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Abstract
We expand the solutions of linearly coupled Mathieu equations in terms
of infinite-continued matrix inversions, and use it to find the modes which
diagonalize the dynamical problem. This allows obtaining explicitly the
(Floquet–Lyapunov) transformation to coordinates in which the motion is
that of decoupled linear oscillators. We use this transformation to solve the
Heisenberg equations of the corresponding quantum-mechanical problem,
and find the quantum wavefunctions for stable oscillations, expressed in
configuration space. The obtained transformation and quantum solutions can be
applied to more general linear systems with periodic coefficients (coupled Hill
equations, periodically driven parametric oscillators), and to nonlinear systems
as a starting point for convenient perturbative treatment of the nonlinearity.

PACS numbers: 03.65.Ge, 05.45.Xt, 03.65.−w

1. Introduction

The Mathieu equation for a single degree of freedom is very well known [1]. In this paper we
discuss the coupled system of Mathieu equations

�̈u + [A − 2Q cos 2t] �u = 0, (1)

where �u is an f -component vector and A and Q are constant symmetric f × f matrices. We
also extend the treatment of equation (1) to include an inhomogeneous right-hand side (rhs),
and more general π -periodic coupled parametric oscillators.

This multidimensional matrix equation has been researched thoroughly (see e.g. [2, 3]
where also some applications are exemplified, and [4–6]). Many general treatments of this
system are perturbative and concerned with stability analysis —i.e. with finding the regions
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in some parameter space for which the solutions are bounded. In this contribution we are
interested primarily in describing the classical and quantum solutions of the system in terms
of decoupled modes of oscillation. The solutions presented here may find an application in the
description of various discrete systems of coupled parametric oscillators, e.g., among others,
trapped ion crystals [7, 8], coupled arrays of nanoelectromechanical oscillators [9, 10] and
binary Bose–Einstein condensates [11].

The quantum problem of time-dependent linear and quadratic Hamiltonians has also been
considered in many publications. One of the first treatments is by Husimi [12], who considered
the problem of the one-dimensional quantum parametric oscillator with a driving force. He
constructed Gaussian wavefunctions assuming that the classical solutions are known, and
obtained the propagator of the system. He also derived transition amplitudes between states
of Hamiltonians which are time independent at some initial and final times.

The one-dimensional problem has been especially important to the description of the
motion of single ions trapped in radio frequency traps. It has been treated extensively using
different methods and summarized in a few texts; see e.g. [13, 14] and references within.

In [15] Lewis and Reiesenfeld have considered a general time-dependent Hamiltonian,
and have shown that the eigenvalues of an invariant operator (whose total time derivative
vanishes), are time independent, and that the eigenstates can be chosen with a specific time-
dependent phase, so as to solve the Schrödinger equation. This theory is the basis for most
treatments of multidimensional time-dependent Hamiltonians.

In [16] coherent states and eigenfunctions have been obtained for a diagonal system
of harmonic oscillators with a time-dependent frequency. Holz [17] has considered
multidimensional time-dependent oscillator Hamiltonians which remain positive definite. He
has constructed the coherent states, assuming that the Lewis–Riesenfeld invariants are known
and that the Hamiltonian at the initial time is time independent. Transition amplitudes have
also been calculated in these works. In [18] expressions for the wavefunctions of general time-
dependent-upto-quadratic Hamiltonians are given formally using solutions of the classical
equations in phase space. Leach [19] has considered the use of a time-dependent transformation
to obtain a time-independent Hamiltonian, for the case of positive-definite Hamiltonians, and
in terms of formal classical solutions. In this contribution we give the coherent and number
states of the Schrödinger equation explicitly in terms of the decoupled modes of equation (1).

The rest of this paper is organized as follows. In section 2 we obtain an analytic expansion
for the solutions of equation (1), which is not based on a small parameter, but rather uses
infinite-continued matrix inversions. We obtain explicitly a time-dependent transformation to
coordinates in which the motion is that of decoupled linear oscillators. In section 3 we use this
transformation to find the wavefunctions of the corresponding quantum system. We conclude
in section 4 with a summary of our results and comments on possible further research and
applications to various physical systems. The classical linearized modes of an ion crystal in a
Paul trap are treated in [20] using the methods described here.

2. Solution of the linear equations

2.1. The Floquet problem

Equation (1) is a homogenous linear differential equation with periodic coefficients and
therefore amenable to treatment using the Floquet theory. In this subsection we recall a
few facts from this theory and introduce the Floquet–Lyapunov transformation, which will
allow us to obtain explicitly the classical and quantum solutions.

2



J. Phys. A: Math. Theor. 45 (2012) 455305 H Landa et al

Equation (1), with a π -periodic parametric drive, can be obtained by a suitable
nondimensionalization (scaling) of the coordinates and time of the equations of motion (e.o.m)
of a physical system parametrically driven at frequency �. For the Newtonian problem with
f degrees of freedom, the corresponding Floquet problem is stated in terms of coordinates in
the 2 f -dimensional phase space by defining

φ =
(

�u
�̇u

)
, �(t) =

(
0 1 f

− (A − 2Q cos 2t) 0

)
, (2)

where 1 f is the f -dimensional identity matrix. The e.o.m is written in the standard form as

φ̇ = �(t)φ. (3)

In the following, an f -dimensional vector �u will be denoted by a lowercase Latin letter (usually
with an arrow), and Latin subscripts will be used for its components (um). f -dimensional
matrices will be denoted by capital Latin letters (Q). A 2 f -dimensional vector φ will be
denoted by a lowercase Greek letter (with no arrow), and Greek subscripts will be used for
components of 2 f -dimensional vectors (φν). Capital Greek letters (unitalicized) will denote
2 f -dimensional matrices (� or B).

A fundamental matrix solution to equation (3) has 2 f linearly independent column
solutions and obeys the matrix equation

�̇(t) = �(t)�(t). (4)

A principal fundamental matrix solution �(t) is a fundamental matrix solution which equals
the identity matrix at some point in time. We will always take a principal fundamental matrix
solution to obey this at t = 0, i.e.

�(0) = 12 f , (5)

and then �, which is obviously unique, is also known as the matrizant of equation (3).
Now let T = 2π/� = π be the period of �(t), i.e. �(t + T ) = �(t). Then �(t + T )

is also a fundamental matrix solution. Therefore its columns must be linear combinations of
the columns of �(t), i.e. �(t + T ) = �(t)� for some non-singular constant matrix �. In
particular, given the initial conditions in equation (5), we find that � = �(t), known as the
monodromy matrix. � can be brought to the Jordan canonical form, which we assume to be
diagonal (which holds for the case of stable oscillations). The diagonalization is given by

P−1� P = 	 = diag{λ1, . . . , λ2 f }, (6)

where λν are the complex Floquet eigenvalues (also known as multipliers).
Applying the coordinate transformation by writing

�(t) = ϒ(t)P−1, (7)

we obtain that ϒ(t + T ) = ϒ(t)P−1�P = ϒ(t)	. Therefore the νth column vector of ϒ(t)
obeys ϒν(t + T ) = λνϒν(t), and thus ϒν(t + nT ) = λn

νϒν(t). Consequently the solutions are
decaying for |λν | < 1 and unstable for |λν | > 1. When equations (2) and (3) are Hamiltonian
(as in our case), the sets {λν} and {(λ∗

ν )
−1} must coincide. Since the equations have real

coefficients, nonreal λν must come in conjugate pairs. Therefore nonreal λν not on the unit
circle come in quadruplets as λν , (λ∗

ν )
−1, λ∗

ν , λ−1
ν and real λν not on the unit circle come in

pairs as λν , λ−1
ν . Letting λν = eiβνT defines the characteristic exponents βν = 1

iT ln λν . We
multiply ϒν(t +T ) = λνϒν(t) by e−iβν (t+T ) and obtain the normal form for the column-vector
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solutions

ϒν(t) = ν(t) e iβν t, (8)

where ν are T -periodic vectors, ν(t + T ) = ν(t).
Using equations (7) and (8) and defining

B = diag{iβ1, . . . , iβ2 f }, (9)

we may now write

�(t) = (t)eBt P−1 = (t)eBt−1(0). (10)

We note that, in the general case, P−1 = −1(0) will not be unitary, although this may happen
in certain highly symmetric cases, e.g., in the trivial case in which A and Q commute and there
exists a constant orthogonal transformation which diagonalizes equation (1) into a system of
decoupled Mathieu equations.

Differentiating equation (10) and substituting into the e.o.m, equation (4), we have(
̇eBt + BeBt

)
P−1 = �eBt P−1 (11)

or,

̇ +  B = �. (12)

If we now substitute into equation (3) the time-dependent coordinate change

φ(t) = (t)χ(t), (13)

we obtain

̇χ + χ̇ = �χ, (14)

which, after using equation (12) and multiplying on the left-hand side (lhs) by −1, reduces to

χ̇ = Bχ. (15)

Equation (15) is a diagonal equation with constant coefficients, the solutions of which are the
Floquet modes

χν(t) = χν(0)eiβν t . (16)

The time-dependent transformation (t) of equation (13) is known as the Floquet–Lyapunov
transformation.

2.2. Solution using an expansion in infinite-continued matrix inversions

We turn to an analytical expansion of the solutions of the homogenous e.o.m (1). The following
expansion allows us to obtain the frequencies and the coefficients of the solution vectors in
a generalization of an infinite continued fractions expansion, to arbitrary precision. Infinite
recurrence relations have been used for solving various types of differential equations (see
e.g. [21, chapter 9]) and differential-delay equations [22], and applied recently to the study
of the stability of a trapped Bose–Einstein condensate [23]. The method described below
gives the solution in a form which is immediately suitable for obtaining the Floquet–Lyapunov
transformation.

We seek for solutions of equation (1), in the form of a sum of two linearly independent
complex solutions,

�u =
n=∞∑

n=−∞
�C2n[b ei(2n+β)t + c e−i(2n+β)t ], (17)

4
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where b and c are complex constants determined by the initial conditions. In general, the
characteristic exponents β may be complex. Except when there are β’s which are real
and integral, a system composed of solutions of the form of equation (17) will constitute
a fundamental system. For an integral β, equation (17) gives a single π - or 2π -periodic
solution and the other linearly independent solution will in general (excluding the trivial case
Q = 0) be unbound [1, 2]. We do not treat this marginal case as we will soon restrict ourselves
to stable oscillations only. Following section 2.1, stable modes will be described by β taking
a real nonintegral value, which can obviously be chosen in the range 0 < β < 2, β �= 1. For
the stable modes, when β is real, we find that b = c∗ and �C2n are all real.

We assign equation (17) into equation (1), discard the negative exponent terms (which
give identical relations) and find that the solutions must obey for all t

−
∑

�C2n(2n + β)2 ei(2n+β)t + [A − Q(ei2t + e−i2t )]
∑

�C2n ei(2n+β)t = 0, (18)

where in the above expression and for the rest of this section, the summation is over n ∈ Z.
Thus we obtain the recursion relation

−�C2n(2n + β)2 + A�C2n − Q(�C2n−2 + �C2n+2) = 0. (19)

By defining

R2n = A − (2n + β)2 , (20)

we can write the first infinite recursion relation, which progresses toward positive values of n,

Q�C2n−2 = R2n �C2n − Q�C2n+2. (21)

To obtain a second relation which progresses toward negative values of n, we reorganize
equation (21), obtaining

Q�C2n+2 = R2n �C2n − Q�C2n−2. (22)

From these relations we can now obtain an expansion in infinite-continued matrix inversions.
Starting with n = 1 in equation (21) we obtain by repeated substitutions

�C2 = T2,βQ�C0 ≡ ([R2 − Q[R4 − Q[R6 − · · ·]−1Q]−1Q]−1)Q�C0. (23)

Substituting decreasing values of n starting with n = 0 into equation (22), we obtain the
independent relation

Q�C2 = R0 �C0 − Q�C−2 = T̃0,β
�C0 ≡ (R0 − Q[R−2 − Q[R−4 − · · ·]−1Q]−1Q)�C0. (24)

Multiplying equation (23) by Q and defining

Y2,β ≡ T̃0,β − QT2,βQ, (25)

we find that all characteristic exponents β are zeros of the determinant of Y2,β (which is
a function of β). If there are degenerate β’s they will appear as degenerate zeros of this
determinant. The vector �C0 for each β is an eigenvector of Y2,β with eigenvalue 0. Since A and
Q are symmetric, Y2,β is symmetric as well, and so its kernel will be of dimension equal to the
algebraic multiplicity of the β root. The vector �C2 can be obtained by an application of T2,βQ
to �C0, for n = −1 we use �C−2 = [T−2,β ]−1Q�C0 and so on for the other vectors. We note that
the different vectors �C2n,β are not orthogonal in general, and the vectors at every order in n
mix different coordinates.

Because of the presence of the diagonal term (2n + β)2 in R2n, we would have
‖R2n‖1 ∝ (2n + β)2 + O (1), and therefore the general term of the expansion vanishes.
Either A or Q may be singular and the expansion can still be applied in general. Even if
both are singular, the expansion is valid if there are no integral values of β, a case which we
do not tackle as noted above. Excluding perhaps isolated values of β (and atypically in the

5



J. Phys. A: Math. Theor. 45 (2012) 455305 H Landa et al

parameter space), all matrices which are inverted in the above expressions will be invertible,
and while employing the algorithm in practice, the invertibility of the matrices is of course
easily verified at each step. In appendix A we extend the infinite matrix inversions to obtain
the periodic solution of equation (1) with an inhomogeneous rhs, and also comment on some
computational aspects of this method. In appendix B we show briefly how the method may be
extended to a system of coupled Hill equations.

2.3. The Floquet–Lyapunov transformation for stable modes

We can now find explicitly the time-dependent Floquet–Lyapunov transformation of equation
(13) which transforms the Floquet problem to a time-independent equation, which in our
construction is also diagonal. We further assume that all Floquet modes are stable, i.e. that the
2 f linearly independent solutions of equation (3) are oscillatory and thus the characteristic
exponents come in complex conjugate pairs. This simplifies many expressions and avoids
complications in the quantization, since the eigenfunctions of the negative harmonic potential
(the parabola potential [24]) are not square integrable over the real line. We therefore take B
of equation (9) in the block form

B =
(

iB 0
0 −iB

)
, (B) f× f = diag

{
β1, . . . , β f

}
, (26)

where β j are positive. We define the f -dimensional matrix U whose columns are constructed
from the series of f -dimensional vectors �C2n,β j obtained from the recursion relations for the
solutions �u of equation (17), i.e.

(U ) f× f = (
∑

�C2n,β j ei2nt · · ·). (27)

We similarly define the f -dimensional matrix V composed of column vectors as

(V ) f× f = (i
∑

(2n + β j)�C2n,β j ei2nt · · ·), (28)

and thus we may represent a 2 f -dimensional fundamental matrix solution in the form �(t)eBt ,
where �(t) is written in the block form

�(t) =
(

U U∗

V V ∗

)
, (29)

where U∗ denotes the complex conjugate (and not Hermitian conjugate) of the matrix U .
By multiplying �(t)eBt on the rhs with �−1(0) we obtain the matrizant �(t) since the

initial condition of equation (5) is obeyed. Then by comparing with equation (10) we find

�(t)eBt�−1(0) = (t)eBt−1(0), (30)

so that we may choose

(t) = �(t) =
(

U U∗

V V ∗

)
(31)

(the choice is in fact unique only up to a constant matrix which commutes with B, and we will
use this fact in the following).

3. Quantization

3.1. Hamiltonian formalism

In this subsection we consider the results of the previous section within the Hamiltonian
formalism. We find the conditions for the Floquet–Lyapunov transformation to be canonical,

6
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which also allows us to obtain its inverse explicitly in terms of matrix transpositions and
complex conjugation. This requires finding the generating function of classical mechanics,
and gives the transformed Hamiltonian. These results are novel to the best of our knowledge.

Let us rewrite the e.o.m, equation (3), in the form

Jφ̇ = J�φ ≡ Hφ, (32)

where

J =
(

0 −1 f

1 f 0

)
, H =

(
A − 2Q cos 2t 0

0 1 f

)
.

J is a skew-symmetric matrix (J−1 = Jt = −J) and H is symmetric. Denoting by �p = �̇u the
momenta canonically conjugate to the coordinates �u, equation (32) is seen to be the canonical
form of Hamilton’s equation

u̇ j = ∂H
∂ p j

, ṗ j = −∂H
∂u j

, (33)

with the corresponding Hamiltonian H written as the quadratic form

H = 1
2φtHφ, (34)

where φt denotes the transposed vector.
Similarly, we rewrite the transformed e.o.m, equation (15), in the form

Kχ̇ = KBχ, (35)

where K is the anti-Hermitian matrix (K−1 = K† = −K)

K =
(−i1 f 0

0 i1 f

)
,

and KB is a Hermitian matrix (in fact, positive definite), with the explicit form KB =
diag{β1, . . . , β f , β1, . . . , β f }.

Let us here introduce explicitly the canonically conjugate variables of the Hamiltonian
formalism (we here break the notation a little),

χ =
(

ξ

ζ

)
,

where ξ is the new f -dimensional vector of coordinates and we see that −iζ are the new
conjugate momenta, such that equation (35) is derivable from the Hamiltonian

H′ ≡ 1
2χ tH̃χ + Y(t), (36)

with

H̃ =
(

0 B
B 0

)
. (37)

B is given by equation (26) and Y(t) is a function of time alone, that does not enter the
e.o.m. In the following we will prove that indeed H′ is the transformed Hamiltonian provided
that the Floquet–Lyapunov transformation is canonical. Our choice of the Floquet–Lyapunov
transformation will be such that, classically, Y(t) = 0. Using the realness of �u and �p and the
explicit expressions for (t) and −1(t) it is easy to verify that

ξ = ζ ∗. (38)

In appendix C we obtain an expression for the inverse of the Floquet–Lyapunov transformation,
and show that the matrices U and V can be rescaled by multiplication with a (diagonal) matrix,
such that

U → U (−2iV t (0)U (0))−
1
2 , (39)

7
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and V accordingly, thereby imposing the following normalization condition:

V t (0)U (0) = 1
2 i. (40)

By equations (C.2)–(C.5) subject to equation (40), we obtain

−1(t) =
(

iV † −iU†

−iV t iUt

)
, (41)

and by writing −1 = 12 f in the block form, we find the identities

UtV ∗ − V tU∗ = −i, UtV = V tU, (42)

which we will use below.
We now turn to finding the classical generating function of the canonical transformation

relating H to H′. If χ(t) = −1(t)φ(t) is to be a canonical transformation, we search for the
generating functionF (�u,−iζ , t), expressed in terms of the old coordinates and new momenta,
which obeys the set of equations

p j = ∂F
∂u j

, ξ j = ∂F
∂(−iζ j)

, (43)

and the transformed Hamiltonian is given by

H′ = H + ∂F/∂t. (44)

With the help of equation (41) we can invert for �p in terms of �u and ζ to obtain

�p = −iU−tζ + U−tV t�u, ξ = iV †�u − iU†
(
U−tV t�u − iU−tζ

)
,

where we define for brevity U−t ≡ [
U−1

]t
, and in the following we will use O−† and O−∗

with a similar definition. A solution to equations (43) exists and reads

F = 1
2�u tU−tV t�u − i�u tU−tζ + 1

2 iζ tU†U−tζ (45)

provided that

V † − U†U−tV t = −iU−1 (46)

and that U−tV t and U†U−t are symmetric matrices. These conditions follow after some
manipulations from the identities in equation (42). Thus we see that the normalization of
equation (40) guarantees that the Floquet–Lyapunov transformation is canonical.

3.2. Quantization

In this subsection we apply the Floquet–Lyapunov transformation to the operators in the
Heisenberg picture of the quantum problem corresponding to equation (1), allowing to
diagonalize it in terms of ladder operators. We then find explicit expressions for the
wavefunctions of the coherent and number states, utilizing the periodicity of the Floquet–
Lyapunov transformation and its inverse, and the decoupled oscillatory modes with their
characteristic frequencies. These results are novel to the best of our knowledge.

We first canonically quantize the system by promoting the canonically conjugate variables
�u and �p to operators obeying the quantum commutation relations

[ p̂ j, ûk] = −iδ jk, [ p̂ j, p̂k] = [û j, ûk] = 0, (47)

where we will denote operators with a hat, and set � = 1. The Heisenberg e.o.m for these
operators, φ̂, are identical to equation (32). Repeating the derivation of section 2.1 we see that
the noncommutativity of the operators has no effect on the transformation and thus we find in
the Heisenberg picture the e.o.m

K ˙̂χ = H̃χ̂ , (48)

8
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which, using equation (26), is the diagonal set

˙̂
ξ j = iβ j ξ̂ ,

˙̂
ζ j = −iβ j ζ̂ j, (49)

the solution of which is simply

ξ̂ j(t) = ξ̂ j(0)eiβ jt, ζ̂ j(t) = ζ̂ j(0)e−iβ jt . (50)

By assigning equation (41) into equation (47), we obtain that the canonical commutation
relations of these operators obey

[ζ̂ j(t), ξ̂k(t)] = δ jk (51)

with all other commutators being zero, and this result is subject to the normalization condition
equation (40), which ensures that the Floquet–Lyapunov transformation is canonical.

The commutation relations of equation (51) are easily recognizable as those of the creation
and annihilation operators of a harmonic oscillator, since the hermiticity of �̂u and �̂p immediately
implies ξ̂

†
j = ζ̂ j (which also follows directly from equation (38)). We may therefore define the

time-independent eigenstates of ζ̂ (t), the coherent states, in the Heisenberg picture, by

ζ̂ j(t) |ζ 〉 = ζ j(t) |ζ 〉 ≡ ζ j(0)e−iβ jt |ζ 〉 , (52)

and the normalization and completeness relations are〈
ζ |ζ ′〉 = eζ ∗·ζ ′

,

∫
dμ f |ζ 〉 〈ζ | = 1̂, (53)

where dμ f = π− f e−ζ ∗·ζ d f ζ and d f ζ = ∏
dx j

∏
dy j if ζ is written in terms of the real

variables ζ j = x j + iy j.
We next show that the Schrödinger wavefunction of the coherent state vector of the system

is given in the coordinate representation by

ψζ (�u, t) ≡ 〈�u |ζ 〉 = N exp
{
iF̃ (�u, ζ , t)

}
, (54)

where F̃ (�u, ζ (t), t) has the same functional form of the classical generating function
F (�u, ζ , t), only with the explicit time dependence of ζ = ζ (t), which we will omit below,
except where necessary. Multiplying equation (52) by 〈�u | we obtain the differential equation(

−i
∑

k

V t
jkuk +

∑
k

Ut
jk∂uk

)
〈�u |ζ 〉 = ζ j 〈�u |ζ 〉 . (55)

Since matrix elements are invariant under any unitary transformation, equation (55) holds in
the Schrödinger picture as well. The solution of this equation is

〈�u |ζ 〉 = N exp
{

1
2 i�u tU−tV t�u + �u tU−tζ + f (ζ )

}
. (56)

To determine the (time-dependent) normalization constant N and the function f (ζ ), we first
impose the normalization of equation (53),

eζ ∗·ζ ′ = 〈ζ |ζ ′〉 =
∫

R f

〈ζ |�u 〉〈�u |ζ ′〉 d f �u. (57)

To evaluate equation (57) we use the following result. Let T be a symmetric n × n complex
matrix with a positive-definite real part, and b a complex vector. Then

J =
∫

Rn

exp

{
−1

2
xtT x + btx

}
dnx = (2π)n/2 (det T )−1/2 exp

{
1

2
btT −1b

}
, (58)

and the value of (det T )−1/2 is defined by analytic continuation, writing T = ReT + iεImT
starting with the (positive-definite) real part of T and increasing ε continuously to 1.

9



J. Phys. A: Math. Theor. 45 (2012) 455305 H Landa et al

From equation (42) we obtain

U−tV t = U−†V † + iU−†U−1, (59)

so

eζ ∗·ζ ′ = |N |2
∫

R f

exp

{
−1

2
�u tU−†U−1�u + �u tU−tζ ′ + �u tU−†ζ ∗ + f

(
ζ ′) + f ∗ (ζ )

}
d f �u, (60)

and we obtain (since
(
U†U

)−1
is obviously positive definite),

eζ ∗·ζ ′ = |N |2 (2π) f /2 det(UU†)1/2 exp
{

1
2 (ζ ′tU†U−tζ ′ + ζ ∗tU−∗Uζ ∗

+ ζ ∗tU−∗UU†U−tζ ′ + ζ ′tζ ∗) + f (ζ ′) + f ∗(ζ )
}
. (61)

By using the fact that U†U−t is symmetric we find(
U−∗U

)∗ = U†U−t, U−∗UU†U−t = 1 f , (62)

so we may deduce

f (ζ ) = − 1
2ζ tU†U−tζ , |N | = (2π)− f /4 det(UU†)−1/4, (63)

which proves equation (54), without fixing the phase of N .
Finally, to determine the wavefunction completely, we require that ψζ (�u, t) be a solution

of the Schrödinger equation, which is expressed in coordinate �u space using the Hamiltonian
of equation (34),

i∂tψζ (�u, t) = Ĥψζ (�u, t) . (64)

Substituting equation (54) into equation (64) and inserting a resolution of the identity from
equation (53) we have

i(Ṅ /N + i∂tF̃ ) 〈�u |ζ 〉 =
∫

dμ′
f 〈�u |ζ ′〉〈ζ ′|Ĥ|ζ 〉. (65)

In appendix C we show that the integral on the rhs of equation (65) is equal to[−∂tF̃ + 1
2 tr {B − iW } ]〈�u|ζ 〉 (66)

so that we obtain

Ṅ /N = − 1
2 tr {iB + W } . (67)

Writing N = |N | exp {i argN }, the above equation is equivalent to the two equations∣∣Ṅ ∣∣ / |N | = − 1
2Re {trW } , (68)

and

∂t argN = − 1
2 (tr B + Im{trW }) . (69)

Equation (68) is in fact an identity which results from equation (63) as shown in appendix C,
where it is also shown that the solution of equation (69) is

argN = −1

2

∑
j

β jt − 1

2
arg detU. (70)

Let us write here again the complete expression for the coherent state vector ψζ ,

ψζ = (2π)− f /4 det
(
UU†

)−1/4

× exp

{
− 1

2
i
∑

j

β jt − 1

2
i arg detU + 1

2
i�u tU−tV t�u + �u tU−tζ − 1

2
ζ tU†U−tζ

}
, (71)

where ζ is the vector with components ζ j(0)e−iβ jt .

10
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In the case of a single harmonic oscillator of frequency β, equation (71) must reduce
to the familiar wavefunction in configuration space of a coherent state, with complex label
ζ0 ≡ ζ (0). This can be seen by noting that for this case, the transformation matrices U and

V with the normalization of equation (40) become the scalars U = 1√
2β

and V = i
√

β

2 , and
then equation (71) becomes, with m = 1, � = 1, the expected expression (e.g. [25, equation
(21.1.132)])

ψζ = (2π)−1/4

(
1

2β

)−1/4

exp

{
−1

2
iβt − 1

2
βu2 +

√
2βuζ0 e−iβt − 1

2
ζ 2

0 e−i2βt

}
.

We will now find a complete orthonormal basis of solutions of the Schrödinger equation. For
that purpose we can use a generating function for multidimensional Hermite polynomials HC

�n ,
defined by

GC = exp

{
�x tCζ − 1

2
ζ tCζ

}
=

∑
�n

ζ
n1
1

n1!
· · · ζ

n f

f

n f !
HC

�n (�x) , (72)

where C is a symmetric matrix, and the summation is over all f -tuples of nonnegative integers,
�n. An explicit definition of HC

�n is given by [26]

HC
�n (�x) = (−1)

∑
n j e�x tC�x/2 ∂n1

∂x1
n1

· · · ∂n f

∂x f
n f

e−�x tC�x/2. (73)

Then, setting in equation (72) �x = U−∗�u and

C = U†U−t, (74)

we can write ψζ as

ψζ = N exp

{
1

2
i�u tU−tV t�u

} ∑
�n

e−i
∑

j n jβ jt
ζ1(0)n1

n1!
· · · ζ f (0)n f

n f !
HC

�n (U−∗�u). (75)

Equation (75) can be interpreted as an expansion of ψζ in terms of a complete orthonormal set
of solutions of the Schrödinger equation, ψ�n, and in that case the coefficients of the expansion
must be time independent. We may therefore write

ψ�n = N�n e−i
∑

j n jβ jt exp
{

1
2 i�u tU−tV t�u

}
HC

�n (U−∗�u), (76)

where N�n = c�nN and c�n is time independent, and we impose the normalization

δ�n,�n′ =
∫

ψ∗
�n (�u, t) ψ�n′ (�u, t) d f �u. (77)

In appendix C we show that

c�n = (n1! · · · n f !)
−1/2 (78)

so that we have

ψ�n = (2π)− f /4

(∏
j

1√
n j!

)
det(UU†)−1/4

× exp

{
− i

∑
j

(
n j + 1

2

)
β jt − 1

2
i arg detU + 1

2
i�u tU−tV t�u

}
HC

�n (U−∗�u). (79)

Let us note how to obtain from equation (79) the familiar expression for the wavefunctions
of the one-dimensional case, e.g. in the form of [13, equation (36)]. The latter is given in
terms of the periodic function �(t) and the constant ν defined there, in equations (22) and
(23), with β ≡ βx. Let us keep for now the nondimensional units (with the drive frequency
being equal to 2), so ν = ∑

(2n + β)C2n. By the normalization of equation (40), we see

11
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that U (t) = 1√
2ν

�(t). The usual one-dimensional Hermite polynomials Hn are obtained in
equation (73) by setting C = 2. Since we have C = �∗/�, this requires the variable change

z =
√

�∗

2�
x,

∂

∂x
=

√
�∗

2�

∂

∂z
= 2−1/2 e−i arg � ∂

∂z
,

which gives that

HC
�n (U−∗�u) = e−in arg �

√
2n

Hn

(√
ν

|�|2 u

)
.

In addition we have

(2π)−1/4 (detUU†)−1/4 e− 1
2 i arg detU = (ν/π )1/4

�1/2
,

and 1
2 iU−tV t = i �̇

�
−β. Equation (1) is expressed in terms of rescaled time, and we now return

to the time variable before the Mathieu scaling t → �t/2 (with � being the physical drive
frequency), and therefore put ν → ν�/2, and put back � (we still have m = 1), to obtain the
wavefunction5

ψn = e−in arg �

√
2nn!�1/2

( ν

π�

)1/4
exp

{
−i

(
n + 1

2

)
βx

�

2
t + 1

2�

(
i
�̇

�
− βx

�

2

)
u2

}

×Hn

(√
ν

� |�|2 u

)
. (80)

In a multidimensional problem, two distinct situations may arise. If U is diagonal, which
means that C is diagonal as well, the generating function of equation (72) obviously factorizes
into a product of exponents, and the wavefunction will be a product of one-dimensional
wavefunctions, each depending exclusively on one variable, as obtained above. As mentioned
in section 2.1, U can be made diagonal if there exists a constant matrix which diagonalizes
the e.o.m. Then U will be diagonal in some normal modes which are time-independent
linear combinations of the original coordinates. If such a diagonalization does not exist,
the wavefunctions will depend on (time-dependent) complex linear combinations of the
coordinates, through the multidimensional Hermite polynomials.

3.3. The inhomogeneous equations

In this subsection we describe briefly how to obtain the wavefunctions of the quantum system
which corresponds to equation (1) with a driven rhs in the form

�̈u + [A − 2Q cos 2t] �u = �G + 2�F cos 2t, (81)

where �G and �F are f -component constant vectors. We rewrite equation (81) in the Floquet
form (equation (2)) using

λ =
(

0
�G + 2�F cos 2t

)
as

φ̇ − �(t)φ = λ(t), (82)

which we transform using the Floquet–Lyapunov transformation equation (13) and its inverse,
to obtain the e.o.m in the form

χ̇ − Bχ =  (t)−1 λ. (83)

5 We note that equation (36) of [13] contains a misprint in the sign of the coefficient of x′2, and where ν appears
instead of βx inside the two exp factors, as can be verified from equation (34) of [13], or from [33].
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Each of the equations (83) and (81) has a unique π -periodic solution (see appendix A), and
these solutions are related by the Floquet–Lyapunov transformation. Equation (83) can be
solved immediately term by term; however, in appendix A we use infinite-continued matrix
inversions to find directly the periodic solution of equation (81) in the form

�uπ =
∑
n∈Z

�B2n ei2nt . (84)

To obtain the wavefunctions, we use the method of [12]. The Schrödinger equation in
coordinate �u space is now

i∂tψ = −∇2
�uψ + [

1
2�u t (A − 2Q cos 2t)�u − (�G + 2�F cos 2t) · �u]

ψ. (85)

Performing the (unitary) coordinate change �x = �u − �uπ we have ∂t → −�̇uπ + ∂t , and by
introducing the additional unitary transformation

ψ = exp
{
i�̇uπ · �x + iαπ (t)

}
ϕ, (86)

the Schrödinger equation for ϕ becomes that of the nondriven problem, whose solutions are
given in equations (71) and (79). The phase απ (t) is in fact the classical action of the π -periodic
solution,

απ (t) =
∫ t

0

1

2

(
�̇uπ

)2 −
∫ t

0

[
1

2
�u t

π (A − 2Q cos 2t)�uπ − (�G + 2�F cos 2t) · �uπ

]
, (87)

which may be written more compactly using equation (81),

απ (t) =
∫ t

0

1

2

[(
�̇uπ

)2 + �u t
π · (

�̈uπ + �G + 2�F cos 2t
)]

. (88)

A closed algebraic expression for απ (t) can in fact be obtained by expanding the integrand
of equation (88) using equation (84) into a sum of exponentials, for which the integration is
immediate.

Thus, with ϕ (�x, t) a solution of the nondriven Schrödinger equation, the solutions of
equation (85) will be

ψ = exp
{
i�̇uπ · (�u − �uπ ) + iαπ (t)

}
ϕ(�u − �uπ , t). (89)

4. Concluding comments

Equation (1) describes a coupled system of Mathieu equations. This equation can be considered
as consisting of the first two terms in the expansion in a Fourier series of a more general system
of coupled Hill equations [1],

�̈u +
[

A − 2
∑
n=1

Q2n cos 2nt

]
�u = 0, (90)

where the sum may be infinite in principle, and here we take the equation to be time-reversal
invariant. The technique of expansion of section 2.2 in matrix inversions can be applied to
solve equation (90) with only the algebraic overhead growing [21]. The Floquet–Lyapunov
transformation and the entire quantum treatment remain identical. In appendix B we solve a
Hill system with two harmonics.

Besides the above generalization, we have considered in appendix A an inhomogeneous
system (of a specific form) and its quantum counterpart is considered in section 3.3. Other
types of driving can be handled similarly, and simple known transformations [2] can be used to
handle a more general linear system similar to equation (90), such as systems with first-order
derivatives (e.g. linear damping, gyroscopic forces or magnetic fields).
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Finally, we note that a linearization of a general nonlinear multidimensional system with
periodic coefficients will lead to similar equations. After obtaining the Floquet–Lyapunov
transformation, the system of decoupled time-independent oscillators can be canonically
transformed to action-angle coordinates, for example. The obtained modes can be used as
the zeroth-order approximation in a perturbative treatment of the nonlinearity [27, 28].

An application of the methods described here to the analysis of the classical linearized
modes of an ion crystal in a Paul trap can be found in [20], where the accuracy of the solution is
demonstrated by comparing to exact numerical simulations of the nonlinear problem. Various
other linear and nonlinear parametrically driven physical systems can be accurately described
and analyzed, either in the classical regime or as they are cooled close to the quantum ground
state of motion. Coupled arrays of nanoelectromechanical oscillators [9, 10, 29] are one
example. Parametric driving has also been recently applied to Bose–Einstein condensates [11,
30, 31], and in particular the perturbations (i.e. phonons) of two-component condensates obey
coupled Mathieu equations [32].
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Appendix A. Further comments on the infinite-continued matrix inversions

Adding to equation (1) an inhomogeneous rhs we put it in the form

�̈u + [A − 2Q cos 2t] �u = �G + 2�F cos 2t, (A.1)

where �G and �F are f -component constant vectors. This equation will have a unique π -periodic
solution under some conditions [2], a sufficient condition being that the homogenous equation
does not have any π -periodic solution (except the trivial one). This condition is of course
fulfilled when the homogenous system has purely oscillatory modes. We first find a particular
solution of equation (A.1), using the method of section 2.2. We assign uπ = ∑

n∈Z
�B2nei2nt in

the e.o.m and obtain

(A − 4n2)�B2n − Q(�B2n−2 + �B2n+2) = �Gδn,0 + �F(δn,1 + δn,−1). (A.2)

We write, defining R2n = A − (2n)2 and using �B2n = �B−2n,

A�B0 − 2Q�B2 = �G (A.3)

R2 �B2 − Q(�B0 + �B4) = �F (A.4)

R2n �B2n − Q(�B2n−2 + �B2n+2) = 0, n � 2. (A.5)

Equation (A.5) immediately gives a recursion relation in the form of equation (21) (only R2n

here is defined differently), which allows us to obtain the expression in infinite inversions

�B4 = T2Q�B2, (A.6)

where

T2 = [R4 − Q[R6 − Q[R8 − ...]−1Q]−1Q]−1. (A.7)
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Substituting equation (A.6) into equations (A.3) and (A.4) we obtain the linear system(
A −2Q

−Q R2 − QT2Q

)(
�B0
�B2

)
=

(
�G
�F

)
, (A.8)

which is readily solved, and the rest of the coefficients follow immediately.
We conclude by commenting on the computational aspects of the above method. The

complexity of matrix multiplications and inversion, and computing a determinant are all equal,
O( f 3) or a bit better with improved algorithms. Using the method of matrix inversions, finding
all zeros of the determinant of equation (25) can be done with complexity independent of f ,
albeit with a large constant prefactor, or at O( f log f ) operations. A brute-force computation
of the monodromy matrix by repeated integrations of the e.o.m would have complexity
O( f 4) because f passes are required in order to obtain f linearly independent solutions.
Approximations have been developed which yield a fundamental matrix solution in O( f 3).
From the matrizant the characteristic exponents can be obtained. In [4], and similarly in [5],
following earlier works, a solution to recursion relations (similar to, e.g., equation (21)) is
achieved by truncating a linear eigenvalue problem. The convergence of the expansion using
continued inversions is expected to be much better (this is certainly true for a single degree
of freedom). In [6], an expansion using Chebyshev polynomials is used to approximate a
fundamental matrix solution.

Appendix B. Solution of the double-cosine system

As discussed in section 4, the expansion in continued inversions can be extended to treat
coupled systems of Hill equations, and here we consider the double-cosine system

�̈u + [A − 2Q2 cos 2t − 2Q4 cos 4t] �u = 0. (B.1)

By the substitution of the solution ansatz, equation (17), we obtain the identity

R2nC2n − Q2(�C2n−2 + �C2n+2) − Q4(�C2n−4 + �C2n+4) = 0, (B.2)

which gives the two recursion relations,

Q4 �C2n−4 = −Q2 �C2n−2 + R2n �C2n − Q2 �C2n+2 − Q4 �C2n+4, (B.3)

and

Q2 �C2n+2 = −Q4 �C2n+4 + R2n �C2n − Q2 �C2n−2 − Q4 �C2n−4. (B.4)

We do not obtain the expansion to the general order, but suffice with assigning n = 1, 2, 3 in
equation (B.3) and n = 0,−1,−2 in equation (B.4) to obtain two expressions in a form which
is a generalization of equations (23) and (24),

�C2 = T2,βQ̃2,β
�C0, Q̃−2,β

�C2 = T̃0,β
�C0 (B.5)

with

T2,β = [R2 − Q2R̃4R̃6 − Q4R−1
6 Q4 − Q4R−1

6 Q2R̃4R̃6 − Q4R̃−2Q4]−1, (B.6)

Q̃2,β = [Q2 + Q2R̃4Q4 + Q4R−1
6 Q2R̃4Q4 + Q4R̃−2R̃−4], (B.7)

and

T̃0,β = [
R0 − Q2R̃−2R̃−4 − Q4R−1

−4Q4 − Q4R−1
−2Q2R̃−2R̃−4 − Q4R̃4Q4

]
, (B.8)

Q̃−2,β = [
Q2 + Q2R̃−2Q4 + Q4R−1

−4Q2R̃−2Q4 + Q4R̃4R̃6
]
, (B.9)
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and we have defined the matrices

R̃4 = [
R4 − Q2R−1

6 Q2
]−1

, R̃6 = [
Q2 + Q2R−1

6 Q4
]
, (B.10)

R̃−2 = [
R−2 − Q2R−1

−4Q2
]−1

, R̃−4 = [
Q2 + Q2R−1

−4Q4
]
. (B.11)

The characteristic exponents are obtained as zeros of the determinant of

Y2,β ≡ T̃0,β − Q̃−2,βT2,βQ̃2,β , (B.12)

which is the generalization of equation (25), and in fact reduces to it for Q4 = 0. The mode
vector �C2 follows from equation (B.5), and the other three vectors in this finite expansion can
be obtained from

�C4 = R̃4
(
Q4 �C0 + R̃6 �C2

)
, (B.13)

�C−2 = R̃−2
(
R̃−4 �C0 + Q4 �C2

)
, (B.14)

�C−4 = [
R−4

]−1(
Q2 �C−2 + Q4 �C0

)
. (B.15)

Appendix C. Proof of several results from section 3

In this appendix we prove some results used in section 3. Let us first obtain an explicit
expression for the inverse of the Floquet–Lyapunov transformation. The matrizant �(t) of
equation (32) satisfies the identity

�(t)†J�(t) = J, (C.1)

as can be shown by differentiating and using equation (32) (the matrizant of equation (35)
satisfies a similar identity with J replaced by K). Multiplying equation (C.1) on the lhs with J
and rearranging a little we find

�(t)−1 = −J�(t)†J.

From equation (10) we have that

(t)−1 = eBt−1(0)�−1(t).

Using these two expressions and substituting equation (10) we obtain

(t)−1 = −eBt−1(0)J−†(0)e−Bt†(t)J, (C.2)

where −† ≡ [
−1

]†
as was defined already above. By substituting t → t + T in the above

equation and using the periodicity of  and the fact that B is diagonal, we find that[
−1(0)J−†(0), B

] = 0, (C.3)

where [ , ] is the matrix commutator. We can find the explicit form of −1(0) using the fact
that U (0) is real and V (0) is purely imaginary,

−1(0) = 1

2

(
U−1(0) V −1(0)

U−1(0) −V −1(0)

)
,

so,

−1(0)J−†(0) =
(

M + Mt Mt − M
M − Mt −M − Mt

)
, (C.4)

with

M = 1
4

[
U−1(0)V −t (0)

]
. (C.5)
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Expanding equation (C.3) in the block form, using equation (26), we have, writing { , }+ for
the matrix anti-commutator,

[M + Mt, B] = 0, {M − Mt, B}+ = 0, (C.6)

which together imply

[M, B] = 0. (C.7)

Equation (C.7) means that the invariant subspaces of M and B are identical, and since
B is diagonal, we can conclude that M must be diagonal too (or, if B has degenerate
eigenfrequencies, M can be made diagonal by an appropriate choice of eigenvectors). We
can make M a scalar matrix, by demanding a proper normalization of U and V . As noted at
the end of section 2.3, the choice in equation (31) is unique up to a matrix that commutes with
B, which amounts to the arbitrariness of the normalization of each of the columns of U , i.e.
the fact that each of the vectors �C0,β j was determined only up to a constant. This allows us to
rescale U and V as in equation (39) and obtain equations (41) and (42).

Let us find the transformed Hamiltonian of equation (36),

H′(ζ , ξ ) = H(�u(ζ , ξ ), �p(ζ , ξ )) + Ḟ (�u(ζ , ξ ), ζ ). (C.8)

By the use of equation (42) it follows that

tJ =
(

0 i
−i 0

)
, (C.9)

and by derivating this equation we obtain

̇t J + t J̇ = 0. (C.10)

Substituting φ = χ into equation (34) we have

H = 1
2χ ttJ�χ = 1

2χ ttJ(B + ̇)χ = 1
2χ tH̃χ − 1

2χ t ̇tJχ, (C.11)

where equations (C.9) and (C.10) have been used to obtain the last equality, and H̃ is given by
equation (37). We write explicitly

̇tJ =
(

P Q
R T

)
≡

(
V̇ tU − U̇tV V̇ tU∗ − U̇tV ∗

V̇ †U − U̇†V V̇ †U∗ − U̇†V ∗

)
. (C.12)

By applying ∂t to equation (45) and substituting �u = Uξ + U∗ζ , we may write after some
rearranging

Ḟ = 1
2χ t	χ (C.13)

where

	 =
(

UtLU UtLU∗ − 2iUtU̇−t

U†LU U†LU∗ + iU̇†U−t − iU†U̇−t

)
(C.14)

and

L = U̇−tV t + U−tV̇ t, (C.15)

and in these expressions, it is understood that U̇−t ≡ ∂t
(
U−t

)
, i.e. the time derivative is applied

after matrix inversion. From equation (46) we obtain the identity

V̇ † − U̇†U−tV t − U†L = −iU̇−1, (C.16)

and by derivating UU−1 = 1 f we obtain in addition

UtU̇−t = −U̇tU−t . (C.17)
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Using these identities and equation (42), 	 is simplified to

	 = 1

2
̇tJ + 1

2

(
0 −iUtU̇−t

iU̇−1U iU̇−1U∗ − iU†U̇−t

)
. (C.18)

Since
(
U̇−1U∗)t = U†U̇−t , the lower right block of the second term above is antisymmetric

and therefore the coefficient of ζ tζ will be equal to 0. By using equations (C.18), (C.13) and
(C.11) into equation (C.8) we obtain finally

H′ = 1
2χ tH̃χ + Y(t) (C.19)

with

Y = − 1
2 i(ζ tWξ − ξ tWtζ ), W = U−1∂tU. (C.20)

Classically, since ζ and ξ commute, Y = 0.
We now evaluate the integral on the rhs of equation (65),

J =
∫

dμ′
f 〈�u |ζ ′〉〈ζ ′|Ĥ|ζ 〉. (C.21)

Using equation (C.11) we can write Ĥ as a function of ξ̂ and ζ̂ and normal order it (i.e. put all
ξ̂ ’s on the lhs and ζ̂ ’s on the right) to obtain

Ĥ = ξ̂ tBζ̂− : 1
2 χ̂ t ̇tJχ̂ : − 1

2 tr{R − B} (C.22)

where R appears in the lower left block of equation (C.12).
For any operator Ô(ξ̂ , ζ̂ ) we have

〈ζ ′| : Ô(ξ̂ , ζ̂ ) : |ζ 〉 = 〈ζ ′|O(ζ ′∗, ζ )|ζ 〉 = O(ζ ′∗, ζ ) eζ ′∗·ζ ,

and we use the following result∫
f
(
ζ ′) [

ζ ′∗
j

]n
eζ ′∗·ζ dμ′

f = ∂n f (ζ )

∂ζ j
n . (C.23)

The first term in equation (C.22) gives∫
dμ′

f 〈�u|ζ ′〉〈ζ ′|ξ̂ tBζ̂ |ζ 〉 =
∑

jk

(∂ζ j eiF̃ )Bjkζk = [ζ tU†U−tBζ − �u tU−tBζ ]〈�u|ζ 〉. (C.24)

We next evaluate the upper left block of the second term in equation (C.22),

−1

2

∫
dμ′

f 〈�u|ζ ′〉〈ζ ′|ξ̂ tPξ̂ |ζ 〉 = −1

2

∑
jk

Pjk[(i∂ζ j F̃ )(i∂ζk F̃ ) + i∂ζ j∂ζk F̃]eiF̃ . (C.25)

By the definition of the trace and the identity in equation (46) we have for the second term
above,

− 1

2

∑
jk

Pjki∂ζ j∂ζk F̃ = 1

2

∑
jk

(V̇ tU − U̇tV ) jk(U
†U−t ) jk = 1

2
tr{U†U−t (V̇ tU − U̇tV )t}

= 1

2
tr

{
U†V̇ − V †U̇ − iU−1U̇

} = 1

2
tr {R − iW } (C.26)

By using the formal identity resulting from equation (43),

∂ζ j eiF̃ = (
i∂ζ j F̃

)
eiF̃ = ξ je

iF̃ , (C.27)

we can immediately see that the first term in equation (C.25) and the remaining terms
equation (C.22) integrate to give simply −Ḟ , and together with ζ̇ = −iBζ we can collect all
the terms to obtain that

J = [−∂tF̃ + 1
2 tr{B − iW }]〈�u|ζ 〉. (C.28)
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We now show that equation (68) results from the form of |N | as given in equation (63). This
follows by the use of trace properties and the definition of W from equation (C.19) in the
following identity,

∂t det A = tr
{
(det A) A−1∂tA

}
,

to obtain∣∣Ṅ ∣∣
|N | = −1

4

det(UU†)−5/4

det(UU†)−1/4
∂t det(UU†) = −1

4
tr
{
U−1U̇ + U−†U̇†

} = −1

2
Re {trW } . (C.29)

The solution of equation (69) is given by

∂t

(
− 1

2
arg detU

)
= ∂t

(
− 1

2
Im log detU

)
= −1

2
Im

∂t detU

detU

= −1

2
Im

tr
{
(detU )U−1∂tU

}
detU

= −1

2
Im {trW } . (C.30)

We now consider the integral in equation (77). Using equation (59) we obtain

δ�n,�n′ = |N |2 c∗
�nc�n′

∫
d f �u exp

{
−1

2
�u tU−†U−1�u

} (
HC

�n (U−∗�u)
)∗

HC
�n′ (U−∗�u) ei

∑
j (n j−n′

j )β jt .

(C.31)

Changing integration variables by �x = U−∗�u and using the fact that U−1U∗ = U†U−t since
the latter is symmetric, we obtain

δ�n,�n′ = |N |2c∗
�nc�n′ | detU∗| ei

∑
j (n j−n′

j )β jtI�n,�n′ , (C.32)

where I�n,�n′ is the integral

I�n,�n′ =
∫

d f�x exp

{
−1

2
�x tC�x

} (
HC

�n (�x)
)∗

HC
�n′ (�x) = δ�n,�n′n1! · · · n f !(2π) f /2(detC)−1/2,

(C.33)

and the last equality follows from [26, equation (12.9(1))], using the fact that C∗ = C−1,
which identifies the dual polynomials of Hn(�x) (denoted Gn(�x) in [26]), with their complex
conjugates, Hn(�x)∗. Finally, since detC = detU†/ detU , and using equation (63), all time-
dependent terms cancel and equation (78) results.
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