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I. INTRODUCTION

Today, one of the most promising physical systems for an
experimental realization of quantum computation is a string
of trapped ions[1]. In such a realization, a quantum bit(qu-
bit) is represented by two internal states of an ion on which
quantum logic operations can be performed through laser-ion
interactions. Any quantum logic operation can, e.g., be com-
posed of single-qubit operations and controlled-NOT (CNOT)
gates between any two ions in the string[2]. While single-
qubit gates are relatively simple to perform, theCNOT and
equivalent two-ion gates are more demanding and usually
also slow as compared to single-ion gates. Only very re-
cently such two-ion gates have been demonstrated experi-
mentally [3,4]. One class of two-ion gates is the geometric
quantum gates, where internal state dependent forces dis-
place the ions away from their equilibrium positions. The
associated shift of their Coulomb potential energy gives rise
to a phase factor which depends on the internal states of both
ions, and which hence provides a nontrivial two-qubit gate
[5]. Geometric gates can be relatively fast as compared to
other two-ion gates and furthermore they allow a high fidel-
ity since transitions between the internal states of the ions are
not directly involved[4,6]. The demonstration of aCNOT-
gate presented in Ref.[4] is an example of a geometric quan-
tum gate where the displacing force is provided by the opti-
cal dipole force from a moving standing wave light field.
Other implementations, e.g., employing arrays of so-called
microtraps have been studied theoretically[5,7,8].

In this paper we propose an experimental realization of a
geometric quantum gate on a string of ions confined in a
linear Paul trap[9], where the internal state dependent force
is provided by the optical dipole force from a laser beam
propagating perpendicular to the ion string. We describe a
method which allows the laser to be far detuned from any
internal transitions such that spontaneous scattering events
can be strongly suppressed.

The paper is organized as follows. In Sec. II we present a
full quantum analysis of the dynamics of the system to ob-

tain the correct values for the phase factors and to properly
assess the effect on the atomic motion in the trap. In Sec. III,
we consider specific implementations in alkaline-earth-metal
ions. Assuming a Gaussian intensity profile of the applied
laser beam, we find in Sec. IV experimentally relevant pa-
rameters for an implementation of the gate proposal using
40Ca+ or 138Ba+ ions and discuss relevant error sources. Fi-
nally, in Sec. V, we give a discussion and a conclusion.

II. THEORY

We consider a pair of ions confined to the trap axis of a
linear Paul trap, i.e., the axis where the rf-field vanishes[9].
A laser beam which is far-off resonant with all internal tran-
sitions in the ions and propagates perpendicular to the trap
axis induces an optical dipole force. This force can be de-
scribed by a potentialUdipsz,ad which depends on the posi-
tion variablez along the trap axis, and on the internal state
label a taking one of two possible values, represented by↑
and ↓ in the following. The potential is controlled by the
intensity, waist, polarization, and wavelength of the laser
beam[10].

For an ion string illuminated by a dipole force inducing
beam its total potential energy,U, is the sum of the dipole
potential of each ion, the potential energy of the ions due to
the trap and due to their mutual Coulomb repulsion. Specifi-
cally for two singly-charged ions of massm, we have

Usz1,z2,a1,a2d =
1

2
mvz

2sz1
2 + z2

2d +
e2

4pe0uz2 − z1u

+ Udipsz1,eq,a1d − Fdipsz1,eq,a1dsz1 − z1,eqd

+ Udipsz2,eq,a2d − Fdipsz2,eq,a2dsz2 − z2,eqd,

s1d

wherevz is the single ion oscillation frequency in the trap
and where a linear expansion of the dipole potential around
the equilibrium positionszi,eq si =1,2d has been applied.
Fdipszi,eq,aid=−]Udipsz,aid /]zsz=zi,eqd is the optical dipole
force exerted on theith ion.

Rather than considering aCNOT gate, we shall in the fol-
lowing focus on implementation of the equivalent
controlled-Z two-qubit gate[11]. A controlled-Z gate applied
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to a superposition of the product statesu↓lu↓l, u↓lu↑l, u↑lu↓l
and u↑lu↑l changes the sign of theu↑lu↑l term (i.e., the phase
of this state is changed byp), while leaving the others un-
changed. The implementation of a geometric controlled-Z
gate relies on the fact that the dipole force is internal state
dependent. The origin of this dependence will be described
in the next section. As mentioned above, the idea is that the
dipole force displaces the ions away from their equilibrium
positions, and the associated change in Coulomb energy
gives rise to phase shifts which depend on the internal states
of the ions. By choosing a suitable temporal and spatial pro-
file of the dipole force inducing beam, the obtained phase
shifts of the above-mentioned four product states can be
made equivalent to a controlled-Z gate.

To describe the motion of the ions, we first rewrite Eq.(1)
as follows

Usz1,eq,z2,eq,a1,a2,td =
3

4
mvz

2Dz2 +
1

2
mvz

2sz+
2 + 3z−

2d

+ Udipsz1,eq,a1,td + Udipsz2,eq,a2,td

−
1
Î2

fFdipsz1,eq,a1,td

+ Fdipsz2,eq,a2,tdgz+

−
1
Î2

fFdipsz2,eq,a2,td

− Fdipsz1,eq,a1,tdgz−, s2d

wherez+=sz2+z1d /Î2 andz−=sz2−z1−Dzd /Î2 are the mo-
tional mode coordinates for the so-called center-of-mass
mode and the breathing mode[12], respectively, andDz
=z2,eq−z1,eq denotes the equilibrium distance between the
ions. Turning to a quantum mechanical description, we intro-
duce lowering(raising) operatorsa sa†d and b sb†d for the
mode coordinates, i.e.,ẑ+=Î" / s4mvzdsa+a†d and ẑ−

=Î" / s4mÎ3vzdsb+b†d, to find the Hamiltonian

H = "vza
†a + Î3"vzb

†b + Udipsz1,eq,a1,td + Udipsz2,eq,a2,td

+ f+sa1,a2,tdsa + a†d + f−sa1,a2,tdsb + b†d, s3d

where

f+sa1,a2,td = −Î "

8mvz
fFdipsz1,eq,a1,td + Fdipsz2,eq,a2,tdg

s4d

and

f−sa1,a2,td = −Î "

8mÎ3vz

fFdipsz2,eq,a2,td − Fdipsz1,eq,a1,tdg

s5d

are responsible for excitation of the center-of-mass mode and
the breathing mode, respectively. The time evolution of the
system can be described by a unitary time-evolution operator
U, which evolves state vectorsC in time according toCstd
=UstdCst=0d. Ustd solves the time dependent Schrödinger

equation, i̇"U̇std=HstdUstd, Us0d= I. Since the Hamiltonian
can be decomposed as a sum of commuting terms,U can be
expressed as a product

U = expF−
i

"
E

0

t

dt8fUdipsz1,eq,a1,t8d + Udipsz2,eq,a2,t8dgG
3 U+stdU−std, s6d

where U+std and U−std are time-evolution operators corre-
sponding to the Hamiltonians

H+ = "vza
†a + f+sa1,a2,tdsa + a†d s7d

and

H− = Î3"vzb
†b + f−sa1,a2,tdsb + b†d, s8d

respectively. In the following we solve forU+ with the un-
derstanding that the solutionU− can be obtained fromU+
simply by replacingf+ with f− andvz with Î3vz. To this end,
we switch to the interaction picture with respect to the
Hamiltonian of the free harmonic oscillator

Hint,+ = eivzta
†af+sa1,a2,tdsa† + ade−ivzta

†a

= f+sa1,a2,tdsae−ivzt + a†eivztd s9d

and make the ansatz that

Uint,+ = eivzta
†aU+ = e−ub+u2/2eif+eib+

* a†
eib+a. s10d

From the Schrödinger equation forUint,+ it follows that the
harmonic oscillator phase-space displacementb+sa1,a2,td
=p+/Îm"vz− iz+/Î" / smvzd, with p+ being the center-of-
mass mode momentum, can be written as

b+sa1,a2,td = −
1

"
E

0

t

dt8f+sa1,a2,t8de−ivzt8 s11d

and that the phasef+ acquired due to excitation by the force
term f+ is given by

f+sa1,a2,td = −
1

"2 ImFE
0

t

dt8f+sa1,a2,t8de−ivzt8

3 SE
0

t8
dt9f+sa1,a2,t9deivzt9DG . s12d

The displacement of the ions is internal state dependent,
which leads to coupling(or entanglement) between the inter-
nal and the motional states. For the gate operation, this is an
undesired effect and we shall therefore request the displace-
ment to be zero at the end of the gate operation, such that
Uint,+=eif+. In the implementation of the controlled-Z gate
described below, we will take the dipole-potential to be of
the formUdipszi ,ai ,td=Uconstszid+Uoscszi ,aidgstd, si =1,2d in
a time intervalf0,Tg and zero otherwise, specifically with
gstd=0 outside this interval. To avoid the large internal
state dependent phase factors in Eq.(6) we furthermore
assumee0

Tgstddt=0. The force term f+ can be written
as f+sa1,a2,td= fconstsz1,eq,z2,eqd+ foscsz1,eq,z2,eq,a1,a2dgstd,
which together with Eq.(11) implies that the center-of-mass

STAANUM, DREWSEN, AND MØLMER PHYSICAL REVIEW A70, 052327(2004)

052327-2



mode displacement at the end of the gate operation can be
written

b+sTd = i
fconst

"vz
s1 − e−ivzTd − i

fosc

"
E

0

T

dt gstde−ivzt. s13d

Both terms of this expression vanish ifT is an integer num-
ber n of oscillation periods,T=2pn/vz, and if the Fourier
transform

g̃svzd =
1

Î2p
E

−`

`

dt gstde−ivzt =
1

Î2p
E

0

T

dt gstde−ivzt

= 0. s14d

From Eq.(12) it can be shown that the phase acquired during
the gate operation can be expressed as

f+sTd =
1

"2 E dv8
u f̃+sv8du2

v8 − vz

= C1fconst
2 + C2fconstfoscg̃s0d +

1

"2 E dv8
ug̃sv8du2

v8 − vz
,

s15d

where f̃+svd is the Fourier transform off+std andC1 andC2

are constants. The first term on the right-hand side is irrel-
evant, since it does not depend on the internal state of the
ions and the second term vanishes since we have required
g̃s0d=s2pd−1/2e0

Tgstddt=0. The interesting term is the last
one, from which we observe that the closer the characteristic
frequencies of the functiongstd are to the oscillation fre-
quencyvz (or Î3vz for the breathing mode), the larger is the
accumulated phase. It is thus a natural choice to adopt a
harmonic time dependent force that oscillates with just one
oscillation cycle less(or more) than the trapping motion dur-
ing the interaction timeT. In Fig. 1(a), one example of a
phase-space trajectory of the center-of-mass mode of two
ions in theu↓lu↓l state is shown. The duration of the interac-
tion is taken to be 15 trapping periods, and 14 periods of the
applied periodic force. We observe that the net displacement
vanishes at the end of the gate operation. For the same inter-
action, Fig. 1(b) shows the phase-space trajectory of the
breathing mode with the ions being in theu↓lu↑l state. The
breathing mode frequency ofÎ3vz is far-off resonant with
the frequency of the applied force and hence the breathing
mode is much less excited than the center-of-mass mode.
Note that since 15Î3=25.98<26, this oscillator mode under-
goes an almost integer number of oscillations and hence it
experiences a nearly vanishing net displacement at the end of
the gate operation. Other good choices for the duration of the
interaction in units of the trapping period are 56s56Î3
=96.995<97d, and 209 s209Î3=361.9986<362d. The
phasesf± are equal to the areas of thesz± ,p±d phase-space
trajectories in units of", and they depend on the internal
state of both ions, as needed for a two-qubit gate. Figure 1(c)
shows the build-up of the phase during the interaction. The
parameters have been chosen to ensure an effective phase
shift of p on theu↑lu↑l state[see Eq.(33) below] as desired
for the controlled-Z gate. In the following section on the

physical implementation of the scheme, analytical expres-
sions for the acquired phases are provided.

III. IMPLEMENTATION IN ALKALINE-EARTH-METAL
IONS

A. Atom-light coupling

Since alkaline-earth-metal ions are among the most
prominent atomic ions for doing quantum logic, we will now
focus on experimental realizations of the controlled-Z gate
based on such ions with presentations of specific results for
40Ca+ and 138Ba+. We choose the qubit states to beu↓ l
=n 2S1/2s−1/2d andu↑ l=n 2S1/2s+1/2d, on which single qubit
operations can be performed using Raman transitions via the
n 2P1/2 level. Assuming that the frequencyvL of the dipole
force inducing laser is close to or below the transition fre-
quencies v1/2 and v3/2 of the n 2S1/2−n 2P1/2 and the
n 2S1/2−n 2P3/2 transitions, respectively, we may to a good
approximation only consider contributions from these two
transitions to the dipole potential[as long asvL is not in the
immediate vicinity of the transition frequencies of the weak
n 2S1/2−sn−1d 2D3/2,5/2 electric quadrupole transitions]. Ex-
panding the dipole force inducing beam intos+- and
s−-polarized light components with respect to its propaga-
tion axis (the quantization axis), the contributions to the di-
pole potential for the two statesu↓l and u↑l are those associ-
ated with the transitions indicated in Fig. 2. The respective
dipole potentials can consequently be written

U↓ = c+I+ + c−I−, U↑ = c−I+ + c+I−, s16d

whereI± is the intensity of thes+- ands−-polarized compo-
nents, respectively, and where

c+ =
3pc2

2
F 2G1/2

3v1/2
3 S 1

v1/2 − vL
+

1

v1/2 + vL
D

+
G3/2

3v3/2
3 S 1

v3/2 − vL
+

1

v3/2 + vL
DG s17d

and

c− =
3pc2

2

G3/2

v3/2
3 S 1

v3/2 − vL
+

1

v3/2 + vL
D s18d

depend only on the properties of the ion and the frequency
vL of the dipole force inducing laser. Here,G1/2 andG3/2 are
the transition strengths of then 2S1/2−n 2P1/2 and the
n 2S1/2−n 2P3/2 transitions, respectively. As can immediately
be seen, the force derived from this dipole potential will be
different for the two qubit states, whenever the intensities of
the two polarization components differ. Hence, by introduc-
ing a sinusoidal temporal variation of the intensity of the
polarization components given by

I±sz,td =
1

2
Iszdf1 ± sinsVtdg, s19d

which can be done by, e.g., using an electro optic phase
modulator, the situation considered in Sec. II can be ob-
tained.
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From Sec. II we thus identifygstd=sinsVtd for 0ø tøT.
As for the choice ofV, we recall the requirementsT
=2pn/vz with n integer, g̃s0d= g̃svzd= g̃sÎ3vzd=0 and that
the characteristic frequency ofgstd, i.e., V, should be close
to vz. Consequently, a good choice isV=s1−1/ndvz with

n@1, as in the example of Fig. 1 wheren=15. The Fourier
transform ofgstd on the intervalf0,Tg contains two terms
which are proportional to sinfsv−VdT/2g / sv−Vd and
sinfsv+VdT/2g / sv+Vd, respectively. These sinc-functions
peak atv=V andv=−V, while they have exact zeros atv
=0 and v=vz. Furthermore, they are suppressed atv
=Î3vz, especially whenÎ3n is close to an integer.

B. Phase shifts

In order to calculate the displacement and the acquired
phase for the center-of-mass mode for the specific intensity
variation in Eq.(19), the f-functions entering in the integrals
in Eqs. (11) and (12) have to be determined using the defi-
nition in Eq. (4). For f+, which is responsible for excitation
of the center-of-mass mode, we find

f+s↓↓d = − ff0+ + f1+ sinsVtdg, s20d

f+s↓↑d = − ff0+ + f2+ sinsVtdg, s21d

f+s↑↓d = − ff0+ − f2+ sinsVtdg, s22d

f+s↑↑d = − ff0+ − f1+ sinsVtdg, s23d

where

f0+ =Î "

8mvz
sF̃1 + F̃2dsc+ + c−d, s24d

f1+ =Î "

8mvz
sF̃1 + F̃2dsc+ − c−d, s25d

f2+ =Î "

8mvz
sF̃1 − F̃2dsc+ − c−d, s26d

and

F̃i = −
1

2
U ]Iszd

]z
U

z=zi,eq

si = 1,2d. s27d

The full time-dependent expressionsbstd and fstd, which
were used for obtaining the plots in Fig. 1, can be found by
carrying out the integrals in Eqs.(11) and(12) for the center-
of-mass mode as well as the breathing mode[13]. Here we

FIG. 1. Real and imaginary parts of the center-of-mass mode
and the breathing mode displacementb±std and the acquired phase
with n=15. The parameters are chosen such that an effective phase
shift equal top of the u↑l u↑l state[see Eq.(33) below] is obtained.
(a) Parametric plot showing (Refb+stdg , Imfb+stdg)
=sp+/Î"mvz,−z+/Î" /mvzd when the ions are inu↓l u↓l. (b) Para-
metric plot showing (Refb−stdg , Imfb−stdg)=sp−/Î"mÎ3vz,
−z−/Î" /mÎ3vzd when the ions are inu↓l u↑l. In both(a) and(b) the
phase-space trajectory starts out from the origin and goes clockwise
as time elapses.(c) Acquired phase. The solid line is the total ef-
fective phase of 2ff+s↓↓ ,td−f−s↓↑ ,tdg. The dashed line is the
center-of-mass mode contribution of 2f+s↓↓ ,td. The dotted lines
indicate phases of 0 andp.

FIG. 2. Relevant energy-levels and transitions in alkaline-earth-
metal ions(e.g.,40Ca+, 88Sr+, and138Ba+) for calculating the dipole
potential for the qubit statesu↓ l=2S1/2s−1/2d (solid lines) and u↑ l
=2S1/2s+1/2d (dashed lines) due to a dipole force inducing laser
beam containings+− ands−− polarized components with intensi-
ties I+ and I−, respectively.c+ andc− are defined in the text.
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only state the acquired phases at the end of the gate opera-
tion, which for the center-of-mass mode are given by

f+s↓↓,Td = f+s↑↑,Td =
f1+
2

s2"d2

2vzT

vz
2 − V2 <

f1+
2

s"vzd2

n2p

2
,

s28d

f+s↓↑,Td = f+s↑↓,Td =
f2+
2

s2"d2

2vzT

vz
2 − V2 <

f2+
2

s"vzd2

n2p

2
,

s29d

neglecting a term which is independent of the internal state
and assumingn@1. These phases scale quadratically withn
with one factor ofn originating from the timeT and the other
originating from the denominator, due to the fact thatV was
chosen to be near-resonant withvz. The phases acquired due
to excitation of the breathing mode are likewise found to be

f−s↓↓,Td = f−s↑↑,Td =
f1−
2

s2"d2

2Î3vzT

3vz
2 − V2 <

f1−
2

s"vzd2

Î3np

2
,

s30d

f−s↓↑,Td = f−s↑↓,Td =
f2−
2

s2"d2

2Î3vzT

3vz
2 − V2 <

f2−
2

s"vzd2

Î3np

2
,

s31d

where

f1− = f1+
F̃2 − F̃1

Î43sF̃2 + F̃1d
, f2− = f2+

F̃2 + F̃1

Î43sF̃2 − F̃1d
. s32d

These phases only scale linearly withn, since the rotation
frequencyV is off-resonant with the breathing mode fre-
quency of Î3vz. In Eqs. (30) and (31), terms which are
smaller than the stated terms by a factor ofn and further
suppressed ifÎ3n is close to an integer have been neglected.

The combined effect of the above phase shifts is equiva-
lent to a single phase shiftf±=f±s↓↓ d−f±s↓↑ d−f±s↑↓ d
+f±s↑↑ d=2ff±s↓↓ d−f±s↓↑ dg of the u↑lu↑l state[8]. Thus,
to make a controlled-Z gate, we require that

p = 2ff+s↓↓,Td + f−s↓↓,Td − f+s↓↑,Td − f−s↓↑,Tdg

<
pn2

s"vzd2F f1+
2 − f2+

2 +
Î3

n
sf1−

2 − f2−
2 dG . s33d

IV. REALIZATION OF THE CONTROLLED- Z GATE
USING GAUSSIAN LASER BEAMS

A. Intensity requirements and off-resonant scattering rates

In the following we will consider possible realizations of
a controlled-Z gate in a two ion string using one or two
dipole force inducing laser beams propagating perpendicular
to the trap axis as sketched in Fig. 3. In the first case shown
in Fig. 3(a), we assume that the equilibrium distanceDz be-
tween the two ions is smaller than the waist of the laser
beam, such that they feel essentially the same strong dipole
force. The situation in Fig. 3(b) corresponds to a case where

the size of the force on the two ions are the same but of
opposite sign for identical internal states. Finally, Fig. 3(c)
shows a realization similar to the first case, but with appli-
cation of two laser beams.

Since in all cases we will assume the ions to be situated
close to one of the points in the intensity profile where the
induced dipole force is largest, much of the analysis is simi-
lar for the three situations. Hence, in the following we will
focus on the situation in Fig. 3(a) in order to establish formal
equations. Assuming the ion string is centered atz=0, we
may write the intensity of the dipole force inducing beam as

Iszd = I0e
−2sz − z0d2/W2

, s34d

where z0=W/2 is the center of the dipole force inducing
beam,W is the beam waist andI0 is the peak intensity. For
the gate operation two highly relevant and linked parameters
are the required peak intensityI0 and the fidelity loss due to
off-resonant scattering events. The required peak intensity
enters in Eq.(33) through thef-functions. For a given wave-
length and a given choice of beam waist the required peak
intensity can be determined. Using the definitions in Eqs.

(25)–(27) and (32), we find F̃1< F̃2<e−1/2I0/W, f2+< f1−
<0 and a pair of nonzero expressions forf1+ and f2−, which
together with Eq.(33) yields the required peak intensity

I0 <Î2e1"vz
3mW2

n2sc+ − c−d2 , s35d

where only the leading term inn has been retained. The
scaling with the various parameters is intuitively reasonable.
First, it has already been discussed that largen leads to a
large phase pick-up and hence a low intensity requirement.
Second, the larger the differencec+−c−, the larger is the
dipole force difference foru↓l and u↑l. Third, if the waist is
small, the dipole force is large, which in turn reduces the
required intensity. Note also that the required laserpower
s,I0W

2d is proportional toW3, which makes a small waist
very attractive.

FIG. 3. Three possible configurations for realizing the two-ion
gate considered in the text.(a) Two ions positioned at distances of
W/2±Dz/2 from the center of a Gaussian laser beam.(b) Two ions
positioned at distances of ±W/2= ±Dz/2 from the center of a
Gaussian laser beam.(c) Two ions, each positioned at a distance of
W/2 from the center of a tightly focused Gaussian laser beam.
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Knowing the required intensity, we can now determine the
average probabilityPsc for a scattering event from one of the
two ions during the gate operation. Formally, we can write
Psc<GscT sGscT!1d, whereGsc is the average total scatter-
ing rate of the two ions. Assuming an equal average popula-
tion of the two internal states and an intensity ofe−1/2I0 at the
position of the ions, the dominant scattering from then 2P1/2
and then 2P3/2 state yields

Psc<
G̃sc

c+ − c−

Î8p2"vzmW2, s36d

where

G̃sc=
3pc2vL

3

2"
FG1/2

2

v1/2
6 S 1

v1/2 − vL
+

1

v1/2 + vL
D2

+
G3/2

2

v3/2
6 S 1

v3/2 − vL
+

1

v3/2 + vL
D2G . s37d

The dependency ofPsc on the internal structure of the ion
and the wavelength of the dipole force inducing laser is con-

tained in the front factor ofG̃sc/ sc+−c−d, showing thatPsc

can be minimized either by makingG̃sc small or c+−c−

large. G̃sc becomes small in the limitvL!v1/2,v3/2 due to
the factor ofvL

3, however, in the same limitc+−c− is pro-
portional to thedifferenceG1/2v1/2

−4 −G3/2v3/2
−4 , which is also

small. Alternatively, ifv1/2,vL,v3/2, c+−c− can become

a sumof two positive terms, however, forG̃sc to be small in
this case, a large fine-structure splitting is required. Both in
the far-off resonant case and when the dipole force inducing
laser is tuned in between the fine-structure levels, the138Ba+

ion turns out to be more attractive than the40Ca+ ion. An-
other candidate ion is88Sr+ which for the present gate pro-
posal is less attractive than138Ba+ but more attractive than
40Ca+. In the following we only consider40Ca+ and138Ba+.

B. Experimental parameters for 40Ca+ and 138Ba+

To get more quantitative numbers out, we now consider
the cases of two40Ca+ or two 138Ba+ ions in a trap withvz
=2p31 MHz, which leads to an equilibrium distanceDz of
5.6 mm and 3.7mm between two ions, respectively. First we
consider the situation depicted in Fig. 3(a) for Dz!W,
such that the dipole forces on the two ions are
equal. To fulfill this we choose a waist of 30mm. Finally,
by choosingn=15sÎ3n<26d the intensity and the scattering
rate can be calculated for a given wavelength of the
dipole force inducing laser beam. For40Ca+ and 138Ba+

with the dipole force inducing laser tuned either in
between the fine-structure levels or far red detuned,
we find the following values for(power,Psc, lL), wherelL
is the dipole force inducing laser wavelength.40Ca+:
s8 W,30% ,395.1 nmd ands,0.5 MW,,4% ,.1500 nmd.
138Ba+: s86 W,6% ,474.5 nmd, and s,33 kW,,1.2% ,
.1000 nmd. Clearly, this is not very promising for experi-
mental realizations. However, since the main problem is the
requirement thatW@Dz, the situation depicted in Fig. 3(b) is
more favorable. HereW=Dz with the ions positioned sym-

metrically around the center of the dipole force inducing
beam. Since we do not have the requirement thatDz!W we
can choose a lower trap frequency ofvz=2p3200 kHz,
which implies thatDz is equal to 16.4mm for 40Ca+ and
10.9mm for 138Ba+ and which yields the following values
for (power, Psc, lL). 40Ca+: s120 mW,8% ,395.1 nmd and
s,6.5 kW,,0.9% ,.1500 nmd. 138Ba+: s360 mW,1% ,
474.5 nmd ands,140 W,,0.2% ,.1000 nmd. For high fi-
delity gates the required power is experimentally still too
demanding.

Finally, we consider the situation presented in Fig. 3(c)
where the waist of the applied laser beams is not directly
related to the equilibrium distance between the ions and
hence rather tightly focused beams can be applied. As long
as the beam waists are larger than the thermal excursion of
the ions from their equilibrium positions, the equations de-
rived above for the case of Fig. 3(a) are immediately appli-
cable. Forvz=2p3200 kHz andW=5 mm, we plot in Fig.
4 the required laser power andGscT< Psc for 40Ca+ and
138Ba+ as a function of the dipole force inducing laser wave-
length. The plots in Figs. 4(a) and 4(c) extend to a wave-
length of 5mm in order to show the long wavelength behav-
ior, however, one should keep in mind that due to diffraction
it is technically demanding to obtain a 5mm waist for the
longest wavelengths. In all plotsn=15 was chosen, which
gives a very reasonable gate time ofT=75 ms.

For 40Ca+, we see from Fig. 4(a) that a high power of
,200 W is required in the long wavelength limit for the
considered parameters. However, by choosingn=209 instead
of 15, the required power drops to,15 W at the cost of an
increased gate time ofT=1 ms. Considering the challenge of
diffraction, a laser at a wavelength of 2mm would be favor-
able in the long wavelength limit. Fortunately, the required
power of,15 W is easily achievable with commercial Thu-
lium fiber lasers operating in the range of 1.75–2.2mm [14].
Hence, high fidelity gates withPsc<10−3 should be possible.
Other interesting lasers in the far-off resonant regime are the
Nd:YAG (yttrium aluminium garnet) laser at 1064 nm and
the CO-laser near 5mm, but the relatively high scattering
probability and diffraction limitations, respectively, makes
these lasers less attractive than the Thulium fiber laser. A
wavelength near 395 nm is furthermore attractive for40Ca+

[see Fig. 4(b)], since the needed power of only,3 mW eas-
ily can be obtained. The scattering probability is a few per-
cent, which is acceptable for a first demonstration, but not
good enough for implementation of error correcting
schemes. By a further reduction of the beam waist, e.g., by
placing a lens system inside the vacuum chamber where the
ion trap is situated, it should be possible to focus to below
1 mm [15] and hence reduce the scattering rate by a factor of
5–10.

Due to the larger fine-structure splitting of138Ba+, the
scattering probability is already below 1% for a wavelength
around 475 nm[see Fig. 4(d)] between the 62S1/2−6 2P1/2,
2P3/2 transition wavlengths. The low laser power needed in
this wavelength region can easily be supplied by frequency
doubled diode laser systems. Note also that light from an
argon-ion laser at a wavelength of 488 nm could be a rea-
sonable possibility. However, as for40Ca+ a Thulium fiber
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laser seems to be most ideal, since high fidelity gates with
Psc<10−4 (a value comparable to the threshold value re-
quired for fault-tolerant quantum computation[16]) should
be feasible with laser powers of about 14 W for the case with
n=15 andT=75 ms as shown in Fig. 4(c). In the long wave-
length limit, the 1064 nm wavelength of a Nd:YAG laser
could also be a possibility since a scattering probability of
,10−3 at a laser power of,7 W is achievable. It should be
noted that in all cases discussed above, the required power,
the scattering probability and the gate time can be adjusted
by changingn, vz, andW.

C. Error sources

When we considered the realization of the gate schemes
above, we already discussed the effect of spontaneous emis-
sion on the fidelity of the gate operations. There are, how-
ever, other experimental error sources which will also influ-
ence the final fidelity of an actual realization. A key element
in the present gate proposal is the polarization rotation,
which serves to remove phases due to internal state depen-
dent Stark shifts. Since the Stark shifts are of first order in
intensity and the phase acquired by the change in Coulomb
energy only originates from second order effects, even small
errors in the laser parameters may be very critical to the
actual gate operation. In the following subsections, errors
due to nonperfect balancing of the two polarization compo-
nents of the dipole force inducing laser beam, timing errors
as well as power, position and frequency fluctuations of the
dipole force inducing laser are discussed.

1. Polarization errors

In case there is an imbalance of the intensity in the two
polarization components, such that

I±sz,td =
1

2
Iszdf1 ± epgf1 ± sinsVtdg, s38d

whereep accounts for the imbalance, there will be two extra
terms in the dipole potential. One termf~ep sinsVtdg enters
with the same sign inU↓ andU↑ and hence it does not give
rise to any Stark-shift induced phase difference betweenu↓l
and u↑l. The other term,epIszdsc+−c−d /2, enters with a dif-
ferent sign inU↓ andU↑, which leads to a phase difference of
Df=epIszdsc+−c−dT/" betweenu↓l andu↑l in each ion at the
end of the gate operation. Since this difference should be
much smaller than the desired phase shift ofp, we find by
using the expression forDf, Eqs. (34) and (35) and T
=2pn/vz the condition

ep !Î "

8vzmW2 . s39d

In the situation considered above withW=5 mm and vz
=2p3200 kHz this meansep!1/400 for 40Ca+ and ep
!1/700 for138Ba+. Fulfilling these criteria is not very easy,
but fortunately, the undesired phase difference can be can-
celled by using a type of spin-echo technique[17]. Instead of
generating the full effective phase shift ofp in a single op-
eration, the gate-operation can be performed in four steps:
(1) Run the gate at half the intensity, to get an effective
phase-shift ofp /2 on u↑lu↑l. (2) Swap the population be-

FIG. 4. Required power andGscT vs wavelength of the dipole force inducing laser for40Ca+ and 138Ba+. In all plots vz=2p
3200 kHz, W=5 mm, n=15, andT=75 ms. (a) 40Ca+, far red detuned laser. The divergences near 900 nm are due to a cancellation of
c+−c−. (b) 40Ca+, laser wavelength in the vicinity of the 42S1/2−4 2P1/2 and 42S1/2−4 2P3/2 transition wavelengths, which are indicated by

the symbols2P1/2 and 2P3/2. (c) 138Ba+, far red detuned laser.(d) 138Ba+, laser wavelength in the vicinity of the 62S1/2−6 2P1/2 and
6 2S1/2−6 2P3/2 transition wavelengths.
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tween u↓l and u↑l by applying single-qubitp-pulses to both
ions. (3) Same as(1). (4) Same as(2). The trick here is that
the undesired phase differences due to a polarization error,
which are obtained in steps(1) and (3), are of the same
magnitude but have opposite signs(due to the population
swapping) and therefore cancel out. The gate operations in
(1) and (3) both give an effective phase shift ofp /2, even
though the population is swapped in(2), becausef±s↓↓ ,Td
=f±s↑↑ ,Td and f±s↓↑ ,Td=f±s↑↓ ,Td. The final p-pulse
just swaps the population back. Using this trick the gate time
is doubled (neglecting the duration of the relatively fast
p-pulses), while the required intensity is halved. Since the
required intensity is proportional ton−1 and the gate timeT
~n, these parameters can be readjusted if an appropriate
value forn is available.

Finally, the imbalance also gives rise to errors in the gate
operation, which the spin-echo trick does not cancel. These
errors are of orderep

2 or ep/n and hence they are suppressed
to the 10−4 level at a small but realistic value ofep,1%.

2. Timing errors

In case the gate time differs from the duration of a full
number of polarization rotation periods, an undesired phase
difference will again build up. AssumingT=dT+2psn
−1d /V and VdT!1, the phase difference is equal toDf
above, with the replacementep°dT2V / s2Td. Again using
W=5 mm andvz=2p3200 kHz and considering40Ca+ with
n=15, Eq. (39) translates todT!0.5 ms, with a more re-
laxed limit for largern (the limit is proportional toÎn). Ap-
plying electro optic modulators to control the laser pulse
length, the condition ondT is not very severe since switching
times of a few nanoseconds can be obtained.

3. Power fluctuations

If the total laser power fluctuates at a frequencyv f, such
that the total intensity is given byI0std= I0f1+e f sinsv ftdg,
then the resulting fluctuations in the dipole potential inte-
grated over the gate timeT will give rise to a phase differ-
ence betweenu↓l and u↑l. If the intensity fluctuations are
random, they can in general not be expected to cancel using
the spin-echo trick. Whenv f ,V the phase differenceDf
,e fIszdsc+−c−d /2, i.e., the same phase difference as above,
just with ep replaced bye f, which means thate f !1/400 is
required for 40Ca+. When v f !V the phase difference is
smaller by a factor of 2pn and even smaller ifv f @V. In-
tensity stabilization fulfillinge f !1/400 is not unrealistic, in
fact a commercially available Laser Power Controller al-
ready offers a power-stability of 3310−4 within certain lim-
its [18].

4. Position fluctuations

Fluctuations in the position of the dipole force inducing
beam give rise to intensity fluctuations, which lead to imper-
fect cancellation of the Stark-shift induced phase and an un-
wanted variation in the dipole force exerted on the ions.
Hence, for high quality gate operations with errors at the
10−4 level, position jitter has to be of the order of 1% of the

beam waistW or smaller. This condition is most restrictive
for the situation shown in Fig. 3(c), where a pointing stabil-
ity of about 50 nm is needed whenW=5 mm. Though small,
this type of stability is technically possible.

5. Frequency fluctuations

As for the power and position fluctuations, laser fre-
quency fluctuations will lead to fluctuations in the dipole
potential and hence to an imperfect cancellation of the Stark-
shift induced phase. Since laser frequencies can be very ac-
curately controlled and frequency fluctuations anyway are
expected to be small, as compared to the detuning from any
of the two fine-structure levels, this is not expected to play
any significant role.

V. DISCUSSION

The gate proposal presented above has some similarities
with the gate recently demonstrated by the NIST group[4];
in fact the mechanism which gives rise to the desired phase
shift is exactly the same. There are, however, also some es-
sential differences between the two schemes.

In the NIST experiment, a dipole force along a given trap
axis was provided by the intensity gradient of a moving
standing wave light field. The wavelength of the light field
and hence the period of the standing wave is set by the re-
quirement that the Stark shift induced phase shift of the two
qubit levels should be zero(corresponding toc++c−=0 in
our case), which is fulfilled if the laser is tuned in between
two fine-structure levels. This can, however, give rise to a
significant amount of scattering events, as we also saw
above. Even though this scheme relies on a moving standing
wave, the instantaneous force on the two ions is required to
be equal. Consequently, the ions have to be well localized
which requires cooling to the Lamb-Dicke limit with respect
to the wavelength of the light-field, which in this case also is
the Lamb-Dicke limit for the qubit operations. An equal di-
pole force on the two ions was obtained by adjusting the
distance between them to an integer number of standing
wave periods, which may be difficult to generalize to per-
form a gate between any two ions in a multi-ion string.

In the proposal presented here, where the dipole force is
provided by a variation in the beam profile, the excursion of
the ions from their equilibrium position should only be
smaller than the beam waist, which is adjustable, but typi-
cally up to ten times larger than a relevant transition wave-
length. This means that except for very tightly focussed
beams the Lamb-Dicke limit criterion need not be fulfilled
and, specifically, the ions need not be cooled to the motional
ground state. Since the dipole force inducing beam propa-
gates perpendicular to the ion-string in our proposal, address-
ing of specific ions for implementation of gates in a multi-
ion string should be feasible. A theoretical description of this
situation should also be quite straightforward by generalizing
Eq. (6). Due to the polarization rotation method, the dipole
force inducing laser is allowed to be far-off resonant with
respect to the relevant internal transitions, such that a scat-
tering probability below the asymptotic threshold value re-
quired for fault-tolerant quantum computation[16] in prin-
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ciple can be obtained in the long wavelength limit. Finally, a
gain in gate speed and fidelity can be obtained by using the
proposed scheme in a standing-wave version, but with the
drawback of requiring stronger localization of the ions.

It should be mentioned, that the idea of using optical di-
pole forces for implementing a controlled-Z gate has also
been considered by Sasura and Steane for an array of micro-
scopic ion traps with a single ion in each trap[8]. In many
respects this system is very similar to the one considered
here and naturally many of the considerations are the same as
those made above.

In a very recent proposal, Garcia-Ripoll, Zoller, and Cirac
present a geometric gate, where the momenta of the involved

ions are controlled by absorption of photons from a discrete
set of laser pulses[19]. In this case requirements on the
pulses naturally arise for having zero displacement and for
obtaining the desired phase shift. It can be shown that these
requirements are discrete versions of those expressed
throughg̃svd above.

In conclusion, we have presented a proposal for a geomet-
ric quantum gate and shown that an experimental realization
using the attractive alkaline-earth-metal ions40Ca+ and
138Ba+ is feasible with gate times below 100ms and errors at
the 10−4 level as required for fault-tolerant quantum compu-
tation [16].
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