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We present a new robust decoupling scheme suitable for levels with either half-integer or integer

angular momentum states. Through continuous dynamical decoupling techniques, we create a protected

qubit subspace, utilizing a multistate qubit construction. Remarkably, the multistate system can also be

composed of multiple substates within a single level. Our scheme can be realized with state-of-the-art

experimental setups and thus has immediate applications for quantum information science. While the

scheme is general and relevant for a multitude of solid-state and atomic systems, we analyze its

performance for the case composed of trapped ions. Explicitly, we show how single qubit gates and an

ensemble coupling to a cavity mode can be implemented efficiently. The scheme predicts a coherence

time of �1 s, as compared to typically a few milliseconds for the bare states.
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Introduction.—Protecting quantum bits (qubits) from
decoherence due to interactions with their environment is
a prime issue of experimental quantum information sci-
ence. In the case of solid-state and atomic qubit systems,
the presence of ambient magnetic field fluctuations is in
particular a problem. Consequently, several methods have
been put forward to tackle this problem. The traditional
solution is to utilize either a two-level subsystem of two
integer total angular momentum states, which to first order
has no Zeeman shifts [1–3], or a two-level system com-
posed of two hyperfine states with identical first order
shifts [4,5]. A third way is to use decoherence-free sub-
spaces [6–8], which requires spatially separated physical
qubits to represent a single logic qubit and thus incurs
considerable overhead, and is potentially vulnerable to
decoherence due to field gradients.

Dynamical decoupling is another general strategy to
tackle this problem [9]. The pulsed version was proven to
be extremely efficient [10,11]; however, it may require
complex pulse sequences. The continuous version of dy-
namical decoupling [12] is based on spin locking [13],
where a continuous drive protects the system from external
noise and weaker continuous pulses improve its robustness
[14]. Continuous dynamical decoupling could be com-
bined in a natural way with gates [15] and could improve
the coupling efficiency to superconducting cavities [16].
However, both versions require composite schemes to
overcome both the external (magnetic) noise and the con-
troller (optical, microwave, or rf) noise. A four-level struc-
ture composed of the magnetic substates of two hyperfine
levels with F ¼ 0 and F ¼ 1 has been designed to be
perfectly robust to control fluctuations in conjunction
with composite schemes [17], but this method is only
applicable for this particular spin system.

In this Letter we present a new and general method for
the construction of a protected and robust qubit subspace.
The method utilizes a multilevel structure, on which con-
tinuous dynamical decoupling fields are applied. Our
method is suitable for a wide range of solid-state and
atomic systems, and it is applicable to a variety of tasks
in the field of quantum information science and quantum
sensing, in particular, quantum magnetometery and quan-
tum memories. The method can be implemented with
state-of-the-art technology and should be able to push the
T2 time to the T1 limit.
General scheme.—The general scheme defines the pro-

tected subspace which we denote by fjDiig. In the follow-
ing J is the angular momentum operator, Hd is the
(continuous) driving Hamiltonian, H D is the Hilbert
subspace of the protected (and hence dark) states, and
H? is the complementary Hilbert space, that is, H ¼
H D �H?. We define the protected subspace by

hDjjJzjDii ¼ 0 8 i; j; HdjDii ¼ 0 8 i: (1)

The first equation ensures that the noise does not operate
within the protected subspace; the noise can only cause
transitions between a state in the protected subspace and a
state in the complementary subspace. We assume (by
construction) that for any eigenstate jc ii 2 H? of Hd

we have that jhc ijHdjc iij is much larger than the charac-
teristic frequency of the power spectrum of the noise [18].
This ensures that the energy of all states inH D is far from
the energy of the states in H?, and thus the rate of
transitions from H D to H? due to noise is negligible.
The second equation indicates that the protected subspace
is the kernel of Hd and, hence, the protected states do not
collect a dynamical phase and are immune to the noise
originating from Hd. Note that these conditions are
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analogous to the error detection conditions in [19] since the
errors are magnetic noise, which is represented by the Jz
operator, and fluctuations in Hd.

From the definition of the protected subspace we can
also study the evolution within the subspace. Transitions
between dark states can be generated by only one of the
operators Jx and Jy. Suppose that Jy transforms between

dark states, JyjDii ¼ jDji (i � j). Together with JzjDii ¼
j’ii 2 H? we have that JyJzjDii ¼ j~’ii 2 H? and

JzJyjDii¼j’ji2H?, and hence JxjDii2H?. Whether

it is Jx or Jy that transforms between the dark states is

determined by Hd. Suppose again that Jy transforms

between the dark states. It is then easy to show that
½Hd; Jy�jDii ¼ 0 and that ½Hd; Jx�jDii 2 H?. This limits

the available direct operations on the dark state to rotations
around one axis. However, general unitary operations
can be implemented by various methods [20–22]. Since
JzjDii ¼ j’ii 2 H? we can also conclude that
ddH =2e � dHD

, where the dH and dH D
are the dimen-

sions of the total Hilbert space and the protected subspace,
respectively.

Implementation with trapped ions.—Below we present
an implementation of the scheme with a system of trapped
ions. Although the suggested implementation is applicable
to a variety of ionic systems, we focus on the calcium
ion (see Fig. 1). Remarkably, the considered multistate
system is composed of multiple substates within a single
level, specifically, the D3=2 sublevels. Since the D3=2

states have a lifetime of �1 s, we consider their subspace
to be the protected subspace. Please note that a very
similar level structure exists for the barium ion with a
longer lifetime of �20 s. For simplicity we will use the
notation jd3=2þmi

i � jD3=2;mii, jp1=2þmi
i � jP1=2;mii,

and js1=2þmi
i � jS1=2;mii. The definition of the protected

subspace given by Eq. (1) results in the two dark states
(see [22])

jD1i ¼
ffiffiffi
3

p
2
jd1i � 1

2
jd3i; jD2i ¼ 1

2
jd0i �

ffiffiffi
3

p
2
jd2i; (2)

where it can be seen that the average magnetic moment for
each state vanishes.
These two orthonormal dark states can serve as a basis

for a qubit memory. The D3=2 degeneracy is removed by

applying a constant magnetic field along the ẑ axes which
results in an energy gap of gJB between any two adjacent
energy levels, where gJ ¼ 4

5 is the Landé g factor. A large

enough jBj such that jgJBj is much larger than the char-
acteristic frequency of the noise ensures that the dark states
are also immune to Jx and Jy noise. We now describe the

driving Hamiltonian, Hd ¼ Hd1 þHd2. Hd1 corresponds
to the simultaneous on-resonance coupling of the jd1i and
jd3i states to the jp1i state, and results in the first dark state
jD1i. Hd2 corresponds to the on-resonance coupling of
the jd0i and jd2i states to the jp0i state, and results in the
second dark state jD2i. However, the driving fields of each
dark state can impact the other dark state since they operate
on all of the D3=2 states. We reduce this undesirable effect

by creating an energy gap between the two P1=2 states. This

energy gap is achieved by the on-resonance coupling of the
js0i and jp1i states, and as a consequence, the driving
fields of the first (second) dark state operate on the second
(first) dark state with a detuning of �2 ¼ �þ ð4B=5Þ
(�1 ¼ �½�þ 4B

5 �) (see Fig. 2).

FIG. 1. Level structure of the calcium ion, 40Caþ. The D3=2

subspace, which has a lifetime of �1 s, serves as the protected
subspace. The S1=2 � P1=2 transitions and the D3=2 � P1=2 tran-

sitions are used in the initialization and construction of the
protected subspace.

FIG. 2 (color online). Realization of dark states. (a) The black
(red) driving fields result in the first (second) dark state. The
driving fields of each dark state also operate on the subspace of
the other dark state (dashed lines), resulting in small energy
shifts. The detunings are given by �2 ¼ ��1 ¼ �þ 4B=5,
where � is the energy gap between the two P1=2 states, intro-

duced by the S1=2 � P1=2 coupling. Blue arrow shows optical

pumping to the first dark state, jD1i. (b) Level structure in the
dark states basis. The dark states jD1i and jD2i form the
protected subspace.
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In the interaction picture and in the rotating wave ap-
proximation the total driving Hamiltonian is given by

Hd ¼
��

�1

2
jp1ihd1j þ

ffiffiffi
3

p
�1

2
jp1ihd3j

�
þ H:c:

þ
�
�1

2
jp0ihd2j þ

ffiffiffi
3

p
�1

2
jp0ihd0j

�
þ H:c:

�
: (3)

This Hamiltonian has two eigenstates with zero eigen-
values, which are the desired dark states given by Eq. (2),
and four bright eigenstates whose eigenvalues are equal to
��1 [22].

Thus far we have discussed the construction of the
protected subspace. In the following we estimate the life-
time T1 and the coherence time T2 of the dark states. The
lifetime can be affected by the energy shifts caused by the
driving fields of the other dark state, and the coherence
time can be affected by the fluctuations of these energy
shifts. The fluctuations in the energy shifts cause dephasing
at a rate equal to the power spectrum of the noise at zero
frequency. For the first dark state jD1i an energy shift
fluctuation can also occur due to fluctuations of the driving
field creating the energy gap between the two P1=2 states.

Calculation of these energy shifts and their fluctuations
(assuming a maximal fluctuation of 1% in the intensity of
the driving fields [23]) yields [22]

�E1 � �2
1

4j�1j
�
1� 3

100

�
; �E2 � �2

1

4j�2j
�
1� 2

100

�
:

(4)

Both �E1 and �E2 are of the order of �
2
1=�, which for

typical experimental setups is ð�2
1=�Þ � ½ð105Þ2=109� ¼

10 Hz. These energy shifts correspond to a small modifi-

cation of the dark states, jDii !
ffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p jDii þ
ffiffiffi
�

p j’ii,
where j’ii 2 H?, reducing the T1 time from 1 s to
approximately 0.9 s [22].

The T2 time can be affected by the fluctuations of �E1
and �E2. For the above experimental parameters, we have
that T2 � ½�ð�E1��E2Þ��1 � ð�2

1=100�Þ�1 ¼ 10 s
[22,24]. As this bound is even larger than T1, we conclude
that the fluctuations in the driving fields do not reduce the
T2 time. In addition, relative amplitude and phase fluctua-
tions will limit the T2 time by T	

2=�
2, where T	

2 is the
coherence time of the bare states, and � is the rate of the
relative amplitude fluctuations; since these are usually
small we can neglect this correction.

Another source of noise comes from polarization imper-
fections. The typical experimental error in the polarization
is �1%. This means that �1% of a �þ polarized beam is
actually �� polarized and vice versa, causing an error
within the driving of each dark state (for example, 1% of
the �� beam which couples the jd3i and jp1i states is a �þ
beam which couples the jd1i and jp1i states). The polar-
ization errors also cause an energy shift and modify the
dark state. However, an energy gap of �10 MHz between

the D3=2 states (due to the Zeeman splitting) ensures that

neither the T1 time nor the T2 time is reduced [22].
We have thus constructed a protected and robust qubit

subspace with a lifetime and a coherence time which
are almost identical to the D3=2 lifetime, equaling

approximately 0.9 s, while the T	
2 time is of the order of

1 ms [25,26].
Initialization and single qubit gates.—By adding two

extra laser beams, one that couples the js1i state to the
jp1i state and the other that couples the jd2i state to the
jp1i state (blues laser in Fig. 2), we can achieve optical
pumping to the dark states jD1i. This way, the dark state
jD2i is taken out of the protected subspace, but because of
Hd the state will eventually evolve to the dark state jD1i.
Another method of initialization is to optically pump into
the jd3i state, and then conduct a STIRAP procedure via a
Raman transition.
We propose an experimentally simple method for the

implementation of a single qubit �y gate by applying a

microwave field which is set to be on resonance with the
energy gap between the D3=2 states (see Fig. 3). More

specifically, the microwave field is tuned to apply the Jy
operator, as in our case ½Hd; Jy�jDii ¼ 0. In the interaction

picture and in the rotating wave approximation, the
Hamiltonian of the single qubit gate is given by

Hg ¼ i�g

� ffiffiffi
3

p
2

jd1ihd0j þ jd2ihd1j þ
ffiffiffi
3

p
2

jd3ihd2j
�
þ H:c:;

(5)

which corresponds to the operator �ði3�g=2ÞjD2ihD1j in
the dark states basis [22]. In the Supplemental Material
[22] we explicitly show how to construct �x and �z gates,
which allow for the implementation of any single qubit
unitary operation.

FIG. 3 (color online). Realization of (i) a single qubit gate
(blue) (ii) coupling to a cavity mode (green).
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Interaction with a cavity mode.—One of the most impor-
tant applications of robust quantum states is the implemen-
tation of a quantum memory. For this purpose, it is also
necessary to have an efficient interaction between the
robust states of the quantum memory and the mediating
system which delivers the data to be stored and retrieved
from memory. Here, we focus on the interaction of ions
with a cavity mode, as several experimental investigations
are currently exploring this situation [25–30]. Such an
interaction will not only allow for the implementation of
a quantum memory but could also allow for multiqubit
gates where the interaction between different qubits is
mediated via the cavity modes.

We begin by setting the cavity mode such that its fre-
quency and polarization correspond to the detuned cou-
pling of the jd1i state to the jp1i state with the detuning �
to be specified below. In addition, we apply an external
control field which corresponds to the detuned coupling of
the jd2i state to the jp1i state with the same detuning � and
with a Rabi frequency�c such that � 
 �c 
 g, where g
is the rate describing the coupling between a single photon
in the cavity mode to a single ion (see Fig. 3). This
interaction couples the jd1i and jd2i states and results in

the effective HamiltonianHeff ¼ � g�c

2� ðjd2ihd1jaþ H:c:Þ,
where a is the annihilation operator of the cavity mode. In
the dark states basis the interaction, which is given by
Heff � �ð3g�c=8�ÞðjD2ihD1jaþ H:c:Þ, couples a cavity
mode to a robust qubit [22]. However, the strength of this
coupling is usually weak compared to the cavity and ion
damping rates. That is, �, � 
 ð3g�c=8�Þ, where � is the
cavity’s damping rate and � ¼ ð�2

c=�
2Þ�p1

is the ion’s

damping rate. This is known as the weak coupling regime
in which transmission of quantum information is not pos-
sible. The problem can be circumvented by coupling a
cavity mode to an ensemble of ions. The coupling strength

is enhanced by
ffiffiffiffi
N

p
, where N is the effective number of

ions, and for a large enough ensemble this results in

�; � � ffiffiffiffi
N

p ð3g�c=8�Þ, which are the conditions for the
collective strong coupling regime. (Note that, since we
consider N ions, the probability of emitting a photon is
�ð�2

c=�
2ÞN. However, the factor N is canceled out

because the interaction results in a Dicke state.) From the
condition of the strong coupling regime on the ion’s damp-

ing rate, we must have that �c

� � ð3g ffiffiffiffi
N

p
=8�p1

Þ.
Substituting �p1

¼ 2�
 23 MHz, g ¼ 2�
 0:5 MHz,

and
ffiffiffiffi
N

p � 10 (which could be achieved, e.g., as a string
of one species of ions within another species [31]), we get
that ð�c=�Þ � 1

10 , and thus we set ð�c=�Þ � 10�2. The

condition on the cavity’s damping rate then implies that
� � ðg=10Þ � �
 0:1 MHz is required. Such damping
rates are exhibited in current high-finesse cavities.

Note that by removing the control field we are left only
with the coupling to the cavity mode which results in the
Hamiltonian HR ¼ �ðg2=�Þjd1ihd1jaya, corresponding to
HR � �ð3g2=4�ÞjD1ihD1jaya in the dark states basis. As

HR takes 1ffiffi
2

p ðjD2i þ jD1iÞ to 1ffiffi
2

p ðjD2i þ eið3g2t=4�ÞayajD1iÞ,
a nondemolition measurement of the photon number in the
cavity can be done by a Ramsey spectroscopy experiment
on the dark states [22]. This constitutes an alternative
strategy to electron shelving based methods [32].
Discussion.—A scheme for robust qubits based on con-

tinuous dynamical decoupling was presented. The scheme
is general in the sense that it can be applied to all systems
satisfying Eq. (1), but otherwise the systems can have
different characteristics. Unlike most commonly used
methods, our scheme is applicable to systems with half-
integer total angular momentum.
Although our example utilizes the D3=2 subspace, in

principle, the scheme can also be applied to subspaces of
a different total angular momentum, such as the D5=2 sub-

space of the calcium ion. In this case, a protected qubit
subspace can be achieved by first an on-resonance Jx
coupling of all P3=2 states (which results in four Jx eigen-
states), and second, by the on resonance coupling of the
jd0i and jd5i states to one of the above eigenstates (result-
ing in one dark state), and by the on-resonance coupling of
the jd2i and jd3i states to another Jx eigenstate (resulting in
a second dark state). The ability to couple negative angular
momentum states with positive angular momentum states
constitutes a necessary condition for satisfying Eq. (1).
The scheme was analyzed in detail for a system of

trapped ions based on optical control, in which the quan-
tum memory consists of a string of ions that could either
exist on its own or inside a larger crystal of a different
species [31]. The simplicity of the scheme, which does not
require complex laser pulses, enlarges the scope of quan-
tum memories to laser control and provides new perspec-
tives for laser manipulations.
By combining the setup with a stripline resonator, a

conversion between an optical photon to a microwave pho-
ton could be achieved. Our scheme can also be realizedwith
barium ions which have a lifetime of �20 s. Such a long
lifetime would enable a relaxation of the requirements on
the number of ions and the cavity damping rate, resulting in
a simpler experimental realization, and would also increase
the storage time by one further order of magnitude.
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