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Optically induced structural phase transitions in ion Coulomb crystals
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We investigate numerically the structural dynamics of ion Coulomb crystals confined in a three-dimensional
harmonic trap when influenced by an additional one-dimensional optically induced periodical potential. We
demonstrate that transitions between thermally excited crystal structures, such as body-centered cubic and
face-centered cubic, can be suppressed by a proper choice of the potential depth and periodicity. Furthermore, by
varying the harmonic trap parameters and/or the optical potential in time, controlled transitions between crystal
structures can be obtained with close to unit efficiency.
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I. INTRODUCTION

When an ensemble of confined ions with the same sign of
charge is cooled to a sufficiently low temperature, the ionic
system forms a crystalline structure [1], often referred to as an
ion Coulomb crystal. Since the first experimental realizations
of ion Coulomb crystals through laser cooling of atomic
ions into the millidegree-Kelvin regime in electromagnetic
traps [2,3], there has been growing theoretical [4–14] and
experimental [15–24] interest in studying the structural and
dynamic properties of these crystals under different trapping
conditions and for various ion compositions.

The unique localization and isolation of the individual ions
constituting the crystals have already led to a large number
of amazing results within precision measurements [25],
cavity quantum electrodynamics (CQED) [26–30], quantum
information science [31–35], and cold molecular science
[36–39]. For experiments involving larger three-dimensional
ion Coulomb crystals, such as CQED related experiments
[26,27] with the interesting prospect of creating quantum
memories and other quantum devices, full structural control of
the crystal structures is still in need for optimizing the coupling
between the ions and the cavity modes.

While the energetic ground state of very large three-
dimensional Coulomb crystals (�105 ions) in a harmonic
confinement is known to be a bcc lattice [1], the ener-
getically most favorable configuration for smaller crystals
(�103 ions) is ions situated in concentric shells [5]. For
medium-sized crystals often employed in experiments [26,27]
(∼103–105 ions), the structure is generally not very stable
and thermally induced transitions between a large variety of
states including metastable bcc and fcc structures and incom-
mensurable crystallite formations can be observed [40,41].
While structural stability can be dramatically increased using
two-species crystals [21,23], means to control and manipulate
the structures of single-species crystals are highly wanted,
not only for applications in quantum information science,
but also for exploiting Coulomb crystals as simulators of
solid state physics, such as structural transitions of iron under
extreme pressure [42] of relevance for geophysics and thin-film
growth [43] of importance for nanotechnology.

In this paper we report on molecular dynamics (MD)
simulations of harmonically trapped ion Coulomb crystals

in the presence of an additional periodically corrugated
potential in the form of an induced dipole potential originating
from a far-off-resonance standing-wave light field [44]. We
demonstrate how such a potential can be exploited to prevent
thermally induced crystal phase transitions and/or to induce
controlled and efficient transitions between bcc and fcc crystal
structures.

II. NUMERICAL MODEL

In our model an ensemble of N trapped and laser-cooled
ions with positions xn and velocities vn follow the equations
of motion [45]

m
dvn

dt
= Ft (xn) + FC

n ({xk}) + Fo(xn) + FD(vn) + Fs
n(t),

(1)

where Ft is the force provided by the ion trap, which is
assumed to be cylindrically symmetric with harmonic trap
frequencies νr and νz in the radial and the longitudinal
directions, respectively. For simplicity, we neglect any rf
modulated motion and ion rotation associated with rf [20] and
Penning [15] trapping, respectively. Here FC

n represents the
Coulomb forces on ion n from all other ions in the ensemble;
FD is the mean Doppler laser-cooling force modeled as a linear
three-dimensional friction force

FD(vn) = −h̄k2svn, (2)

where k is the wave number of the cooling laser and s is
the saturation of the ion transition driven by this laser [46].
The stochastic noise associated with the random scattering of
photons from the cooled ions is [46]

Fs
n(t) =

√
h̄2k2s� Xn(t), (3)

where � is the excited-state decay rate and Xn(t) are stochastic
noise terms of zero mean and with 〈Xn(t)Xm(t ′)〉 = δnmδ(t −
t ′). Finally, Fo is the induced dipole force exerted on the
ions by a standing-wave optical field that is generated by the
interference of two far-off-resonance light beams.

Due to the N2 scaling of the number of Coulomb interaction
terms, numerical simulations of Eq. (1) are slow and typically
last a few hours on a single CPU core for 10 ms of temporal
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evolution for 1000 ions. This is to be compared to ion
numbers of order 104 used in experiments and time scales
of order seconds on which crystal structure transitions have
been observed [40,41]. It is consequently not feasible to
simulate the experimental observations on such long time
scales and in particular to observe the formation of crystals
from hot ion ensembles through cooling. Instead, we follow
the approach of Refs. [40,41] and initialize the simulations
with an idealized structure consisting of 1000 ions, where
a finite core (typically 125 ions) is fixed in an ideal bcc or
fcc structure and the remaining ions form a surrounding shell
minimizing the harmonic and Coulomb energies. For such a
structure the ion density is constant throughout the crystal,
with a value given by [9]

ρ = mε0(2π )2

e2

(
ν2

z + 2ν2
r

)
. (4)

Likewise, the outer boundary of the crystal is expected to
be spheroidal in shape with an aspect ratio (longitudinal to
radial extension) that depends only on the ratio of the trapping
frequencies [47]. Such a state, as shown in Fig. 1(a), resembles
the experimentally observed structures [40,41]. Based on this
configuration, full MD simulations are then performed for up
to 10 ms under the influence of the forces described in Eq. (1).
The laser-cooling parameters are chosen to yield a stationary
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FIG. 1. (Color online) (a) Projection image of an ion Coulomb
crystal composed of N = 1000 ions in a trap with νr = 200 kHz and
νz = 100 kHz with a fcc crystalline core of 125 ions (larger red dots).
(b) Time evolution of the fits with fcc (solid line) and bcc (dashed
line) crystal structures for initialization with a fcc core and the fit
with bcc (dash-dotted line) and fcc (dotted line) structures for a bcc
initial core, without an optical potential. The average is taken over
32 simulations. (c) Evolution of a single sample realization with an
initial fcc core.

temperature of 0.5 mK, equivalent to, e.g., the Doppler cooling
limit for Ca+ ions on the 4S1/2-4P 1/2 transition, and cooling
times of a few 10 μs. As we are mainly interested in the
evolution of the crystal structure, we define a figure of merit
δrbcc (δrfcc), which is the root-mean-square (rms) deviation of a
fit of the ion separations in a subdomain containing a single ion
and its nearest 8 (12) neighbors to a bcc (fcc) crystal structure,
averaged over the 64 central ions in the ensemble. Note that
such fits do not distinguish between a fcc and a hcp structure.
For convenience, we express δr in units of the Wigner-Seitz
radius defined as

rWS =
(

3

4πρ

)1/3

, (5)

where ρ is the ion density. Numerically, we then identify fcc
crystals by the conditions δrfcc < δrbcc and δrfcc < 0.17rWS

and likewise bcc crystals by δrbcc < δrfcc and δrbcc < 0.17rWS.
If for a given ion ensemble δr > 0.17rWS for fits to both fcc and
bcc lattices, the crystal structure can no longer meaningfully
be determined.

Figure 1(b) shows the dynamics of δr for the case without
an induced dipole potential. The simulations are initiated with
bcc and fcc structures in the central core and with the [111]
(bcc) and [011] (fcc) directions aligned along the trap z axis,
respectively. From perfect fits at time t = 0, the structures
quickly get slightly distorted, but during a simulation time of
several ms they remain preferentially in the starting crystal
structure. The fact that an initial fcc structure deteriorates
much faster than the initial bcc structure is in line with the
expectation that the bcc structure is the energetically more
favorable. A single selected realization is depicted in Fig. 1(c).
Here we show the number of ions Nfcc (out of the central
64 ions) where the rms deviation δr of a fit with a local
fcc structure is less than 0.17rWS. This trajectory shows that
structural transitions typically occur on short, 10-μs time
scales (comparable to the trap oscillation and Doppler cooling
times) in subdomains containing approximately 5–10 ions, a
feature that is regularly found in these simulations and has also
been seen in experiments [41].

III. DYNAMICS OF ION CRYSTALS IN EXTERNAL
DIPOLE POTENTIALS

In the following we will investigate how this structural
behavior of ion Coulomb crystals can be modified by adding
a periodic induced dipole potential. Let us first consider a
simple stationary standing wave with potential depth V0 and
periodicity �,

V0(x) = V0 sin(πz/�)2. (6)

Since for the same ion density fcc and bcc structures have
incommensurable lattice planes, it is possible to choose �

such that only ions in either a bcc or a fcc crystal will fit
perfectly into the minima of the potential (6). This should then
stabilize ion crystals for extended periods of time. Results of
simulations similar to those of Fig. 1(b) with an initial fcc-core
ion crystal are shown in Fig. 2 as a function of the potential
depth V0 for three different configurations: an asymmetric trap
with the potential addressing the (011) planes of the crystal
and a symmetric trap with the potential addressing either the
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FIG. 2. (Color online) Average number of fcc ions (out of
64 core ions) after 10 ms of propagation versus dipole potential
depths. The initial state has an ideal fcc core. The solid line and
circles show the trap as in Fig. 1, with the crystal aligned with the
[011] axis along z, and � = 13.0 μm; the dashed line and triangles
show the spherical trap with νr = νz = 150 kHz, the [001] axis along
z, and � = 20.1 μm; the dash-dotted line and stars show the spherical
trap, the [111] axis along z, and � = 23.2 μm. The inset shows the
corresponding average rms fit deviation. In all cases the stationary
temperature is 0.5 mK (dotted line).

(001) or (111) planes. For V0 up to the stationary (Doppler)
temperature of the ions (∼0.5 mK), the potential does not
significantly alter the dynamics of the ions and the crystal
structure deteriorates as in Fig. 1(b). For V0 � 1 mK, however,
the fidelity of maintaining the metastable fcc configuration
improves significantly. The simulations with a spherical trap
produce better stabilization, which we attribute mainly to
reduced surface effects for this geometry.

Ideally, one would like to switch between different crystal
structures. In principle, this can be achieved by switching
the periodicity � between two values favoring fcc and bcc
crystals, respectively. However, this approach is in general
nondeterministic as the ions are required to follow a complex
(random) walk to form the new crystal. In fact, numerical
simulations showed that while this approach can switch the
crystal structure locally, it generally destroys long-range order.

A much better way to switch the ion crystal structure
between fcc and bcc lattices would involve a continuous
deformation along the Bain path [48]. Using optical potentials
in conjunction with a harmonic ion trap, there are two ways in
which the Bain path can be realized. First, one can hold the ion
trap and thus the ion density [Eq. (4)] fixed and continuously
vary the periodicity �. While our simulations showed that this
scheme is successful, a continuous change of the interference
pattern of the light beams generating the induced dipole
potential may be difficult to carry out in practice. Alternatively,
� can be kept constant while the trap frequencies νr and νz

are varied by changing the voltages of the trap electrodes. This
latter scheme is much more appealing experimentally and will
thus be discussed in detail in the following.

A schematic of the proposed crystal structure transfer along
the Bain path from fcc to bcc is shown in Fig. 3. Initially
[Fig. 3(a)], a fcc crystal is aligned with its [001] axis along the
z trap axis. Here � is set to half the unit cell length, thus all
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FIG. 3. (Color online) Schematic of crystal structure transforma-
tion from fcc to bcc along the Bain path using a fixed optical potential.
(a) Two fcc unit cells (center face ions removed at front and at back
for clarity). Shaded planes indicate standing-wave potential minima.
(b) After a uniform expansion in the transverse directions (density
reduced by a factor of 2) a bcc unit cell is obtained (red solid lines).

ions are trapped at optical potential minima. Next the density
of the crystal is slowly reduced by a factor of 2. With the ion
ensemble being prevented from expanding in the z direction by
the optical potential, the crystal structure expands uniformly in
the x and y directions by a factor

√
2. The resulting structure

[Fig. 3(b)] now exhibits perfect bcc symmetry.
For the simulations we start with an ion crystal containing

a core of 125 ions in bcc (fcc) configuration in a spherical trap
with νr = νz = 150 kHz. Following Eq. (4), the full ensemble
of N = 1000 ions thus has a radius of 158 μm. The optical
potential wells are orthogonal to the z axis, as in Eq. (6), but
now we assume finite beam sizes of 100-μm waist in the z and
y directions such that the ions outside the core area are free
to move to the energetically most favorable positions in all
directions. The trap frequencies are kept constant for 2 ms and
are then varied continuously between t = 2 and 8 ms as shown
in Fig. 4(a). The time dependence of νr and νz is chosen such
that the crystal density is decreased (increased) by a factor of 2
for the fcc-to-bcc (bcc-to-fcc) transition while the length of the
ion crystal in the z direction is kept constant at all times [47].

The results of numerical simulations of this switching
scenario are shown in Fig. 4(b). The simulations show a very
efficient and fast transition of the crystal structure. After the
switching sequence from fcc to bcc is finished, 5.7% of ions
are in a fcc and 89.3% in a bcc configuration. The bcc-to-fcc
transfer occurs with 99.9% efficiency. Thus, changing the trap
potential allows for transfers between crystal structures along
the Bain path with very high fidelity. Note that the two transfers
shown here are not their respective inverse since both transfers
start from a spherical geometry but the fcc-to-bcc transfer ends
in a pancake-shaped structure and the bcc-to-fcc transfer in a
cigar-shaped structure. Moreover, the final density is one-half
and twice the initial density, respectively. These differences in
geometry may account for the different observed fidelities of
the transfers.

Apart from crystal structure transitions along the Bain
path, we also investigated transitions along the Nishiyama-
Wassermann and Kurdjumov-Sachs paths with optical
potentials addressing the (111) planes of fcc and the (011)
planes of bcc structures, respectively. While these transitions
only involve a density change of 8%, the paths required
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FIG. 4. (Color online) Continuous switching of ion Coulomb
structures by varying the trap frequencies νr and νz with a fixed
optical potential (V0 = 10 mK). (a) Time dependence of νr (solid)
and νz (dashed) for switching of fcc to bcc (bottom curves) and bcc
to fcc (top curves). (b) Corresponding fraction of core ions (out of
64) in a fcc configuration.

by the individual ions for structural transitions are much
more complex than for the Bain path, involving contraction
in one transverse direction, expansion in the other, and
identical shearing motions of adjacent crystal planes (see, e.g.,
Ref. [49]). In MD simulations we observed no such correlated
motion of all ions and thus a crystal structure transfer by a
simple periodic potential (6) proved impossible. It should be
noted, however, that stabilization of fcc and bcc structures is
possible by these configurations (see Fig. 2).

IV. EXPERIMENTAL FEASIBILITY

The scenarios considered in the simulations above can be
realized experimentally by applying a near-resonance standing
light field with the proper periodicity. In order to freely adjust
the standing-wave period for a given near-resonance laser
frequency, the crystal can be trapped in the region where two
beams of a bow tie ring cavity cross [50]. Alternatively, a
practically simpler solution may be to employ a linear optical
cavity along the rf field free axis of a linear rf trap, as in recent
experiments [26,27], and tune the ion density such that the
periodicity of the relevant lattice planes of the fcc and bcc

structures becomes an integer multiple of half the wavelength
of the light field. We have checked by MD simulations that
the transfer works as well in this scenario. However, due
to a tremendous increase in computational time related to a
much higher oscillation frequency for a given potential depth,
extensive data have not been produced.

For estimating the typical laser power requirement for
experimental realizations, we consider a linear cavity light field
detuned by 5 THz with respect to the S1/2 → P1/2 transition in
40Ca+. Assuming a cavity mode waist diameter of ∼100 μm, a
circulating power of about 10 W will be needed for producing
optical potential depths of 10 mK. This power level is easily
achievable by injecting an ∼mW field in a moderate finesse
(a few thousand) cavity, and the corresponding photon scatter-
ing (∼4 × 103 s−1) and heating (∼0.035 mK/ms) rates can be
neglected on the time scales considered.

As already mentioned, all of the results above were
obtained assuming simple three-dimensional harmonic trap-
ping potentials. Realistic Penning or linear rf ion traps have
effective potentials of this type, yet their particular dynamical
features introduce rotation and quadrupole perturbations,
respectively. However, these motions have no components
along the z axis [11] and should therefore not limit the
prospects of the schemes proposed here. Moreover, throughout
the paper we have assumed the ions are cooled to the Doppler
limit (∼0.5 mK), but simulations have also shown similar
results with ion temperatures of a few mK.

V. CONCLUSIONS

To summarize, the MD simulations of ion Coulomb
crystals suggest that experimental investigations of structural
transitions of such “clean” and low-density solids are feasible
through the application of optical dipole forces. Crystalline
effects investigated in such small-scale systems (several
thousands of particles) are likely to help understand analogous
effects of academic and technological interest within usual
solid-state physics.
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