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Abstract. We examine the time-dependent dynamics of ion crystals in
radiofrequency traps. The problem of stable trapping of general three-
dimensional crystals is considered and the validity of the pseudopotential
approximation is discussed. We analytically derive the micromotion amplitude
of the ions, rigorously proving well-known experimental observations. We use
a recently proposed method to find the modes that diagonalize the linearized
time-dependent dynamical problem. This allows one to obtain explicitly
the (‘Floquet–Lyapunov’) transformation to coordinates of decoupled linear
oscillators. We demonstrate the utility of the method by analyzing the modes
of a small ‘peculiar’ crystal in a linear Paul trap. The calculations can be
readily generalized to multispecies ion crystals in general multipole traps, and
time-dependent quantum wavefunctions of ion oscillations in such traps can be
obtained.
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1. Introduction

The trapping of charged particles by electromagnetic fields is an essential tool for many
investigations within physics [1, 2] and chemistry [3, 4], as well as for studies of bio-
molecules [5, 6]. In the Paul trap, charged particles are confined by oscillating multipole
radiofrequency (rf) fields [3]. Different types of Paul traps have been proposed and constructed
over the years, and an increasing number of experimental and theoretical works are dedicated to
the improvement of these devices (see, e.g., [7]). With the advent of laser-cooling techniques [8],
a great deal of effort has been focused on the study of crystalline forms of trapped ions [9–37].
Single trapped ions have been cooled to the quantum ground state of motion [38, 39], and
crystals of a few ions have been cooled to the ground state in at least a few of the motional
modes [40]. Long-range order has been observed with large structures of thousands of ions in
Penning [21, 22] and Paul traps [37, 41].

In this paper, we analyze the dynamics of crystals of charged particles confined in rf traps.
In section 2, we review some previous results on the trapping of ions in rf traps. In section 3,
we discuss the linear stability of ion crystals in general, and consider the limits of validity of
the pseudopotential (time-independent) approximation, in relation to symmetries of the trapped
crystal. We derive the micromotion amplitude of ions in a general periodic solution in a Paul
trap, and relate our findings to recent experimental results. We then expand the motion of
the trapped ions in coordinates of small displacements about the periodic solution, which is
the dynamic equivalent of a minimum of the trapping potential. This expansion is completely
general and can be applied to any periodic trapping field. In section 4, we solve the coupled
motion of the ions in the time-dependent potential. We find the modes that diagonalize the
dynamical problem and explicitly obtain a time-dependent transformation to coordinates in
which the motion is that of decoupled linear oscillators. Using this expansion the exact time-
dependent wavefunctions of ions in rf traps can be obtained. In section 5 we present our
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numerical study of a small crystal in a linear Paul trap, and conclude the paper in section 6
with comments on directions for further applications and research.

2. Overview of Paul trapping

The first crystallization of a cloud of charged aluminum microparticles has been reported
in [42]. Wigner crystals of 2 to approximately 100 trapped ions in a Paul trap were reported
in [9, 10] and further investigated in [43] both experimentally and numerically. The simulations
included rf trapping, Coulomb interaction, laser cooling and random noise. Depending on trap
parameters, the ions were found to equilibrate either as an apparently chaotic cloud or in an
ordered structure. The latter is defined as the ‘crystal’ solution when it is a simple limit cycle,
with the ions oscillating at the rf frequency about well-defined average points. The transition
between the two phases has been investigated, it was shown that both phases can coexist and
hysteresis in the transition has been observed [43].

The motion of two ions in the Paul trap has been investigated in detail in various
publications [44–53]. In addition to the aforementioned phases, frequency-locked periodic
attractors (where the nonlinearity pulls the motional frequencies into integral fractions of the
external rf frequency) were found in numerical simulations and experiments. These solutions
are different from the crystal in that the ions move in extended (closed) orbits in the trap, whose
period is a given multiple of the rf period. However, many of these frequency-locked solutions
are unstable, especially those of a large period, and perturbations such as those coming from the
nonlinearity of the laser-cooling mechanism tend to destroy them.

Despite the large amplitude motion, the frequency-locked solutions, being periodic, are
of course not chaotic. However, even in the presence of cooling, some solutions in the ion
trap may behave chaotically for exponentially long times. The authors of [54] suggest that,
eventually, all trajectories settle at frequency-locked attractors, at least for two ions at a = 0.
Numerical simulations and experiments with more ions suggest that, in general, different types
of solutions—of chaotic and of long-range order nature—can coexist at the same parameter
values [43].

A further important property of two-ion crystals was discovered in [55]. The entire first
Mathieu stability zone (which corresponds to stable trapping of one ion) was mapped using
numerical simulations to determine the stability of the two-ion crystal. It turned out that the
Coulomb interaction destabilizes completely the two-ion crystal in some parameter areas. About
one year later, it was independently discovered in [56–58] that two ions in a hyperbolic Paul trap
may crystallize in a ‘peculiar’ crystal.

The reason why such crystals were termed ‘peculiar’ is that for a two-ion crystal with
no angular momentum about the axial x-axis, there are only two possibilities in the harmonic
pseudopotential approximation (excluding the case of degenerate secular frequencies). The
crystal can either align with the x-axis or lie in the y–z plane. In the latter case we may assume
that the crystal is aligned with the y-axis, and in both cases the z coordinate can be eliminated.
Therefore a crystal that is at an angle to both the reduced axes x and y, i.e. one which forms an
angle with both the axial axis and the plane of symmetry, is peculiar.

In [56, 57], an improved pseudopotential approximation was derived for two ions in the
hyperbolic Paul trap (and in [59] for the linear Paul trap). This nonlinear pseudopotential can be
used to derive approximately the areas of stability in parameter space of the axial and radial
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two-ion crystals, and the orientation of the peculiar crystal. However, even the improved
nonlinear pseudopotential cannot reproduce the areas of unstable crystal.

As mentioned above, the crystal solution in all these works is taken to be a periodic solution
of the equations of motion with a period equal to that of the rf potential. This is a limit cycle
of the equations, the simplest of the frequency-locked solutions mentioned above, and it is
an attractive one when cooling is present and it is stable. Its stability is analyzed in [58] by
looking at the Poincaré map associated with this solution. The Poincaré map is a mapping
of the phase space onto itself, in which every initial point {x(0), p(0)} is evolved according
to the equations of motion and mapped to {x(T ), p(T )} after one rf period T . The crystal is
by definition a fixed point of the Poincaré map, and its linear stability is determined by the
linearized dynamics in its vicinity, specifically by the eigenvalues of the so-called monodromy
matrix. The linearization takes into account the leading (harmonic) coupling between the ions,
expanded about the periodic solution. Further analysis (both linear and nonlinear) of the periodic
orbit of two ions in a Paul trap can be found in [60–63].

3. Paul traps

3.1. The trapping potential

We start with the potential energy of identical ions in the most general single, nonsegmented
quadrupole rf trap. By choosing a specific frequency ω̄, which is characteristic of the
secular frequencies in the problem, and measuring the time and distances in units of 1/ω̄

and d =
(
e2/mω̄2

)1/3
, respectively (with m and e the ion’s mass and charge), we write the

nondimensional potential as

V = Vtrap + VCoulomb =

N∑
i

1

2

(
3x x2

i + 3y y2
i + 3zz

2
i

)
+
∑
i 6= j

1

2
‖ ERi − ER j‖

−1, (1)

where ERi = {xi , yi , zi} is the vector coordinate of ion i , the trapping terms are given by
3α =

�2

4 (aα − 2qα cos �t), α ∈ {x, y, z}, with aα and qα being the nondimensional Mathieu
parameters of the respective coordinates [64] and � being the rf frequency (in units of ω̄).

Regarding the trapping parameters, the Laplace equation implies that∑
α

aα =

∑
α

qα = 0. (2)

Two commonly used types of traps are the hyperbolic [65] and linear [64] Paul traps. Taking
the x-axis as the axial direction, the hyperbolic trap can be described by setting ay = az ≡ a,
ax = −2a and qy = qz ≡ q, qx = −2q, while in the linear trap we have ay = az ≡ a, ax = −2a
and qy = −qz ≡ q, qx = 0 (so a must be negative to obtain stable trapping). In the next
subsection, we will relate to the symmetries of these two trapping geometries, but for now
we keep the discussion completely general.

The trapping potential Vtrap when considered alone gives rise to decoupled Mathieu
equations in each ion coordinate [66]. The corresponding characteristic exponents are
βα (aα, qα) and the secular frequencies are then ωα ≡ βα

�

2 . In the units being used, Vtrap and
VCoulomb are both of the order of unity for a crystal when the trapping balances the Coulomb
repulsion. These units allow naturally the introduction of the parameter

ε ≡ 4/�2. (3)

New Journal of Physics 14 (2012) 093023 (http://www.njp.org/)

http://www.njp.org/


5

If ω̄ is the (dimensional) secular frequency along some specific axis α, we have ωα = 1 and
ε = β2

α. Using the familiar lowest order approximation [64], βα ≈
√

aα + q2
α/2, we see that the

limit ε → 0 is equivalent to aα → 0, q2
α → 0. This parameter will be used in the following.

When the Mathieu parameters belong to a single-particle stability zone, the potential of
equation (1) allows for bounded motion and large ion clouds can be trapped for extraordinarily
long times without cooling. This is given by the limit ERi → ∞ in equation (1), which means
that ions are not crystallized, rather their motion is that of decoupled trapped particles. Despite
the large amplitude motion, at low enough density the ions hardly interact.

However, stable single-particle parameters do not guarantee that a stable crystal solution
exists, even with two ions, as discussed extensively in section 2, which has also been recently
investigated with crystals consisting of up to several hundreds of ions [67, 68]. We recall that
a stable crystal solution is considered as a periodic solution with the same period of the rf,
which is linearly stable under small perturbations. The existence of a stable crystal solution
is a property of the fully nonlinear and time-dependent problem. There may also exist stable
multi-periodic solutions (with a period that is some large, arbitrary multiple of the rf period),
the frequency-locked solutions described in section 2.

In experiments, even in the presence of cooling, crystals may exist only metastably,
changing completely after a given time or when parts of the crystal are moving with respect to
the rest [37]. In this case, if the timescale of the change of the crystal is long enough, the analysis
in the following subsections, using modes expanded about the (quasi-) periodic solution, may
still be useful, even though at least one mode would be unstable.

3.2. Linearization using the pseudopotential modes

In this subsection we linearize the crystal motion using the pseudopotential modes. Therefore
this treatment assumes that a crystal solution exists, and is close to the crystal of the
pseudopotential. As is known from the example of two ions in a hyperbolic Paul trap, this
assumption may not hold even for arbitrarily small values of a and q (where the crystal is
‘peculiar’ [56–58]). The linearized secular modes of a one-dimensional Coulomb chain were
treated in detail in [69–71].

Let us define the squared ratio of secular radial and axial frequencies γy = ω2
y/ω

2
x , γz =

ω2
z/ω

2
x and γx = ω2

x/ω
2
x = 1, thus choosing ω̄ as the axial trapping frequency, so we can rewrite

the potential as the sum V = Vpseudo + VCoulomb + Vrf,

V =

N∑
i,α

1

2
γα( ERi,α)

2 +
∑
i 6= j

1

2
‖ ERi − ER j‖

−1 +
N∑

i,α

1

2
(3α − γα)( ERi,α)

2. (4)

We expand about the minimum-configuration locations, { ER0
i }, obtained from the secular

part of V in equation (4), Vpseudo + VCoulomb, and change to the normal modes 2 j by setting

ERi,α (t) = ER0
i,α +

3N∑
j

D j
i,α2 j(t), (5)

where D j
i,α is the matrix of normal mode vectors, with rows indexed by the N ion numbers i

and three directions α and columns by the 3N normal mode numbers j . Writing the potential
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in terms of the normal modes, V = Vharmonic + Vrf + Vnonlinear, we keep only the first two terms to
obtain

V =

∑
i

1

2
ω2

i 2
2
i +

N∑
i,α

1

2
(3α − γα)

 ER0
i,α +

3N∑
j

D j
i,α2 j

2

+ · · · (6)

and the linearized equation of motion (e.o.m.) derived from equation (6) is

2̈m + ω2
m2m = −

∂V rf

∂2m
= −

N∑
i,α

(3α − γα) Dm
i,α

 ER0
i,α +

3N∑
j

D j
i,α2 j

 . (7)

Before treating the coupled system described by equation (7), we first note that when
the rf trapping potential is symmetric with respect to the axes of symmetry of the crystal, the
equations of motion are in fact diagonal. For the following few paragraphs, let us therefore limit
the discussion to the hyperbolic and the linear Paul traps, whose parameters were described
following equation (2). Given these two trapping geometries, the current expansion will be
diagonal if the crystal is two dimensional and lies in the plane of cylindrical symmetry of a
hyperbolic trap, or the crystal is one dimensional and aligned with one of the trap axes, in either
the hyperbolic or the linear trap. In that case, we have ER0

i,α = 0 for the coordinates transverse to
the crystal, and also the normal modes decouple in these directions from the modes tangential
to the crystal (i.e. D j

i,α is divided into blocks in the index α).
We then can use two relations which hold in the plane of the crystal or along its axis,∑

i,α̃

Dm
i,α̃ D j

i,α̃ = δmj ,
∑
i,α̃

Dm
i,α̃

ER0
i,α̃ = ξbδmb, (8)

where hereafter, α̃ runs on the symmetry directions, ξb =

√∑
i,α̃(

ER0
i,α̃)

2 and b denotes the
breathing mode. The identity on the left in equation (8) is the completeness of the normal modes
along the symmetry directions. To obtain the second identity we use the fact that in a harmonic
trap, the breathing mode vector is exactly proportional to the minimum-configuration locations
ER0

i,α of the pseudopotential (see, e.g., appendix B of [15]), so that Db
i,α̃ = ER0

i,α̃/ξb, and therefore

the vector ER0
i,α̃ is orthogonal to all other normal mode vectors. By using equation (8) we can

replace the rhs in equation (7) with the simple expression

−
∂Vrf

∂2m
= − (3α̃ − γα̃) (ξbδmb + 2m) . (9)

We find that the equations of motion for modes in the crystal plane or along its axis are,
after multiplying by ε = 4/�2 of equation (3) and rescaling t → �t/2,

2̈m +
[
ε
(
ω2

m − γ
)

+ (a − 2q cos 2t)
]
2m =

[
εγ − (a − 2q cos 2t)

]
ξbδmb, (10)

where γ , a and q are defined along the symmetry axes. Similar equations hold in the directions
transverse to the crystal, without the inhomogeneous rhs and with the corresponding γ , a
and q.

Equation (10) shows explicitly how the isotropy of the potential along the axes of symmetry
of the crystal allows us to decouple the equations of the modes. This decoupling puts the
conditions for linear stability of the crystal in terms of diagonal Mathieu equations for each
of the modes. In addition, with this symmetry the only mode with an inhomogeneous rhs is
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the breathing mode, i.e. it is the only mode on which the rf potential acts as a driving force.
This driven motion is, in fact, the π -periodic motion of the crystal as a whole, about the static
minimum-configuration locations of the pseudopotential, { ER0

i }.
Returning to the case of a general trap, in order to put equation (7) in a simple form we

multiply it by ε = 4/�2 of equation (3) and rescale t → �t/2. Defining the two matrices

Amj = εω2
mδmj +

∑
i,α

Dm
i,α D j

i,α(aα − εγα), Qmj =

∑
i,α

Dm
i,α D j

i,αqα (11)

and the vectors

Gm = −

∑
i,α

Dm
i,α (aα − εγα) ER0

i,α, Fm =

∑
i,α

Dm
i,αqα

ER0
i,α, (12)

we rewrite equation (7) in vector notation as

Ë2 + [A − 2Q cos 2t] E2 = EG + 2 EF cos 2t. (13)

We solve the homogeneous lhs of equation (13) in section 4. Since the pseudopotential
modes are expanded about static configuration points, equation (13) is an inhomogeneous
equation with a π -periodic rhs, which has a unique π -periodic solution (except for possibly
a region of measure zero in aα, qα space). This periodic solution of driven motion of the normal
modes corresponds to the exact π -periodic solution which defines the crystal in the rf trapping
potential. Details of the solution of the inhomogeneous equation can be found in [72].

Equation (13) shows that, in general, the rf couples the pseudopotential normal modes and
also acts as a driving force. Under this coupling, the true modes of oscillation of the system
may, in general, have different frequencies (and even lose stability), and different oscillation
directions than the pseudopotential modes upon which this expansion is based. Indeed, the
linearization starting from the pseudopotential approximation may not be adequate in the
general case. We further investigate this point in the following two subsections.

3.3. The periodic crystal solution

We now abandon the pseudopotential approximation and turn to studying the time-dependent
potential directly. In this subsection, we derive analytically the micromotion amplitude of
the ions in typical crystals in Paul traps. The e.o.m. for the ion coordinates, derived from
equation (1) after rescaling by t → �t/2, is

ËRi,α + (aα − 2qα cos 2t) ERi,α − ε

N∑
j=1
j 6=i

‖ ERi − ER j‖
−3( ERi,α − ER j,α) = 0. (14)

Equation (14) has π -periodic coefficients and is time-reversal invariant. We assume the
existence of a crystal in the sense of section 2, i.e. a π -periodic and time-reversal invariant
solution, which obtains the general form

ERπ
i,α (t) =

n=∞∑
n=−∞

EB2n,i,α ei2nt . (15)

In this form, the average ion location is EB0,i (which is different from ERπ
i (t = 0)).
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We now wish to see what can be said about ERπ
i in typical Paul trapping experiments. We

first define the dynamic matrix

G i j({ ERi(t)}) = δi j

∑
m

m 6=i

‖ ERi − ERm‖
−3

− (1 − δi j)‖ ERi − ER j‖
−3 (16)

and write using equation (15) its Taylor and Fourier expansion around { EB0,i − EB0, j} as

G i j = G0,i j({ EB0,i}) + G2,i j({ EB0,i}, { EB2,i})(e
2it + e−2it) + · · · . (17)

Substituting the solution ansatz equation (15) into equation (14), we obtain

∑
n

(aα − (2n)2
)

EB2n,i,α − qα

(
EB2n−2,i,α + EB2n+2,i,α

)
− ε

∑
j

G i j EB2n, j,α

 ei2nt
= 0. (18)

We replace G i j({ ERi(t)}) in equation (18) by its leading order, time-independent term from
equation (17), G0,i j = G i j({ EB0,i}), and require that the above relation holds for every t . We
obtain, by using EB2n = EB−2n and neglecting EB4n ≈ 0 (which is of the next order in qα), the
equation coming from the n = 0 term,

aα
EB0,i,α − 2qα

EB2,i,α − ε
∑

j

G0,i j EB0, j,α = 0, (19)

and the coupled equation from the coefficient of e2it ,

(aα − 4) EB2,i,α − qα
EB0,i,α − ε

∑
j

G0,i j EB2, j,α = 0. (20)

This system of equations can be seen as a linear homogeneous system in the 2N variables
{ EB0,i,α, EB2,i,α}, i = 1, . . . , N , for fixed α, since the equations are diagonal along the three
different axes. Of course, this is not really a linear system since the matrix G0,i j depends on
EB0,i , but since we are not trying to actually solve the system, this will not matter. Let us fix

the index α to some axis (suppressing it in the following), and define the N -component vectors
Eu0,i = EB0,i,α and Eu2,i = EB2,i,α. Then the above system can be written in the block-matrix form(

a − εG0 −2q

−q −4

)(
Eu0

Eu2

)
= 0, (21)

where we have neglected a − εG0 as compared with −4 in the lower-right block of
equation (21). Since we assume that the system has a solution (which approximates the π -
periodic crystal), the above matrix must be singular. We can expand its determinant

0 = det
[
a − εG0 − (−2q) (−4)−1 (−q)

]
= det

[
a − εG0 + q2/2

]
. (22)

Taking Eu0 to be the vector from the kernel of (a − εG0 + q2/2) which obeys (a − εG0) Eu0 =

−(q2/2) Eu0, we find that the solution of equation (21) is Eu2 = − (q/4) Eu0.
We therefore have obtained that in a general quadrupole trap, in the π -periodic

crystal solution of equation (15), every ion coordinate obeys (at least to leading order in
aα/4, qα/4, εα/4)

EB2,i,α ≈ −
qα

4
EB0,i,α, (23)
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i.e. that the micromotion amplitude in each coordinate is qα/2 of the respective average position,
and at π phase with respect to the rf drive. In the hyperbolic trap the corresponding motion
has been imaged as early as in [42]. In simulations of a generic trap (with different q and a
parameters for the three axes), equation (23) seems to hold accurately to within a few per cent,
for q up to ∼0.7, which is consistent with a deviation of order (qα/4)2.

The relation in equation (23) loses its accuracy when either EB0,i,α � 1 or qα � 1. In the
former case, for an ion near the zero of one of the rf axes, the corresponding micromotion
amplitude, in fact, seems, in the cases we have checked, to be lower (this is similar to a single
trapped ion at the origin of a Paul trap, for which the unique π -periodic solution is the trivial
one).

For the linear Paul trap case of qα � 1 along the axial axis, the first-order expression in
equation (23) loses its meaning. We must therefore add to equation (20) the second term in
equation (17), G2,i j , which rotates at the frequency e2it . Setting q = 0, equation (21) is replaced
with (

a − εG0 0

−εG2 −4

)(
Eu0

Eu2

)
= 0. (24)

We now examine what can be deduced about G2. The off-diagonal elements are, in general,

G2,i j = 3‖ EB0,i − EB0, j‖
−5
∑

α

( EB0,i,α − EB0, j,α)( EB2,i,α − EB2, j,α), i 6= j. (25)

In particular, using equation (23) with qy = −qz = q and qx = 0, we obtain that, for the linear
Paul trap,

G2,i j = −3
q

4
‖ EB0,i − EB0, j‖

−5[( EB0,i,y − EB0, j,y)
2
− ( EB0,i,z − EB0, j,z)

2] + O

(
q2

42

)
, i 6= j. (26)

Since the diagonal elements are the negative of the row sum, as in equation (16), G2,i i =

−
∑

m 6=i G2,im , we immediately find that for a crystal which is invariant (up to a permutation
of the ions) under y ↔ ±z, G2,i i = 0 + O(q2/42). In fact, for the linear Paul trap, the e.o.m.,
equation (14) is invariant under y ↔ −z, t → t + π/2, so given one crystal solution, there is
also a solution obtainable by an application of this transformation. Depending on the number
of ions and trapping parameters, both solutions may actually be the same crystal. As the crystal
size grows, by the same symmetry arguments, G2,i i → 0 + O(q2/42).

The second row of equation (24) gives EB2,i,x = −ε/4
∑

G2,i j EB0, j,x , and we argue that by
the above symmetry arguments, for a typical symmetric or large crystal in a linear Paul trap,
when the crystal configuration is also symmetric under x ↔ −x , the first-order terms in the
above summation will cancel, and (using ε ≈ q/2)

EB2,i,x = O

(
1

2

q3

43

)
EB0,i,x . (27)

If the symmetry alluded to above does not hold, equation (27) should be replaced with an
expression which is one order less, namely EB2,i,x = O

(
ε

4
q
4

)
EB0,i,x .

Equation (27) explains why in the linear Paul trap, there is essentially no micromotion
excitation along the axial direction despite the strong Coulomb interaction. In addition, since
qy = −qz in the linear trap, the oscillation described by equation (23) is exactly the (2,2)
mode of cold-fluid theory [14], which has been observed both in simulations [20] and recently
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discussed in connection with experiments [29]. In fact, in the simulations we have performed
(section 5), equation (23) seems to hold extremely accurately radially (to within half a
per cent), and equation (27) gives an accurate estimate for the axial micromotion amplitude
(also matching, e.g., [20, 73]).

3.4. Linearization about the periodic crystal and the pseudopotential limit

In this subsection we expand the modes of oscillation of the ions about the periodic crystal
solution, equation (15). The following expansion is applicable to general crystal configurations,
does not rely on the pseudopotential modes or on a small parameter, and can be readily
generalized to settings not considered in this paper, e.g. segmented traps and higher-order
multipole traps. We will discuss its relation to the expansion of section 3.2, which used the
pseudopotential modes.

Expanding the potential of equation (1) about the time-dependent solution { ERπ
i (t)}, in the

coordinates of small oscillations ri,α = ERi,α − ERπ
i,α (t), and defining the π -periodic matrix

K στ
i j (t) =

∂2VCoulomb

∂ Ri,σ∂ R j,τ

∣∣∣∣
{ ERπ

i (t)}

, (28)

we find the linearized e.o.m.

r̈i,σ + (aσ − 2qσ cos 2t) ri,σ + ε
∑

j,τ

K στ
i j (t) r j,τ = 0. (29)

This equation is a linearly coupled system for the ion coordinates with π -periodic
coefficients. We see that the interaction term in equation (29) is of the same order (in ε, or
equivalently a and q2) as the diagonal term. Expanding the matrix K στ

i j (t) in a Fourier series in
the form

K στ
i j = (K0)

στ
i j − 2 (K2)

στ
i j cos 2t − · · · , (30)

we first define the two matrices

Aστ
i j = δi jδστ aσ + ε(K0)

στ
i j , Qστ

i j = δi jδστqσ + ε(K2)
στ
i j . (31)

We can now switch the notation to a simpler one with dynamical variables um whose single
index m stands for both indices {i, σ } of ri,σ , with the corresponding indices replaced in
equation (31), and rewrite equation (29) in vector notation, with only the two leading harmonics
of the Fourier series, as

Ëu + [A − 2Q cos 2t] Eu = 0. (32)

This equation describes linearized coupled perturbations about the π -periodic solution which
defines the crystal in the time-dependent potential. In section 4 we will solve this coupled system
and find its decoupled modes of oscillation.

Equation (32) is seen to be identical in form to the lhs of equation (13), which is given in
terms of the pseudopotential modes. However, the current expansion is based on the exact force
acting between the ions during their motion along the periodic trajectory of the full potential.
Higher harmonics from the Fourier series of this force can be added, and in section 5 we will in
fact include the next harmonic (cos 4t), to obtain very accurate results for the modes. When the
nonlinear motion is not exactly π -periodic, some of the linearized modes of the above expansion
may not be oscillatory (as detailed in section 4.1), which describes (locally) the aperiodic motion
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of the crystal. If this change of the crystal is slow, the linearization of equation (29) can still be
useful.

Considering the limit of taking the Mathieu parameters to zero, this does not guarantee
that the crystal will be (linearly) stable. If there are unstable modes, they may remain unstable
even as a, q2, ε → 0. As for approaching the pseudopotential crystal in this limit, if the
average ion locations { EB0,i} of the periodic solution tend to pseudopotential minimum locations,
then the limit of the pseudopotential modes is regained on the lhs of equation (29). To
characterize the conditions for this to occur, further investigations are required; however, for
simple cases the results of section 3.3 may provide some hints.

In particular, if the rf potential is isotropic with respect to the configuration (as
discussed in section 3.2 for specific cases), and we neglect K2 in equation (31), the matrix
Q becomes proportional to the identity. Then we can diagonalize equation (32) by an
orthogonal transformation (which is exactly the transformation to the normal modes) and obtain
equation (10). There will no longer be an inhomogeneous rhs, since the periodic crystal motion
is already accounted for. In the presence of driven breathing oscillations, the ions feel stronger
repulsive nonlinearity when they oscillate radially inwards, so we may expect the real crystal
to be slightly more expanded (with the ion distances somewhat larger) as compared with the
pseudopotential approximation.

We note that for an axial chain of ions in the linear Paul trap, indeed K2 ≈ 0 even if there
is a small rf leak in the axial direction or if the ions do not lie exactly along the rf null axis,
and equation (10) is almost exact. For the axial modes, the correction to the pseudopotential
modes will be small. For the radial modes, the correction will typically be small, provided
that the rf frequency is large compared with the radial frequencies. However, for calculation of
small effects which might be of importance in high-accuracy experiments such as for quantum
information processing [64], the full time-dependent solution must be used.

As a final note, a generalization of the isotropy of the rf potential with respect to the
crystal configuration would be the existence of a constant orthogonal transformation which
diagonalizes equation (32) and thus decouples the modes in the nonisotropic case. Such a
transformation would simultaneously diagonalize the matrices A and Q (which must commute),
and does not exist in the general case.

4. Solution of the linear equations

4.1. The Floquet problem

Equation (32) is a linear differential equation with periodic coefficients and therefore amenable
to treatment using Floquet theory, which we briefly review here. For more details, see [72] and
references therein. For the Newtonian problem with f degrees of freedom ( f = 3N for N ions
in three dimensions), the corresponding Floquet problem is stated in terms of coordinates in
2 f -dimensional phase space by the definitions

φ =

(
Eu

Ėu

)
, 5 (t) =

(
0 1 f

− (A − 2Q cos 2t) 0

)
, (33)

where 1 f is the f -dimensional identity matrix. The e.o.m. is written in standard form as

φ̇ = 5 (t) φ. (34)
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In the following, an f -dimensional vector Eu will be denoted by a lower case latin letter with
an arrow. f -dimensional matrices will be denoted by capital latin letters (Q). A 2 f -dimensional
vector φ will be denoted by a lower case greek letter. Capital greek letters (unitalicized) will
denote 2 f -dimensional matrices (5, B).

A fundamental matrix solution to equation (34) has 2 f linearly independent column
solutions and obeys the matrix equation 8̇(t) = 5(t)8(t). A fundamental matrix solution
that equals the identity matrix at t = 0, i.e. obeys 8(0) = 12 f , is known as the matrizant of
equation (34) (and is obviously unique). The matrizant can always be written in the form
8(t) = 0(t)eBt0−1(0), where 0(t + T ) = 0(t) is periodic with the period T of 5(t), and the
constant matrix B is diagonal, with entries known as the characteristic exponents of the Floquet
problem,

B = diag
{
iβ1, . . . , iβ2 f

}
. (35)

The time-dependent linear coordinate change, known as the ‘Floquet–Lyapunov’ transforma-
tion, defined by

φ(t) = 0(t)χ(t), (36)

transforms the e.o.m. equation (34) into the time-independent diagonal form

χ̇ = Bχ, (37)

whose solutions are the Floquet modes,

χν(t) = χν(0)eiβν t . (38)

We note that in the general case, 0 mixes the coordinates Eu and their derivatives, and
in addition is not unitary, although certain highly symmetric cases, e.g. as those discussed in
sections 3.2 and 3.4, when the Mathieu equations decouple completely, are an exception.

4.2. Solution using an expansion in infinite continued matrix inversions

We recently [72] proposed an analytical expansion of the solutions of the e.o.m. (32). This
expansion allows one to obtain the frequencies and the coefficients of the solution vectors
in a generalization of an infinite continued fractions expansion, to arbitrary precision. The
solution is given in a form which is immediately suitable for obtaining the Floquet–Lyapunov
transformation, as will be shown in the next subsection.

We seek the solutions of equation (32), in the form of a sum of two linearly independent
complex columns vectors,

Eu =

n=∞∑
n=−∞

EC2n[b ei(2n+β)t + c e−i(2n+β)t ], (39)

where b and c are complex constants determined by the initial conditions. Stable modes will be
described by β taking a real nonintegral value (we exclude the case of integral β). Following
the discussion in section 4.70 of [66], for trapping parameters in the first stability zone of the
Mathieu equation, β can be chosen in the range 0 < β < 1 for all stable modes.

By defining R2n = A − (2n + β)2 we can write infinite recursion relations for EC2n,

Q EC2n−2 = R2n EC2n − Q EC2n+2, (40)
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and obtain two independent expansions in infinite continued matrix inversions

EC2 = T2,β Q EC0 ≡ ([R2 − Q[R4 − Q[R6 − · · · ]−1 Q]−1 Q]−1)Q EC0 (41)

and

Q EC2 = R0 EC0 − Q EC−2 = T̃0,β
EC0 ≡ (R0 − Q[R−2 − Q[R−4 − · · · ]−1 Q]−1 Q) EC0.

(42)

Multiplying equation (41) by Q and defining

Y2,β ≡ T̃0,β − QT2,β Q, (43)

we find that all characteristic exponents β are zeros of the determinant of Y2,β (which is
a function of β). If there are degenerate β’s they will appear as degenerate zeros of this
determinant. The vector EC0 for each β is an eigenvector of Y2,β with eigenvalue 0. Since A
and Q are symmetric, Y2,β is symmetric as well, and so its kernel will be of dimension equal
to the algebraic multiplicity of the β root. The vector EC2 can be obtained by an application of
T2,β Q to EC0, for n = −1 we use EC−2 = [T−2,β]−1 Q EC0, and so on for the other vectors. We note
that the different vectors EC2n,β are not orthogonal in general, and the vectors at every order in n
mix different coordinates.

The general term of the expansion vanishes. Either A or Q may be singular and the
expansion can still be applied in general. Even if both are singular, the expansion is valid if
there are no integral values of β, a case that we do not tackle as noted above. Excluding perhaps
isolated values of β (and atypically in the a–q parameter space), all matrices that are inverted
in the above expressions will be invertible, and while employing the algorithm in practice, the
invertibility of the matrices is, of course, easily verified at each step. In section 5 we use, in fact,
a generalization of the above expansion [72] which includes also the next Fourier harmonic
(cos 4t , omitted from equation (30)).

4.3. The Floquet–Lyapunov transformation for stable modes

We now further assume that all Floquet modes are stable, i.e. that the 2 f linearly independent
solutions of equation (34) are oscillatory and thus come in complex conjugate pairs. This
simplifies many expressions. We therefore take B of equation (35) in the block form

B =

(
iB 0
0 −iB

)
, (B) f × f = diag{β1, . . . , β f }, (44)

where β j are positive. We define the f -dimensional matrix U whose columns are constructed
from the series of f -dimensional vectors EC2n,β j obtained from the recursion relations for the
solutions of equation (39), i.e.

(U ) f × f =
(∑

EC2n,β j ei2nt . . .
)
, (45)

where in the above expression and for the rest of this section, the summation is over n ∈ Z. We
similarly define the f -dimensional matrix V composed of column vectors as

(V ) f × f =
(
i
∑(

2n + β j

)
EC2n,β j ei2nt . . .

)
. (46)
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The matrices U and V can be chosen to obey the normalization condition

V t (0) U (0) =
1
2 i, (47)

which is a rescaling imposed by multiplication with a (diagonal) matrix, such that

U → U
(
−2iV t (0) U (0)

)− 1
2 , (48)

and V accordingly. As shown in [72], the Floquet–Lyapunov transformation and its inverse can
then be obtained in closed form, and are given block-wise by (where U ∗ denotes the complex
conjugate of the matrix U ),

0 (t) =

(
U U ∗

V V ∗

)
, 0−1 (t) =

(
iV †

−iU †

−iV t iU t

)
. (49)

This transformation is a canonical transformation from the Hamiltonian coordinates Eu and
their conjugate momenta Ep = Ėu, to the variables given by

χ =

(
ξ

ζ

)
,

where ξ is the new f -dimensional vector of coordinates and −iζ are the new conjugate momenta
(we here break the notation a little). Using the realness of Eu and Ep, it is easy to verify that ξ = ζ ∗.
The time dependence of these modes is

ξ j (t) = ξ j (0) eiβ j t , ζ j (t) = ζ j (0) e−iβ j t . (50)

5. Computation of the modes of a ‘peculiar’ crystal

In figures 1–3 we consider a crystal of six ions, demonstrating the utility and generality of the
analysis presented in this paper. The simulation is of an almost ideal linear Paul trap (with only a
1% DC asymmetry in the radial plane), such that the center-of-mass frequencies are degenerate
to within 1%. The Mathieu parameters are qy = 0.41 and ax = 0.05766. In the pseudopotential
approximation, the corresponding minimum configuration is a (nearly regular) octahedron, with
two ions sitting on each axis of the trap. The rf crystal, on the other hand, may well deserve to be
called ‘peculiar’ (in the sense described in section 2), since it is not oriented to the axes. There
are two ions lying along the y-axis, along which the confinement is strongest, but the two other
pairs of ions sit along lines which are rotated in the x–z plane. The large amplitude oscillation at
the rf period, and the absence of micromotion along the axial direction, confirm very accurately
the results presented in section 3.3.

Numerically, the periodic crystal solution can be obtained by starting from a simulation of
the full e.o.m.’s with a friction (cooling) term and slowly turning it off (the adiabatic shutting
down of the damping term is important). The crystal is then followed for a period and the
periodic solution and force matrix can be Fourier expanded to obtain the matrices A and Q.
Since the crystal is ‘peculiar’, it has no corresponding pseudopotential limit (normal modes of
regular polyhederons were investigated in [74]; see also references cited in [75]). For a very
accurate description of the modes in the Paul trap, we add to equation (32) the next Fourier
harmonic to obtain Ëu + [A − 2Q2 cos 2t − 2Q4 cos 4t] Eu = 0, and expand it in the method of
continued matrix inversions, using the formulae given in appendix B of [72], which generalize
the formulae presented in section 4. This modification is required in order to obtain accurately
the low-frequency modes of nearly degenerate configurations, as in a peculiar crystal.
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z
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Figure 1. The periodic ‘peculiar’ crystal solution of six ions in a linear Paul at
nearly spherical trapping parameters (see text for details). The average locations
correspond to a (nearly regular) octahedron. Upper left: the ions at zero rf
phase. The other three figures show the ion trajectories over one rf period. The
oscillation with a large amplitude is given by equation (23) with an accuracy of
0.5%. The axial micromotion amplitude is of the order of 10−4 of the ions’ radial
positions (see section 3.3).

6. Concluding comments

In this paper we have investigated the dynamics of ion crystals in rf traps. We repeat the
main results presented herein. In equation (7) we show that, in general, the rf couples the
pseudopotential normal modes of the crystal and also acts as a driving force. For a crystal
configuration that has the same symmetry as the trapping potential (e.g. a chain of ions or a
planar crystal in a trap with cylindrical symmetry), we find that the equations of motion for the
modes become decoupled Mathieu equations as in equation (10), for that the stability analysis
is trivial (but may be different from the pseudopotential approximation).

In equations (23) and (27), we derive the results that have been observed in experiments
and numerical simulations, namely that in a general ion crystal the micromotion amplitude in
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Figure 2. The ions’ primary direction of oscillation (given by EC0), in four
Floquet–Lyapunov modes, which are numbered starting from the lowest
frequency, with ξ1 being the lowest-frequency mode.

each coordinate is qα/2 of the respective average position and that in the linear Paul trap, the
axial micromotion is negligibly small.

When the crystal solution differs from the pseudopotential limit (as in the peculiar crystals
discussed above) or when a very accurate expansion of the modes is desired, the derivation of
equation (32) takes into account the full rf crystal solution and ion interactions along the periodic
trajectory. Section 4 briefly describes how to solve for the decoupled modes of oscillations of
the ions, allowing one to obtain explicitly the mode frequencies and solution vectors.

We have focused on single-species crystals in quadrupole traps, specifically the linear and
hyperbolic Paul traps. However, generalization to other cases is easy. Crystals in multipole
traps [76–78] can be treated by expanding the motion around a suitable periodic solution
{ ERπ

i } as in section 3.3. Keeping only the leading terms will lead to the equations treated
above. Segmented traps and trap arrays [79–82] can be handled simply by changing the
Mathieu parameters felt by each ion (assuming that the rf drive has an identical frequency).
Crystals of nonidentical ions and other types of driving can be treated similarly, and various
transformations [83] can be used to handle a more general linear system similar to equation (32),
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Figure 3. Comparison of the analytical expansion with the exact numerical
solution, for the Floquet–Lyapunov modes of figure 2, with small random initial
conditions. The modes are numbered starting from the lowest frequency, with
ξ1 being the lowest frequency mode. Time is measured in periods of the rf
frequency, and the corresponding natural nondimensional units are used for
distances.

such as systems with first-order derivatives (e.g. linear damping, gyroscopic forces or magnetic
fields [69, 84]).

The framework presented here for calculating the classical normal modes and their
frequencies can find immediate application in most studies involving trapped ion Coulomb
crystals, including studies of how ion Coulomb crystals differ from uniformly charged liquid
models [14], and possibly even crystalline beams [85, 86]. The analysis is based on linearization
of the nonlinear solution about a periodic solution, and the nonlinear correction terms can be
written as a series expansion in the Floquet modes about the crystal solution. In a quadrupole
trap the nonlinear terms would come only from the Coulomb interaction, and in a multipole
trap, there will be terms coming from the nonlinear trapping potential. Such an expansion may
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serve as a starting point for the study of nonlinear collective phenomena, e.g. the important
phenomenon of rf heating (e.g. [20, 73, 87, 88] and many more).

In addition, an exact quantum description of the modes, and wavefunctions in the
configuration space of the ions, is presented in [72] by utilizing the Floquet–Lyapunov
transformation described in section 4. The nontrivial time-dependent wavefunctions could,
e.g., eventually become important for understanding trapped ion chemistry at ultracold
temperatures [89].
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[56] Moore M G and Blümel R 1994 Prediction of an alignment transition region of two-ion crystals in a Paul trap

Phys. Rev. A 50 R4453–6
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