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Crystalline beam emulations in a pulse-excited linear Paul trap
Niels Kjærgaarda) and Michael Drewsen
Institute of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark

~Received 6 November 2000; accepted 21 December 2000!

This paper considers a pulsed voltage excitation of the quadrupole electrodes of a linear Paul ion
trap. The transverse dynamics of ions in this time-varying electric field is analogous to that of
charged particles in the strong focusing magnetic lattice of a storage ring. By laser cooling ions
stored in a pulse-excited linear Paul trap theoretical results on the stability of crystalline ion beams
in storage rings can be tested. The stability of ion motion in a pulse-excited trap is derived in
(q,a)-parameter formalism and we show where in (q,a) space to expect the formation of Coulomb
crystals according to the theory of crystalline ion beams. ©2001 American Institute of Physics.
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I. INTRODUCTION

The analogy between the effects of magnetic and elec
quadrupole fields on charged particles is a subject of s
dard textbooks on charged particle beams~see, e.g., Refs. 1
and 2!. As it turns out, motion in either magnetic or electr
quadrupole fields of periodic strength variation in space
time, s, is governed by Hill’s type of equations, i.e., equ
tions of the form

d2u

ds2 1@l2Q~s!#u50, ~1!

where l is a constant and Q(s) is a real, piecewise continu-
ous function of periodp. In a recent paper, Okamoto an
Tanaka3 pointed out that this parallel in the dynamics can
used to study beam halo formation~as observed for high
intensity beams in accelerators with magnetic structures! in
an electric trap. The idea was emphasized even more
Davidsonet al.,4 who proposed using a Paul trap configur
tion to simulate intense non-neutral beam propagation o
large distances through a periodic focusing quadrupole m
netic field.

In this paper, we propose to go one step further a
exploit the analogy between the transverse dynamics
storage ring and of a pulse-excited linear Paul trap in t
theoretical results on the stability of crystalline ion bea
can be tested. Crystalline energetic ion beams5 have not been
observed so far in any storage ring even at very low be
temperatures~e.g., in laser cooling experiments with spac
charge dominated beams6!. However, some ordering effect
in cold stored ion beams have been reported~see Ref. 7, and
references therein!. The lack of crystallization, as routinel
observed in ion traps,8–10 is probably due to the fact that th
maintenance conditions for a beam crystal as predicted
theory have not been fulfilled so far in storage ri
experiments.11 Some of these results putting severe rest
tions on, e.g., the phase advance per unit cell of the sto
ring lattice can be tested experimentally in a linear Paul
trap as outlined in this paper. A trap for experiments alo
this line using laser cooled24Mg1 ions is currently under
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construction in our laboratory in Aarhus. A similar expe
ment with the same goal has been initiated in Munich
Schätz et al.12 As this experiment uses a ring trap in whic
the ions are to be accelerated, the problem of shear du
bending and the need for a suitably graded cooling fo
arise ~see, e.g., Ref. 13, and references therein!. Investiga-
tions of this kind might provide information on similar e
fects in a realistic storage ring environment. However,
scheme using a linear Paul trap benefits from the fact that
crystal interacts solely with the focusing structure. Hen
the stability problems regarding focusing can be addres
separately.

II. STRONG FOCUSING IN MAGNETIC STORAGE
RINGS AND ELECTRIC QUADRUPOLE TRAPS

In a typical storage ring or synchrotron charged, en
getic particles are made to circulate in a plane by the Lore
force of magnetic dipole fields. Transverse confinem
along the ideal orbit is obtained by using a periodic arran
ment of quadrupole fields. The magnetic field in Cartes
coordinates (x,y,z) of a perfect quadrupole of strengthg can
be derived from a scalar potentialV(x,y)5gxy as B
52“V. For a particle of chargee and massm with a ve-
locity v5v ẑ in the z direction taken to be along the idea
orbit, the Lorentz forceF5evÃB is

F52evgxx̂1evgyŷ. ~2!

For positively charged particles~i.e., e.0) andg.0, this
force acts focusing in the x direction and defocusing in thy
direction and gives rise to the equations of motions insid
magnetic quadrupole:

ü1Kuu50, u5x,y, ~3!

whereKx,y56evg/m. The principle of alternating gradien
focusing~AG focusing! or so-called strong focusing14 relies
on the fact that by combining two quadrupoles into a doub
with the second having opposite polarity of the first~i.e., g
→2g) net focusing in both transverse dimensions (x,y) can
be obtained by proper choice of quadrupole separation.

The linear Paul trap is an offspring of the well-know
electric quadrupole mass filter as proposed by Paul
1 © 2001 American Institute of Physics
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Steinwedel.15 The latter essentially consists of four paral
cylindrical electrodes arranged in the way as shown in Fig
and with voltages6c applied to the rods as indicated. Th
configuration gives rise to the electric potentialF(x,y)
5c(x22y2)/r 0

2, wherer 0 is the inscribed radius of the in
terelectrode space. Charged particles in the interelect
space obey exactly the same transverse equations of m
as derived for a charged particle traveling through a m
netic quadrupole Eq.~3!, where we now haveKx,y

562emc/r 0
2. Likewise, for positively charged particles an

c.0 we get a focusing effect in thex direction and a defo-
cusing effect in they direction. To obtain transverse confin
ment in both directions, the idea is to use a periodic, tim
dependent potentialc(t). This is very analogous to th
spatially varying quadrupole potential as seen by a char
particle traveling through the periodic lattice of a stora
ring with magnetic AG confinement. The convention
choice is a sinusoidal excitation

c~ t !5U2V cosvt. ~4!

Introducing reduced parameters

j5vt/2, ax58eU/mr0
2v2, qx54eV/mr0

2v2,
~5!

ay528eU/mr0
2v2, qy524eV/mr0

2v2,

the equations of motion for thex and y directions can be
transformed into the canonical form of Mathieu’s equatio

d2u

dj2 1~au22qu cos 2j!u50, u5x,y. ~6!

The properties of Mathieu’s equation have been recorde
detail ~see, e.g., Ref. 16, and references therein!. Here, we
only note that the (qu ,au) plane is divided into stable an
unstable regions by characteristic curves~see Fig. 2!. For
(qu ,au) in a stable region, solutions to Mathieu’s equatio
are bound whereas in an unstable region the solutions ten
infinity with time. To have overall transverse stability~i.e., in
both transverse dimensionsx andy), we must demand tha
both (qx ,ax) and (qy ,ay) belong to stable regions of Eq.~6!.

The choice of a sinusoidally time-dependent potentia
by no means unique. The arbitrary nature of the scalar

FIG. 1. Electric quadrupole configuration. A time-varying voltage6c(t) is
applied as shown. When operated as a linear Paul trap each electro
sectioned into three and a dc voltageU0 is applied to the eight end pieces i
addition toc(t) or 2c(t).
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tential was emphasized by Richardset al., who investigated
the possibilities of using a rectangularly time-varyin
potential17

c~ t !5U2VSd~ t !, ~7!

whereSd(t) is a rectangular function with duty cycled. In
this paper, we consider a pulsed voltage excitation of
quadrupole electrodes having a wave form cycle periodT,
and pulse durationtT, on the specific form

c~ t !5U2VPt~ t !,

Pt~ t !5H 1 if utu<tT/2

0 if tT/2,utu<~12t!T/2

21 if ~12t!T/2,utu<T/2,

~8!

Pt~ t1T!5Pt~ t !.

Defining here the angular repetition frequency to bev
52p/T and using the transformations Eq.~5! the equations
of motion for pulsed excitation appear as

d2u

dj2 1@au22quP̃t~j!#u50, u5x,y, ~9!

where P̃t(j) ~see Fig. 3! is the obvious transformation o
Pt(t) to the reduced parameter space

P̃t~j!55
1 if uju<

1

2
tp

0 if
1

2
tp,uju<

1

2
~12t!p

21 if
1

2
~12t!p,uju<

1

2
p,

~10!

P̃t~j1p!5Pt~j!.

is

FIG. 2. (q,a)-stability diagrams. The lines bound the stability regions
Eq. ~6!, i.e., the case of sinusoidal excitation. The shaded areas show
stability regions of Eq.~9! whent51/2 for pulsed excitation.
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The time-varying pulsed electric field emulates the tra
verse dynamics of charged particles in the spatially vary
magnetic field of a strong focusing lattice and we may ap
theory developed for the latter to describe the stability of E
~9!. As the coefficientKu(j)[au22quP̃t(j) is a piecewise
constant function, a solution to Eq.~9! may be propagated
from a vector containing the initial conditions using matr
multiplication

F u~j!

u8~j!G5Mu~juj0!F u~j0!

u8~j0!G , ~11!

where we have adopted notation from Ref. 18. In Eq.~11!
u(j0) andu8(j0) are initial values atj5j0 andMu(juj0) is
the 232 overall transfer matrix fromj0 to j which can be
calculated by successive multiplication of the transfer ma
ces for all the intervals of constantKu betweenj0 andj ~see
the Appendix!.

The solutions to Eq.~9! will be stable if uTr Mu(juj
1p)u,2 and unstable ifuTr Mu(juj1p)u.2.18 Thus, for a
givent we may find corresponding values ofa andq leading
to stable~single particle! motion and plot this as a stabilit
diagram. An example of a stability diagram whent51/2
~i.e., the special case of a rectangular waveform! is shown in

FIG. 3. The pulsed wave formP̃(j) given by Eq.~10!.
-
g
y
.

i-

Fig. 2. In Fig. 4, the development of the first two stabili
regions for pulsed voltage excitation is shown when
pulse duration is decreased fromt50.5 to t50.05

III. EMULATION OF A BEAM CRYSTAL IN A LINEAR
PAUL TRAP

As described previously, we may obtain confinement
the two transverse directions of a pulse-excited electric qu
rupole. This mimics the transverse dynamics of an AG m
netic lattice. To study crystalline stability in a stationary re
erence frame, such as the electric quadrupole shown in
1, we furthermore need axial confinement. In this respect,
physical situation resembles that of a bunched beam of
ticles rather than a coasting beam. Axial confinement can
achieved by sectioning each of the quadrupole rods into th
as shown in Fig. 1 and applying a dc voltageU0 to the eight
end pieces in addition toc(t) or 2c(t). This gives rise to a
static potential having a saddle point at the center of the
and we approximate this with a harmonic potential19

fs5hU0@z22 1
2 ~x21y2!#, ~12!

where h is geometric factor. By careful choice of desig
parameters of the trap, the harmonic approximation will
deed be valid. We note that the axially confining force ar
ing from the static potential Eq.~12! is accompanied by a
radially defocusing force in accordance with Earnshaw
theorem. This harmonic defocusing force may be accoun
for by including it in theau parameter of Eq.~9!. In fact, by
choosingU50 in Eq.~8! this will be the only contribution to
the a parameter

au52
4heU0

mv2 , ~13!

and we note that in this caseau,0 always.
So far, we have only dealt with the stability of a sing

particle or rather a particle in a plasma sufficiently dilute th
the Coulomb interaction between particles can be neglec
By applying laser cooling to, e.g.,24Mg1 ions, which has
ation
FIG. 4. The first two stability regions~shaded areas! with t50.5,0.1,0.05 for a pulsed voltage excitation. The stability regions for sinusoidal voltage excit
are shown for comparison~lines!.
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been done routinely in both storage rings6 and traps,10 one
can increase the plasma density and it can be studied ex
mentally whether or not Coulomb crystals will form in th
strong focusing environment of a pulse-excited trap. A
Coulomb crystal represents the ultimate in density with
interparticle interaction energy which is much larger than
ion kinetic energy, the regions of stability will be modifie
for this strongly coupled one component non-neutral plas
A well-established result from the theory of crystallin
beams states that the ring lattice periodicity should be at l
2& as high as the maximum betatron~bare! tune. Stated in
another way, we have the following criterion for the pha
advancemu per unit cell~or rather per wave form cycle in
the trap case!

mu5arccosF1

2
Tr Mu~juj1p!G,

p

&
. ~14!

The criterion Eq.~14! has been described as condition
avoid a parametric resonance between the phonon mod
the crystalline structure and the machine latt
periodicity11,20 It should be stressed, however, that the ma
tenance condition isnot limited to crystalline beams but i
part of a far more general result21,22on the envelope stability
of charged particle beams ranging from the emittance do
nated ~hot! beam, where the condition ismu,p/2, to the
space-charge dominated regime described by Eq.~14!. In
Fig. 5, the part of the firstt50.1 stability region for which
Eq. ~14! is fulfilled is shown along with the limitmu,p/2.
The latter criterion is a widely adopted condition for
smooth approximation treatment of strong focusing to
valid.1 For a linear Paul trap operated at (q,a) parameters
belonging to the stability region bounded by Eq.~14! it is
expected that Coulomb crystals can be formed when trap
ions are subjected to laser cooling. We will test this expe

FIG. 5. Part of the first stabilty region for a pulsed voltage excitation
duration t50.1 whenU50. The subregions subject to the conditionsm
,p/& andm,p/2 on the phase advance per wave form cycle are sho
ri-
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mentally in the near future in the case of24Mg1 and hope-
fully provide experimental support to the theory of crysta
line ion beams.

IV. CONCLUSION

In conclusion, it is possible to build a bridge between t
formalism of storage ring dynamics and that of an ion tra
The close analogy between the transverse dynamics of
age rings and a pulse-excited linear Paul trap can be
ploited to test theoretical results on the stability of crystalli
ion beams with respect to the maintenance condition c
cerning the maximum phase advance per unit cell. This
be done in table top size experiments and should prov
valuable information before commissioning a large sc
specialized storage ring for crystalline ion beams. We h
outlined how the stability criterions can be stated in t
(q,a)-parameter formalism usually applied by the ion tr
community. This will serve as a reference frame for expe
mental investigations on crystalline beam stability using
linear Paul trap.
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FIG. 6. Examples of particle trajectories forq50.2,0.5,2.1, when
a521023 andt50.1.
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APPENDIX: TRANSFER MATRIX

Given the initial conditions@u(j0),u̇(j0)# at timej0 for Eq. ~9!, propagation to a later timej can be obtained using matri
multiplication via Eq.~11!. Considering, for example,j05 1

2tp and using the transformationj̃5j2j0 we have~leaving out
subscriptu)

M ~ j̃u0!5S~ j̃2 bj̃/p c!S b j̃/p c ~p!, ~A1!

where

S~J!55
T~a,J! if 0 ,J<S 1

2
2t Dp

TS a12q,J2F1

2
2tGp DSS F1

2
2tGp D if S 1

2
2t Dp,J<

1

2
p

TS a,J2
1

2
p DSS 1

2
p D if

1

2
p,J<~12t!p

T~a22q,J2@12t#p!S~@12t#p! if ~12t!p,J<p,

~A2!

and

T~K,l !5 1
2F eA2Kl1e2A2Kl 1

A2K
~eA2Kl2e2A2Kl !

A2K~eA2Kl2e2A2Kl ! eA2Kl1e2A2Kl
G if KÞ0, ~A3!

T~K,l !5F1 l

0 1G if K50.

In Fig. 6, examples of single particle trajectories obtained by using the propagation matrix Eq.~A1! are shown.
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