
Optical quantum swapping in a coherent atomic medium

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2012 EPL 97 34010

(http://iopscience.iop.org/0295-5075/97/3/34010)

Download details:

IP Address: 130.225.29.254

The article was downloaded on 03/01/2013 at 15:48

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/97/3
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


February 2012

EPL, 97 (2012) 34010 www.epljournal.org

doi: 10.1209/0295-5075/97/34010

Optical quantum swapping in a coherent atomic medium

A. Dantan
(a)

QUANTOP, Danish National Research Foundation Center for Quantum Optics, Department of Physics
and Astronomy, University of Aarhus - DK-8000 Aarhus C, Denmark, EU

received 15 August 2011; accepted in final form 5 January 2012
published online 6 February 2012
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PACS 42.50.Gy – Effects of atomic coherence on propagation, absorption, and amplification of
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Abstract – We propose to realize a passive optical quantum swapping device which allows for
the exchange of the quantum fluctuations of two bright optical fields interacting with a coherent
atomic medium in an optical cavity. The device is based on a quantum interference process between
the fields within the cavity bandwidth arising from coherent population trapping in the atomic
medium.
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Manipulating the quantum state of bright optical fields
is at the core of quantum information processing in the
continuous variable regime [1–3]. However, even basic
linear processing tasks, such as quantum state swap-
ping between two light fields, can be challenging to
achieve in practice. While for degenerate frequency fields
swapping can be trivially achieved using beamsplitters
and linear optics elements, it becomes highly non-trivial
when the fields have different frequencies. Unconditional
exchange of quantum fluctuations can be achieved, for
instance, using complex teleportation and entanglement
swapping protocols [4–7], which typically require entan-
glement and/or measurements combined with active feed-
back [8,9]. We propose here to realize a passive quantum
swapping device which allows for an efficient exchange of
the quantum fluctuations of two optical beams interact-
ing in an optical cavity with a coherent atomic medium
consisting of three-level Λ atoms. In a coherent popula-
tion trapping (CPT) situation, when the two fields are
resonant with the ground–to–excited-state transitions and
strongly drive the atoms into a coherent superposition
of the two ground states, the medium becomes transpar-
ent for the fields [10]. Like in electromagnetically induced
transparency (EIT) this behavior occurs within a certain
frequency window around two-photon resonance defined
by the effective cavity linewidth κCPT , which, for a suffi-
ciently high effective optical depth of the medium, can be
much narrower than that of the bare cavity κ [11–16]. We
show that, like the field classical mean values, the quantum
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fluctuations are also preserved within this transparency
window. However, in the frequency range κCPT <ω <κ,
where ω is the frequency of the sidebands considered1,
both fields are shown to exchange their respective fluctua-
tions, thus realizing a quantum swapping operation. This
exchange arises from the CPT-induced quantum interfer-
ences which affect in a different way the dark and bright
field mode combinations which are uncoupled and coupled,
respectively, with the atomic medium. We show that, for a
wide range of parameters, the system can act as a lossless,
frequency-dependent phase plate for the field sidebands
and achieve efficient quantum state swapping, even in the
bad-cavity limit.
Quantum interference effects due to coherent population

trapping or electromagnetically induced transparency, in
particular the strong dispersion and low absorption that
can be experienced by the fields, have been exploited in
various contexts, e.g. for atomic clock spectroscopy [18],
magnetometry [19], nonlinear and quantum optics [20].
In connection with the present work, it was predicted
in [21–23] that the free-space propagation in a resonant
CPT medium would generate pulses with matched
statistics. Subsequently, the propagation of nonclassical
quantum fluctuations in a coherent atomic medium under
EIT or CPT conditions was investigated, both theoret-
ically [24–29] and experimentally [30–35]. The quantum
properties of light fields interacting with a coherent

1In the multimode description used in this paper the sideband
frequency ω is standardly defined as the difference between the
optical frequency of the mode considered and that of the carrier,
see, e.g., [17].

34010-p1



A. Dantan

|1
|2

|3

A1 A2

|B
|D

|3

AB AD

Fig. 1: Atomic level structure considered: (a) Initial basis;
(b) dark/bright state basis.

medium placed in an optical cavity was also analyzed in
connection with quantum memory [36–39] and entangle-
ment and spin-squeezing generation [40]. Here, the role
of the cavity with respect to quantum state swapping is
double, as it enhances the effective optical depth of the
medium —and thereby the swapping efficiency— as well
as provides a passive mechanism for the exchange of the
fluctuations in a well-defined frequency range within the
cavity bandwidth. Since it is based on a quantum inter-
ference effect intrinsically occurring between the fields in
the atomic medium the device does not require additional
quantum resources, such as entanglement, measurement
or active feedback. The proposed mechanism could also
have applications in the microwave domain, e.g. with
superconducting artificial atoms [41,42].
We consider an ensemble of N three-level Λ atoms

with long-lived ground/metastable states |1〉 and |2〉 and
excited state |3〉. The atoms are positioned in an opti-
cal cavity, where they interact with two fields, A1 and
A2, resonant with the |1〉 −→ |3〉 and |2〉 −→ |3〉 transi-
tions, respectively (fig. 1). The cavity is assumed single-
ended, lossless and resonant with both fields. Denoting by
Pij =

∑N
k=1 |i〉〈j|k (i, j = 1–3) the collective atomic oper-

ators, the interaction Hamiltonian in the rotating-wave
approximation and in the rotating frame reads

Hint =−�(g1A1P31+ g2A2P32+h.c.), (1)

where the gi’s are the single-atom coupling strength. The
evolution of the atom-field system is given by a set of
Heisenberg-Langevin equations (see, e.g., [37,40]),

Ṗ13 = −γP13+ ig1A1(P11−P33)+ ig2A2P12+F13,
Ṗ23 = −γP23+ ig2A2(P22−P33)+ ig1A1P21+F23,
Ṗ12 = −γ0P12− ig1A1P32+ ig2A†2P13+F12,
Ṗ11 = γ1P33+ ig1A

†
1P13− ig1A1P31+F11,

Ṗ22 = γ2P33+ ig2A
†
2P23− ig2A2P32+F22,

Ȧ1 = −κ1A1+ ig1P13+
√
2κ1A

in
1 ,

Ȧ2 = −κ2A2+ ig2P23+
√
2κ2A

in
2 ,

where γ = (γ1+ γ2)/2 is the optical dipole decay rate,
γ0 the ground-state coherence decay rate (γ0� γ1,2),
κ1 and κ2 the intracavity field decay rates. The Fij ’s

are zero-mean valued Langevin noise operators, whose
correlation functions can be calculated from the quantum
regression theorem [43,44]. Ain1 and A

in
2 are the input

field operators. By means of the standard linearized
input-output theory [43,44], one can calculate from these
equations the mean values of the observables in steady-
state (denoted by 〈ξ〉), and derive the evolution equations
of the quantum fluctuations δξ = ξ−〈ξ〉. Going to the
Fourier space, it is then possible to relate the fluctuations
of the fields exiting the cavity, Aoutj =

√
2κjAj −Ainj

(j = 1, 2), to those of the incoming fields. In particular,
one can compare their quadrature noise spectra SXj,θ (ω)
at a given sideband frequency ω, where the quadrature
fluctuations and noise spectra are standardly defined by
δXj,θ = δAje

−iθ + δA†je
iθ and

〈δXj,θ(ω)δXj,θ(ω′)〉= 2πδ(ω+ω′)SXj,θ (ω) (j = 1, 2).
(2)

This full quantum mechanical calculation can be
performed without approximation for any Gaussian
input field states. However, for the sake of the discus-
sion and in order to derive analytical results, we will
in the following focus on the symmetric situation of
fields with comparable intracavity Rabi frequencies,
Ωi = gi〈Ai〉 ∼Ω (i= 1, 2), sufficient to saturate the
two-photon transition: Ω� γγ0. In this case, the atoms
are pumped into a dark state |−〉= (|1〉− |2〉)/√2 with
maximal coherence 〈P12〉 ∼−N/2. It is then convenient
to turn to the dark/bright state basis |−〉, |+〉, where
|+〉= (|1〉+ |2〉)/√2, and define bright and dark optical
modes A± = (A1±A2)/

√
2. The dark mode has then

zero mean value, 〈A−〉= 0, and one finds the situation
analyzed in [37], in which the atoms, all in state |−〉, are
coupled to the empty dark mode A− on the transition
|−〉 −→ |3〉, and the bright mode A+ on the transition
|+〉 −→ |3〉. The bright mode “sees” no atoms, but induces
electromagnetic transparency for the dark mode. One can
then show that the equations for the fluctuations of the
dark mode A−, of the ground-state coherence Q= |−〉〈+|
and of the dark dipole P− = |−〉〈3| are decoupled from
those of the bright mode A+, and given by [37]

(κ− iω)δA− = igδP−+
√
2κδAin− , (3)

(γ− iω)δP− = iΩ′δQ+ igNδA−+F−, (4)

(γ0− iω)δQ= iΩ′δP−+FQ, (5)

where Ω′ =Ω
√
2, we assumed g= g1 = g2, κ1 = κ2 = κ,

F− and FQ are zero-mean valued Langevin operators
with correlation functions 〈F−(ω)F †−(ω′)〉= 2γNδ(ω+ω′)
and 〈FQ(ω)F †Q(ω′)〉= 2γ0Nδ(ω+ω′). Assuming a small
ground-state decoherence rate (γ0� γ, κ), the fluctuations
of the outgoing dark mode are readily found to be

δAout− =
κ+ iω−β
κ− iω+β δA

in
− +Fin, (6)
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where

β(ω) =
g2N(γ0− iω)

(γ− iω)(γ0− iω)+Ω′2 , Fin =
√
2κ

κ− iω+βF−.
(7)

Since the transmission function of the bright mode fluctu-
ations is that of an empty cavity,

δAout+ =
κ+ iω

κ− iω δA
in
+ , (8)

one readily shows that the quadrature noise spectra of the
outgoing initial modes are given by

SXout1,θ
=
|λ++λ−|2

4
SXin1,θ +

|λ+−λ−|2
4

SXin2,θ +
1− |λ−|2
2

,

(9)

SXout2,θ
=
|λ++λ−|2

4
SXin2,θ +

|λ+−λ−|2
4

SXin1,θ +
1− |λ−|2
2

,

(10)
where

λ+ =
κ+ iω

κ− iω , λ− =
κ+ iω−β
κ− iω+β . (11)

The previous relations can be straightforwardly inter-
preted in terms of frequency-dependent swapping. For a
large enough cooperativity, C = g2N/2κγ, and not too
high intensities, Ω′� g√N , the intracavity fields see a
cavity with an effective cavity halfwidth,

κCPT � γ0+κ
(
Ω′2

g2N

)
, (12)

much narrower than the bare cavity halfwidth [11–16].
One can then distinguish three regimes depending on the
sideband frequency considered:

i) A transparency regime for ω� κCPT , where the
transmission of the atom-cavity system is that of
a resonant empty cavity. The fluctuations of the
outgoing fields are then equal to those of the incoming
fields, δAout1,2 = δA

in
1,2 (β ∼ 0, λ+ ∼ λ− ∼ 1).

ii) A swapping regime for κCPT � ω� κ, in which the
dark mode sidebands see an off-resonant cavity and
are therefore π-shifted, while those of the bright mode
see a resonant cavity and remain unchanged. From
eqs. (6), (8), one thus easily obtains that δAout1 ∼
δAin2 , δA

out
2 ∼ δAin1 (λ+ ∼ 1, λ− ∼−1).

iii) A reflection regime for ω� κ, in which the cavity
transmission is that of an off-resonant cavity and the
fluctuations of the outgoing fields are those of the
reflected fields, δAout1,2 =−δAin1,2.

While the conservation of the fluctuations either within
the transparency window and outside the cavity band-
width are rather intuitive, the exchange of fluctuations
in the swapping region may be less so. In this frequency
window the CPT medium acts as frequency-dependent
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Fig. 2: (Color online) Noise spectra of the amplitude (θ= 0)
quadrature of the outgoing fields (Aout1 : solid, red line, A2:
long-dashed, blue line). The dotted and short-dashed lines
indicate the amplitude-quadrature noise spectra of the incident
fields, which are in a coherent and a 3 dB amplitude-squeezed
state, respectively (SXin

1,θ=0
= 1, SXin

2,θ=0
= 0.5). Parameters:

(g
√
N, γ,Ω, γ0) = (10, 0.25, 0.5, 0)×κ.

phase plate for the field sidebands, and the dephasing is
different for fluctuations of the outgoing dark and bright
field modes. Indeed, while the bright mode sidebands
see an empty cavity δAoutB ∼ δAinB , the dark mode side-
bands see an off-resonant cavity and the intracavity field
fluctuations vanish: δAD � 0, and thereby δAoutD ∼−δAinD .
This implies that the intracavity fluctuations of the initial
modes are equal: δA1 ∼ δA2. This effect is reminiscent of
the matched pulse propagation discussed in [21,23] and of
the oscillatory transfer of squeezing discussed in [27,29],
which occur with fields propagating in single-pass through
a medium. However, the cavity interaction sets here a
natural frequency boundary, namely the cavity band-
width, for the atomic induced interference effects and
provides an automatic locking mechanism for the coher-
ent exchange of fluctuations. When the atomic absorption
is negligible the cavity containing the CPT medium thus
plays the role of a lossless frequency-dependent phase plate
for the quantum fluctuations of the fields.
In order to illustrate this behavior we choose the two

input fields to have equal intracavity Rabi frequencies
and to be in a coherent and a squeezed state, respectively.
Without loss of generality, we assume field 2 to be in
a broadband, minimal uncertainty, amplitude-squeezed
state with a squeezing arbitrarily fixed to −3 dB:
SXin2,θ=0(ω) = 1/2 and SXin2,θ=π/2(ω) = 2. The spectra of the

outgoing fields are represented in fig. 2, taking as an
example typical experimental parameters for cold atoms
in a low-finesse cavity [45,46]. For κ= 2γ, C = 100 and a
Rabi frequency Ω′ ∼ γ/√2 the effective cavity bandwidth
is indeed much smaller than κ (κCPT /κ� 0.001). As
expected from the previous analysis, while the initial
quadrature squeezing of field 2 is preserved both within the

34010-p3
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Fig. 3: (Color online) Efficiency η of the squeezing transfer from
field 2 to 1, as a function of analysis frequency ω (in units of
κ, log scale) and cooperativity C, in the same configuration as
in fig. 2. Parameters: (γ,Ω, γ0) = (0.5, 0.25, 0)×κ.

transparency window and outside the cavity bandwidth,
it is almost perfectly transferred to field 1 in the swap-
ping region. A symmetric behavior is observed for all
quadratures. Note that the sum of the noise spectra
is almost conserved at almost all analysis frequencies
—at the exception of the atom-cavity normal modes
(ω±/κ�±

√
C �±10 in this case). For the same config-

uration of a coherent and a squeezed input fields, fig. 3
shows the efficiency of the squeezing transfer,

η≡
1−SXout1,θ=0

1−SXin2,θ=0
=
|λ+−λ−|2

4
, (13)

as a function of the sideband frequency ω and the
cooperativity parameter C. In the swapping region, the
efficiency rapidly increases with C and can be shown to
scale as

η� κ2

κ2+ω2
ω2

ω2+κ2CPT
(14)

�
(

1

1+κCPT /κ

)2
(ω∼√κκCPT ). (15)

We checked the effect of the ground-state decoherence
using the full numerical simulations. A non-negligible γ0
has two effects: first, it induces a coupling between the
dark and bright states, thus adding excess atomic noise
at low sideband frequencies (as can be seen, e.g., from
eq. (7)). This excess atomic noise can lead to the reduc-
tion or disappearance of the squeezing at low frequencies.
Secondly, it reduces the atomic coherence between the

2.0

1.0

1.5

0.5

0.5 1.0 1.5 2.0

Fig. 4: (Color online) Efficiency η of the squeezing transfer
from field 2 to 1, as a function of the field Rabi frequen-
cies Ω1 and Ω2 (in κ units). Parameters: (g

√
N, γ, γ0, ω) =

(10, 0.5, 10−5, 0.1)×κ.

ground states, thereby decreasing the quantum interfer-
ence effects. We checked however that the swapping effi-
ciency remained high as long as the transparency window
is much larger than the ground-state decoherence rate.
Generally, since the transparency window is ultimately
limited by the ground-state decoherence rate γ0, using
long-coherence-time ensembles in low-finesse cavities is
thus preferable for obtaining a high efficiency as well as
a large dynamical range for the swapping.
We also examined numerically the non-symmetric situ-

ation of fields with different Rabi frequencies Ω1 
=Ω2. For
sufficiently strong driving on both transitions the dark and
bright atomic states become

|D〉= (Ω2|1〉−Ω1|2〉)/Ω′, |B〉= (Ω2|1〉+Ω1|2〉)/Ω′
(16)

(Ω′ =
√
Ω21+Ω

2
2), with corresponding dark and bright

field combinations. Figure 4 shows the efficiency of the
squeezing transfer from field 2 to 1 as the respective
Rabi frequencies of the two fields are varied. The other
parameters are the same as previously and the efficiency
was obtained numerically with a full calculation. Similar
transparency windows are observed as in the balanced
Rabi frequency case, and efficient transfer is observed as
long as the CPT window is larger than the ground-state
decay rate and smaller than the bare cavity halfwidth.
One also finds that the transfer of quantum fluctuations
is most efficient for fields with balanced Rabi frequencies
(Ω1 ∼Ω2). Qualitatively, this can be explained by the fact
that the CPT-induced atomic coherence is maximal in
this case and induces perfectly destructive interference
for the dark mode sidebands. In an unbalanced situation

34010-p4
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the fluctuations are only partially exchanged between the
initial fields. Similarly to the free-space interaction [29],
one can show, by following, e.g., the method of [47], that
the fluctuations of the initial field modes can be retrieved
in suitable combination of modes, which are however
different from the initial ones.
To conclude, we propose to use a coherent atomic

medium in an optical cavity to achieve passive quan-
tum state swapping between two optical fields. Effi-
cient exchange of quantum fluctuations can be achieved
for reasonable effective optical depth in the bad-cavity
limit and when there is an appreciable narrowing of the
cavity linewidth due to CPT. While the calculation was
performed with Gaussian input states, the type of beam-
splitter relationships obtained suggest that the results
should remain valid for more exotic quantum states, such
as non-Gaussian photon-subtracted squeezed states [48,49]
for instance. In addition to quantum information process-
ing in the optical domain, the proposed mechanism could
also have valuable applications for circuit QED in the
microwave domain, e.g. with superconducting artificial
atoms [41,42].
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