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We present a scheme for robust and efficient projection measurement of a qubit consisting of the two
magnetic sublevels in the electronic ground state of alkaline-earth-metal ions. The scheme is based on two
stimulated Raman adiabatic passages involving four partially coherent laser fields. We show how the efficiency
depends on experimentally relevant parameters: Rabi frequencies, pulse widths, laser linewidths, one- and
two-photon detunings, residual laser power, laser polarization, and ion motion.
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I. INTRODUCTION

Quantum computation is a promising technique for effi-
cient solving of high complexity problems, which are inac-
cessible by classical algorithms �1�. Currently, efforts are
made within many fields of physics in order to explore the
possibility of realizing quantum computing. Notable ex-
amples are superconducting circuits �2,3�, semiconductors
�4�, linear optics with single photons �5,6�, cold neutral at-
oms in cavities �7�, and lattices �8–10� as well as cold,
trapped ions �11�. So far, most progress has been made in ion
trap systems �12–17� where quantum gates �12,13�, many
qubit entanglement �18,19�, and quantum error correction
have been demonstrated �20�.

The qubit states most successfully implemented with
trapped ions are two hyperfine components of the 9Be+

ground state �12� and a combination of the metastable 3D5/2
state and the 4S1/2 ground state in 40Ca+ �13�. In both cases
linear Paul traps are used to confine the ions. In this work we
consider the electron spin in the alkaline-earth-metal ion
ground state as a qubit. In Fig. 1 the electronic ground state
is denoted by �1� and the qubit basis by �↑ � and �↓ �. Single
qubit operations as well as gate operations can be performed
by driving stimulated Raman transitions between the two
qubit states �21�, or alternatively using controlled mechanical
light forces �22�. Since solely ground states are involved, the
qubit decoherence will be limited only by ambient noise
fields and ion heating effects, rather than excited state life-
times. Limitations due to ambient magnetic field noise can
be avoided using logical qubits of a decoherence-free sub-
space �23,24�. In order to achieve fault tolerant quantum
computation the detection error rate must be kept low and
different error correction codes estimates allowed error rates
between 10−5 and 10−2 �25,26�. However, high error rates
require a large overhead of qubits to encode the error correc-
tion. In this paper we present a scheme for potentially effi-
cient qubit projective measurements via shelving of popula-
tion of one qubit state in the long-lived metastable D5/2 state
found in the isotopes with no nuclear spin of the alkaline-
earth-metal ions Ca+, Sr+, and Ba+, as well as the transition
metal ion Hg+.

The qubit shelving is performed via a double stimulated
Raman adiabatic passage �STIRAP� process �27,28�, as illus-
trated in Fig. 1. Initial and final states of the shelving process
are denoted �↓ � and �5�, respectively. After shelving, the
atomic population remaining in the �↑ � state can be observed
directly by resonantly driving the �1�→ �2� and �3�→ �2� tran-
sitions and monitoring the fluorescence �29�. We use the first
STIRAP process to transfer the population from �↓ � to �3�,
where we achieve the spin-state selectivity by using circu-
larly right handed polarized light to couple the states �↓ � and
�2�. The second process transfers the population from �3� to
the nonfluorescent state, �5�. A weak externally applied mag-
netic field defines the quantization axis and creates a Zeeman
splitting of �↓ � and �↑ � �see Fig. 1�.
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FIG. 1. �Color online� Relevant energy levels of isotopes of Ca+,
Sr+, Ba+, and Hg+ with no nuclear spin: �1�= �S1/2�, �2�= �P1/2�, �3�
= �D3/2�, �4�= �P3/2�, and �5�= �D5/2�. We consider the qubit encoded
in the Zeeman sublevels, �↑ � and �↓ � of the electronic ground state,
�1�. The states �3� and �5� are metastable with lifetimes varying from
a fraction of a second to many seconds depending on the ion spe-
cies. The decay of these states is neglected here. Since the scheme
consists of two stages of STIRAP, we break down the five level
system into two three level � systems, each coupled by two optical
fields.
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STIRAP has been shown to be a robust way of adiabati-
cally transferring population from one quantum state to an-
other in a three level lambda system using two laser pulses in
a counterintuitive order �28,30–37�. Compared to population
transfer via � pulses or rapid adiabatic passage, STIRAP has
the advantage that no strict control of laser amplitude and
phase is required to maintain a high efficiency �38�. How-
ever, STIRAP does require the pairs of laser pulses involved
to be phase coherent relative to each other. In practice, this
means that either the lasers must be mutually phase locked or
the laser pulses must be sufficiently short, such that laser
decoherence is negligible. The latter method is experimen-
tally attractive because high obtainable Rabi frequencies per-
mit short pulses to be used and hence laser phase locking is
circumventable. This approach has previously been used in
the experimental realizations of STIRAP �28,37�. Also note
that the two STIRAP stages can be decoupled within the
lifetime of intermediate metastable state, �3�. Of course de-
coherence is always at play. Hence, in the numerical calcu-
lations below we assume finite laser linewidths and only par-
tially coherent lasers.

The goal of this work is to theoretically investigate the
shelving process and identify the parameters of importance
to its efficiency. In Sec. II we first make some general re-
marks on the STIRAP process. This analytical treatment is
valid for any three level � system and it serves to develop
the criteria for maintaining adiabaticity using Gaussian
shaped pulses. We then turn to numerical simulations of the
density matrix evolution for the full five level system. Here,
we consider the roles of one- and two-photon detunings of
the Raman resonances, laser linewidths, laser pulse widths,
Rabi frequencies, stray laser light, laser polarizations, and
ion motion. The results are presented in Secs IV and V. Here
we use as an example the 40Ca+ ion, but, apart from different
decay rates and wavelengths, our treatment is also valid for
Sr+, Ba+, and Hg+ ions with no nuclear spin. In Sec. VI we
present simulations taking all effects into account and finally,
we conclude in Sec. VII.

II. STIRAP WITH GAUSSIAN PULSES

Let us first consider one STIRAP process involving the
three atomic basis states ��1� , �2� , �3��. In this section we will
neglect spontaneous decay of the �2� state, since this is of no
importance to the adiabaticity underlying STIRAP. Two mu-
tually coherent and monochromatic laser fields A �pump
field� and B �Stokes field� couples �1� and �3� to �2� �see Fig.
2�a��. The interaction Hamiltonian for this system in the ro-
tating wave approximation is given by

HI�t� =
�

2� 0 �A�t� 0

�A�t� 2�A �B�t�
0 �B�t� 2��A − �B�

� , �1�

where �A and �B are the detunings of the two applied fields
having the real, time dependent Rabi frequencies �A�t� and
�B�t�, respectively. These parameters are defined as in �28�.
On two-photon resonance �A−�B=0, diagonalizing Eq. �1�
yields the eigenvalues

�± =
1

2
��A ± 	�A

2 + �A
2 + �B

2�, �d = 0, �2�

corresponding to eigenstates

� + � = sin���sin�	��1� + cos�	��2� − cos���sin�	��3� ,

�− � = sin���cos�	��1� − sin�	��2� + cos���cos�	��3� ,

�d� = cos����1� − sin����3� , �3�

with tan���=
�A�t�

�B�t� and tan�	�=	− �−

�+ . The �d� state has zero

interaction energy and hence it is decoupled from the light.
As a result, adiabatic following of this state does not popu-
late the potentially short-lived �2� state. Now, with all popu-
lation initially in �1� and only the Stokes field applied, this
initial state is �d�. Adiabatically decreasing �B while increas-
ing �A corresponds to a variation of tan��� from 0 to 
. The
pulse sequence thus changes the dressed state �d� from �1� to
�3�.

Since STIRAP requires adiabatic following of atoms
while remaining in the �d� state, we will now consider the
criterion for this to happen. We assume essentially Fourier
limited optical pulses with a Gaussian time dependence.
These give rise to the time varying Rabi frequencies

�A�t� = �A,0 exp
− � t − �t/2
�/2 �2 ,

�B�t� = �B,0 exp
− � t + �t/2
�/2 �2 , �4�

where the peak Rabi frequencies are �A,0 and �B,0, �t is the
pulse separation, and � is the full width at 1 /e height, as-
sumed to be the same for both pulses �see the pulse sequence
in Fig. 2�b��. We parametrize the problem in terms of the
scaled time �=	8t /�, scaled pulse separation =	2�t /�,
and Rabi frequency asymmetry r=�A,0 /�B,0. Hence,

�A��� = �A,0 exp�− 1/2�� − �2� ,

�B��� = �B,0 exp�− 1/2�� + �2� , �5�

and

�A�A

2>>

�B�B

�B�B
�A�A

>>
>>

1
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t

(a) (b)

� �

�t

�B�B �A�A

FIG. 2. �a� Three level lambda system with a pump laser �A� and
a Stokes laser �B� applied. The two laser fields have Rabi frequen-
cies �A and �B and they are detuned �A and �B from resonance.
�b� STIRAP pulse sequence. �t is the pulse separation and � is the
full width at 1 /e height for both pulses.
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�d� = −
r−1/2e−��1� − r1/2e��3�

	re2� + r−1e−2�
. �6�

Adiabaticity requires the rate of change of the wave function
to be small compared to the energy separation between the
dressed state eigenvalues,

� d

dt
�d�� � ��±� . �7�

The rate of change of the wave function �6� is parametrized
by the Bloch sphere polar angle in the ��1� , �3�� basis, which
from Eqs. �3� and �6� is found to be �=arctan�r exp�2���.
The wave function rate of change is then

d�

d�
=

2

re2� + r−1e−2� . �8�

This should be compared to the dimensionless eigenvalue of
the energetically closest dressed state, �−�. On two-photon
resonance and in the limit of large single-photon detuning,
�A,0 ,�B,0� ��A�, the eigenvalue is given by

�− =
�−�

	8
= − 2��re2� + r−1e−2��exp�− ��2 + 2�� . �9�

We can now formulate an adiabaticity criterion, which
should be fulfilled at all times during the pulse sequence,
where the Rabi frequencies are appreciable. The criterion
states that

A��,,r� �
�� exp��2 + 2�

�re2� + r−1e−2��2 � � , �10�

where we identify the parameter relevant for maintaining
adiabaticity

� =
�A,0�B,0

16	2��A�
� . �11�

On inspection, � is simply proportional to the product of the
maximum achievable Raman Rabi frequency and the dura-
tion of the pulse sequence. Hence, Eq. �10� simply states that
many Raman Rabi cycles should take place during the time
span of the STIRAP process, analogous to the result derived
in �28�.

The timing of the STIRAP sequence is contained in the
function A�� , ,r�. For a range of parameters this has a
maximum as a function of time, Amax� ,r�=A��max , ,r�,
where �max solves the equation

2 tanh�2�max + ln r� = �max/ . �12�

For an efficient STIRAP process to occur, given a certain
value of r, we obviously want to choose the pulse separation
 so that Amax is small and obeys the inequality �10�.

In Fig. 3 we plot Amax as a function of  for values, where
Eq. �12� has a solution. The three curves correspond to r
= �1,2 ,4� and it should be noted that Amax� ,r�
=Amax� ,r−1�. From the graphs we infer that values of � in
excess of 3–5 should be obtained in order to ensure efficient
population transfer. Adiabaticity is favored when the pulse
separation is decreasing toward =0.7 and when the Rabi

frequencies are balanced, corresponding to r approaching
unity. In an experimental situation �37� residual light illumi-
nating the ions before and after the STIRAP pulse sequence
can become a severe limitation to the population transfer
efficiency. This will be discussed in more detail in Sec. IV E,
where one conclusion is that a short duration of the experi-
ment is needed in order to avoid population repumping due
to residual light driving a parasitic Raman resonance. Hence,
we introduce the time duration of the experiment �, which
when inserted in Eq. �6� provide the population transfer ef-
ficiency as follows:

P3��� = �1 + r−2 exp�− 4���−1. �13�

Obviously, Eq. �13� shows that the transfer efficiency grows
with increasing , due to the tails of the Gaussian pulses.
However, for larger , fulfilling the adiabaticity criteria �10�
becomes difficult and we hence expect to find an optimum
value of the pulse separation, opt, which depends only on r
and �. With respect to r, P3��� grows for high values, while
adiabaticity requires values close to unity and therefore one
might expect an optimal value of r above 1 with the exact
value depending on �. To optimize the transfer efficiency
with respect to  and r, we solve the optical Bloch equations
for the three level � system. Details of our derivation of the
Bloch equations can be found in the next section.

In order to make our Bloch equation solutions general, we
again ignore the decay from the short-lived state �2� and we
assume perfectly coherent laser fields. The Bloch equations
are integrated numerically for one-photon detunings of
4 GHz. These detunings are chosen sufficiently large, so that
for Rabi frequencies in the 100 MHz range, the results are
independent of the specific values of the detunings. It is
checked numerically that increasing the detunings even more
has no impact on the solutions. In this limit our results can be
considered general and system independent.

For fixed values of r and � the population transfer is
computed as a function of , and the optimum value opt,
corresponding to the maximum population transfer Pmax, is
found. Examples of such curves can be found in Sec. IV A,
where we analyze the sensitivity of the population transfer
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FIG. 3. �Color online� Maximum value of the adiabaticity func-
tion Amax� ,r�=A��max , ,r� as a function of STIRAP pulse sepa-
ration  for r=1, r=2, and r=4. For r�1 a solution does not exist
for smaller  values, hence the truncation of the corresponding
curves. The maximum is found by solving Eq. �12�.
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with respect to fluctuations of . Figure 4�a� shows opt as a
function of r for �= �1,3 ,10�. From the curves it is found
that for values of r far from unity, a larger pulse separation is
preferable. As mentioned above, this is attributed to the
wings of the larger amplitude Gaussian pulse, which must
decay �r�1�—or grow �r�1� sufficiently before the pulse
sequence is terminated. This is also the reason why opt
grows from about 0.7 for �=1 to about 1.1 for �=10. Figure
4�b� shows the population transfer inefficiency 1− Pmax, as-
sociated with the values of opt computed in Fig. 4�a�. From
these curves it is obvious that balanced Rabi frequencies are
crucial for an efficient population transfer when the adiaba-
ticity criterion �10� is only marginally fulfilled, as is the case
for �=1. As � grows, we see that higher asymmetries in the
Rabi frequencies can be tolerated. This is in accordance with
the discussion of Fig. 3. It should be noted that the inclusion
of finite laser linewidths tends to make opt smaller as a
result of decoherence mechanisms explained in Sec. IV C.
For the remaining simulations in this paper we have sought
to use optimum values of  according to the reasoning
above.

Although Fig. 4�b� shows that the fidelity of qubit detec-
tion in general can be high for �=10, it should be noted that
the difference between a detection error of 10−3 and 10−5

becomes very important when error correction protocols are
considered �1�. Hence, optimizing the fidelity with respect to
r, according to Fig. 4�b�, could be crucial if the qubit detec-
tion scheme should be utilized for scalable quantum compu-
tation.

III. OPTICAL BLOCH EQUATIONS

The previous section developed analytical criteria for
maintaining adiabaticity when Gaussian pulses are used and
when the one-photon detunings are much larger than Rabi
frequencies. We now turn to numerical simulations of the
detection scheme taking into account the full dynamics and
using realistic experimental parameters. We solve the optical
Bloch equations describing the dynamics of the five levels
depicted in Fig. 1, but ignore magnetic sublevels. We stay
within the dipole approximation and define the Rabi frequen-
cies

�A = �12EA/� , �14�

�B = �32EB/� , �15�

�C = �34EC/� , �16�

�D = �54ED/� , �17�

where �ij are the dipole matrix elements and Ei laser field
amplitudes. The laser fields with frequencies �ij are
not necessarily on resonance and we introduce detunings
�ij =

Ei−E j

� −�ij with respect to the atomic energy levels �Ei�.
With the notation of Fig. 1 we define �A=�21, �B=�23,
�C=�43 and �D=�45. Furthermore, we apply the rotating
wave approximation to arrive at the interaction Hamiltonian
for the system

H = �
i=1

5

��i�ii + ���A�12 + ��B�32 + ��C�34

+ ��D�54 + H.c.� , �18�

where �i=Ei /� and the density operator elements are �ij
= �j��i�. Spontaneous emission is introduced as decay terms in
the density matrix elements. We neglect spontaneous decay
from the metastable �3� and �5� states because their lifetimes
are significantly longer than the simulation time �see life-
times of the different ion species in the Appendix�. Phase
fluctuations of the lasers are introduced as decay of the co-
herences and ion micromotion as a harmonic modulation of
the detunings.

In the simulations we use the specific wavelengths
��A=397 nm, �B=866 nm, �C=850 nm, �D=854 nm� and
spontaneous decay rates ��21 /2�=21 MHz, �23 /2�
=1.7 MHz, �41 /2�=22 MHz, �43 /2�=0.18 MHz, �45 /2�
=1.6 MHz� for the 40Ca+ ion, but this apart the calculations
are also valid for isotopes of Sr+, Ba+, and Hg+ with no
nuclear spin �see relevant parameters for the most abundant
isotopes in the Appendix�. We use Gaussian pulses as defined
in Eq. �4� with pulse widths �i=2 �s. All other parameters
are varied depending on which investigations are made.
When there is no argument for a different choice we use Rabi
frequencies �i,0 /2�=100 MHz and detunings �i /2�
=600 MHz. The delay between pulses is chosen optimal,
which in the simulations presented is either �t=1.2 �s or
�t=1.3 �s. The theory of Sec. II applies when ��i,0 � � ��i�,
which is the case in the majority of the simulations. In these
cases we specify the values of  and � to make a compari-
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FIG. 4. �Color online� �a� Optimum pulse separation opt as a
function of Rabi frequency ratio r=�A,0 /�B,0. As indicated, the
three curves correspond to different values of �, given by �=1
���, �=3 ���, and �=10 ���. One-photon detunings are
�A /2�=�B /2�=4 GHz and all results are obtained with �=2 �s.
�b� The transfer inefficiency 1− Pmax corresponding to the values of
opt calculated in �a�. The oscillations of the curves are attributed to
Rabi dynamics and it should be noted that the curves are symmetric
with respect to letting r→r−1.
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son with Sec. II straightforward. For the parameters men-
tioned above, =0.85 or 0.92 and �=9.3. All parameters for
the simulations are mentioned in the figure captions and
hence are omitted in the text.

To recapitulate, the detection scheme consists of two STI-
RAP processes. The first transfers population from �1� to �3�
applying the A and B fields as pump and Stokes field, respec-
tively. The second process between �3� and �5� uses C as the
pump field and D as the Stokes field.

We first investigate the effect of pulse delay �Sec. IV A�,
laser detunings �Sec. IV B�, laser linewidth �Sec. IV C�,
pulse width �Sec. IV D�, and residual light �Sec. IV E�. All
these simulations are performed on the latter transition be-
cause this transition is subject to spontaneous decay out of
the subsystem and thus has a higher sensitivity to nonadia-
baticity. An experimental investigation of this transition can
be found in �37�.

The first STIRAP stage is more sensitive to ion motion
because the two laser fields used have very different wave-
lengths and the Doppler shift induced by the ion motion
therefore gives a large two-photon detuning. Since this stage
is responsible for the internal state selection, it is also impor-
tant to investigate the effect of laser polarization errors and
the resulting depletion of the wrong qubit state. The simula-
tions of ion micromotion �Sec. IV F� and polarization errors
�Sec. V� are therefore performed on the first STIRAP transi-
tion. The simulations are made with all the population ini-
tially in �1� or �3� and we find the transfer efficiency as the
final population in �3� or �5� for the first or the second
STIRAP stage, respectively. We assume that the calculated
transfer efficiency is equivalent to the qubit detection effi-
ciency, and we do thereby not focus on signal to noise issues
of the fluorescence detection of the nonshelved state �↑ �.

IV. SIMULATIONS IGNORING ATOMIC SPIN

In this chapter we assume perfect laser polarization and
hence ignore irrelevant magnetic sublevels of the ions. As
mentioned above, we start out by considering the latter
�3�→ �4�→ �5� STIRAP process.

A. Effect of pulse delay

The first parameter we investigate is the delay between
the two pulses and in Fig. 5 we show the transfer efficiency
as a function of  for various peak Rabi frequencies
�C,0=�D,0. Both laser fields are on resonance. The simula-
tions show that for Rabi frequencies above �C,0=�D,0
=2��100 MHz the transfer efficiency is close to unity and
insensitive to fluctuations in the delay �P5�0.999 for fluc-
tuations of  less than 0.2 around the optimal value of 0.85�.
For smaller Rabi frequencies the transfer efficiency de-
creases and the sensitivity to delay fluctuations increases.
The plateau of P5�0.07 for positive  values is the result of
optical pumping by the pump field �C. For �0 this pulse
is applied last, and the Stokes field cannot repump popula-
tion.

We wish to investigate how changes in the delay between
pulses influence the transfer efficiency when it is not dimin-

ished by other effects. The results of Fig. 5 are therefore
calculated for zero one-photon detuning. In this limit the
theory of Sec. II is not valid, but in the rest of the work
one-photon detunings considerably larger than Rabi frequen-
cies will be used and hence the analytical theory can be used
to interpret the numerical simulations.

The results presented in Fig. 5 still show the same trends
as the analytical theory. High Rabi frequencies are needed to
maintain adiabaticity and, as indicated by the crosses, the
delay giving maximum transfer efficiency is found to grow
with increasing Rabi frequencies, consistent with Fig. 4.

B. Laser detunings

To reduce the probability of incoherent diabatic excita-
tions we introduce large one-photon detunings of the lasers.
Thus, we now investigate the sensitivity of STIRAP to one-
and two-photon detunings. The simulations, presented in Fig.
6, show that increasing the one-photon detuning does not
limit the transfer efficiency as long as we are close to the
two-photon resonance �D−�C=0. This criterion gets stricter
as we increase the one-photon detuning. If we require
P5�0.99 the demand on two-photon detuning is ��D−�C�
� 2��0.5 MHz when �C=2��1200 MHz as estimated
from the dash-dotted curve of Fig. 6. For �C=2�
�600 MHz, maintaining a two-photon resonance within
2��1 MHz is sufficient, as seen from the dotted curve of
Fig. 6. An efficient transfer can thus be maintained in spite of
a drift from two-photon resonance making STIRAP robust
with respect to small frequency drifts of the involved lasers.
A closer look at Fig. 6 reveals that the spectra are not exactly
symmetric with respect to the sign of the two-photon detun-
ing. With unbalanced Rabi frequencies �D,0=2�C,0 �see Fig.
7�a��, the asymmetry becomes more evident. For small nega-
tive two-photon detunings the transfer efficiency is much
higher than for the corresponding positive two-photon detun-
ing. This effect is due to diabatic transfer between �d� and the
energetically closest bright state �−�. As discussed in Sec. II
this is likely when �d� and �−� are nearly degenerate. The

-1 0 1 2 3
0.0
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0.6

0.8

1.0

P 5

�

FIG. 5. �Color online� Transfer efficiency as a function of delay
between pulses for different choices of peak Rabi frequencies: �- - -�
�C,0=�D,0=2��10 MHz, �¯� �C,0=�D,0=2��20 MHz, �—�
�C,0=�D,0=2��100 MHz, �−·−� �C,0=�D,0=2��300 MHz.
Positive delay correspond to the counter intuitive pulse sequence,
where the laser pulse of field D arrives before the laser pulse of
field C. Parameters: �C=�D=2 �s and �C=�D=0.
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eigenvalues found in Eq. �2� are valid only on two-photon
resonance, and the solutions are more complicated in the
situation, where this condition is not met. A general expres-
sion for the eigenvalues has been derived in �39� and is plot-
ted in Figs. 7�b�–7�d�. Here, we show the eigenvalues of �d�
�solid curves� and �−� �dashed curves� as a function of time
for three different choices of two-photon detuning. In the
case where �D−�C=0 MHz �see Fig. 7�b�� the eigenvalues
of course coincide when the Rabi frequencies are zero before
and after the pulses, but in this case no diabatic transfer will
occur as no coupling is present. For positive and negative

detunings ��D−�C=2��2 MHz, Fig. 7�c� and �D−�C
=−2��2 MHz, Fig. 7�d�� we see avoided crossings leading
to a probability for diabatic transfer to the �−� state. Such a
transfer leads to population of the �4� state, which decays
rapidly, and the population mainly ends up in �1�. When the
energy splitting between the �d� and the �−� state is small,
maintaining adiabaticity requires high coupling strengths.
For a positive two-photon detuning the avoided crossing oc-
curs late in the sequence, as shown in Fig. 7�c�. Here the
coupling strength is relatively small due to the asymmetry
�D,0=2�C,0, hence the probability of diabatic transfer is
large. With a negative two-photon detuning the avoided
crossing occurs early, as shown in Fig. 7�c�. The coupling is
stronger at this time and the probability of diabatic transfer is
thus smaller. This difference gives rise to the asymmetry of
the two-photon spectrum in Fig. 7�a�.

C. Laser linewidths

Laser phase fluctuations lead to dephasing between the
three states involved and may therefore affect STIRAP. This
dephasing effect has been studied thoroughly in �40�, where
the STIRAP transfer efficiency has been shown to depend
only on the dephasing rate between �3� and �5�, �35.

P5 =
1

3
+

2

3
e−3�35�2/16�t, �19�

for Gaussian pulses within the adiabatic limit, not taking
decay from �4� into account. In Fig. 8 we present simulations
showing the exact influence of the laser phase fluctuations
parametrized by the laser linewidth. Also shown as the full
curve is Eq. �19�. The curves show that the transfer effi-
ciency is strongly limited by the laser phase fluctuations and
because of the nonzero decay from �4� the situation is even
worse than predicted by Eq. �19�. For high Rabi frequencies
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FIG. 6. �Color online� Transfer efficiency as a function of two-
photon detuning ��D−�C� of the C and D lasers for different
choices of one-photon detuning, �C. The simulations are made with
�C,0=�D,0=2��100 MHz, �C=�D=2 �s, and �t=1.2 �s
�=0.85�. �—� �C=0 MHz, �- - -� �C=2��300 MHz ��=18.5�,
�¯� �C=2��600 MHz ��=9.3�, �- · - · � �C=2��1200 MHz
��=4.6�.
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FIG. 7. �Color online� �a� Transfer efficiency as a function of
two-photon detuning. Evolution of eigenvalues as a function of
time is shown in �b� �D−�C=0 MHz, �c� �D−�C=2��2 MHz,
and �d� �D−�C=−2��2 MHz. In �b�, �c�, and �d� we use the
signatures: �—� �D, �- - -� �−. Parameters used for all graphs:
�C,0=2��100 MHz, �D,0=2��200 MHz, �C=2��600 MHz,
�C=�D=2 �s, and �t=1.2 �s. ��=18.5, =0.85�.

0 50 100 150
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0 1 2 3 4 5

0.980

0.985

0.990

0.995

1.000P 5

Laser linewidth [kHz]

FIG. 8. �Color online� Transfer efficiency as a function of the
linewidth of the C and D laser fields for different choices
of Rabi frequencies. The simulations use �C=�D=2 �s,
�t=1.2 �s �=0.85�, and �C=�D=2��600 MHz. �—�
P5= 1

3 + 2
3 exp�−3�35�2 /16�t�, �- - -� �C,0=�D,0=2��300 MHz

��=83.3�, �¯� �C,0=�D,0=2��100 MHz ��=9.3�.
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the coupling is stronger and therefore the limitations due to
dephasing are less pronounced. To maintain a transfer effi-
ciency above 0.99 we find laser linewidths required to be
below 2��1.5 kHz for �C,0=�D,0=2��100 MHz and be-
low 2��2 kHz for �C,0=�D,0=2��300 MHz. It should
be noted that by laser linewidth we mean the frequency fluc-
tuations averaged over the time duration of the experiment.
This is not necessarily the steady state laser linewidth. For
pulse sequences of roughly 10 �s duration, as are employed
in our simulations, laser linewidths of a few kHz are not
unrealistic for most laser systems.

D. Role of pulse widths

As discussed above, the laser phase fluctuations limit the
transfer efficiency, making it preferable to use short pulses,
since this typically reduces the effective laser linewidth.
Short pulses, however, require higher Rabi frequencies to
maintain the adiabaticity. In Fig. 9, we show the transfer
efficiency as a function of pulse width in the case of no laser
linewidth as well as the case of a 2��2 kHz linewidth. As
expected, for the case of no linewidth we find an increasing
efficiency as we increase the pulse widths because the crite-
rion for adiabaticity is better fulfilled for larger pulse widths
as found in Eq. �11�. We indicate the point where we exceed
0.995 on the graph. When we introduce a 2��2 kHz laser
linewidth an optimum pulse width is found as indicated on
the graph.

This optimum depends on the Rabi frequencies of the
lasers and the dependency is pictured in Fig. 10. In the case
of no linewidth, instead of the optimum, we plot the pulse
widths required to exceed a 0.995 transfer efficiency. This
result is compared to the optimum pulse width, when lasers
have 2��2 kHz linewidth. Both curves show that short
pulses are preferred as Rabi frequencies grow. However, the
mutual dephasing of the lasers involved, results in smaller
optimum pulse widths when finite laser linewidths are intro-
duced. For higher Rabi frequencies, the two curves cross, so

that shorter pulse widths apparently are preferred for the per-
fectly coherent lasers. This is a result of the artificial limit
0.995 chosen to define the black curve. We have assumed the
laser linewidths to be constant over the range of pulse dura-
tions involved. More realistically one would expect the laser
linewidths to grow proportionally to ��C,D��, where the
power � is in the range 0.5→1 for a phase diffusion process.

E. Residual light

In the first generation of STIRAP experiments beams of
atoms passed through two stationary laser beams �28,30�.
Here, the detection region was spatially well separated from
the STIRAP region and in this case no residual light was
present. When we consider the situation with stationary ions
and pulsed laser beams, the situation is less favorable. In the
case of a constant background level of laser light, the ions do
not start out in an exact dark state and hence population
transfer may be limited by the resulting finite population of
the short-lived states �2� and �4�. Moreover, since the residual
light is able to excite the Raman resonance between the
states �3� and �5�, repumping of the transferred population
can take place after ended STIRAP pulse sequence. With a
small background level of light this Raman resonance
will be narrow and hence the limitation of population
transfer is most severe near two-photon resonance as experi-
mentally found in �37�. Assuming Rabi frequencies of
2��100 MHz and extinction ratio �10−4 of the optical
pulse generators, we arrive at residual Rabi frequencies in
the MHz range, which can easily repump a significant por-
tion of the shelved population on two-photon resonance. In
this section we address this problem and establish upper lim-
its on the peak Rabi frequencies involved.

We denote the Rabi frequency of the residual light �off,i,
i= �A ,B ,C ,D�. We first look at the transfer efficiency as a
function of the two-photon detuning. When no residual light
is present the transfer efficiency is optimal on two-photon
resonance as shown previously in Fig. 6, but this is no longer
the case when we introduce a fraction of residual light,
�off,i /�i,0. In Fig. 11�a� we present the transfer efficiency as
a function of two-photon detuning for different fractions of
residual light. As we increase this fraction we see an increas-
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FIG. 9. �Color online� Transfer efficiency as a function of pulse
width of the C and D laser fields for 2��2 kHz �—� as well as no
laser linewidth �- - -�. The delay between the pulses is given by
=0.85, laser detunings are �C=�D=2��600 MHz, and peak
Rabi frequencies �C,0=�D,0=2��100 MHz ��=9.3�.
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FIG. 10. �Color online� Optimal pulse width as a function of the
Rabi frequencies of the C and D laser fields for 2��2 kHz ��� as
well as no laser linewidth ���. The delay between the pulses is
given by =0.85; laser detunings are �C=�D=2��600 MHz.
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ing loss of population on two-photon resonance. With
�off,i /�i,0 less than 0.02 �dashed curves� this loss is only a
few percent relative to the maximum transfer efficiency.
However, already with �off,i /�i,0=0.05 �solid curve� the loss
has grown to nearly 50% near two-photon resonance, render-
ing the detection scheme useless in this case.

As mentioned earlier, residual light is typically present as
a fraction of the peak Rabi frequencies, and hence very high
Rabi frequencies are not necessarily preferable. In Fig. 11�b�
we show the transfer efficiency as a function of the peak
Rabi frequencies in the STIRAP pulses for different values
of the fraction of residual light. Increasing the Rabi frequen-
cies increases the transfer efficiency until the residual light
limits the transfer. The maximum transfer efficiency is found
to be 0.99 around the Rabi frequencies, �C,0=�D,0
=2��50 MHz with a residual light level less than
�off,i /�i,0=0.02. For even higher Rabi frequencies we ob-
serve Rabi oscillations between �3� and �5�.

Experimentally �i,0 /2�=100 MHz can be achieved fo-
cusing a beam with a mW power level to a �m spot size.
Switching of the lasers with acousto-optical modulators
�AOM’s� or electro-optical modulators �EOM’s� can be done
on ns time scale reducing the power level to a few hundred
nW which correspond to �off,i /�i,0=0.01. This is repre-
sented by the green dotted curve in Fig. 11�b�, which obvi-
ously reveals the limitations set by residual light. The extinc-
tion ratio 10−4 corresponds to the situation where the lasers
are extinguished by one optical pulse generator. Applying

additional AOM’s and EOM’s in succession will reduce the
residual light level, and as a result, the limitation due to this
light can be smaller as well, at the expense of increased
experimental complexity.

F. Ion motion

The ions have so far been considered as having no motion
with respect to the laser fields. We consider the ions to be
confined in a linear Paul trap �41�, where they experience an
effective confining potential due to rf and dc fields. The ion
motion can be derived to consist of a three-dimensional har-
monic motion with frequencies �x, �y, and �z called the
secular motion �41�. In addition the rf field drives an oscil-
lation with the rf frequency, �rf. This oscillation is called the
ion micromotion. The secular frequencies are typically much
smaller than �rf and hence STIRAP transfer efficiency is
mainly limited by the micromotion. The effect of micromo-
tion is simulated by modulating the detunings as

�i�t� = �i�0� − v
2�

�i
cos��rft� . �20�

We only consider micromotion in one dimension with
maximum velocity v. This classical treatment of micromo-
tion is justified by quantum Monte Carlo simulations where
the ion motion has been quantized showing no visible differ-
ence between classical and quantized motion �42�. Another
argument for this classical simplification is the strength of
the laser fields making �i,0��rf. As discussed previously,
the STIRAP transfer efficiency is more sensitive to two-
photon than one-photon detunings. If we assume copropagat-
ing laser fields and take the 40Ca+ ion as an example, the
two-photon detuning will be strongly modulated in the case
of the �1�-�2�-�3� transition where the two laser fields have a
large wavelength difference ��� /��123=0.54, while the �3�-
�4�-�5� transition experiences a much smaller modulation of
the two-photon detuning ��� /��345=0.005. This means that
the first transition, in the case of 40Ca+, is strongly limited by
micromotion while the second remains virtually unaffected.

In Fig. 12 we show the transfer efficiency as a function of
the micromotion velocity for different choices of detuning.
The simulations show that when we increase the one-photon
detuning the micromotion velocity becomes an increasingly
limiting factor. For small micromotion velocities we see that
the transfer efficiency is higher for small one-photon detun-
ings. This is due to a decreased sensitivity to a nonvanishing
two-photon detuning as discussed in Sec. IV B. For higher
velocities the one-photon detuning is strongly modulated.
This results in sidebands, of which the high frequency com-
ponent comes close to resonance, hereby inducing real tran-
sitions to the short-lived �2� state. This effect gets more evi-
dent when the one-photon detuning is close to v 2�

�i
, which for

our parameters varies between 0 and 100 MHz. Fig. 12
shows small sensitivity to micromotion for very small
and very large values of �A=�B, while the �A=�B
=2��300 MHz trace shows a rapid drop as a function of v.
For the chosen parameters a micromotion velocity below
1 m /s ensures a transfer efficiency above 0.998. From the
kinetic energy of the ion a temperature can be defined
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FIG. 11. �Color online� �a� Transfer efficiency as a function of
two-photon detuning with �C,0=�D,0=2��100 MHz and �C

=2��600 MHz. �=9.3. �b� Transfer efficiency as the peak Rabi
frequencies are varied, simulated with �C=�D=2��600 MHz.
The different curves represent different fractions of residual light:
�¯� �off,i /�i,0=0.01, �- - -� �off,i /�i,0=0.02, and �—� �off,i /�i,0

=0.05. Parameters used in simulations: �C=�D=2 �s, �t=1.2 �s,
yielding =0.85. The total time duration is 20 �s and laser line-
width has been ignored.
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through the relation 1
2kBT= 1

2mv2. Hence, in the case of 40Ca+

a velocity below 1 m /s corresponds to a temperature below
4.8 mK. When the ion is Doppler laser cooled, temperatures
below the so-called Doppler temperature TD cannot be ob-
tained. For 40Ca+ TD=0.5 mK as indicated by the vertical
line on Fig. 12. This is well below the required 4.8 mK and
Doppler cooling is thus sufficient to achieve a high transfer
efficiency. Doppler temperatures for other relevant ions can
be found in Table I.

V. POLARIZATION REQUIREMENTS

Until this point Zeeman sublevels have been ignored.
However, in order to investigate the effect of laser polariza-
tion, deviating from purely circular, we now introduce all of
the Zeeman sublevels of the first stage STIRAP. The optical
Bloch equations for the full eight level system are derived
analogous to the equations in Sec. III. We consider the field
A to have both �± polarization components as well as a pos-
sible � component in case of magnetic field errors. The sec-
ond STIRAP field B is assumed to have perfect �− polariza-
tion. We denote the �+ polarized component of �A by �A

+,
the �− polarized component by �A

−, and the � polarized com-
ponent by �A

0 �see Fig. 13�.
Efficient qubit projection requires all population moved

from �↓ � to the D3/2 levels while leaving the �↑ � population
unchanged. In order to test these criteria we simulate the
problem with two different initial states corresponding to all
populations in �↓ � and �↑ �, respectively. The results are
shown in Fig. 14. First we focus on the situation, where all
initial population is in the �↓ � qubit state. Ideally the final
populations in both qubit states should be vanishing for our
scheme to work. The results, shown in Figs. 14�a� and 14�b�,

reveal that detection errors can be kept below 0.01 provided
the magnetic field can be controlled accurately enough to
keep �A

0 /�A
+ below 0.02. However, when all initial popula-

tion is in the �↑ � state, the situation is worse. From Fig.
14�c�, we find that the population in the �↑ � state is pumped
out as the relative amplitude of the �− polarized component
is increasing. This is, of course, undesirable. Hence, in order
to keep qubit detection errors below 0.01 for an arbitrary
initial state, we must demand that �A

0 /�A
+ �0.02 and

�A
− /�A

+ �0.04 with the parameters used in this simulation.

VI. FULL SIMULATION

Finally, we present the results of a simulation of the full
two stage STIRAP population transfer including all of the
above described effects except polarization errors. The pa-
rameters relevant to the simulation can be found in the cap-
tion of Fig. 15. The figure shows the population transfer
efficiency as a function of the two-photon detuning,
�B−�A, for the first STIRAP stage. Assuming that the ions
can be kept cooled close to the Doppler temperature, we
have chosen a temperature of 0.8 mK due to the micromo-
tion for this simulation. The resulting peak velocity of
0.4 m /s results in a loss of population transfer of less than
0.01 according to the discussion of Sec. IV F. The two-
photon detuning of the second STIRAP stage has been cho-
sen to be zero and the residual power level is chosen to yield
a Rabi frequency of 0.01 relative to the peak Rabi frequen-
cies for all four optical fields.

From Fig. 15 we find, when all effects are taken into
account, a maximum transfer efficiency of 0.97 for �B−�A
=−2��0.09 MHz. This corresponds to the full, black curve.
In order to identify the processes limiting this efficiency we
show with the green, dashed curve the resulting efficiency
when the residual optical power is set to zero. Comparison
with the full curve shows that a loss in efficiency of almost
0.01 can be attributed to repumping by residual laser light.
The blue, dotted curve of Fig. 15 shows the transfer effi-
ciency when both residual light and laser linewidths are set
to zero. Here a maximum transfer efficiency of 0.996 is
found near two-photon resonance indicating that the finite
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FIG. 12. �Color online� Transfer efficiency as a function of the
micromotion velocity. The different curves show results for differ-
ent detunings: �¯� �A=�B=0 MHz, �—� �A=�B=2��300 MHz
��=18.5�, �- - -� �A=�B=2��600 MHz ��=9.3�, and �−·−�
�A=�B=2��1200 MHz ��=4.6�. Parameters used for
simulations: �A=�B=2 �s, �t=1.3 �s �=0.92�, �A=�B

=2��100 MHz, and �rf =2��16.8 MHz. The temperature of the
ion is defined as T=mv2 /kB, where m is the ion mass and kB is the
Boltzmann’s constant. The Doppler temperature for Ca+, TD, is in-
dicated by the vertical line.
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laser linewidth is indeed a deleterious effect to STIRAP. The
linewidth of 2 kHz assigned to all lasers in the simulation
results in a loss of transfer efficiency of nearly 0.02. In order
to reduce the effect of laser phase fluctuations shorter pulse
durations, and consequently, higher Rabi frequencies must be
used.

The simulation illustrates the importance of efficient
switching on and off of laser power in the STIRAP process.

Unless the lasers involved in the two STIRAP stages are
pairwise phase locked one obviously needs fairly high inten-
sities of the optical pulses and hence the requirements to the
residual laser power become more stringent. However, as can
be seen from Fig. 5, it is noted that the scheme is insensitive
to fluctuations in the laser power as long as the transitions
involved are well saturated and adiabaticity is maintained.
Experimentally, high Rabi frequencies can be achieved at the
wavelength listed in the Appendix, and the complication of
phase locking can thus be avoided �37�.

VII. SUMMARY AND CONCLUSIONS

In summary, we analyze the scheme where two magnetic
sublevels of the S1/2 ground state of alkaline-earth-metal ions
are considered as qubit states. We have shown that qubit
projection can be effectively performed by electronically
shelving the population of one magnetic sublevel via a
double STIRAP process. Hereby the population is transferred
to the metastable D5/2 state and the remaining population of
the other qubit state can be detected by driving the strong
Doppler cooling transition of the ions and spatially monitor-
ing the fluorescence. In order to selectively shelve only one
qubit state we apply appropriately polarized light in the first
STIRAP process.

We have established the formalism describing the system
consisting of the five energetically lowest levels of the
alkaline-earth-metal ions and we model the STIRAP pro-
cesses using Gaussian shaped pulses from partially phase
coherent lasers. Specific simulations have been performed by
solving the optical Bloch equations for the 40Ca+ ion. From
these simulations we conclude that our scheme is indeed
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FIG. 14. �Color online� Effect of polarization error and error in
magnetic field direction. Populations of the qubit states �↓ �, P−, and
�↑ �, P+, plotted as a function of the relative �− polarization com-
ponent �A

− /�A
+. The various curves on each plot correspond to dif-

ferent magnetic field direction errors, parametrized by the relative �
polarization component �A
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+. �—� �A
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=0.01, �−·−� �A
0 /�A

+ =0.03, and �¯� �A
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+ =0.05. The upper two
graphs, �a� and �b�, correspond to all initial populations in the �↓ �
qubit state, while the lower two graphs, �c� and �d�, correspond to
all initial populations in �↑ �. The parameters for the simulations are
�A,0

+ =�B,0=2��300 MHz, �A=�B=2��300 MHz, �=2 �s, and
�t=1.3 �s. ��=167, =0.92�.
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FIG. 15. �Color online� Full simulation of the two stage STI-
RAP. The plot shows the population transfer as a function of two-
photon detuning of the first STIRAP stage. Parameters are �A

=�C=�D=2��600 MHz, �A=�B=�C=�D=2��100 MHz, �A

=�B=�C=�D=2 �s. All laser linewidths are 2��2 kHz and the
trap is characterized by �rf =2��16.7 MHz and v=0.4 m /s, cor-
responding to a temperature of 0.8 mK. The STIRAP’s have �t
=1.2 �s corresponding to =0.85 and �=9.3 for both stages. The
two STIRAP stages are separated by 10 �s and the overall simula-
tion time is 30 �s. The Rabi frequencies associated with the re-
sidual power are 0.01 relative to the peak Rabi frequencies for all
four fields. The curves correspond to �—� all effects on, �- - -�
residual power set to zero but laser linewidth on, and �¯� both laser
linewidth and residual power set to zero.
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feasible with a projection efficiency exceeding 99%, pro-
vided laser linewidths can be kept below 1.5 kHz over the
time scale of the pulse sequence. The short time span re-
quired to avoid decoherence of the lasers makes it necessary
to have high Rabi frequencies in the hundreds of MHz re-
gime in order to maintain adiabaticity. However, since we are
driving strong, dipole allowed transitions, such high Rabi
frequencies can be achieved by using moderately focused
lasers with 5–10 mW power.

In order to avoid unwanted excitations, we assume all
lasers to be detuned roughly 0.5–1 GHz from the one-
photon resonance. In the limit of this detuning dominating
over Rabi frequencies, we have identified the adiabaticity
criteria for the ions when Gaussian light pulses are applied.
Given an available laser power and hence certain Rabi fre-
quencies, we find an optimum pulse separation depending
only on the parameters � and r. Within variations of 20% we
find the optimum pulse separation to be � /	2, where � is the
1 /e full width of the Gaussian pulses.

In contrast to early STIRAP experiments, where atomic
beams and stationary laser beams were used, our system in-
volves stationary atoms and laser pulses. Since the detection
zone and the STIRAP zone are spatially identical for station-
ary ions, we have to take into account the finite extinction
ratio of the optical pulse generators involved in the experi-
ment. Due to a finite extinction ratio, a fraction of the peak
Rabi frequencies of the STIRAP pulses will be present be-
fore and after the pulse sequence. As a result, shelved popu-
lation can be repumped, and consequently, the shelving effi-
ciency reduced. Clearly mechanical shutters will efficiently
block laser beams, exposing the ions, but unfortunately such
shutters need several tens of microseconds to activate. On the
shorter time scale AOM’s and EOM’s can be employed with
extinction ratios around 1:104. Hence, we have analyzed the
role of residual light at the level of 10−2 in Rabi frequency,
and this was found to restrict the shelving efficiency severely
if the Rabi frequency exceeded 2��100 MHz. In order for
the detection scheme to be more efficient, efforts must be
made to extinguish the light even further. This could be
achieved by introducing more AOM’s or EOM’s in succes-
sion. Motion in the ion trap is included in the analysis, and
found to be unimportant close to the Doppler cooling limit.
For calcium ions this is 0.5 mK.

Finally, we have analyzed the effect of impure polariza-
tion of light, which could arise from stray birefringence or
variations in the direction of an external magnetic field. So-
lutions to the optical Bloch equations involving magnetic
sublevels of the three lowest states of the calcium ion show

that projection errors can be kept below 0.01 provided the
relative Rabi frequencies of the unwanted polarization com-
ponents can be kept below 0.02–0.04.

A simulation including all effects outlined above, except
polarization errors, show the importance of being able to
efficiently switch on and off laser power as well as using
highly coherent or perhaps phase locked lasers in this qubit
detection scheme. Since we assume that the lasers involved
in the scheme are only partially coherent, a loss of transfer
efficiency of almost 0.02 is found for laser linewidths of
2 kHz over the time of the experiment. Performing the shelv-
ing on a shorter time scale will typically reduce the relevant
linewidths but also require higher Rabi frequencies, and con-
sequently, better suppression of residual laser light.
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APPENDIX: RELEVANT ION DATA

Table I shows spectroscopic data for some selected ions
possessing the level structure and transitions shown in Fig. 1.
Listed are wavelengths �i associated with the fields �i, i
= �A ,B ,C ,D�, decay rates of the short lived, states �2� and �4�
into the stable and metastable states, as well as decay rates of
the metastable states into the stable states and the Doppler
temperature TD. The data is reproduced from Ref. �43�.

�1� M. A. Nielsen and I. L. Chuang, Quantum Computation and
Quantum Information �Cambridge University Press, Cam-
bridge, 2000�.

�2� A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, M.
H. Devoret, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev.
Lett. 95 060501 �2005�.

�3� M. Steffen, M. Ansmann, R. C. Bialczak, N. Katz, E. Lucero,

R. McDermott, M. Neeley, E. M. Weig, A. N. Cleland, and J.
M. Martinis, Science 313, 1423 �2006�.

�4� M. Atature, J. Dreiser, A. Badolato, A. Hogele, K. Karrai, and
A. Imamoglu, Science 312, 551 �2006�.

�5� E. Knill, R. Laflamme, and G. J. Milburn, Nature �London�
409, 46 �2001�.

�6� R. Prevedel, P. Walther, F. Tiefenbacher, P. Bohl, R. Kalten-

TABLE I. Data of relevant ions.

Property 40Ca+ 88Sr+ 138Ba+ 202Hg+

�A �nm� 397 422 493 194

�B �nm� 866 1092 650 10670

�C �nm� 850 1004 585 991

�D �nm� 854 1033 614 398

�21 /2� �MHz� 21 20 14 69

�23 /2� �MHz� 1.7 1.5 5.3 0.05

�41 /2� �MHz� 22 23 19 168

�43 /2��MHz� 0.18 0.18 0.76 0.48

�45 /2� �MHz� 1.6 1.4 5.9 40

�31 /2� �Hz� 0.15 0.40 0.009 1.62

�51 /2� �Hz� 0.15 0.46 0.003 7.96

TD �mK� 0.50 0.49 0.35 1.7

EFFICIENT QUBIT DETECTION USING ALKALINE-… PHYSICAL REVIEW A 76, 062321 �2007�

062321-11



baek, T. Jennewein, and A. Zeilinger, Nature �London� 445,
65 �2007�.

�7� Q. A. Turchette, C. J. Hood, W. Lange, H. Mabuchi, and H. J.
Kimble, Phys. Rev. Lett. 75, 4710 �1995�.

�8� D. Schrader, I. Dotsenko, M. Khudaverdyan, Y. Miroshny-
chenko, A. Rauschenbeutel, and D. Meschede, Phys. Rev. Lett.
93 150501 �2004�.

�9� J. Mompart, K. Eckert, W. Ertmer, G. Birkl, and M. Lewen-
stein, Phys. Rev. Lett. 90 147901 �2003�.

�10� I. H. Deutsch, G. K. Brennen, and P. S. Jessen, Fortschr. Phys.
48, 925 �2000�.

�11� D. J. Wineland et al., Philos. Trans. R. Soc. London, Ser. A
361, 1349 �2003�.

�12� C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J.
Wineland, Phys. Rev. Lett. 75, 4714 �1995�.

�13� F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T.
Lancaster, T. Deuschle, C. Becher, C. F. Roos, J. Eschner, and
R. Blatt, Nature �London� 422, 408 �2003�.

�14� K. R. Brown, R. J. Clark, J. Labaziewicz, P. Richerme, D. R.
Leibrandt, and I. L. Chuang, Phys. Rev. A 75, 015401 �2007�.

�15� D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N.
Matsukevich, L. M. Duan, and C. Monroe, Nature �London�
449, 68 �2007�.

�16� S. Seidelin et al., Phys. Rev. Lett. 96, 253003 �2006�.
�17� P. C. Haljan, K. A. Brickman, L. Deslauriers, P. J. Lee, and C.

Monroe, Phys. Rev. Lett. 94, 153602 �2005�.
�18� H. Häffner et al., Nature �London� 438, 643 �2005�.
�19� D. Leibfried et al., Nature �London� 438, 639 �2005�.
�20� J. Chiaverini et al., Nature �London� 432, 602 �2004�.
�21� D. Møller, L. B. Madsen, and K. Mølmer, Phys. Rev. A 75,

062302 �2007�.
�22� P. Staanum and M. Drewsen, Phys. Rev. A 66 040302�R�

�2002�.
�23� H. Häffner et al., Appl. Phys. B: Lasers Opt. 81, 151 �2005�.
�24� D. Kielpinski, V. Meyer, M. A. Rowe, C. A. Sackett, W. M.

Itano, C. Monroe, and D. J. Wineland, Science 291, 1013
�2001�.

�25� E. Knill, Nature �London� 434, 39 �2005�.
�26� A. M. Steane, Nature �London� 399, 124 �1999�.
�27� J. Oreg, F. T. Hioe, and J. H. Eberly, Phys. Rev. A 29, 690

�1984�.
�28� K. Bergmann, H. Theuer, and B. W. Shore, Rev. Mod. Phys.

70, 1003 �1998�.
�29� P. Staanum, Ph.D. thesis, University of Aarhus, 2004 �unpub-

lished�.
�30� U. Gaubatz, P. Rudecki, S. Schiemann, and K. Bergmann, J.

Chem. Phys. 92, 5363 �1990�.
�31� L. S. Goldner, C. Gerz, R. J. C. Spreeuw, S. L. Rolston, C. I.

Westbrook, W. D. Phillips, P. Marte, and P. Zoller, Phys. Rev.
Lett. 72, 997 �1994�.

�32� J. Lawall and M. Prentiss, Phys. Rev. Lett. 72, 993 �1994�.
�33� M. Weitz, B. C. Young, and S. Chu, Phys. Rev. A 50, 2438

�1994�.
�34� T. Cubel, B. K. Teo, V. S. Malinovsky, J. R. Guest, A. Rein-

hard, B. Knuffman, P. R. Berman, and G. Raithel, Phys. Rev. A
72, 023405 �2005�.

�35� B. Broers, H. B. van Linden van den Heuvell, and L. D. Noor-
dam, Phys. Rev. Lett. 69, 2062 �1992�.

�36� J. Deiglmayr, M. Reetz-Lamour, T. Amthor, S. Westermann,
A. L. de Oliveira, and M. Weldemuller, Opt. Commun. 264,
293 �2006�.

�37� J. L. Sørensen, D. Møller, T. Iversen, J. B. Thomsen, F. Jensen,
P. Staanum, D. Voigt, and M. Drewsen, New J. Phys. 8, 261
�2006�.

�38� B. W. Shore, K. Bergmann, A. Kuhn, S. Schiemann, J. Oreg,
and J. H. Eberly, Phys. Rev. A 45, 5297 �1992�.

�39� M. P. Fewell, B. W. Shore, and K. Bergmann, Aust. J. Phys.
50, 281 �1997�.

�40� P. A. Ivanov, N. V. Vitanov, and K. Bergmann, Phys. Rev. A
70, 063409 �2004�.

�41� P. Ghosh, Ion Traps �Clarendon Press, Oxford, 1995�.
�42� J. Thomsen, Master thesis, University of Aarhus, �2005� �un-

published�.
�43� D. F. V. James, Appl. Phys. B: Lasers Opt. 66, 181 �1998�.

MØLLER et al. PHYSICAL REVIEW A 76, 062321 �2007�

062321-12


