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A detailed description and theoretical analysis of experiments achieving coherent coupling between an
ion Coulomb crystal and an optical cavity field are presented. The various methods used to measure the
coherent coupling rate between large ion Coulomb crystals in a linear quadrupole radiofrequency ion trap and
a single-field mode of a moderately high-finesse cavity are described in detail. Theoretical models based on
a semiclassical approach are applied in assessment of the experimental results of P. F. Herskind et al. [Nature
Phys. 5, 494 (2009)] and of complementary new measurements. Generally, a very good agreement between
theory and experiments is obtained.
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I. INTRODUCTION

Cavity Quantum Electrodynamics (CQED) constitutes a
fundamental platform for studying the quantum dynamics of
matter systems interacting with electromagnetic fields [1,2].
For a single two-level quantum system interacting with a single
mode of the electromagnetic field of a resonator, a particularly
interesting regime of CQED is reached when the rate, g, at
which single excitations are coherently exchanged between the
two-level system and the cavity field mode exceeds both the
decay rate of the two-level system, γ , and the rate, κ , at which
the cavity field decays [3]. This so-called strong coupling
regime was investigated first with single atoms in microwave
and optical cavities [4,5] and recently with quantum dots [6,7]
and superconducting Josephson junctions [8,9]. In the optical
domain, the use of ultrahigh-finesse cavities with a very small
modevolume allows for reaching the confinement of the light
field required to achieve strong coupling with single neutral
atoms [3,10,11]. With charged particles, however, the insertion
of dielectric mirrors in the trapping region makes it extremely
challenging to obtain sufficiently small cavity modevolumes,
due to the associated perturbation of the trapping potentials and
charging effects [12,13]. Although the strong coupling regime
has not yet been reached with ions, single ions in optical
cavities have been successfully used for, e.g., probing the
spatial structure of cavity fields [14], enhanced spectroscopy
[15], the generation of single photons [16,17], the investigation
of cavity sideband cooling [18], or the demonstration of a
single ion laser [19].
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For an ensemble of N identical two-level systems simulta-
neously interacting with a single mode of the electromagnetic
field, the coherent coupling rate is enhanced by a factor√

N [2]. This leads to another interesting regime of CQED,
the so-called collective strong coupling regime [2], where the
collective coupling rate gN = g

√
N is larger than both κ and γ .

This regime, first explored with Rydberg atoms in microwave
cavities [20], has been realized in the optical domain with
atomic beams [5], atoms in magneto-optical traps [21–25],
Bose-Einstein condensates [26,27], and, recently, with ion
Coulomb crystals [28]. This cavity-enhanced collective in-
teraction with an ensemble has many applications within
quantum optics and quantum information processing [29],
including the establishment of strong nonlinearities [30,31],
QND measurements [32–34], the production [35,36] and
storage [37,38] of single-photons, the generation of squeezed
and entangled states of light [21,39,40] and atoms [25,41], the
observation of cavity optomechanical effects [22,24,42–45],
cavity cooling [23,46], and the investigation of quantum phase
transitions [47].

This paper provides a detailed description and a theoretical
analysis of experiments achieving collective strong coupling
with ions [28]. The various methods used to measure the
coherent coupling rate between large ion Coulomb crystals in
a linear quadrupole radiofrequency ion trap and a single field
mode of a moderately high-finesse cavity (F ∼ 3000) are de-
scribed in detail. Theoretical models based on a semiclassical
approach are applied in assessment of the experimental results
of Ref. [28] as well as of complementary new measurements.
Generally, a very good agreement between the theoretical
predictions and the experimental results is obtained. As also
emphasized in Ref. [28], the realization of collective strong
coupling with ion crystals is important for ion-based CQED
[48] and enables, e.g., for the realization of quantum infor-
mation processing devices, such as high-efficiency, long-lived
quantum memories [37,49] and repeaters [50]. In addition to
the well-established attractive properties of cold, trapped ions
for quantum information processing [51,52], ion Coulomb
crystals benefit from unique properties which can be exploited
for CQED purposes. First, their uniform density under linear
quadrupole trapping conditions [53–55] makes it possible
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to couple the same ensemble equally to different transverse
cavity modes [56] and opens for the realization of multimode
quantum light-matter interfaces [57], where the spatial degrees
of freedom of light can be exploited in addition to the
traditional polarization and frequency encodings [58–60].
Second, their cold, solid-like nature combined with their strong
optical response to radiation pressure forces and their tunable
mode spectrum [61–63] make ion Coulomb crystals a unique
medium to investigate cavity optomechanical effects [64]. Ion
Coulomb crystals could, for instance, be used as a model
system to study the back action of the cavity light field on the
collective motion of mesoscopic objects at the quantum limit,
as was recently demonstrated with ultracold atoms [44,45,47].
In addition, novel classical and quantum phase transitions
could be investigated using cold ion Coulomb crystals in
optical cavities [65–68].

The paper is organized as follows: Sec. II presents the
theoretical basis for the CQED interaction of ion Coulomb
crystals and an optical cavity field. The cavity field reflectivity
spectra and the effective number of ions interacting with
the cavity field are derived, and the effect of temperature
on the collective coupling rate is discussed. In Sec. III,
the experimental setup and the measurement procedures are
described. Section IV presents various collective coupling
rate measurements and compares them to the theoretical
expectations. Section V shows measurements of the coherence
time of collective coherences between Zeeman sublevels. A
conclusion is given in Sec. VI.

II. CQED INTERACTION: THEORETICAL BASIS

A. Hamiltonian and evolution equations

We consider the interaction of Ntot two-level ions in a
Coulomb crystal with a single mode of the electromagnetic
field of an optical cavity (denoted by nm), as depicted in Fig. 1.
The single-ended linear cavity is formed by two mirrors M1

[partial transmitter (PT)] and M2 [high reflector (HR)] with
intensity transmission coefficients T1 and T2 (T1 � T2). The
absorption loss coefficient per round-trip is L and the empty
cavity field round-trip time is τ = 2l/c, where l is the cavity
length and c the speed of light. The intracavity, input, and
reflected fields are denoted by a, ain, and ar , respectively.
The interaction of an ensemble of N identical two-level ions
with a single mode of the cavity field can be described by a
Jaynes-Cummings Hamiltonian of the form [2,69]

H = Hat + Hl + Hal, (1)

FIG. 1. (Color online) Scheme considered for the description of
the interaction between an ion Coulomb crystals and the cavity field.
The cavity is formed by the two mirrors M1 and M2. ain is the input
light field, a the intracavity field, and ar is the reflected field. κ denotes
the cavity field decay rate. The spontaneous dipole decay rate of the
ions is denoted by γ .

where, in the frame rotating at the laser frequency ωl, the atom
and light Hamiltonians are given by Hat = h̄�

∑Ntot
j=1 π̂

(e)
j and

Hl = h̄�câ
†â. The atomic and cavity detunings are denoted

by � = ωat − ωl and �c = ωc − ωl , where ωat and ωc are the
atomic and cavity resonance frequencies, respectively. π̂

(e)
j is

the excited state population operator of the j -th ion, and â, â†

are the intracavity field annihilation and creation operators. In
the rotating wave approximation, the interaction Hamiltonian
reads

Hal = −h̄g

Ntot∑
j=1

�nm(rj )(σ̂ †
j â + σ̂j â

†), (2)

where σ̂
†
j and σ̂j are the atomic rising and lowering operators,

defined in the frame rotating at the laser frequency. The
single-ion coupling rate g is defined as g = μgeE0/h̄, where
μge is the dipole element of the transition considered and E0

the maximum electric field amplitude. The field distribution
E0�nm(rj ) is assumed to be that of a single-cavity Hermite-
Gauss mode [70]. In the following, we will restrict ourselves
to the fundamental TEM00 mode of the cavity and refer
to Ref. [56] for the coupling of ion Coulomb crystals to
higher-order cavity transverse modes.

The coupled atom-cavity system is subject to decoherence,
mainly through the spontaneous decay of the ions from the
excited state and through the decay of the cavity field due to the
finite reflectivity of the cavity mirrors and due to intracavity
losses. These dissipative processes are characterized by the
atomic dipole decay rate, γ , and by the total cavity field decay
rate, κ , respectively. The cavity field decay rate is given by
κ = κ1 + κ2 + κL and includes the decay rates through the PT
and HR mirrors (κ1 = T1/2τ and κ2 = T2/2τ ) and the decay
rate due to absorption losses (κL = L/2τ ).

We derive standard semiclassical equations of motion for
the mean values of the observables via 〈 ˙̂a〉 = i

h̄
〈[H,â]〉 and

phenomenologically adding the relevant dissipative processes
[2,5,69,71–73].

In the low saturation regime, most of the atoms remain in
the ground state, 〈π̂ (e)

j 〉 � 1, and the dynamical equations for
the mean values of the observables read

σ̇j = −(γ + i�)σj + ig�00(rj )a, (3)

ȧ = −(κ + i�c)a + i

Ntot∑
j=1

g�00(rj )σj +
√

2κ1/τain, (4)

where o = 〈ô〉 is the mean value of observable ô.

B. Steady-state reflectivity spectrum and effective
number of ions

In steady state, the mean value of the intracavity field
amplitude is given by

a =
√

2κ1/τain

κ ′ + i�′
c

, (5)

where an effective cavity decay rate and an effective cavity
detuning are introduced:

κ ′ = κ + g2N
γ

γ 2 + �2
, (6)

023818-2



COLLECTIVE STRONG COUPLING BETWEEN ION . . . PHYSICAL REVIEW A 85, 023818 (2012)

�′
c = �c − g2N

�

γ 2 + �2
. (7)

In these expressions, N is the effective number of ions
interacting with the intracavity field, which is calculated by
summing over all ions and weighting the contribution of each
ion by the field modefunction under consideration evaluated
at the ion’s position:

N =
Ntot∑
j=1

�2
00(rj ). (8)

Here,

�2
00(r) =

(
w0

w(z)

)2

exp

(
− 2r2

w(z)2

)
× sin2[kz − arctan(z/z0) + kr2/2R(z)] (9)

is the modefunction of the cavity fundamental TEM00 Gaus-
sian mode with waist w0 at the center of the mode and

w(z) = w0

√
1 + z2/z2

0, R(z) = z + z2
0/z, z0 = πw2

0/λ, and
k = 2π/λ.

Large ion Coulomb crystals in a linear radiofrequency trap
are to an excellent approximation spheroids with half-length
L and radius R (see Fig. 5), where the density of ions, ρ, is
constant throughout the crystal [53,54]. It is then convenient
to adopt a continuous medium description, in which Eq. (8)
becomes an integral over the crystal volume V :

N = ρ

∫
V

d r�2
00(r). (10)

In our experiment, the crystal radius and half-length, R and L,
are typically much smaller than z0 and the axial mode function
can be approximated by sin2(kz). Moreover, for randomly
distributed ions along the cavity axis z, one can average over
the cavity standing-wave longitudinal structure, which gives
an effective number of ions equal to

N = ρ

2

∫
V

d r exp[−2r2/w(z)2]. (11)

This expression can be evaluated knowing the crystal dimen-
sions, its density, and the cavity mode geometry. For typical
crystals with large radial extension as compared to the cavity
waist R � w0 and length smaller than the Rayleigh range
L � z0, this expression reduces to

N 	 ρ
πw2

0

4
L, (12)

which is simply the product of the ion density by the volume
of the cavity mode in the crystal.

Using the input-output relation ar = √
2κ1τa − ain, one

finds that the steady-state probe reflectivity spectrum of the
cavity is also Lorentzian-shaped in presence of the ions, the
bare cavity decay rate, and detuning κ and �c being replaced
by their effective counterparts κ ′ and �′

c of Eqs. (6) and (7):

R ≡
∣∣∣∣ ar

ain

∣∣∣∣
2

=
∣∣∣∣2κ1 − κ ′ − i�′

c

κ ′ + i�′
c

∣∣∣∣
2

. (13)

The broadening and shift of the cavity resonance then represent
the change in absorption and dispersion experienced by the
cavity field interacting with N ions. In Fig. 2(a), the expected
cavity reflectivity spectrum is shown for both an empty cavity
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FIG. 2. (Color online) (a) Calculated probe reflectivity spectrum
as a function of cavity detuning �c for an empty cavity (red line)
and for N = 500 ions interacting with the cavity field (blue line) [see
Eq. (13)] for a probe detuning of � = γ . The coupling of the ions
and the cavity mode lead to a broadening and a shift of the resonance
dip. The values of the parameters are set to typical values used in
the experiments presented in Secs. III and IV: κ = 2π × 2.1 MHz,
κ1 = 2π × 1.5 MHz, γ = 2π × 11.2 MHz, g = 2π × 0.53 MHz.
(b) Expected effective cavity decay rate κ ′ and shift of the cavity
resonance �′

c − �c as a function of probe detuning � calculated for
the same set of parameters.

and a cavity containing a crystal with an effective number of
ions N = 500 and for parameters corresponding to those used
in the experiments presented in Secs. III and IV. In Fig. 2(b),
the effective cavity decay rate, κ ′, and the shift of the cavity
resonance induced by the interaction with the ions, �′

c − �c,
are shown as a function of the probe detuning, �, for the same
parameters.

C. Effect of the motion of the ions

The interaction Hamiltonian in Eq. (2) is only valid for
atoms at rest. If an ion is moving along the axis of the cavity,
the standing-wave structure of the cavity field and the Doppler
shifts due to the finite velocity of the ion have to be taken into
account. For an ion moving along the standing wave field with
a velocity vj , it is convenient to define atomic dipole operators,
σj± = 1

2σj exp (±ikzj ), arising from the interaction with the
two counterpropagating components of the standing-wave
cavity field. In the low saturation limit and taking into account
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the opposite Doppler-shifts, the evolution equations (3) and
(4) become

σ̇j± = −[γ + i(� ± kvj )]σj± + i(g/2)�nm(rj )a (14)

ȧ = −(κ + i�c)a + i(g/2)
Ntot∑
j=1

�nm(rj )(σj+ + σj−)

+
√

2κ1/τain. (15)

When the typical timescale of the motion is slow as compared
to the timescales for the coupled dynamics of the atomic
dipole and cavity field, the steady-state mean value of the
intracavity field can be found by averaging the contributions
of the individual dipole mean values given by Eq. (14) over
the distribution of the mean velocities, f (v). For a distribution
f (v) with an average velocity vD a conservative estimate
for this to be valid is that the mean Doppler-shift is smaller
than both effective rates of the coupled system on resonance
(�c = � = 0), kvD � min[κ + g2N/γ,γ + g2N/κ]. Under
these conditions, the expression for the intracavity field mean
value is then of the same form as in the zero-velocity case
[Eq. (5)]. The effective cavity field decay rate and detuning of
Eqs. (6) and (7) are modified according to

κ ′ = κ + g2N

∫
dvf (v)γ ξ (v), (16)

�′
c = �c − g2N

∫
dvf (v)(� − kv)ξ (v), (17)

where

ξ (v) = γ 2 + �2 + (kv)2

(γ 2 + �2)2 + 2(γ 2 − �2)(kv)2 + (kv)4
. (18)

In the case of a thermal Maxwell-Boltzmann distribution with
temperature T , one has f (v) =

√
m

2πkBT
exp(− mv2

2kBT
), where kB

is the Boltzmann constant and m the mass of the ion. At low
temperatures, i.e., when the width of the thermal distribution is
small as compared to the atomic natural linewidth, the effective
cavity field decay rate and detuning given by Eqs. (16) and (17)
are well-approximated by

κ ′ = κ + g2N
γ ′

γ ′2 + �2
, (19)

�′
c = �c − g2N

�

γ ′2 + �2
. (20)

These equations are of the same form as Eqs. (6) and (7),
replacing the natural dipole decay rate by an effective dipole
decay rate,

γ ′ 	 γ (1 + kvD/
√

2), (21)

where vD = √
kBT /m is the mean Doppler velocity.

III. EXPERIMENTAL SETUP

A. Cavity trap

The ion trap used is a segmented linear quadrupole
radiofrequency trap that consists of four cylindrical electrode
rods (for details see [74]). The electrode radius is 2.60 mm
and the distance from the trap center to the electrodes is
r0 = 2.35 mm. Each electrode rod is divided into three parts,

FIG. 3. (Color online) Schematic experimental setup. The ab-
breviations are: polarizing beam splitter (PBS), single mode fiber
(SMF), acousto-optical modulator (AOM), dichroic mirror (DM),
Pound-Drever-Hall lock (PDHL), avalanche photodiode (APD),
second harmonic generation (SHG). The photoionization laser is not
shown.

where the length of the center electrode is zC = 5.0 mm,
and the length of the end electrodes is zE = 5.9 mm. Radial
confinement is achieved by a radiofrequency field (RF) applied
to the entire rods at a frequency of 2π × 4 MHz and a π

phase difference between neighboring rods. The axial trapping
potential is created by static voltages (DC) applied to the outer
parts of the rods.

An optical cavity is incorporated into the trap with its axis
parallel to the symmetry axis of the ion trap (see Fig. 3).
The cavity mirrors have a diameter of 1.2 mm and a radius of
curvature of 10 mm. The rear face of both mirrors are anti-
reflection coated at a wavelength of 866 nm corresponding to
the 3d 2D3/2 ↔ 4p 2P1/2 transition in 40Ca+, while the front
facade of one mirror is partially transmitting (PT) and for the
other highly reflecting (HR) at this wavelength. Their intensity
transmission coefficients are 1500 and 5 ppm, respectively. The
intracavity losses due to contamination of the mirrors during
the initial bake out amount to ∼650 ppm. The PT mirror is
mounted on a plate that can be translated using piezoelectric
actuators to allow for scanning or actively stabilizing the cavity
length. The cavity has a close to confocal geometry with a
length of 11.8 mm, corresponding to a free spectral range of
12.7 GHz and a waist of the fundamental TEM00 mode of
w0 = 37 μm. With a measured cavity field decay rate of κ =
2π × (2.1 ± 0.1) MHz, the finesse is found to be F = 3000 ±
200 at a wavelength of 866 nm [74].

40Ca+ ions are loaded into the trap by in situ photoionization
of atoms from a beam of atomic calcium in a two-photon
resonant photoionization process [74–76]. The ions are cooled
to a crystalline state through Doppler-laser cooling using a
combination of two counterpropagating laser beams, resonant
with the 4s 2S1/2 ↔ 4p 2P1/2 transition at 397 nm along the
trap axis, and a repumping laser applied along the x axis and
resonant with the 3d 2D3/2 ↔ 4p 2P1/2 transition at 866 nm
to prevent shelving to the metastable D3/2 state. Three sets
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of Helmholtz coils are used to compensate for residual
magnetic fields and to produce bias magnetic fields. For the
measurements of the collective coupling rate between the ion
Coulomb crystals and the cavity light field, the transverse
magnetic fields along x and y are nulled and a magnetic field
of Bz ∼ 2.5 G along the z axis is used.

B. Detection

A grating stabilized diode laser at 866 nm provides the light
for probing the coupling of the ion Coulomb crystals with the
standing wave field inside the optical cavity. It is injected into
the cavity through the PT mirror. Additionally, a second grating
stabilized diode laser with a wavelength of 894 nm serves as an
off-resonant reference laser and is simultaneously coupled to
the cavity through the PT mirror and used to monitor the cavity
resonance. Both lasers are frequency stabilized to the same
temperature stabilized reference cavity and have linewidths of
∼100 kHz.

The reflectivity of the 866-nm cavity field is measured using
an avalanche photo diode (APD). The light sent to the APD
is spectrally filtered by a diffraction grating (1800 lines/mm)
and coupled to a single mode fiber. Taking into account the
efficiency of the APD at 866 nm, the fiber incoupling and the
optical losses, the total detection efficiency amounts to ≈16%.
A similar detection system is used to measure the transmission
of the 894-nm reference laser.

Depending on the experiment, the reference laser serves
two different purposes. In a first configuration, the length of the
cavity is scanned at a rate of 30 Hz over the atomic resonance.
In this configuration, the frequency of the reference laser is

tuned such that it is resonant at the same time as the probe
laser in the cavity scan. This allows for monitoring slow drifts
and acoustic vibrations. The signal of the weak probe laser is
then averaged over typically 100 scans in which the stronger
reference laser is used to keep track of the current position of
the cavity resonance.

In a second configuration, the cavity resonance is locked
on the atomic resonance by stabilizing the length of the cavity
to the frequency of the reference laser in a Pound-Drever-Hall
locking scheme [77]. During the measurement, imperfections
in the stabilization are compensated for by monitoring the
transmission of the 894-nm reference laser. The data is
then postselected by only keeping data points for which the
transmitted reference signal was above a certain threshold.

C. Experimental sequence

In both configurations, the cavity reflection spectrum is
measured at a rate of 50 kHz using a 20-μs sequence of
Doppler cooling, optical pumping, and probing, as indicated
in Fig. 4. First, the ions are Doppler-laser cooled for 5 μs by
driving the 4s 2S1/2 ↔ 4p 2P1/2 transition using laser cooling
beams at 397 nm (LC) and at the same time repumping on
the 3d 2D3/2 ↔ 4p 2P1/2 transition with a laser at 866 nm
(RP). Next, the ions are optically pumped to the mJ = +3/2
magnetic substate of the 3d 2D3/2 level by applying the optical
pumping laser (OP) in combination with the laser cooling
beams (LC) for a period of 12 μs. The optical pumping
laser is resonant with the 3d 2D3/2 ↔ 4p 2P1/2 transition and
has a polarization consisting only of σ+- and π -polarized
components. It is sent to the trap under an angle of 45◦ with

(a)

(b)

FIG. 4. (Color online) (a) Experimental sequence used to measure the collective coupling rate. (b) Energy levels of 40Ca+ including the
relevant transitions addressed in the three parts of the experimental sequence. The acronyms are: laser cooling beam (LC), repumping beam
(RP), optical pumping beam (OP), probe beam (PB), avalanche photodiode (APD).
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respect to the quantization axis. By probing the populations
of the different Zeeman sublevels, the efficiency of the optical
pumping was measured to be η = 97+3

−5% [78]. Finally, the
cavity reflection signal is probed by injecting a 1.4 μs σ−-
polarized probe pulse, resonant with the 3d 2D3/2 ↔ 4p 2P1/2

transition, into the TEM00 mode of the optical cavity. Its
intensity is set such that the mean intracavity photon number
is less than one at any time. With a delay of 0.1 μs relative
to the probe laser, the APD is turned on. The delay ensures
that the field has built up inside the cavity and that the system
has reached a quasisteady state. The length of the probing
period was chosen in order to minimize the total sequence
length as well as to avoid depopulation due to saturation of the
transition [78].

D. Effective number of ions

As mentioned above, the effective number of ions interact-
ing with the cavity field depends on the ion crystal density and
the overlap between the crystal and the cavity mode volume,
where the density of the ion Coulomb crystals depends on the
amplitude of the RF voltage [55]:

ρ = ε0U
2
RF

Mr4
0 �2

RF

. (22)

Here, M denotes the ion mass. The precise calibration of
the RF voltage on the trap electrodes can be performed,
e.g., on the basis of a zero-temperature charged liquid model
[55,79,80] or the measurement of the Wigner-Seitz radius [80].
For the trap used in these experiments, ρ = (6.01 ± 0.08) ×
103U 2

RFV
−2cm−3. The crystal mode volume is found by

taking fluorescence images of the crystal during Doppler-laser
cooling, as shown in Fig. 5, from which the crystal half-length
L and radius R can be extracted. Taking a possible offset
between the cavity axis and the crystal revolution axis into
account, the effective number of ions [see Eq. (11)] is then
numerically calculated using the formula

N = η
ρ

2

∫
V

dxdy exp
{ − 2[(x − x0)2 + (y − y0)2]/w2

0

}
,

(23)

where the parameter η accounts for a finite efficiency of the
optical pumping preparation and x0 and y0 denote the radial
offsets. These offsets can in principle be canceled to within
a micron [80], but in the experiments reported here, they
were measured to be x0 = 3.9 μm,y0 = 15.7 μm [56]. The
uncertainty in the effective number of ions comes from the
uncertainty δρ in the density determination, due to the RF
voltage calibration, the uncertainty in the crystal volume δV ,
due to the imaging resolution δx and the uncertainty of the
optical pumping efficiency δη. The relative uncertainty in the
effective number of ions, N = ηρV , can then be expressed
as [78]

δN

N
=

√(
δρ

ρ

)2

+
(

δV

V

)2

+
(

δη

η

)2

, (24)

where δV/V = δx
√

16L2 + R2/2RL. For the typically few-
mm-long prolate crystals used in these experiments and

an imaging resolution δx ∼μm, this results in a relative
uncertainty of 5–7% in the effective number of ions.

IV. COLLECTIVE COUPLING MEASUREMENTS

To achieve collective strong coupling on the chosen
3d 2D3/2, mJ = +3/2 ↔ 4p 2P1/2, mJ = +1/2 transition the
collective coupling rate g

√
N has to be larger than the

cavity field decay rate κ = 2π × 2.1 MHz and the optical
dipole decay rate γ = 2π × 11.2 MHz. With the known
dipole element of the transition and the cavity geometry, the
single-ion coupling rate at an antinode at the center of the
cavity fundamental mode is expected to be g = 2π × (0.53 ±
0.01) MHz. One thus expects to be able to operate in the
collective strong coupling regime as soon as N � 500.

A. Atomic absorption and dispersion

To investigate the coherent coupling of the ions with the
cavity field in the collective strong coupling regime, we first
perform measurements of the atomic absorption and dispersion
of a given crystal with N ∼ 500 by scanning the cavity length
around atomic resonance and recording the probe reflectivity
spectrum. The crystal used in these experiments is similar to
the one shown in Fig. 5. With a density of ρ = (5.4 ± 0.1) ×
108 cm−3, a half-length L = (511 ± 1) μm and radius R =
(75 ± 1) μm the total number of ions in the crystal is Ntot =
6500 ± 200, and the effective number of ions interacting with
the cavity mode is N = 520+24

−32.
The broadening and the shift of the cavity resonance are

then measured as a function of the detuning of the probe laser,
�. This is accomplished by scanning the cavity length over a
range corresponding to ∼1.3 GHz at a repetition rate of 30 Hz,
for a fixed value of �. The width of the reflection dip for a
given detuning � is found by averaging over 100 cavity scans,
where the reference laser is overlapped with the probe laser
on the cavity scan and used to compensate for any drift of

74
μ
m

18
4

μ
m

922 μm

(a)

(b)

LR

FIG. 5. (Color online) (a) Typical projection image of a crystal
used in collective strong coupling measurements. All ions are exposed
to cooling and repumping light. The solid blue line indicates the
outline of the ellipsoid. (b) Same crystal, but only the ions in the
cavity mode are exposed to repumping light, now injected into the
cavity. The ions outside the cavity mode volume are not visible,
as they are shelved into the metastable 3d 2D3/2 level. The crystal
contains Ntot = 8780 ± 180 ions, of which N = 489+18

−27 effectively
interact with the cavity field.
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FIG. 6. (Color online) Typical probe reflectivity for various
values of the atomic detuning �. The probe detunings were (a) � ≈
2π × 54.3 MHz, (b) � ≈ 2π × 24.3 MHz, (c) � ≈ 2π × 8.3 MHz,
and (d) � ≈ 2π × 0.3 MHz. Solid lines are Lorentzian fits to the
data; the effective cavity field decay rate κ ′ is deduced from the fit.

the cavity. In Fig. 6, cavity reflection scans are plotted for
various detunings. Each data point corresponds to the average
of 100 20-μs measurement sequences as showed in Fig. 4. As
expected from Eq. (19), the broadening of the intracavity field
absorption reflects the two-level atomic medium absorption.
Each set of data is, according to Eq. (13), fitted to a Lorentzian
from which the cavity half width half maximum (HWHM) κ ′
is deduced. Figure 7(a) shows the modified cavity HWHM,
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FIG. 7. (Color online) (a) Measured cavity field effective decay
rate κ ′ versus probe detuning � for a crystal with N = 520+24

−32 ions
interacting with the cavity field. The blue solid line is a fit to the data.
(b) Measured shift of the cavity resonance frequency �′

c − �c versus
atomic detuning � for the same crystal. The blue line is a fit to the
data.

κ ′, as a function of detuning of the probe laser, �. Each
point is the average of five measurements; the solid line
is a fit according to Eq. (19). From the fit we deduce a
collective coupling rate of gN = 2π × (12.2 ± 0.2) MHz, in
good agreement with the theoretical expectation of gN,theory =
2π × (12.1+0.4

−0.5) MHz, calculated for N = 520+24
−32 ions inter-

acting with the cavity mode [28]. Furthermore, the effective
dipole decay rate γ ′ is left as a fit parameter to account for
nonzero temperature effects, as discussed in Sec. II C. The fit
yields γ ′ = 2π × (11.9 ± 0.4) MHz, which would correspond
to a temperature of T = 24+20

−14 mK, and a natural half-width of
the cavity of κ = 2π × (2.2 ± 0.1) MHz, in good agreement
with the value deduced from an independent measurement of
the free spectral range (FSR) and the finesse of the cavity,
κ = 2π × (2.1 ± 0.1) MHz [74].

For the measurement of the effective cavity detuning, �′
c,

the position of the 894-nm resonance laser in the cavity
scan is fixed to the bare cavity resonance. The frequency
shift is then measured by comparing the position of the
probe and the reference signal resonances in the cavity
scan. The effective cavity detuning as a function of probe
detuning is shown in Fig. 7(b). One observes the typical
dispersive frequency-shift of two-level atoms probed in the
low saturation regime. The data is fitted to the theoretical
model according to Eq. (20), to find a collective coupling
rate gN = 2π × (12.0 ± 0.3) MHz and an effective dipole
decay rate γ ′ = 2π × (12.7 ± 0.8) MHz. Both values are
consistent with the previous measurement and the theoretical
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FIG. 8. (Color online) Probe reflectivity signal as a function of
� = �c for the empty cavity (blue triangles) and with a crystal with
N = 520+24

−32 effectively interacting ions present in the cavity mode
volume (red circles). The solid lines are fits to the theory.

expectations. As in the previous measurement, the 894-nm
reference laser is used to compensate systematic drifts and
acoustic vibrations. However, since this compensation method
relies on the temporal correlations of the drifts in both signals,
and thereby on their relative positions in the cavity scan, the
compensation becomes less effective at large detunings. This is
reflected in the bigger spread and the larger error bars at larger
detunings, which renders this method slightly less precise than
the absorption measurement to evaluate the collective coupling
rate.

B. Vacuum Rabi splitting

A third complementary method to measure the collective
coupling rate is based on locking the cavity on atomic
resonance, ωc = ωat. The response of the coupled atom-cavity
system is then probed as a function of probe detuning �,
which is then equal to the cavity detuning �c. The result
of this measurement is shown on Fig. 8. The blue triangles
are obtained with an empty cavity, while the red circles
were taken with the same ion Coulomb crystal as used in
the previous experiments. Each data point is deduced from
2 × 104 experimental sequences (see Fig. 4). The results
are fitted using the theoretical expectations of Eq. (13) and
Eqs. (19) and (20) (solid lines in Fig. 8) and yield gN =
2π × (12.2 ± 0.2) MHz, a value that is in good agreement with
the previous measurements. To facilitate the convergence of
the more complex fitting function, the value of γ ′ in Eqs. (19)
and (20) was set to the one found in the previous absorption
measurement.

From these three independent measurements of the collec-
tive coupling rate gN and using the effective number of ions
N = 520+24

−32, one deduces a single ion coupling rate of gexp =
2π × (0.53 ± 0.02) MHz, which is in excellent agreement
with the expected value of gtheory = 2π × (0.53 ± 0.01) MHz.
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FIG. 9. (Color online) Cooperativity as a function of the effective
number of ions. The solid line is a linear fit to the data and yields a
scaling parameter of C

N
= (5.1+0.4

−0.2) × 10−3. The shaded area indicates
the confidence region for the upper and lower limit of C determined by
the (systematic) uncertainties on the effective number of ions, N . The
dashed line indicates the strong collective coupling limit gN > (κ,γ ).

C. Scaling with the number of interacting ions

To check further the agreement between the theoretical
predictions and the experimental data, we investigated the
dependence of the collective coupling rate on the effective
number of ions. An attractive feature of ion Coulomb crystals
is that the number of ions effectively interacting with a single
mode of the optical cavity can be precisely controlled by the
trapping potentials. While the density ρ only depends on the
amplitude of the RF voltage [see Eq. (22)], the aspect ratio
of the crystal depends on the relative trap depths of the axial
and radial confinement potentials, which can be independently
controlled by the DC voltages on the endcap electrodes. This
allows for controlling the number of effectively interacting
ions down to the few ion-level.

By analogy with the case of a single two-level system
interacting with a single field mode of an optical cavity, the
cooperativity parameter C is defined here as (half) the ratio
of the square of the effective coupling rate gN to the cavity
field decay rate κ times the effective dipole decay rate γ ′
(taking into account the effect of the motion of the ions):
C = g2

N/2κγ ′. As can be seen from Eq. (19), this parameter
can be experimentally obtained by measuring for a probe field
tuned to atomic resonance (� = 0) the effective cavity field

decay rate κ ′(� = 0) = κ + g2
N

γ ′ = κ(1 + 2C). In Fig. 9, the
dependence of the cooperativity parameter, C, is plotted as a
function of the effective number of ions interacting with the
TEM00 mode, where the effective number of ions was changed
by measuring for different aspect ratios and densities of several
crystals.

The effective number of ions in each crystals was deduced
by applying the method described in Sec. III D. The data points
were obtained using σ−-circularly polarized probe light, hence
probing the population in the mJ = +3/2 and mJ = +1/2
substates, and shows the expected linear dependence on the
effective number of ions. From a linear fit (solid line) we
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FIG. 10. (Color online) Vacuum Rabi splitting spectra (� = �c)
obtained for increasing effective number of ions [0 (blue squares),
243 (lilac circles), 601 (dark red triangles), 914 (red diamonds)], the
lines are presented to guide the eye.

deduce a scaling parameter C
N

= (5.1+0.4
−0.2) × 10−3. The limit

where collective strong coupling is achieved (gN > κ,γ ) is
indicated by the black dashed line and is reached for ≈500
interacting ions.

The largest coupling observed in these experiments was
measured for a crystal with a length of ∼3 mm and a
density of ∼6 × 108 cm−3 and amounted to C = 7.9 ± 0.3,
corresponding to an effective number of ions of N = 1523+69

−93.
This value exceeds previously measured cooperativities with
ions in optical cavities by roughly one order of magnitude
[14–16].

Similarly, vacuum Rabi splitting spectra, such as the one
presented in Fig. 8, were measured for several crystals and
aspect ratios. The result of such measurements is shown in
Fig. 10, showing clearly the increase in the separation between
the coupled crystal + cavity normal modes as the number of
ions is increased. The collective coupling rate gN , derived
from fits to the theoretical expression Eq. (13), is plotted for
different effective number of ions in Fig. 11. Taking the finite
optical pumping efficiency into account and fitting the curve
with the expected square-root dependency, we deduce a single
ion coupling rate of g = 2π × (0.53 ± 0.01) MHz, in good
agreement with the previous measurements and the theoretical
expectation.

V. COHERENCE TIME OF COLLECTIVE ZEEMAN
SUBSTATE COHERENCES

To evaluate the prospect for realizing coherent manipula-
tions, we measured the decay time of the collective coherences
between the Zeeman substates of the 3d 2D3/2 level. These
coherences were established by the Larmor precession of the
magnetic spin induced by an additional B-field transverse to
the quantization axis. In presence of this orthogonal B-field,
the population of the several substates undergo coherent
oscillations, which are measured at different times in their
free evolution by directly probing the coherent coupling
between the cavity field and the ions. In order to be able to
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FIG. 11. (Color online) Collective coupling rate gN versus ef-
fective number of ions N deduced from reflectivity spectra, such as
shown in Fig. 10, obtained with crystals of different shape and density.
The blue line is a fit to the data and gives a single ion coupling
rate g = 2π × (0.53 ± 0.01) MHz. The shaded area indicates the
lower and upper bound of the collective coupling rate gN within the
uncertainties of N . The horizontal error bars are calculated according
to Eq. (24)

resolve the coherent population oscillations in time using the
previous technique (probing time ∼1 μs) the amplitude of the
longitudinal B-field was lowered to obtain oscillation periods
in the ∼10 μs range, and the optical pumping preparation
was modified as to minimize the effect of the transverse
B-field. The reduced B-field along the quantization axis
could in principle make the sample more sensitive to B-field
fluctuations. Since these fluctuations might be one of the
factors eventually limiting the achievable coherence time, we
expect the coherence time measured by this method to be a
lower bound as compared to the previous configuration with a
larger longitudinal B-field.

A. Experimental sequence and theoretical expectations

The coherence time measurements required the experi-
mental configuration and the measurement sequence to be
slightly modified as compared to the collective coupling
rate measurements described in Sec. III C. The Larmor
precession is induced by an additional B-field component
along the transverse x direction, while the longitudinal
magnetic field component Bz was lowered to optimize the
contrast of the coherent population oscillations. The optical
pumping light propagates along the x axis and is π -polarized,
hence transferring most of the atoms symmetrically into
the two outermost magnetic substates of the 3d 2D3/2 level,
mJ = ±3/2.

The experimental sequence used to measure the coherence
time is shown in Fig. 12. The ions are Doppler-laser cooled
during the first 5 μs, followed by a 12-μs optical pumping
period. After the optical pumping, all lasers are turned off
for a time τ , allowing for the free evolution of the system.
Finally, a weak σ−-circularly polarized probe pulse is injected
into the cavity, addressing the ions in the mJ = +1/2 and
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(a)

(b)

FIG. 12. (Color online) (a) Experimental sequence used to measure the coherence time of collective Zeeman substate coherences in the
3d 2D3/2 level. (b) Energy levels of 40Ca+, including the relevant transitions and their polarization for the four phases of the experimental cycle.
In the third phase, all lasers are turned off for a variable delay τ , and the system evolves freely in presence of a transverse magnetic field
component Bx .

mJ = +3/2 substates. The steady-state cavity reflection is
measured by collecting the reflected photons with the APD for
0.5 μs. The additional delay time between optical pumping
preparation and probing obviously lowers the repetition
rate of the sequence significantly, especially for long delay
times, and the number of data points for each sweep of
the cavity will decrease. To compensate for this, the data
points at longer delays had to be averaged over more cavity
scans, which substantially increased the acquisition time and
eventually limited these measurements to delays of around
∼120 μs.

Based on a simple four-level model the free Larmor
precession-induced changes in the populations of the Zeeman
substates, |mJ = ±1/2, ±3/2〉, of the 3d 2D3/2 level can
be calculated. For a homogeneous B-field with compo-
nents Bx and Bz, the Hamiltonian of the four-level sys-
tem can be expressed in terms of collective population
operator,

�̂mJ
=

Ntot∑
j=1

|mJ 〉(j ) 〈mJ |(j ) , (25)

and collective spin operators

σ̂mJ ,m′
J

=
Ntot∑
j=1

|mJ 〉(j )〈m′
J |(j ), mJ �= m′

J . (26)

Here, |mJ 〉(j ) and |m′
J 〉(j ) are the state kets of the j th ion with

magnetic quantum number mJ and m′
J , respectively. The sum

extends over the total number of ions. In this notation, the
Hamiltonian of the free evolution of a spin J = 3/2 system

can be written as

HB = h̄ωz

∑
mJ

mJ �̂mJ
+ h̄ωx

2

∑
mJ

∑
m′

J

σ̂mJ ,m′
J

×
[√

15

4
− mJ (mJ − 1)δmJ ,m′

J +1

+
√

15

4
− mJ (mJ + 1)δmJ ,m′

J −1

]
, (27)

where the sums extend over the four Zeeman substates. Here,
δmJ ,m′

J +1 is the Kronecker delta, and the Larmor frequencies
ωz and ωx corresponding to the z and x component of the
magnetic field are given by the product of the magnetic field
amplitude by the gyromagnetic ratio γGM:

ωz = γGMBz, ωx = γGMBx. (28)

For a σ−-circularly polarized probe, the measured collective
coupling to the cavity light will depend on the collective
populations in the mJ = +1/2 and mJ = +3/2 substates.
For a nonvanishing population in the mJ = +1/2 state, the
measured effective cavity decay rate, which was defined for a
two-level system in Eq. (6), contains both contributions and is
hence modified to

κ ′(τ ) = κ + g2
1/2N1/2(τ )

γ

γ 2 + �2
1/2

+ g2
3/2N3/2(τ )

γ

γ 2 + �2
3/2

,

(29)

where gmJ
, NmJ

, and �mJ
= ωmJ

− ωl denote the single-
ion coupling rate, the effective number of ions and the
atomic detunings of the relevant Zeeman substates mJ =
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+1/2, +3/2, respectively, and ωmJ
is the frequency of the

3d 2D3/2,mJ ↔ 4p 2P1/2,mJ − 1 transition.
Due to the induced Larmor precession, the effective number

of ions in the individual Zeeman substates will be time-
dependent. For a system initially prepared in a superposition
state ψ0, the population in a particular Zeeman substate
at a certain time τ can be calculated from the projection
of the time evolved state, ψ(τ ) = U (τ )ψ0, onto this state.
Here, U (τ ) = exp(−i/h̄HBτ ) denotes the time evolution
operator. Straightforward but lengthy calculations show that
the populations in the +1/2 and +3/2 Zeeman substates after a
time τ are of the form A cos(ωLτ ) + B cos(2ωLτ ) + C, where
A, B, and C are constants depending on the efficiency of the
optical pumping (i.e., the initial populations and coherences
in the different Zeeman sublevels) and the magnetic field
amplitudes Bz and Bx (via ωx and ωz). One thus obtains
N1/2(τ ) and N3/2(τ ) using Eq. (8). It follows from Eq. (27)
and κ ′(τ ) = κ[1 + 2C(τ )] that the measured cooperativity at
time τ can be put under the form

C(τ ) = a cos(ωLτ ) + b cos(2ωLτ ) + c, (30)

where the Larmor frequency

ωL =
√

ω2
z + ω2

x (31)

was defined. The parameters a, b, c are constants depending
on the efficiency of the optical pumping preparation, and the
magnetic field amplitudes Bz and Bx .

B. Experimental results

The amplitudes of the magnetic fields, Bx and Bz, at the
position of the ion crystal were calibrated by measuring the
dependence of the Larmor frequency ωL with the intensity of
the current used to drive the transverse magnetic field coils
[see Eqs. (28) and (31)]. The obtained coupling as a function
of τ is shown for different currents Ix on Fig. 13. The curves

Probe delay τ (μs)

C
oo

pe
ra

ti
vi

ty
C

(τ
)

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

FIG. 13. (Color online) Calibration of the Larmor frequency
for different currents of the Bx coils. Shown is the cooperativity
as a function of delay time τ for different transverse B-fields:
Ix = 10 mA (blue squares), Ix = 16 mA (lilac stars), Ix = 26 mA
(dark red circles), and Ix = 36 mA (red triangles). The solid lines are
fits according to Eq. (30).
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FIG. 14. (Color online) Larmor frequency as a function of current
through the Bx coils. The solid line is a fit of the form ωL =√

ω2
z + a2I 2

x and we deduce ωz = 2π × (0.150 ± 0.002) MHz and
ωx = 2π × (5.5 ± 0.1) kHz

mA × Ix .

are fitted according to Eq. (30), yielding the individual Larmor
frequencies. These frequencies are shown as a function of the
current through the Bx coils in Fig. 14. Using the gyromagnetic
ratio γGM = μBg3/2

h̄
(μB is the Bohr magneton, g3/2 the Landé

factor of the 3d 2D3/2 level), we deduce the magnetic fields
along the two axis Bz = (0.134 ± 0.002) G and Bx = (4.91 ±
0.09) G

A
× Ix .

To achieve a large contrast, the measurement was carried
out with moderate B-field values Bx = Bz = 0.15 G and the

(C
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C̄
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FIG. 15. (Color online) (a) Normalized cooperativity paramter
as a function of delay τ . Due to the presence of a nonzero B-field
component orthogonal to the quantization axis (Bz = Bx = 0.15 G),
coherent Larmor precessions are observed. Long term drifts are
compensated by normalizing to the mean of one oscillation period.
The solid line corresponds to a fit, assuming an exponential decay
and yields a coherence time of τe = 1.7100

−0.8ms. (b) Cooperativity as a
function of delay with a B-field present only along the quantization
axis (Bx = By = 0,Bz = 0.15 G). The data points are normalized to
the mean cooperativity of 〈C〉 = 1.43 ± 0.02.
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variation of the cooperativity was measured for 120 μs. To
compensate for slow drifts during the measurement, each data
point was normalized to the mean cooperativity, C̄, averaged
over one oscillation period. The normalized cooperativity
is shown in Fig. 15(a), together with a fit of the form of
Eq. (30), where decoherence processes are taken into account
by multiplying the oscillating terms with an exponential
decay term exp(−τ/τe), which would be expected, e.g., for
a homogeneous broadening of the energy levels. From this fit,
we deduce a coherence time of τe = 1.7100

−0.8 ms. This value is
comparable to previously measured coherence times for single
ions in linear Paul trap in equivalent magnetic field sensitive
states [81] and might be further improved by an active control
of stray magnetic fields or state configurations that are less
magnetic field sensitive. For inhomogeneous broadening, due
to magnetic field gradient over the crystal, the decoherence
process would be better described by a Gaussian decay [82].
Fitting the data assuming a Gaussian decay exp(−τ 2/τ 2

g ) in

Eq. (30) yields a coherence time of τg = 0.5+0.6
−0.2 ms. Due to the

limitation of our measurement to time delays of τ � 120 μs, it
is at present not possible to distinguish between the two decay
mechanisms.

For comparison, the cooperativity as a function of
probe delay, C(τ ), was measured with only the bias
field along the quantization axis present (Bx = 0,Bz =
0.15 G), as shown in Fig. 15(b). Here, the values are
normalized to the mean cooperativity averaged over all
points 〈C〉. Within the error bars, the deduced coopera-
tivities agree with a constant value of 〈C〉 = 1.43 ± 0.02
(solid line).

VI. CONCLUSION

To conclude, we have presented a detailed theoretical and
experimental analysis of the experiments of Ref. [28], which
demonstrated the possibility of using large ion Coulomb
crystals positioned in a moderately high-finesse optical cavity
to enter the collective strong-coupling regime of CQED.
The excellent agreement between the experimental results,
including those of Ref. [28] and the theoretical predictions,
makes ion Coulomb crystals promising candidates for the
realization of quantum information processing devices such
as quantum memories and repeaters [29,50]. Using, for
instance, cavity EIT-based protocols [49,83–86], the obtained
coupling strengths and coherence times could open up for
the realization of both high-efficiency and long life-time
quantum memories [57]. Moreover, the nice properties of ion
Coulomb crystals also allow for the manipulation of complex
multimode photonic information [57] by exploiting the crystal
spatial [56] or motional [63] degrees of freedom. Ion Coulomb
crystals in optical cavities have also great potential for the
investigation of cavity optomechanical phenomena [64] and
the observation of novel phase transitions [47,65–68] with
cold, solid-like objects.
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95, 133601 (2005).
[36] J. K. Thompson, J. Simon, H. Loh, and V. Vuletic, Science 313,

74 (2006).
[37] J. Simon, H. Tanji, S. Ghosh, and V. Vuletic, Nature Phys. 3,

765 (2007).
[38] H. Tanji, S. Ghosh, J. Simon, B. Bloom, and V. Vuletić, Phys.
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