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1. Introduction

Since the early days of quantum mechanics, the coherent interaction between light and
matter has been one of the major subjects of quantum physics [1]. While the coherent
manipulation of the quantum properties of both light and matter merely was of theoretical
interest for many decades, the advent of coherent light sources triggered a rapid develop-
ment of technologies that today are used in quantum optics laboratories around the world
to trap and coherently manipulate atoms and photons, even down to the single particle
level.

The field of quantum information processing (QI) [2] emergedfrom this rapid develop-
ment with the ultimate goal of exploiting the properties of quantum mechanics for com-
munication and computation purposes and to tackle problemsthat are difficult, if not
impossible, to solve classically. In quantum communication, the use of quantum key dis-
tribution allows to establish secure communication channels between two distant sites
which, because of the no-cloning theorem [3, 4], are inherently protected against eaves-
dropping [5]. Quantum computing uses fundamental quantum mechanical effects like
superposition and entanglement to reduce the complexity ofcertain classes of computa-
tional problems that are practically not solvable on a classical computer [6–8]. In both
fields the quantum information itself is represented by so-called qubits, where each qubit
consists of a quantum mechanical two-level system, and processing of quantum informa-
tion is established by unitary quantum gates.

For the purpose of quantum communication, photons are ideally suited as qubits, where
the two states of the qubit can be encoded e.g. into left- and right-handed circular polariza-
tion states of the photon [9, 10]. Photons can be quickly transmitted over large distances
through free-space or optical fibers, while preserving their internal state, due to the weak
interaction with the environment.

Numerous systems are studied as possible qubits for the processing and storage of
quantum information, e.g. nuclear spins [11], superconducting Josephson junctions [12],
quantum dots [13], neutral atoms [14], photons [15] and ions[16, 17]. In particular,
trapped ions are promising candidates for the implementation of quantum information
devices due to their coherence properties and the excellentcontrol of both their position
and internal degree of freedom [18, 19]. Due to their charge,ions can be easily trapped
in Paul traps, where the ions are confined by a combination of radio frequency and static
electric fields, or in Penning traps, where confinement is achieved by a combination of
static electric and magnetic fields. Sophisticated techniques of laser cooling can be used
to cool strings of few ions to their motional ground state [18, 20]. Depending on the in-
ternal structure of the ion, single qubit operations can be accomplished by transitions in
the optical or microwave domain, while phonons can be used tomediate two-qubit gate
operations [16, 17]. Many breakthroughs in QI have been achieved with ions, e.g. high
fidelity quantum gates [21–24], highly entangled many particle states [25,26], implemen-
tations of simple quantum algorithms [27,28] and teleportation of quantum states [29,30].
Furthermore, ions have also proven to be well suited for applications in metrology, preci-
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1. Introduction

sion spectroscopy and frequency standards [31–34] and for quantum simulations [35,36].
While many of the basic requirements for a quantum computer were demonstrated in
proof-of-principle experiments, scaling these systems tosizes where a quantum computer
could practically surpass classical computers, remains a big challenge. For ion traps,
many research groups are designing and testing miniaturized traps, to make ion-based
quantum computer technology scalable to few tens or hundreds of qubits [37].

In a more general approach one can envision to attain scalability by interfacing sta-
tionary qubits, which act as a quantum processor, with photons to distribute the quantum
information between distant nodes. In such quantum networks [10,38] the efficient trans-
fer of quantum information between the quantum nodes and flying qubits is crucial and
makes efficient light-matter interfaces an important building block for these quantum in-
formation networks.

If the storage and retrieval of the quantum state of a light field can be actively controlled
in a light-matter interface, such devices may, furthermore, serve as a quantum memory to
temporarily store the information carried by the light. Such devices can, e.g., be used to
synchronize simultaneously performed gate operations on various quantum nodes, or to
produce on-demand photons from heralded single or entangled photon sources. Moreover,
in the field of quantum communication, when envisioning the realization of large-scale
networks, chains of light-matter interfaces acting as quantum repeaters [10] are required
for the reliable transfer of qubits over long distances.

For a quantum memory used in quantum information science, one can identify three
important requirements and criteria, which will determinethe quality of such a light-
matter interface [39]:

• The efficient storage and retrieval of the quantum state.

• Sufficiently long storage times.

• The multimode capacity, i.e. the capability of simultaneously storing multiple quan-
tum states.

Quantum memories were successfully demonstrated in hot andcold atomic vapors via
the storage and retrieval of single photons [40–44], of squeezed vacuum states [45, 46]
and entangled states [47] using free-propagating laser beams. Due to the small interaction
cross sections in the atom-photon interaction the storage efficiency is typically very low in
these experiments. Furthermore, for non-stationary atoms, the diffusion in and out of the
interaction beams, as well as atomic collisions, will generally limit the achievable storage
times to the microsecond-range. While sophisticated techniques can extend the storage
times to several milliseconds [43, 44], they are typically only possible at the expense of
lower efficiencies.

As an alternative to neutral atomic clouds, solid-state based light-matter interfaces [48]
should in principle allow for long storage times and classical light pulses containing many
photons have been stored in rare-earth ion doped crystals for several seconds [49]. Fur-
thermore, the storage of entanglement was recently demonstrated [50, 51]. In these ex-
periments, the storage time was limited to few microsecondsand the low optical density
of the used ion doped crystals limited the efficiency of the storage and readout. Both
properties depend on the dopants and their concentration and long storage times [49] and
high efficiencies [52, 53] have been demonstrated for different systems, the combination
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of both in one system remains an open challenge. Due to their long time stability, solid
state quantum memories allow for the simultaneous storage of multiple photons [54].

The efficiency of a light-matter interface can be substantially enhanced, when enclosing
the atomic medium in the mode volume of an optical cavity. In such a cavity the elec-
tromagnetic field has well defined spatio-temporal modes andthe coherent interaction be-
tween a material system and specific modes can be substantially higher than in free space.
Taking advantage of this enhancement, atomic ensembles interacting with a single mode
of an optical cavity were proposed for the realization of high-efficiency optical quantum
memories [55–57]. A basic requirement for such an cavity-based quantum-memory is the
realization of the so-calledcollectivestrong coupling regime [55] of cavity quantum elec-
trodynamics (CQED) [58,59]. For an ensemble ofN identical two-level systems simulta-
neously interacting with a single mode of the cavity field, this regime is reached when the
collective coupling rate,gN, at which single excitations are coherently exchanged between
the ensemble and the light mode exceeds the dissipation rates in the system, namely the
dipole decay rate of the two-level system,γ, and the decay of the cavity field,κ [58]. In
this regime, one benefits from a collective enhancement of the coherent interaction be-
tween an ensemble and the cavity field, which scales with the square root of the number
of interacting particles. Collective strong coupling, first explored with Rydberg atoms in
microwave cavities [60], has been realized in the optical domain with atomic beams [61],
atoms in magneto-optical traps [62–65] and Bose-Einstein condensates [66,67].

In the context of quantum information processing, ions havealready proven to be well
suited for coherent manipulations, due to their excellent coherence properties and local-
ization. They are for the same reasons particularly well suited for the realization of a
long-lived and efficient light-matter interface. Enclosing ions in an optical cavity would
naturally combine the technological achievements of quantum information science with
those of cavity QED. Much progress has been made towards coupling single trapped ions
to the light modes of optical cavities [68–74], and reachinga strong coupling with single
ions would, in view of their importance for quantum information processing, be very at-
tractive. As the coherent coupling strength is inversely proportional to the mode volume
of the cavity, reaching this regime requires very small high-finesse cavities. However, the
intersection of dielectric objects, such as cavity mirrors, in the vicinity of the trap region
can modify the trapping potentials and makes experiments with ions in optical cavities
technically challenging. For larger ensembles of trapped ions simultaneously interact-
ing with a cavity field mode, one benefits from the collective enhancement and collective
strong coupling can be achieved with comparatively longer cavities and lower finesses.

Large clouds of ions can be stably trapped in both Penning andPaul traps and, when
cooled below a certain critical temperature, undergo a phase transition to a long-range
ordered state, referred to as an ion Coulomb crystal [75–77]. In these objects, the ions
are still well separated and most of the single-particle properties which make ions well-
suited for QI, like long coherence times and well defined addressable optical transitions,
are preserved. In addition, ion Coulomb crystals also possess many properties of more
traditional solids, like a uniform density and long-term stability. Ion Coulomb crystals
can contain up to hundreds of thousands of ions and can be stably trapped for hours [78].

In this thesis we will investigate the potential of large ionCoulomb crystals in optical
cavities for realizing a high-efficiency and long-lived light-matter interface which could
satisfy the previously mentioned criteria of ref. [39].
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1. Introduction

Our group could recently demonstrate that the collective strong coupling regime could
be reached with40Ca+ ion Coulomb crystals in an optical cavity [79, 80]. In addition,
we measured coherence times for collective coherences between Zeeman substates in the
millisecond range, which illustrates that the good coherence properties of single trapped
ions are retained in large ion Coulomb crystals. The resultsof these studies will be re-
viewed in chapter 5 in this thesis. In a subsequent experiment, we will show, how the
solid-like properties of ion Coulomb crystals, such as e.g.their uniform density, can be
used to strongly couple large crystals to different transverse modes of the cavity field,
with identical coupling strengths [81]. This has promisingapplications for e.g. for spatial
multimode storage of multiple photons. The results of theseinvestigations will be pre-
sented in chapter 6. Moreover, we will in chapter 7 also demonstrate how the coherent
light-matter interaction can be used to study the motional degree of freedom of the ion
crystals. We will present a novel noninvasive spectroscopytechnique that can be used to
investigate normal mode dynamics in these crystals [82], and which opens up for coherent
manipulations of ion Coulomb crystals’ collective vibrational modes.

Ref. [55] proposes to realize ensemble-based quantum memories in a cavity by map-
ping the state of a single photon onto a collective excitation of the storage medium using
the effect of electromagnetically induced transparency (EIT) [83, 84]. EIT is a quantum
interference effect, where the optical response of a material system to a weak probe field
(carrying the quantum information) can be tailored by a second, much stronger control
field. The resonant absorption of the probe field can be completely suppressed via a
destructive two-path quantum interference effect, which can also give rise to large non-
linearities. First observed in hot and cold atomic gasses [85], the use of EIT to control
the atomic absorption and dispersion properties was spectacularly demonstrated in slow-
and stopped light experiments [86–88], where the group velocity of a light pulse in cold
and warm clouds of neutral atoms was slowed down to few metersper second and even
stopped [88,89]. In these experiments the stored light pulses contained several thousands
of photons. However, the same technique can be used at the quantum limit, where the
probe light pulses contains a single photon [84,90,91]. In this limit, the quantum state of
the light can be mapped on a collective excitation of the atomic medium and EIT is at the
heart of most quantum memory schemes [39].

An important step towards the realization of a cavity based light-matter interface is
hence the observation of EIT in the system. Cavity EIT was successfully observed for
ensembles of cold and hot neutral atoms [92, 93], and, most recently, the enhanced cav-
ity interaction also allowed for the observation of cavity EIT with few and even single
atoms [94, 95]. Moreover, ensembles of neutral atoms confined in the mode volume of
an optical cavity were successfully used to store and transfer single photons with high
efficiency [96, 97]. However, the achieved storage time was still limited by the thermal
diffusion of the atoms in and out of the cavity mode. Combining the advantages of the
cavity enhanced light-matter interaction with a physical system, for which the thermal dif-
fusion and collisions are sufficiently suppressed, offers attractive possibilities of realizing
a long-lived quantum memory with a high efficiency.

We will in chapter 8 report on the first experimental observation of cavity EIT with
ions. In a novel, all-cavity geometry we demonstrate excellent control over the atomic
transparency and observe narrow EIT windows (tens of kHz), which are one to two orders
of magnitude lower than in experiments with neutrals in cavities [92–95]. In combination
with the achievement of collective strong coupling and the measured coherence times of
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milliseconds, these results demonstrate that ion Coulomb crystals in optical cavities are
indeed an excellent candidate for the realization of both long-lived and high-efficiency
quantum memories, with the potential to be used in multimodeconfigurations.

Beside its importance for a quantum memory, the realizationof cavity EIT with very
narrow windows and good control over the atomic transparency also has promising ap-
plications for the observation of nonlinear effects [98] atlow light levels or controlled
photon-photon interactions [99, 100]. We will in chapter 9 present a promising first step
towards a cavity mediated photon-photon interaction by theimplementation of an all op-
tical switching scheme, where the transmission of a probe photon is controlled via the
nonlinear interaction with an additional weak field in the cavity.

The thesis is structured as follows:
CHAPTER 2 contains a review of the trapping and laser cooling of ions,with a focus on
large ion Coulomb crystals. Furthermore, it will introducea thermodynamical description
of the crystals in terms of cold nonneutral plasmas.
CHAPTER 3 summarizes the CQED theory for the interaction of an ensemble of identical
two-level systems with a single cavity field mode.
CHAPTER 4 briefly explains the experimental setup, the lasers and thedetection systems.
CHAPTER 5 presents results on the realization of collective strong coupling with ion
Coulomb crystals and a measurement of the coherence time of collective coherences be-
tween Zeeman substates.
CHAPTER 6 presents a detailed investigation of the coherent coupling between various
ion Coulomb crystals and various cavity modes.
CHAPTER 7 contains the results of investigations of collective vibrational modes of ion
Coulomb crystals using a novel non-invasive spectroscopy technique at the single photon
level.
CHAPTER 8 presents results on the observation of cavity electromagnetically induced
transparency with ion Coulomb crystals.
CHAPTER 9 describes experiments on the realization of an all-optical switching scheme
with ion Coulomb crystals based on EIT.
CHAPTER 10 concludes the thesis and gives a brief outlook.
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2. Ion Coulomb crystals in a linear Paul
trap

In this chapter basic concepts of ion trapping and laser cooling will be introduced, with
the focus on fundamental aspects of the physics of ion Coulomb crystals. It is structured
as follows: In sec. 2.1 we will start out by introducing the principles of the linear Paul
traps and their mathematical description. In sec. 2.2 we will then turn towards the laser
cooling of40Ca+ ions and large ion ensembles. In sec. 2.3 thermodynamic properties of
ion Coulomb crystals will be discussed.

2.1. Principle of a linear Paul trap

URF

URF

UDCUDC

x

y
z

z

1 2 3

4 5 6

7 8 9

10 11 12

2z0
1-2-3

4-5-6

7-8-9

10-11-12

x

y

2r
0

x̃ỹ
U1(t)

U
2
(t
)

Figure 2.1.:Schematic drawing of the segmented linear Paul trap used in this thesis. The
RF voltages are applied to all segments, where the same RF voltage is applied to rods 1-
2-3 and 10-11-12, with relative phase ofπ with respect to the voltage on 4-5-6/7-8-9. The
DC end cap voltages are applied to 1-4-7-10 and 3-6-9-12. To simplify the calculations,
the coordinate system in this section ( ˜x, ỹ) is tilted by 45◦ as compared to the rest of the
thesis (x, y).

In 1955 Wolfgang Paul and his student Erhard Fischer demonstrated how ions can be
trapped in an oscillating quadrupole field [101, 102]. Their”ion cage” was a further de-
velopment of the quadrupole mass filter, where in addition tothe radially confining radio-
frequency (RF) potential, electrostatic (DC) potentials were applied to two endcaps to
form a 3-dimensional trap for charged particles.
The quadrupole trap used in our experiments consists of foursets of segmented cylindrical
rods, as shown in fig 2.1. In this linear Paul trap the axial confinement is obtained by ap-
plying DC voltagesUDC to the outermost sections of the rods. The resulting electrostatic
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2. Ion Coulomb crystals in a linear Paul trap

potential along thez-trap axis for a single particle with chargeQ and massM is given by

Φz(z) = ηUDC
z2

z2
0

=
1
2

Mω2
zz2, (2.1)

whereη is the axial geometric constant determined by the trap geometry (see [80]), 2z0 is
the length of the center electrode andωz is the harmonic frequency of the axial potential
given by

ωz =

√

2ηQUDC

Mz2
0

. (2.2)

Confinement in the radial plane of the linear Paul trap is ensured by applying two
oscillating electric potentials with a relative phase shift of π, U1(t) =URFcos(ΩRFt) and
U2(t) =URFcos(ΩRFt +π), to the two sets of diagonally opposite rods, as shown in fig.
2.1 b. The oscillating fields give rise to a radial potential of the form1:

Φrad(x̃, ỹ, t) =
x̃2− ỹ2

2r2
0

URFcos(ΩRFt)− η
2

x̃2+ ỹ2

z2
0

UDC, (2.3)

wherer0 corresponds to the half distance between the diagonally opposite rods. The first
term in this equation is the potential originating from the RF-voltages, while the second
term comes from the application of DC voltages on the end-electrodes. The classical
equation of motion for a particle with massM and chargeQ is given byMr̈ =−Q∇Φ(r),
whereΦ(rrr) = Φz(z) +Φrad(x̃, ỹ, t) is the total potential. The radial and the axial part
separate and inserting the potential of eq. (2.3) leads to the so called Mathieu differential
equations, see e.g. [18]:

∂x̃
∂τ2 +[a−2qcos(2τ)] x̃ = 0 (2.4a)

∂ỹ
∂τ2 +[a+2qcos(2τ)] ỹ = 0. (2.4b)

For convenience, the dimensionless parameters

τ =
ΩRFt

2
(2.5a)

a =
−4ηQUDC

Mz2
0Ω2

RF

(2.5b)

q =
2QURF

Mr2
0Ω2

RF

(2.5c)

were introduced. Depending on the values of these parameters, the solution of the Mathieu
equations can correspond to non-diverging trajectories, i.e. the amplitude of the motion
is bound and the particle is stably trapped, or to diverging trajectories, i.e. the motion is
unbound and the particle is expelled from the trap. The stability of the trapping generally
depends on the charge-to-mass ratio of the particleQ/M. More details on the stability of

1The origin of the coordinate system is chosen at the center ofthe trap. To simplify the calculations, the
coordinate system in this section ( ˜x, ỹ) is tilted by 45◦ as compared to the rest of the thesis (x,y).
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2.2. Laser cooling of 40Ca+ ions

linear Paul traps can be found in [18, 103]. In most cases traps are operated in a regime
where|q| ≪ 1 and|a| ≪ 1 and the Mathieu equations eq. (2.4) have a simple solution in
this regime:

x̃(t) = x̃0

[

1+
q
2

cos(ΩRFt)
]

cos(ωrt) (2.6a)

ỹ(t) = ỹ0

[

1− q
2

cos(ΩRFt)
]

cos(ωrt), (2.6b)

wherex̃0 andỹ0 are the amplitudes of the secular motion along the ˜x andỹ axis, respec-
tively. The motion of the ion is a superposition of two periodic motions, the slow, so-called
secular motion, at the secular frequency

ωr =
1
2

√

q2

2
+a ΩRF

=

(

Q2URF

2M2r4
0Ω2

RF

− ηQUDC

Mz2
0

)1/2

. (2.7)

and the fast, so-called micromotion, at the frequency of theRF trap2, ΩRF. The slower
secular motion can be understood as an oscillation in the radial (xy)-plane in a harmonic
pseudo-potentialΦr(r) , which is found by averaging over the fast oscillation in eq.(2.6):

Φr(r) =
1
2

Mω2
r r2 (2.8)

The rapid micromotion occurs at the trap frequencyΩRF with an amplitude suppressed by
a factorq

2≪ 1 and appears as a small modulation on the dominant secular motion.
Averaging over the fast micromotion, the trapping potential in cylindrical coordinates is

given by the sum of radial pseudo-potential (see eq. (2.8))Φr and the axial DC-potential
Φz (see eq. (2.1)):

Φtrap(rrr)=Φz(z)+Φr(r) (2.9)

2.2. Laser cooling of 40Ca+ ions

Laser cooling of atoms and ions is a widely used technique in today’s atomic and molec-
ular physics and the principles have been reviewed in many articles and textbooks, see
e.g. [107,108]. Reviews on specific aspects and cooling techniques for ions can be found
in [109, 110]. In this thesis we will therefore only briefly discuss the basic idea of laser
cooling and focus on the aspects relevant for the cooling of40Ca+ ions and more specifi-
cally large ion Coulomb crystals.

The principle of laser cooling relies on the velocity dependent absorption probability
of photons and can qualitatively be understood in a 1-dimensional model. We imagine
a free two-level atom with resonance frequencyωat moving in the field of two counter-
propagating laser beams with velocityv. In the reference frame of the atom, the frequen-
cies of the two lasers are shifted due to the Doppler effect:ω±(v) = ωD(1± v

c), where
ωD is the frequency of the laser,c the velocity of light and the positive sign applies to the

2As q,a≪ 1, the secular frequency is much smaller than the RF frequencyωr ≪ ΩRF.
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2. Ion Coulomb crystals in a linear Paul trap

4s2S1/2

4p2P1/2

4p2P3/2

3d2D3/2

3d2D5/2

396.847nm
2π×20.7 MHz

866.214nm
2π×1.69MHz

729.147nm
2π×0.13Hz

393.366nm
2π×21.5 MHz

849.802nm
2π×0.176MHz

854.209nm
2π×1.56MHz

732.389nm
2π×0.14Hz

Figure 2.2.: 40Ca energy level scheme, with transition wavelengths in air and transition
ratesΓ = 2γ (taken from [104–106]). The solid lines mark the relevant transitions for
Doppler cooling in this thesis, i.e. the 4s2S1/2 ↔ 4p2P1/2 Doppler cooling transition
(blue) and the 3d2D3/2↔ 4p2P1/2 repumping transition (red).

laser towards which the atom is moving. For laser beams slightly detuned to the red of the
atomic resonance the absorption probability will be higherfor the photons towards which
the atom is moving. In the case of moderate laser intensities, the atom will, after each ab-
sorption process, decay spontaneously and the photons willbe redistributed isotropically,
while the longitudinal momentum transfer in the absorptionprocess will be directional,
leading to a friction force and an effective deceleration ofthe atomic motion. The net
force exerted on the atom, for a laser detuning∆D = ωat−ωD and a laser intensity much
lower then the saturation intensity of the transition (I ≪ Isat) can be found to be3

F = ~kγ
I

Isat

(

1
1+((∆D+ kv)/γ)2 −

1
1+((∆D− kv)/γ)2

)

∝ α−βv. (2.10)

Here,k = ωD/c is the wave-vector of the laser field andγ = Γ/2 is the decoherence rate of
the atomic dipole of the two-level system, whereΓ is the spontaneous decay rate. The
scheme can easily be extended to three dimensions, where thecooling of a free atom
requires three sets of orthogonal counter-propagating beams. This configuration is used
in three-dimensional optical molasses and magneto-optical traps [108].

Though the isotropic re-emission of spontaneous photons does not lead to a net force
on the atom, it leads to diffusion and the temperature that can be reached by Doppler
cooling is limited by this diffusion. In steady state, one has an equilibrium arising from
the balance between friction and diffusion. In the low saturation limit and for an optimal
choice of the detuning∆ = γ, the lowest temperature that can be reached is the so-called

3The saturation intensityIsat is defined asIsat =
~ω0γ
σ(ω0)

, whereσabs(ω0) is the resonant absorption cross section.
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2.2. Laser cooling of 40Ca+ ions

Doppler limit [107]

TD =
~γ
kB

. (2.11)

The simple model of laser cooling described above assumes a free two-level atom, but
the basic idea also holds for the more complex situation of a single ion confined in a linear
Paul trap. The harmonic oscillation of the ion in the axial and radial trapping potentials
leads to a reversion of the direction of motion after each half-period of the axial and radial
oscillation. To achieve three-dimensional cooling of a single ion in this configuration it is
therefore in principle sufficient to have one cooling beam with k-vector components along
the axial and radial directions of the trap [110]. Configurations using more cooling laser
beams are possible and might be beneficial in many situations. When Doppler cooling
light along the radial trap direction is applied, special precaution has to be taken with the
beam alignment as an off-centered beam tends to drive the quivery micromotion discussed
in sec. 2.1. Furthermore, the level structure of a realisticion is more complex than in the
simple situation of a closed two-level system and efficient cooling requires additional laser
fields. In all experiments presented in this thesis40Ca+ ions were used and we will now
consider the specific level scheme of this ion, followed by a discussion of the particular
aspects of laser cooling for large ion ensembles.

2.2.1. The 40Ca+ ion

A reduced level scheme with all energy levels relevant for this thesis is shown in fig. 2.2.
The 4s2S1/2↔ 4p2P1/2 transition of40Ca+ is used for Doppler cooling, with the laser
being slightly red detuned with respect to the resonant wavelength ofλ = 396.847 nm.
The excited 4p2P1/2 state spontaneously decays to both the 4s2S1/2 ground state and
the metastable 3d2D3/2 state, with a branching ratio of∼ 1 : 12. As the lifetime of the
metastable state is of the order of a second, ions decaying tothis state have to be actively
pumped back into the cooling cycle by an additional repumping laser, resonant with the
3d2D3/2↔ 4p2P1/2 transition at 866 nm. Due to the branching ratio and the lowermo-
mentum of these photons, the cooling effect is dominated by the 397 nm photons. The
partial natural linewidth of the 4s2S1/2↔ 4p2P1/2 transition isΓ = 2γ = 2π×20.6 MHz
and the corresponding Doppler limit (see eq. (2.11)) amounts toTD ≈ 0.54 mK. The laser
systems used for Doppler cooling and the optical setup will be presented in sec. 4.3.

2.2.2. Laser cooling of ion Coulomb crystals

Laser cooling of large clouds of trapped ions requires some specific considerations. As
the ions interact via the Coulomb potential, the repulsion between the particles will couple
their individual motional degrees of freedom. In a situation where the radial confinement
is much stronger then the axial, small ensembles will arrange themselves in a string along
the field-free trap axis and the axial vibrational modes of the individual ions are coupled.
However, the axial and the radial motion are still uncoupledand Doppler cooling has to
be performed along both the axial and the radial directions.For a less tight radial confine-
ment, the ions will arrange themselves in a three dimensional structure, where some of
the ions are located away from the RF field free trap axis. The Coulomb interaction will
then lead to a coupling of the radial and the axial motions andapplying Doppler cooling
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2. Ion Coulomb crystals in a linear Paul trap

light along the longitudinal axis is sufficient to achieve good three dimensional cooling.
The ions positioned off the trap axis will indeed experiencea non-vanishing micromo-
tion, as was discussed in sec. 2.1. A cooling beam along the transverse direction will tend
to actively drive the quivery micromotion and it is therefore preferable, especially large
ensembles of ions, to only cool along the RF-field free trap axis.

In our experiments we use two counter-propagating beams along this axis to provide
Doppler cooling light on the 4s2S1/2↔ 4p2P1/2 transition. The repumper light is in most
cases sent perpendicular to the trap axis. Details will be discussed along with the descrip-
tion of the experimental setup in ch. 4.

2.3. The physics of ion Coulomb crystals

x
y z

a. b. c.

Figure 2.3.:Projection images of of an ion Coulomb crystal taken with theCCD camera
during Doppler cooling. The crystal contains∼ 1600 ions, its aspect ratio and density
were varied between the three images. The trapping parameters were:a. URF = 150 V,
UDC = 9.0 V b. URF = 250 V,UDC = 6.8 V c. URF = 350 V,UDC = 4.7 V

When a trapped cloud of ions is cooled below a certain critical temperature (typically
some 10 mK), the ions form a spatially ordered state, referred to as an ion Coulomb
crystal [76]. The properties of this crystalline structurewill be discussed in more detail in
this section. The size of such crystals can reach from some few ions to several hundreds
of thousands [78]. In fig. 2.3 three pictures of an ion Coulombcrystal are shown. The
shape of the crystal depends on the axial and radial trap frequencies and can be controlled
by the RF and DC trapping voltages.

Though the regular long-range ordered structure of ion Coulomb crystals mimics the
structure of more traditional solid state systems and crystals, many of their thermody-
namic properties in the harmonic confinement potential of a Paul trap are very well de-
scribed in the framework of a zero-temperature charged liquid plasma and we will in
the following subsections introduce the basics concepts ofthe theory of cold nonneutral
plasmas.

2.3.1. Basic theory of charged plasmas

In an ensemble of many ions simultaneously confined in a Paul trap, each individual ion
experiences, beside the force exerted by the trapping potential, the Coulomb repulsion of
the other ions. For a sufficiently large ensemble4, the situation is well-described by a cold
nonneutral plasma and we will briefly sketch the theoreticalbackground for this model in

4What ”large” means in this context will be discussed when defining the characteristic length scale in a non-
neutral plasma.
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2.3. The physics of ion Coulomb crystals

this subsection. We consider an ensemble of identical ions,each with chargeQ and mass
M in a pseudo-potential given by eq. (2.9). At equilibrium, where the force on each ion in
the plasma has to vanish, the total potentialΦtot seen by the ion has to be constant [111]:

FFF =−Q∇Φtot(rrr) = 0 ⇒ Φtot = const. (2.12)

The total potentialΦtot is the sum of the trapping potentialΦtrap (see eq. (2.9)) and the
mean electrostatic potential of the plasmaΦpl caused by the charge distribution of the ions

Φtot(rrr) = Φtrap(rrr)+Φpl(rrr). (2.13)

In thermal equilibrium, and neglecting surface effects, itis reasonable to assume the
charge distribution in the plasma and, hence, the atom density ρ0 to be constant through-
out the ensemble. We can use Poisson’s law to relate the plasma potential to the density

∇2Φpl =−
Qρ0

ε0
. (2.14)

Inserting eqs. (2.1) and (2.8) into eq. (2.13) and applying the Laplace operator we can
deduce an expression for the ion density in the plasma:

ρ0 =
ε0U2

RF

Mr4
0Ω2

RF

. (2.15)

It is independent of the axial potential and, for a given RF-frequencyΩRF, controlled by
the amplitude of the RF voltage applied to the trap electrodes (see fig. 2.3). Measuring
the RF amplitudeURF seen by the ions precisely, is however, not trivial in practice. We
will later in this section present a method to calibrate the trap voltages on the basis of the
properties of the trapped ion Coulomb crystals within this model.

The expression for the density (2.15) also sets the typical distance between neighboring
ions. It can be found by assuming that each ion occupies a certain spherical volume within
the plasma. The radius of the sphere is the so-called Wigner-Seitz radiusaWS [112], given
by

aWS =

(

3
4πρ0

)1/3

=

(

3r4
0M

4πε0

Ω2
RF

U2
RF

)1/3

. (2.16)

Furthermore, the expression for the constant density foundin eq. (2.15) can also be used
to define two fundamental parameters for the physics of the plasma, namely the plasma
frequencyωp and the Debye lengthλD.

In thermal equilibrium, the potential in the plasma is constant as discussed in eq. (2.12).
If a single ion in the plasma is displaced by a distanceu from its equilibrium position,
while the position of all other ions is fixed, this ion will experience a force from the
electric field of the other ions. Using eq. (2.14), the forceFFF =−Q∇2Φpl can be found by
integration along the displacementu and the equation of motion reads

ü=
F
M

=−Q2ρ0

Mε0
u. (2.17)
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2. Ion Coulomb crystals in a linear Paul trap

which corresponds to a harmonic motion with a characteristic frequency

ωp =

√

Q2ρ0

ε0M
(2.18)

referred to as the plasma frequency. It sets the time scale for the dynamics of charge
redistributions within the plasma, caused e.g. by externalperturbations. The characteristic
length scale in the plasma, the so-called Debye length [112], can be directly related to the
plasma frequency. At thermal equilibrium, the mean kineticenergy in one dimension is
〈Ekin〉 = 1

2kBT, which, using the virial theorem of the harmonic oscillator, 〈U〉 = 〈Ekin〉,
translates into a mean displacement of

λDebye=
√

ε0kBTρ0Q2. (2.19)

The Debye length defined in eq. (2.19) is commonly interpreted as the distance at which
a perturbation by an external field is shielded by a rearrangement of the space charge in
the plasma and has dropped to1/e. The Debye length is furthermore one of the defining
criteria for a nonneutral plasma. An ensemble of charged particles is considered a plasma
when the spatial extension of the whole ensemble is much larger thanλDebye. With typical
temperatures of the order of∼ 10 mK and densities of∼ 108−109 cm−3 ion ensembles as
used in our experiments have a Debye length ofλDebye∼ 300 nm which is much smaller
then the typical ion-ion spacing of∼ 10 µm and even ensembles consisting only of very
few ions will fulfill this criterion.

Finally, the Coulomb interaction of the individual particles in a nonneutral plasma is
characterized by the so-called plasma coupling parameterΓpl [112]. It is given by the
relative strength of the Coulomb interaction between neighboring particles and their mean
thermal kinetic energy. For two charged particles at a distance 2aWS and a temperatureT
this ratio is

Γpl =
ΦCoulomb

〈Ekin〉
=

1
4πε0

Q2

aWSkBT
. (2.20)

Many of the structural properties of a charged plasma will bedetermined by the parameter
Γpl and it is e.g. used as the critical parameter to describe phase-transitions in nonneutral
plasmas. For an infinite plasma, the gas to liquid transitionwas predicted to occur for
Γpl ≃ 2 [113]. Furthermore, for even higher coupling parameters of Γpl ≃ 170, the tran-
sition to a solid phase with long-range ordered structure has been predicted [114, 115].
These crystalline structures are commonly referred to as ion Coulomb crystals and have
been observed in a linear Paul trap only one year after the invention of this type of trap
with aluminum dust particles (diameters∼ 20µm) by buffer gas cooling [116]. After the
advent of Doppler laser cooling, Coulomb crystals consisting of atomic ions were formed
in linear Paul traps [75,76] and Penning traps [77].

2.3.2. Zero-temperature charged liquid plasma model

In this subsection we will, based on the framework of the zero-temperature charged liquid
model [111], derive an explicit expression for the plasma potential in an ion Coulomb
crystals confined in a linear Paul trap, which will allow us torelate the geometrical shape
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2.3. The physics of ion Coulomb crystals

L

R

Figure 2.4.: Projection image of an ion Coulomb crystal. The aspect ratiois defined as
the ratio of the crystal’s half-length and its radiusα = R

L .

of the plasma to the trapping parameters. The trapping potential in a Paul trap is cylin-
drically symmetric, see eq. (2.9), and it was shown by Turnerthat it in this case, the
equilibrium shape of a confined plasma is spheroidal [111]. The aspect ratio is defined as
the ratio of axial and radial extension of the spheroid

α =
R
L
, (2.21)

whereR andL are the crystal’s radius and half-length, respectively (see fig. 2.4). The
electrostatic potential arising from the charge distribution within the plasma can be written
as [111]

φpl(r,z) =
ρ0Q
2ε0

R2L

[

2√
R2−4L2

arcsin

(

1−4
L2

R2

)1/2

− r2 f (R,L)− z2g(R,L)

]

, (2.22)

where the form of the two functionsf (R,L) andg(R,L) depends on the aspect ratio of the
crystal. Inserting the plasma potential of eq. (2.22) into (2.13) and applying Poisson’s law
(2.14), the axial and the radial part separate and one can relate the axial and radial trap
frequencies,ωz andωr, to the two functionsf (R,L) andg(R,L):

ω2
r =

ρ0Q2

2Mε0
R2L f (R,L)

ω2
z =

ρ0Q2

2Mε0
R2Lg(R,L). (2.23)

The ratio of the trap frequencies is hence directly given by the ratio off (R,L) andg(R,L).
Explicit expressions forf (R,L) andg(R,L) can be calculated on the basis of the zero-
temperature charged liquid model, where one has to distinguish between the case ofpro-
latespheroids withα < 1 andoblatespheroids withα > 1, for details see [111]:

f (R,L) =











− 1
(L2−R2)3/2 sinh−1

(

L2

R2 −1
)1/2

+ L
(L2−R2)R2 for α < 1

1
(R2−L2)3/2 sinh−1

(

1− L2

R2

)1/2
− L

(R2−L2)R2 for α > 1

g(R,L) =











2
(L2−R2)3/2 sinh−1

(

L2

R2 −1
)1/2
− 2

(L2−R2)L
for α < 1

− 2
(R2−L2)3/2 sinh−1

(

1− R2

L2

)1/2
+ 2

(R2−L2)L
for α > 1

.

15



2. Ion Coulomb crystals in a linear Paul trap

The ratio of the trap frequencies defined in eq. (2.23) is thengiven by

ω2
z

ω2
r
=−2







sinh−1(α−2−1)1/2−α(α−2−1)1/2

sinh−1(α−2−1)1/2−α−1(α−2−1)1/2 for α < 1
sin−1(1−α−2)1/2−α(1−α−2)1/2

sin−1(1−α−2)1/2−α−1(1−α−2)1/2 for α > 1
(2.24)

On the other hand, the ratio of the axial and radial trap frequencies is directly related to
the trap voltagesUDC andURF. Using the expressions for the trap frequencies found in
(2.2) and (2.7) one finds

ω2
z

ω2
r
=

QU2
RFz2

0

4ηMΩ2
RFUDCr4

0

− 1
2
. (2.25)

The two equations for the relative trap frequencies found ineqs. (2.24) and (2.25) can be
used to calibrate precisely the trap voltages as seen by the ions, and we will come back to
that when presenting the experimental setup in sec. 4.7.

Furthermore, eqs. (2.24) and (2.25) provide a direct way to assess the theoretical de-
scription of the ion Coulomb crystals as a zero-temperaturecharged liquid by measuring
the aspect ratio of these crystals for various trapping parameters, and the radio of the trap
frequencies can in this context be used as a figure of merit forthis description.

2.3.3. Structure and temperature

As mentioned above, a phase-transition to a long range ordered structure was predicted
for an infinite plasma whenΓpl & 170 [114,115] and, for infinitely large crystals confined
in a cylindrically symmetric potential, the predicted ground state structure was found to
be body-centered cubic (bcc) [114, 115]. However, for the more realistic situation of
finite crystal sizes, ground state molecular dynamics simulations suggest a distortion of
the long range order and finite size effects should cause the ions to arrange themselves
in concentric shells, with a constant radial inter-shell spacingδr throughout the whole
crystal [78,117]. The inter-shell spacing can be related tothe Wigner-Seitz radius defined
in eq. (2.16) by

δr = xaWS, (2.26)

wherex is a numerical constant. Molecular dynamics simulations predict this proportion-
ality factor to bex= 1.48 [117]. The shell structure has been experimentally confirmed in
our group for ion Coulomb crystals in linear Paul traps [78,118] and the pre-factorx was
measured to agree with the theoretical expectations in our trap, see [80,119].

The inter-shell spacing can be measured from projection images (see sec. 4.4) and
eq. (2.26) provides a second possibility to calibrate the trap voltages seen by the ions and
hence the ion density [80,119,120].

Let us point out that long range ordered structures with bothbcc and face centered cubic
(fcc) structures were observed in our group also in small ionCoulomb crystals containing
only some thousand ions in linear Paul traps [121], even though ground state molecular
dynamics simulations suggest that those structures shouldbe suppressed by surface effects
for crystals with less then∼ 5000 ions. The regular structures in such small crystals can,
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2.3. The physics of ion Coulomb crystals

however, according to molecular dynamic simulations of metastable ion configurations be
attributed to the finite temperature of the ensemble [121].

In this thesis, we will present experiments using ion Coulomb crystals to investigate the
coherent light-matter interaction in cavity quantum electrodynamics. For the experiments
described in this thesis the structural properties of ion Coulomb crystals will have little
importance. However, we would like to mention that cavity quantum electrodynamics
might offer interesting perspectives to investigate thesestructural effects in a non-invasive
way, or, conversely, that the crystal structure, if sufficiently well controlled, could be used
for cavity quantum electrodynamics studies.
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3. Cavity Quantum Electrodynamics

The field of Cavity Quantum Electrodynamics (CQED) studies the fundamental interac-
tion between matter systems and electromagnetic fields confined in resonators, in situa-
tions where the quantum nature of the light field is relevant.The theory of CQED has
been the subject of many books, e.g. [58,59], and will therefore be presented only briefly
in this chapter. However, as many of the general concepts of CQED will be used in the
following chapters, detail derivations will be given for the important equations.

The chapter is structured as follows: In sec. 3.1 the spatialand temporal field modes
of a linear optical cavity will be discussed. Sec. 3.2 will then focus on the interaction of
motionless two-level atoms with a single cavity field mode and the optical Bloch equations
of the system will be derived. Finally, in sec. 3.3 the results will be generalized to take
into account the motion of the atoms.

3.1. Optical cavities

M1 M2

κ1

κ2

κ A 1
κ
A
2

a

a′

ain atrans

arefl
dx

y z

Figure 3.1.: Schematics of a Fabry-Perot cavity formed by the two mirrorsM1 and M2

with radius of curvaturerM and separated by a distanced. The mirrors are characterized
by their transmission, reflection and intensity loss coefficientsTi , Ri andAi (i = 1,2).
An input field ãin is coupled into the cavity through M1,a and a′ are the intracavity
fields propagating to the right and to the left, respectively. arefl andatransare the reflected
and transmitted fields,κ1 andκ2 are the decay rates of the cavity field due to the finite
reflectances of M1 and M2, the loss rates due to absorption and scattering on the two
mirrors are denoted byκA1 andκA2.

In this section, the mathematical description of a light field confined in an optical cavity
will be given. The first part will introduce the concept of cavity modes, followed by a
derivation of the dynamical field equation of the empty cavity and the steady state solution
of this equation, together with the cavity transmission andreflection spectrum.
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3. Cavity Quantum Electrodynamics

3.1.1. Transverse cavity modes

In many respects, an optical cavity can be understood as the optical analogous of an
electrical resonance circuit. The mirrors restrict the boundary conditions for the elec-
tromagnetic field and only certain field modes with well-defined frequencies and spatial
distributions can build up inside the cavity. The possible spatial field configurations are
commonly decomposed into a basis of mode functions. In the paraxial approximation
these modes are the so-called Hermite-Gaussian modes, which are derived and discussed
in a comprehensive review by Kogelnik and Li [122] or in many textbooks, e.g. [123,124].
In this thesis only the major results of this description will be given and the reader is re-
ferred to these references for more details.

We consider a symmetric cavity formed by two mirrors,M1 and M2 with radius of
curvaturerM and separated by a distanced, see fig. 3.1. The spatial field distributions re-
producing themselves after on round trip are, in the paraxial approximation, the Hermite-
Gauss modes [122]

Enm(rrr) = E0Ψmn(rrr) = E0 Ψn(x,z)Ψm(y,z)Φ(x,y,z), (3.1)

with the amplitude of the electric fieldE0. They are decomposed into two transverse mode
functions,Ψn(x,z) andΨm(y,z), and one longitudinal mode function,Φ(x,y,z), where the
Transverse ElectroMagnetic modes (TEM) are characterizedby two non-negative indices
n and m and abbreviated by TEMnm. The n-th transverse mode function is given by
(u= x,y)

Ψn(u,z) =
√

w0

w(z)
Hn

(√
2u

w(z)

)

exp

(

− u2

w(z)2

)

, (3.2)

whereHn is then-th Hermite polynomial with non-negative indexn, w(z)=w0

√

1+( z
zR
)2

the position dependent beam radius,w0 the minimum waist andzR =
πw2

0
λ the so-called

Rayleigh range. The longitudinal field mode function also depends on the transverse in-
dicesn andm and is given by

Φ(x,y,z) = sin

(

kz− (1+n+m)arctan
z
zR

+
k(x2+ y2)

2R(z)

)

, (3.3)

where we have used the wavenumberk= 2π
λ , and the radius of curvature of the wavefront

R(z) = z
[

1+(zR/z)2
]

. The phase factorφG(z) = arctan z
zR

is the so called Gouy phase
shift and corresponds to the relative phase difference of the fundamental TEM00 cavity
mode and a plane wave at the same frequency. Self-consistency requires the phase shift
after one round trip to be an integer multiple of 2π and we can define the corresponding
resonance condition for the mode characterized by the two transverse mode indicesn and
m and an axial mode numberq∈ N:

νnmq= νFSR·
[

q+
1
π
(1+n+m)arccos

(

1− d
rM

)]

, (3.4)
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where the so-called free spectral rangeνFSR corresponding to the frequency spacing of
two subsequent axial modes is given by the inverse of the round trip timeτ

νFSR=
1
τ
=

c
2d

. (3.5)

Accordingly, the resonance frequencies of neighboring transverse modes(n,m) and(n′,m′),
n+m= n′+m′+1 differ by

δνnm,n′m′ =−
1
π

νFSRarccos

(

1− d
rM

)

. (3.6)

Depending on the cavity geometry, the resonance frequencies of several transverse modes
can be degenerate. For confocal cavities, where the distance of the mirrors corresponds
to their radius of curvatured = rM , every second transverse mode is degenerate as can be
seen from eq. (3.4).

The 0-th order Hermite polynomial is given byH0(x) = 1, and the fundamental TEM00

mode has a particularly simple form

Ψ00(x,y,z) =
w0

w(z)
exp

(

−x2+ y2

w(z)2

)

sin

([

kz−arctan
z
zR

+
k(x2+ y2)

2R(z)

])

. (3.7)

The mode function is cylindrically symmetric, with a Gaussian field distribution along the
transverse directions.

After having introduced the Hermite-Gauss modes as the allowed spatial field config-
urations of the electromagnetic field in the cavity, we will now try to find the dynamical
equation and the steady state solution for the intracavity field of these modes for a certain
input field amplitude.

3.1.2. Cavity field equation

We will now derive the dynamical equation for the intracavity field amplitudea(t) when
a input fieldain(t) is injected into the cavity1. A self-consistent equation fora(t) can be
derived by finding the field amplitude which reproduces itself after one cavity round trip.
We consider a monochromatic input fieldain with a frequencyωl and an empty Fabry-
Perot resonator, formed by the two mirrorsM1 and M2 where the input field is injected
through mirror M1, see fig 3.1.

The two cavity mirrors are characterized by the transmission, reflection and loss coeffi-
cients for the intensityTi , Ri andAi (i = 1,2). The transmission and reflection coefficients
for the field amplitude,ti andr i , are related to the corresponding intensity coefficients by
ti =
√

Ti andr i =
√

Ri . Likewise, the mirror losses induced by absorption and scattering,
Ai , will attenuate the field by a factorαi =

√
1−Ai. Obviously, conservation of energy

requiresTi +Ri +Ai = 1. The amplitude of the intracavity field after one reflectionon
mirror M2 reads

a′(t) = α2r2a(t− τ)ei(∆cτ+π), (3.8)

1We will use classical field amplitudes throughout the whole derivation in this section. These equations are the
same for the mean value of the field operators in the semi-classical treatment which we will use later.
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3. Cavity Quantum Electrodynamics

whereτ is the cavity round trip time and∆cτ = (ωc−ωl)τ is the relative phase of the
field acquired after one round trip, withωc = 2πνnmq being the resonance frequency of
the closest cavity mode, see eq. (3.4). For a certain input field ãin(t), the intracavity field
amplitudea(t) after the first mirror has to fulfil

a(t) = t1ãin(t)+α1r1eiπa′(t). (3.9)

A self-consistent solution for the intracavity field can be found by substituting eq. (3.8)
into eq. (3.9):

a(t) = t1ãin(t)+α1α2r1r2a(t− τ)ei∆cτei2π. (3.10)

Subtractinga(t− τ) on both sides and dividing byτ yields

a(t)−a(t− τ)
τ

= t1
√

τain(t)+
α1α2r1r2ei∆cτ−1

τ
a(t− τ). (3.11)

Here, the input field ˜ain was related to the round trip time by redefining it in terms of an
input photon flux per round trip via|ain|2≡ |ãin|2/τ.

If the losses due to absorption and scattering and due to the finite mirror transmission
per round trip are small, it is convenient to express the reflectivity and loss coefficients as
rates. The reflectivity coefficients can be written as the diminution of the field amplitude
by the decay rate through the mirror times the round trip time:

r i = 1−κiτ, i = 1,2 (3.12)

In the same manner we can also express the loss coefficientsαi by loss ratesκAi

αi = 1−κAiτ, i = 1,2. (3.13)

For sufficiently short cavities the cavity decay and loss rates will be small as compared
to the inverse round trip time and henceκiτ≪ 1 andκA〉τ≪ 1. In this limit, the rate
coefficients can be related to the intensity transmission and loss coefficients by

κi =
1− r i

τ
=

1−
√

1−Ti

τ
≈ Ti

2τ
(3.14a)

κAi =
1−αi

τ
=

1−
√

1−Ai

τ
≈ Ai

2τ
(3.14b)

and we can also express the transmission rate for the field throughκi

ti =
√

Ti ≈
√

2κiτ. (3.15)

Furthermore, we are interested in the field amplitude for a light field close to cavity res-
onance and can restrict ourselves toωl ≃ ωc and assume∆cτ≪ 1. Substituting the rates
defined in eqs. (3.12) and (3.13) into eq. (3.11) and only keeping the linear terms in
κ1, κ2, κA〉 , ∆c we find the dynamical equation for the intracavity field in thelimit τ→ 0

ȧ(t) =
√

2κ1ain(t)− (κ1+κ2+κA + i∆c)a(t). (3.16)

Here, the mirror losses were combined into one intracavity loss rate

κA = κA1 +κA2. (3.17)
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3.1. Optical cavities

In steady state, eq. (3.16) can readily be solved and one finds

a=

√
2κ1ain

(κ1+κ2+κA + i∆c)
. (3.18)

The intensity of the intracavity field is then given by

I = |a|2 = 2κ1

κ2+∆2
c
|ain|2, (3.19)

where the total cavity field decay rate isκ= κ1+κ2+κA . Using the same approximations
as in the derivation of eq. (3.16) and substitutingr i , αi andti by the appropriate rates, we
can find the input-output relations for the transmitted and reflected field amplitudes

arefl = t1α1a′− r1ain ≈
√

2κ1a−ain (3.20a)

atrans = t2α2a≈
√

2κ2τa. (3.20b)

The steady state cavity transmitivityT and reflectivityR spectra are defined by the trans-
mitted and reflected intensities normalized by the input intensity

R =

∣

∣

∣

∣

arefl

ain

∣

∣

∣

∣

2

=
(κ−2κ1)

2+∆2
c

κ2+∆2
c

. (3.21a)

T =

∣

∣

∣

∣

atrans

ain

∣

∣

∣

∣

2

=
4κ1κ2

κ2+∆2
c
. (3.21b)

Both transmitivity and reflectivity are Lorentzian functions of the cavity detuning∆C with
a FWHM

δν = 2
κ
2π

= 2
κ1+κ2+κA

2π
. (3.22)

Using eqs. (3.14) one can relate the cavity half-with directly to the mirror transmission,
reflection, and loss coefficients by

δν≈ 2
T1+T2+A

4πτ
. (3.23)

In Fig. 3.2 the cavity transmission and reflection as defined in eq. (3.21) are plotted as a
function of cavity detuning∆c. The finesseF , which is a measure of the quality factor of
the cavity resonance, is given by the ratio of the free spectral range to the cavity linewidth

F ≡ νFSR

δν
=

π
τ(κ1+κ2+κA)

≈ 2π
T1+T2+A

. (3.24)

In the following section we will generalize the dynamical equation for the field in an
empty cavity to the situation where a matter system interacts with a single cavity field
mode and derive a full set of semi-classical equations describing the dynamics of the
coupled matter-cavity system.
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Figure 3.2.: Cavity transmission and reflection around one resonance fora cavity with
similar parameters as used in our experiment. The free spectral range isνFSR= 12.7 GHz,
the mirror transmission coefficients areT1 = 1500 ppm,T2 = 5 ppm and the cavity loss
coefficient isA = 600 ppm. With these parameters the finesse of the cavity amounts to
F ∼ 3000.

3.2. Two-level atoms interacting with a single cavity field
mode

The interaction between material systems and the electromagnetic field inside a cavity
at the quantum level is the subject of Cavity Quantum Electrodynamics (CQED), see
e.g. [58, 59, 125, 126]. To understand the fundamental concepts, it is instructive to first
consider the simple case of a single two-level system with ground state|g〉 and excited
state|e〉 interacting with a single light mode inside the cavity. The rate at which a single
excitation is coherently exchanged between the field mode and the two-level system is
given by

g=
µgeE0

~
. (3.25)

Here,µge is the dipole matrix element of the transition considered and E0 the electrical
field amplitude. When brought to the excited state, the atom can also couple to the quasi-
continuum of the vacuum states and decay via spontaneous emission at a rateΓ = 2γ. As
g determines the rate at which coherent evolution between thetwo-level system and the
cavity field takes place, it should be compared to the dissipative rates. For experiments
with light fields in free space the spontaneous decay rate is generally much higher than
the coupling to a single field mode:γ≫ g. The situation is different, though, if the atom
is positioned at an anti-node of a standing wave field inside an optical cavity. In the case
of a resonant cavity, the coupling rate to the cavity field is increased and can exceed the
spontaneous decay rate [127]. In a realistic situation, thecavity only covers a small solid
angle and the coupling to the other vacuum modes, and, hence,the spontaneous decay
rate, will be unchanged. Beside the spontaneous emission, excitations can be lost to the
environment when a photon leaks out of the cavity because of the finite reflectivity or
the mirrors and the decay of the cavity field at a rateκ constitutes a second source of
decoherence in the system, see eq. (3.22).
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3.2. Two-level atoms interacting with a single cavity field mode

It is obviously interesting to be in a regime where the coherent exchange of excitations
between the two-level system and the cavity field at a rateg exceeds both the spontaneous
emission and the cavity field decay rate,γ,κ. In CQED the regime where

g> (κ,γ) (3.26)

is commonly referred to as the strong coupling regime [58]. It has been successfully
accessed with neutral atoms [61,128–131] and also with Cooper pairs [132] and quantum
dots [133].

With the normalization of the vacuum fieldε0E2
vacV = 1

2~ωc the field in the cavity is

given byEvac=
√

~ωc
2ε0V , whereV is the mode volume of the cavity, andωc is the frequency

of the cavity field mode. Substituting into eq. (3.25) the coherent coupling rate can be
written as

g= µge

√

~ωc

2ε0V
. (3.27)

To realize a situation whereg> γ, it is according to eq. (3.27), desirable to minimize the
volume of the cavity field mode. On the other hand, the finesseF , which is inversely
proportional to the length of the cavity, has to be maintained sufficiently high to also
ensureg> κ = νFSR

F
, see eq. (3.24).

3.2.1. The Jaynes-Cummings model

The Jaynes-Cummings model is a widely-used quantum mechanical description of the
interaction of a two-level system with a single light mode A comprehensive review of the
model can be found in [134].
In this subsection we will introduce the model for the simplesituation of a single two-
level system interacting with a single cavity field mode at ananti-node of the standing
wave field, before extending the model to the case ofN atoms in the following subsection.

The Hamiltonian of the coupled system consisting of a two-level system and cavity
field mode is given by

H = Hat+Hl +Hint. (3.28)

The first term of the Hamiltonian is the atomic part, which in the frame rotating at the
laser frequencyωl , is given by2

Hat = ~∆π̂(e) (3.29)

whereπ̂(e) = |e〉〈e| is the excited state population and∆=ωat−ωl is the atomic detuning.
The second term in eq. (3.28) describes a single mode of the (quantized) cavity light field
and is given by3

Hl = ~∆câ
†â, (3.30)

2 Note that the time dependence of the electromagnetic field isomitted by a unitary transformationU = e−iωl t

to a frame rotating with the frequency of the light field.
3For convenience, the zero-point energy of the vacuum field isomitted.
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Figure 3.3.: Schematic level diagram of the vacuum Rabi splitting in the resonant case
for a. a single two-level atom coupled to a single cavity field mode and b. N atoms
simultaneously interacting with the field mode. For detailssee text.

where∆c = ωc−ωl is the detuning of the cavity relative to the frequency of theinput field
andâ†, â are the intracavity field creation and annihilation operators. The third term in
eq. (3.28) describes the coupling between the two-level system and the light field. Using
the dipole approximation and in the frame rotating with the laser frequency it is given by

Hint =−µgeE =−~g(σ̂†+ σ̂)(â†+ â), (3.31)

where we inserted the coherent coupling rate defined in eq. (3.27).
Applying the rotating wave approximation, i.e. neglectingthe two non-energy conserv-

ing termsσ̂â andσ̂†â† in eq. (3.31) we find the Jaynes-Cummings Hamiltonian

H = ~∆π(e)+~∆c(â
†â)−~g(σ̂†â+ σ̂â†). (3.32)

It can be readily diagonalized using so-called dressed states [58,126]. In the experiments
described in this thesis we focus on the investigation of thelight-matter interaction at the
single photon level and we can restrict the system to the three lowest states|g,0〉 , |g,1〉
and |e,0〉. In this notationg,e refer to the atomic ground and excited states, and the
second quantum number 0,1 denotes the number of photons in the cavity field mode under
consideration. In the case of a resonant light field,ωl = ωat, the uncoupled states|g,1〉
and the|e,0〉 are degenerate. The coupling with the cavity field will, however, mix these
two states and give rise to the so called vacuum Rabi splitting of the cavity spectrum.
The new eigenstates of the coupled system are|g,0〉, |±〉 ≡ 1√

2
(|g,1〉± |e,0〉) and the

energy difference is∆E = 2g, see fig. 3.3 a. The situation is similar to the case when Rabi
oscillations between ground and excited state are driven bya strong laser field. However,
in the situation described here, these oscillations occur for light fields at the single photon
level.

3.2.2. Interaction of N atoms with a single cavity light mode

We will now generalize the previous single-atom situation to the case whereNtot ions
simultaneously interact with a single cavity mode. In the case of non-interacting atoms4,

4 For the case of an ion Coulomb crystal trapped in a linear Paultrap, this is a reasonable approximation, as
the ions are well-separated, and the Coulomb interaction only couples their external degrees of freedom, as
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3.2. Two-level atoms interacting with a single cavity field mode
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Figure 3.4.: CQED scheme considered for the description of the interaction between an
ensemble of ions and the cavity field. The situation is similar to the situation depicted in
fig 3.1. The resonator is formed by two mirrors M1 and M2, ain is the input light field,a
the intracavity field,atransandarefl are the transmitted and reflected fields, respectively.κ1

andκ2 are the cavity decay rates through M1 and M2, all other cavity losses are merged
in the rateκA . The spontaneous dipole decay rate of the ions is denoted byγ.

the Hamiltonian in the rotating wave approximation defined for a single two-level system
in eq. (3.32) now reads

HN = ~∆
Ntot

∑
j=1

π̂e
j +~∆câ

†â−~g
Ntot

∑
j=1

Ψnm(rrr j)(σ̂†
j â+ σ̂ j â

†), (3.33)

whereπ̂(e)
j is the excited state population andσ̂†

j andσ̂ j are the atomic rising and lowering
operators of thej-th ion (in the rotating frame) andg is the single-ion coupling rate defined
in (3.27). As the ions are not necessarily located at anti-nodes of the cavity mode, we take
into account the field distributionE0Ψnm(rrr j) of a single cavity Hermite-Gauss mode as
introduced in eq. (3.1) and weight the contribution of each ion to the light-matter coupling
with the field amplitude of the considered mode at the position of the atom.

To gain more insight into the collective behavior, it is, however, instructive to first
consider the situation, whereN atoms couple with equal coupling strength to a particular
cavity field mode, henceΨnm(rrr j) = 1, ∀ j. For a weak excitation of the system (at most
one excitation in form of a intracavity photon or a collective delocalized excitation of the
atomic ensemble) we can restrict ourselves to the three lowest-lying Dicke states [58],

|g,n〉N = |g〉(1) |g〉(2) ... |g〉(N) |n〉 , n= 0,1

|e,0〉N =
1√
N

N

∑
i=1

|g〉(1) |g〉(2) ... |e〉(i) ... |g〉(N) |0〉 , (3.34)

where|g〉( j) (|e〉( j)) denote the ground (excited) state of thej-th ion. The state vector
|g,n〉N represents the coupled system of all ions in the ground stateandn photons in the
cavity field mode, while the state|e,0〉N contains no photon in the cavity field mode and
one delocalized excitation which is shared by the whole atomic ensemble. The interaction
Hamiltonian in eq. (3.33) couples the two states|g,1〉N and|e,0〉N, the expectation value
yields

N

〈

g,1

∣

∣

∣

∣

∣

g~
N

∑
i=1

(

σ+
i a+σ−i a†

)

∣

∣

∣

∣

∣

e,0

〉

N

=
~g√

N

N

∑
i=1

(i)〈

g,n
∣

∣

∣

(

σ+
i â+σ−i â†

)∣

∣

∣
e,0
〉(i)

= ~g
√

N. (3.35)

explained in chapter 2.3.
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3. Cavity Quantum Electrodynamics

The situation is similar to the situation of a single two-level system coupled to the cavity
field mode discussed in the previous section, where the excited state,|e,0〉N, of the system
now can be understood as a collective spin polarization of the ensemble and the collective
coupling rate between the ensemble and the cavity field mode is enhanced by a factor

√
N.

Again, for∆ = 0 andg= 0 , the two states|e,0〉N and|g,n〉N are degenerate. A non-zero
couplingg lifts the degeneracy and the energy levels of the new collective eigenstates are
separated by 2g

√
N, as depicted in fig. 3.3 b.

An interesting regime is reached, when the collective coherent coupling rate between
theN-atoms and the cavity field mode exceeds the dissipative rates in the system

g
√

N > (γ,κ). (3.36)

In the literature it is referred to as as the collective strong coupling regime [58]. It was
successfully accessed with atomic ensembles in the microwave regime [60] and also in the
optical domain [61,62,135] and, more recently, with Bose-Einstein condensates [66,67].

Collective strong coupling in our system

Based on the above discussion, we can now estimate how many ions are necessary to reach
the collective strong coupling regime in our setup. In our experiments we investigate the
interaction of40Ca+ ions with a cavity light field on the 3d2D3/2↔ 4p2P1/2 transition
(see fig. 2.2) and the spontaneous decay rate of the 4p2P1/2 level isγ = 2π×11.2 MHz.
The second decoherence rate, namely the cavity field decay rate was measured to beκ =
2π×2.1 MHz [80].

The single ion coupling rateg can for the given atomic parameters and the known
geometry of the cavity be calculated (see appendix A.5) and we find

gtheory= 2π× (0.532±0.007)MHz. (3.37)

From these values we deduce that∼ 500 ions effectively interacting with a single cavity
field mode should be sufficient to reach the regime whereg

√
N > (κ, γ) in our system.

We will in the next section precise this effective number of ions in our situation.

3.2.3. The optical Bloch equations

In the previous subsection, we introduced the Hamiltonian describing the coherent light-
matter interaction, neglecting dissipative processes. Toderive the time evolution of the
system observables including the dissipative processes, i.e. spontaneous emission and
decay of the cavity field, we make use of a standard Heisenberg-Langevin approach [126].
It yields the time evolution of the system observables includes the damping terms and also
the noise operators describing quantum fluctuations. In theexperiments presented in this
thesis, we are only interested in the mean values of the operators and can restrict ourselves
to the semi-classical mean values of the observables, not including the noise operators.
For an arbitrary observable ˆo the semi-classical mean value is denote byo= 〈ô〉. In the
Heisenberg picture, the time evolution of an observable ˆo is given by dô

dt = − i
~
[ô,H].

Using the Hamiltonian of eq. (3.33), we can calculate the dynamical equations for the
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3.2. Two-level atoms interacting with a single cavity field mode

mean values of the system observables and one finds, including the dissipative terms

π̇(e)
j = −igΨnm(rrr j)

(

σ ja
†−σ†

j a
)

−2γπ(e)
j (3.38a)

π̇(g)
j = +igΨnm(rrr j)

(

σ ja
†−σ†

j a
)

+2γπ(e)
j (3.38b)

σ̇ j = −iagΨnm(rrr j)
(

π(e)
j −π(g)

j

)

− (γ+ i∆)σ j (3.38c)

ȧ = −(κ+ i∆c)a+ i
Ntot

∑
j=1

gΨnm(rrr j)σ j +
√

2κ1ain. (3.38d)

The three first expressions are commonly referred to as the optical Bloch equations [136],
while the last equation is the evolution equation of the cavity field including the interaction
with the atoms and can be regarded as an extension of the case of the empty cavity found
in eq. (3.16).

Low saturation regime

The set of differential equations in eqs. (3.38) describes the full dynamics of the coupled
atom-cavity system. In the experiments presented in this thesis, the light-atom interaction
is studied at the single (or few) photon level and the dynamical equations in (3.38) can
be restricted to the low saturation regime. In this limit, most of the atoms remain in the

ground state and we can assumeπ(e)
j ≈ 0, andπ(g)

j ≈ 1∀ j. Eqs. (3.38c) and (3.38d) reduce
to

σ̇ j = −(γ+ i∆)σ j + igΨnm(rrr j)a, (3.39a)

ȧ = −(κ+ i∆C)a+ i
Ntot

∑
j=1

gΨnm(rrr j)σ j +
√

2κ1ain. (3.39b)

3.2.4. Steady state spectrum of the coupled atom-cavity sys tem

In steady state the dynamical equations in (3.39) can be readily solved and one finds

σ j =
iga

γ+ i∆
Ψnm(rrr j) (3.40a)

a =

√
2κ1ain

κ+ i∆c− iχ
(3.40b)

where the linear susceptibility of the atomic ensemble

χ = g2N
i

γ+ i∆
(3.41)

was introduced. In this expression the sum over the contribution of the individual ions
was replaced by an effective number of interacting ionsN. It will be discussed for our
system in the following paragraph.
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3. Cavity Quantum Electrodynamics

The effective number of interacting ions

The effective number of ions is defined as the sum over all ionsin the crystal weighted by
the field mode functionΨnm of the TEMnm mode considered (see sec. 3.1.1)

N =
Ntot

∑
j=1

Ψ2
nm(rrr j). (3.42)

It can be understood as the situation where the interaction of the Ntot ions in the whole
ensemble with the cavity field mode is mimicked by an ensembleof N ions all located at
anti-nodes of the fundamental TEM00 mode.

As discussed in sec. 2.3, ion Coulomb crystals in a linear radio-frequency trap are to
an excellent approximation spheroids with half-lengthL and radiusR (see fig. 2.4) and a
constant ion density,ρ0, throughout the whole ensemble. It is then convenient to adopt a
continuous medium description, in which Eq. (3.42) becomesan integral over the crystal
volumeV

N = ρ0

∫
V

drrrΨ2
nm(rrr) (3.43)

In our experiment, the crystal radius and half-length,R andL, are typically much smaller
than the Rayleigh rangez0, so that the axial mode function can be simplified

sin2 [kz−arctan(z/z0)+ kr2/2R(z)
]

≈ sin2(kz). (3.44)

Moreover, for ions randomly distributed along the cavity axis, we can average over the
standing-wave longitudinal structure, which yields an effective number of ions of

N =
ρ0

2

∫ R

−R
dx

∫ R

−R
dyΨ2

n(x)Ψ
2
m(y). (3.45)

The exact expression in eq. (3.43) can be evaluated numerically for an arbitrary TEMnm

knowing the crystal dimensions, its density and the cavity mode geometry. In most of
experiments presented in this thesis, the cavity field mode function considered will be the
fundamental TEM00 Gaussian mode, introduced in eq. (3.7). For typical crystals with
large radial extension as compared to the cavity waist (R≫w0) and a half-length smaller
than the Rayleigh range (L≪ zR) the coupling to the TEM00 can be further approximated
and the exact expression of eq. (3.45) reduces to

N≃ ρ0
πw2

0

2
L, (3.46)

which is simply the product of the ion density by the volume ofthe cavity mode in the
crystal5.

Cavity transmission and reflection spectrum

Using the input-output relations given in eq. (3.20), the cavity transmission and reflection
spectrum of the coupled ion-cavity system can be calculated, taking the atomic suscepti-

5The volume is effectively reduced by a factor of1/2 by the longitudinal averaging.
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bility into account and one finds

R ≡
∣

∣

∣

∣

arefl

ain

∣

∣

∣

∣

2

=
(2κ1−κ′)2+∆′2c

κ′2+∆′2c
(3.47a)

=
[κ1−κ2−κA− Im(χ)]2+[∆c−Re(χ)]2

κ2+∆2+ |χ|2+2[κIm(χ)+∆cRe(χ)]

T ≡
∣

∣

∣

∣

atrans

ain

∣

∣

∣

∣

2

=
4κ1κ2

κ′2+∆′2c
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Here an effective cavity decay rate and an effective cavity detuning were introduced:

κ′ = = κ+ Im(χ) = κ+g2N
γ

γ2+∆2 , (3.48a)

∆′c = ∆c−Re(χ) = ∆c−g2N
∆

γ2+∆2 . (3.48b)

Like in the case of the empty cavity in eqs. (3.21) the line shape of the reflection and
transmission spectra are still Lorentzian when the cavity detuning is varied. However, the
bare cavity decay rate and detuningκ and∆c are replaced by the effective cavity decay rate
and detuning,κ′ and∆′c. These quantities, dressed by the atoms, result in a broadening
and a shift of the cavity resonance, respectively. The broadening and shift of the cavity
resonance represent the change in absorption and dispersion experienced by the cavity
field interacting withN ions and will be used in ch. 5 to quantify the collective coupling
strength achieved in our experiments. Fig. 3.5 a. shows the cavity transmitivity as a
function of cavity detuning∆c for an empty cavity and for 500 ions coupled to the light
field for a probe laser detuning of∆ = γ.

An interesting situation occurs when the length of the cavity, instead of being scanned,
is stabilized such that the cavity resonance frequency is equal to the atomic resonance fre-
quencyωc = ωat (hence∆c = ∆). As discussed in sec. 3.2.1, varying the probe frequency
amounts to probing the normal mode spectrum of the coupled atom-cavity system. In this
case, the reflectivity spectrum reads

R =
[κ1−κ2−κA− Im(χ)]2+[∆+Re(χ)]2

κ2+∆2+ |χ|2+2[κIm(χ)−∆Re(χ)]
(3.49a)

=
(κ1−κ2−κA)2+∆2−g4N2 γ2−∆2

(γ2+∆2)2
−2g2N (κ1−κ2−κA )γ−∆2

γ2+∆2

κ2+∆2+2g2N γκ+∆2

γ2+∆2 +
g4N2

γ2+∆2

. (3.49b)

As a function of the common detuning∆, it exhibits a characteristic double peak structure.
The splitting of the normal modes is commonly referred to as the vacuum Rabi splitting,
and was qualitatively already described by the Jaynes-Cummings model in sec. 3.2.2 (see
fig. 3.3). An example for the expected cavity reflectivity spectrum when the cavity is
locked on atomic resonance is shown in fig. 3.5 b. for an effective number of ions of
N = 500 and a single ion coupling rate ofg= 2π×0.53 MHz.
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Figure 3.5.: a.Calculated reflection spectrum as a function of cavity detuning ∆c for 500
ions coupled to the cavity mode (red line) and for the empty cavity (blue line). The probe
detuning was set to∆ = γ = 2π×11.2 MHz. b. Reflection spectrum for a cavity resonant
with the atomic transition (∆ = ∆c). The red line is calculated for 500 ions effectively
interacting with the cavity mode and a single ion coupling rate of g = 2π×0.53 MHz,
while the blue line corresponds to an empty cavity. The cavity parameters are identical to
those defined in fig. 3.2.
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Figure 3.6.:Effective dipole decay rateγ′ normalized by the natural widthγ as a function
of temperatureT. Each data points is the result of a fit to the cavity field effective decay
rate of eq. (3.51a) for a certain temperatureT. As a fitting function we use the cavity
effective decay rate found for the case of ions at rest (eq. (3.48a)), where the natural
linewidth γ was replaced by an effective linewidthγ′ to account for the finite temperature
of the ensemble.
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3.3. The effect of motion

The dynamical equations found in eqs. (3.38) are only valid for atoms at rest. If the veloc-
ity of the ions has a component along the axis of the cavity, the standing-wave structure
of the cavity field and the Doppler shifts due to the finite velocity of the ion have to be
taken into account. For an ion moving along the standing wavefield with a velocityv it
is convenient to define atomic dipole operators arising fromthe interaction with the two
counter-propagating components of the standing-wave cavity field σ j± = 1

2σ j exp(±ikz).
In the low saturation limit, taking into account the opposite Doppler shifts, and for a slow
motion, the evolution equations (3.40) become

σ̇ j± = − [γ+ i(∆± kv)]σ j±+ i(g/2)Ψnm(rrr j)a (3.50a)

ȧ = −(κ+ i∆c)a+ i(g/2)
Ntot

∑
j=1

Ψnm(rrr j)(σ j++σ j−)+
√

2κ1ain. (3.50b)

For a sufficiently large ensemble and random velocities of the individual ions given by
a certain probability distributionf (v) the steady state mean value of the intracavity field
can be calculated and is still of the same form as in the zero-velocity case (Eq. (3.40)).
However, the effective cavity decay rate and the effective cavity detuning are modified.
Eqs. (3.48) become

κ′ = κ+g2N
∫

dvξ(∆,v) f (v)γ (3.51a)

∆′ = ∆c−g2N
∫

dvξ(∆,v) f (v)(∆− kv). (3.51b)

where the dimensionless parameter

ξ(∆,v) =
γ2+∆2+(kv)2

(γ2+∆2)2+2(γ2−∆2)(kv)2+(kv)4 (3.52)

was defined. In the case of a thermal ensemble, the velocity distribution is the Maxwell-
Boltzmann distribution, which for a certain temperatureT is given by

f (v) =

√

m
2πkBT

exp

(

− mv2

2kBT

)

dv. (3.53)

For temperatures in the few tens of mK range the variation of the cavity field effec-
tive decay rate and detuning with∆ given by Eqs. (3.51) are still well-approximated by
Eqs. (3.48) replacing the natural linewidthγ by an effective dipole decay rateγ′.

Fig. 3.6 shows the effective dipole decay rate as a function of the detuning∆ deduced
by fitting the numerically calculated effective cavity fielddecay rate for finite tempera-
turesT in eq. (3.51a) by eq. (3.48a) calculated for ions at rest and leaving the effective
dipole decay rateγ′ as a free parameter. This graph will later allow us to approximate the
temperature of a certain ion Coulomb crystal from the effective dipole decay rate, found
by fitting the measured effective cavity field decay rate by eq. (3.48a).
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4. Experimental setup

In this section the setup used for the experiments presentedin this thesis will be described.
The setup was to a large extent finished before the start of this PhD and we will only
give a brief description of the setup. The project was started with the goal of building a
quantum memory based on ion Coulomb crystals in an optical cavity and a first version
of a linear Paul trap with an optical cavity incorporated wasdesigned and built by Anders
Mortensen. Details on the design considerations and first experiences with the setup can
be found in his PhD thesis [137]. The project was then continued by my predecessor
Peter Herskind who developed and constructed of the second trap, which is the one used
for the experiments in this thesis. A very comprehensive anddetailed description of both
the cavity trap and also the laser systems used for our experiments is given in his PhD
thesis [80].

Some of the experiments presented in this thesis required slight changes of the system,
mainly of the optical setup. The relevant modifications willbe described in the respective
chapters. Here, we will focus on the general aspects and the main components of the
experiments.

The chapter is structured as follows. In sec. 4.1 we will start out with an overview of
the setup, before describing the linear Paul trap in sec. 4.2. In sec. 4.3 we will present
the laser systems used for the loading, Doppler cooling and state preparation of the ions,
followed by the imaging and fluorescence detection systems in sec. 4.4. In sec. 4.5 we
will describe the optical cavity incorporated into the trapand in sec. 4.6 give a technical
description of a general technique to geometrically displace the minimum of the radially
confining RF potential in order to overlap the cavity and the trap axis. Finally, we will
describe the cavity detection systems and the data acquisition system in sec. 4.8 and 4.9,
respectively.

4.1. Overview

Trapping charged particles in the vicinity of dielectric objects like mirrors is very chal-
lenging, as the insertion of such dielectrics into the trapping region may significantly
change the boundary conditions and perturb the field lines ofthe confining potential. Fur-
thermore, charging effects on the dielectric surfaces may give rise to local patch potentials
which also change the effective trapping potential. The realization of the strong coupling
regime of cavity quantum electrodynamics necessitates very small cavity mode volumes
(see eq. (3.27)) and is therefore difficult with ions. Only few groups have until now
realized ion trap systems incorporating optical cavities to investigate the interaction of
single ions with a cavity field mode [68–74] and the single-ion strong coupling regime
still remains to be achieved.

The cavity trap inÅrhus was designed to realize an efficient quantum memory using
large ion Coulomb crystals. One of the basic requirements for such a memory is the
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Figure 4.1.: Inside of the vacuum chamber, with the main laser beams. The chamber has
a inner diameter of 40 cm. For details see text.

achievement of the collective strong coupling regime [55] (see. eq. (3.36)). ForN ions
effectively interacting with the cavity field mode the collective coherent coupling rate is
enhanced by

√
N (see eq. (3.36)). For a sufficiently large number of ions, therequirement

for small cavity mode volumes therefore becomes less critical as the regime, where the
collective coupling rateg

√
N exceed the spontaneous dipole decay rate and the cavity

field decay rate,γ andκ, can be reached althoughg< (κ,γ).
In our setup, a segmented linear Paul trap (see sec. 4.2) is combined with a moderately

high finesse cavity (see sec. 4.5). The cavity trap is mountedin a vacuum chamber under
ultra-high vacuum conditions (pressure∼ 2−5·10−10 mbar), with 8 viewports providing
optical access from different sides and from the top. A picture of the inside of the vacuum
chamber with the main laser beams can be seen in fig. 4.1. The vacuum chamber is
positioned on an optical table, which also contains the necessary optics to distribute the
different laser beams to the chamber and the detection systems. All the laser systems are
located on different optical tables, and the light is brought to the trap table through optical
fibers.

4.2. The linear Paul trap

The ion trap is a segmented linear Paul trap, formed by four cylindrical rods, each divided
into three separate electrodes, see fig. 2.1. A mathematicaldescription of the confinement
potentials was given in sec. 2.1. The trap electrodes have a radius ofre = 2.60 mm and
are diagonally separated by 2r0 = 4.70 mm. The lengths of the central and the outer
segments are 2z0 = 5.00 mm andzend= 5.90 mm, respectively (see fig. 4.6). The trap is
operated at a frequency ofΩRF = 2π×4.0 MHz. The radio-frequency field is applied to
all 3 segments of each rod, with a phase difference ofπ between neighboring rods, see
fig. 2.1.

The endcaps are formed by the four outer segments on each sideand axial confinement
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Mirror 1 HRMirror 2 PT

PZTs Trap electrodesCeramics mount

Figure 4.2.: Picture of the cavity trap setup taken through one of the viewports of the
vacuum chamber. The cylindrical trap electrodes are of goldplated copper and attached
to a monolithic Macor mount. The two cavity mirrors are held by titanium plates separated
by two low expansion ceramics. Mirror 1 is the high reflector (HR) and directly mounted
on the titanium plate. Mirror 2 is the partial transmitter (PT) and mounted on a PZT plate
to allow for precise control of the cavity length.

is achieved by applying static potentials (DC) to these electrodes. In this geometry, the
a- andq-parameter defined in eqs. (2.5) and (2.5) area = −0.84× 10−3 UDCV−1 and
q = 1.38× 10−3URF/V, the axial geometrical constant isη = 0.342. The trap electrodes
are manufactured from gold coated copper and mounted on cylindrical ultra low expansion
rods (Zerodur), which are held in place by a monolithic ceramic frame (Macor). The RF
amplitude is provided by a frequency generator1 and amplified by an RF amplifier2. A
home-built continuous current voltage driver is used to supply the DC end-cap voltages
(electrode segments 1-4-7-10 and 2-6-9-12, respectively,see fig. 2.1) and, in addition, also
allows for the selective application of DC potentials to some of the electrode segments
(e.g. 1-2-3 and 4-5-6 can be controlled independently, see fig. 2.1). More details on the
linear Paul trap can be found in [80] and [120].

4.3. Laser system

In this section the laser systems used for Doppler cooling, ionization and state preparation
of the ions are introduced. A simplified schematic overview over all laser beams and the
optical setup is shown in fig. 4.3

1Hewlett-Packard, HP 33120A
2Amplifier Research, 4W1000
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Figure 4.3.: Schematic setup of the cavity trap and the laser system. The ionization
laser is not shown on the sketch. A more detailed picture of the cavity detection system
is shown in fig. 4.8. The abbreviations are: Polarizing beam splitter cube (PBC), single
mode (SM), acousto optical modulator (AOM), dichroic mirror (DM). Pound-Drever-Hall
lock (PDH lock).
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4.3.1. Doppler cooling lasers

The Doppler cooling light on the 4s2S1/2↔ 4p2P1/2 transition of40Ca+ at 397 nm (see
fig. 2.2) is produced by a frequency doubled Ti:Saph laser. The frequency of this laser
is stabilized using a Pound-Drever-Hall [138] locking scheme to a temperature stabilized
reference cavity, formed by two mirrors on a 25 cm long quartztube. The free spectral
range of the reference cavity isνFSR∼ 600 MHz. The resonator is mounted in an evac-
uated vacuum tube, the frequency stability was measured to be∼ 1 MHz/h, for details
see [139]. The laser light sent to the reference cavity is passed through a double-pass
acousto-optical modulator (AOM) allowing for the fine tuning of the frequency of the
Ti:Saph laser by±100 MHz. When locked to the reference cavity the linewidth ofthe
laser is of the order of∼ 100 kHz and much narrower than the natural linewidth of the
4s2S1/2↔ 4p2P1/2 transition in40Ca+ which isΓ = 2π×22.4 MHz.

The frequency doubled light is then sent through a second AOMin single-pass and the
−1st-diffraction order is coupled to a fiber guiding the light to the trap table (see fig. 4.3).
The AOM is used to switch the Doppler cooling light on and off,with typical rise times
of the order of∼ 100 ns and an on-off attenuation of> 55 dB after the fiber. On the trap
table the light is split into two equally intense beams that are sent to the trap in counter
propagating directions along the trap axis, with opposite circular polarizations (σ+/σ−).

4.3.2. Repumping and optical pumping laser

An external cavity diode laser system provides light at 866 nm, corresponding to the
3d2D3/2↔ 4p2P1/2 transition of40Ca+. It is used both to repump spontaneously decayed
ions from the metastable 3d2D3/2 level during the cooling cycle and to optically pump
the population to certain Zeeman substates of the 3d2D3/2 level. The diode laser is also
frequency stabilized to a second temperature stabilized reference cavity (length 25 cm,
νFSR∼ 600 MHz) in a Pound-Drever-Hall scheme with a linewidth of∼ 100 kHz. Again,
a double-pass AOM setup allows for the fine tuning of the laserfrequency by±100 MHz.

The beam is split into two parts for repumping and optical pumping. Both beams are
sent through single pass AOMs to allow for switching the beams on and off, the−1st-
diffraction order is again coupled to single-mode fibers transporting the light to the trap
table (extinction after the fiber> 55 dB).

In most experiments the repumping laser is sent to the trap center along thex-axis, i.e.
perpendicular to the cavity axis, see fig. 4.3. The polarization is chosen perpendicular to
thez-axis, which, in the basis of the quantization axis (z-axis) corresponds to a superposi-
tion of σ+ andσ− light. With this polarization, all four magnetic substatesof the 3d2D3/2

level are addressed and repumped to the excited 4p2P1/2 level, from which the atoms de-
cay to the 4s2S1/2 ground state (with a probability of 12:1). In some experiments different
configurations for the injection of the repumping laser willbe used, e.g. to visualize the
transverse cavity modes (see fig. 5.1).

The optical pumping beam is (in most experiments) sent to thetrap at an angle of 45◦

relative to thez-quantization axis, see fig. 4.3. The polarization of the optical pumping
beam after the fiber is controlled by a Glan Polarizer and successively aλ/4 and aλ/2
wave plate. It has a suitable polarization, such that only theπ andσ+ transitions between
the 3d2D3/2 and 4p2P1/2 level are addressed [140]. During optical pumping the Doppler
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Figure 4.4.: Resonantly enhanced two-photon ionization scheme. The lifetime of the
4s5p1 P1 level is 17−60 ns, the lifetime of the 4s3d1D2 state is 18µs

cooling beams at 397 nm are sent to the ions to transfer population of the 4s2S1/2 ground
state to the metastable 3d2D3/2 state. In this configuration, the mj = +3/2 state of the
3d2D3/2 level will not be addressed by any laser and the simultaneousinteraction with the
repumping and the Doppler cooling laser transfers the population to this quantum state.

4.3.3. Isotope selective loading

Calcium ions are loaded to the trap from a resistively heatedoven containing natural
abundant calcium comprising all stable Ca isotopes. With a fraction of 96.9 %, the most
abundant isotope is40Ca, which is also used for all experiments presented in this thesis.
However, any stable Ca isotope can be loaded [80, 120], e.g. to form bi-crystals of two
simultaneously trapped isotopes [118,141].

To load calcium into the trap, the oven is typically heated to∼ 410◦ C, and a thermal
beam emerges from the oven. It is collimated by a set of skimmers and sent thought the
center of the quadrupole trap at 45◦ relative to the trap axis, where it is perpendicularly
crossed by an ionization laser beam at 272 nm allowing for theisotope selective loading of
calcium. This is accomplished by a resonantly enhanced two-photon ionization process,
where neutral calcium is first excited to the 4s5p1P1 level by a resonant photon around
272 nm and subsequently transferred to the ionization continuum, either directly from
the 4s5p1P1 level or, after a spontaneous decay, from the metastable 4s3d1D2 level by a
non-resonant second photon at the same wavelength (see fig. 4.4). The isotope selectivity
of the process originates from the first resonant transition, which for40Ca is separated by
∼ 1 GHz from the next closest isotope42Ca [142].

Light at 272 nm is produced by a fiber laser3 at 1088 nm which is frequency quadrupled
in two subsequent bow-tie cavities [143]. The fiber laser is tunable over several GHz, and
any stable Ca isotope can be loaded by tuning it to the isotopespecific frequency of the
4s2 1P1↔ 4s5p1P1 transition. Both the Doppler cooling and repumping lasers are on
during the loading process [120]. After loading the desirednumber of ions into the trap
the light of the ionization laser is blocked and the calcium oven is closed.

3Coheras Boostik
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Figure 4.5.:Schematic setup of the imaging system. Two charged coupled device cameras
(CCD) and one photo-multiplier tube (PMT) can be used to monitor the fluorescence of
the ions. The main camera system and the PMT are mounted abovethe trap, while the
second CCD camera is used to image the ions from the side.

4.4. Imaging and fluorescence detection systems

Two camera systems are used to visually detect the ions in thetrap by collecting the
reemitted fluorescence light during the Doppler cooling process. Additionally, a photo-
multiplier tube can be used to monitor the fluorescence levelfrom the trap. All three
systems will be described in the following. A schematic setup of the camera systems is
depicted in fig. 4.5.

4.4.1. Top camera

The main camera is mounted above the trap and images the trapped ions in the(x,z)-
plane. All projection images of ion Coulomb crystals in thisthesis are taken with this
camera. The imaging system consists of an achromatic lens with a focal length of 75 mm
mounted∼ 80 mm above the trap to collect the fluorescence light. The ions are imaged
with a magnification of∼ 10 onto an image intensifier4 consisting of two stacked multi-
channel plates. The intensifier produces an amplified picture of the ions on a phosphor
screen, which then is imaged with a magnification of1/2 by a commercial objective5 onto
a charged coupled device (CCD) camera6 with a resolution of 640×480 pixels.

Beside the amplification, the image intensifier also provides the possibility of being
gated, with gating times as short as∼ 20 ns. The gating can be used to take time resolved
images of the ions and to visualize e.g. dynamics of the ion Coulomb crystals’ motion.

The resolution of the camera was calibrated using an opticalfiber with a known radius
that was moved into the trapping zone. The fiber was illuminated by Doppler cooling light

4Proxitronic detector systems, MCP-Proxifier
5Nikon
6PCO sensicam
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ỹ

ẑ
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Figure 4.6.:Sketch of the linear trap with integrated cavity mirrors.

at 397 nm and the scattered light was imaged onto the CCD camera. From this measure-
ment, the resolution was found to be 1.98±0.05 µm/pixel [80]. With this calibration, the
camera can be used to determine the geometrical size of the imaged ion Coulomb crystals,
as well as their transverse position in the(x,z)-plane.

4.4.2. Side camera

The resolution of 640×480 pixels limits the size of the largest ion Coulomb crystals that
can be fully imaged on the top camera to a length of∼ 1.3 mm and to∼ 1.0 mm in the
radial direction. In some experiments, crystals with a length of up to∼ 3 mm are used
and to be able to also directly image these large crystals, a second camera system is used
to monitor the ions from the side. The imaging resolution of this camera is considerably
lower mainly due to the geometric restrictions imposed by the vacuum chamber geometry.
The calibration is done by directly comparing images of ion Coulomb crystals taken with
this camera with images of the main camera. The pixel calibration depends on the settings
of the camera zoom and, for the measurements in this thesis, was 8.1 µm/pixel. Beside the
measurement of the axial extension of large crystals, the side camera can also be used to
determine the vertical position of the trapped ion Coulomb crystals.

4.4.3. Photo multiplier

In addition to the two cameras, a photo-multiplier tube (PMT) can be used to monitor
the fluorescence level of the ions. This is especially usefulin situations where the fluo-
rescence level is used to optimize e.g. laser detunings or when the time dependence of
the fluorescence level is of interest, e.g. when optimizing the optical pumping prepara-
tion. In principle, time-resolved measurements can also beperformed with the gateable
image intensifier, however, this requires stroboscopic measurements at particular phases
of a measurement sequence, and, hence, many runs to reconstruct the fluorescence level
over a longer period. With the PMT, this can be accomplished much faster and with a
time-resolution of∼ 100 ns. The light sent to the PMT is split of the optical path tothe
top camera, just before the image intensifier on a beam splitter.

42



4.5. The optical cavity

4.5. The optical cavity

In this section the optical cavity incorporated into the trap will be described. A sketch
of the setup is shown in 4.6. The cavity is formed by two mirrors positioned on the axis
of the quadrupole trap such that the axis of the cavity is parallel to the symmetry axis of
the trap. The dielectric mirror substrates are made of fusedsilica. Their presence may
affect the electric fields in the trap and might bend the RF-field lines and lead to an axial
component of the RF-field, yielding e.g. to axial micromotion, which would result in a
broadening of atomic transitions through the Doppler effect. To avoid this effect, one
strategy is to make the mirror substrates as flat as possible and to extend them as close to
the electrodes as possible, as was shown by simulations [137]. For this purpose, dielectric
mirror coats are added around the mirror substrates to fill the space between the electrodes
almost completely. They have a diameter of 4.16 mm, while the electrodes are separated
by 2r0 = 4.70 mm (see fig. 4.6). On fig. 4.2 the mirror coats appear as blue objects to the
left and the right of the trap center. Their blue appearance arises from scattering of cooling
light at 397 nm. The cavity mirrors themselves have a diameter of 1.2 mm and a radius
of curvature of 10 mm. They are both anti-reflection coated ata wavelength of 866 nm
corresponding to the 3d2D3/2↔ 4p2P1/2 transition in40Ca, with mirror M1 being partially
transmitting (PT) and M2 being a high reflector (HR). The transmission coefficients are
1500 ppm and 5 ppm, respectively. A construction of two titanium end-walls, separated
by low expansion ceramics, is used to hold the mirrors in position. While the HR mirror is
directly fixed to the titanium plate, a set of three piezo electric actuators (PZT) is holding a
small titanium plate, on which the PT mirror is mounted, to allow for scanning or actively
stabilizing the cavity length. The cavity is in a close to confocal geometry with a length
of 11.8 mm, corresponding to a free spectral range ofνFSR= 12.7 GHz and a waist of the
fundamental TEM00 mode ofw0 = 37µm.

The cavity field decay rate was measured to beκ = 2π× (2.1±0.1)MHz, correspond-
ing to a finesse ofF = 3000±200 at a wavelength of 866 nm [120].

4.6. Overlapping cavity and trap axis

For the purposes of CQED a good alignment of the cavity axis and the axis of the quadrupole
trap, given by the field-free nodal line of the RF potential, is necessary to achieve the best
overlap between cavity field mode and the ion Coulomb crystals. In practice, it can be
difficult to achieve a precise positioning of all the elements beforehand and it is there-
fore desirable to have a method for correcting possible misalignments once the trap is
assembled.

In principle, additional DC potentials on some of the trap electrodes could be used to
translate the crystals along the radial directions to optimize the overlap with the cavity
mode. This would, however, move the revolution axis of the crystal away from the field-
free nodal line of the RF-trapping potential. The solutionsto the Mathieu equation found
in eq. (2.6) would accordingly have to be changed and, for an radial offset of ( ˜x0, ỹ0),
would read

x̃(t) = (x̃0+ x̃r cos(ωr t)
[

1+
q
2

cos(ΩRFt)
]

ỹ(t) = (ỹ0+ ỹr cos(ωr t)
[

1− q
2

cos(ΩRFt)
]

. (4.1a)
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As a consequence, the amplitude of the quiver micromotion would be non-zero even if
the secular motion was completely suppressed. This so-called excess micromotion has
an amplitude of12u0q, (u= x̃, ỹ) and can be substantial even for small displacements. It
might lead to RF heating and, subsequently, to significant broadening of the linewidth of
the atomic transitions and other undesirable effects.

It is therefore desirable to find a general scheme to directlycontrol the position of the
potential minimum of the radial pseudo-potential. A solution is to change the loads of the
individual trapping electrodes by adding additional capacitors in parallel or in series with
the electrodes. A schematic drawing is shown in fig. 4.7, the method is described in more
details in [119] or [80].

In short, the method relies on the selective modification of the resonance conditions
for the twelve individual electrodes, which are coupled to the RF-power supply through
a 1:10 ferrite toroid transformer. Each electrode forms a LRC resonance circuit, with a
capacitanceC formed by the circuit and the cables and an inductanceL mainly set by the
transformer. The electrodes themselves have a capacitancesCt . A schematic drawing of
the circuits is shown in fig. 4.7. The two opposite phases of the RF are produced by two
separate circuits, both connected to the same RF source, butwith the windings around the
transformer coil in opposite directions. The capacitance of the circuit is measured to be
C = 2.2 nF, each trap electrode has a capacitance ofCt ≃ 40 pF and the voltage on the
electrode is hence given byUe =Uin/(1+Ct/C). By changing the effective capacitance
of the electrodes by additional serial and parallel loads,Cs andCp, the RF-amplitude on
the electrodeUe can be attenuated, as indicated on fig. 4.7.

Modifying the capacitive loads on the different chains might also lead to a change of
the resonance frequency or to undesired phase shifts between the RF-fields. This effect
can, however, be compensated for by an appropriate combination of parallel and serial
loads and in the limitC≫Ct ,Cp,Cs, the resonance frequency and the relative phases can
be kept nearly constant for the right ratio ofCp andCs.

After the assembly of the trap an offset of≃ 90µm in thex−z-plane and of≃ 80µm in
they−z-plane were measured from projection images. Using the technique of moving the
minimum of the RF-potential described here, the trap and cavity axis could be overlapped
to within±1 µm [80,119].

To show that moving the minimum of the RF potential by∼ 100µm with our technique
has no significant effect on the RF heating as compared to the unmodified circuit and
that in both situations the ion Coulomb crystal are well described by the zero temperature
charged liquid model introduced in sec. 2.3.2 we performed calibration measurements in
both situations, as will be discussed in the following section. A precise method to measure
the radial offset between cavity and trap axis will be presented in sec. 6.4.

4.7. Calibration of the trap

In sec. 2.3.2 a thermodynamical description of ion Coulomb crystals in the framework
of a zero temperature charged liquid plasma model was introduced. Based on this model,
an expression for the ion density in the ensemble was found ineq. (2.15), which solely
depends on the RF-amplitude of the trapping potential. In practise, the amplitudes seen by
the ions will depend on the actual circuit supplying the voltage to the electrodes, making
it difficult to directly measure them. Furthermore, this attenuation might be modified by
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Figure 4.7.:Moving the minimum of the RF potential. The electrodes have acapacitance
Ct and are connected to the RF-supply through a toroidal transformer with inductanceL.
The capacitive load of the remaining circuit is representedby the capacitancesC. The
field free nodal line of the RF potential can be moved by attenuating the RF-amplitude
on selected electrodes by applying additional serial and parallel capacitanceCs andCp,
without substantially changing the resonance frequency and the relative phases.

the additional capacitances used to overlap cavity and trapaxis, as was described in the
previous section. A calibration of the trap voltages can however be accomplished on the
basis of the plasma model and molecular dynamics calculations, as explained in sec. 2.3.2.
We will in the following describe the two independent calibration methods.

The first method is based on the zero temperature charged liquid plasma model intro-
duced in sec. 2.3.2. This model allows to relate the aspect ratio of the ion Coulomb
crystals to the ratio of the trap frequencies, see eq. (2.24), which on the other hand also
can be deduced from the trapping parameters, see eq. (2.25).The aspect ratios can be
precisely measured from projection images, as was explained in sec. 4.4. From this we
can deduce the ratio of the trap frequencies by eq. (2.24) fordifferent trapping parame-
ters. As the ratio of the trap frequencies also depends on thetrapping parameters, we can
fit them using a modified version of (2.25)

ωz

ωr
=

√

α2U2
RFz2

0Q

4ηMΩ2
RF(UDC−Uoff)r4

0

− 1
2

(4.2)

to deduce an attenuation factorα for the applied RF-amplitudeURF and an offsetUoff

for the axial DC-potential, which might be caused e.g. by charging effects on the cavity
mirrors.

The second method uses the dependence of the inter-shell spacing for long ion Coulomb
crystals on the trapping voltages, see eq. (2.26). Here, thespacing of neighboring shells
has to be deduced from projection images (see sec. 4.4) and isfitted by

δr = 1.48×
(

3r4
0M

4πε0

Ω2
RF

α2U2
RF

)1/3

(4.3)

where 1.48 is a constant found from molecular dynamics calculations andα again ac-
counts for a possible attenuation of the RF amplitude.
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Figure 4.8.:Schematic setup of the cavity detection system. The beam path of the 866 nm
probe laser when injected in transmission is indicated by the dashed line. (PBC), single
mode (SM), Pound-Drever-Hall lock (PDH lock).

It is worth noticing that the first method only relies on the aspect ratio of the crystal and
hence does not depend on any calibration of the length scale,whereas the measurement
of the inter-shell spacing requires such a calibration. Thesecond method might hence
serve as cross-check to test the validity of the model or, assuming the correctness of the
numerical pre-factor of 1.48, to check the calibration of the trap and the imaging system.

More details on the two methods can be found in [119] and [80].

4.8. Probing the cavity

In this section, the laser systems and detection setup used to probe the ion-cavity interac-
tion will be described. A schematic drawing of the setup is shown in fig. 4.8.

4.8.1. Probe and reference lasers

Probe laser

A second external cavity diode laser at 866 nm is used to probethe interaction of the
coupled ion Coulomb crystal-cavity system. We will in the following refer to this laser as
the ”probe-laser”7. The setup of the diode laser is similar to the one used for repumping
and optical pumping. It is frequency locked to the same temperature stabilized reference

7In ch. 8 this laser will also be used as the control laser to realize cavity electromagnetically induced trans-
parency.
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cavity in a Pound-Drever-Hall configuration, the frequencycan be tuned using a double
pass AOM by±100 MHz. As the laser is used to probe the coupled atom cavity system,
the linewidth of the laser should be narrower than both the atomic dipole decay rate of
γ = 2π× 11.2 MHz and the decay of the cavity field at a rate ofκ = 2π× 2.1 MHz. It
was measured in a self-heterodyne setup to be 107±2 kHz when locked to the reference
cavity [80].

On the trap table, two independent setups can be used to couple the probe light into the
cavity either from the PT or the HR side. On the laser table, a flip mirror is used to switch
the light between two separate single mode fibers guiding thelight to the two setups.
Before the fiber incouplers, a single pass AOM is used to shutter the beam, with the−1st-
diffraction order being sent to the fibers when switched on. The on-off attenuation after
both fibers is> 55 dB.

The optical setup after the two fiber outcouplers will be described in sec. 4.8.2 in
connection with the single photon detection scheme.

Reference laser

An additional diode laser with a wavelength of 894 nm is used during the cavity QED
experiments and serves, depending on the measurements, twodifferent purposes. Its
wavelength is not resonant with any transition of40Ca+ to suppress a direct interac-
tion of this laser with the ions. The laser is frequency locked together with the two
diode lasers at 866 nm to the same reference cavity and also tunable by means of a
double pass AOM before the reference cavity. The resulting linewidth was measured
to be 85± 5 kHz [80]. Despite the narrow linewidth, the light emitted from the diode
in single mode operation still contains a non-negligible contribution of photons at the
wavelength of the 3d2D3/2↔ 4p2P1/2 at 866 nm. As this would substantially disturb the
measurements, the light of the 894 nm laser is spectrally filtered with a diffraction grating
(1800 lines/mm). The light is overlapped with the beam path of the probe laser to the
PT-side on the laser table and sent through the same optical fiber.

When scanning the length of the cavity, the transmission level of the 894 nm laser can
be monitored and the position of the transmission peak serves as a frequency reference
for the cavity and gives information on cavity drifts and acoustic vibrations. The second
possibility is to use the reference laser to lock the length of the cavity in a Pound-Drever-
Hall scheme. Both methods will be described and discussed inmore details in sec. 4.8.3

4.8.2. Cavity light detection

Due to the low light levels used for probing the ions, the detection of the reflected/transmitted
photons is performed by two avalanche photo detectors (APDs). The first APD (probe-
APD) is installed on the PT side of the cavity, to monitor the signal of the cavity probe.
As mentioned above, the probe laser can be injected into the cavity both from the PT and
the HR side, and the corresponding probe signal will, depending on the incoupling, be
measured in reflection and transmission.

The first configuration, where the probe laser is injected through the PT mirror, is used
in most experiments and the probe and reference beam are in this case guided to the
trap table through the same polarization maintaining fiber.After the fiber aλ/2 wave-
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plate and a PBC are used to ensure a well-defined linear polarization. The beam size is
modematched to the cavity by a telescope and a focusing lens.Before the focusing lens,
a polarizing beam splitter cube (PBC) separates the cavity reflection from the incident
beam. Aλ/4-waveplate transforms the polarization of the probe light to σ−-polarization
and an additionalλ/2-waveplate allows for small corrections of the polarization direction
with respect to the quantization axis. Both waveplates can also be used to pre-compensate
birefringence effects, e.g. induced by the cavity mirrors.Typical coupling efficiencies to
the fundamental TEM00 mode are> 95%.

The light reflected from the cavity is separated from the incident beam on the PBC and
a higher-order waveplate (λ@894 nm,λ/2@866 nm) is used to also separate the probe and
the reference laser on a second PBC, where the 894 nm light is reflected of to a photo-
detector or to the Pound-Driver Hall locking detector and the 866 nm light is transmitted.

Though the transmission of 894 nm light is suppressed by∼ 20 dB, the 866 nm probe
light has to be spectrally filtered on a diffraction grating with 1800 lines/mm to remove
any residual photons at 894 nm from the beam. It is then coupled to a single mode fiber
guiding the light to the probe APD. Taking the efficiency of the APD at 866 nm (∼ 44%),
of the grating (∼ 63%), the fiber coupling (∼ 65%) and the optics (∼ 90%). into account,
the detection efficiency of the probe photons amounts to 16% [80].

The transmitted light on the HR side passes a combination of aλ/4 and aλ/2-waveplates
at 866 nm leaving the polarization of the 894 nm unchanged. A fraction of the reference
light will be reflected off the following PBC and is, after spectral filtering on a diffrac-
tion grating (1800lines/mm), it is coupled to the second APD (reference APD). When the
probe light is sent to the cavity from this side, the two waveplates are used to adjust the
polarization of the incident beam.

4.8.3. Scanning and locking of the cavity

As abovementioned, the 894 nm reference laser may either serve as a frequency reference
when scanning the cavity length or to lock the resonance frequency of the cavity. The two
procedures will be described in more detail in this subsection.

Scanning the cavity

In several experiments described in this thesis, the lengthof the cavity is continuously
scanned over the resonance at a rate of 30 Hz by a triangle-voltage with an amplitude
corresponding to∼ 1.3 GHz. In these experiments, the cavity reflection (or transmission)
spectrum is measured by repeatedly probing the reflected (ortransmitted) fraction of the
probe laser by the APD at typical rates of∼ 50 kHz, with integration times for the probe
APD of the order of∼ 1 µs. As we want to investigate the light-matter interaction at
the quantum limit, we work with mean intracavity photon numbers. 1. With a cavity
decay rate of 2κ = 2π×4.2 MHz this corresponds to at most 9 photons leaking out of the
cavity during a∼ 1 µs probe interval, of which, taking the overall detection efficiency into
account, only 16 % will be detected. To reconstruct the cavity spectrum, one therefore
has to average over several scans, typically a few hundreds.

It turned out that the cavity mirrors are sensitive to acoustic vibrations and some me-
chanical resonances could be identified by deliberately exciting the vibrations. The most
dominant were found around 400 Hz and 2 kHz, however, their actual frequency depends

48



4.8. Probing the cavity

on the voltage applied to the piezo actuators. As the frequency of this noise is faster
than the rate at which the cavity length is scanned, the mechanical vibrations will slightly
change the position of the cavity resonance from scan to scan, making it impossible to
directly average the weak probe signal. To compensate for these vibrations and other me-
chanical drifts, the 894 nm laser is used as a frequency reference in these experiments.
When the frequency of the reference laser is set such that thecavity is resonant for both
lasers for the same cavity length, the effect of mechanical drifts on both signals will be
directly correlated. For a sufficiently strong reference field, the position of the cavity res-
onance for the 894 nm laser can be identified on each individual scan and one can use
it to shift the two signals such that the resonance peaks of the reference overlap on the
different scans. As the transmission of the reference is measured with an APD, injecting
the cavity with less than 1 nW is sufficient to accomplish thiswithout influencing the state
of the ions. The referencing to the 894 nm laser was tested by reconstructing the spectrum
of the empty cavity, which can be independently measured with a strong probe field on a
single scan, see [80].

Locking the cavity

A second measurement technique uses a cavity that is locked to the resonance frequency of
the atomic transition. In these experiments, the 894 nm laser is used to actively stabilize
the cavity length by appropriate feedback to the PZTs. Its frequency is set such that it
overlaps on the cavity scan with a 866 nm laser resonant with the atomic transition. The
reflected reference signal is then sent to a Pound-Drever-Hall lock and used to stabilize the
cavity length. Though a slightly higher incident power of the reference laser is necessary
as compared to the scanning of the cavity, the locking can be accomplished with input
powers of the order of∼ 30 nW, corresponding to a mean intracavity photon number of
5 ·104.

The acoustic noise also perturbs the measurements in this scheme substantially. An
active stabilization of the cavity is rendered difficult, asthere are several mechanical res-
onances which, depending on the relative phase used in the feedback loop, can be driven
easily by the stabilization. Instead of stabilizing the cavity against all mechanical vibra-
tions, the feedback is optimized for frequencies lower thanthe lowest resonance at around
400 Hz and we use the transmitted signal of the reference laser to post-compensate the
related fluctuations of the probe signal. Again, the acoustic noise on the two signals
should be correlated and a drop of the transmitted referencesignal monitored by the APD
indicates that the cavity is no longer resonant with the 894 nm laser. The data is then
simply filtered by setting an appropriate threshold for the reference APD signal and only
keeping the data points for which the reference level exceeded the threshold. Obviously,
this reduces the amount of usable data, but ensures that the cavity was resonant for the
remaining data points. The method was tested for an empty cavity and the influence of
different threshold values was examined, for details see [80].
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4.9. Data acquisition

The whole data acquisition process is controlled by a LabView software interface using
two synchronized timing and digital I/O modules8. The acousto-optical modulators used
to shutter the different laser beams are controlled by digital TTL signals, the signals of
the APDs and the PMT are directly registered by counters provided by the I/O cards.
The software interface allows for the adjustment of the on/off phases of the lasers and
the integration times of the APDs and the PMT. Included in thesoftware are also the
necessary routines to perform the acoustic noise compensation by referencing the probe
to the reference signal when scanning the cavity and the post-data selection based on a
certain threshold for the transmitted reference level for alocked cavity. Details can be
found in [80].

8National Instruments PCI-6602
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5. Realization of collective strong
coupling

This chapter contains a detailed description of the experimental realization of the collec-
tive strong coupling regime with ion Coulomb crystals interacting with the fundamental
TEM00 cavity field mode. Some of the experiments (secs. 5.3-5.6) were already described
in great detail in the PhD thesis of my predecessor Peter Herskind [80]. For the sake of
completeness and comprehensibility the major results will, however, be reviewed in this
thesis and extended by subsequent studies and measurements.

The chapter is structured as follows: In sec. 5.1 we give a short introduction to the
experiments. In sec. 5.2 we will explain in more detail how the effective number of ions
is determined in the experiment. Sec. 5.3 will then introduce the experimental sequence.
In sec. 5.4 and 5.5 the measurements of the collective coupling rate by different methods
are presented. Sec. 5.6 shows experimental measurements ofhow the collective coupling
rate scales with the number of interacting ions. In sec. 5.7 and sec. 5.8 measurements
of the coherence time of the collective coherences between Zeeman substates and of the
long time stability of the coupling are presented. Finally,sec. 5.9 gives a summary and
an outlook.

5.1. Introduction

A central challenge in experimental cavity quantum electrodynamics is to reach a regime
where the coherent interaction of a matter system with a cavity light field can be made
faster than the dissipative processes. For a single material two-level system this so called
strong coupling regime [144] is reached, when the rate,g, at which single excitations
are coherently exchanged between the two-level system and the light mode exceeds the
spontaneous emission rate of the two-level system,γ, and the cavity field decay rate,κ.
It was first realized with atoms in microwave and optical cavities [61, 145], and has re-
cently been realized with quantum dots [133, 146] and superconducting Josephson junc-
tions [132,147].

For an ensemble ofN identical two-level systems simultaneously interacting with a
single mode of the electromagnetic field, the coherent coupling rate is enhanced by a
factor

√
N and the coherent process dominates when the collective coupling rate

gN = g
√

N (5.1)

is larger than bothκ andγ. This so-called collective strong coupling regime [58] wasfirst
explored with Rydberg atoms in microwave cavities [60], andhas since then been realized
in the optical domain with atomic beams [61], atoms in magneto-optical traps [62–65] and
Bose-Einstein condensates [66,67].
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Figure 5.1.:Projection image of a crystal used in the collective strong coupling measure-
ments. The trap was operated at a RF voltage ofURF∼ 300 V, corresponding to a density
of ρ0 = (5.4± 0.1) · 1010cm−3. The crystal containsNtot = 8780± 180 ions, of which
N = 504±10 effectively interact with the cavity field.a. All ions are exposed to cooling
and repumping light.b. Same crystal, but only the ions in the cavity mode are exposed
to repumping light, now injected into the cavity. The ions outside the cavity modevolume
are shelved into the metastable 3d2D3/2 level and not visible.

In the optical domain, the use of ultra-high-finesse cavities with very small modevol-
umes allows for reaching the confinement required to achievestrong coupling with single
neutral atoms [128, 131, 144]. With charged particles, however, the insertion of dielec-
tric mirrors in the trapping region makes it extremely challenging to obtain sufficiently
small cavity modevolumes, due to the associated perturbation of the trapping potentials
and charging effects. Although many groups are currently making rapid progress in this
direction, the strong coupling regime has not been reached with single ions yet [68–74].
Our group could recently demonstrate that the collective strong coupling regime can be
realized with large ion Coulomb crystals [79, 148]. The results of these experiments will
be presented in this chapter.

5.2. The effective number of ions

In sec. 3.2.4 it was mentioned that not all ions in large ion Coulomb crystals contribute
equally to the collective coherent coupling and that their respective contributions have to
be weighted by the intensity of the intracavity field at the position of the ions. In eq.
(3.45) the effective number of interacting particles was defined as the weighted sum over
all these contributions. As the ion density is constant throughout the whole ion Coulomb
crystal (see eq. (2.15)) and can be calculated from the amplitude of the RF-field amplitude
applied to the trapping electrodes, the effective number ofions can directly be determined
from the overlap between the volume occupied by the ion Coulomb crystal and the cavity
modevolume. The geometrical size of the crystal is found by taking fluorescence images
of the crystal during cooling, as shown in Fig. 5.1, from which the crystal half-lengthL
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and radiusRcan be extracted. The density can be extracted from the calibration of the RF
voltage as explained in sec. 4.7. In all experiments presented in this chapter the coupling
of ion Coulomb crystals to the fundamental TEM00 cavity field mode was investigated.
The effective number of ions interacting with the TEM00 mode is then calculated using
the formula

N = (ρ0/2)
∫

V
dxdy exp(−2[(x− x0)

2+(y− y0)
2]/w2

0) (5.2)

wherex0 andy0 allow for an radial offsets between the cavity axis and the crystal revolu-
tion axis. These offsets can in principle be canceled to within a µm, as was discussed in
sec. 4.6. In ch. 6.4 we will present a precise way to determining these offsets, which for
the experiments presented in this chapter, were measured tobex0 = 3.9 µm, y0 = 15.7µm.
The uncertainty in the effective number of ions comes from both the uncertaintyδρ0 in the
density determination, due to the RF voltage calibration, and the uncertainty in the crystal
volumeδV, due to the imaging resolutionδx. The relative uncertainty in the number of
ions,N = ρ0V, can be expressed as

δN
N

=

√

(

δρ0

ρ0

)2

+

(

δV
V

)2

(5.3)

where the uncertainty on the crystal volume is given by the uncertainty on the determina-
tion of the half-length and the radius from the projection images. It is given by

δV/V = δx
√

16L2+R2/2RL (5.4)

For a typically prolate crystal as used in many of these experiments, with a half-length of
∼ 1−2 mm and an imaging resolutionδx∼ µm, this results in a relative uncertainty of
2−4% in the effective number of ions.

Figure 5.1 a. shows a projection image of a typical crystal used for the measurements
presented in this chapter. Since the crystal radial extension is larger than the cavity waist
(w0 = 37µm), only the ions which are positioned inside the cavity modevolume will no-
ticeably contribute to the coupling. A visual impression ofthe overlap of the cavity mode
with the ion crystal can be obtained by coupling the repumping laser to the TEM00 mode
of the cavity. Only the ions inside the cavity mode interact with the repumper laser and
the ions outside the cavity light field are subsequently shelved into the metastable 3d2D3/2
level, which has a lifetime of∼ 1 s. Hence, only the ions inside the mode volume will
contribute to the cooling and fluorescence, while the ions inthe metastable state appear
dark. This is illustrated in fig. 5.1 b. Such pictures can alsobe used to deduce the offset
between the RF field free axis of the trap and the symmetry axisof the cavity [119] (see
sec. 4.6). The same technique can in principle also be used with the side camera, albeit
with a lower precision, due to the limited resolution. A moreprecise way of measuring
the relative offset between the cavity mode and the crystal axis will be presented in sec.
6.4.

5.3. Experimental sequence

In the description of the experimental setup in the previouschapter it was mentioned
in sec. 4.8.3 that the coherent coupling between the crystaland the cavity field can be
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Figure 5.2.: a. Experimental sequence used to measure the collective coupling rate. b.
Energy levels of40Ca+ including the relevant transitions addressed in the three parts of
the experimental sequence. The acronyms are: LC: laser cooling beam, RP: repumping
beam, OP: optical pumping beam, CB: control beam, PB: probe beam.
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measured in two different ways, by either scanning or locking the cavity. In both configu-
rations the cavity reflection spectrum is measured at a typical rate of 50 kHz using a 20µs
sequence consisting of Doppler cooling, optical pumping and probing. This sequence is
shown in fig. 5.2 a. and the level schemes in fig. 5.2 b. indicatethe transitions which are
addressed by the several lasers during the cooling, opticalpumping and probing phases.

Cooling In the first 5µs of each sequence the ions are Doppler laser cooled on the
4s2S1/2 ↔ 4p2P1/2 transition, while a repumping laser resonant with the 3d2D3/2 ↔
4p2P1/2 transition prevents shelving to the metastable 3d2D3/2 state. With optimized
cooling parameters typical temperatures of the crystals are in the few 10 mK range.

Optical pumping After the cooling a 12µs period of optical pumping transfers the ions
to the mj =+3/2 magnetic substate of the 3d2D3/2 level.

The optical pumping laser is resonant with the 3d2D3/2↔ 4p2P1/2 transition and has
a polarization consisting only ofσ+- andπ-polarized components. It is sent to the trap
under an angle of 45◦ with respect to the quantization axis (see sec. 4.3.2). At the same
time the Doppler cooling laser is applied to pump the population decaying to the 4s2S1/2

ground state back to the metastable 3d2D3/2 level.
The efficiency of the state preparation has previously been measured by selectively

probing the population in the different Zeeman sublevels. This can be accomplished by
injecting a strong probe pulse with eitherσ− or σ+ polarization into the cavity after the
state preparation and measuring the fluorescence on the 4s2S1/2↔ 4p2P1/2 transition with
the PMT. The probe will address the population in either themJ = +1/2, +3/2 states (σ−-
probe) or themJ = −1/2, −3/2 states (σ+-probe) and will pump the population in these
states to the excited 4p2P1/2 level, from where the ions with a probability of∼ 12 : 1
decay to the 4s2S1/2 ground state. As all other lasers are turned of, each ion willemit
at most one photon on this transition and the fluorescence level directly reflects the pop-
ulation in the addressed states. Sending the probe laser along the transversex-direction
and choosing the appropriate polarization furthermore also allows for the probing of the
population in themJ = ±1/2 state. Repeating these experiment with and without opti-
cal pumping and probing with both polarizations allows for the estimation of the optical
pumping efficiency, which was found to be 97+3

−5% [80].
Furthermore, a similar technique can be used to measure the lifetime of the collective

population in themj = +3/2 state in the cavity mode. This is accomplished by gradually
increasing the delay between the state preparation and theσ− polarized probe pulse sent
to the cavity and measuring the decrease of the fluorescence level as a function of delay.
As a cross-check, one can also measure the population increase in themj = −1/2, −3/2

state as a function of delay using the same technique with opposite circular polarization.
Both measurements agree very well and comparing them we deduced a lifetime of the
population ofT1 = (13±3) ms, for details see [80]. Several factors might be attributed to
the finite life time. First of all, as we only measure the population in the cavity mode, ions
diffusing from other parts of the crystal into the mode volume might lead to a decrease
of the measured population in the addressed Zeeman substates, especially if the crystal
heats up with increasing delays. Another possible cause fordecay might be the presence
of a non-zero transverseB-field which would lead to population transfer to other Zeeman
substates. Finally, the finite lifetime of the 3d2D3/2 of ∼ 1 s will eventually limit the
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achievable lifetime of the population, though it should play only a minor role on the
measured timescales of the decay.

Probing Finally, after the state preparation, the cavity reflectionsignal is probed by
injecting a 1.4 µs σ−-polarized probe pulse, resonant with the 3d2D3/2↔ 4p2P1/2 tran-
sition, into the TEM00 mode of the optical cavity. Its intensity is set such that themean
intracavity photon number (for an empty cavity) is less thanone at any time. With a delay
of 0.1 µs relative to the probe laser, the APD is turned on. The delay ensures that the field
has built up inside the cavity and that the system has reacheda quasi-steady state. The
duration of the probing period was chosen so as to minimize the total sequence length as
well as to avoid depopulation due to saturation of the transition [80].

5.4. Absorption profile and resonance shift

In sec. 3.2.4 we derived an expression for the linear susceptibility χ of the ion ensem-
ble interacting with a single cavity field mode, see eq. (3.41). The atomic absorption
and dispersion modifies the effective cavity linewidth and detuning according to (see eq.
(3.48))

κ′ = κ+ Im(χ) = κ+g2
N

γ
γ2+∆2

∆′C = ∆C−Re(χ) = ∆C−g2
N

∆
γ2+∆2 .

These two relations both depend on the square of the collective coupling rategN and hence
provide two methods to investigate the coherent coupling ofthe ions with the cavity field.
We first perform measurements of the atomic absorption and dispersion for a given crystal
with N ∼ 500, which according to eq. (3.36) should be sufficient to enter the collective
strong coupling regime. The crystal used in these experiments is similar to the one shown
in Fig. 5.1. With a density ofρ0 = (5.4±0.1)×108 cm−3 , half-lengthL = (511±1) µm
and radiusR= (75± 1) µm the total number of ions in the crystal is calculated to be
Ntot = 6500±200 and the effective number of ions isN = 536±18 (see eq. (5.2)). The
broadening and the shift of the cavity resonance are then measured as a function of the
detuning of the probe laser,∆. This is accomplished by scanning the cavity length over a
range corresponding to∼ 1.3 GHz at a repetition rate of 30 Hz, for a fixed value of∆. The
reflection is reconstructed by sampling each cavity scan repeating the sequence shown in
fig. 5.2 at a rate of 50 kHz.

The width of the reflection dip for a given detuning∆ is found by averaging over 100
cavity scans, where the reference laser is used to compensate for drifts of the cavity and
acoustic noise, as was explained in sec. 4.8.3. In Fig. 5.3 various cavity reflection scans
are plotted for different detunings. Each data point corresponds to the average of 100
20 µs-measurement sequences as showed in Fig. 5.2. For each detuning, several of these
reflection spectra are taken, and for each the effective cavity decay rateκ′ is found by
fitted the data with the expected Lorentzian lineshape givenin eq. (3.47a). As expected
from Eq. (3.48a), the broadening of the intracavity field absorption reflects the two-level
atomic medium absorption. Fig. 5.4 shows the modified cavityHWHM, κ′, as a function
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5.4. Absorption profile and resonance shift
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Figure 5.3.: Typical cavity reflection scans for various values of the atomic detuning
∆. The probe detunings were a.∆ ≈ 2π× 54.3 MHz, b. ∆ ≈ 2π× 24.3 MHz, c. ∆ ≈
2π×8.3 MHz and d.∆ ≈ 2π×0.3 MHz. Solid lines are Lorentzian fits to the data, the
effective cavity field decay rateκ′ is deduced from the fit.
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Figure 5.4.: Measured cavity field effective decay rateκ′ versus probe detuning∆ for a
crystal withN = 536±18 ions interacting with the cavity field and an optical pumping
efficiency of 97%. The blue solid line is a fit to the data using eq. (3.48a).
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Figure 5.5.: Measured phase shift∆′c−∆C versus atomic detuning∆ for the same crystal.
The blue line is a fit to the data using eq. (3.48b).

of detuning of the probe laser,∆. Each point is the average of 5 measurements, the solid
line is a fit according to Eq. (3.48a). From the fit we deduce a collective coupling rate
of gN = 2π× (12.2± 0.2) MHz, in good agreement with the theoretical expectation of
gN,theory= 2π× (12.1±0.3) MHz, calculated forN = 536±18 ions interacting with the
cavity mode, an optical pumping efficiency of 97+3

−5% [79, 80] and a single ion coupling
rate ofgtheory= 2π× (0.532±0.007) MHz, see eq. (3.37). Furthermore, the effective
dipole decay rateγ′ is left as a fit parameter to account for finite temperature effects, as
discussed in sec. 3.3, eq. (3.51a). The fit yieldsγ′ = 2π× (11.9± 0.4) MHz, which,
according to Fig. 3.6, would correspond to a likely temperature ofT = 24+20

−14 mK. The
natural half-width of the cavity is also left as fitting parameter and we findκ= 2π×(2.2±
0.1) MHz, in good agreement with the value deduced from an independent measurement
of the FSR and the finesse of the cavity,κ = 2π× (2.1±0.1)MHz [120].

For the measurement of the effective cavity detuning,∆′c, the frequency of the 894 nm
laser is kept at a fixed position in the cavity scan, e.g. to theatomic resonance frequency.
The frequency shift is then measured by comparing the position of the probe and the ref-
erence signal resonances in the cavity scan. The effective cavity detuning as a function of
probe detuning is shown on Fig. 5.5. One observes the expected dispersive frequency-shift
corresponding to the real part of the linear susceptibilityof a two-level system probed in
the low saturation regime, see eq. (3.48b). The data is fittedto the theoretical model ac-
cording to Eq. (3.48b) and yields a collective coupling rateof gN = 2π×(12.0±0.3)MHz
and an effective dipole decay rate ofγ′ = 2π× (12.7±0.8)MHz. Both values are consis-
tent with the previous measurement and the theoretical expectations. As in the previous
measurement, the 894 nm resonance laser is also used to compensate systematic drifts
and acoustic vibrations (see sec. 4.8.3). However, since this compensation method relies
on the temporal correlations of the drifts in both signals, and thereby on their relative
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Figure 5.6.: Reflection signal of the probe as a function of∆ = ∆C for the empty cavity
(red triangles) and with a crystal withN = 536±18 effectively interacting ions present in
the cavity mode volume (blue circles). The solid lines are fits to the theoretical expectation
of eq. (3.49).

positions in the cavity scan, the compensation becomes lesseffective at large detunings.
This is reflected in the bigger spread and the larger error bars at larger detunings, which
renders this method slightly less precise than the first absorption measurement to evaluate
the collective coupling rate.

5.5. Vacuum Rabi splitting spectrum

A third complementary method to measure the collective coupling rate is based on locking
the cavity on atomic resonance,ωC = ωat, as was described in sec. 4.8.3. Since the
coupled atom-cavity system is probed at the single photon level one expects to observe a
splitting of the normal-mode as discussed in eq. (3.49), referred to as the vacuum Rabi
splitting.

The response of the coupled atom-cavity system is probed as afunction of probe de-
tuning∆, which in this case is equal to the cavity detuning∆C. The cavity reflection for
a particular probe detuning is found by continuously repeating the sequence shown in fig.
5.2 at a rate of 50 kHz. Here, we use the post data selection technique described in sec.
4.8.3 to keep only the data point for which the cavity was resonant. For each probe detun-
ing, 2·104 data points are acquired and averaged. The result of this measurement is shown
on Fig. 5.6. The red triangles are obtained with an empty cavity, while the blue circles
were taken with the same ion Coulomb crystal as used in the previous experiments. The
results are fitted using the theoretical expectations of eq.(3.49b) (solid lines in Fig. 5.6)
and yieldgN = 2π×(12.2±0.2)MHz, a value that is in good agreement with the previous
measurements. To facilitate the more complex fitting function to convergeγ′ andκ were
set to the value deduced from the previous absorption measurement.
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5. Realization of collective strong coupling

The collective coupling rates found for the three methods agree within their error bars
and when combining the three results, we findgN = 2π× (12.16±0.13)MHz.

Conversely, using the measured value forgN and the effective number of ionsN =
536±18 extracted from the projection image of the crystal, together with the measured
optical pumping efficiency of 97+3

−5%, we can now deduce a single ion coupling rate of
gexp=

gN√
N
= 2π× (0.534±0.010)MHz.

This value is in excellent agreement with the expected valueof gtheory= 2π× (0.532±
0.007) MHz, calculated according to eq. (3.27) from the knowledge of the cavity geome-
try and the atomic dipole moment of the considered transition.

5.6. Scaling with the number of ions

To check further the agreement between the theoretical predictions and the experimen-
tal data we investigated the dependence of the collective coupling rate on the effective
number of ions. An attractive feature of ion Coulomb crystals is that the number of ions
effectively interacting with a single mode of the optical cavity can be precisely controlled
by the trapping potentials. While the densityρ0 only depends on the amplitude of the RF
voltage (see Eq. (2.15)), the aspect ratio of the crystal depends on the relative trap depths
of the axial and radial confinement potentials which can be independently controlled by
the DC voltages on the endcap electrodes. This allows for controlling the effective number
of ions down to the few ion-level.

5.6.1. Cooperativity parameter

In Fig. 5.7 the dependence of the cooperativity parameter, defined as

C= g2
N/2κγ′, (5.5)

is plotted as a function of the effective number of ions interacting with the TEM00 mode.
The cooperativity was deduced by measuring the effective cavity field decay rate,κ′ =
κ (1+ 2C) = κ+

g2
N

γ′ , for a probe field tuned to atomic resonance (∆ = 0), and for dif-
ferent aspect ratios and densities of several crystals. Theeffective number of ions in
each crystals was deduced applying the method described in Sec. 5.2. The blue data
points were obtained usingσ−-circularly polarized probe light, hence probing the popu-
lation in themJ = +3/2 substate, and show the expected linear dependence on the effec-
tive number of ions. From a linear fit (solid blue line) we deduce a scaling parameter
C
N = (4.93± 0.07)× 10−3. The black dashed line indicates the limit where collective
strong coupling is achieved which is the case forN & 500 interacting ions, in agreement
with the expectations.
The largest coupling observed in these experiments was measured for a crystal with a
half-length of∼ 1.5 mm and a density of∼ 6×108 cm−3, corresponding to an effective
number of ions ofN = 1570±50. The cooperativity of this crystal was measured to be
C= 7.9±0.3 and exceeds previously measured cooperativities with ions in optical cavi-
ties by roughly one order of magnitude [68,69,71].
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Figure 5.7.:Cooperativity as a function of the effective number of ions.The blue circles
correspond toσ− polarized probe light, while the red triangles are obtainedusingσ+ light.
The solid lines are linear fits, the dashed line indicates thestrong collective coupling limit
gN > (κ,γ).

As a check of our measurement method, the polarization of theprobe light was changed
to σ+ to address the populations in themJ = −3/2 andmJ = −1/2 substates of the 3d2D3/2
level (red data points). Here, no effect of the coupling of the ions is observed, as expected
due to the optical pumping preparation in themJ = +3/2 Zeeman-substate.

5.6.2. Vacuum Rabi-Splitting spectra for different number s of ions

A similar measurement of the collective coupling rate was performed by recording vac-
uum Rabi splitting spectra, such as the one presented in Fig.5.6, for several crystals
with different aspect ratios. Examples of such measurements are depicted in Fig. 5.8,
showing clearly the increase in the separation between the coupled crystal+cavity normal
modes as the number of ions is increased. The collective coupling rategN can be derived
from fits to the theoretical expression (3.49). In fig. 5.9 thededuced collective coupling
rate is plotted for various crystals with different effective numbers of ions. The curve
is fitted with the expected square root dependency and takingthe finite optical pumping
efficiency of 97+3

−5% into account. From this fit we deduce a single ion coupling rate of
g = 2π× (0.525± 0.002) MHz. This value is in agreement with the previous measure-
ments and the theoretical expectation.

5.7. Coherence between collective Zeeman substates

The realization of the collective strong coupling is a crucial step on the way to an effi-
cient light-matter interface [55]. However, the storage ofquantum states in the system

61



5. Realization of collective strong coupling

R

∆ = ∆C [2π MHz]

-30 -20 -10 0 10 20 30
0

0.2

0.4

0.6

0.8

1

Figure 5.8.: Vacuum Rabi splitting spectra (∆ = ∆C) obtained for increasing effective
number of ions [0 (blue circles), 243 (green stars), 601 (redtriangles), 914 (orange
squares)].
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Figure 5.9.:Collective coupling rategN versus effective number of ionsN deduced from
reflectivity spectra, such as shown in Fig. 5.8, obtained with crystals of different shape
and density. The solid line is a fit to the data and gives a single ion coupling rateg =
2π× (0.525±0.002)MHz when corrected for the optical pumping efficiency.
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5.7. Coherence between collective Zeeman substates

requires persistent coherences between the various Zeeman-substates that would be used
to encode the quantum information. To evaluate the prospects for the realization of such
coherent manipulations among these states, we measured thedecay time of collective co-
herences between different Zeeman substates of the 3d2D3/2 level. The coherences were
established by Larmor precession of the magnetic spin induced by an additionalB-field
transverse to the quantization axis. In presence of this orthogonalB-field, the population
of the different substates undergo coherent oscillations,which are measured at different
times in their free-evolution by directly probing the coherent coupling between the cavity
field and the ions. In order to be able to resolve the coherent population oscillations in
time using the previous technique (probing time∼ 1 µs) the amplitude of the longitudinal
B-field was lowered toBz = 0.15 G to obtain oscillation periods in the∼ 10 µs range,
and the optical pumping preparation was modified as to minimize the effect of the trans-
verseB-field. The reducedB-field along the quantization axis could in principle make the
sample more sensitive toB-field fluctuations. Since these fluctuations might be one of the
factors eventually limiting the achievable coherence timewe expect the coherence time
measured by this method to be a lower bound as compared to the previous configuration
with a larger longitudinalB-field of Bz = 2.5 G.

5.7.1. Experimental sequence

The coherence time measurements required the experimentalconfiguration and the mea-
surement sequence to be slightly modified as compared to the collective coupling rate
measurements described in sec. 5.3. The Larmor precession is induced by an additional
B-field component along the transversex-direction, while the longitudinal magnetic field
componentBz was lowered to optimize the contrast of the coherent population oscilla-
tions. It turned out that the optical pumping preparation used before was substantially in-
fluenced by the additional transverseB-field component and the state preparation scheme
was therefore changed. The optical pumping light now propagates along thex-axis. It is
π-polarized, hence transferring the atomic population symmetrically into the two outer-
most magnetic substates of the 3d2D3/2 level,mJ = ±3/2.

The experimental sequence used to measure the coherence time is shown in Fig. 5.10.
The ions are Doppler laser cooled during the first 5µs, followed by a 12µs optical pump-
ing period. After the optical pumping, all lasers are turnedoff for a timeτ, allowing for
the free evolution of the system. Finally, a weakσ−-circularly polarized probe pulse is
injected into the cavity, addressing the ions in themJ = +1/2 andmJ = +3/2 substates. The
steady state cavity reflection is measured by collecting thereflected photons with the APD
for 0.5 µs. The additional delay time between optical pumping preparation and probing
obviously lowers the repetition rate of the sequence significantly, especially for long de-
lay times, and the number of data points for each sweep of the cavity will decrease. To
compensate for this, the data points at longer delays had to be averaged over more cavity
sweeps, which substantially increased the acquisition time and eventually limited these
measurements to delays of a few hundreds ofµs.

5.7.2. Theoretical description and expectations

Based on a simple four-level model the free Larmor precession-induced changes in the
populations of the Zeeman substates,|mJ = ±1/2, ±3/2〉, of the 3d2D3/2 level can be cal-
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Figure 5.10.: a.Experimental sequence used to measure the coherence time ofcollective
Zeeman substate coherences in the 3d2D3/2 level. b. Energy levels of40Ca+ including
the relevant transitions addressed. In the third phase, alllasers are turned off during a time
τ and the system evolves freely in presence of a transverse magnetic field componentBx.
The acronyms are: LC: laser cooling beam, RP: repumping beam, OP: optical pumping
beam, CB: control beam, PB: probe beam.
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5.7. Coherence between collective Zeeman substates

culated. For an homogeneousB-field with componentsBx andBz the Hamiltonian of the
four-level system can be expressed in terms of collective populations

ΠmJ =
Ntot

∑
j=1

|mJ〉( j) 〈mJ|( j) (5.6)

and spin operators

σmJ,m′J
=

Ntot

∑
j=1

|mJ〉( j) 〈m′J
∣

∣

( j)
, mJ 6= m′J. (5.7)

Here,|mJ〉( j) and|m′J〉
( j) are the state kets of thejth-ion with magnetic quantum number

mJ andm′J, respectively. The sum extends over the total number of ions. In this notation,
the Hamiltonian of the free evolution reads

HB = ~ωz∑
mJ

mJΠmJ (5.8)

+~ωx∑
mJ

∑
m′J

√

mJm′JδmJ,m′J

(

σmJ,m′J
+σm′J,mJ

)

,

where the sums extend over the four Zeeman-substates. Here,δmJ,m′J
is the Kronecker

delta and the Larmor frequenciesωz and ωx corresponding to thez and x component
of the magnetic field are given by the product of the magnetic field amplitude by the
gyromagnetic ratioγGM:

ωz = γGMBz, ωx = γGMBx. (5.9)

For aσ−-circularly polarized probe, the measured collective coupling to the cavity light
mode after a certain delay timeτ between optical pumping and probing will depend on
the collective populations in themJ = +1/2 andmJ = +3/2 substates. For a non-vanishing
population in themJ =+1/2 state, the effective cavity decay rate defined in Eq. (3.48a)is
modified to

κ′ = κ+g2
1/2N1/2

γ
γ2+∆2

1/2

+g2
3/2N3/2

γ
γ2+∆2

3/2

, (5.10)

where the subscripts indicate the magnetic substate. Calculating the expectation values
for the collective population in these states, one can show that the cooperativityC(τ)
measured at timeτ is expected to vary as

C(τ) = acos(ωLτ)+bcos(2ωLτ)+ c, (5.11)

where the combined Larmor frequency

ωL =
√

ω2
z +ω2

x (5.12)

was defined. The parametersa, b, care constants depending on the efficiency of the optical
pumping preparation, the Clebsch-Gordon coefficients and the magnetic field amplitudes
Bz andBx.
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Figure 5.11.:Calibration of the Larmor frequency for different currentsof theBx coils.
Shown is the cooperativity as a function of delay timeτ for different transverseB-fields:
Ix = 0 mA (open diamond),Ix = 10 mA (open squares),Ix = 16 mA (solid stars),Ix =
26 mA (open circles) andIx = 36 mA (open triangles). The solid lines are fits according
to Eq. (5.11).

5.7.3. Experimental results

The amplitudes of the magnetic fields,Bx andBz, at the position of the ions were calibrated
by measuring the dependence of the Larmor frequencyωL with the intensity of the current
used to drive the transverse magnetic field coils (see Eqs. (5.9) and (5.12)). The obtained
coupling as a function ofτ is shown for different currentsIx on Fig. 5.11. The curves are
fitted according to Eq. (5.11) yielding the Larmor frequency. These frequencies are shown
as a function of the current passing theBx-coils in Fig. 5.12. Using the gyromagnetic
ratio γGM = µBg3/2/~ (µB is the Bohr magneton,g3/2 the Landé factor of the 3d2D3/2
level), we deduce the magnetic fields along the two axisBz = (0.134± 0.002) G and
Bx = (4.91±0.09) G× Ix/A.

To achieve an optimal contrast of the Larmor oscillations, the measurement was carried
out with moderateB-field valuesBx = Bz = 0.15 G and the variation of the cooperativity
was measured for 120µs. To compensate for slow drifts during the measurement, each
data point was normalized to the mean cooperativity,C̄, averaged over one oscillation pe-
riod. The normalized cooperativity is shown in Fig. 5.13 a.,together with a fit of the form
(5.11), in which decoherence processes are taken into account by multiplying the oscillat-
ing terms with an exponential decay term exp(−τ/τe), which would be expected e.g. for a
homogeneous broadening of the energy levels. From this fit, we deduce a coherence time
of τe = 1.7100

−0.8 ms. This value is comparable to previously measured coherence times for
single ions in linear Paul trap in equivalent magnetic field sensitive states [149] and might
be further improved by an active control of stray magnetic fields or state configurations
that are less sensitive to magnetic field fluctuations. For inhomogeneous broadening, due
to magnetic field gradient over the crystal, the decoherenceprocess would be better de-
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Figure 5.13.: a.Coherence as a function of delayτ. Due to the presence of a non-zeroB-
field component orthogonal to the quantization axis (Bz= Bx = 0.15 G), coherent Larmor
precessions are observed. Long term drifts are compensatedby normalizing to the mean
of one oscillation period. The solid line corresponds to a fit, assuming an exponential
decay and yields a coherence time ofτe = 1.7100

−0.8 ms. b. Cooperativity as a function of
delay with only theB-field along the quantization axis present (Bx =By = 0, Bz= 0.15 G).
The data points are normalized to the mean cooperativity of〈C〉= 1.43±0.02.
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Figure 5.14.:Cooperativity for the crystal shown in fig. 5.15 measured over two hours.
The coupling is constant within the error-bars. For detail see text.

scribed by a Gaussian decay [41]. Fitting the data assuming aGaussian decay exp(−τ2/τ2
g)

in Eq. (5.11) yields a coherence time ofτg = 0.5+0.6
−0.2 ms. Due to the limitation of our mea-

surement to time delays ofτ . 120µs, it is at present not possible to distinguish between
the two decay mechanisms.

For comparison the cooperativity as a function of probe delay,C(τ), was measured with
only the bias field along the quantization axis present (Bx = 0, Bz = 0.15G), as shown in
Fig. 5.13 b. Here, the values are normalized to the mean cooperativity averaged over all
points〈C〉. Within the error bars the deduced cooperativities agree with a constant value
of 〈C〉= 1.43±0.02.

5.8. Long term stability

To prove the capability of performing experiments using thesame ion Coulomb crystal
for long times, we monitored the cooperativity for a single ion Coulomb crystal over more
than 2 hours. The result is shown in fig. 5.14. The cooperativity was measured on atomic
resonance∆ = 0 and stays constant within±1%, although we observe the formation of
dark ions on the surface of the crystal. These dark ions are most likely formed by reactions
of 40Ca+ with residual hydrogen or oxygen atoms in the trap. As these dark ions have a
higher mass, they see according to eq. (2.8) a shallower radial trapping potential and,
hence, form a dark shell around the central component. However, for crystals with a
radius much larger than the cavity waist, as used in this experiment, the dark ions appear
in the wings of the fundamental transverse Gaussian mode profile and do not influence
the coupling to the cavity.
Moreover, these dark ions can be “recycled” by irradiating the crystal with UV light from
the ionization laser, most likely by photo-dissociation. The inset of fig. 5.14 shows four
projection images of the same crystal taken during the long time measurement of the
cooperativity. The dark shell can be clearly seen on images b. (after 1 h) and c. (after
2 h), whereas it disappeared again on image d., after the crystal was exposed to UV
light. The crystal contains 12400±250 ions of which 514±10 interact with the cavity.
From the projection images the production rate for the dark ions can be deduced and we
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Figure 5.15.:Projection image of the crystala. at the beginning of the measurementb.
after one hourc. after two hoursd. after flashing the UV laser. On imageb. andc.
a shell of dark ions is present emerging from chemical reactions. The crystal contains
12400±250 ions of which 514±10 interact with the cavity
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find Rdark = (10.2± 0.2)min−1. This rate will, however, depend on the geometry and
the density of each individual crystal, and also on the composition and pressure of the
background gas in the chamber. The described recycling technique could have promising
applications for reaction studies using cold single ions orion ensembles [150].

5.9. Conclusion

To conclude, we have demonstrated the possibility to operate in the collective strong cou-
pling regime of CQED using large ion Coulomb crystals positioned in a moderately high-
finesse optical cavity. We measured cooperativities as highasC∼ 8, which is comparable
to those used in neutral atom based quantum memories [41–47,96, 97]. Moreover, to as-
sess the prospect of realizing a long-lived quantum memory,we measured the decay of
collective coherences between magnetic Zeeman substates and found coherence times in
the millisecond range, which is of the order of what previously was measured for single
ions in equivalent magnetic field sensitive states [149]. The excellent agreement of the
experimental results with the theoretical predictions as well as the long-term (∼ hours)
temporal stability of the coupling makes ion Coulomb crystals promising candidates for
the realization of quantum information processing devicessuch as quantum memories
and repeaters [10, 38]. Using for instance cavity EIT-basedprotocols [55–57], the ob-
tained coupling strengths and coherence times would make upfor the realization of both
high-efficiencyand long life-time quantum memories [56,57,151]. Experimentsshowing
how cavity EIT can be realized in the system will be presentedin ch. 8.

The nice properties of ion Coulomb crystals also open up for the manipulation of com-
plex multimode photonic information [81] and we will present results on the coupling to
various transverse cavity modes in the following chapter.

Furthermore, the collective interaction can also be used tofacilitate non-invasive spec-
troscopy of the collective vibrational modes of ion Coulombcrystals [152]. These exper-
iments will be presented in ch. 7.
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6. Coupling to different transverse
cavity modes

In this chapter, to assess the potential of ion Coulomb crystals as a medium for multimode
light-matter interfaces, we investigate the possibility to couple ion crystals to different
spatial (transverse) modes of the cavity. We present a thorough characterization of the
coupling of various ion Coulomb crystals to the TEM00 and TEM10,01 transverse cavity
modes.

The chapter is structured as follows: First, in sec. 6.2 the theoretical expectations for
the coupling of ion Coulomb crystals to these modes is discussed, followed by a brief
description of the experimental setup in sec. 6.3. Then, in sec. 6.4, the transverse pro-
files of the cavity modes are mapped out by moving small, elongated crystals along the
transverse directions and monitoring the change in the collective coupling rate. In sec.
6.5 we present experiments in which the scaling of the coupling strength with the radial
size of the crystals is investigated, followed by a measurement of the collective coherent
coupling rate of large ion Coulomb crystals to the two modes in sec. 6.6. Finally, in sec.
6.7 we summarize the results and give a brief outlook.

6.1. Introduction

Ion Coulomb crystals combine properties of solid state systems, such as a uniform ion
density (see sec. 2.3) and long time stability (see sec. 5.8)with features commonly
attributed to single isolated particles, i.e. excellent coherence properties and no significant
internal state perturbation due to ion-ion interactions (see sec. 5.7).

This unique combination makes ion Coulomb crystals positioned in the mode vol-
ume of an optical cavity ideal candidates for the realization of multimode quantum in-
terfaces, where, in contrast to the traditional frequency and polarization degrees of free-
dom [153] the encoding of the photonic information can be performed in the spatial degree
of freedom, i.e. the orthonormal transverse modes of the optical cavity. Such a system
would provide an interesting basis for e.g. the realizationof multimode quantum memo-
ries [55, 96], where several flying qubits could potentiallybe stored simultaneously in a
single physical system, or for the cavity enhanced generation [69, 73, 154, 155] of non-
classical (spatially) multimode states of light [156–159].

The simultaneous coupling to multiple modes may also have applications, for e.g. quan-
tum imaging [157–160] and cavity-mediated cooling [161–163]. For the latter, an en-
hancement of the dynamical cooling effect by the use of multimode geometries has been
predicted [164].

In this chapter we will present results on the coherent interaction between ion Coulomb
crystals of several sizes and transverse cavity modes [81].We demonstrate how small,
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6. Coupling to different transverse cavity modes

needle-shaped crystals can be used to map out the transversestructure of various cavity
modes and investigate the effect of the size of the crystals on the collective coupling
to different transverse modes. Finally, we demonstrate that identical coupling rates for
various modes can be achieved for sufficiently large ion Coulomb crystals.

6.2. Theoretical expectation

In the previous chapters, we focused our theoretical analysis of the coherent interaction
between ion Coulomb crystals and the cavity fundamental TEM00 mode. For the exper-
iments presented in this chapter, we will make use of different cavity modes and will in
this section modify the theoretical description of sec. 3.2to higher-order TEMmn modes.

For an arbitrary transverse cavity mode the effective cavity field decay rate, introduced
for the fundamental TEM00 mode in Eq. (3.48a), is given by

κ′ = κ+G2
mn

γ
γ2+∆2 , (6.1)

whereGmn denotes the collective coupling rate with the TEMnm mode considered,κ is
the cavity field decay rate,γ is the optical dipole decay rate and∆ is the detuning of
the probe laser with respect to the atomic transition frequency. In its general form, the
collective coherent coupling rate, introduced for the fundamental Gaussian mode in eq.
(3.45), reads

G2
mn(x0,y0) = g2ρ0

∫
V

drΨ2
m(x− x0,z)Ψ2

n(y− y0,z)Φ2(x− x0,y− y0,z) (6.2)

whereg is the maximum single-ion coherent coupling rate (see eq. (3.27)),ρ0 is the ion
density (see eq. (2.15)) andΨn(x,z), Ψm(y,z), Φ(x,y,z) are the two transverse and the
longitudinal mode functions defined in eq. (3.2) and eq. (3.3), respectively. The integral
extends over the volume of the spheroidal crystalV = 4

3πR2L, with half-lengthL and
radiusR, andx0 andy0 account for possible radial offsets of the crystal revolution axis
with respect to the cavity axis. As in eq. (3.45) we can average over longitudinal effects,
and eq. (6.2) reduces to

G2
mn(x0,y0)≃

g2

2
2Lρ0

∫ R

−R
dxΨ2

m(x− x0,z)
∫ R

−R
dyΨ2

n(y− y0,0). (6.3)

Of particular relevance for our experiments are two approximations that can be made
for ion Coulomb crystals with a radial extension that is either much smaller or much larger
than the waist of the fundamental TEM00 mode,w0. In the first case (R≪ w0) the radial
integral in eq. (6.3) is trivial and the transverse mode functions are simply evaluated at
the position of the crystal(x0,y0)

G2
mn(x0,y0) ∝ Ψ2

m(x0,0)Ψ2
n(y0,0). (6.4)

Changing the radial offsets(x0,y0) will accordingly modify the cavity field effective decay
rate of eq. (6.1) via eq. (6.4) and one can directly map out thetransverse profile of the
cavity mode by measuringκ′ as a function of(x0,y0).
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In the second case, where the radius of the crystal is much larger than the cavity waist
(R≫w0), the integral over the transverse mode functions yields

∫ R

−R
du Ψ2

n(u−u0,0)≈
∫ ∞

−∞
du Ψ2

n(u,0) =

√

π
2

w0, ∀n, whereu= x,y. (6.5)

The collective coupling is then independent of the transverse mode function considered
and substituting this result into (6.3) and averaging over the longitudinal sinusoidal yields

G2
mn= g2ρ0

πw2
0

2
L, ∀n,m, (6.6)

which is consistent with the result found for the TEM00 mode in eq. (3.46).
In the limit R≫ w0, the coherent coupling rate is hence simply proportional tothe

volume of the cavity mode in the crystal and since the transverse mode functions are
orthonormal, this volume is the same for all of them. For large ion Coulomb crystals one
thus expects the collective coupling rate to be the same for all TEMnm modes. However,
for large crystals there will always be ions which are located far from the RF-field free
trap axis and which will experience strong micromotion, as was discussed in secs. 4.6
and 4.6. The collective coupling rate to different TEMnm mode will hence be equal only
if there is no significant effect of this micromotion on the coupling with the cavity field.

As can be seen from eq. (4.1) the micromotion is in principle purely radial and one
expects it not to couple into the axial motion of the ions. This prediction is also supported
by molecular dynamics simulations [165].

One therefore expects the effect of micromotion on the collective coherent coupling to
be negligible. However, this assumption is only valid for a perfectly symmetric trap and
if the cavity and the trap axis are entirely parallel. The measurement of the collective
coupling rate of large ion Coulomb crystals with different transverse modes thus allows
to test the validity of these predictions and the quality of the cavity trap setup.

The issue of micromotion is also important when displacing small, elongated crystals
radially into regions with large amplitudes of the micromotion and measuring their cou-
pling with the cavity field. Such measurements will provide another sensitive test of the
effect of micromotion on the collective coherent coupling.

6.3. Experimental setup

The main parts of the experimental setup were already introduced in ch. 4 and we will
here only describe the necessary changes and some specific aspects for the experiments
presented in this chapter.

The results of the previous chapter were all obtained by injecting the cavity through
the PT and measuring the cavity reflectivity spectrum with the probe APD. When measur-
ing the collective coupling to higher order cavity modes, the probe laser has to be mode
matched to the cavity mode in question. However, this beam has a Gaussian profile, corre-
sponding to the transverse profile of the TEM00 mode and coupling this beam to a higher
order mode will result in a lower coupling efficiency. The fraction of the beam not over-
lapping with the cavity mode in question will be reflected of the cavity and would lead
to a background for measurements in reflection. To avoid these problems, we inject the

73



6. Coupling to different transverse cavity modes

y

x

CCD

C
C
D

D.C.

D.C.

Figure 6.1.: End-view schematic: The crystals (red circle) can be displaced in the (x,y)-
plane by application of appropriate DC voltages to two of thesegmented electrode rods,
their position and size are monitored using two CCD cameras.
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Figure 6.2.: Cavity transmission, scanned over one free spectral range and measured by
a photo detector. The TEM00, TEM10,01 and TEM20,02 transmission peaks are clearly
visible and marked by the red arrows. Though not resolved on this scan, the resonance
frequencies of TEM10 and TEM01 are slightly non-degenerate, most likely due to bire-
fringence of the mirror substrates.
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6.4. Mapping out the transverse cavity mode profiles

probe laser for the measurements in this section through theHR side into the cavity (see
fig. 4.8) and measure the transmitted signal with the probe APD.

In some of the experiments, we want to deliberately translate the ion Coulomb crystal
along the radial directions. As was briefly discussed in sec.4.2, this is possible by apply-
ing additional DC voltages to two of the electrode rods. A schematic is shown in fig. 6.1.
The ions are moved along the horizontalx-axis when applying equal voltages of the same
polarity to the two rods, and along the verticaly-axis for voltages of opposite polarities,
but equal magnitude. The position in the(x,z)- and the(y,z)-plane can be deduced from
projection images obtained with the top and the side camera (see sec. 4.4), respectively.

The cavity transmission spectrum is measured by scanning the cavity over the atomic
resonance at a rate of 30 Hz, see sec. 4.8.3, where the reference laser at 894 nm is
used to compensate for thermal drifts and mechanical vibrations. During each sweep, the
transmission is probed by repeating the experimental sequence shown in fig. 5.2 with the
probe laser being mode matched to the transverse cavity modein question. The probe
intensity is as before set such that the mean photon number inthe cavity is about or less
than one at any time and the probe polarization is left-hand circularly-polarized.

In the description of the optical cavity in sec. 4.5 it was mentioned that the cav-
ity mirrors (radius of curvature of 10 mm) are mounted in a close to confocal geome-
try with a inter-mirror distance of 11.8 mm, corresponding to a free spectral range of
νF SR = 12.7 GHz. The frequency of the different transverse mode functions are non-
degenerate, according to eq. (3.6), and the expected frequency spacing of two neighbor-
ing transverse modes(n+m= n′+m′+1) amounts toδνnm,n′m′ = 7.08 GHz, In fig. 6.2
the cavity transmission spectrum when scanning the cavity length over more than one free
spectral range is shown. The spectrum is obtained by measuring the transmitted intensity
of a relatively strong probe field injected into the cavity with a photo-detector. The trans-
mission peaks corresponding to the TEM00, TEM10,01 and TEM20,02 modes are clearly
resolved on the scan, and separated in frequency, as expected from (3.6).
Though according to eq. (3.6) the resonance frequencies forthe TEM10 and TEM01 mode
should be equal, we measure a slight difference ofδν10,01∼ 1 MHz, which is most likely
due to birefringence effects in the substrates of the cavitymirrors.

To facilitate mode matching to a particular transverse modeand especially to distin-
guish the spatial orientation of e.g. the TEM10 and TEM01 mode, a CCD camera was
inserted into the probe beam path before the APD to directly monitor the beam profile of
the transmitted cavity signal while modematching.

6.4. Mapping out the transverse cavity mode profiles

In a first series of experiments, we explore the collective coupling of a small, elongated
ion Coulomb crystal to various cavity field modes when translating it along the horizontal
x- and the verticaly-directions. A projection image of the crystal is shown in fig. 6.3. It
has a half-length ofL = (240±1) µm and a radius ofR= (21±1) µm. With a density
of (3.4±0.1) ·108 cm−3 the crystal contains a total ofNtot = 238±18 ions. The position
of the crystal’s revolution axis is determined from projection images taken with the two
CCD cameras. In fig. 6.4 the horizontal position for different values of the additional DC
voltages applied to the two rods with equal polarity as deduced from projection images
is shown. The solid line is a linear fit to the data points and yields(140±2) µm

V . The
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2L

2R

Figure 6.3.: Projection image in the(x,z)-plane of the thin needle-shaped crystal used
for mapping out of the transverse cavity mode. From a projection image we deduce a
half-length and a radius ofL = (240±1) µm, R= (21±1) µm. With a density ofρ0 =
(3.4±0.1) ·108 cm−3, the total number of ions in the crystal isNtot = 238±18.
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Figure 6.4.: Horizontal position of the center of a needle-shaped crystal for various DC
voltages applied to two of the trap rods. The position of the crystal is deduced from
projection images. The solid line is a linear fit and yields a displacement of(140±2) µm

V .

precision in reading the position of the crystal is±0.8 µm [119].
In fig. 6.5 the measured coupling strengths using the Coulombcrystal of fig. 6.7 is

presented in terms ofG2
mn normalized toG2

00(x0 = 0, y0 = 0) for the TEM00 and TEM10

modes, when translating the crystal along the horizontalx and the verticaly directions.
For each position of the crystal, the coherent coupling strength is measured through the
broadening of the probe pulse transmission signal (Eq. (6.1)) with the probe tuned to the
atomic resonance (∆ = 0). The solid lines in fig. 6.5 are theoretical predictions calculated
according to eq. (6.1). For the calculation we use the geometrical size as deduced from
the projection image and a density ofρ0 = (3.8±0.1)×108 cm−1 determined from the
trapping parameters (see eq. (2.15)). Though the field of theTEM10 mode drops to zero
at the center of the mode, the coherent coupling does not vanish for zero displacement of
the crystal, because of its finite radial extension.

The experimental data is shown to agree very well with the theoretical predictions and
since the amplitude of the radial micromotion increases with the ions’ distance from the
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6.5. Effects of the size of the crystal on the cavity coupling
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Figure 6.5.:Normalized coherent coupling strengthsG2
00 (solid) andG2

10 (open) as a func-
tion of the displacement of the needle-shaped crystal alongthex (circle) andy (square)-
axes. The solid lines are derived from the theoretical expression given in Eq. (6.3), taking
the radial extension of the crystal into account. The red line correspond to the TEM00

mode, the blue line to thex and the green line to they direction of the TEM10 mode.

RF-field freez-axis (see eq. (4.1)), strong systematic deviations would have been expected
at large displacements if excess micromotion was an issue. The excellent agreement of
the measured data with the theoretical predictions indicates that the radial micromotion
of ions does not couple significantly into their axial motion. While reassuring for the
behavior of our trap, these findings are in agreement with predictions from molecular
dynamic simulations [165].

The experiments presented in this section provide, furthermore, a very sensitive tech-
nique to measure the relative offsets between the RF-field free trap axis and the symmetry
axis of the cavity. By translating small, elongated crystals along the transverse direc-
tions and measuring their coupling to the fundamental TEM00 mode as a function of
displacement, these offsets can be measured with very high precision (better than 1µm).
In combination with the scheme to modify the position of the potential minimum of the
radial pseudo-potential of the trap discussed in sec. 4.6, we could, using this measurement
technique, reduce the radial offset in both transverse dimensions to less than a microme-
ter [119].

6.5. Effects of the size of the crystal on the cavity
coupling

To check further the agreement with the theoretical predictions of eq. (6.3) we performed
measurements of the collective coupling rate of crystals with fixed position, but varying
radii with different transverse modes.
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Figure 6.6.: (color online.) Normalized coherent coupling strengthsG2
00 (solid) andG2

10
(open) as a function of the crystal radiusR. The length and density of the crystals are
fixed toL = (336±1)µm andρ0 = (3.8±0.1)×108 cm−1, respectively. The solid lines
are derived from the theoretical expression given in Eq. (6.3). The three insets show
the three crystals with different radial extensions (from left to right, R= (23± 1) µm,
R= (63±1) µm andR= (149±1) µm).

For narrow crystals withR.w0 a significant difference in the coupling with the TEM00

and TEM10 mode is expected. However, these differences should vanishfor increasing
crystal radii and the collective coherent coupling rate is expected to converge towards the
same value for big crystals withR≫ w0, as discussed in eq. (6.5). This prediction was
tested using crystals with a fixed half-length ofL = (336±1) µm and a constant density
of ρ0 = (3.8±1)×108 cm−3. The radial extension was changed by successively loading
more ions into the trap while at the same time increasing the axial confinement potential
to keep the length of the crystal constant.

In Fig. 6.6 the measured coherent coupling rates for the TEM00 and TEM10 mode are
shown for various crystal radii. The rotational symmetry axis of the various crystals was
positioned to coincide with the axis of the cavity (x0 = y0 = 0). As expected, the coherent
coupling rate increases with the radius, and this increase is slower for the TEM10 mode ,
since most of the ions are positioned along the field free axisof this mode. As the radius
of the crystals is further increased, the coupling rate withboth modes converges to the
same value, in good agreement with the theoretical predictions of Eq. (6.3). The solid
lines are the expected coupling rates for those modes, and show good agreement with the
experimental data. The inset in fig. 6.6 shows projection images of three crystals with
radii R= (23±1) µm, R= (63±1) µm andR= (149±1) µm
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(a)

(b)

(c)

200 mµ

Figure 6.7.: Projection images in the(xz)−plane of the 1.2 mm-long Coulomb crystal
used for the measurements in Fig. 6.8.a. The whole crystal is illuminated by 866 nm re-
pumping light along thex-axis.b. andc. The repumping light at 866 nm is predominantly
injected into the TEM00 (b) and TEM10 (c) cavity modes, for enhancing the fluorescence
level within these modes.
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Figure 6.8.:(color online.) Broadening of the probe signal half-widthκ′−κ as a function
of the probe detuning∆, for the TEM00 (solid) and the TEM10 (open) modes, obtained
with the crystal of Fig. 6.7. The collective coupling rates are deduced from Lorentzian fits
according to Eq. 6.1 (solid lines).
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6.6. Coupling with large crystals

Finally, to carefully check the prospect of using large ion Coulomb crystals as a media for
multimode light-matter interfacing, we performed precisemeasurements of the coherent
coupling rates for both the TEM00 and the TEM10 mode. To obtain a sufficiently large
coupling, much larger crystals with a higher density were used. In fig. 6.7 projection
images of the crystal are shown. The three images are taken with different configurations
for the repumping laser. In fig. 6.7 a., all ions in the Coulombcrystal are exposed to
repumping light and contribute to the fluorescence, whereasin fig. 6.7 b. the repumping
laser is mode matched to the TEM00 mode of the cavity and only the ions inside the
cavity mode will contribute to fluorescence, while the remaining ions will decay to the
metastable 3d2D3/2 state. Fig. 6.7 c. is acquired in a similar configuration, with the
repumping laser now being mode matched to the TEM10 mode and one can clearly see
the nodal line of this mode. From the projection image, we deduce a half-length ofL ∼
600µm, a radius ofR∼ 300µm. With an ion density ofρ0 = (5.4±0.1)×108 cm−3 the
effective number of interacting ions isN∼ 590.

The coherent coupling rate was measured analogously to sec.5.4, by measuring the
broadening of the effective cavity decay rate for a series ofdetunings of the probe pulse
from atomic resonance,∆. The results of the measurements is shown in fig. 6.8 together
with Lorentzian fits to the data based on Eq. 6.1. WithGmn andγ as free fitting parameters,
we obtain (G00 = 2π× (11.6± 0.1) MHz, γ = 2π× (11.3± 0.3) MHz) for the TEM00

mode and (G10 = 2π× (11.5± 0.1) MHz, γ = 2π× (11.4± 0.3) MHz) for the TEM10

mode, respectively. The experimentally deduced collective coupling rates,G00 andG10,
are equal within their error bars and confirm the theoreticalexpectation of eq. (6.5). This
also shows that the radial micromotion does not couple into the axial degree of freedom,
and does hence not influence the coherent coupling, and corroborate the findings of sec.
6.4.

Moreover, the achieved coupling rates also show that the collective strong coupling
regime can be reached for higher-order cavity modes. Furthermore, we also observed
equal coupling strengths between large crystals and the TEM10 and the TEM01 modes,
which opens up for e.g. the possibility of storing photonic qubits encoded in a spatial
basis spanned by these two modes.

6.7. Conclusion

In conclusion we have performed a series of measurements to investigate the coupling of
ion Coulomb crystals with various sizes with different transverse cavity field modes.

In a first experiment, we demonstrated how small, elongated crystals can be used to
map out the transverse profile of the cavity modes by translating the crystals in the radial
plane and measuring the coherent coupling rate to the cavityfield. The results show very
good agreement with the theoretical expectations, even fordisplacements between the
revolution axis of the crystal and the field-free nodal line of the RF potential as large as
∼ 60µm.

This experiment is to some extent reminiscent of [68], wherea single40Ca+ ion was
used as a nano-scopic probe to reconstruct the transverse field distribution of several trans-
verse modes of an optical cavity. The main difference is thatin our experiment the trans-
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verse field distributions are measured not by detecting incoherent fluorescence light, but
directly via the coherent coupling of the ions to the cavity field.

In a second experiment, the effect of the size of the crystal on the coupling strength to
various transverse modes was investigated by measuring thecollective coupling rate of
crystals with varying radii to these modes. The experimental data is in good agreement
with the theoretical expectations and we find the predicted scaling with the radius for both
the TEM00 and the TEM10 mode.

Finally, we demonstrated how large ion Coulomb crystals (R≫w0) can be used to real-
ize collective strong coupling to various transverse modeswith equal coupling strengths.
These results are very promising for e.g. the realization ofcomplex quantum memory
schemes, where one can envision the simultaneous storage and retrieval of photonic states
in various cavity modes [96].

For all experiments, we find very good agreement between the measured coherent cou-
pling and the theoretical expectations, even when displacing small, elongated crystals into
regions of high micromotion or for crystals with large radial extensions, where some of
the ions are positioned far from the RF-field free axis and experience strong micromotion.
These results show that the coupling of the inherent radial micromotion into the axial
degree of freedom is sufficiently small to have no significanteffect on the coherent cou-
pling between the ion ensemble and the cavity modes, in good agreement with molecular
dynamics simulations [165].

Our results, combined with previously measured long collective Zeeman sub-state co-
herence times (see sec. 5.7), suggest that large ion Coulombcrystals could serve as near-
ideal media for high-fidelity multimode quantum information processing and communi-
cation devices.
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7. Noninvasive spectroscopy of
vibrational modes

The measurements in this chapter will exploit another degree of freedom in the light-
matter interaction, namely the collective motion of trapped ion Coulomb crystals. We
will present a novel noninvasive spectroscopy technique which directly uses the collective
coherent coupling between the ions and a cavity field at the single photon level to gain
information about the collective motion of the ion crystal.This measurment technique
will be used to study the normal mode dynamics of cold ion Coulomb crystals in a linear
Paul trap.

The chapter is structured as follows: We start by giving a brief introduction and moti-
vation in 7.1. Then, in sec. 7.2 a theoretical model for the collective vibrational modes
of a cold nonneutral plasma will be introduced, along with a theoretical investigation of
the influence of vibrational modes on the coherent light-matter interaction. In sec. 7.3
we will present the experimental technique to perform a noninvasie spectroscopy of vi-
brational modes using the coherent coupling with the cavityfield. In sec. 7.4 some first
applications of this technique will be presented along withpreliminary results, before we
conclude in sec. 7.5.

7.1. Introduction

In the past decades, the physics of cold confined plasmas of identical charged parti-
cles [166] has been the subject of many theoretical and experimental studies. While the
availability of fast computers allowed for detailed simulations of these systems [165–170],
the structural properties and equilibrium states of strongly confined plasmas in the form
of ion Coulomb crystals was investigated both in Penning [171–175] and in Paul traps
[75–78,121,141,176].

When these strongly confined plasmas are subject to externalperturbations, theoretical
studies of the collective dynamics treating the plasma as a zero-temperature charged liquid
predicted collective normal mode dynamics [82,167,168].

In Penning traps, the normal mode dynamics of magnetized spheroidal shaped charged
plasmas have experimentally been observed in a series of measurements using cold laser-
cooled plasmas of Be+ ions [171–174]. In these experiments, the excitation of a particular
normal mode was detected by observing changes in the fluorescence level of the ions due
to the Doppler effect. The normal modes were excited by applying appropriate driv-
ing fields to the trap electrodes with a frequency matching the resonance frequency of the
mode. The Doppler shifts of the atomic resonance by the driven motion lead to observable
changes in the fluorescence. Using this so-called Doppler velocimetry spectroscopy tech-
nique [173], a number of normal modes could be observed and the corresponding mode
frequencies could be related to specific(l ,m)-modes theoretically predicted for these mag-
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netized spheroidal charged plasmas [82]. A phase-coherentdetection of the fluorescence
at certain phases of the modulation, furthermore, allowed for an direct imaging of the
axial-velocity eigenfunction of the modes [173].

While strongly confined plasmas in Penning and Paul traps aresimilar in many respects,
the trapping environment is known to influence the properties of the trapped ensembles.
The RF-trapping fields are e.g. expected to lead to much higher heating rates for the un-
magnetized plasmas in Paul traps as compared to the magnetized plasmas confined in the
static potential of a Penning trap [165, 177]. Furthermore,the lack of a rotational sym-
metry axis in Paul traps has been found to be responsible for the observation of specific
crystalline structures [141].

However, the normal mode dynamics of cold unmagnetized plasmas in linear Paul traps
are still expected to be governed by the zero temperature charged liquid model and collec-
tive vibrational modes were also predicted for these plasmas [82,167]. The experimental
investigation of these normal modes in an unmagnetized plasma in the form of an ion
Coulomb crystal in a linear Paul trap will hence in many respects contribute to the under-
standing of the influence of the trapping environment on the physics of these crystals.

Moreover, since our previous studies indicate that large ion Coulomb crystals confined
in a linear Paul trap are promising candidates for the realization of both high-efficient and
long-lived quantum memories for light [79, 81], a study of the normal mode dynamics
of these crystals might reveal important implications of the excitation of collective vibra-
tional modes and temperature on the fidelity of such an ion based quantum memory. On
the other hand, the knowledge of the normal mode dynamics in these ensembles might
also open up for the prospect of storing several photonic quantum bits through coherent
excitation of specific vibrational modes.

In addition, collective normal mode dynamics of large ion Coulomb crystals might also
open up for using these systems for performing quantum simulations, as was recently
proposed [178,179].

Finally, ion Coulomb crystals also represent extremely interesting systems to study cav-
ity optomechanics phenomena with a cold atomic medium [180,181], since, in spite of
their solid nature, they possess free atomic resonance properties and can hence be made
very sensitive to the radiation pressure force exerted by optical fields. In this context ion
Coulomb crystals could serve as model systems for more traditional solids like micro-
mechanical oscillators [182].

In this chapter, we will present experimental studies of vibrational normal mode dy-
namics in cold40Ca+ ion Coulomb crystals in a linear Paul trap. We use a novel, nonin-
vasive technique which is based on monitoring the response of the ion plasma to a single
photon optical cavity field [152]. This is accomplished by measuring the effect of the col-
lective motion on the coherent coupling between the ion ensemble and a standing wave
cavity field, while deliberately exciting the normal modes.As the coherent light-matter
interaction is sensitive to very small changes of frequencies, the Doppler shifts induced
by the ions’ motion is directly reflected on the coherent coupling rate. Since the probing
does not rely on the observation of incoherently scattered photons as, e.g. in the Doppler
velocimetry, the measurement can in principle be purely dispersive and does not require
any excitation of the ions. This technique can therefore be used to noninvasively study
thermodynamical properties of cold plasmas.
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7.2. Theoretical model

In sec. 2.3 the zero-temperature charged liquid model was introduced to account for the
shape and density of cold ion Coulomb crystals in a linear Paul trap. We will now extend
this study to the plasma dynamics and its collective vibrational modes. For the description
of the collective motional behavior we will follow the approach of ref. [82,167,168].

7.2.1. Normal modes of a charged liquid plasma

Despite the solid-like structure of cold ion Coulomb crystals, the thermal equilibrium
state of a sufficiently large ion ensemble trapped in the cylindrical symmetric trapping
potential of a linear Paul trap was in sec. 2.3 found to be governed by a zero-temperature
charged liquid plasma model. The cylindrical symmetry of the confinement potential (see
eq. (2.9)) imposes a spheroidal shape of the nonneutral plasma [111] with half-lengthL
and radiusR (see fig. 2.4). In the equilibrium state, where the force on each individual
ions has to vanish, the total potential in the plasma has to beconstant (see eq. 2.12) and
the density of the ensemble, which is related to the plasma potential through Poisson’s
law, was also found to be constant. A perturbation of the equilibrium state, e.g. by a
small time-dependent variation of the end-cap voltages, will induce small oscillations in
the spheroidal plasma, which, for sufficiently small perturbations, can be treated using the
linear fluid theory [168].

For a non-magnetic zero temperature charged liquid plasma1 these perturbations are
described by the (linearized) continuity, momentum and Poisson equations

0 =
∂
∂t

δρ0+∇ · (ρ̃0δv) (7.1a)

∂
∂t

δv = −Q
M

∇Φ (7.1b)

∇2Φ = −Q
ε0

δρ0, (7.1c)

whereδρ0, δv andΦ are the perturbed density, velocity and potential, respectively. ρ̃0 is
the fluid density, equal toρ0 within the plasma and 0 outside. Standard manipulations of
eqs. (7.1) yields the differential Maxwell equation

ε∇2Φ = 0. (7.2)

The frequency dependent isotropic dielectric tensorε is given by

ε =

{

1 outside the plasma

1− ω2
p

ω2 inside the plasma
(7.3)

whereωp is the plasma frequency defined in eq. (2.18). Decomposing eq. (7.2) into two
parts for the potential inside and outside the plasmaΦin andΦout yields

0 =

(

1−
ω2

p

ω2

)

∇2Φin (7.4a)

0 = ∇2Φout, (7.4b)
1For plasmas confined in a linear Paul trap, we can restrict thesituation to non-magnetic fluids, for details on

the magnetic case see [82, 167, 168]
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where the potentials must match across the plasma surfaceS

Φin(rrr)
∣

∣

∣

S
= Φout(rrr)

∣

∣

S. (7.5)

Eq. (7.4) can either be fulfilled byω = ωp or by a plasma potential fulfilling the Laplace
equation∇2Φin = 0. The first case describes perturbations within the plasma which do not
affect the external potential, and always oscillate at the plasma frequency. These are the
so-called bulk plasma modes, and examples of such bulk modesare the breathing modes,
where the surface of the plasma shows breathing oscillations2. The bulk modes will not be
investigated further in this thesis. The latter case, wherethe Laplace equation is fulfilled
both byΦin andΦout, corresponds to surface plasma oscillations. In this situation, the
solution turns out to be separable in spheroidal coordinates, rrr = (ξ1, ξ2, φ) which are
related to the usual cylindrical coordinates,rrr = (ρ,φ,z), by:

z = ξ1ξ2 (7.6a)

ρ =
√

[

ξ2
1− (d2)

][

1− ξ2
2

]

, (7.6b)

whered =
√

L2−R2. ξ1 can be understood as a generalized radial coordinate andξ2 as a
generalized latitude,φ is the usual azimuthal angle. In this coordinate system, thesurface
of the plasma is a constantξ1 surface. The solution to the Laplace equation is in this frame
of reference given by [168]

Φin = APm
l (ξ1/d)Pm

l (ξ2/d)exp(imφ) (7.7a)

Φout = BQm
l (ξ1/d)Pm

l (ξ2/d)exp(imφ), (7.7b)

wherePm
l andQm

l are the first- and second-order Legendre polynomials (see appendix B),
with cylindrical indices(l ,m), l ≥ |m| and with amplitudesA andB. The spatial variation
of a certain mode is characterized by the two indicesl andm, where the number of zeros
encountered upon circling the equator of the spheroid is|m|, and|l −m| upon traversing
it from pole to pole along a circle. Substituting eq. (7.7) into (7.5) yields the frequencies
of the(l ,m) modes [82]

ω(l ,m) =
ωp

√

1− Pm
l Qm′

l

Qm
l Pm′

l

, (7.8)

wherePm
l = Pm

l (1/
√

1−α2), Qm
l = Qm

l (1/
√

1−α2) and with the prime denoting differ-
entiation with respect to the entire argument.α denotes the aspect ratio of the crystal (see
fig. 2.4).

The corresponding spatial modes generally have a non-trivial dependence on the ions’
position in the crystal. For longitudinal modes (l ,m= 0), the displacement from the
equilibrium positionz0, close to the axis of rotational symmetry (ρ ≃ 0), is δz= z− z0

and can be found to be

δz∝ P0′
l (z/

√

L2−R2). (7.9)

2In certain cases, e.g. for spherical, cylindrical and disc plasmas, the breathing mode happens to also be a
crystal eigenmode.
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a. (l=1,m=0) b. (l=2,m=0) c. (l=3,m=0)

Figure 7.1.: Deformation of the ion Coulomb crystals for the three lowest-order axial
modes (a.(1,0). b. (2,0), c. (3,0)) The arrows indicate the motional direction at a given
time. The spatial dependence of the potentialΦin can be found in tab. 7.1.

(l,m) Φin(ρ,φ,z)
(1,0) z
(1,1) ρeiφ

(2,0) [2z2−ρ2]/4− d2

2
(2,1) ρzexpiφ
(2,2) ρ2exp2iφ
(3,0) z[10z2−15ρ2−6d2]expiφ

Table 7.1.:Spatial dependence of the potentialΦin(ρ,φ,z) for the lowest(l ,m) normal
modes in cylindrical coordinates.

Hence, the axial modes withm= 0 all have a spatial variation along thez-axis and an
excitation of these modes will lead to measurable Doppler shifts of the ions resonance
frequency along this axis. We will later use this shift to experimentally measure these
frequencies. In fig. 7.1 are depicted the spatial deformation of the spheroidal plasma for
the lowest axial modes(l = 1,2,3,m= 0).

The calculated plasma potentials in the spheroidal plasma for some of the lowest order
vibrational modes are given in tab. 7.1 in cylindrical coordinatesrrr = (ρ,φ,z).

7.2.2. Mode excitation

Having derived expressions for the frequencies of the collective modes and for the spa-
tial dependence of the potential in the spheroidal plasma, we can now discuss how these
modes can be excited by a suitable modulation of the trappingpotentials. In the experi-
ment, this is accomplished by applying additional AC-voltages to the four pieces forming
the end caps on each side of the trap (see fig. 2.1) with a frequency close to the resonance
frequency of the mode. For the axial modes(l ,m= 0) identical AC-potentials are applied
to the four end pieces on each side, either in phase for the modes with evenl or with a
relative phase ofπ between the two end caps for modes with evenl . For the three lowest
axial modes, this is depicted schematically in fig. 7.2. Moredetails will be given along

+

+

++

++

+

+

−

−

−

−
a. (l=1,m=0) b. (l=2,m=0) c. (l=3,m=0)

Figure 7.2.:Excitation schemes for the three lowest-order axial modes (a. (1,0). b. (2,0),
c. (3,0)). The arrows indicate the direction of the motion in the plasma. The appropriate
polarities of the excitation fields are indicated by the signs on the electrodes.
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with the experimental setup in 7.3.1

7.2.3. Driven steady state

When a periodic external excitation force with a frequencyω close to the resonance fre-
quency of a certain mode is applied, the collective motion and, hence, also the motion of
the individual ions will after a certain transient time reach a driven steady state. For an
ion located on the revolution axis of the crystal (ρ = 0) a simple model can be obtained by
modeling the excitation with a position dependent amplitude of the driving forceFdrive(z).
The equation of motion reads

d2z
dt2 +β

dz
dt

+ω2
(l ,m)(z− z0) =

Fdrive(z0)

M
cos(ωt), (7.10)

wherez0 is the equilibrium position of the ion, and where we assume the amplitude of
the driving force to be constant withinδz for each ionFdrive(z) = Fdrive(z0). All damping
mechanisms of the periodic motion of the ion ensemble are combined in the damping
constantβ. In practise, the damping will be dominated by two mechanisms namely the
the off-resonant coupling to other vibrational modes [167]and the radiative damping by
the Doppler cooling laser. The damping rate can hence be written as

β = βcool+β0, (7.11)

where the first termβcool corresponds to the friction induced by the laser cooling andβ0

accounts for the coupling to other modes.
Eq. (7.10) is the well-known differential equation of a driven damped harmonic os-

cillator. The solution in steady state is of the formδz(t) = ζ(ω,z)cos(ωt −Φ), where

ζ(ω,z) =
Fdrive(z0)

M
√

(ω−ω(l ,m))2+2β2ω2
. (7.12)

is the frequency and position dependent amplitude andΦ is a phase. Each ion will hence
oscillate with an amplitude that depends on its position, the frequency of the driving force
and the amplitude of the force. Accordingly, the velocity ofthe individual ions is of the
form

v(z, t) = ṽ(z)cos(ωt−Φ) (7.13)

with a velocity amplitude given by

ṽ(z) = ωζ(ω,z). (7.14)

The driven motion of the ions will obviously, through the Doppler shift, also lead to a
modulation of the atomic resonance frequencies of the individual atoms, with a shift that
depends on the position in the crystal and the instantaneousvelocity of the ion. We will in
the next subsection discuss how this shift will influence thecollective coupling of the ion
Coulomb crystal with the cavity field and how this can be used to investigate the collective
dynamics of the cold plasma.
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Figure 7.3.: Simulation of the amplitude of the driven motion for the(1,0) mode. A
sequence with cooling light with a length oft1 = 17µs alternates with at2 = 83µs period
of free evolution. The amplitude of the motion increases during the free evolution, and is
damped during cooling. The remaining parameters for the simulation whereω = ω10 =
2π×90 kHz,βcool = 2π×20 kHz andβ0 = 2π×1 kHz.

Damping in the system and modelling

As mentioned above, the friction term in eq. (7.10) is dominated by two major contri-
butions, namely dissipation induced by laser cooling and bythe coupling to additional
vibrational modes. In our experiment, the Doppler cooling is only applied for a fraction
of the time, as the probing of the coherent interaction between the ion Coulomb crystal
and the cavity field mode requires a sequence of cooling, state preparation and probing, as
depicted in 5.2. In phases where there is no cooling light present, the only friction force
will be due to the off-resonant coupling to other normal modes and the equation of motion
in these phases is

d2z
dt2 +β0

dz
dt

+ω2
(l ,m)z=

Fdrive

M
cos(ωt +ϕ). (7.15)

The experimental sequence is typically repeated at rates of∼ 50 kHz and phases with and
without Doppler cooling will constantly alternate3. The amplitude of the driven oscillation
is hence not expected to be constant, as it will decrease due to the additional friction during
cooling phases and will increase again in phases where thereis no Doppler cooling. The
steady state solution in eq. 7.12 does not include this change of the oscillation amplitude.
Nevertheless, after some iterations of the sequence, the system will obtain a quasi-steady
state, where the amplitude envelope in subsequent sequences will be the same. This is
illustrated in fig. 7.3 by a simulation of the evolution of themodulation amplitude for an

3During the optical pumping period, the effect of the Dopplercooling laser will exponentially drop, however,
especially at the beginning of the optical pumping, the ionswill still experience noticeable cooling.
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alternating sequence shown in fig. 7.3. A cooling phase with alength oftcool = 17 µs is
alternated with atfree = 83 µs long period of free evolution, where only the off-resonant
coupling to other modes contributes to the damping. Initially, the simulation comprises a
long phase of Doppler cooling free evolution until the system reaches a steady state with
a maximum amplitude of the driven oscillation. Then, duringthe first cooling pulses, the
amplitude of the modulation is drastically reduced. After the first cooling phase, it will
increases again during the free evolution, before being damped again during the next cool-
ing cycle. After some iterations of the sequence, a quasi steady state is reached and the
evolution of the modulation amplitude is the same in subsequent sequences. The modula-
tion frequency for the simulation was chosen to beω = ω10 = 2π×90 kHz, the damping
rates were set to realistic values ofβcool = 2π×20 kHz andβ0 = 2π×1 kHz [167]. In the
measurement, the sequence time will be much shorter (∼ 20 µs) which for typical mod-
ulation frequencies of∼ 2π×100 KHz corresponds only to few oscillation periods and
to illustrate the effect, the simulation was conducted for amuch longer sequence. How-
ever, the qualitative behavior will be the same in the experiment and we will after some
iterations probe the quasi-steady state of the system.

7.2.4. Effect of the motion on the coherent coupling

In our experiment, we want to directly use the coherent coupling between ion Coulomb
crystals and a single-photon cavity field to gain information on the collective motion of
the ions. This will be accomplished by the same technique used to measure collective
strong coupling in sec. 5.4, namely by monitoring the effective cavity decay rateκ′. For
an ion ensemble at rest, this rate is, as a function of the probe detuning∆, expected to
vary asκ′(∆) = κ+ g2

N
γ

γ2+∆2 (see eq. (3.48a), wheregN = g
√

N denotes the collective
coherent coupling rate,γ is the atomic dipole decay rate and∆ is the detuning of the probe
laser from atomic resonance. Already in sec. 3.3 we discussed the effect of motion on
the coherent coupling rate and the effective cavity decay rate and we will start out by
recapitulating some of the results we found there, before adapting them to the situation
of a collective driven motion. Assuming the velocity of the ions in the ensemble to be
governed by a certain velocity distributionf (v) we found in eq.(3.51a) the following
expression for the effective cavity decay rate

κ′(∆) = κ+g2
N

∫
dv f(v)ξ(∆,v)γ = κ+g2

N

∫
dz f(v(z))ξ(∆,v)γ,

where the parameter

ξ(∆,v) =
γ2+∆2+(kv)2

(γ2+∆2)2+2(γ2−∆2)(kv)2+(kv)4

was defined in eq. (3.52) andk= 2π
λ is the wave vector.

When a certain collective vibrational mode is excited, the velocity distribution f (v)
will in general depend on the individual mode and will vary over one oscillation period of
the excitation force and hence also be time dependent. The position and time dependent
velocity of an ion on the crystal revolution axis4 was found in (7.14).

4Obviously not all the ions contributing to the collective coherent coupling will be located on the revolution axis
of the crystal. However, for crystals with a radial extension much bigger than the waist of the fundamental
TEM00 cavity mode it is a good first approximation to treat the motion of the ions which contribute to the
coherent coupling, as if they were located on axis.
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For simplicity, we will in the following first discuss the excitation of the collective
center of mass mode(1,0), where all the ions in the ensemble at a certain timet move
with equal velocityvz(t), and generalize the analysis to higher order vibrational modes
afterwards.

For the center of mass mode, the velocity distribution at a certain time t will only
depend on the phase of the excitation force and is simply given by a delta function
f (v(t)) = δ(v− vz(t)), i.e. it does not depend on the position of the individual ions along
the crystal axis. In this case, the integral in eq. (3.51a) can be simply evaluated and yields
at a certain timet for the effective cavity decay rate

κ′(∆, t) = κ+g2
N

γ
[

γ2+∆2+(kvz(t))2
]

(γ2+∆2)2+2(γ2−∆2)(kvz(t))2+(kvz(t))4 . (7.16)

Already from this equation it can be seen that the motion of the ions along the axis will
lead to a lower effective cavity decay rate, as the coupling strength is reduced due to the
Doppler-shift of the resonance. Furthermore, the instantaneous velocity and hence also
the effective cavity decay rate will through the time dependence of the excitation force
also depend ont. As was explained in sec. 5.3, to reconstruct the cavity reflectivity
spectrum for a certain detuning of the probe laser∆, the cavity length is scanned over the
atomic resonance and we measure repeatedly the cavity reflection signal of a probe field at
the single photon level, using the sequence shown in fig. 5.2 and averaging over typically
100 scans.

The measurement sequence is repeated at a rate of typically 50 kHz and has no fixed
phase relation to the periodic excitation of the motion of the ions. However, if the
timescale at which the velocity of the ions changes is slow ascompared to the effec-
tive cavity decay time each individual scan will measure thebroadening of the effective
cavity decay rate at an arbitrary phase of the excitation. Averaging over many cavity re-
flection spectra will therefore also imply an average over the phase of the excitation field
and we expect the measured mean effective cavity decay rate,κ̄′, to be given by eq. (7.16),
averaged over one oscillation period, which yields

κ̄′(1,0)(∆) = κ+
g2

N

2π

∫ 2π

0
dϕ

γ
[

γ2+∆2+(kṽzcosϕ)2
]

(γ2+∆2)2+2(γ2−∆2)(kṽzcosϕ)2+(kṽzcosϕ)4 (7.17)

whereṽz denotes the velocity amplitude and where the integration isperformed over one
oscillation period of the driven motion. For the center of mass mode, this integral can be
solved analytically and yields [183]

κ̄′1,0 = κ+g2
N

√

γ2+∆2sin(1
2 arctan(

√
4∆2γ2(kṽz)4

(γ2+∆2)2+(kṽz)2(γ2−∆2)
)+arctan(

√

γ2

∆2 ))

(((γ2+∆2)2+(kṽz)2(γ2−∆2))2+4∆2(kṽz)4γ2)
1
4

(7.18)

In general, when exciting an arbitrary collective vibrational mode, the velocity distri-
bution will be more complex and not all the ions in the crystalwill at a given instance
move at the same velocity. Each ion in the ensemble will stillcarry out a harmonic oscil-
lations, however, the amplitude of the motion ˜v(z) will now depend on the ions’ individual
position within the plasma, see eq. (7.14). Nevertheless, we will for each measurement
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of the cavity reflectivity obtain an effective cavity decay rate, corresponding to an in-
stantaneous velocity distribution in the crystal. Moreover, as our measurement sequence
is not synchronized to the periodic modulation, averaging over many scans will imply
a time average. The expected mean effective cavity decay rate can hence be calculated
by averaging over the known velocity amplitudes of the ions in the crystal and over one
oscillation period5

κ̄′= κ+
g2

N

2π

∫
dϕ

∫
dṽ(z)

f (ṽ(z))γ[γ2+∆2+(kṽ(z)cosϕ)2]

(γ2+∆2)2+2(γ2−∆2)(kṽ(z)cosϕ)2+(kṽ(z)cosϕ)4 (7.19)

= κ+
g2

N

2π

∫
dϕ

∫
dz

ωζ(z)γ[γ2+∆2+(kωζ(z)cosϕ)2]

(γ2+∆2)2+2(γ2−∆2)(kωζ(z)cosϕ)2+(kωζ(z)cosϕ)4 .

where in the last step, the distribution of the velocity amplitudes f (ṽ(z)) was replaced
by the known spatial distribution of the amplitudes ˜v(z) = ωζ(z) (see eq. (7.14), the
frequency dependence is suppressed for simplicity) and where the integration is performed
over the crystal’sz-axis.

Beside the(1,0) mode, analytic solutions of this equation can also be calculated for the
(2,0) mode [183]. For this mode, the integration over the velocityamplitudes, ˜v(z), and
the phase of the excitation yields

κ̄′2,0 = κ+
g2

N

kṽ

[

tanh−1(

√

kṽ+∆+ iγ
kṽ−∆− iγ

)+ tanh−1(

√

kṽ+∆− iγ
kṽ−∆+ iγ

)

]

, (7.20)

where ṽ now denotes the maximum amplitude of the motion. For higher modes, the
integration has to be performed numerically. It can be shownthat the result of the inte-
gration in eq. (7.19) for the two lowest axial modes is also well approximated by sub-
stituting in eq. (7.19) an effective velocity averaged overone oscillation periodveff

(l ,m) =
[

〈ṽ2cos2(ωl ,mt +ϕ)〉
]1/2

= ṽ√
2

[183]. This yields

κ̄l ,0≈ κ+g2
N

γ[γ2+∆2+(kveff
(l ,m))

2]

(γ2+∆2)2+2(γ2−∆2)(kveff
(l ,m)

)2+(kveff
(l ,m)

)2
. (7.21)

7.3. Experimental results

In this section, we will present experimental results on thestudy of normal mode dynamics
of ion Coulomb crystals in a linear Paul trap. The excitationof collective motion will, as
was discussed above, be directly reflected in a lowering of the collective coherent coupling
between ion Coulomb crystal and a cavity field at the single photon level.

The setup of the cavity trap, the laser systems and the detection systems were already
introduced in ch. 4 and we will in this chapter only discuss the technique used to excite
the collective vibrational modes of the crystal and briefly recapitulate the measurement
method and its application in the context of this chapter before turning to the experimental
results.

5One could, in principle synchronize the measurement sequence with the modulation and measure the effective
cavity decay rate at certain phases of the oscillation, however, one would still have to average over the
velocity amplitudes.
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100µm

Figure 7.4.:Projection image of a crystal with a half-lengthL = (602±1) µm, an aspect
ratioα = 0.135±0.002 and a densityρ0 = (2.62±0.05)×108 cm−3. It contains∼ 4000
ions of which∼ 300 effectively interact with the cavity field . The DC and RF voltage
amplitudes are 2.36 V and 205 V, respectively.

7.3.1. Experimental Setup

The axial normal modes of the nonneutral plasma predicted bythe zero-temperature
charged liquid model can be excited by applying appropriatesinusoidal potentials to the
endcaps formed by the four outer electrodes on each side of the linear Paul trap (see fig.
2.1). Depending on the symmetry of the mode, one has to eitherapply AC-fields in-phase
(l even) or with a relative phase ofπ (l odd). The appropriate phases for the three lowest
axial modes are indicated by the signs on the schematic electrodes in fig. 7.1. A projection
image of a typical ion Coulomb crystal as used in the experiments is shown in fig. 7.4.
With a half-length ofL = (602±1) µm, a density ofρ0 = (2.62±0.05)×108 cm−3 the
crystal contains approximately 4000 ions.

The measurement sequence used for the plasma mode diagnostics is identical to the one
shown in fig. 5.2. During the first 5µs, the ion Coulomb crystal is Doppler laser-cooled,
followed by a period of 12µs, where the ions in the crystal are prepared in themJ =+3/2
magnetic sub-state of the long-lived metastable D3/2 level by optical pumping. Finally,
a weak left-handed circularly-polarized pulse (1.4µs long) of 866 nm light is coupled
into the cavity to probe the collective response of the ions.The mean intracavity photon
number is, as in the previous experiments, less or about one at any time. During this
probing period, the photons reflected by the cavity are measured by the probe APD. The
20 µs sequence is repeated at a rate of 50 kHz while the cavity length is scanned at a
rate of 30 Hz, see sec. 4.8.3, and the cavity lineshape is reconstructed by averaging a
few hundred scans. When exciting a certain normal mode of theplasma, the Doppler
shift induced by the motion of the ions will effectively reduce the coherent light-matter
coupling in the system, as discussed in eq. (7.16). The 20µs measurement sequence
is continuously repeated and is not synchronized with the excitation voltage modulation.
On each scan the coherent coupling will hence be measured at an arbitrary phase of the
sinusoidal excitation and taking the mean of many scans willeffectively also average over
the periodic oscillation. The averaged effective cavity decay rate is thus expected to follow
eq. (7.19).

Fig. 7.5 shows the effective cavity decay for a probe laser resonant with the atomic
transition (∆ = 0) as a function of the frequency of the excitation voltage around the res-
onance of the(2,0) “quadrupole” mode measured for the crystal shown in fig. 7.4.A
clearly reduced effective cavity field decay rate is observed around 142 kHz. The mea-
sured resonance value ofωmeas

(2,0) = 2π×(142.1±0.1) kHz is deduced from a Lorentzian-fit

and in good agreement with the resonance frequencyωmodel
(2,0) = 2π×(142.2±1.1) kHz cal-
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Figure 7.5.:Cavity probe linewidth as a function of the mode excitation frequency applied
to drive the equivalent of the(2,0) mode of the crystal shown in fig. 7.4. The probe is
tuned to atomic resonance (∆ = 0) and the AC modulation voltage is applied to the two
endcaps in phase with a peak-to-peak amplitude of 0.75 V. The red line is a Lorentzian
fit to the data and yields a resonance frequency ofωmodel

(2,0) = 2π× (142.2±1.1) kHz.

culated according to eq. (7.8) for the(2,0) mode of a charged liquid crystal with an aspect
ratio α = 0.135 and an ion density ofρ0 = (2.62±0.05)×108 cm−3.

7.3.2. Vibrational mode resonance frequencies

In order to test more generally how well the uniformly charged liquid model describes
unmagnetized ion plasmas confined in a linear Paul trap, the resonance frequencies of the
lowest lying axial normal modes of ion crystals with variousaspect ratios are determined
by monitoring the effective cavity decay rate for a probe laser resonant with the atomic
transition (∆ = 0). The measured mode resonance frequencies are presented in Fig. 7.6
together with the predicted values from the charged liquid model (see Eq. (7.8)) for the
(1,0), (2,0) and(3,0) modes. The experimentally determined values are consistent with
the theoretical prediction to better than one percent for all experimental data and clearly
show that the model of a zero-temperature charged liquid plasma appropriately describes
the collective dynamics of ion Coulomb crystals in linear Paul trap.

The results presented here are another test of the zero temperature charged liquid model,
complementary to the measurement of the ratio of axial and radial trap frequencies for
different trapping parameters, as theoretically discussed in sec. 2.3.2 and experimentally
confirmed in the calibration measurements presented in sec.4.7. Though technically more
challenging, the measurements of the vibrational modes using the collective interaction of
the ion ensemble with a weak cavity light field at the single photon level give the normal
mode frequencies (and therefore the plasma frequency) withexcellent precision.

The accurate agreement between the measured and the theoretically predicted frequen-
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Figure 7.6.: Resonance frequencies corresponding to the(1,0) (squares), the(2,0) (cir-
cles) and the(3,0) (triangles) modes as a function of the aspect ratioα, for a fixed plasma
frequencyωp = 2π×536 kHz (Ur f = 205V). The solid lines show the theoretical predic-
tions of eq. (7.8). The error bars are within the point size.
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Figure 7.7.:Resonance frequency of the(2,0) mode as a function of the(2,2) mode off-
resonant modulation depthξr f

(2,2) (see text) for a fixed aspect ratioα = 0.135. The mode
resonance frequency is normalized to that expected for a plasma without any excitation of
the(2,2) mode and the red lines show the uncertainty in the expected resonance frequency
due to the density calibration. The Coulomb crystals contain between 4000 and 12000
ions (of which between 300 and 700 ions effectively interactwith the cavity field), with
densities of 2.6−5.6×108 cm−3
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7. Noninvasive spectroscopy of vibrational modes

cies of the normal modes of the nonmagnetic plasma may appearsurprising considering
that, during all measurements, the(2,2)mode of the plasma is continuously off-resonantly
excited by the linear RF quadrupole field confining the plasmathrough the micromotion.
The equation of motion for an ion at the radial position(x0,y0) was found in eq. (2.6).
The micromotion at the frequency of the RF potential modulates the slower secular motion
with an amplitude given by

x̄(t) = x0

[

1+
q
2

cos(ΩRFt)
]

(7.22a)

ȳ(t) = y0

[

1− q
2

cos(ΩRFt)
]

. (7.22b)

These equations suggest the definition of a modulation depthfor the(2,2) mode

ξr f
(2,2) =

q
2
=

QURF

Mr2
0Ω2

RF

. (7.23)

Depending on the RF amplitude, this modulation depth can indeed amount to up to 20%
of the secular motion amplitude of the radial extension of the crystal. The amplitude of
this radial modulation is hence comparable to typical axialexcitation amplitudes for the
(l ,0) modes and one could expect deviations from the model.

To test the influence of the off-resonant excitation on the frequency of a particular(l ,m)
normal mode of the plasma, we performed measurements for crystals with a fixed aspect
ratio of α = 0.135 but various RF-amplitudes, and hence different modulation depths
ξr f
(2,2).

The inset of Fig. 7.6 shows the measured frequency of the(2,0) mode as a function
of modulation depthsξr f

(2,2). It is is found to be constant within the current experimental

accuracy and shows no systematic dependence onξr f
(2,2). Moreover, this result is consistent

with molecular dynamics simulations from which it has been predicted that the radial RF
field-driven micromotion in linear Paul traps should have anextremely weak coupling into
the axial motion of the ions [165] and the measurements presented in sec. 6.4, where the
coherent coupling of needle-like crystals was measured forvarious offsets of the crystals
revolution axis from the field free nodal line of the RF potential.

7.3.3. Measurement of the mode temperature

The technique used to measure the frequency of the lowest axial frequency can also be
used to measure the maximum amplitude of the driven motion ofa given mode and there-
fore the equivalent temperature of this mode. In Fig. 7.6 a. and b., the effective cavity
decay rate with and without exciting resonantly the a.(1,0) and b.(2,0) mode (resonance
frequenciesω(1,0) = 2π×94 kHz andω(2,0) = 2π×145 kHz) are shown as a function of
the detuning of the probe with respect to the atomic resonance. The crystals used for the
two experiments were similar to the one shown in fig. 7.4 withN∼ 4000 ions and aspect
ratios ofα∼ 0.13.

Fitting the two profiles in absence of the mode excitation (red squares in fig. 7.6 a. and
b.) with the expected Lorentzian shaped curve (solid red lines) of eq. (3.48a), where we
beside the collective coupling rategN also left the effective cavity decay rateκ and the
effective dipole decay rateγ′ as free fitting parameters to account for the finite temperature
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Figure 7.8.:Effective cavity decay rate as a function of the probe detuning, without (red
squares) or with (blue circles) modulation for a modulationresonant witha. the(1,0) and
b. the (2,0) mode frequency. The crystals were similar to the one presented in Fig. 7.4,
with a aspect ratio ofα∼ 0.13, a density ofρ0 = (2.62±0.05) ·108cm−1 andN∼ 4000.
The solid lines are fits according to eq. (7.19).
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ϕ = −π/2 ϕ = 0 ϕ = +π/2

Figure 7.9.:Stroboscopic projection images of ion Coulomb crystals obtained while res-
onantly exciting the(1,0) normal mode at three different phases of the modulation. The
blue lines indicate the amplitude of the motion. The ions move by±9 µm around their
equilibrium position.

of the sample (for a discussion see sec. 5.4). The values we deduce from the fit to the data
in fig. 7.6 a. are are(gN,κ,γ′) = 2π× (8.2±0.1, 2.2±0.1, 12.3±0.5) MHz), while the
fit in fig. 7.6 b. yields(gN,κ,γ′) = 2π× (8.4±0.2, 2.3±0.1, 12.7±0.6) MHz), in good
agreement with the first fit.

When the(1,0) or the(2,0) mode are resonantly excited, the effective cavity decay
rate as a function of the probe detuning is in both cases modified to a non-Lorentzian
profile (blue circles in fig. 7.6 a. and b.). To determine the kinetic energy of the periodic
motion, we fitted the data to eq. (7.19). From these fits, we candeduce the maximum
velocities of the periodic driven motion to be ˜vfit

(1,0) = (5.8±1.0) m/s for the(1,0) mode

and ofṽfit
(2,0) = (8.4±0.8) m/s for the(2,0) mode.

To cross-check the maximum velocities deduced from the fits,a second technique can
be used to directly determine the oscillation amplitude of the ions from projection im-
ages. As the typical integration times of the CCD camera is ofthe order of∼ 100 ms,
the camera itself is not fast enough to resolve the normal mode oscillations at frequencies
of ∼ 100 kHz. To circumvent this limitation, we can gate the imageintensifier which is
incorporated into the imaging system, to acquire stroboscopic images of the ion Coulomb
crystals, as was explained in sec. 4.4.1. In this configuration, the supply voltage of the
image intensifier is provided by a very short pulse (∼ 20 ns) and the image intensifier
will only during this short period be sensitive to fluorescence light. By synchronizing
these pulses to the modulation voltage on the trap electrode, the ions can be monitored
at well-defined phases of the oscillation. The CCD camera will then simply obtain the
averaged fluorescence of many gating cycles. The detected fluorescence level is substan-
tially lower and the images have to be integrated over longertimes. This obviously limits
the achievable duty cycle and this method is not as fast to findthe resonance frequency
of large crystal modes. However, once the modulation frequency is determined by mea-
suring the broadening of the effective cavity field decay rate, the stroboscopic imaging of
the ions is a direct way of measuring the amplitude of the driven motion. In fig. 7.9 three
stroboscopic projection images obtained at different phases of the modulation are shown.
The images were taken while resonantly exciting the(1,0) normal mode, at phases of the
modulation ofϕ = −π/2, ϕ = 0 andϕ = +π/2 and a clear displacement of the ions at the tip
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of the crystal can be observed.
Using this technique, we deduce amplitudes of the periodic motion of z̃fluo

1,0 = (9.0±
1.0) µm for the(1,0) mode and ˜zfluo

2,0 = (9.5±1) µm for the(2,0) mode, corresponding

to maximum velocities of ˜vfluo
(1,0) = (5.3±0.6) ms−1 andṽfluo

(1,0) = (8.7±0.9) ms−1, respec-
tively. The results of the fluorescence based measurements are in very good agreement
with the previously measured values and prove that quantitative information about the
ions’ motion can reliably be obtained from the ion-cavity coupling without the need for
observing directly the fluorescence signal.

7.4. Outlook and Applications

In the previous sections we described how the coherent coupling between ion Coulomb
crystals and a cavity field can be used to reveal information about the collective motion
of the cold plasma. In this section, we will give an outlook and present some applications
and preliminary results on how this measurement technique can be applied to investigate
various aspects of the physics of strongly confined plasmas.

7.4.1. Measurement of temperature

Already in sec. 3.3 we discussed the effect of motion, in particular thermal motion, on
the coherent interaction between ion Coulomb crystal and a cavity field mode. In this
chapter we refined the simple model which was given there and could demonstrate how
we can use this model to measure the kinetic energy and hence the temperature of a certain
normal mode (see sec. 7.3.3).

In principle one can envision to measure more complex and possibly unknown veloc-
ity distributions in a similar fashion, and e.g. use this technique to study the thermal
Maxwell-Boltzmann distribution of an unperturbed ion Coulomb crystal. This would
make it possible to determine the translational temperature of large ion Coulomb crys-
tal, which is a difficult task in practice and e.g. relies on comparison of projection images
to molecular dynamics simulations [184].

The precise knowledge and possibly also control of the temperature of the sample
would be valuable, e.g. for the study of possible implications for the realization of a
ion Coulomb crystal-based quantum memory or for the investigation of optomechanical
effects in the coherent interaction between ion Coulomb crystal and cavity light field.

Our measurement of the translational temperature of particular vibrational modes are
promising first steps towards a more direct measurement of the thermal kinetic energy
of large ion Coulomb crystals. However, further systematicexperimental and theoretical
investigations are required to approach this goal.

7.4.2. Investigation of Plasma thermodynamics

The noninvasive nature of our measurement technique, whichis not based on incoherent
scattering of photons and can be purely dispersive in nature, would furthermore make it
possible to measure other characteristics of the cold strongly confined plasmas, which are
not easily accessible with fluorescence based detection methods [171–173]. Examples
are the investigation of the intrinsic coupling between thevarious normal modes of the
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7. Noninvasive spectroscopy of vibrational modes

cold fluid plasma [168] and related correlation effects, or the study of the dependence
of damping and coupling effects with various parameters, e.g. the density, the number
of ions, the size or the temperature of the plasma. In the following, we will present
preliminary results for two of the envisioned applications, namely a study of the intrinsic
damping and of the influence of the density.

Off resonant-mode coupling

n
o
rm

a
li
ze
d
co
u
p
li
n
g

probe delayτ [µs]
0 2 4 6 8 10 12 14 16

0.8

0.85

0.9

0.95

1

1.05

Figure 7.10.: Normalized coherent coupling rate for various delays between optical
pumping and probing for the(1,0) (squares) and(2,0) (circles) modes, both for the
case when the modes are excited by an external driving field (solid markers) and for
unperturbed crystal. (open markers). The values are normalized to the mean value
without modulation. The crystal parameters are:L = (589± 1) µm, R= (80± 1) µm,
ρ0 = (2.62±0.05) ·108 cm−3, N = 310±10.

As mentioned is sec. 7.2.3 the damping of the periodic motionwhen exciting a certain
normal mode is dominated by two friction forces. On the one hand, off-resonant en-
ergy exchange with other normal modes will lead to dissipation of kinetic energy to these
modes, on the other hand, the motion of the ions will be dampedby Doppler laser cooling
forces. The measurement of the coherent coupling between ion Coulomb crystals and the
cavity field naturally takes place in a phase of the experimental sequence, where there
is no cooling light applied, as the ions initially have to be prepared in suitable Zeeman
substates of the metastable 3d2D3/2 level. In most experiments, the coherent interaction
is then probed directly after the optical pumping. However,it is possible to allow for
of a free evolution of the system between the optical pumpingand the probing. Similar
measurement without a driving force were performed to studythe temporal stability of co-
herences between collective Zeeman substates, as discussed in sec. 5.7, where the probe
pulse was delayed up to∼ 100 µs after the end of the optical pumping. When driving
a collective vibrational mode by applying appropriate driving fields to the endcaps, the
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amplitude of the driven motion will, after cooling and optical pumping laser are switched
off, increase. During this free evolution, only the intrinsic coupling to other motional nor-
mal modes of the plasma will damp the periodic motion and by delaying the probing with
respect to the optical pumping it should be possible to directly measure the effect of the
internal damping in the plasma. In fig. 7.10 first measurements of the coherent coupling
for various delays between optical pumping and probing are depicted. The measurement
is performed by measuring the effective cavity decay rate for a resonant probe beam and
for a crystal with half-length and radiusL = (589±1) µm andR= (80±1) µm, a density
of ρ0 = (2.62±0.05) ·108 cm−3. The effective number of ions and the aspect ratio are
N = 310±10 andα = 0.136. The study was carried out both for the(1,0) (squares) and
the(2,0) (circles) mode where in both cases the effective cavity decay rate on resonance
(ω(1,0) = 2π×94 kHz andω(2,0) = 2π×145 kHz) was measured with (solid markers) and
without modulation (open markers). In these measurements the measurement sequence is
extended to 50µs, where the ions are initially cooled for 20µs and with a variable delay
between the optical pumping and the probing. The coupling isnormalized to the mea-
sured mean value of the unmodulated data sets. While the coupling is constant when no
modulation field is present, one observes a decrease of the coherent coupling, when ex-
citing either of the two motional modes. This illustrates that one can in principle directly
observe the dynamical evolution of the plasma (without disturbing it), when no external
cooling forces are present. This should allow for the investigation of various plasma char-
acteristics in absence of external damping forces and it may, on this basis, be possible to
study coupling mechanisms and correlation effects in cold nonneutral plasmas [168].

Effect of density

A second attractive application of the measurement technique described above is the per-
spective of a direct investigation of damping effects in thesystem as a function of the
various parameters that will determine the physics in the ion Coulomb crystal. A first step
in this direction is the measurement of the influence of the ion density on the damping,
and we will here present preliminary results on this issue.

Fig. 7.11 shows the normalized coupling as a function of modulation amplitude for
a. the(1,0) and b the(2,0) mode, measured for two different crystals with identical as-
pect ratiosα ∼ 0.14, but different densitiesρ0 = (2.62±0.05) ·108 cm−3 (red squares)
andρ0 = (5.67±0.11) ·108 cm−3 (blue circles). The coupling is measured for a reso-
nant probe laser (∆ = 0) and normalized to the coupling without modulation according to
(κ′−κ)|kv
(κ′−κ)|kv=0

. For both plasma modes, we observe a decrease of the measuredcoupling for
both crystals when the amplitude of the AC modulation voltage is increased. However,
the coupling remains substantially higher for the crystal with higher density, indicating a
increased damping of the driven motion.

From the simple model of a damped harmonic oscillator one expects the modulation
amplitude to scale linear with the excitation force, and thedecrease of the measured
normalized coupling should, according to eq. (7.19), not depend on the density, if the
damping rates are assumed to be constant.

Changing the density of the crystal will, however, also influence other thermodynamic
properties of the crystals, and the larger damping rate for higher density might be caused
by e.g. an increased coupling to other plasma modes [167] or by effects induced by a
higher temperature of the ensemble [168] and the clarification of the effect requires more
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Figure 7.11.:Effect of density. Shown is the normalized coupling as a function of the
modulation voltage applied to the endcaps fora. the (1,0) andb. the (2,0) mode The two
sets of data correspond to two different crystals with identical aspect ratio ofα ∼ 0.14
and half-lengthL∼ (560) µm, but different densitiesρ0 = (2.62±0.05) ·108 cm−3 (solid
black squares) andρ0 = (5.67±0.11) ·108 cm−3 (open red squares). The solid lines are
fits to the theoretical model.
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thorough studies. Our measurement shows, nevertheless, that our measurement technique
could be well suited to investigate thermodynamical properties of cold plasmas.

7.5. Conclusion

In this chapter we presented a novel method to investigate normal mode dynamics in
cold nonneutral plasmas in the form of ion Coulomb crystals in a linear Paul trap. The
method is based on the probing of the collective coupling between the electronic state
of the ions and an cavity field mode with a weak probe field at thesingle photon level.
We found excellent agreement with the predictions of a zero-temperature charged liquid
plasma model [82,167,168] when measuring the resonance frequencies of various plasma
modes for crystals of different shape, size and density.

Furthermore, the technique was used to measure the kinetic energy and hence the tem-
perature for two deliberately excited modes. This was accomplished by measuring the
effective cavity decay rate as a function of probe detuning∆ and comparing to our model.
The amplitude of the periodic motion deduced from these studies could be compared to a
direct measurement of the oscillation amplitude of the periodic motion by a phase-locked
imaging technique and we found good agreement between the two methods. In principle
it should on this basis also be possible to measure more complex velocity distributions
and, eventually, the thermal Maxwell-Boltzmann distribution of unperturbed ion crystals.

The detection technique used in our experiments uses a resonant probe field and is
hence still performed in the absorptive regime. However, the fast repetition of the ex-
perimental sequence in which at most one photon is absorbed leaves the thermal state of
the crystal unchanged and the technique can still be considered noninvasive provided the
identical preparation of the ion ensemble at the start of each sequence. Since the prob-
ing does not rely on the observation of incoherently scattered photons as e.g. the case
in Doppler velocimetry [171–173] and in Sympathetically-Cooled Single Ion Mass Spec-
trometry [185], the detected signal can in principle be purely dispersive in nature and does
not require any excitation of the ions.

Due to the present experimental parameters, investigations are limited to crystals con-
taining at least a few hundred ions and to vibrational amplitudes of the order ofµm. It
should, however, with optimal atomic transition and cavityparameters, in principle be
possible to apply this measurement technique to few-ion crystals and also to situations,
where the quantum nature of the vibrational excitation comes into play. In this regime,
our measurement technique should also be applicable to observe e.g. radiation pressure-
induced cavity optomechanical phenomena [180, 181] with cold, solid-like objects or to
investigate classical and quantum phase transitions [186–190].

Finally, further investigations of higher-order(l ,0) modes can be envisioned to study
mode excitations using spatial- and time-modulated radiation pressure forces. For40Ca+

ions this can e.g. be achieved through the combined application of a 866 nm repumper
beam with a spatially modulated intensity profile along the cavity axis and a time-varying
intensity of one of the 397 nm cooling beams [185]. Eventually, for the high spatial mod-
ulation of modes with largel , the liquid model should cease to apply. Further applications
could be measurements of ion Coulomb crystal temperatures and heating rates [191] and
more detailed investigations of the coupling between the various normal modes at various
temperatures and structural phases of the plasma [167,168].
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8. Cavity electromagnetically induced
transparency

In this chapter we report on the experimental observation ofelectromagnetically induced
transparency (EIT) with ion Coulomb crystals in an optical cavity. In connection with
the results of the previous chapters, the observation of EITwith ion Coulomb crystals in
optical cavities is a major step towards the realization of aquantum memory based on
ions in an optical cavity [55]. We will provide a theoreticaldescription of the system and
compare the experimental results to the expectations of this model.

The chapter is structured as follows: We begin in sec. 8.1 with a brief introduction,
before presenting a theoretical model of the interaction ofan ensemble of three-level
atoms with two light fields in sec. 8.2. In sec. 8.3.1 we describe the experimental setup.
In sec. 8.4 we present the results of the observation of cavity electromagnetically induced
transparency with ion Coulomb crystals and, finally, in sec.8.5 give a conclusion and a
brief outlook.

8.1. Introduction

Electromagnetically induced transparency is a widely-used quantum interference effect
where the absorption and dispersion of a weak probe field propagating in an otherwise
opaque medium are controlled via the coherent interaction of the medium with a more
intense control field [83,84]. Under certain circumstances, the resonant absorption of the
probe field can be suppressed by the coherent interaction with the control field and the
medium becomes transparent for the probe light, justifyingthe name of the effect ”elec-
tromagnetically induced transparency”. EIT has been observed in hot and cold atomic
gasses [85], and particularly impressive applications areslow- and stopped light experi-
ments [86–88], where the group velocity of a light pulse travelling through an EIT medium
is drastically reduced and even stopped.

At the quantum limit, when the probe pulse only contains a single photon, the ver-
satile control of the absorption and dispersion propertiesin an EIT medium has impor-
tant applications in the framework of quantum information processing, as long-lived and
high-efficiency quantum memories are a key ingredient for the realization of e.g. complex
quantum networks [10,38].

Quantum memories were successfully demonstrated via the storage and retrieval of sin-
gle photons [40–44], squeezed vacuum states [45,46] and entangled states [47] in atomic
gases using free-propagating fields1. As the interaction of free-space laser beams with
an atomic medium is typically very weak, the efficiency in these schemes is usually low.
Furthermore, due to either particle-particle interactions or random motion of atoms in va-
pors, the achievable storage times are generally limited tothe µs range. This limitation

1The storage of entanglement was recently also demonstratedin solid state systems [50, 51].

105



8. Cavity electromagnetically induced transparency

can be overcome using more complex schemes [43, 44], often atthe expense of lower
efficiencies.

For an atomic medium enclosed in the mode-volume of an optical cavity, the interac-
tion with the well-defined spatio-temporal cavity modes substantially enhances the light-
matter interaction. In combination with the coherent control of the atomic absorption and
dispersion provided by electromagnetically induced transparency, atomic ensembles in-
teracting with a single mode of an optical cavity in the collective strong coupling regime
were proposed for the realization of high-efficiency optical quantum memories [55–57].

Cavity EIT was successfully observed for ensembles of cold and hot neutral atoms
in cavities [92, 93], and, most recently, the enhanced interaction even allowed for the
observation of cavity EIT with few atoms [94,95]. Moreover,ensembles of neutral atoms
confined in the mode volume of an optical cavity were successfully used to store and
transfer single quanta [96, 97] with higher efficiency. The achievable coherence time in
these systems is, however, still limited by the atomic motion.

Using ion Coulomb crystals confined in an optical cavity could be a possible route to
circumvent both limitations in the efficiency and the achievable coherence times. Operat-
ing in the strong coupling regime (see ch. 5) and with measured coherence times of the
order of∼ms our system is a promising candidate for the realization ofboth long-time
and high-efficiency storage and retrieval of quantum information, even with the potential
to explore multimode applications using various degrees offreedom, like spatio-temporal
cavity modes (see ch. 6) or specific collective vibrational normal modes (see ch. 7).

In this chapter we will report on the first experimental observation of cavity electro-
magnetically induced transparency with ions, an importantmilestone on the way towards
a high-efficiency quantum information tool. We use a novel ”all-cavity” EIT scheme
where both the control and the probe field are in the same spatial cavity mode and cre-
ate EIT between Zeeman substates. We demonstrate full control over transparency of the
ionic medium and observe EIT windows as narrow as a few tens ofkHz for a probe field
at the single photon level.

8.2. Three-level atoms in a cavity

The essential features of EIT can be described in a semi-classical theory, similar to our
description of two-level atoms interacting with a single cavity field mode given in sec. 3.
The goal of this section is to adapt this description to the situation where an ensemble of
identical three-level atoms interacts with two light fields. However, before deriving a full
set of dynamical equations for the system, we will begin by introducing EIT in a simple
quantum mechanical picture using dressed-states [84,85].

8.2.1. Dressed and dark states in a three-level system

We consider a single atom in free-space with aΛ-type energy level configuration, as
depicted in fig. 8.1 a. TheΛ system is formed by two long-lived ground states|1〉 and
|2〉 and an excited state|3〉 which is coupled to the two ground states via a non-vanishing
dipole element and can decay to the two ground states or otherexternal levels at a rateγ.
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Figure 8.1.: a. SchematicΛ scheme as used for the realization of electromagnetically
induced transparency. It is formed by two long-lived groundstates|1〉 and |2〉 and an
excited state|3〉. States|1〉 and|3〉 are coupled by a weak probe field with Rabi frequency
Ωp, while states|2〉 and|3〉 are coupled by the stronger control field with Rabi-frequency
ΩC. The excited state can decay to the two ground states or otherexternal levels at a rate
γ. b. Dressed state picture, where the excited state is split intoan doublet of dressed states
|±〉.

We assume the atom to be initially in state|1〉. Both ground states are coupled to the
excited state by close to resonant laser fields, where the|2〉 ↔ |3〉 transition is driven by
a strong, (close to) resonant electromagnetic field with Rabi frequencyΩC (referred to as
control field), while states|1〉 and|3〉 are coupled by a weaker field with Rabi frequency
ΩP (referred to as probe field). In the dipole approximation andusing the frame rotating
at the frequency of the probe field the Hamiltonian of the system is given by

Hint = ~∆σ33+~δσ22−~Ωp(σ̂31+ σ̂13)−~ΩC(σ̂32+ σ̂23), (8.1)

where∆ = ω31−ωp is the detuning of the probe laser with respect to the|1〉 ↔ |3〉 tran-
sition,∆32 = ω32−ωctrl is the detuning of the control laser with respect to the|2〉 ↔ |3〉
transition,δ = ∆−∆32 is the so-called two-photon detuning. Furthermore, we defined the
atomic operatorŝσab = |a〉〈b| (a,b= 1,2,3).

The Hamiltonian can be diagonalized in the basis of the so-called ”dressed” states.
They are related to the ”bare” states of the atom by

|0〉 = cosθ |1〉− sinθ |2〉 , (8.2a)

|+〉 = sinθsinθ′ |1〉+ cosθsinθ′ |2〉+ cosθ′ |3〉 , (8.2b)

|−〉 = sinθcosθ′ |1〉+ cosθcosθ′ |2〉− sinθ′ |3〉 , (8.2c)

with mixing anglesθ andθ′, which on two-photon resonance (δ = 0) are given by

tanθ =
Ωp

ΩC
(8.3a)

tan2θ′ =
1
∆

√

Ω2
p+Ω2

C. (8.3b)

The new eigenket|0〉 is a superposition of state|1〉 and|2〉 and has zero eigenenergy. An
atom initially prepared in this state is never excited to state |3〉, which is the only state
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that can spontaneously decay.|0〉 is thus referred to as the ”dark”-state of the system.
The contribution of the states|1〉 and|2〉 to the dark state depends on the mixing angleθ,
which is given by the ratio of the Rabi frequencies of the two fields. On the other hand,
the two states|±〉 are a superposition of all 3 bare states and their energy willbe shifted

by ~(∆±
√

∆2+Ω2
p+Ω2

C). The emergence of EIT can be understood when considering

the case of a weak probe field,Ωp≪ ΩC, where the first mixing angle isθ≪ 1. The
level scheme in this case is depicted in fig. 8.1 b. In this case, the probe ground state
is the dark state of the system,|0〉 ≃ |1〉. An atom that is initially prepared in this state
has no contribution of state|3〉 which is the only state that can spontaneously decay. The
two states|±〉 can be regarded as two excited states and the absorption to these states will
cancel when the frequency of the weak probe field is tuned between the two states, i.e. to
∆ = 0.

In the bare state picture this corresponds to the interference between two pathways.
The light fields will transfer a small but finite population amplitude to state|2〉 and the
absorption from state|1〉 to state|3〉 can occur either directly or via the coherent indirect
path|1〉 → |3〉 → |2〉 → |3〉. As the Rabi frequency of the control field is much stronger
than that of the probe, the probability amplitude of the indirect path will be comparable to
the direct way. However, on two-photon resonance, it is of opposite sign and will hence
interfere destructively with the amplitude of the direct path.

8.2.2. Dynamical equations

We will now turn to a semi-classical analysis, which will allow us to derive a full set
of dynamical equations for the relevant observables of the system. We will from the
beginning focus our description on the situation of a large40Ca+ ion Coulomb crystals
confined in an optical cavity and will reuse many of the equations and approximations
that were already discussed in ch. 3.

In the experiments presented here, theΛ-system in40Ca+ is, as depicted in fig. 8.2,
formed by two Zeeman-substates of the

∣

∣3d2D3/2
〉

level constituting the two ground states
and one Zeeman-substate of the

∣

∣4p2P1/2
〉

manifold corresponding to the excited state.
A straight forward and logical extension of the scheme in theprevious chapters is the
following choice of levels:

|1〉 =
∣

∣3d2D3/2, mJ = +3/2
〉

(8.4a)

|2〉 =
∣

∣3d2D3/2, mJ = −1/2
〉

(8.4b)

|3〉 =
∣

∣4p2P1/2, mJ = +1/2
〉

. (8.4c)

The transition frequencies are for the|1〉 ↔ |2〉 transition denoted byωat (as before) and
for the |3〉 ↔ |2〉 transition byω32 = ωat+ωB, where the degeneracy is lifted by a longi-
tudinal B-field giving rise to a frequency shift ofωB by the Zeeman effect (see appendix
A.3). State|1〉 can spontaneously decay to the two ground and other states ata rateγ, and
we model decoherence between the two (metastable) ground states|1〉 and|2〉 by adding
a phenomenological decay rateγ12.

We consider in analogy to sec. 3.2, the situation where the ion Coulomb crystal is
confined in a linear optical cavity formed by two mirrors M1 and M2 and characterized
by the cavity field decay rates through the two mirrors,κ1 andκ2 (see eq. 3.14), and the
intracavity loss rateκA , (see eq. 3.17).
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|3〉

|1〉

|2〉

4p2P1/2

3d2D3/2

Ωp = gaΩC

+1/2

+3/2

-1/2

-1/2

-3/2

+1/2

γ

γ12

Figure 8.2.:Level scheme for the realization of electromagnetically induced transparency
in 40Ca+. TheΛ system is formed by the metastablemJ = +1/2 andmJ = −1/2 Zeeman
substates of the

∣

∣3d2D3/2
〉

level and themJ+1/2 state of the
∣

∣4p2P1/2
〉

level.

A weakσ−-polarized probe field ˆa with frequencyωp close to resonance with the|1〉↔
|3〉 transition is injected into the fundamental TEM00 mode of the cavity through mirror
M1. States|2〉 and |3〉 are coupled by the stronger,σ+-polarized control field with a
frequencyωctrl and a detuning from atomic resonance∆32 = ω32−ωctrl. In a first step,
we will assume the Rabi frequency of the control field to be equal for all ions. However,
for the experiment presented later in this chapter, this beam will also be injected into the
cavity and we will in sec. 8.2.3 take into account the effectsof the transverse profile and
the longitudinal standing wave structure of the control field. To facilitate the comparison
between the two scenarios, we will here rescale the Rabi frequency of the uniform control
field by a factor1/

√
2, to account for the lower mean interaction strength in the standing

wave field in the latter configuration.
The interaction Hamiltonian in the frame rotating at the probe field frequencyωp and

applying the rotating wave approximation (see (3.32)) is given by

Hint =−~g
Ntot

∑
j=1

Ψ00(rrr j)(σ̂31, j â+ σ̂13, j â
†)−~

Ωc√
2

Ntot

∑
j=1

(σ̂32, j + σ̂23, j), (8.5)

where the atomic spin operatorsσab, j = |a〉〈b| (a,b= 1,2,3) were defined and whereΩc

is chosen real without loss of generality2.
Following the Heisenberg-Langevin approach introduced insec. 3.2 we can deduce the

equations of motion for the mean values of the operators in the Heisenberg picture. The
dynamical equation of the mean value of the probe field operator â is of the same form as
in the 2-level case in eq. (3.38d) and reads

ȧ=−(κ+ i∆c)a+ i
Ntot

∑
j=1

gΨ00(rrr j)σ13, j +
√

2κ1ain. (8.6)

2It is worth noticing that by writing this expression, we assume the phases of the probe and the control field to
be stable with respect to each other.
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8. Cavity electromagnetically induced transparency

For the atomic operators, we will restrict ourselves to the weak probe regimeg|a|≪ Ωc/
√

2,
where all the ions remain in state|1〉 (σ11 = 1, σ22 = σ33 = 0) and, to first order, only
the mean values of the probe dipoleσ13 and the ground state coherenceσ12 are non-zero.
Their equations of motion are

σ̇13, j = −(γ+ i∆)σ13, j + igaΨ00(rrr j)+
iΩC√

2
σ12, j (8.7a)

σ̇12, j = −(γ12+ iδ)σ12, j +
iΩC√

2
σ13, j , (8.7b)

where we introduced the two-photon detuningδ = ∆−∆32 and included the phenomeno-
logical decay rate of the ground state coherenceγ12.

For the remaining derivation, it is convenient to define the collective operatorŝS13 =

∑Ntot
j=1 Ψ00(rrr)σ̂13, j andŜ12= ∑Ntot

j=1 Ψ00(rrr)σ̂12, j . The dynamical equation of the mean value
of the field and the two collective spin operators read

ȧ = −(κ+ i∆c)a+ igS13+
√

2κ1ain. (8.8a)

Ṡ13 = −(γ+ i∆)S13+ igNa+
iΩC√

2
S12 (8.8b)

Ṡ12 = −(γ12+ iδ)S12+ i
ΩC√

2
S13, (8.8c)

where we make use of the effective number of ions,N = ∑Ntot
j=1Ψ00(rrr)2, defined in eq.

(3.42).

Adiabatic elimination

In the relevant situation for the experiments we will discuss later, we can assumeγ12≪ γ,κ
and the control field Rabi frequency is such that the slowest time constant in the dynamical
equations is given by that ofS12(t). We can therefore perform an adiabatic elimination
of a(t) andS13(t), which on the relevant timescale will follow the evolution of S12(t).
Settingȧ(t) = σ̇13(t) = 0 in eqs. (8.8) yields

a(t) =
ig

κ+ i∆C
S13(t)+

√
2κ1ain

κ+ i∆C
(8.9a)

S13(t) =
1

γ+ i∆+ g2N
κ+i∆C

[

iΩC√
2

S12(t)+
igN
√

2κ1ain

κ+ i∆C

]

. (8.9b)

Substituting these equations into eq. (8.8c) the dynamicalequation of the ground state
coherence becomes

Ṡ12(t) =−γEITS12(t)+βain, (8.10)

where we defined

γEIT = γ12+ iδ+
Ω2

C/2

γ+ i∆+ g2N
κ+i∆C

, (8.11)
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and

β =
Ω2

C

2
gN
√

2κ1
(

γ+ i∆+ g2N
κ+i∆C

)

(κ+ i∆C)
. (8.12)

Assuming the input field to be constant and to be immediately switched on att = 0 and
assumingσ12(t = 0) = 0 the dynamical equation is readily solved and one finds

S12(t) =
βain

γEIT
[exp(−γEITt)−1] , (8.13)

Accordingly, the temporal evolution ofS12 will be set byγEIT which on one and two-
photon resonance for the fields and for a resonant cavity (∆ = ∆C = δ = 0) reduces to

γEIT = γ12+
Ω2

C/2

γ+ g2N
κ

= γ12+
Ω2

C/2

γ(1+2C)
. (8.14)

In the last step, the cooperativity parameter defined in eq. (5.5) was inserted. As the time
evolution ofσ13(t) and also the intracavity fielda(t) will be dictated byσ12(t) (see eqs.
(8.9)), these quantities are also expected to follow the same exponential form with the
same time constantγEIT. The build up of the intracavity probe field, which for an empty
cavity is given byκ, will hence in the three-level case be steered byγEIT and may becomes
much slower than the cavity decay rate. It should be noted that the adiabatic elimination is
only valid in a regime whereγEIT≪ γ,κ, i.e. for moderate Rabi frequencies of the control
field.

Steady state solution

In steady state, the mean value of the intracavity field amplitudea reduces to

a=

√
2κ1ain

κ+ i∆c− iχ̃Λ
(8.15)

This equation is of the same form as in the two-level situation (see eq. (3.40b)), with the
linear susceptibility being replaced by its counterpart ofthe three-levelΛ-system

χ̃Λ =
ig2N
γ+ i∆

1
1+ s

. (8.16)

where we introduced the effective saturation parameter of the two-photon transition

s=
Ω2

C/2

(γ12+ iδ)(γ+ i∆)
(8.17)

and used the effective number of ionsN = ρ0
πw2

0
2 L (see eq. (3.46)) For a vanishing Rabi-

frequency of the control field the effective saturation parameter is zero, and eq. (8.16)
reduces to the two-level susceptibility of eq. (3.41).
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8. Cavity electromagnetically induced transparency

8.2.3. Effect of the transverse mode structure

As abovementioned, the control field will in our experiment also be mode matched to
the cavity and we will in this subsection include the effect of the spatial profile of this
field into the model. In all the EIT experiments presented in this thesis we make use of
the fundamental TEM00 mode for both the probe and the control field and we will for
simplicity restrict the model to this case.

To distinguish the two fields we will denote the mode functions corresponding to the
control and the probe field byΨ00(rrr j ,kctrl) andΨ00(rrr j ,kp), wherekctrl andkp are the wave
vectors of the control and the probe field, respectively. We will furthermore still assume
the Rabi frequency of the control field to be in steady state3. The interaction Hamiltonian
now reads

Hint =−~g
Ntot

∑
j=1

Ψ00(rrr j ,kl l)(σ̂31, j â+ σ̂13, j â
†)−~ΩC

Ntot

∑
j=1

Ψ00(rrr j ,kC)(σ̂32, j + σ̂23, j), (8.18)

whereΩC now denotes the control field Rabi frequency at an anti-node at the center of
the fundamental TEM00 mode.

The Zeeman splitting of the two ground states|1〉 and|2〉 is of the order of some few
MHz and we can assume the frequency of the probe and the control field to be almost
degenerate, hencek≡ kp ≃ kC. Furthermore, for large radii and half-lengths of the crys-
tal, we can approximate the longitudinal mode function by cos(kz), as discussed in the
derivation of (3.45). With these approximations, the cavity mode functions of the probe
and the control field can be written as

Ψ00(rrr j ,kl)≃Ψ00(rrr j ,kC) = cos(kzj )Ψ0(x j)Ψ0(y j) = cos(kzj)ψ00(r j ). (8.19)

In this common standing wave configuration for the control and the probe field, it is con-
venient to introduce dipole operators associated to the forward and backward propagating
waves of both fieldŝσα3, j± = σ̂α3, j exp(±ikzj), α = 1,2. Substituting into the interaction
Hamiltonian in eq. (8.18) yields

Hint = − ~
g
2

Ntot

∑
j=1

ψ00(r j)[(â(σ̂31, j++ σ̂31, j−)+ â†(σ̂13, j++ σ̂13, j−)] (8.20)

− ~
ΩC

2

Ntot

∑
j=1

ψ00(r j)[(σ̂32, j++ σ̂32, j−)+ (σ̂23, j++ σ̂23, j−)].

Using the Heisenberg-Langevin formalism, we can derive thedynamical equations for the
mean values of the operators in the weak probe approximationand find

ȧ = −(κ+ i∆C)a+
ig
2

Ntot

∑
j=1

ψ00(r j )(σ̂31, j++ σ̂31, j−)+
√

2κ1ain. (8.21a)

σ̇13, j± = −(γ+ i∆)σ13, j±+
iga
2

ψ00(r j ) [1+exp(±2ikzj)] (8.21b)

+
iΩC

2
σ12, jψ00(r j) [1+exp(±2ikzj)]

σ̇12, j = −(γ12+ iδ)σ12, j +
iΩC

2
ψ00(r j )(σ13, j++σ13, j−). (8.21c)

3In the experiment, the time constant for the build up of the control field is set by the cavity decay rate and we
will ensure the steady state condition by switching on the control field slightly before the probe field.
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8.2. Three-level atoms in a cavity

If the timescale at which the atoms move along the standing wave is faster than the
build-up time of the fields in the cavity we can average over the longitudinal effects and
all higher-spatial frequency components in exp(±2ikz) average out [192–194]. This as-
sumption is as already discussed for the two-level situation in eq. (3.45) satisfied for ion
Coulomb crystals with a thermal energy of∼ 10 mK. For atoms well-localized within
the standing wave pattern of the probe and the control field the calculation would lead to
different results and we will discuss this case in appendix D, where we also compare our
experimental findings to the predictions of the two scenarios.

When averaging over the longitudinal structure, the equations of motion will only de-
pend on the transverse profile of the probe and control field and reduce to

ȧ = −(κ+ i∆c)a+
ig
2

Ntot

∑
j=1

ψ00(r j)(σ31, j++σ31, j−)+
√

2κ1ain. (8.22a)

σ̇13, j± = −(γ+ i∆)σ13, j±+
iga
2

ψ00(r j )+ iΩCσ12, jψ00(r j ) (8.22b)

σ̇12, j = −(γ12+ iδ)σ12, j +
iΩC

2
(σ13, j++σ13, j−)ψ00(r j). (8.22c)

Steady state solution

These equations can be solved in steady state and we find for the mean value of the
intracavity field amplitude

a=

√
2κ1ain

κ+ i∆C− iχΛ
, (8.23)

which is of the same form as eqs. (3.40b) and (8.15). The three-level susceptibility is now
denoted byχΛ and is given by

χΛ =
ig2

2

Ntot

∑
j=1

ψ2
00(r j )

γ+ i∆+
Ω2

C/2

γ12+iδ ψ2
00(r j)

. (8.24)

For large ion Coulomb crystals with a uniform density, it is convenient to apply the con-
tinuous medium description introduced in eq. (3.43), and toreplace the sum over the ions
by the integral over the crystal volume V. We will furthermore assume to be in the regime,
where the crystal radiusR is much larger than the waist of the cavity modewo. With these
assumptions, the three-level susceptibility can be written as

χΛ =
ig2

2
ρ0

∫
V

drrr
exp(− 2r2

j

w2
0
)

γ+ i∆+
Ω2

C/2

γ12+iδ exp(− 2r2
j

w2
0
)

=
ig2N
γ+ i∆

ln(1+ s)
s

, (8.25)

where the effective saturation parameter of the two-photontransition (see eq. (8.17)) and

the effective number of ionsN = ρ0
πw2

0
2 L (see eq. (3.46)) were inserted and where we

usedψ2
00(r j ) = exp(− 2r2

j

w2
0
) (see eq. (3.7)).
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8. Cavity electromagnetically induced transparency

Adiabatic elimination

Instead of directly solving eqs. (8.22) in steady state, onecan gain information on the
dynamic evolution of the intracavity field by performing theadiabatic elimination with
respect to the slowest time evolution ofσ12, as was done for the homogeneous control
field in eq. (8.9). Due to the transverse dependence of the control field Rabi frequency,
the dynamical evolution of the EIT of the individual ions will depend on their radial
position in the transverse plane. As a consequence, the dynamical field equation does not
possess a simple analytic solution in the time domain. However, performing the Laplace
transformation of eqs. (8.22) one can solve the set of differential equations in the Laplace
space4. The full derivation can be found in appendix C and we will only give the main
results here. The Laplace transform of the mean value of the intracavity fielda reads

ã[p] =
√

2κ1ãin[p]



κ+ i∆C+g2∑
j

exp(−2r2
j/w2

0)

γ+ i∆+
Ω2

C exp(−2r2j/w2
0)

γ12−iδ+p





−1

(8.26)

whereãin[p] denotes the Laplace transformation of the input field. The corresponding
dynamical evolution of the intracavity field amplitude in the time domain can be calcu-
lated from eq. (8.26) by the inverse Laplace transformation, which has to be performed
numerically.

8.2.4. Reflectivity and transmittivity spectrum

In sec. 3.2.4 we calculated the probe reflection and transmission spectra in steady state for
a cavity containing an ensemble of two-level system (see eq.(3.47a)) and we will briefly
recapitulate the results and extend them to the three-levelsituation of this chapter. The
interaction between the ensemble and the cavity field mode was included in eq. (3.47a)
through the two-level atomic susceptibility. Substituting the three-level susceptibility of
eq. (8.16) or (8.25) into the equation directly yields the probe transmission and reflectivity
spectrum of the cavity, which is locked on atomic resonance (∆ = ∆C)

R =
[κ1−κ2−κA− Im(χΛ)]

2+[∆−Re(χΛ)]
2

κ2+∆2+ |χΛ|2+2[κIm(χΛ)−∆Re(χΛ)]
(8.27)

T =
4κ1κ2

κ2+∆2+ |χΛ|2+2[κIm(χΛ)−∆Re(χΛ)]
. (8.28)

For simplicity, we denoted the three level susceptibility by χΛ, though it can be substituted
by either of the two expressions in eqs. (8.16) and (8.25).

In fig. 8.3 a. are depicted the calculated cavity reflectivityspectra of a locked cavity
(∆ = ∆C) for the three-level susceptibility of a control field in thecavity (solid line, see
eq. (8.25)) and a uniform control field (dashed dotted line, see eq. (8.16)), along with the
expected vacuum Rabi spectrum for only the probe field being present (dashed line) and
the spectrum of the empty cavity (dotted line). The calculations were performed for an
effective number of ionsN= 500 and a control field Rabi frequency ofΩC = 2π×3 MHz.
The remaining parameters are set to the values of our experiment: κ1 = 2π×1.53 MHz,
κA = 2π×0.67 MHz,κ2 = 2π×7.85 kHz,∆23 = 0 MHz, γ = 2π×11.2 MHz.

4For a definition of the Laplace transformation see eq. (C.4) in appendix C
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Figure 8.3.: Cavity reflection spectrum as a function of probe detuning calculated ac-
cording to eq. (8.27) fora. a range of±25 MHz andb. a zoom around two photon
resonance±350 kHz. The individual spectra were calculated for an emptycavity (N = 0,
dotted line), for 500 interacting ions when the control fieldis off (N = 500,ΩC = 0 MHz,
dashed line), for the same number of ions and a control Rabi frequencyΩC = 2π×3 MHz
for the two cases of a uniform control field Rabi frequency (dashed dotted line) (see eq.
(8.16)) and when taking the transverse profile of the controlfield into account (solid line)
(see eq. (8.25)).

For large detunings of the probe laser, the reflectivity for the three-level case is similar
to the two-level vacuum Rabi spectra. However, when approaching the atomic (and two-
photon) resonance, the probe reflectivity drops drastically. This effect is present for both
the uniform control field and when the transverse profile is taken into account. In this
region, the absorption of the atomic medium is cancelled by EIT, as discussed in sec.
8.2.1 and the probe field is transmitted. A zoom on the spectrum for small detuning is
depicted in fig. 8.3 b. and reveals the difference between theintracavity and the uniform
control field. In the first case, the reflectivity dip appears pointier, and exhibits shoulders
for larger detunings as opposed to the standard EIT Lorentzian profile.

For the case, where both the atomic and the two-photon detuning are zero (∆ = ∆C = 0
and δ = 0) the susceptibility becomes in both cases purely imaginary and eqs. (8.27)
reduces to

R (∆ = 0) =
[κ1−κ2−κA − Im(χΛ)]

2

[κ+ Im(χΛ)]2
. (8.29a)

T (∆ = 0) =
4κ1κ2

[κ+ Im(χΛ)]2
(8.29b)

Using these expressions, we can now also calculate the atomic transparency on resonance,
defined by the ratio of the transmission of the cavity containing the mediumT to that of
the empty cavityT0

Tatom=
T

T0
=

1
(1+ Im(χ)/κ)2 . (8.30)

For a vanishing control field Rabi frequency, the transparency is hence simply given by
Tatom= 1

(1+2C)2
, whereC is the cooperativity defined in eq. (5.5).
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8. Cavity electromagnetically induced transparency

Using eq. (8.29a), the transparency can be related directlyto the probe reflectivity on
resonance by

Tatom=

(

κ
2κ1

)2
(

1±
√

R (∆ = 0)
)2

, (8.31)

where the sign of the
√

R (∆ = 0) term is positive for Im(χ)< κ1−κ2−κA and negative
otherwise.

8.3. Experimental setup

The experimental setup used for the EIT experiments is very similar to the setup described
in ch. 4 with only few modifications which will be described here.

As abovementioned, the realization of EIT experiments requires control and probe light
fields with a stable phase relation. For systems where the twotransitions are addressed
by two different laser sources this can be experimentally challenging. However, in our
scheme for40Ca+ we use a two photon transition between Zeeman-substates, sothat the
atomic resonance frequencies for the probe and control fielddiffer only by few MHz.
Phase stability on the relevant time scales can hence be guarantied by using the same
laser source to address both the control and the probe transition. This is accomplished
by splitting the light of the probe laser (see sec. 4.8.1) on aPBC. Both the reflected
and the transmitted portion of the light are first sent through AOMs, which are used for
switching the beams on and off. The−1-diffraction order of each AOM is then sent
through a double-pass AOM configuration, to allow for the independent control of the
frequency of the two light fields. As the width of the EIT windows is expected to be as
narrow as some few kHz a frequency resolution of. 1 kHz for these AOMs is required
to resolve these narrow features. Experimentally this is ensured by the use of two direct
digital synthesizers (DDS), with linewidth< 10 Hz and a frequency resolution of≃ 1 Hz
providing the driving frequency for the AOMs. The frequencyof the DDSs is set by the
experimental control computer.

In the experiments the frequency of the control beam is set tothe resonance frequency
of the 3d2D3/2, mJ = −1/2↔ 4p2P1/2, mJ = +1/2 transition of40Ca+, while the frequency
of the probe beam is scanned over the 3d2D3/2, mJ = +3/2↔ 4p2P1/2, mJ = +1/2 reso-
nance. On two photon resonance, where probe and control laser are resonant with the
respective transitions, the detuning of the two fields can becalculated from the Zeeman
splitting between themJ = −1/2 andmJ = +3/2 states of the 3d2D3/2 level. For aB-field
of 2.5 G as typically used in these experiments, the splitting amounts to∼ 2π×4.4 MHz
(for detail see appendix A.3).

As the frequency of the cavity is locked on the bare atomic resonance of the probe tran-
sition, the control laser will be injected into the cavity with a detuning corresponding to
the Zeeman splitting. The intracavity Rabi frequency of thecontrol field can accordingly
be calculated by

Ωtheory
C = gC

√

|aC|2 =
g√
3

√

2κ2

κ2+∆2
C,23

Pin

~ωl
, (8.32)

wheregC denotes the single ion coupling rate of the control transition (see appendix
A.5), |aC|2 is the intracavity photon number for the control field,∆C,23 = ωC−ωctrl ∼
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2π×4.4 MHz is the detuning of the control laser with respect to the cavity and set by the
Zeeman splitting andPin is the control power injected into the cavity. In the second step,
we used eq. (3.18) to calculate the intra cavity control fieldamplitude for a certain input
field Pin injected through mirror 2. The cavity decay rate through thePT was measured to
beκ2 = 2π× (7.85±0.08) kHz at a wavelength of 866.2 nm.

As the efficiency of the double-pass AOMs depend on the frequency, the probe AOM
is driven by a voltage controlled RF-amplifier and calibrated over the scanning range of
±25 MHz by finding the necessary voltage to keep the power levelof the probe sent to
the cavity stable for certain frequencies and extrapolating to the remaining range.

However, the intensity of the probe beam turned out to be slightly less stable in this
configuration than in the previous and measuring the intensity of the cavity reflection
signal for an off-resonant cavity with the APD revealed intensity fluctuations of the probe
intensity level of 3.4% which we account for in the error calculations. The increased
fluctuations can most likely be attributed to drifts of the voltage controlled RF-amplifier
and the more complex optical setup.

8.3.1. Probing the cavity

The probe and the control beam are sent to the trap table through the two fibers to the PT
and the HR side on the trap table, respectively. The reference laser at 894 nm is overlapped
with the probe beam on the laser table and (as before) sent to the cavity from the PT side.

Though it is simpler, both conceptually and experimentally, to measure EIT spectra in
transmission, the cavity spectra presented in this chapterwill be obtained in reflection and
we will briefly discuss the reasons for this. First of all, when considering the extension
of the present scheme to the realization of single photon storage experiments, it is nec-
essary to inject the single photon pulse from the PT side to achieve the highest possible
efficiency. A measurement of the transmission spectrum hence would have to be carried
out with the APD on the HR side. However, control and probe field possess orthogonal
circular polarizations and injecting them from the two opposite sides of the cavity facili-
tates the independent control of the polarization of both beams. If one was to measure the
transmission spectrum of the cavity on the HR side, the back reflection of the control beam
would overlap with the transmitted probe signal. Even though the two beams in principle
posses opposite polarizations the high input power required to achieve sufficiently high
control field Rabi frequencies when injecting off-resonantly through the HR mirror would
lead to a substantial background on the low signal at the single photon level which we
want to measure. The second option, i.e. to inject both lasers from the PT side would
require a more complex optical setup as the two beams would have to be overlapped on a
non-polarizing beam splitter which would require the setupof a completely independent
second beam path on this side. For these reasons, we chose to inject the probe from the PT
side, and to measure the probe reflectivity signal, while injecting the control beam from
the opposite side.

The setup used to probe the weak cavity reflection of the probelaser is hence similar to
the one presented in 4.8. The intensity of the probe beam is again chosen so as to have a
field at the single photon level in the empty cavity. It isσ− polarized with respect to the
quantization axis. The stronger control beam is injected tothe cavity from the HR side
and isσ+ polarized. On the PT side, the cavity probe reflection signalhas to be separated
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8. Cavity electromagnetically induced transparency

Figure 8.4.: Schematics of the modified experimental probe setup for the EIT experi-
ments. Probe and control team are injected into the cavity from opposite sides. For details
see text.

from the control light transmitted through the cavity before being sent to the probe APD.
As the frequencies of the two beams are very similar, this hasto be accomplished by the
orthogonal circular polarizations of probe and control. Itturned out that the extinction
of the PBCs that were used to separate the light sent to the twoAPDs from the incident
beams in the previous experiments was not sufficient and despite its orthogonal polariza-
tion, a fraction of the transmitted control light made it to the probe APD and caused a
substantial background. The two PBCs were therefore replaced by two Glan polarizers.
Their extinction was measured in a test setup consisting of two crossed Glan polarizers
and the combination ofλ/4 and λ/2 waveplates used in the cavity setup and was found
to be better then 1 : 105. When inserted into the experimental setup, this extinction was
found to be substantially lower (∼ 1 : 3·103), but still approximately one order of mag-
nitude higher than in the previous configuration using the PBCs. Monitoring the control
light transmitted through the cavity and reflected of the Glan polarizer with a CCD chip
revealed that the intensity of this beam is inhomogeneous over the Gaussian profile. We
attribute this to birefringence effects in the mirror substrates that might lead to local el-
liptical polarization components. These are most likely caused by tension induced by the
mounting of the substrates and can explain the lower extinction on the Glan polarizers in
the experimental setup.

To account for the additional background on the probe APD induced by the control
field, and to check the extinction of the orthogonal polarization, we measure the back-
ground directly on the APD and adjust the waveplates on the HRside to pre-compensate
the birefringence of the cavity as well as possible. The eventual remaining background is
then measured and subtracted from the data.

8.3.2. Experimental sequence

In all EIT related experiments presented in this thesis, thefrequency of the cavity is locked
to the atomic resonance frequency for the probe, like in the measurements of the vacuum
Rabi spectra in sec. 5.5. The locking scheme was described insec. 4.8.3.
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Figure 8.5.: a. Experimental sequence used in the EIT experiments. A 5µs sequence of
Doppler-cooling is followed by 22µs optical pumping preparing the atoms in themJ =
+3/2 substate of the 3d2D3/2 level. After the state preparation, the control field and after
a short delay of 0.1 µs the probe are injected into the cavity for a timetEIT (typically
10−50 µs). At the end of the EIT interaction, the cavity reflectivityis measured by the
probe APD for a timetAPD (typically 1.4 µs). b. Energy levels of40Ca+ including the
relevant transitions and polarization for cooling, optical pumping and EIT interaction.
The acronyms are: LC: laser cooling beam, RP: repumping beam, OP: optical pumping
beam, CB: control beam, PB: probe beam.
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8. Cavity electromagnetically induced transparency

The experimental sequence used in these experiments is depicted in fig. 8.5. It consists
of a 5µs sequence of Doppler-cooling, followed by 22µs optical pumping. Then first the
control field and after a short delay of 0.1 µs the probe field are injected into the cavity
for an interaction timetEIT. The short delay ensures that steady state is reached for the
control field before injecting the probe and to avoid atom-mediated transient effects that
might occur when both lasers are injected at the same time. The length of the interaction
time (typically between 10 and 100µs) will depend on the Rabi-frequency of the control
field, which sets, as discussed above, the time scale for establishing the EIT. At the end of
the interaction phase, the probe APD is turned on and we measure the cavity reflectivity
for typically tAPD∼ 1.4 µs.

The sequence is continuously repeated with a repetition frequency given by the inverse
sequence time. As described in 4.8.3 the transmission signal of the reference laser is used
to post-select the data points for which the cavity was resonant. The cavity reflection is
measured for various detunings of the probe laser, where foreach detuning of the probe,
typically 104 data points are acquired.

8.4. Experimental results

8.4.1. Normal-mode splitting

In a first set of experiments, we measured the cavity spectrumas a function of the probe
detuning∆ for the three cases of i.) an empty cavity with no ions present, ii.) a cavity
containing an ion Coulomb crystal when only probe light is sent to the cavity and iii.) for
the EIT case, where both the probe and the control field are injected into the cavity. The
expected reflectivity spectrum for the three cases were shown in fig. 8.3 forN = 500.

Fig. 8.6 shows the three reflectivity spectra obtained for the different configurations.
The spectrum (red squares) is taken with no ions present in the trap and shows the famil-
iar Lorentzian reflectivity dip of the bare cavity. Fitting this data set with the expected
lineshape yields a cavity field decay rate ofκ = 2π× (2.2±0.1)MHz, in good agreement
with previous measurements.

Then, for the second data set (green triangles), an ion Coulomb crystal is loaded into the
trap and the coupled atom-cavity system is probed, and we observe the expected Vacuum
Rabi splitting (see sec. 5.5). With a half-length ofL = (801±1) µm, a radius ofR=
(141±1) µm and , and a ion density ofρ0 = (5.6±0.1) ·108 cm−3, the crystal contains a
total ofNtot∼ 37500. As we will later show, this crystal is in the collective strong coupling
regime with a cooperativity ofC = 3.4± 0.1. Using eq. (8.31) we determine from the
reflectivity level around resonance an atomic transparencyof Tatomic∼ (1.2±0.2)% and
the crystal is opaque for the probe field.

Finally, the third spectrum (blue circles) is acquired withthe same crystal when both
the control and the probe fields are injected into the cavity.The control field is res-
onant width the 3d2D3/2, mJ = −1/2↔ 4p2P1/2, mJ = +1/2 transition and has an input
power of 1.0 µW corresponding to an expected Rabi frequency of the controlfield of

Ω(theory)
C = 2π× (4.6±0.2) MHz (see eq. (8.32)). For large detunings of the probe laser,

the spectrum is similar to the vacuum Rabi splitting. However, for small probe detun-
ings∆≃ 0 MHz (when the two lasers are close to two-photon resonanceδ≃ 0 MHz) the
cavity reflection spectrum exhibits a sharp dip and the reflection drops drastically around
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Figure 8.6.: Probe reflectivity spectrum for an empty cavity (red squares) and a cavity
containing an ion Coulomb crystal without (green triangles) and with the control field
present (blue circles). With a half-length ofL = (801±1) µm, a radiusR= (141±1) µm
and a ion density ofρ0 = (5.6±0.1) ·108 cm−3. The cooperativity was measured to be
C= 3.4±1 (for details see text).

∆ = 0 MHz. From the reflectivity level on two-photon resonance wecalculate an atomic
transparency on resonance ofTatomic= (84±1)% (see eq. (8.31)), which is two orders of
magnitude higher as compared to the vacuum Rabi spectra, when there is only the probe
laser present.

More quantitative information from the EIT spectrum can be obtained by fitting it to
the theoretical model of eq. (8.27). Owing to the complexityof the model, we first
characterize the system in order to measure the non-EIT related interaction parameters
independently. For this purpose, we first measure the broadening of the cavity effective
decay rateκ′ (see eq. (3.48a)) as a function of probe detuning∆ by the method described
in sec. 5.4. To account for the finite temperature of the crystal the spontaneous dipole
decay rateγ′ as well as the cavity decay rateκ are left as free fitting parameters (see secs.
3.3 and 5.4). We find(gN,γ′,κ) = 2π× (13.6±0.3,12.6±0.8,κ= 2.5±0.2) MHz. The
dipole decay rate found here is substantially higher than the natural dipole decay rate. This
indicates that the cooling conditions might have been less optimal for these measurements
as compared to those presented in e.g. sec. 5.4.

To confirm the coherent coupling rate found from the broadening of the effective cavity
decay rate we furthermore obtained vacuum Rabi spectra (seesec. 5.5), which were
measured both in reflection and transmission. For the measurement of the transmission
spectrum, the probe laser is injected into the cavity from the HR side and the transmitted
signal is measured by the probe APD on the PT side (see 4.8.2 for details). The two sets
of data can be seen in fig. 8.7. Fits to the two curves yield collective coupling rates of

g(refl)
N = 2π× (13.9±0.3) MHz andg(trans)

N = 2π× (13.8± 0.1) MHz for the reflection
and transmission spectrum, respectively. To facilitate convergence of the more complex
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Figure 8.7.:Vacuum Rabi spectrum measured in reflection and transmission for a crystal
with half-length and radiusR= (141±1) µm andL = (801±1) µm, and a ion density of
ρ0 =(5.6±0.1)·108 cm−3. The solid lines are fits to the data and yield collective coupling

rates ofg(refl)
N = 2π× (13.9±0.3) MHz in reflection andg(trans)

N = 2π× (13.8±0.1) MHz
in transmission.

fitting function, the values ofκ andγ are set to the previous values ofκ = 2π×2.2 MHz
andγ = 2π×12.6 MHz, respectively.

The collective coupling rates we find for the three differentmeasurements all agree
within their error bars and yield a cooperativity ofC = 3.4± 0.1, corresponding to an
effective number of interacting ions ofN ∼ 675. For the vacuum Rabi splitting mea-
surements we observe a better agreement of the spectra measured in transmission than in
reflection, especially around the lobes of the normal modes.The reason for this discrep-
ancy is not completely understood, but might be attributed to the more sensitive nature of
the measurement in reflection. As the reflected field results from the interference between
the incoming and the intracavity field leaking out of the cavity, it is more sensitive to
mode matching or polarization imperfections. Nevertheless, the collective coupling rates
deduced from fits to both spectra agree within their uncertainties. Furthermore, around
two-photon resonance (∆ = ∆C = 0), the reflection spectrum is still well resembled by the
fit to the theoretical model and it is mainly this region whichis important for the system-
atic studies of the EIT resonance.

Having measured the interaction parameters of the system, we can finally turn back to
the cavity reflectivity spectra of fig. 8.6. A zoom around two-photon resonance is shown
in fig. 8.8, for the empty cavity (red squares), the probe vacuum Rabi splitting spectrum
(green triangles) and the EIT spectrum (blue circles). The solid lines in the corresponding
colors represent fits to the theoretical model, using eq. (8.28). For the EIT situation, the
transverse profile of the control is taken into account by using the susceptibility of (8.25).
The narrow EIT window is very well resembled by the fit to the theoretical model with a
clearly non-Lorentzian lineshape due to the effect of the transverse profile of the control
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Figure 8.8.: Zoom around two-photon resonance for the probe reflectivityspectra of fig.
8.6. The curves are obtained for an empty cavity (red squares) and a cavity containing
an ion Coulomb crystal with a measured cooperativity ofC = 3.4±0.1, without (green
triangles) and with control field (blue circles). The solid lines are fits to eq. (8.27),
using the two-level susceptibility of eq. (3.41) for the vacuum Rabi and the three-level
susceptibility of eq. (8.25) for the EIT spectrum. From the fit to the EIT spectrum, we
obtain a collective coupling rate ofgN = 2π× (13.7± 0.1) MHz, a Rabi frequency of
the control field of 2π× (4.1±0.1) MHz and a half-width of the central EIT window of
(47.5±2.4) kHz. The atomic transparency on resonance is increased from(1.2±0.2) to
(84±1)%. To illustrate the non-Lorentzian lineshape of the EIT window a Lorentzian fit
is also depicted (dashed black line).
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8. Cavity electromagnetically induced transparency

field. To illustrate this effect, a Lorentzian fit to the data is also plotted (dashed black line)
and deviates substantially from both the experimental dataand the fit to the theoretical
model. The half-width of the EIT windows is found to be 2π× (47.5±2.4) kHz and is
almost a factor 50 narrower than the bare cavity width ofκ = 2π×2.2 MHz.

Moreover, on two photon resonance we deduce, according to eq. (8.31), an atomic
transparency ofTatom= (84±1)%. For this curve, the cavity reflectivity drops below the
value of the empty cavity. Though this might seem surprising, this behavior is expected
and can be understood from the resonant reflectivity (∆ = ∆C = 0), given in eq. (8.29a).
For a certain value of the control Rabi frequencyΩC the atomic absorption is reduced by
the EIT to the level, where it compensates the difference between the cavity decay rate
through the PT,κ1, and the sum of the decay rate through the HR,κ2, and the intracavity
loss rate,κA . In this case, the atomic absorption is given by Im(χ) ∼ 2π · 0.86 MHz,
corresponding to an atomic transparency ofTatom∼ 52%. For even higher control field
Rabi frequencies, the reflection level rises again and converges to the empty cavity level
when the atomic absorption goes down to zero.

Furthermore, the fit to the EIT spectrum yields a collective coupling rate ofgN = 2π×
(13.7±0.1) MHz, a Rabi frequency of the control field of 2π× (4.1±0.1) MHz and a
ground state decoherence rate ofγ12 = 2π× (1.2±0.2) kHz, where the effective dipole
decay rate and the cavity field decay rate were fixed to the values deduced in the previous
experiments (γ = 2π×12.6 MHz andκ = 2π×2.2 MHz, respectively). The collective
coupling rate is in very good agreement with the value found for the Vacuum Rabi spectra
and the broadening of the effective cavity decay rate. The control field Rabi frequency

deduced from the fit is slightly lower than the theoreticallyexpected value ofΩ(theory)
SW =

2π× (4.6± 0.2) MHz. This slight discrepancy may be attributed to drifts of the laser
power during the measurement, a non-ideal coupling to the cavity or polarization drifts,
resulting in this specific experiment in a slightly lower intracavity field intensity. We note
that the value we find forγ12 in this single fit is rather is an order of magnitude, due to
the complexity of the fitting function5. As we will see in the next section this value is
actually in good agreement with other systematic measurements. In principle, one could
expect that the decay rate of the ground stateγ12 could be as low as the decoherence rate
we found in the measurement of the coherence time of collective Zeeman substates in
sec. 5.7. The coherence time ofτe = 1.7100

−0.8 ms we found there would correspond to a
decoherence rate ofγe ∼ 2π×0.1 kHz, which is much lower as the fitted decay of the
EIT ground state coherenceγ12, but might still be consistent with the measured spectra.
The issue of the ground state decoherence rate will be further addressed in the following
systematic studies and we will discuss possible differences and present limitations in sec.
8.4.4.

8.4.2. Effect of control power

An important parameter for the steady state behavior and thedynamics of the EIT inter-
action is the control field Rabi frequency. In this subsection we will study both steady
state spectra and the dynamical build up of the transparencyduring the EIT interaction for
various powers of the control field.

The crystal used in these experiments is slightly bigger than the previous one and we

5 γ12 only appears in combination withΩC which leads to strong mutual dependencies of the fitting parameters.
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Figure 8.9.:EIT spectra for different (selected) input powers of the control field: 82 nW
(squares), 414 nW (circles), 2057 nW (triangles) and 3490 nW(stars). The solid lines
are fits to the model of eq. (8.27). The crystal’s half-length, radius and density areL =
(863±1)µm,R= (125±1)µm andρ0 = (5.6±0.1) ·108 cm−3 amounting to an effective
number of ionsN= 980±20 (taking the optical pumping efficiency of 97% into account.)
From the fits we deduce control field Rabi frequencies of 2π× (1.18±0.04) MHz, 2π×
(3.23±0.11) MHz, 2π× (5.91±0.18)MHz and 2π× (8.62±0.26)MHz.
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Figure 8.10.:Control Rabi frequency as deduced from fits to the EIT spectraversus the
theoretical value deduced from the input power of the control laser. The solid line indi-
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8. Cavity electromagnetically induced transparency

deduce from a projection image a half-length ofL = (863± 1) µm and a radius ofR=
(125±1) µm. With a density ofρ0 = (5.6±0.1) ·108 cm−3 the effective number of ions
amounts toN = 980±20 (taking the optical pumping efficiency of 97% into account),

corresponding to a expected collective coupling rate ofg(theory)
N = 2π× (16.6±0.4)MHz.

In a first step, we obtain EIT spectra around two-photon resonance for various intensi-
ties of the control field. In fig. 8.9 exemplary spectra aroundtwo-photon resonance are
shown for four different cavity input powers of the control laser: 82 nW (squares), 414 nW
(circles), 2057 nW (triangles) and 3490 nW (stars), corresponding to expected intracavity

control field Rabi frequenciesΩ(theory)
C of 2π× (1.3±0.1) MHz, 2π× (3.0±0.2) MHz,

2π× (6.6±0.4) MHz and 2π× (8.6±0.5) MHz, respectively. The solid lines are fits to
the theoretical model of eq. (8.27), and using the linear susceptibility taking the transverse
profile of the control field into account, see eq. (8.25).

As expected, the width of the EIT window increases with higher control power. Fur-
thermore, the depth of the EIT dip also increases, and for a certain range of powers of
the control field drops below the reflectivity of the bare cavity and reaches a level close to
zero, as mentioned in the previous subsection.

A global fit6 of the data yields a collective coupling rate ofg(fit)
N = 2π×(16.2±0.2)MHz,

in good agreement with the value deduced from the effective number of ions and the sin-

gle ion coupling rateg. The Rabi frequencies deduced from the fits,Ω(fit)
C , are depicted

in fig. 8.10 versus the theoretically expected values calculated from the input powers of

the control field according to eq. (8.32). The solid line corresponds toΩ(fit)
C = Ω(theory)

C

and we find very good agreement between the experimental values and the theoretical
expectations.

For the fits, the ground state decoherence rate was based on the previous discussion
set toγ12 = 2π×1 kHz. To check the plausibility of this choice, we repeated the fitting
procedure for values ofγ12 = 2π×0.1 kHz andγ12 = 2π×4 kHz. The control field Rabi
frequencies deduced from these fits were then investigated as a function of the expected
Rabi frequency and fitted by a linear function. The linear slopes deduced for all three
values ofγ12 are summarized in the following table

γ12 linear slope
[2π kHz]

0.1 0.92±0.02
1.0 1.00±0.02
4.0 1.08±0.02

Based on this comparison, a value ofγ12∼ 1 kHz seems reasonable and is consistent with
our data. We will, therefore, for the remaining analysis in this chapter stick to this value.

Width of the EIT window

In fig. 8.11 are shown the half-widths of the EIT windows as deduced from the fits in
fig. 8.6 and similar spectra (blue circles, left axis) as a function of the square of the
expected control field Rabi frequency for the various input powers. The blue line is a

6Beside the control field Rabi frequency, all fitting parameters are assumed to be equal for the various data
sets.
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Figure 8.11.: Left Axis: Half-widths of the EIT windows depicted in fig. 8.9 as deduced
form the fits to the theoretical model versus the square of theexpected control field Rabi
frequency (blue squares). The blue solid line is a linear fit and yields a linear slope of
aHWHM = (1.7±0.1) 10−3/2π MHz and an intersection ofbHWHM = 2π× (0.9±0.3) kHz.
Right Axis: EIT build-up time constantγEIT deduced from fits to corresponding dy-
namical curves as shown in fig. 8.13 versus the square of the expected control field
Rabi frequency (red squares). The red solid line is a linear fit and yields a slope of
aγEIT = (1.8±0.2) 10−3/2π MHz and an intersection ofbγEIT = 2π× (1.0±0.4) kHz. The
two axis are on scale.

127



8. Cavity electromagnetically induced transparency

linear fit to the data and yields a linear slope ofaHWHM = (1.7±0.1) 10−3/2π MHz and a
intersection ofbHWHM = 2π× (0.9±0.3) kHz. For small control field Rabi frequencies
ΩC→ 0 one expects the half-width of the EIT window to be limited bythe ground state
decoherence rateγ12, which for the analysis of the curves in fig. 8.9 was chosen to be
γ12 = 2π×1 kHz. The intersection deduced from the linear fit in fig. 8.11hence provides
a further way to independently check the self-consistency of this assumption. For this
purpose, we repeated the analysis of the half-width of the EIT for the control field Rabi
frequencies forγ12 = 2π×0.1 kHz andγ12 = 2π×4 kHz. The results of linear fits to the
three sets of data are summarized in the following table.

γ12 intersectionb(HWHM) linear slopea(HWHM)

[2π kHz] [2π kHz] [10−3/2πMHz]

0.1 0.2±0.2 1.6±0.1
1.0 0.9±0.3 1.7±0.1
4.0 6.2±0.7 1.8±0.1

The intersection we find for choices ofγ12= 2π×0.1 kHz andγ12= 2π×1 kHz resemble
these choices, while the value we find forγ12 = 2π× 4 kHz clearly deviates from the
assumption. In connection with the analysis of the fitted control field Rabi frequency we
infer on this basis that a ground state decoherence rate of the order of∼ 1 kHz is very
likely and will use this choice for the remaining analysis. We will turn back to the issue
of the ground state coherence time and possible limitationsin sec. 8.4.4.

Atomic transparency

An important quantity in connection with EIT is certainly the transparency of the atomic
medium. Based on the Rabi-frequencies deduced from the fits,we can now, using eq.
(8.30), calculate the transparency of the atomic mediumTatom on resonance. The result is
depicted in fig. 8.12 as a function of the control field input power. For comparison, we
plot the theoretical expectation, which is calculated based on (8.30) and using the Rabi
frequencies found for the input power of the control field according to eq. (8.32). The
remaining parameters are the experimentally deduced values, i.e. a coherent coupling
rategfit

N = 2π×16.2 MHz, a cavity decay rate ofκ = 2π×2.2 MHz, an effective dipole
decay rate ofγ′ = 2π×11.7 MHz and a decay rate for the ground state coherence ofγ12=
2π×1 kHz. The transparency increases from a level of< 1% for low Rabi frequencies of
the control field to values above 95% for higher control field intensities and we find good
agreement with the expected behavior.

Dynamical build up

To gain insight into the dynamical evolution of the EIT buildup for various intensities of
the control field, a series of measurements was performed, where the probe reflectivity is
monitored at different delays after the control and probe fields have been turned on. This
is accomplished by measuring the cavity reflection on two-photon resonance (δ = 0) by
the probe APD at different times in the EIT interaction phase. To obtain a sufficient time
resolution, the time window for the APD was reduced to 0.5 µs in these measurements.
Exemplary data sets for the same crystal as used for the measurements in fig. 8.9 are
shown in fig. 8.13. The control field input powers are 82 nW (squares), 414 nW (circles),
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Figure 8.12.:Deduced atomic transparency for different input powers of the control field.
The solid line corresponds to the theoretical expectationsof eq. (8.30), where eq. (8.32)
is used to deduce the Rabi frequencies for the input power of the control field. The other
parameters were fixed to the values deduced in the previous measurements (gfit

N = 2π×
16.2 MHz, κ = 2π×2.2 MHz, γ′ = 2π×11.7 MHz andγ12 = 2π×1 kHz).
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Figure 8.13.: Time evolutions of the reflectivity level for a two-photon resonant probe
field for the same control field Rabi frequencies and the same crystal as in fig. 8.9. The
last points (open symbols) of each curve are taken with the control field switched off to
verify that no significant depopulation of the
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substate has occurred
during the interaction.
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Figure 8.14.:Numerical simulation of the time evolution of the resonant cavity reflectiv-
ity. a. Sample curves calculated from the inverse Laplace transformation of eq. (8.26) for
different intra cavity Rabi frequencies:ΩC = 2π×1 MHz (squares),ΩC = 2π×3 MHz
(circles),ΩC = 2π×5 MHz (diamonds),ΩC = 2π×7 MHz (stars) andΩC = 2π×9 MHz
(triangles). The time constants of the EIT build up are extracted by fitting the beginning
(to the 1/e level) witha exp(−2γEITt)+c. b. ExtractedγEIT as a function of the square of

the control field Rabi frequency. The solid line is a fit according to γEIT = γ12+
Ω2

C/2a0
γ(1+2C) ,

where the scaling factora0 is introduced to account for the effective averaging of the
Rabi frequency over the transverse profile. From the fit to thevalues deduced from the

simulations we finda(sim)
0 = (2.19±0.02).

2057 nW (triangles) and 3490 nW (stars) and also correspond to those of fig. 8.9. One
observes a decrease of the cavity reflectivity signal with the interaction time, with a time
constant depending on the control field intensity. For the highest intensities, a steady state
level is reached after some fewµs, while it takes several tens ofµs for the lowest measured
control intensities. To prove that no significant depopulation of the

∣

∣3d2D3/2, mJ = +3/2
〉

substate occurs during the interaction time, the control field is switched off before the
probe field and the last data point of each curve is measured with solely the probe field in
the cavity. The corresponding data points are marked by opensymbols and reach within
their errors the reflectivity level at the beginning of the measurement, hence indicating
that the population in themJ = +3/2 state has not decreased during the interaction time.

As discussed in sec. 8.2.3, modelling the dynamical evolution of the mean value of
the intracavity field is not trivial for an intracavity control field, where one has to take
its transverse field distribution into account. For the caseof a uniform control field the
dynamical equations in eqs. (8.6) and (8.7) can be solved by an adiabatic elimination,
see eqs. (8.9). The resulting time dependence of the intracavity field was found to be
exponential, with a time constant, which, in the resonant case (∆ = δ = 0), is given by

γEIT = γ12+
Ω2

C/2

γ(1+2C) (see eq. (8.14)).

For the more complex situation of an intracavity control field as used in the experiment,
one can solve the dynamical equations in the Laplace-domain, where for the intracavity
field amplitude on finds the expression given in eq. (8.26). The inverse transformation can,
however, not be performed analytically and has to be calculated numerically. This method
does, hence, not provide a simple expression that could be used to fit the experimental data
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in fig. 8.13.
Instead, we performed numerical simulations of the dynamical evolution of the cavity

reflection signal for various Rabi frequencies of the control field Rabi frequency, some
exemplary curves are depicted in fig. 8.14 a. A first useful approximation for the EIT
time constant can be found by fitting the first fewµs of the resulting time dependent
cavity reflectivity curves with the exponential form one would expect for a homogeneous
control fieldR = a exp(−2γEITt)+ c.

For the case of an intracavity control field, the time evolution will depend on the radial
position of the individual ions, since the time constant depends onΩC. As a result, the
dynamical evolution of the cavity reflectivity will be an average of all these contributions
and one will in general find a slower evolution as compared to auniform control field with
comparable Rabi frequency. In a simple heuristic picture one can account for this average
by rescaling the Rabi frequency of the intracavity control field by a scaling factora0. In
this simple model, the average time constant is hence expected to be given byγEIT =

γ12+
Ω2

C/2a0
γ(1+2C) . Using the numerical simulations, we can estimate this scaling parameter

a0. The time constantsγEIT as deduced from the fits to the first part of the simulated
dynamical curves are depicted in fig. 8.14 b. as a function of the square of the control field
Rabi frequencyΩ2

C used in the corresponding simulation and a linear fit to the simulated

data points yields a scaling factora(sim)
0 = 2.19±0.02.

Using the same approach for the experimental data and fittingthe first fewµsof the
dynamical curves byR = a exp(−2γEITt)+c, we can hence also deduce the correspond-
ing time constants for build up of the electromagnetically induced transparency. On the
left axis of fig. 8.9 are depicted the values deduced from these fits as a function of the
control field input power (red squares). The red solid line isa linear fit to the build up
time constants and yields a linear slope ofaγEIT = (1.8±0.2) 10−3/2π MHz, which for the
parameters of the experiment corresponds to a scaling parameter for the Rabi frequency

of of a(fit)
0 = 2.2±0.2 in very good agreement with the value found for the simulations.

On the left axis of the same graph are shown the half-widths ofthe steady state EIT
windows deduced from the fits in fig. 8.11 (blue circles). The two axis are on the same
scale and the two sets of data overlap within their error bars. Furthermore, the linear
scaling parameter of both fits also agree within their uncertainties. Though we cannot,
due to the complexity of the theoretical model, give a strictproof of the equivalence of the
time constants and the corresponding half-width, it is froma physical point of view still
reasonable to expect a correspondence between the time evolution of the EIT build up and
the observed spectral half-width of the EIT resonance, as suggested by our experimental
findings. This also provides us with simple analytical estimates for the EIT build up time
constants in the range of parameters investigated here.

8.4.3. Varying the number of ions

In a subsequent experiment, we measured the dependence of the EIT on the effective
number of ions and hence the collective coherent coupling rate. This is accomplished
by varying the number of ions in the cavity mode by changing the RF and DC trapping
voltages, as was explained in sec. 5.6, where the dependenceof the collective strong
coupling on the effective number of ions was investigated.
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Figure 8.15.:EIT spectra for ion Coulomb crystals with different effective numbers of
interacting ions for input powers of the control field ofa. PC,in = 576 nW (N = 393
(squares),N = 590 (circles),N = 737 (triangles),N = 938 (stars),N = 938 (diamonds))
and b.. PC,in = 103 nW (N = 362 (squares),N = 590 (circles),N = 735 (triangles),
N = 1082 (stars)). The solid lines are fits based on eq. (8.27) andyield control field

Rabi frequencies ofΩ(fit)
C = 2π× (4.0± 0.2) MHz andΩ(fit)

C = 2π× (1.6± 0.1) MHz,
respectively.
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Figure 8.16.: Width of the EIT windows for different effective numbers of interacting
ions for the two sets of data presented in fig. 8.15. The red squares correspond toPC,in =
576 nW, the blue circles toPC,in = 103 nW. The widths are calculated numerically based
on the collective coherent coupling rates and the control field Rabi frequency deduced
from the fits, and the previously measured values ofκ, γ andγC.
Inset: Collective coherent coupling rate deduced from the fits versus the theoretically
expected values for the two sets of data. The dashed line indicatesgfit

N = gtheory
N .
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Figure 8.17.:Atomic transparency for different effective numbers of interacting ions for
the two sets of data depicted in fig. 8.15 (blue circles:PC,in = 576 nW, red squares
PC,in = 103 nW). The solid lines are the theoretical curves calculated according to eq.
(8.30).

The measurement was performed for two fixed input powers of the control field,Pin =
576 nW andPin = 103 nW. The obtained cavity reflection spectra around two photon
resonance for the two sets of data are depicted in fig. 8.15 a. and b., respectively. For both
sets of data, one observes a decreasing width of the EIT windows, as the number of ions
and hence also the collective coherent coupling rate is increased, in accordance with the
expectations from the theoretical model (see eq. (8.27)).

The solid lines are fits to the various curves based on the model in eq. (8.27) where we
leave the control field Rabi frequency and the collective coupling rates as free parameters
and fixing the remaining parameters to the previously measured values. The control field

Rabi frequencies are found to be ofΩ(fit)
C = 2π×(4.0±0.2)MHz andΩ(fit)

C = 2π×(1.6±
0.1) MHz, respectively, in reasonable agreement with the expected values ofΩ(theory)

C =

2π× (3.5± 0.2) MHz and Ω(theory)
C = 2π× (1.5± 0.1) MHz, calculated based on eq.

(8.32).
In fig. 8.16 are depicted the widths of the central EIT window for the two sets of data,

where the red squares correspond to the curves shown in fig. 8.15 a. and the blue circles
to the ones in fig. 8.15 b. The widths are numerically calculated based on the collective
coherent coupling rates and the control field Rabi frequencydeduced from the fits, and
the previously measured values ofκ, γ andγC, as already discussed above.

The collective coherent coupling rates deduced from the fitsg(fit)
N are depicted in the

inset of 8.16 versus the theoretical valuesg(theory)
N calculated from the effective number

of interacting ions,N, and the single ion coupling rateg= 2π×0.53 MHz. The dashed

line indicatesg(fit)
N = g(theory)

N and we find good agreement of the measured values with the
expectations.
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8. Cavity electromagnetically induced transparency

Fig. 8.17 shows the corresponding transparencies for the two sets of data (blue circles:
PC,in = 576 nW, red squaresPC,in = 103 nW), along with the theoretical curves calculated
according to eq. (8.30).

8.4.4. Discussion of the ground state coherence time

In sec. 8.4.2 we argued that the ground state decoherence rate for the experiments pre-
sented here is of the order ofγ12∼ 2π×1 kHz. This value was found to agree with the
one found in sec. 8.4.1 and, furthermore, provides good agreement for the control field
Rabi frequencies deduced from fits to EIT spectra and the theoretical expectations and is
self-consistent when analyzing the half-widths of the EIT windows. A value of around
2π×1 kHz is hence reasonable, although the complexity of the theoretical model circum-
vents a more precise determination of the value from the experimental data. In the future,
a more precise determination of this parameter could be donethrough a study of very slow
EIT processes, which are more sensitive to the ground state decoherence rate.

Ultimately, we expect the achievable coherence time to be ofthe order of what was
measured in 5.7 via the decay of the collective coherences between Zeeman substates.
There, we found a coherence time ofτe = 1.7100

−0.8 ms, corresponding to a decay rate of
γe∼ 2π×0.1 kHz. The value used in this chapter is larger by a factor of 10and several fac-
tors might be limiting the ground state coherence at the present state of the experiment,
e.g. a slight angle between probe and control field mode, non-zero transverse B-fields,
electronic drifts, a higher temperature of the sample as compared to the previous mea-
surements or an inhomogeneous light-shift that might be induced by the reference laser
field in the cavity, which for the experiments presented in this chapter was injected with
a substantially higher power than in the measurements of thecoherence time presented in
sec. 5.7. We will in the following section try to estimate theinfluence of the latter.

Light shift induced by the 894 nm reference laser

In all experiments presented in this chapter, the 894 nm laser is used to lock the cavity
on atomic resonance, as described in sec. 4.8.3. In all experiments, the 894 nm laser
is resonant with the cavity and injected into the TEM00 mode, and, hence, almost per-
fectly overlapped with the control and the probe field. As wasalready mentioned one
possible limitation for the ground state decoherence rate might be dephasing of the var-
ious contributions throughout the transverse profile of thecavity mode induced by the
inhomogeneous AC-Stark shift of the reference laser.

To clarify this influence, we will in this section present experiments where we measured
cavity reflectivity spectra for various input powers of the 894 nm reference laser, using
exaggeratedly high powers to amplify the effect. In fig. 8.18are depicted spectra around
two-photon resonance for various powers of the reference. The curves correspond to
powers of the reference laser of 0.025µW (squares), 0.55 µW (circles), 1.4 µW (stars),
7.9 µW (diamonds), 24.0 µW (crosses) and 40.3 µW (asterisks), where the powers are
measured at the position of the locking detector. For increasing powers, one observes
both a shift of the two-photon resonance and a broadening of the central EIT window.
The shift is caused by a mean AC-stark shift of the two-photonresonance, while the
broadening directly reflects the different light-shifts ofthe contributions throughout the
transverse profile of the cavity mode.
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Figure 8.18.:EIT window for various powers of the 894 nm reference laser. To investigate
the effect on the EIT resonance, artificially high powers of the reference laser were used.
The power of the individual curves, measured at the positionof the locking detector were
0.025 µW (squares), 0.55 µW (circles), 1.4 µW (stars), 7.9 µW (diamonds), 24.0 µW
(crosses) and 40.3 µW (asterisks).
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Figure 8.19.: Shift of the EIT resonance for different powers of the 894 nm reference
laser. The solid line is a linear fit and yields a scaling constant of b = 2π× (3.5±
0.1) kHz/µW.
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8. Cavity electromagnetically induced transparency

Fig. 8.19 shows the shift of the EIT resonance as deduced fromthe spectra in fig. 8.18
versus the measured power. The solid line is a linear fit to thedata points and yields a
scaling parameter ofb= 2π× (3.5±0.1) kHz/µW. As the reference laser is coupled to the
cavity, this value has to be understood as a mean light shift when averaging the contribu-
tions of the individual ions over the transverse profile.

In our experiment, the locking of the cavity currently requires at least∼ 30 nW at the
detector, which, with an estimated detection efficiency of∼ 60% corresponds to∼ 50 nW
of reference power injected into the cavity. According to the scaling parameter, this would
amount to a shift of the EIT resonance of∼ 2π×0.1 kHz.

This is already at the level of the decoherence rate of collective Zeeman substates mea-
sured in sec. 5.7 and the effect of the dephasing induced by the light shift might be already
one of the limiting factors at the present state of the experiment.

This could also explain why the ground state decoherence rate found in this chapter
differs from the measurement of the coherence time of collective Zeeman-substates pre-
sented in sec. 5.7. There, the measurement was performed by scanning the cavity over
the atomic resonance (see sec. 4.8.3) while measuring the cavity reflectivity signal for a
resonant probe laser. In this configuration, the 894 nm laseris used to monitor drifts of the
cavity resonance which can be accomplished at powers well below 1 nW. The much lower
power level could hence explains the difference of the measured ground state coherence
rate in this chapter as compared to the measurement of sec. 5.7.

Though technical challenging, it should be possible to reduce this effect by an opti-
mized locking scheme. A first step could be to use a more sensitive locking detector
which would facilitate locking of the cavity resonance for even lower power levels of the
reference laser. Furthermore, one could consider to injectthe reference laser to a high or-
der transverse cavity mode to minimize the spatial overlap of the reference with the probe
and control fields. Finally, using a reference laser with an even larger detuning would re-
duce the light shift, but would require a sufficiently high reflectivity of the cavity mirrors
at its wavelength to assure a finesse comparable to the finesseat the wavelength of the
probe transition.

8.5. Conclusion

In this chapter we investigated both theoretically and experimentally the realization of
cavity electromagnetically induced transparency with ionCoulomb crystals. In the first
part, we extended the two-level model derived in sec. 3.2 to the EIT situation, where
an ensemble ofΛ-type three-level atoms interacts simultaneously with a strong control
field and a weak probe field at the single photon level. We foundanalytic expressions for
the atomic susceptibility for both the situation of a uniform control field Rabi frequency
and the more complex case of a control field coupled to the cavity, which allowed us
to calculate the expected cavity reflectivity spectra. For the case of a uniform control
field, we could, furthermore, derive time dependent expressions for the mean values of
the system observables in an adiabatic approximation.

The second part of the chapter was then dedicated to the experimental observation of
cavity electromagnetically induced transparency. We could demonstrate how the vacuum
Rabi spectra obtained with only the probe laser present is modified by the additional con-
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trol laser and exhibits a very narrow transparency window when the frequency of the probe
field approaches the EIT two-photon resonance. The experimental data is well reproduced
by fits to the theoretical models and we find good agreement with the expectations.

We performed a systematic study of the EIT steady state spectra and dynamics by vary-
ing the control field intensity or the number of ions effectively interacting with the cavity
field mode and found excellent agreement with the theoretical model.

By studying the time evolution of the resonant transparency, we could demonstrate how
the build up time constant increases with higher input powers. Based on numerical simu-
lations, we estimated the expected dependence of the EIT time constant for an intracavity
control field and could based on these simulations relate ourexperimental data to the
observed widths of the EIT windows.

In a subsequent series of measurements, we analyzed the influence of the effective num-
ber of ions on the EIT window for two different control field powers. The observed cavity
reflectivity spectra are well resembled by theoretical fits and we find good agreement be-
tween the fitted control field Rabi frequencies and the expectations. We observed for both
control field powers a decrease of the EIT width for an increasing number of ions and a
decrease of the atomic transparency, in good agreement withthe theoretical expectations.

Finally, to assess the influence of the AC-stark shift induced by the reference laser on
the coherence time, we investigated the shift of the EIT resonance for increasing powers
of the reference laser. For the values typically used to lockthe cavity on atomic resonance
the expected shift is of the order of 2π×0.1 kHz and could already be significant for the
achievable coherence time. Though the complexity of the theoretical model complicates
the precise determination of the ground state decoherence rate at the present state of the
experiment we could, based on several observations, estimate it to be of the order of
∼ 2π×1 kHz.

The observation of cavity EIT is an important step on the way towards the realization
of a quantum memory based on ion Coulomb crystals in an optical cavity and the first
realization of the cavity STIRAP (Stimulated Raman Adiabatic Passage) scheme of ref.
[55]. The storage and retrieval of single light pulses requires the dynamical control of the
control field Rabi frequency [137], and detailed dynamical studies are necessary to find the
optimal control parameters for our all-cavity scheme, where the transverse effects of the
control field have to be taken into account. The excellent control over the transparency and
the experimental interaction parameters should allow for the realization of high-efficiency
and long-lived quantum memories [55,56,151].

Furthermore, the observed EIT windows are nearly two ordersof magnitude narrower
than in previous investigations with neutral atoms in cavities [92–95], which is important
e.g. for the implementation of EIT based nonlinear effects [98] or to engineer interactions
between single photons [99,100]. Based on these results, wewill in the following section
implement an EIT-based all-cavity optical switching scheme.
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In this chapter, we will present a first application of cavityEIT, namely the implemen-
tation of a low-light level all-optical switching scheme. We will demonstrate how the
transmission of a probe field at the single photon level through the cavity containing the
EIT medium can be controlled by an additional weak switchingfield. The results will be
compared to an extension of the theoretical EIT model of the previous chapter to the new
situation of four-level atoms.

The chapter is structured as follows: Sec. 9.1 will start with a introduction. In sec. 9.2,
the three-level theory of the previous chapter will be extended to the case of four-level
atoms interacting with three laser fields. Then, in sec. 9.3 we will present results on
optical switching experiments in two different schemes andfinally, in sec. 9.4, we will
conclude and give a brief outlook.

9.1. Introduction

The control of light by itself, ultimately at the quantum level, is a long-standing challenge
for quantum optics. In free space or in usual materials, the interaction cross section be-
tween single photons is typically extremely small, requiring the use of intense laser fields
tightly focused on nonlinear materials. EIT offers an interesting possibility for dramati-
cally enhancing the nonlinearity of an atomic medium [84,90,91,98,99,195–198].

In such a medium the destructive interference of the absorption, which makes the
medium transparent, is usually attended by a constructive interference of the dispersion
in the media and a weak probe pulse propagating through such an EIT medium may ex-
perience huge nonlinearities, making EIT based systems well suited for the realization
of nonlinear optics at the few and even single photon level. Adding to the traditional
EIT Λ-system (see fig. 8.1 a.) a fourth level, different schemes have been proposed e.g.
for the realization of giant Kerr-nonlinearities [98], optical switching by absorptive two-
photon processes [195] or, for an EIT medium enclosed in an optical cavity, the”photon
blockade” [99, 100, 199–201], where the transmission of a single photon is coherently
controlled by a second photon. Such effects could be used to realize quantum optics
devices for single photons, such as single photon transistors [202,203] and single photon
gates [204], for the generation of highly non-classical states [205] and for the observation
of novel phase transitions for light [206,207]. Photon blockade mechanisms based on the
strong coupling of a single two-level system to a cavity fieldmode were proposed [208]
and have been experimentally realized [202,209–212]. In these experiments the statistics
of the photons transmitted through the cavity is conditioned by a nonlinearity of the exci-
tation spectrum of the coupled single atom-cavity system. However, the photon blockade
scheme of ref. [99], which relies on a direct, EIT mediated nonlinear (Kerr) interaction of
two photons, still remains to be demonstrated.

Nonlinear effects in such a four level system have been observed [213] and optical
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switching of free propagating fields at the few photon level has been demonstrated using
cold atomic gases [196–198].

In this chapter we will present a realization of an all-cavity optical switching scheme
based on EIT where all laser beams are in the cavity. The narrow cavity EIT resonances
observed in our system (see chap. 8) will be used to mediate the nonlinear interaction
between the switching field and the probe photon and we will demonstrate how the trans-
mission of a probe beam at the single photon level (at a wavelength of 866 nm) can be
controlled by an additional (weak) switching laser (at 850 nm). In addition, we will
also demonstrate a more traditional optical switching scheme, were a switching field (at
866 nm) is applied in free space. Furthermore, we will based on a semi-classical analysis
derive the theoretical expressions for the atomic susceptibilities in both cases.

9.2. Four-level atoms in a cavity

|3〉

|1〉
|2〉

|4〉
∆SW

ga
ΩC

Ωsw

Figure 9.1.:Level scheme for all-optical switching experiments. The scheme is an exten-
sion of the standard EITΛ-scheme depicted in fig. 8.1 a., where an additional switching
field, characterized by its Rabi frequencyΩsw, couples the state|2〉 to an auxiliary level,
denoted by|4〉.

In this section we will discuss an extension of the three-level EIT model presented in
the last chapter to the four-level situation depicted in fig.9.1. The level scheme is based
on the standard three-level EIT scheme, where the levels|1〉 , |2〉 , |3〉 form a Λ-system
(see fig. 8.1) and where an additional so-called switching laser, characterized by its Rabi
frequencyΩsw, couples state|2〉 to an auxiliary excited level|4〉 with a (large) detuning
∆sw.

In a qualitative picture, one expects the presence of an additional switching laser to
change the energy of state|2〉 through the AC-Stark shift and, hence, to modify the two-
photon resonance condition between the control and the probe field. The probe detuning at
which the quantum interference occurs will accordingly be shifted to a non-zero detuning
∆ 6= 0. At the same time, the atomic transparency on resonance will decrease, as the
AC-Stark shift increases. For appropriate values of the Rabi-frequency of the switching
laser it should therefore be possible to deterministicallyswitch the cavity in and out of
resonance for the probe field.
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Figure 9.2.: All-cavity optical switching schemes for40Ca+. a. Intracavity optical
switching scheme. The switching laser is coupled to the fundamental TEM00 mode and
σ+-polarized. Its frequency is close to resonance of the 3d2D3/2↔ 4p2P5/2 transition
(detuning∆sw∼ 2π×4.3 GHz). b. Free space configuration. The switching laser isπ-
polarized and close to resonance of the 3d2D3/2↔ 4p2P3/2 transition. For details see text.

In the following we will derive a semi-classical model of this scenario, which will be
based on the analysis in sec. 3.2 and sec. 8.2. We will derive the dynamical equations
of the mean values of the relevant atomic observables and theintracavity probe field,
along with their steady state solutions. As in the previous chapters, we will focus on the
situation of large40Ca+ ion Coulomb crystals in an optical cavity. We will investigate
two distinct scenarios: First, where the switching beam is coupled to the cavity and has
a well-defined spatial mode, and second, where the Rabi frequency of the switching field
is uniform throughout the ensemble. Though our focus in thischapter is on the first case,
implementations of both schemes are possible and will be demonstrated.

In the first case, the optical switching is accomplished by aσ+-polarized field address-
ing the |2〉 =

∣

∣3d2D3/2, mJ = −1/2
〉

↔ |4〉 =
∣

∣4p2P3/2, mJ = +1/2
〉

transition in40Ca+.
The switching field is in this case applied along the quantization axis and injected into
the cavity. The appropriate40Ca+ level scheme with the relevant levels is depicted in fig.
9.1 a. It is a implementation of the four-level scheme proposed in ref. [99], albeit with
different wavelengths for the probe and the switching fields.

In the second case, optical switching with a (close to) uniform Rabi frequency is real-
ized by a free propagating switching beam applied along the transversex-direction. The
appropriate level scheme for40Ca+ is depicted in fig. 9.1 b. In this configuration, the
polarization of the light with respect to the quantization axis is π and couples the state
|2〉=

∣

∣3d2D3/2, mJ = −1/2
〉

to the state|4〉=
∣

∣4p2P3/2, mJ = −1/2
〉

. In practise, this laser
will also couple the two states 3d2D3/2, mJ = +1/2 and 4p2P3/2, mJ = +1/2. Accord-
ingly, the excited state will also be light-shifted (and potentially power-broadened) and
the scheme is not a pure four-level system. For simplicity, we will for the theoretical
treatment neglect the effect on the 4p2P3/2, mJ = +1/2 level, and discuss them, when
presenting the experimental results.
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9.2.1. Free-space optical switching

The case of a free-propagating switching field with a uniformRabi frequency is concep-
tionally easier and we will first derive the atomic susceptibility for this case. For simplic-
ity, we will restrict ourselves to the situation where both the probe and the control beams
are coupled to the fundamental TEM00 mode of the cavity, with transverse mode function

ψ00(r j) = exp(
−r2

j
w0

).

Based on the discussion in sec. 8.2.3 and in appendix D, we will furthermore assume
a random distribution of the ions and a sufficiently high thermal kinetic energy of the
ensemble such that one can average over the longitudinal structure of the cavity field. The
Rabi-frequency of the control field,ΩC, and the single ion coupling rateg will accordingly
by scaled by a factor1/

√
2. To facilitate the comparison with the second configuration,

where the switching field is also in the cavity, the Rabi-frequency of the switching field
will also be divided by a factor of

√
2. Using these approximations and assumptions, the

interaction Hamiltonian reads

Hint = − ~
g√
2

Ntot

∑
j=1

exp(
−2r2

j

w2
0

)
(

âσ̂31, j + â†σ̂13, j

)

−~
ΩC√

2

Ntot

∑
j=1

exp(
−2r2

j

w2
0

)(σ̂32, j + σ̂23, j)

− ~
Ωsw√

2

Ntot

∑
j=1

(σ̂42, j + σ̂24, j) . (9.1)

As in the previous chapters, we use the Heisenberg-Langevinapproach to find the dynam-
ical equations of the mean values of the system observables.For a sufficiently large detun-
ing of the blockade field (|∆sw| ≫ γ4,δ,Ωsw) and in the weak probe regime (g|â| ≪ ΩC)
we can perform a perturbative calculation of the probe. Assuming most of the atoms in
level |1〉 (σ11 = 1, σ22 = σ33 = σ44 = 0), the dynamical equations read

ȧ = −(κ+ i∆c)a+ i
g√
2

Ntot

∑
j=1

exp(
−2r2

j

w2
0

)σ31, j +
√

2κ1ain. (9.2a)

σ̇13, j± = −(γ+ i∆)σ13, j±+ i
g√
2

aexp(
−2r2

j

w2
0

)+ i
ΩC√

2
exp(
−2r2

j

w2
0

)σ12, j (9.2b)

σ̇12, j = −(γ12+ iδ)σ12, j + i
ΩC√

2
exp(
−2r2

j

w2
0

)σ13, j + i
Ωsw√

2
σ41, j . (9.2c)

σ̇14, j = −(γ4+ i∆sw+ iδ)σ14, j + i
Ωsw√

2
σ12, j , (9.2d)

where∆sw is the detuning of the switching laser from the atomic resonance frequency and
γ4 is the dipole decay rate of state|4〉. Solving these equations in steady state, we retrieve
for the mean value of the intracavity field operator an equation of the same form as in the
three-level case (see eq. (8.23))

a=

√
2κ1ain

κ+ i∆C− iχ4level
, (9.3)
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where the four-level susceptibility is now given by

χ4level =
ig2

2

Ntot

∑
j=1

exp(−2r2
j/w2

0)



γ+ i∆+
exp(−2r2

j/w2
0)Ω2

C/2

γ12+ iδ+ Ω2
sw/2

γ4+i∆sw+iδ





−1

. (9.4)

We can as in the previous chapters apply the continuous medium description (see eq.
(3.43)) and replace the summation over all ions by the integral over the crystal volumeV:

χ4level =
ig2ρ0

2

∫
V

drrr exp(−2r2
j/w2

0)



γ+ i∆+
exp(−2r2

j/w2
0)Ω2

C/2

γ12+ iδ+ Ω2
sw/2

γ4+i∆sw+iδ





−1

=
ig2N
γ+ i∆

ln(1+ s
1+s′ )

s
1+s′

. (9.5)

Here, we assumed the crystal radius to be much larger than thecavity waistR≫ w0

and, as in eq. (8.25), inserted the effective number of ionsN = ρ0
πw2

0
2 L and the effective

saturation parameter of the two-photon transitions defined in eq. (8.17). In addition, we
introduced the parameter

s′ =
Ω2

sw/2

(γ4+ i∆sw+ iδ)(γ12+ iδ)
. (9.6)

It is instructive to expand eq. (9.5) to first order ins′

χ4level ≃
ig2N
γ+ i∆

1
1+ s

(

1+
ss′

1+ s

)

= χ(1)
Λ +χ(3)

cross
Ω2

sw

2
, (9.7)

where in the last step we used the (linear) three-level susceptibility of eq. (8.16) and in-
troduced the crossed third-order nonlinear susceptibility between the probe and switching
fields [98,204]

χ(3)
cross= ig2N

Ω2
C/2

(

γ+ i∆+
Ω2

C/2

γ12+iδ

)2

1
γ4+ i∆sw+ iδ

(9.8)

For a vanishing Rabi-frequency of the switching field, the susceptibility found in eq.
(9.5) reduces to the linear expression of the three-level situation in eq. (8.25). If the
detuning of the switching field is sufficiently large (|∆sw| ≫ γ4,δ,Ωsw), the susceptibility
becomes

χ4level≈
ig2N

γ+ i∆+
Ω2

C
γ12+iδ−iΩ2

sw/2∆sw

(9.9)

and the additional term in the susceptibility solely causesa shift of the effective two-
photon detuning. If probe and control field are on bare two-photon resonance (without the
switching field present) this switching field can be used to tune the system in and out of
two photon resonance.
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9.2.2. All-cavity optical switching

The second configuration, with the switching field being injected into the cavity, is slightly
more complex and the transverse intensity distribution of the switching beam leads to a
position dependence of the Rabi frequency of the switching field. For simplicity, we will
restrict the theoretical description to the case were all three laser fields are coupled to
the fundamental TEM00 mode of the cavity, with transverse mode functionψ00(r j ) =

exp(
−r2

j
w0

). All longitudinal effects are, as before, assumed to average out and yield a

scaling factor of
√

2 for the Rabi frequencies andg. The interaction Hamiltonian now
reads

Hint = − ~
g√
2

Ntot

∑
j=1

exp(
−2r2

j

w2
0

)
(

âσ̂31, j + â†σ̂13, j

)

−~
ΩC√

2

Ntot

∑
j=1

exp(
−2r2

j

w2
0

)(σ̂32, j + σ̂23, j)

− ~
Ωsw√

2

Ntot

∑
j=1

exp(
−2r2

j

w2
0

)(σ̂42, j + σ̂24, j) , (9.10)

Following the same approach as previously, we can calculatethe evolution equation for
the mean values of the system observables. Except forσ13, j andσ14, j these are identical
to those found in (9.2). In the new all-cavity configuration the dynamical equations for
these two observables are given by

σ̇12, j = −(γ12+ iδ)σ12, j + i
ΩC√

2
exp(−2r2

j/w2
0)σ13, j

+i
Ωsw√

2
exp(−2r2

j/w2
0)σ41, j (9.11a)

σ̇14, j = −(γ4+ i∆sw+ iδ)σ14, j + i
Ωsw√

2
exp(−2r2

j/w2
0)σ12, j . (9.11b)

Solving the full set of equations in steady state, we find the same equation for the mean
value of the intracavity probe field as in eq. (9.3), where thefour-level susceptibility is
now given by

χ4level,00 =
ig2

2

Ntot

∑
j=1

exp(−2r2
j/w2

0)



γ+ i∆+
exp(−2r2

j/w2
0)Ω2

C/2

γ12+ iδ+ exp(−2r2j/w2
0)

Ω2
sw/2

γ4+i∆sw+iδ





−1

. (9.12)

In the continuous medium description (see eq. (3.43)), and assuming (as before)R≫ wo

we can replace the sums by integrals over the crystal volume and perform the integration.
We find

χ4level,00 =
ig2N

2

[

sln(1+ s+ s′)
(s+ s′)2 +

s′

s+ s′

]

, (9.13)

where we used the same parameters as in eq. (9.5).
It is worth noticing that unlike in the case of the three-level susceptibilities in eqs.

(8.16) and (8.25), the four level susceptibilities in eqs. (9.13) and (9.5) will for a non-zero
value of the Rabi frequencies of the switching field in general not be purely imaginary
and accordingly give rise to dispersion, even on atomic resonance.
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Figure 9.3.: Simulated reflectivity spectra for various Rabi frequencies of the switching
field: Ωsw = 0 MHz (solid line),Ωsw = 2π×25 MHz (dashed line),Ωsw = 2π×50 MHz
(dotted line) andΩsw= 2π×75 MHz (dashed-dotted line) fora. a uniform switching field
andb. for the case, when the switching field is coupled to the TEM00 mode of the cavity.
The parameters used for the simulation were identical and are: ∆sw = 2π× 4.3 GHz,
gN = 2π× 17 MHz, ΩC = 2π× 4.35 MHz, γ4 = 2π× 11.6 MHz, γ12 = 2π× 1 kHz,
γ = 2π×11.7 MHz, κ = 2π×2.2 MHz andκ1 = 2π×1.53 MHz.

9.2.3. Reflectivity spectrum

Knowing the four-level susceptibilities for the two possible configurations of the switch-
ing laser, we can now also calculate the expected cavity reflectivity spectrum by substitut-
ing these susceptibilities into (8.27). In fig. 9.2 are depicted simulated reflectivity spectra
for various values of the switching field Rabi frequencyΩsw, where in fig. 9.3 a. we use
the susceptibility found for an homogeneous switching field(see eq. (9.5)) and in fig.
9.3 b. we use the susceptibility for an intracavity switching field (see eq. (9.13)). In the
first case, the switching field induces mainly a shift of the two-photon resonance, while
leaving the shape of the dip nearly unaffected. For the intracavity switching field the two-
photon resonance is also shifted, however less than compared to the previous case (for
comparable Rabi-frequencies) and the shape of the EIT window is distorted and becomes
asymmetric with a sharper rise towards low detunings of the probe.

In fig. 9.4 are depicted the shift of the EIT resonance as a function of the square of
the switching field Rabi frequency for a uniform Rabi frequency (red squares) and for an
intracavity switching field (blue circles). The solid linesare linear fits and yield slopes of
(116±1) ·10−6/2πMHz and(52±1) ·10−6/2πMHz, respectively. The scaling for an intracavity
field is lower by approximately a factor of 2 and while in the uniform case, the dependence
is fully resembled by the linear dependence, the shift deduced for the intracavity switching
field deviates from a strict linear dependence. However, forlow Rabi frequencies below
100 MHz, the scaling is still rather linear and facilitates acomparison of the experimental
findings to the model.

In eqs. (8.29) we calculated the cavity transmittivity and reflectivity on atomic reso-
nance for the EIT situation, where we assumed the susceptibility to be purely imaginary.
As abovementioned, this is in general not the case for the four-level susceptibilities in eqs.

145



9. All optical switching

replacements

Ω2
SW [(2π MHz)2]

sh
ift

of
E

IT
re

so
na

nc
e
[2

π
k
H
z]

0 1000 2000 3000 4000 5000 6000
0

100

200

300

400

500

600

Figure 9.4.: Shift of the EIT resonance as a function of the square of the switching field
Rabi frequency for a uniform Rabi frequency (red squares) and for a intracavity switching
field (blue circles). Linear fits to the data yield slopes of(116±1) · 10−6/2πMHz and(52±
1) · 10−6/2πMHz, respectively.

(9.5) (9.13). On resonance, the cavity transmittivity and reflectivity now read

R =
(κ1−κ2−κA − Im(χ4level))

2+Re(χ4level)
2

(κ2+ Im(χ4level))
2+Re(χ4level)2

(9.14a)

T =
4κ1κ2

(κ2+ Im(χ4level))
2+Re(χ4level)2

. (9.14b)

The resonant atomic transparency, defined by the ratio of thetransmission of the cavity
containing the mediumT to that of the empty cavityT0, (for the three-level case see eq.
(8.30)) is accordingly given by

Tatom=
T

T0
=

κ2

(κ+ Im(χ4level))2+(Re(χ4level))2 . (9.15)

9.3. Experimental realization

In this section, we will present the implementation of an all-cavity optical switching
scheme, where all laser fields interacting with the atoms arecoupled to the fundamen-
tal TEM00 mode. In the second part, these results will be supplementedby a investigation
of a more traditional optical switching scheme with a free-space optical switching field.
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9.3. Experimental realization

Figure 9.5.: Schematic setup for all-optical switching experiments. Inthe first configu-
ration of the switching beam (labeled by switching a.) aσ+ polarized beam at 850 nm
is mode matched to the cavity from the HR side. When the cavityis locked on atomic
resonance, the cavity resonance condition for the switching laser implies a detuning from
the 3d2D3/2↔ 4p2P3/2 transition of∆sw = 2π×4.3 GHz. To allow for the independent
control of the polarization of control and switching beam, aset of waveplates designed as
λ/2 andλ/4 waveplates at 850 nm and asλ at 866 nm are inserted after the Glan polarizer.
In the second configuration (labeled by switching b.) the optical switching is accom-
plished by aπ-polarized beam at 866 nm injected along the transversex-direction. It is
tuned close to the resonance frequency of the 3d2D3/2↔ 4p2P1/2 transition.
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9.3.1. All-cavity optical switching

Experimental setup

The experimental setup used in the optical switching experiments is almost identical to
the one in the previous chapter, the only difference being the additional switching laser.
A schematic of the cavity trap setup and the various laser beams, including the switching
beam is depicted in fig. 9.5. The sequence used in these experiments is identical to the
previous chapter (see fig. 8.5), where the switching laser isapplied at the same time as
the control field.

The level scheme for the intracavity optical switching is shown in fig. 9.2 a. A home-
built grating stabilized external cavity diode laser with awavelength close to resonance of
the 3d2D3/2↔ 4p2P1/2 transition at 850 nm provides the light for the optical switching
field. The frequency of this laser is stabilized using a Pound-Drever-Hall locking scheme
to an additional reference cavity similar to the one used forstabilizing the other diode
lasers and is tunable by a double pass AOM configuration in thelocking branch (similar
to the setups described in sec. 4.3). As for the other lasers,we use a single pass AOM to
be able to switch this beam on and off. The−1st diffraction order is coupled to a fiber
and guided to the optical setup of the probe and control laser, where it is overlapped with
the control beam on a PBC and sent to the HR side of the trap cavity.

Fig. 9.5 shows the beam path of this laser (labeled switchinga.) to the trap cavity. The
switching beam overlaps with the control field and passes thesame setup as described
in the previous chapter. However, as we need independent control over the polarization
of the control and the switching beam, a set of waveplates is inserted before the vacuum
chamber. The plates are designed asλ/4 andλ/2 waveplates at 850 nm andλ waveplates at
866 nm, and hence do not change the polarization of the control laser. The polarization of
the switching laser is set toσ+ to address the 3d2D3/2,mJ = −1/2↔ 4p2P1/2,mJ = +1/2

transition.
In order to achieve the highest possible interaction strength, it is, in principle, desirable

to tune the frequency of this laser close to the atomic transition frequency. However, as
this laser is coupled to the cavity, the frequency of the laser also has to be resonant with the
cavity. The length of the cavity is, however, set by the atomic resonance condition for the
probe laser at 866 nm. It turned out that for the current cavity length, the closest TEM00

mode for the 850 nm laser is red detuned from atomic resonanceby ∆sw = 2π×4.3 GHz.
The finesse of the cavity at 850 nm was measured to beF850∼ 4000 and is slightly

higher than at the wavelength of the probe field. The cavity decay rate was measured to
beκ = 2π× (1.85±0.23 MHz).

Despite the large detuning and theσ+ polarization of the switching beam, occasionally
an off-resonant excitation of single ions to the 4p2P3/2 state may occur, from where the
ions can decay to the meta-stable 3d2D5/2 state and are shelved. To make sure that this
state is empty after each sequence, an additional repumpinglaser at 854 nm, close to
resonance with the 3d2D5/2↔ 4p2P3/2 state is applied to the ions.

9.3.2. Experimental results

To demonstrate all-optical switching, we loaded a crystalswith a half-length ofL=(785±
14) µm, a radius ofR= (147±1) and a density ofρ0 = (5.6±0.1) ·108 cm−3. With these
numbers, the crystal containsN = 930± 30 ions effectively interacting with the cavity

148



9.3. Experimental realization

∆ [2π kHz]

R

-500 -400 -300 -200 -100 0 100 200
0

0.2

0.4

0.6

0.8

Figure 9.6.: Cavity reflectivity spectra for various input powers of the intracavity opti-
cal switching field at 850 nm. The individual curves correspond to 0µW (red squares),
18.5 µW (lilac circles), 38.5 µW (light blue stars), 76.9 µW (blue diamonds) and 150µW
(turquoise asterisks). The solid lines are fits to the theoretical model of eq. (8.27) and
using the susceptibility in eq. (9.13). To check for direct effects of the switching laser
on the coherent coupling, we also obtained spectra when onlythe probe beam is injected
(turquoise crosses) and when probe and switching beams are present (green pentagrams).
The size and density of the crystal used in these experimentswereL = (785± 14) µm,
R= (147±1) µm, ρ0 = (5.6±0.1) ·108 cm−3, corresponding to an effective number of
ions ofN = 930±30.

mode, and the collective coupling rate is expected to begN = 2π× (16.2± 0.3) MHz.
The experiment is accomplished, by injecting a control laser field with an input power
of PC = 1.1 µW, a weak probe field at the single photon level and a switchingfield with
variable powers into the cavity. The probe reflectivity is then measured by the probe APD
at the end of the interaction period (see fig. 8.5).

Fig. 9.6 shows the probe reflection spectrum of the cavity fordifferent input pow-
ers of the switching lasers. The input powers are: 0µW (red squares), 18.5 µW (lilac
circles), 38.5 µW (light blue stars), 76.9 µW (blue diamonds) and 150µW (turquoise
asterisks). The solid lines are fits to the theoretical model, where we reduced the pa-
rameter space by fixing the collective coupling rate to the expected value and the control

field Rabi frequency to the value found from a fit to the unperturbed spectrumΩ(fit)
C =

2π× (4.2±0.1) MHz. Furthermore, the ground state decoherence rate is, as in the EIT
experiments, set toγC = 2π×1 kHz. The control field Rabi frequency found from the fit
is in good agreement with the value one expects for the input power ofPC = 1.1 µW of

Ω(theory)
C = 2π× (4.4± 0.2) MHz. For comparison we also obtained spectra when only

the probe beam is injected (turquoise crosses) and when probe and switching beam are
present (green pentragrams). The two curves overlap withintheir error bars and no direct
effect of the optical switching field is observed on the coherent coupling.
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Figure 9.7.:Shift of the EIT resonance as a function of the square of the expected switch-
ing field Rabi frequency. The shift is deduced from the reflectivity spectra in fig. 9.6. The
solid line is a linear fit and yields a slope of(23±2) · 10−6/2πMHz. Inset: Switching field
Rabi frequency deduced from the fits as a function of the expect value, calculated from
the known input power, the transition strength and the cavity parameters. The solid line is
a linear fit and yields a slope ofa= (0.80±0.04).

The nonlinear phase-shift due to the cross-phase modulation induced by the switching
field modifies the frequency of the two-photon EIT resonance.Furthermore, the transverse
profile of the switching beam leads to a broadening of the EIT window as expected from
the corresponding four-level susceptibility in eq. (9.13). The probe absorption level on
resonance (∆ = 0) gradually increases as the EIT resonance is shifted and for sufficiently
high input powers reaches the absorption level of the non-EIT situation, when only the
probe is injected and no control field is present.

In fig. 9.7 the observed shift of the EIT resonance is depictedas a function of the square
of the expected switching field Rabi frequency calculated according to

Ωtheory
sw = g850

√

|nsw|2 = g850

√

2κ2

κ2
850

Psw,in

~ωsw
, (9.16)

whereg850 is the single ion coupling rate of the switching transition,see eq. (A.6),nsw

is the intracavity photon number,κ850 is the cavity decay rate at 850 nm,κ2 is the cavity
decay rate through the HR andPsw,in is the input power of this field. In the last step, we
used (3.19) to calculated the intracavity power.

The solid line in fig. 9.7 is a linear fit and yields a scaling factor of (23±2) ·10−6/2πMHz.
This value can be compared to the linear approximation of thescaling we found from
the theoretically calculated shifts in fig. 9.4, were we found (52± 1) · 10−6/2πMHz. To
reproduce this scaling of the shift, the Rabi frequencies would have to be reduced by a
factor 0.65±0.05.
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Figure 9.8.:Atomic transparency on resonance as deduced from the fits to the reflectivity
spectra in fig 9.6 versus the switching power. The solid line corresponds to the theoret-
ical expectations, calculated for the susceptibility of eq. (9.13) in eq. (9.15). The Rabi
frequencies were adjusted by a factor of 0.80 as suggested by the measurements shown in
the inset of fig. 9.7. The transparency drops from a level of∼ 84% without the switching
field to below 2% for the highest input powers.
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To cross-check this systematic deviation, we can compare the switching field Rabi fre-
quency independently deduced from the fits to the reflectivity spectra in fig. 9.6 with the
theoretical expectation according to eq. (8.32). The corresponding data is depicted in the

inset of fig. 9.4, along with a linear fit yieldingΩ(fit)
sw = (0.80± 0.04) ·Ω(theory)

sw . These
two independent findings strongly indicate that the calibration of the intracavity switching
power and hence of the theoretical switching Rabi frequencyis overestimated.
This deviation may be attributed to a slight detuning of thislaser from the cavity resonance
which would lead to a lower intracavity field intensity, or toan imperfect modematching,
which is quite likely, as the 866 nm control field and the 850 nmswitching beam are
injected via the same path into the cavity, and the modematching is optimized for the
866 nm laser.

In fig. 9.8 is depicted the atomic transparency on resonance (∆ = ∆C = 0) as a function
of the fitted switching field Rabi frequency. The transparency is calculated according to
eq. (9.15)), based on the parameters found from fits to the reflectivity spectra in fig. 9.6.
The solid line is calculated based on the same model, and rescaling the intracavity switch-
ing Rabi frequency by a factor 0.80, as suggested by the inset of fig. 9.7. One observes
a drastic decrease of the atomic transparency as the switching power is increased, and the
transparency drops from∼ 84% for zero switching field to below 2% for an input switch-
ing power of 150µW. From the plot, we estimate a 1/e-decrease of the transparency for

a Rabi frequency of the switching field ofΩ(1/e)
sw ∼ 2π× 30 MHz, corresponding to an

intracavity photon number ofnsw =
(

Ωsw
g850

)2
∼ 3 ·104.

This rather large number of photons could be drastically reduced by a reduction of
the detuning of the switching laser, which is imposed by the length of the cavity length.
However, this is a technical limitation in this particular experiment and modifying the
cavity length so as to be resonant for both the probe laser at 866 nm and the switching
field at 850 nm would reduce the required number of photons to accomplish the switching.

A simple estimate based on the scaling of the light shift according to∆ =
Ω2

sw
∆sw

=
g2

850nsw
∆sw

,
illustrates that reducing the detuning of the switching field from ∆sw = 2π×4.3 GHz to
some tens of MHz would reduce the number of photons required to achieve the same light
shift by a factor of∼ 1000 and one would expect to be able to control the switching of the
cavity transmission of a single probe photon with only few intracavity switching photons.

9.3.3. Free-space optical switching

In a subsequent experiment, we also implemented the opticalswitching scheme, of fig.
9.1 b., where a free propagating switching field at 866 nm is used. We will in this part
describe the experimental setup and the results of this experiment.

Experimental setup

The optical setup at the cavity is depicted in fig. 9.5, where the free-space switching
laser is denoted by ”switching b.”. Aπ-polarized laser beam at 866 nm with a frequency
close to the 3d2D3/2↔ 4p2P1/2 transition is applied to the ion Coulomb crystals along the
transversex-direction. The light for this beam is provided by the same laser as is used for
the repumping and optical pumping (see sec. 4.3.2.). A fraction of the light of this laser
is split on a PBC on the laser table and sent through a single-pass AOM which is used to
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9.3. Experimental realization

switch the beam on and off and, at the same time, to detune it from atomic resonance. The
beam is then coupled to a fiber and guided to the trap table, where we use a telescope and
a cylindrical lens to shape the beam in order to optimize the overlap with the elongated
form of the crystal while having a sufficiently homogeneous intensity distribution. At the
center of the trap the beam waist is∼ 2300µm along the trap axis and∼ 300µm along
the transversey-direction. Depending on whether the+1st or−1st diffraction order on
the switching AOM is coupled to the fiber, the frequency will be detuned to the red or to
the blue of the atomic resonance. The frequency of the AOM is tunable by±50 MHz,
with a central frequency of±270 MHz. Both the repumping and optical pumping light
has to be resonant with the atomic transition, and as the AOMsused to switch these lasers
induce a blue-shift of 110 MHz (see sec. 4.3.2) the bare frequency of the laser is red
detuned from the transition frequency by this amount. The tuning range of the AOM will
hence correspond to red detunings of∆sw = 2π× (380±50) MHz and blue detuning of
∆sw=−2π× (160±50)MHz for the switching field.

Experimental results

For these experiments, we used a crystal with a half-length of L = (613±1) µm, a radius
of R= (139± 1) µm and a density ofρ0 = (5.6± 0.1) · 108 cm−1, corresponding to an
effective number of ions ofN = 710±20 and an collective coupling rate ofgN = 2π×
(14.1±0.2)Mhz. The optical switching experiment was accomplished fortwo detunings
of the switching field.

In fig. 9.9 a. reflectivity spectra are shown for a switching laser detuned by∆sw =
2π×380 MHz to the red of the atomic transition. The powers of the switching laser were
0 µW (red squares), 20µW (lilac circles), 100µW (pink triangles), 560µW (light blue
stars) and 1120µW (blue diamonds). From a fit to the reflectivity spectra with no switch-
ing field present, we deduce a control field Rabi frequency ofΩC = (2.6± 0.1) MHz,
where the collective coherent coupling rate was fixed to the expected value ofgN =
2π×(14.1±0.2)Mhz. One observes a shift of the EIT window with increasing switching
power and, especially for large powers, a slight broadeningof the transparency dip. In-
duced by this shift, the atomic absorption level on resonance (∆ = 0) gradually increases
and almost reaches the absorption level of the non-EIT configuration, with no control field
present. For comparison we also recorded spectra without control and switching field and
only the probe laser present (turquoise asterisks), and to check for possible effects of the
switching laser on the coherent coupling with the probe and the switching laser present
(green crosses). The two curves overlap within their error bars and no significant effect of
the switching laser on the coherent coupling is observed.

In fig 9.9 b. similar spectra are shown for a switching field detuned by∆sw = −2π×
160 MHz to the blue side of the atomic transition. The individual curves correspond to
switching powers of 0µW (red squares), 50µW (lilac circles), 150µW (pink triangles),
300 µW (light blue stars), 560µW (blue diamonds), 1250µW (blue pentagrams). A
fit to the unshifted reflectivity spectrum yields a control field Rabi frequency ofΩC =
(2.9±0.1) MHz, where the collective coupling rate was fixed to the previous value. To
check for direct effects of the switching laser on the coherent coupling we also obtained
spectra with only the probe laser being injected (turquoiseasterisks) and when the probe
and the switching lasers are present (green crosses) and thetwo spectra overlap within
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9. All optical switching
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Figure 9.9.: Cavity reflectivity spectra for various input powers of the free-space optical
pumping field fora. a switching laser detuned by∆sw = 2π× 380 MHz to the red of
the atomic transition (The input powers are 0µW (red squares), 20µW (lilac circles),
100µW (pink triangles), 560µW (light blue stars) and 1120µW (blue diamonds)) and for
b. a blue-detuning of∆sw = −2π×160 MHz (The input powers are 0µW (red squares),
50 µW (lilac circles), 150µW (pink triangles), 300µW (light blue stars), 560µW (blue
diamonds), 1250µW (blue pentagrams)). In both cases we observe a increasing shift of
the EIT resonance with higher powers of the switching field. The crystal used in these
experiments has a half-length ofL = (613±1) µm, a radius ofR= (139±1) µm and a
density ofρ0 = (5.6±0.1) ·108 cm−1, corresponding to an effective number of ions of
N = 710±20. Fixing the collective coherent coupling rate to the expected value for this
number of ionsgN = 2π× (14.1±0.2)Mhz, we deduce from a fit to the unperturbed EIT
spectra ofΩC = 2π×(2.6±0.1)MHz for the red detuned andΩC = 2π×(2.9±0.1)MHz
for the blue detuned case.
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Figure 9.10.: Measured shifts of the EIT resonance versus the calculated light shift

(2∆LS= 2 Ω2
sw
|∆sw| ) for the individual input powers for a red-detuning of∆sw= 2π×380 MHz

(red squares) and a blue-detuning of∆sw = −2π× 160 MHz (blue circles). The solid
lines are linear fits and yield slopes ofbred= (0.51±0.04) andbblue= (0.38±0.02) re-
spectively. The different scalings are attributed to Doppler shifts induced by the radial
micromotion.

their error bars, and no significant effect is observed. As inthe red detuned situation, the
EIT window is shifted with increasing power of the switchinglaser, however, to opposite
detunings. The shift of the EIT resonance leads to an increasing absorption level on
resonance (∆ = 0) which, for high powers of the switching laser, almost reaches the non-
EIT level.

According to the susceptibility calculated in eq. (9.9) andthe simulated spectra in
fig. 9.3 a., the free space optical switching beam should solely give rise to a shift of
the EIT resonance, which can be understood in terms of the power dependent light shift
of the addressed level and hence as a shift of the two-photon resonance condition, and
our observation reflect this shift. However, in the measuredspectra, one also observe a
broadening of the EIT resonance for larger switching powers, both for the red and the
blue detuned case. This effect can be attributed to power broadening of the excited state
by the switching laser which also addresses the 3d2D3/2,mJ = +1/2↔ 4p2P1/2,mJ = +1/2

transition and hence will lead to a shift of the EIT level|3〉 and a power related broadening
of this state. This broadening is, however, not included in the model of eq. (9.9), and
fitting the data with the simple model would give inadequate results, especially for high
switching power. We therefore did not try to compare these results and we will limit our
analysis on the investigation of the shift of the EIT window1.

The different detunings used for the acquisition of the two sets of data circumvent a
direct comparison as a function of shifting power. However,the measured shifts of the

1A determination of the atomic transparency (see eq. (9.15))from reflectivity spectra relies on the precise
knowledge of the various parameters in the system, which have to be determined from the model.
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9. All optical switching

EIT window can be related to the bare light shift one would expect for the individual
switching powers and detunings. From the input powers, and the known beam waists (see
sec. 9.3.3), we can calculate the intensity of the elliptic beam at the position of the ions
I = 2Psw

πwzwy
, and the Rabi frequency of the transitionΩπ (see appendix A.4) The expected

light shift of the individual levels is then simply given by∆LS = Ω2
π

|∆sw| . The frequency
shift of the two-photon resonance, which we observe, will correspond to 2∆LS, as both the
lower 3d2D3/2,mJ = −1/2 and the upper 4p2P1/2,mJ = +1/2 level are shifted in opposite
direction.

In fig. 9.10 are depicted the measured shifts of the EIT resonance versus the calcu-
lated light shift (2∆LS) for the individual input powers and detunings. For both sets of
data, we find a linear scaling of the observed shift of the EIT resonance, however, with
substantially different scalings. From the fits we find slopes of bred = (0.51± 0.04)and
bblue= (0.38± 0.02). As the switching light is applied to the ions along the transverse
x-direction, radial motion will influence the resonance condition and the different scaling
behavior is most likely a signature of the Doppler shifts induced by the radial micromo-
tion (see sec. 2.1). To estimate the order of magnitude of this effect, one can calculate
the maximum Doppler shift for an ion located at a distance corresponding to the waist of
the cavityw0 = 37 µm above or below the field free trap axis. According to eq. (4.1),
the maximum velocity is2 ṽ= 1

2
√

2
qw0ΩRF, whereq= 0.4 is the trap parameter defined

in eq. (2.5) at the used RF voltage of 300 V, andΩRF = 2π×4.0 MHz is the frequency
of the RF field. With these numbers, the velocity amplitude ofthe radial micromotion
is ṽ∼ 130 m/s, which yields a Doppler shift ofkṽ∼ 2π× 150 MHz. Though this is an
estimate for the maximum shift it becomes obvious that radial micromotion will play an
important role at the chosen detunings of the switching laser, which makes this scheme
less suited for large ion Coulomb crystals.

Furthermore, to achieve a homogeneous Rabi frequency of theswitching field through-
out the ensemble, this beam has to be relatively big which limits this method to relatively
high switching powers, as compared to the intracavity optical switching scheme with a
doubly resonant cavity.

9.4. Conclusion

In this chapter we presented a first application of the intracavity EIT system for the re-
alization of all-optical switching schemes. We investigated theoretically two possible
configurations for optical switching, where we either assumed the switching field to be
uniform throughout the ensemble or to be coupled to the fundamental TEM00 mode of the
cavity. For both scenarios we derived analytical expressions for the atomic susceptibility
and could simulate the expected cavity reflectivity spectra.

We demonstrate how these scenarios can be realized in our system. For the realization
of the intracavity switching scheme, we used aσ+ polarized laser, which couples the
3d2D3/2, mJ = −1/2 and 4p2P3/2, mJ = +1/2 states. We observed the predicted frequency
shift and broadening of the EIT window and find a frequency shift per intracavity photon
of (0.9± 0.2) Hz/photon. The switching of the cavity transmission can accordingly be
accomplished by 30′000 photons. However, the scheme is currently limited by thelarge

2The factor1/
√

2 accounts for the tilt of the coordinate system in eq. (4.1)
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9.4. Conclusion

detuning of the switching laser of∆sw = 2π× 4.3 GHz which is imposed by the length
of the cavity. Modifying the cavity to be doubly resonant forboth the probe and the
optical switching laser should allow to reduce the requirednumber of photons to the few
photon level and would offer promising applications for nonlinear optics at the few photon
level. EIT-based four-level schemes were, e.g. consideredfor the realization of Giant-
Kerr nonlinearities and cross-phase modulation schemes [98], with possible applications
for quantum non-demolition measurements [214] and quantumlogic operations [215].

To illustrate the possibility of free-space optical switching with a uniform switching
field, we also used aπ-polarized beam resonant with the 3d2D3/2↔ 4p2P1/2 which is
shone onto the ions along the transversex-direction. The experiment was conducted both
for a red and a blue detuned switching field. In both cases we observe a shift of the EIT
resonance for increasing powers of the switching field, however with different scalings.
This is attributed to the transverse micromotion of the ionsinduced by the RF-trapping
potential.

Ultimately, one would like to be in a regime where a single photon on the switching
transition can block the transmission of a single probe photon. Such a photon-blockade
scheme was proposed by Imamogluet al. [99]. The suggested scheme uses intracavity
EIT, where the probe and the switching fields are identical, and predicts a strong anti-
bunching effect of the transmitted photons by the blockade of the cavity transmission
induced by a single photon. Though Grangieret al. pointed out [100, 199] that this
scheme puts stringent limits on the required parameters of the atomic system and the
cavity, one could consider an adaption of the scheme to the four-level scheme with distinct
frequencies of the probe and the switching photons.

In fact, one major limitation of the proposed scheme is the modification of the typical
build up time of the probe field through the coherent interaction of control and probe
field, as experimentally confirmed in sec. 8.4.2. In the frequency domain, this can be
understood by a broadening of the frequency spectrum of a probe photon through the
nonlinear dispersion induced by the EIT medium.

This limitation is, however, based on the assumption of identical (same wavelength)
probe and switching photons, which can be overcome by considering a scheme where
probe and switching photons have different wavelengths. The bandwidth of the switching
photon has to be sufficiently narrow, or, equivalently the life-time in the cavity sufficiently
long, so as to match the time scale of the dynamics of the probephoton. This could be
accomplished by asymmetric parameters of the cavity at the two wavelengths of probe
and switching field e.g. by a cavity with a much larger finesse at the wavelength of the
switching laser. The realization of such a scheme would, nevertheless, require a detailed
theoretical analysis, which is beyond the scope of this thesis.

157





10. Summary and Outlook

This thesis covers several aspects of the experimental realization of a light-matter interface
based on ion Coulomb crystals in an optical cavity. The experimental studies comprise
three core areas: The realization of the collective strong coupling regime of CQED with
ion Coulomb crystals, the development of a novel noninvasive spectroscopy technique
for studying normal mode dynamics and the observation of cavity electromagnetically
induced transparency.

The work on an ion based light matter interface was started prior to this thesis and es-
pecially the construction and deployment of the cavity trapsetup, the loading, the state
preparation and the first observation of collective strong coupling were covered in the
thesis of my predecessor Peter Herskind [80]. To characterize the collective coherent
coupling between ion Coulomb crystals and specific cavity field modes, we performed
a thorough investigation of this interaction. We showed that the collective strong cou-
pling regime can be reached with ion Coulomb crystals, with cooperativities as high as
C∼ 8, and found excellent agreement between the theoretical expectations and the exper-
imental findings [79, 148]. Moreover, by measuring the temporal stability of collective
coherences between Zeeman substates we could demonstrate coherence times in the mil-
lisecond range. To illustrate the possibility of performing repeated experiments with a
well-controlled number of particles, we demonstrated the long-term stability by measur-
ing the cooperativity of a specific crystal over more than twohours.

In a subsequent study, we investigated the coupling of ion Coulomb crystals with dif-
ferent sizes to various cavity modes and could show that collective strong coupling can be
also reached with large ion Coulomb crystals and higher order cavity modes with equal
coupling strengths [81]. In addition, the excellent agreement between theory and exper-
iment we found in these studies importantly indicates that the inherent radial micromo-
tion does not influence the coherent coupling of the ion Coulomb crystals and the cavity
modes.

We continued the exploration of the coherent interaction between ion Coulomb crystals
and the cavity field by an investigation of the normal mode dynamics of the crystals [152].
We implemented a novel noninvasive spectroscopy techniqueto probe the collective mo-
tion of the ions by their interaction with a cavity field at thesingle photon level. Using
this technique, we could measure the frequency of various normal modes for crystals with
different aspect ratios, as well as the kinetic energy of thedriven motion.

On the way towards the realization of an ion Coulomb based quantum memory an im-
portant next step was the experimental observation of cavity electromagnetically induced
transparency [148]. In a novel scheme using the magnetic Zeeman substates of40Ca+ we
could demonstrate excellent control over the atomic transparency for a probe field at the
single photon level, when the frequencies of the strong control field and the probe field
at the single photon level are close to two-photon resonance. The observed transparency
windows can be almost two orders of magnitude narrower than in previous experiments
with neutral atoms in cavities [92–95]. We performed systematic studies on the influence
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10. Summary and Outlook

of various interaction parameters and find very good agreement between the results and
theoretical predictions developed specifically for our system.

Finally, we could also demonstrate how the observed narrow EIT windows can be used
for the implementation of a novel all-optical switching scheme. In these experiments we
showed how the transmission of a probe field at the single photon level can be controlled
by an additional switching laser injected into the cavity. The results could be compared to
a theoretical model which we established for our system.

In summary, the studies of the coherent light-matter interaction between ion Coulomb
crystals and a cavity field at the single photon level we presented in this thesis illustrate
that our system can meet three important criteria for the realization of a quantum mem-
ory [39]:

• The optimal fidelity of light storage and retrieval experiments is expected to scale
as 2C

2C+1, as shown in refs. [56, 57]. With a measured cooperativity ofC ∼ 8 the
potential storage and retrieval fidelity of our system at thepresent state is∼ 94 %,
and should allow for the efficient transfer of the quantum state of single photons
onto a collective excitation of the ensemble and vice versa.Moreover, it might be
possible to confine even more ions in the cavity mode volume, e.g. by the use of
bi-component crystals consisting of two stable calcium isotopes [141].

• The second important criteria is the achievable storage time. We addressed this
issue by measuring the decay of collective coherences between Zeeman substates
and found coherence times in the millisecond range, which isencouraging for the
realization of a long-lived quantum memory. Future studiescould identify possible
limitations, e.g. by further investigations of heating anddamping effects in the
system. At the present state of the experiment establishingEIT and measuring the
collective coupling requires the cooling lasers to be switched off and the ions will
heat up during these periods, which eventually might limit the achievable storage
time. This limitation could, as envisioned in ref. [137], beovercome by the use
of bi-component crystals. In this scheme, an inner component of 40Ca+ interacts
with the cavity field and is used to store the probe field while the outer component,
consisting of a heavier calcium isotope, is permanently laser cooled. In this way,
the inner component can be sympathetically cooled without the need of incoherent
scattering of photons by the40Ca+ ions.

• By demonstrating that collective strong coupling is possible between ion Coulomb
crystals and various cavity field modes we could also addressthe multimode ca-
pability of the system. Making use of the solid-state properties of ion Coulomb
crystals this spatial degree of freedom of the light field could allow for the mul-
timode storage and retrieval of single photons and also for the realization of other
multimode quantum information devices. Further investigations could comprise the
observation of EIT with higher order cavity modes to e.g. investigate if EIT can be
established by the control field coupled to a particular modewithout influencing a
probe field in a different mode.

In connection with the successful demonstration of cavity EIT these results mark an im-
portant cornerstone for the realization of a quantum memorybased on ion Coulomb crys-
tal in an optical cavity [55]. Next steps towards this goal could comprise the storage of a
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classical light field using the STIRAP scheme of ref. [55] which will require the imple-
mentation of a dynamical control of the probe control field Rabi frequency. Moreover, to
tailor optimized control parameters for the storage and retrieval of a light pulse, theoret-
ical studies are currently in progress to include the effectof the transverse profile of the
control field in the optimization process.

Beside their importance for the implementation of a quantummemory, our studies of
a light-matter interface based on ion Coulomb crystals in anoptical cavity may have a
number of attractive applications in different contexts and we will at the end of this thesis
sketch two possible extensions of the studies presented here.

A first promising research direction could be the further investigation of the thermody-
namical properties of cold nonneutral plasmas using the noninvasive spectroscopy tech-
nique introduced in ch. 7, e.g. by a more thorough study of theinfluence of various crystal
parameters on the intrinsic damping within the ion Coulomb crystal by the off-resonant
coupling to other vibrational modes. Eventually this may also enable for a more direct
measurement of the temperature of ion Coulomb crystals, which is otherwise difficult.
A better understanding of the thermodynamical properties and the damping mechanisms
would furthermore also have important implications for therealization of a quantum mem-
ory, e.g. to identify possible limitations for the achievable coherence times or for the stor-
age of multiple photons by a coherent excitation of collective vibrational modes. More-
over, the combination of free particle properties like easy-to-address atomic transitions
and solid state properties makes ion Coulomb crystals to a very interesting platform to
investigate the coherent backaction of the cavity field on the collective motion of the ions,
e.g. to investigate cavity optomechanical effects with cold, solid-like objects [180, 181]
or classical and quantum phase transitions [186–190].

A second attractive direction arises from the narrowness ofthe observed EIT windows.
The fast switching of the atomic transparency over few tens of kHz implies strong non-
linearities around two-photon resonance [84], which couldbe used for the exploration of
nonlinear effects at low light-levels [98]. These strong nonlinearities could be exploited
for e.g. implementing single-photon transistors [202,203], or for the generation of highly
nonclassical states [205]. The use of ion Coulomb crystals to achieve controlled coherent
photon-photon interactions could then have applications e.g. for the realization of quan-
tum gates at the single photon level [204] or for the observation of novel quantum phase
transitions for light [206,207].
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A. The 40Ca+ ion

A.1. Transition wavelengths and decay rates

Transition Type Wavelengthλ transition rateΓ = 2γ
4s2S1/2↔ 4p2P1/2 dipole 396.847 nm 2π×20.7 MHz
4s2S1/2↔ 4p2P3/2 dipole 393.366 nm 2π×21.5 MHz
3d2D3/2↔ 4p2P1/2 dipole 866.214 nm 2π×1.69 MHz
3d2D3/2↔ 4p2P3/2 dipole 849.802 nm 2π×0.177 MHz
3d2D5/2↔ 4p2P3/2 dipole 854.209 nm 2π×1.58 MHz
4s2S1/2↔ 3d2D3/2 quadrupole 732.389 nm 2π×0.14 Hz
4s2S1/2↔ 3d2D5/2 quadrupole 729.147 nm 2π×0.14 Hz

Table A.1.: Relevant electric transitions in40Ca+ (see also fig. 2.2). The wavelengths of
the transitions and the transition rates are taken from [104,106].

A.2. Clebsch-Gordan coefficients

4p2P1/2
mJ = −1/2 mJ = +1/2

4p2S1/2
mJ = −1/2 −

√

1/3 −
√

2/3
mJ = +1/2

√

2/3
√

1/3

3d2D3/2

mJ = −3/2
√

1/2 −
mJ = −1/2 −

√

1/3
√

1/6
mJ = +1/2

√

1/6 −
√

1/3
mJ = +3/2 −

√

1/2

4p2P3/2
mJ = −3/2 mJ = −1/2 mJ = +1/2 mJ = +3/2

3d2D3/2

mJ = −3/2 −
√

3/5 −
√

2/5 − −
mJ = −1/2

√

2/5 −
√

1/15 −
√

8/15 −
mJ = +1/2 −

√

8/15
√

1/15 −
√

2/5
mJ = +3/2 − −

√

2/5
√

3/5

Table A.2.: Clebsch-Gordan coefficients for the relevant transitions in 40Ca+ [216].
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A. The 40Ca+ ion

A.3. Zeeman-splitting

The energy shift,∆EB of an arbitrary Zeeman-substates in a magnetic fieldB can be
calculated according to

∆EB = mJ gJ µB B, (A.1)

wheremJ is the magnetic quantum number of the state,µB is the Bohr magneton andgJ

is the Landé factor

gJ = 1+
J(J+1)+S(S+1)−L(L+1)

2J(J+1)
, (A.2)

whereL, SandJ are the quatnum numbers corresponding to the angular momentum, the
electric spin and the total angular momentum, respectively. The values forgJ for the rel-
evant states in40Ca+ are listed below.

State L S J gJ
4s2S1/2 0 1/2 1/2 2
4p2P1/2 1 1/2 1/2 2/3
4p2P3/2 1 1/2 3/2 4/3
3d2D3/2 2 1/2 3/2 4/5

A.4. Rabi frequency

The coupling strength of a particular (dipole allowed) transition for a certain intensityI of
the coupling field is characterized by the Rabi-Frequency, see e.g. [1]. For the transition
between two particular Zeeman-substates|g〉 and|e〉 it is, using the conventions chosen
in this thesis, given by

Ωge= age
Γ
2

√

I
2Isat

= age

√

3πc2Γ
2~ω3

√
I , (A.3)

whereIsat=
~Γω3

12πc2 is the saturation intensity of the transition,Γ andω are the transition
rate and resonance frequency of the electronic transition (see tab. A.1), andage is the
Clebsch-Gordan coefficient for the considered Zeeman-substates.

A.5. Single ion coupling strength

The coupling strength of a single photon cavity field and a single atom located at an anti-
node of the cavity standing wave is characterized by the coupling rateg, and corresponds
to the Rabi frequency for a single photon. The intensity corresponding to a single photon
field in the cavity can be calculated using the normalizationconditionIvacV = ~ωC, where

ωC is the resonance frequency of the cavity,V =
∫ |Ψ(rrr)|drrr =

πw2
0

4 d is the mode volume
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A.5. Single ion coupling strength

of the cavity,w0 ist the waist of the fundamental mode andd is the length of the cavity.
Substituting into eq. (A.3) yields

g= age

√

6c3Γ
ω2w2

0d
. (A.4)

In our expermient, we use the
∣

∣D3/2,mJ = +3/2
〉

↔
∣

∣P1/2,mJ = +1/2
〉

as the probe tran-
sition. With the partial dipole decay rate given in tab. A.1,the Clebsch-Gordan co-
efficient in tab. A.2 and using the length and waist of the cavity in our experiment,
d = (11.8± 0.3) mm andw0 = 37 µm [80], we can calculate the expected single ion
coupling rate of the probe transition for an ion located at the anti-node of the standing
wave cavity field and find

gtheory= 2π× (0.532±0.007)MHz. (A.5)

In the same way, we can also find the single ion coupling rate ofthe
∣

∣D3/2,mJ = +3/2
〉

↔
∣

∣P3/2,mJ = +1/2
〉

transition which is used for the optical switching experiments in sec.
9.3.2. Using the partial dipole decay rate of tab. A.1 and theappropriate Clebsch-Gordan
coefficient in tab. A.2 the same calculation yields

g850,SW= 2π× (0.175±0.004)MHz. (A.6)
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B. Legendre functions

The Legendre differential equation is defined as (see e.g. [217])

− d
dx

((1− x2)
d f (x)

dx
)+

m2

1− x2 f (x) = l(l +1) f (x). (B.1)

The first and second order Legendre functions are solutions to this equation and are in
general form given by

Pl
m(x) =

(−1)l

2l .l !
(1− x2)m/2 ∂dm+l

∂dxm+l [(x
2−1)l ] (B.2a)

Ql
m = (−1)m(z2−1)

m
2

dm

dzmQl
0, (B.2b)

where

Qn
0 =

1
2nn!

dn

dz
((z2−1) ln(

z+1
z−1

))−Pn
0 ln(

z+1
z−1

). (B.3)

The lowest order functions with m=0 are given in the following table

l,m Pl
m(x) Ql

m(x)
1,0 x 1

2xln( x+1
x−1)

2,0 1
2(3x2−1) 1

4(3x2−1) ln( x+1
x−1)− 3

2x
3,0 1

2(5x3−3x) 1
4(5x3−3x) ln( x+1

x−1)− 1
6− 5

6(3x−1)
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C. EIT: Adiabatic elimination for an
intracavity control field

In 8.2.3 we found a set of dynamical equations for the mean values of the system ob-
servables for the case, when the EIT medium interacts with control and probe fields that
both are coupled to a common cavity mode, see eqs. (8.22). As in the case of a uniform
control field (see eq. (8.9)) one can perform an adiabatic elimination with respect to the
slow time evolution ofσ12 and finds the following set of equations for the mean values of
the nonzero system observables:

0 = −(κ+ i∆c)a+ ig
Ntot

∑
j=1

ψ00(r j)σ31, j +
√

2κ1ain. (C.1)

0 = −(γ+ i∆)σ13, j + igaψ00(r j)+ i
ΩC

2
ψ00(r j)σ12, j (C.2)

σ̇12, j = −(γ12+ iδ)σ12, j + iΩCσ13, j , (C.3)

where we setσ31, j =
1
2(σ13, j++σ13, j−) and restrict ourselves to the fundamental TEM00

mode, henceψ00(r j ) = exp(−2r2
j/w0) The Laplace transformation of an arbitrary funciton

f (t) is defined as (see e.g. [217])

L ( f (t)) = f̃ [p]≡
∫ ∞

0
exp(−pt) f (t)dt, p∈ C. (C.4)

of these equations yields

0 = −(κ+ i∆c)ã+ ig
Ntot

∑
j=1

exp(−2r2
j/w0)σ̃31, j +

√

2κ1ãin[p]. (C.5a)

0 = −(γ+ i∆)σ̃13, j− igã exp(−2r2
j/w0)− iΩCσ̃12, j (C.5b)

pσ̃12, j [p] = −(γ12+ iδ)σ̃12, j− iΩCexp(−2r2
j/w0)σ̃13, j . (C.5c)

Substituting eqs. (C.5b) and (C.5c) into (C.5a) one finds theLaplace tranformation of the
intracavity field which was already given in eq. (8.26)

ã[p] =
√

2κ1ãin[p]



κ+ i∆C+g2∑ exp(−2r2
j/w2

0)

γ+ i∆+
Ω2

C exp(−2r2j/w2
0)

γ12−iδ+p





−1

.

Applying the continuous media approximation and using the effective number of ions (see
eq. (3.43)) this reduces to

ã[p] =

√
2κ1ãin[p]

κ+ i∆C− iχ[p]
. (C.6)
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where

χ[p] =
ig2N
γ+ i∆

ln(1+ s(p))
s(p)

(C.7)

and

s(p) =
Ω2

C

(γ12− iδ+ p)(γ+ i∆)
(C.8)

On resonance eqs. (C.8) and (C.7) are purely real and the intra cavity field equation
becomes

ã[p] =
ain

p

√
2κ1

κ+ g2N
Ω2

C
ln(1+

Ω2
C

(γ12+p)γ)(γ12+ p)
, (C.9)

where we assumed the probe input field to be a step function in time, given by

ain(t) =

{

0 for t < 0
ain for t > 0

(C.10)

and with the Laplace transformation

ãin(p) =
ain

p
. (C.11)

Eq. C.9 is the analytic expression for the intracavity field and one can be used to calculate
the cavity transmission or reflection, according to eqs. 3.20.

To obtain the corresponding dynamical evolution of the (resonant) intracavity field in
time, one has to calculate the inverse Laplace transformation of eq. (C.9)

a(t) = L−1 (ã[p]) , (C.12)

which has no simple analytical form. However, the solution can still be found numerically.
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D. Cavity EIT with well localized atoms

In sec. 8.2.3 we derivation the linear susceptibiltiy for the three-level EIT situation for an
intracavity control field. There, we assumed that the timescale of the (thermal) motion of
the atoms along the standing wave cavity field standing wave is fast as compared to the dy-
namical time of the cavity fields and that we can average over the common standing wave
geometry of the control and the probe field. In this ”warm” situation, the susceptibilty
was found to be (see (8.25))

χΛ =
ig2N
γ+ i∆

ln(1+ s)
s

,

where the effective saturation paramters of the two-photon transition was defined in eq.
(8.17).

Here, we will treat the ”cold” situation, where the motion ofthe ions is slow as com-
pared to the dynamical build up of the EIT and where the ions during the EIT inter-
action time are well localized within the standing wave of probe and control field. In
contrast to the ”warm” situation, one has to keep the higher spatial frequency components
in exp(2ikz), when solving eqs. (8.21) [192, 218, 219]. In steady state, the equations can
still be solved and one finds for the intracavity field the familiar expression

a=

√
2κ1ain

κ+ i∆C− iχcold
Λ

,

where we assumed assume the probe and the control field to be coupled to the fundamental
TEM00 mode and where the three-level susceptibility is now given by

χcold
Λ =

i
2

g2∑
j

e−2r2
j /w2

0(1+ cos(2kzj ))

γ+ i∆+
Ω2

C/2
γ12+iδ e−2r2

j /w2
0(1+ cos(2kzj))

(D.1a)

=
i
2

g2ρ
∫

2πrdrdz
e−2r2/w2

0(1+ cos(2kz))

γ+ i∆+
Ω2

C/2
γ12+iδ e−2r2/w2

0(1+ cos(2kz))
(D.1b)

=
ig2N
γ+ i∆

ln

(

1
2 +
√

1
4 +

s
2

)

s
2

, (D.1c)

where the effective saturation parameter of the two-photontransitions, defined in eq.
(8.17), was used. The result is similar to the ”warm” situation, where we averaged over
the longitudinal effects, with a similar scaling behaviourand lineshape of the EIT window.
However, as compared to eq. (8.25) the effective saturationparamters is lowered by a
factor 2, resulting in an lower effective Rabi frequency.

In fig. D.1 the resulting cavity reflection spectra around twophoton resonance are de-
picted, caclulated for the three-level susceptibilities for the standard EIT situation with a
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Figure D.1.: Simulated cavity reflection signal around two-photon resonance (see (8.27)),
cacluated for the three-level susceptibility corresponding to the ”normal” EIT sitution,
with a uniform control field Rabi frequency, see eq. (8.16) (dashed-dotted line), for the
”warm” situation with an intracavity control field, but averaging over longitudinal effects,
see eq. (8.25) (solid line) and for the ”cold” situation withan intracavity control field
and well-localized ions, see eq. (D.1)(dashed line). The paramters used for the simulation
were:κ1 = 2π×1.53 MHz,κ2 = 2π×7.85 kHz,κA = 2π×0.63 MHz,γ= 2π×11.2 kHz,
γ12 = 1 kHz,ΩC = 2π×3 MHz, gN = 2π×12 MHz.
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Figure D.2.: Rabi frequecies deduced from fits to the EIT spectra in sec. 8.4.2 (see fig.
8.9) for various input powers of the control field and for a crystal withN = 980±20 ions
effectively interacting with the cavity field. The Rabi frequency are shown as a function
of the expected Rabi frequency for the corresponding input powers (see eq. (8.32)), and
are obtained for three different models, namely the standard EIT model with a uniform
control field Rabi frequency (red squares, see eq. (8.16)), and with intracavity control
fields in the ”warm” situation, where longitdudinal effectsaverage out (blue circles, see
eq. (8.25)) and in the ”cold” situation, where the atoms are well localized in the standing
wave (green diamonds, see eq. (D.1)).
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D. Cavity EIT with well localized atoms

uniform control field Raby frequency, see eq. (8.16) (dasheddotted line), for the ”warm”
situation with an intracavity control field, where longitudinal effects average out, see eq.
(8.25) (solid line) and for the ”cold” case with ions that arewell-localized within the
standing wave field of probe and control, see eq. (D.1) (dashed line). The half width of
the three curves are obtained fora≃ 1, a≃ 2.51 anda≃ 1.83 respectively.

To check the validity of the ”warm” model that was used throughout ch. 8 and ch. 9
we carefully analysed the data presented in sec. 8.4.2 usingthe three different models and
comparing the Rabi frequencies deduced from the fits, to the theoretically expected values.
The results are shown in fig. D.2, and we find excellent agreement with the experimental
data for the ”warm” model, whereas the Rabi frequencies found for the two other models
are systematically too low.
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