters in the system, whick twbe determined from the model.
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9. All optical switching

EIT window can be related to the bare light shift one wouldestdor the individual
switching powers and detunings. From the input powers, ba#nown beam waists (see
sec.[9.38), we can calculate the intensity of the elliptiarn at the position of the ions

| = rfNP—ZS\XV,y, and the Rabi frequency of the transitiOy (see appendixAl4) The expected

light shift of the individual levels is then simply given iy s = ‘An—jv‘. The frequency
shift of the two-photon resonance, which we observe, wilkegpond to 2 s, as both the
lower 3(FD3/2,mJ = —1/2 and the upper Al?pPl/z,mJ = +1/2 level are shifted in opposite
direction.

In fig. are depicted the measured shifts of the EIT rasoma&ersus the calcu-
lated light shift (2\.s) for the individual input powers and detunings. For botts s#t
data, we find a linear scaling of the observed shift of the Ei§onance, however, with
substantially different scalings. From the fits we find slpéb;eq = (0.514 0.04)and
bpiue = (0.384+0.02). As the switching light is applied to the ions along the traarse
x-direction, radial motion will influence the resonance dtind and the different scaling
behavior is most likely a signature of the Doppler shiftsuioeld by the radial micromo-
tion (see sec[_2/1). To estimate the order of magnitude sfefféct, one can calculate
the maximum Doppler shift for an ion located at a distanceesponding to the waist of
the cavitywy = 37 um above or below the field free trap axis. According to dg.))(4.1
the maximum velocity By = 2—\10qvonRF, whereq = 0.4 is the trap parameter defined
in eq. [2.5) at the used RF voltage of 300 V, d&g- = 21 x 4.0 MHz is the frequency
of the RF field. With these numbers, the velocity amplitudeéhef radial micromotion
is V.~ 130M/s, which yields a Doppler shift okV ~ 2rtx 150 MHz. Though this is an
estimate for the maximum shift it becomes obvious that tadiaromotion will play an
important role at the chosen detunings of the switchingr]agkich makes this scheme
less suited for large ion Coulomb crystals.

Furthermore, to achieve a homogeneous Rabi frequency sfthehing field through-
out the ensemble, this beam has to be relatively big whicldithis method to relatively
high switching powers, as compared to the intracavity apsevitching scheme with a
doubly resonant cavity.

9.4. Conclusion

In this chapter we presented a first application of the imtvag EIT system for the re-
alization of all-optical switching schemes. We investaghtheoretically two possible
configurations for optical switching, where we either assdrthe switching field to be
uniform throughout the ensemble or to be coupled to the fomedteial TEMyo mode of the
cavity. For both scenarios we derived analytical expressfor the atomic susceptibility
and could simulate the expected cavity reflectivity spectra

We demonstrate how these scenarios can be realized in densyBor the realization
of the intracavity switching scheme, we used a polarized laser, which couples the
3d2D3/2, my = —1/2 and 4[3P3/2, m; = +1/2 states. We observed the predicted frequency
shift and broadening of the EIT window and find a frequencit gf&r intracavity photon
of (0.9+0.2) Hz/photon The switching of the cavity transmission can accordingly b
accomplished by 3000 photons. However, the scheme is currently limited byldhge

2The factorl/vz accounts for the tilt of the coordinate system in €q.](4.1)
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9.4. Conclusion

detuning of the switching laser df,, = 21 x 4.3 GHz which is imposed by the length
of the cavity. Modifying the cavity to be doubly resonant fmsth the probe and the
optical switching laser should allow to reduce the requirachber of photons to the few
photon level and would offer promising applications for lio@ar optics at the few photon
level. ElT-based four-level schemes were, e.g. considienethe realization of Giant-

Kerr nonlinearities and cross-phase modulation schen@}s\§th possible applications
for quantum non-demolition measuremehts [214] and quaidgio operationg[215].

To illustrate the possibility of free-space optical swithwith a uniform switching
field, we also used &-polarized beam resonant with thezm/z > 4p2Pl/2 which is
shone onto the ions along the transveesbrection. The experiment was conducted both
for a red and a blue detuned switching field. In both cases werob a shift of the EIT
resonance for increasing powers of the switching field, vewevith different scalings.
This is attributed to the transverse micromotion of the imkiced by the RF-trapping
potential.

Ultimately, one would like to be in a regime where a single tohoon the switching
transition can block the transmission of a single probe @moBuch a photon-blockade
scheme was proposed by Imamoglual. [99]. The suggested scheme uses intracavity
EIT, where the probe and the switching fields are identicad] predicts a strong anti-
bunching effect of the transmitted photons by the blockafd#he cavity transmission
induced by a single photon. Though Grangitral. pointed out[[100, 199] that this
scheme puts stringent limits on the required parameterBefitomic system and the
cavity, one could consider an adaption of the scheme to tivelével scheme with distinct
frequencies of the probe and the switching photons.

In fact, one major limitation of the proposed scheme is thelifraation of the typical
build up time of the probe field through the coherent inteaacbf control and probe
field, as experimentally confirmed in sec._8l4.2. In the festpy domain, this can be
understood by a broadening of the frequency spectrum of beppboton through the
nonlinear dispersion induced by the EIT medium.

This limitation is, however, based on the assumption of idah(same wavelength)
probe and switching photons, which can be overcome by ceriegla scheme where
probe and switching photons have different wavelengths.bamdwidth of the switching
photon has to be sufficiently narrow, or, equivalently tfe-time in the cavity sufficiently
long, so as to match the time scale of the dynamics of the ppbbeon. This could be
accomplished by asymmetric parameters of the cavity atvwioewavelengths of probe
and switching field e.g. by a cavity with a much larger finedsthe@ wavelength of the
switching laser. The realization of such a scheme woulderibeless, require a detailed
theoretical analysis, which is beyond the scope of thisishes

157






10. Summary and Outlook

This thesis covers several aspects of the experimentaag&ah of a light-matter interface
based on ion Coulomb crystals in an optical cavity. The expamtal studies comprise
three core areas: The realization of the collective strangpling regime of CQED with
ion Coulomb crystals, the development of a novel nonineaspectroscopy technique
for studying normal mode dynamics and the observation oftycalectromagnetically
induced transparency.

The work on an ion based light matter interface was startied fur this thesis and es-
pecially the construction and deployment of the cavity tsapup, the loading, the state
preparation and the first observation of collective stroagpting were covered in the
thesis of my predecessor Peter Herskind [80]. To charaetehie collective coherent
coupling between ion Coulomb crystals and specific cavitig firodes, we performed
a thorough investigation of this interaction. We showed tha collective strong cou-
pling regime can be reached with ion Coulomb crystals, witbperativities as high as
C ~ 8, and found excellent agreement between the theoretipab¢ations and the exper-
imental findings([79, 148]. Moreover, by measuring the terapstability of collective
coherences between Zeeman substates we could demonetraterce times in the mil-
lisecond range. To illustrate the possibility of perforgirepeated experiments with a
well-controlled number of particles, we demonstrated tregtterm stability by measur-
ing the cooperativity of a specific crystal over more than hears.

In a subsequent study, we investigated the coupling of iomdob crystals with dif-
ferent sizes to various cavity modes and could show thagcidle strong coupling can be
also reached with large ion Coulomb crystals and higherrardeity modes with equal
coupling strengthg [81]. In addition, the excellent agreetrbetween theory and exper-
iment we found in these studies importantly indicates thatihherent radial micromo-
tion does not influence the coherent coupling of the ion Qol@rystals and the cavity
modes.

We continued the exploration of the coherent interactidwben ion Coulomb crystals
and the cavity field by an investigation of the normal modeatyits of the crystals [152].
We implemented a novel noninvasive spectroscopy techn@peobe the collective mo-
tion of the ions by their interaction with a cavity field at thiegle photon level. Using
this technique, we could measure the frequency of variousalimodes for crystals with
different aspect ratios, as well as the kinetic energy ofiifieen motion.

On the way towards the realization of an ion Coulomb basedtyuamemory an im-
portant next step was the experimental observation ofycaléctromagnetically induced
transparency [148]. In a novel scheme using the magnetimZeesubstates PCa’" we
could demonstrate excellent control over the atomic traresycy for a probe field at the
single photon level, when the frequencies of the strongrobfield and the probe field
at the single photon level are close to two-photon resonaRoe observed transparency
windows can be almost two orders of magnitude narrower thgrevious experiments
with neutral atoms in cavities [92=95]. We performed systBostudies on the influence
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10. Summary and Outlook

of various interaction parameters and find very good agreeimtween the results and
theoretical predictions developed specifically for outeys

Finally, we could also demonstrate how the observed naridwihdows can be used
for the implementation of a novel all-optical switching safte. In these experiments we
showed how the transmission of a probe field at the singlegphlet/el can be controlled
by an additional switching laser injected into the cavithieTesults could be compared to
a theoretical model which we established for our system.

In summary, the studies of the coherent light-matter irttgwa between ion Coulomb
crystals and a cavity field at the single photon level we preskin this thesis illustrate
that our system can meet three important criteria for thézegegon of a quantum mem-

ory [39]:

e The optimal fidelity of light storage and retrieval experimteeis expected to scale
as 2c2—$1 as shown in refs[[56.57]. With a measured cooperativit€ of 8 the
potential storage and retrieval fidelity of our system atghesent state is 94 %,
and should allow for the efficient transfer of the quantuntestd single photons
onto a collective excitation of the ensemble and vice vekéareover, it might be
possible to confine even more ions in the cavity mode volung, ley the use of
bi-component crystals consisting of two stable calciuntoipes [141].

e The second important criteria is the achievable storage.tiitwe addressed this
issue by measuring the decay of collective coherences bat@eeman substates
and found coherence times in the millisecond range, whigm&uraging for the
realization of a long-lived quantum memory. Future studmsd identify possible
limitations, e.g. by further investigations of heating atemping effects in the
system. At the present state of the experiment establighiig@and measuring the
collective coupling requires the cooling lasers to be dwéttoff and the ions will
heat up during these periods, which eventually might litné &chievable storage
time. This limitation could, as envisioned in ref. [137], beercome by the use
of bi-component crystals. In this scheme, an inner compoof?Ca" interacts
with the cavity field and is used to store the probe field whikeduter component,
consisting of a heavier calcium isotope, is permanentlgriasoled. In this way,
the inner component can be sympathetically cooled withweitieed of incoherent
scattering of photons by tH€Ca' ions.

e By demonstrating that collective strong coupling is possiietween ion Coulomb
crystals and various cavity field modes we could also addfessnultimode ca-
pability of the system. Making use of the solid-state préipsrof ion Coulomb
crystals this spatial degree of freedom of the light fieldldallow for the mul-
timode storage and retrieval of single photons and alsai@realization of other
multimode quantum information devices. Further invesidge could comprise the
observation of EIT with higher order cavity modes to e.gestigate if EIT can be
established by the control field coupled to a particular mwitleout influencing a
probe field in a different mode.

In connection with the successful demonstration of cavlily these results mark an im-
portant cornerstone for the realization of a quantum merhasgd on ion Coulomb crys-
tal in an optical cavity[I[55]. Next steps towards this goalldocomprise the storage of a
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classical light field using the STIRAP scheme of ref.| [55] evhivill require the imple-
mentation of a dynamical control of the probe control fieldReequency. Moreover, to
tailor optimized control parameters for the storage andenet! of a light pulse, theoret-
ical studies are currently in progress to include the efféthe transverse profile of the
control field in the optimization process.

Beside their importance for the implementation of a quantaemory, our studies of
a light-matter interface based on ion Coulomb crystals irjtical cavity may have a
number of attractive applications in different contextd are will at the end of this thesis
sketch two possible extensions of the studies presented her

A first promising research direction could be the furtheestigation of the thermody-
namical properties of cold nonneutral plasmas using thénmasive spectroscopy tech-
nigue introduced in cli] 7, e.g. by a more thorough study oiftfh@ence of various crystal
parameters on the intrinsic damping within the ion Coulomystal by the off-resonant
coupling to other vibrational modes. Eventually this magoagnable for a more direct
measurement of the temperature of ion Coulomb crystalsgiwisi otherwise difficult.
A better understanding of the thermodynamical propertiesthe damping mechanisms
would furthermore also have importantimplications fortéalization of a quantum mem-
ory, e.g. to identify possible limitations for the achieleboherence times or for the stor-
age of multiple photons by a coherent excitation of collectiibrational modes. More-
over, the combination of free particle properties like etspddress atomic transitions
and solid state properties makes ion Coulomb crystals tanaingeresting platform to
investigate the coherent backaction of the cavity field @cthllective motion of the ions,
e.g. to investigate cavity optomechanical effects withdgablid-like objects[[180, 181]
or classical and quantum phase transitions|[L86~190].

A second attractive direction arises from the narrownegisebbserved EIT windows.
The fast switching of the atomic transparency over few tdrddz implies strong non-
linearities around two-photon resonance [84], which cduldised for the exploration of
nonlinear effects at low light-level5 [98]. These strongiearities could be exploited
for e.g. implementing single-photon transistaors [202]26B8for the generation of highly
nonclassical states [205]. The use of ion Coulomb crysted€hieve controlled coherent
photon-photon interactions could then have applicatiogsfer the realization of quan-
tum gates at the single photon leviel [204] or for the obsé@matf novel quantum phase
transitions for light[[206, 207].
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A. The 0Ca’

ion

A.1l. Transition wavelengths and decay rates

Transition Type Wavelength  transition ratd” = 2y
4SS, ) > 4Py dipole 396847 nm 2tx 20.7 MHz
4SS ) < 4pPPy); dipole 393366 nm 2tx 21.5 MHz
3cPDg); <+ 4p°Py )2 dipole 866214 nm A1x 1.69 MHz
3cPD3); > 4p°Py 2 dipole 849802 nm 2tx 0.177 MHz
3cPDs; <+ 4p°Py 2 dipole 854209 nm 2tx 1.58 MHz
48°S, ), +» 3PD3;,  quadrupole 73389 nm atx 0.14 Hz
4SS, ), > 3PDs/,  quadrupole 72947 nm 2tx 0.14 Hz

Table A.1.: Relevant electric transitions fCa" (see also fig2]2). The wavelengths of
the transitions and the transition rates are taken from, 0.

A.2. Clebsch-Gordan coefficients

4p°Py 5
my = —1/2 m; = +l/2
e M= /A5 [ 2P
p S1/2 my = +1/2 \/m \/m
=] iB |-
0., M=V | i3 | Vi
P m=12 | V16 | —/13
my = +3/2 - V1/2
4p°Py ),
mp=-32 | m=-12 | m=+L2 | my=+3/2
eI V. R
o, (M= V25 | VS| eS|
32 My = 1172 - V8/15 | J1/15 | —\/2/5
my = +3/2 - - V2/5 V3/5

Table A.2.: Clebsch-Gordan coefficients for the relevant transitiorfSCa’ [216].
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A. The #9Ca’ ion

A.3. Zeeman-splitting

The energy shiftAEg of an arbitrary Zeeman-substates in a magnetic fizican be
calculated according to

AEg =my g; s B, (A1)

wherem; is the magnetic quantum number of the stateis the Bohr magneton argy

is the Landé factor

JI+1)+S(S+1)—-L(L+1)
2J(J+1) ’

whereL, SandJ are the quathum numbers corresponding to the angular momettie
electric spin and the total angular momentum, respectiviedg values fog; for the rel-
evant states ii°Ca’ are listed below.

State L S J g
4S,,, 0 ¥ ¥ 2
4P, 1 2 2 23
4p2P3 2 1 Y% 32 43
3d2D3 2 2 2 3 45

A.4. Rabi frequency

The coupling strength of a particular (dipole allowed) siéion for a certain intensity of
the coupling field is characterized by the Rabi-Frequersy,esg.[[L]. For the transition
between two particular Zeeman-substgdtgsand |e) it is, using the conventions chosen
in this thesis, given by

r /1 3ne?l
Qge:agez ﬂtzage W\/L (A.3)

wherelgg = ’;%’Z is the saturation intensity of the transitidhandw are the transition

rate and resonance frequency of the electronic transigea {ab.[All), andge is the
Clebsch-Gordan coefficient for the considered Zeemantatgss

A.5. Single ion coupling strength

The coupling strength of a single photon cavity field and glsiatom located at an anti-
node of the cavity standing wave is characterized by thelowyipateg, and corresponds
to the Rabi frequency for a single photon. The intensityegponding to a single photon
field in the cavity can be calculated using the normalizat@mditionlyaV = Aitac, where

ux is the resonance frequency of the cavity= [ |W(r)|dr = %d is the mode volume
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A.5. Single ion coupling strength

of the cavity,wp ist the waist of the fundamental mode ahik the length of the cavity.
Substituting into eq[[(A]3) yields

| 6c3r

In our expermient, we use tH®3/,,my = +3/2) ++ |Py /5, my = +1/2) as the probe tran-
sition. With the partial dipole decay rate given in tab._]Athie Clebsch-Gordan co-
efficient in tab. (A2 and using the length and waist of the tyairi our experiment,

d = (11.8+0.3) mm andwp = 37 um [80], we can calculate the expected single ion
coupling rate of the probe transition for an ion located &t @inti-node of the standing
wave cavity field and find

Otheory = 2T (0.5324-0.007) MHz. (A.5)

In the same way, we can also find the single ion coupling rateedD3,, my = +3/2) <>
|P3/2,m] = +l/2> transition which is used for the optical switching expenirisein sec.
[9.32. Using the partial dipole decay rate of {ab.]A.1 anchiharopriate Clebsch-Gordan
coefficient in tab[’AP the same calculation yields

Ossosw = 21t x (0.1754 0.004) MHz. (A.6)

165






B. Legendre functions

The Legendre differential equation is defined as (seeleld]]2
_4d
dx

The first and second order Legendre functions are solutmmisis equation and are in
general form given by

((1—x2)dgg(x))+lri]zxzf(x):l(l+1)f(x). (B.1)

Ph = S aome 28 o2y, (B.22)

O = (U2-1E T (8.2b)
where

1 d" z+1 z+1 (B3)

Q= i d—z((zz— 1)'“(2 1)) - Pgln(ﬂ)-

The lowest order functions with m=0 are given in the follog/kable

I,m Pl (X) h(X

1,0 X IxIn(X) ]

2,0 1%(3x2—1) ) %1(3x2—1)lr2(§%11)—57x

3,0 | 3(5x°—3x) | (5 —3x)In(%) — 2 —2(3x" 1)
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C. EIT: Adiabatic elimination for an
intracavity control field

In we found a set of dynamical equations for the meanegabf the system ob-
servables for the case, when the EIT medium interacts wittraband probe fields that
both are coupled to a common cavity mode, see €gs.](8.22n theicase of a uniform
control field (see eq[(8.9)) one can perform an adiabatigietition with respect to the
slow time evolution ofr12 and finds the following set of equations for the mean values of
the nonzero system observables:

Neot
0 = —(K+iAC)a+igZmoo(rj)0317j+\/2K1a;n. (C.1)
=1
. . Qc
0 = —(y+|A)013,j+|gaL|J00(rj)+|7L|Joo(rj)012,j (C.2)
Glz,j = —(V12+i5)0'12,j+i§2c0'13’j, (C.3)

where we sebsy | = %(013,,4 +013j-) and restrict ourselves to the fundamental TigM
mode, henceoo(rj) = exp(—2%/wo) The Laplace transformation of an arbitrary funciton
f(t) is defined as (see e.0.1217])

L(f@®) = flp| = /0 exp(—pt)f(t)dt, peC. (C.4)
of these equations yields
Niot
0 = —(k+ilAg)a+ig z exp(—2F/wo)831j + v/ 2K18in[p).- (C.5a)
=1
0 = —(y+ iA)f)'lg’j —iga exp(—2rj2/wo) — iQCCN)'lzﬁj (C.5b)
PG12j[p] = —(Y12+1i0)012j— iQCexp(—erz/wo)élgjj. (C.5¢)

Substituting eqs[{C.hb) and (Cl5c¢) info (G.5a) one find4 #y@ace tranformation of the
intracavity field which was already given in e (8.26)

-1

~ - . exp(—22 /w2
a[p] = v/2k18in[p] |k +ilc+G7 Y p(Qz e;éfz)rz o
y+ |A+ C . 1770
Yi2—10+p

Applying the continuous media approximation and using ffexéve number of ions (see
eq. [3:4B)) this reduces to

< V/2k18in[p]
[p| = m (C.6)
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C. EIT: Adiabatic elimination for an intracavity control field

where
~ig®N In(1+5(p))
and
sp) - % c8)

(Y12 —i0+ p)(y+id)

On resonance eqs[ (C€.8) alnd {IC.7) are purely real and the datrity field equation
becomes

alp) = 20 L9 , ©9)
p 92N| 1 Q2
K+ gz N+ Gray) a2+ P)

where we assumed the probe input field to be a step functiomé given by

0 for t<O
an(t)—{ an for t>0 (C.10)

and with the Laplace transformation

l';1in(p) = a_;

Eq.[CY is the analytic expression for the intracavity fieid ane can be used to calculate
the cavity transmission or reflection, according to €gs03.2

To obtain the corresponding dynamical evolution of thedresit) intracavity field in
time, one has to calculate the inverse Laplace transfoomafieg. [C.D)

(C.11)

a(t) =L "(ap)), (C.12)

which has no simple analytical form. However, the solutian still be found numerically.
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D. Cavity EIT with well localized atoms

In sec[8.2.8 we derivation the linear susceptibiltiy fa three-level EIT situation for an
intracavity control field. There, we assumed that the tirakesof the (thermal) motion of
the atoms along the standing wave cavity field standing wafast as compared to the dy-
namical time of the cavity fields and that we can average ddecommon standing wave
geometry of the control and the probe field. In this "warmuation, the susceptibilty
was found to be (seE(8125))

ig®N In(1+59)
XA = - ;
y+IA S

where the effective saturation paramgef the two-photon transition was defined in eq.
@1D).

Here, we will treat the "cold” situation, where the motiontb& ions is slow as com-
pared to the dynamical build up of the EIT and where the iormsnduthe EIT inter-
action time are well localized within the standing wave oblpge and control field. In
contrast to the "warm” situation, one has to keep the higpatial frequency components
in exp(2ikz), when solving eqs[(8.21) [182,218,219]. In steady stageguations can
still be solved and one finds for the intracavity field the fidamiexpression

V/2K18in

a=———=""__
K +iAc —ix5eM

where we assumed assume the probe and the control field tapkeddo the fundamental
TEMgpo mode and where the three-level susceptibility is now giwen b

e 21/ (1 + cog2kz )

i 2
X = g z . (D.1a)
2 . 02/2 222
T YA+ LRe 2T/ (14 cog2kz))
i —2r%/wg (1 2k
_ Iégzp/ orrdrdz eQZ/ZO( JZFVC:S( 2) (D.1b)
Y+ib+ Sme 21+ cog 2k2)
N In (%4— %ﬁr%’)
= , (D.1c)

y+iA 5

where the effective saturation parameter of the two-photansitions, defined in eq.
(8:11), was used. The result is similar to the "warm” sitoatiwhere we averaged over
the longitudinal effects, with a similar scaling behaviand lineshape of the EIT window.
However, as compared to ed._(8.25) the effective saturatimamters is lowered by a
factor 2, resulting in an lower effective Rabi frequency.

In fig. [0.] the resulting cavity reflection spectra around phmton resonance are de-
picted, caclulated for the three-level susceptibilitiesthe standard EIT situation with a
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D. Cavity EIT with well localized atoms

refelctivity R

O 1 1 1 1 1
-0.4 -0.2 0 0.2 0.4

A [21kHz]

Figure D.1.: Simulated cavity reflection signal around two-photon resme (sed (8.27)),
cacluated for the three-level susceptibility correspongdo the "normal” EIT sitution,
with a uniform control field Rabi frequency, see e, (8.1@&sfued-dotted line), for the
"warm” situation with an intracavity control field, but aaing over longitudinal effects,
see eq. [(8.25) (solid line) and for the "cold” situation with intracavity control field
and well-localized ions, see ef|_(ID.1)(dashed line). Thamters used for the simulation
were:K1 = 211x 1.53MHz,Ko = 21tx 7.85 kHz,K 4 = 21tx 0.63 MHz,y= 211x 11.2 kHz,
vi2 =1 kHz,Qc = 2ntx 3 MHz, gy = 21x 12 MHz.
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Q" (2t MHZ]

i i

2 4 6 8 10 12 14
Q) 211 MHz]

Figure D.2.: Rabi frequecies deduced from fits to the EIT spectra in SeE2 §see fig.
[8.9) for various input powers of the control field and for astay withN = 980+ 20 ions
effectively interacting with the cavity field. The Rabi fregncy are shown as a function
of the expected Rabi frequency for the corresponding inputeps (see eq[{8.82)), and
are obtained for three different models, namely the stahB#&F model with a uniform
control field Rabi frequency (red squares, see €q. [8.16)),vdth intracavity control
fields in the "warm” situation, where longitdudinal effeetgerage out (blue circles, see
eq. [8.25)) and in the "cold” situation, where the atoms agdl lwcalized in the standing
wave (green diamonds, see dq. (D.1)).
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D. Cavity EIT with well localized atoms

uniform control field Raby frequency, see dq. (3.16) (dastodted line), for the "warm”
situation with an intracavity control field, where longitndl effects average out, see eq.
(8.28) (solid line) and for the "cold” case with ions that avell-localized within the
standing wave field of probe and control, see €q.1(D.1) (dhhe). The half width of
the three curves are obtained for 1,a~ 2.51 anda ~ 1.83 respectively.

To check the validity of the "warm” model that was used thriooigt ch.[8 and ch]9
we carefully analysed the data presented in[sec.]18.4.2 tisirthree different models and
comparing the Rabi frequencies deduced from the fits, tdaretically expected values.
The results are shown in fig. .2, and we find excellent agreemih the experimental
data for the "warm” model, whereas the Rabi frequenciesddonthe two other models
are systematically too low.
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