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Harmonic linear Paul trap: Stability diagram and effective potentials

M. Drewsen* and A. Bro”ner
Institute of Physics and Astronomy, University of Aarhus, 8000 Aarhus C, Denmark

~Received 23 December 1999; published 11 September 2000!

We present the single-particle stability diagram for the radial motion in a linear Paul trap in a situation where
the applied axial dc potential gives rise to a harmonic defocusing radial potential. Although most linear Paul
trap experiments have been conducted in a regime where this approximation is reasonably valid, the effect of
the axial confinement on the stability of the radial motion has not previously been analyzed. The defocusing
effect in both radial directions leads to a stability diagram different from that of the two-dimensional quadru-
pole mass filter, and hence points toward new studies of few ion dynamics. Expressions for the effective or
pseudopotentials for one and two charged particles are presented and discussed.

PACS number~s!: 32.80.Pj, 05.45.2a, 39.10.1j
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Since the first realization of two- and three-dimensio
radio frequency traps for charged particles in the 1950’s@1#
~generally referred to as Paul traps!, many varieties of such
traps have been suggested and constructed@1#. Even though
the linear Paul trap in retrospect seems to be one of the m
obvious configurations for obtaining three-dimensional c
finement, it was first proposed and demonstrated by Pres
et al. @2# 10 years ago. In all Paul traps the charged partic
have a spatially dependent micromotion at the driving f
quency superposed on a typically slower harmonic moti
In contrast to the original three-dimensional hyperbolic P
trap@1#, the linear trap has a trap axis rather than just a sin
point in coordinate space where the micromotion vanish
This fact has been the main reason for the popularity of
linear Paul trap in atomic physics, quantum optics, and m
trology, since a string of ions rather than just a single ion c
be studied without unwanted Doppler shifts induced by m
cromotion. Several proposals for realization of quant
computers have also been based on a string of ions in a li
Paul trap@3,4#. Furthermore, since inanypoint in space there
is no micromotion along the trap axis direction, it is possib
to laser cool large ion clouds along this axis without t
heating effects connected with the micromotion-induc
Doppler shifts@5#. This has enabled investigations of larg
ion Coulomb crystals@6,7#.

Generically, a linear Paul trap is just a quadrupole m
filter @1# with dc voltage confinement along the center axisz
axis! as sketched in Fig. 1. The defocusing effect of the
axial potential in the radial plane is obvious from the Lapla
law, and it has also been accounted for in previous desc
tions of the motion of ions in such traps@8#. The question of
under which axial confinement conditions stable radial m
tions exist has, however, not been addressed previously

In this Brief Report, we provide a stability diagram for th
radial motions in the case of a harmonic dc potential alo
the z axis. Though this might seem to be a special case
least at small distances from the trap center, it is genera
good approximation. Furthermore, we discuss some of
special features of such traps in contrast to the quadru
mass filter and the original Paul trap, and point toward t

*Electronic address: drewsen@ifa.au.dk
1050-2947/2000/62~4!/045401~4!/$15.00 62 0454
l

st
-
ge
s
-
.
l

le
s.
e
-

n
-

ar

d

s

c
e
p-

-

g
at
a
e
le
-

oretical and experimental investigations. We finally pres
expressions for the effective or pseudopotential for this t
in the case of one and two charged particles.

When discussing the radial motion of charged particl
from now on referred to as ions, in linear Paul traps,
similar motion in the quadrupole mass filter is often the sta
ing point. For the mass filter~Fig. 1 with Uend50), the mo-
tion of a single ion in thexy plane is described by the fol
lowing equations:

ẍ1~a22q cos 2t!x50, ~1!

ÿ2~a22q cos 2t!y50, ~2!

where

a[
4QUdc

MV2r 0
2

, q[
2QURF

MV2r 0
2

, andt[
1

2
Vt. ~3!

Here URF and V are the amplitude and frequency of th
applied RF field, respectively,M the mass andQ the charge
of the ion, r 0 the minimum distance from the electrodes
the trap axisz, while Udc refers to a dc voltage applied t
diagonal electrodes. The derivatives are given with respec
the dimensionless timet.

Stable radial motion for a single ion is achieved whene
the dimensionless parametersq anda are within the hatched
areas denotedA and B in Fig. 2 @9#. The quadrupole mas
filter description is, however, a reasonable approximation
the radial motion in linear Paul traps only when the defoc
ing effect of the axial confinement can be neglected, i
typically when the middle electrodes are much longer th
the radial spacing of the electrodes. In the opposite c
where the middle electrodes are short, the defocusing ef
can be strong and significant for the stability of the rad
motion. In the specific case ofUdc50, the equations of radia
motion can now be written:

ẍ1~a22q cos 2t!x50, ~4!

ÿ1~a12q cos 2t!y50 ~5!
©2000 The American Physical Society01-1
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FIG. 1. Sketch of a linear Paul trap. The tra
consists essentially of four rod-electrodes in
quadrupole mass filter configuration. Each rod
sectioned into three, allowing a dc voltageUendto
be applied to the eight end-electrode pieces. T
voltagesUi(t) in the figure are given byU1(t)
52(URF/2)cosVt, U2(t)5(URF/2)cosVt
1Udc, U3(t)52(URF/2)cosVt1Uend, and
U4(t)5(URF/2)cosVt1Udc1Uend.
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with

a[
4QUEff

MV2r 0
2

, ~6!

whereUEff is a voltage proportional to the applied dc volta
Uend of the eight end-electrode pieces to accommodate a
trapping~see Fig. 1!. The exact factor of proportionality de
pends on the specific trap geometry. Apparently, these e
tions of motion~4! and~5! are equivalent to those in Eqs.~1!
and~2!. There is, however, an important difference since
sign of the term containing thea parameter is now the sam
for the x and y motions. This means that the condition f
stable motion is the same for thex andy directions, and the
stability region for radial confinement is now given as t
gray-shaded region in Fig. 2@10#. It should be noted that, in
order to obtain axial confinement, thea parameter must al
ways be negative. In contrast to the mass filter or the orig
Paul trap, stable motion can in principle be obtained for a
applied RF voltage, though the stability range for thea pa-
rameter rapidly gets narrow for large values ofq. The stabil-
ity region for the harmonic linear Paul trap presented in F
2 contains the disjoint stability areasA ~partly! andB for the
mass filter. This feature is particularly interesting when co
paring nonlinear dynamics of two or more ions in this type
trap with those of the mass filter as well as with those of

FIG. 2. Single-ion stability diagrams for the quadrupole ma
filter ~the hatched areasA andB! and for the harmonic linear Pau
trap ~gray-shaded area!. The dimensionless parametersa andq are
defined in the text.
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original Paul trap@5,11,12#. If an additional dc voltage is
applied to diagonal electrodes, as often done with mass
ters, the radial stability region becomes the intersection
two stability regions as the gray-shaded one in Fig. 2, d
placed by6adc along thea axis, respectively. Hereadc is the
value ofa associated by the applied diagonal dc voltageUdc.

If adc50 anda,q2!1, the effective or pseudopotential fo
a single ion can be approximated by

UPseudo~r ,z!5
1

2
v r

2r 21
1

2
vz

2z2, ~7!

with

v r5Aa1
1

2
q2, vz5A22a and r 25x21y2, ~8!

where a is defined as in Eq.~6! and v r and vz are the
effective radial and the axial oscillation frequencies, resp
tively.

When describing the motion of two identical ions simu
taneously present in the trap, the Coulomb interaction
tween them has to be taken into account. In this case
practical to separate the motion of the ions into a relative
a center-of-mass motion. The latter is identical to the o
presented in Eq.~7! for the motion of a single ion. Denoting
the relative coordinatesx, y, andz, the following equations
are obtained for the relative motion:

ẍ5
x

r3
2~a22q cos 2t!x, ~9!

ÿ5
y

r3
2~a12q cos 2t!y, ~10!

z̈5
z

r3
12az, ~11!

where r5Ax21y21z2 is the distance between the ion
Here all lengths are measured in units ofA3 2Q2/p«0MV2,
which is of the order of a micron whenV is in the MHz
range. In the case where the center of mass motion is ce
by some cooling mechanism, Eqs.~9!–~11! describe com-
pletely the motion of the ions. Applying the same method
that used in Ref.@13# for determining the pseudopotential fo
two ions in the original Paul trap, the following pseudop
tential is found:
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UPseudo~x,y,z!5
1

r
1

1

2
ar22az2

1
q2

D S ~42a!r 21
r 2

r3
2

12x2y2

r5 D ,

~12!

where, again,r 25x21y2, r25r 21z2 and

D5S 42a1
1

r3D S 42a1
1

r3
2

3r 2

r3 D . ~13!

This expression is rather complicated, but for the limit whe
a,q2!1 and r@1, the potential reduces to the single-io
potential given by Eq.~7! with an additional Coulomb term
1/r. When the two ions are close to their equilibrium d
tance at zero temperature,r@1 is fulfilled if a,q2!1. When
such a simplified equation is used to determine the orie
tion of a two-ion crystal~defined as the equilibrium configu
ration at zero temperature! in the trap, one finds that the io
crystal will lie in thexy plane with no preferred orientation
vz.v r , while for vz,v r its orientation will be along thez
axis. The equilibrium distance would bev22/3 ~in the scaled
units used!, wherev is the smallest of the secular freque
cies. The borderline between these two types of orientatio
defined byv r5vz , leading toa52 1

6 q2. The corresponding
curve within the single-ion stability region is presented~dot-
ted curve! in Fig. 3.

When the full pseudopotential Eq.~12! is used, one finds
that the two-ion crystal will be oriented either along thez
axis or in thexy plane, as predicted by the above simp

FIG. 3. Section of the stability diagram for the harmonic line
Paul trap~gray-shaded area!. The curves represent the borderlin
for two-ion crystals being oriented along thez axis for the simpli-
fied pseudopotential given by Eq.~7! plus a 1/r Coulomb term
~dotted line!, for the pseudopotential given by Eq.~12! ~dashed
line!, and from molecular dynamics simulations~solid line!. Above
the lines, the two-ion crystal is supposed to be oriented along tz
axis.
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approximation. Due to the last term in Eq.~12!, there are,
however, only two possible orientations within thexy plane.
The ions orient either along the line defined byx5y or along
the line defined byx52y. This is in contrast to the hyper
bolic Paul trap, where ‘‘peculiar’’ crystal orientations can b
present@13,14#. Simulations performed using Eqs.~9!–~11!
confirm this. Curves representing the borderlines for crys
oriented along thez axis derived from the full pseudopoten
tial in Eq. ~12! or obtained from molecular dynamics simu
lations based on Eqs.~9!–~11! are represented in Fig. 3 b
the dashed and solid curves, respectively. While the sim
fied pseudopotential given by Eq.~7! plus the 1/r Coulomb
term are appropriate for determining the two-ion crystal o
entation for small values ofq, it is clear from Fig. 3 that the
more general potential given by Eq.~12! yields nearly the
correct crystal orientation for all values ofq.

Currently, we plan to investigate experimentally the v
lidity of the pseudopotential approximation by studying t
shape of ion Coulomb crystals as a function of trapping
rameters, and we have initiated theoretical studies of the
crystal stability within the single ion stability diagram show
in Fig. 3.

In the same way as a dc voltage applied to diagonal e
trodes can be used to obtain mass selection in a quadru
mass filter, the voltage on the end-electrode piecesUend can
be used to obtain mass selection in a harmonic linear P
trap. Recently, we have been able to eject25,26Mg1 ions
selectively, while keeping24Mg1 ions trapped in a linear
Paul trap using this technique. This mass selection proc
has also been applied to show that N2

1 molecular ions have
been trapped and cooled translatorically by laser-coo
24Mg1 ions. The motion of the ions becomes unstable due
a vanishing effective potential in practically the entirexy
plane simultaneously with an increasingUend, in contrast to
the mass filter for which the increase inUdc leads only to
instability along one specific axis. This difference may le
to a reduced heating and loss of the remaining ions when
axial voltage is used as the mass selector. Furthermore,
linear Paul trap that meets the harmonic assumptions ab
it is possible experimentally to investigate larger ion Co
lomb crystals in RF traps under various effective harmoni
confinement conditions. In such experiments, possible de
tions of these crystals’ outer shapes and inner structures f
those predicted by the theory of Coulomb crystals in sta
harmonical potentials@15# can be studied.

In conclusion, we have presented a stability diagram
the linear Paul trap that in many situations is more appro
ate than the stability diagram for the two-dimensional qu
rupole mass filter. Expressions for the effective pseudopo
tials for the one- and two-ion cases have been derived,
we have pointed toward various new theoretical and exp
mental work involving harmonic linear Paul traps.
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National Research Foundation through the Aarhus Cente
Atomic Physics~ACAP!, the Danish Natural Science Foun
dation~SNF!, and the authors are grateful to Torkild Ande
sen for critical reading of the manuscript.
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