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All-cavity electromagnetically induced transparency and optical switching: Semiclassical theory
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The transmission of a probe field experiencing electromagnetically induced transparency and optical switching
in an atomic medium enclosed in an optical cavity is investigated. Using a semiclassical input-output theory for
the interaction between an ensemble of four-level atoms and three optical cavity fields coupled to the same spatial
cavity mode, we derive the steady-state transmission spectra of the probe field and discuss the dynamics of the
intracavity field buildup. The analytical and numerical results are in good agreement with recent experiments
with ion Coulomb crystals [M. Albert et al., Nature Photon. 5, 633 (2011)].
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I. INTRODUCTION

Electromagnetically induced transparency (EIT) is a quan-
tum interference phenomenon occurring when two electro-
magnetic fields resonantly excite two different transitions
sharing a common state [1–4]. An intense control field
addressing one of the transitions can substantially modify
the linear dispersion and absorption of an atomic medium
for a weak probe field resonant with the second transition.
Since its first observation by Boller et al. [5], EIT has been
successfully exploited, for instance, to control the propagation
of light pulses through an otherwise opaque medium for
light storage and retrieval [6–13] and quantum memories
[14–23]. Besides providing a means for controlling the linear
susceptibility of an atomic medium, EIT can also be exploited
for generating strong optical nonlinearities [2–4,24,25]. For
instance, in the four-level atomic configuration such as the
one depicted in Fig. 1(b), the nonlinear susceptibility of
the medium can be strongly enhanced at the same time as
the linear susceptibility is suppressed. The large cross-Kerr
effect between the probe field and a third switching field can
then be used, e.g., for high-efficiency photon counting [26],
all-optical switching [27–29], and nonlinear optics at low-light
levels [2,3,25,30,31], nonclassical state generation [32], or the
realization of strongly interacting photon gases [33,34].

When such a nonlinear EIT medium is positioned in an opti-
cal cavity one first of all benefits from the enhanced interaction
of the ensemble with well-defined spatiotemporal field modes.
This is of great value for enhancing the effective optical depth
and for realizing high-efficiency quantum memories [35–38]
or Fock-state quantum filters [39]. The EIT-induced reduction
of the cavity linewidth [40] can also be used to increase the
sensitivity of atomic magnetometers [8,41], enhance cavity
optomechanical cooling processes [42–44], and achieve lasing
without inversion [45], optical switching [46,47], or quantum
state swapping [48].

On the other hand, the cavity EIT interaction can be
furthermore exploited to enhance the cross-Kerr nonlinearity
to investigate, e.g., photon-blockade mechanisms [49–51],
photon-photon interactions [52], highly entangled state gener-
ation [53], or novel quantum phase transitions for light [54].

Cavity EIT has been observed with atomic beams [55], in
cold and room-temperature atomic ensembles [56–58], and
even with single or few atoms in high-finesse optical cavities

[59,60]. Cavity EIT as well as EIT-based optical switching
have also recently been observed with cold ion Coulomb
crystals [61].

We theoretically investigate here the interaction between
an ensemble of atoms with the four-level structure depicted
in Fig. 1(b) and three optical fields coupled to the same
spatial cavity mode. Using a semiclassical input-output theory
we derive the atomic linear and nonlinear susceptibilities for
the probe field and its steady-state transmission spectra as it
experiences EIT or an EIT-based cross-Kerr effect. We study,
in particular, the effect of the transverse mode profiles of the
fields on the normal mode spectrum of the atom-cavity system
as in the experiments of Ref. [61] and compare with the more
usual situation where only the probe field is coupled to the
cavity [55–60].

The paper is organized as follows: in Sec. II we introduce
the system under consideration and derive the equations
of motion. We obtain the probe field susceptibility and
transmission spectrum, first when the probe and control fields
interact with the atoms in an EIT situation in Sec. III, then when
all three cavity fields interact simultaneously with the atomic
medium in Sec. IV. Finally, all-optical switching at low-light
levels using ion Coulomb crystals as in the experiments of
Ref. [61] is discussed in Sec. V.

II. SYSTEM CONSIDERED AND EQUATIONS OF MOTION

We consider an ensemble of Ntot four-level atoms with
the level structure depicted in Fig. 1, where levels |1〉 and
|2〉 are long-lived ground or metastable states, and levels
|3〉 and |4〉 are excited states. The atoms are enclosed in a
linear optical cavity where they interact with three optical
fields: a probe field on the |1〉 −→ |3〉 transition, a control
field on the |2〉 −→ |3〉 transition, and a switching field on
the |2〉 −→ |4〉 transition. The cavity is assumed to have
asymmetric mirror transmissions, TH and TL, with TH � TL,
and, unless stated otherwise, all fields are injected into the
cavity through the high-transmission mirror. The annihilation
operators of the field modes in the Heisenberg picture and in
the rotating frame are denoted by âp, âc, and âs , respectively,
with the convention [âα,â†

α] = 1 (α = p,c,s). σ̂ (j )
μν = |μ〉〈ν| is

the atomic operator associated with the j th ion positioned at
rj (μ,ν = 1–4). We assume that all three fields are resonant
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FIG. 1. (Color online) (a) Atomic four-level structure considered.
(b) System considered: an ensemble of four-level atoms, positioned
in a linear optical cavity, interact with three optical fields. In the
all-cavity geometry all three fields are injected into the cavity and
coupled to the same cavity mode. In an alternative standard geometry,
only the probe field ap is injected into the cavity, while the control
and switching fields, ac and as , are free propagating with waists much
larger than that of the ensemble (see text for details).

or close to a resonance with the same spatial cavity mode,
which we take to be the fundamental Gaussian TEM00 mode
for simplicity. In the experiments of Ref. [61] for instance, the
probe and control fields are coupled to the same longitudinal
cavity mode, resonant with the 3d D3/2 → 4p 2P1/2 transition
in 40Ca+, with orthogonal polarizations, while the switching
field is coupled to another longitudinal cavity mode, close
to resonance with the 3d 3D3/2 → 4p 2P3/2 transition. The
interaction Hamiltonian in the rotating-wave approximation
and in the rotating frame is given by

Haf = −h̄
∑

j

gp�p(rj ) cos[kpzj + ϕp(rj )]âpσ̂
(j )
31

− h̄
∑

j

gc�c(rj ) cos[kczj + ϕc(rj )]âcσ̂
(j )
32

− h̄
∑

j

gs�s(rj ) cos[kszj + ϕs(rj )]âs σ̂
(j )
42 + H.c.,

(1)

where the g’s are the maximal single-atom coupling strengths
for the transitions considered, and the �’s and ϕ’s are
the fields’ transverse mode functions and longitudinal mode
phases, respectively [62]. Since our main goal is to discuss
the effects related to the spatial transverse structure of the
fields we will consider for simplicity the situation where
the length, 2L, of the ensemble is much smaller than the
Rayleigh range of the cavity, as, e.g., in the experiments of
Ref. [61]. We thus neglect the longitudinal variations of the
phases and the waists of the light fields over the length of
the ensemble. We therefore set the longitudinal mode phases
to 0 and assume a Gaussian transverse structure of the fields
given by �α(r) = exp(−r2/w2

α) (α = p,c,s), where wα is the
cavity waist considered. In the following we will examine two
situations:

(i) The novel case in which all three fields have the same
transverse mode profile and the ensemble has a large radial
extension as compared to the waists, like, e.g., in the
experiments of [61]. We shall refer to this situation as the
all-cavity case.

(ii) The more usual situation in which the control and
switching fields have a large transverse intensity profile as

compared to the extension of the ensemble. This would
typically be the case if these fields were interacting with the
atoms not through the cavity [56–60], or for an ensemble
radially confined to a region with dimension much smaller
than the waists, as could be obtained , e.g., with a string of
atoms or two-component ion Coulomb crystals [63]. We shall
refer to such a situation, in which the transverse mode profiles
of the fields can be ignored, as the standard case.

We will in addition assume that, because of their motion,
the atoms are “warm” enough such that they probe any field
variation along the longitudinal standing-wave structures of the
fields during the characteristic time scales of the dynamics of
the fields due their interactions with the atoms. As discussed,
e.g., in Refs. [64–67] and in the Appendix, one can under
these conditions assume averaged longitudinal couplings
ḡα = gα/

√
2 (α = p,c,s). Keeping only the transverse spatial

dependence of the cavity modes, the Hamiltonian becomes

Haf = −h̄
∑

j

ḡp�p(rj )âpσ̂
(j )
31 + ḡc�c(rj )âcσ̂

(j )
32

+ ḡs�s(rj )âs σ̂
(j )
42 + H.c. (2)

For comparison the “cold” atom situation where the atoms are
well localized with respect to the field standing-wave structures
during the interaction is treated in the Appendix.

The atom-field dynamics of the observable mean values can
be standardly derived via ȯ = (1/ih̄)〈[ô,H ]〉, where o ≡ 〈ô〉 is
the mean value of observable ô and the total Hamiltonian H =
Ha + Hf + Haf is the sum of the interaction Hamiltonian (2)
and of the atomic and field Hamiltonians

Ha = −h̄
∑

j

�pσ̂
(j )
33 +(�p − �c)σ̂ (j )

22 +(�p − �c + �s)σ̂
(j )
44 ,

(3)
Hf = −h̄�c

pâ†
pâp − h̄�c

câ
†
c âc − h̄�c

s â
†
s âs ,

where �p = ωp − ω31, �c = ωc − ω32, and �s = ωs − ω42

are the one-photon detunings, and �c
α = ωα − ωcav

α are the
cavity detunings between the fields with frequency ωα and
the cavity resonance frequencies considered ωcav

α (α = p,c,s).
Denoting by γ31, γ32, and γ42 the spontaneous decay rates
and introducing a phenomenological decay rate γ0 for the
ground-state coherence operators σ̂

(j )
12 (γ0 � γ31,γ32,γ42), one

obtains the following set of coupled differential equations:

σ̇
(j )
12 = −[γ0 − i(�p − �c)]σ (j )

12 − iḡp�p(rj )apσ
(j )
32

+ iḡc�c(rj )a∗
c σ

(j )
13 + iḡs�s(rj )a∗

s σ
(j )
14 , (4)

σ̇
(j )
13 = −(γ − i�p)σ (j )

13 + iḡp�p(rj )ap

(
σ

(j )
11 − σ

(j )
33

)
+ iḡc�c(rj )acσ

(j )
12 , (5)

σ̇
(j )
14 = −[γs − i(�p − �c + �s)]σ

(j )
14 − iḡp�p(rj )apσ

(j )
34

+ iḡs�s(rj )asσ
(j )
12 , (6)

σ̇
(j )
23 = −(γ − i�c)σ (j )

23 + iḡc�c(rj )ac

(
σ

(j )
22 − σ

(j )
33

)
+ iḡp�p(rj )apσ

(j )
21 − iḡsψs(rj )asσ

(j )
43 , (7)

σ̇
(j )
24 = −(γs − i�s)σ

(j )
24 − iḡc�c(rj )acσ

(j )
34

+ iḡs�s(rj )as

(
σ

(j )
22 − σ

(j )
44

)
. (8)
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σ̇
(j )
34 = −[γ+γs − 2γ0 − i(�s − �c)]σ (j )

34 − iḡc�c(rj )a∗
c σ

(j )
24

+ iḡs�s(rj )asσ
(j )
32 − iḡp�p(rj )a∗

pσ
(j )
14 , (9)

σ̇
(j )
11 = γ31σ

(j )
33 − iḡp�p(rj )apσ

(j )
31 +iḡp�p(rj )a∗

pσ
(j )
13 , (10)

σ̇
(j )
22 = γ32σ

(j )
33 + γ42σ

(j )
44 − iḡc�c(rj )acσ

(j )
32 +iḡc�c(rj )a∗

c σ
(j )
23

− iḡs�s(rj )asσ
(j )
42 + iḡs�s(rj )a∗

s σ
(j )
24 , (11)

σ̇
(j )
33 = −(γ31+γ32)σ (j )

33 +iḡp�p(rj )apσ
(j )
31 − iḡp�p(rj )a∗

pσ
(j )
13

+ iḡc�c(rj )acσ
(j )
32 − iḡc�c(rj )a∗

c σ
(j )
23 , (12)

σ̇
(j )
44 = −γ42σ

(j )
44 + iḡs�s(rj )asσ

(j )
42 − iḡs�s(rj )a∗

s σ
(j )
24 , (13)

ȧp = −(
κ − i�c

p

)
ap+i

∑
j

ḡp�p(rj )σ (j )
13 +

√
2κH

τ
ain

p , (14)

ȧc = −(
κ − i�c

c

)
ac + i

∑
j

ḡc�c(rj )σ (j )
23 +

√
2κH

τ
ain

c , (15)

ȧs = −(
κ − i�c

s

)
as + i

∑
j

ḡs�s(rj )σ (j )
24 +

√
2κH

τ
ain

s , (16)

where γ = (γ31 + γ32)/2 + γ0, γs = γ42/2 + γ0, and τ is the
cavity round-trip time. The input fields are denoted by ain

α

(α = p,c,s). The total cavity field decay rate (assumed equal
for all fields for simplicity) is denoted by κ = κH + κT +
κA, where κH,L = TH,L/2τ are the decay rates corresponding
to the mirrors’ transmission and κA = A/2τ is a decay rate
corresponding to round-trip absorption losses A. While these
absorption losses are not essential to the understanding of
the physical mechanisms studied here, we include them for
completeness as they very often affect experiments with high-
finesse cavities [59–61].

The previous set of equations can be solved numerically for
any initial internal atomic state, input field pulses, ensemble
geometry, and atomic distribution. We focus in the following
on the situation in which all the atoms are in state |1〉
initially and the probe field is much weaker than the control
and switching fields, so that one can perform a first-order
expansion in the probe field to get analytical expressions for
various quantities, such as the probe susceptibility, its cavity
transmission and reflection, the EIT buildup time, etc.

III. CAVITY ELECTROMAGNETICALLY INDUCED
TRANSPARENCY

A. EIT regime

We first investigate the EIT situation where the atoms
interact with both the probe and control fields, but no switching
field is injected into the cavity. The input probe and control
fields are abruptly switched on at time t = 0 and thereafter
have constant intensities. We place ourselves in the weak probe
regime, when gp|ap| � gc|ac| and the intracavity photon
number is much smaller than the number of interacting
atoms. All the atoms are then essentially in |1〉, and the only
nonzero atomic components at first order are the probe optical
dipole σ

(j )
13 and the ground-state coherence σ

(j )
12 [3]. We also

assume that the control field is tuned to resonance with the
|2〉 −→ |3〉 transition (�c = 0) and the cavity is resonant with
the |2〉 −→ |3〉 transition, i.e., �p = �c

p = δ = �. As the

control field probes no atom, its intracavity amplitude reaches
its steady-state value in a time κ−1. Since we are interested
in getting simple analytical expressions for the steady state
of the system and its dynamics over the typically slower
EIT buildup time scales, we can consider that the control
field intracavity Rabi frequency is constant and equal to its
steady-state value �̄c = ḡcac. Equivalently, the control field
can be turned on slightly before the probe pulse is applied.
The relevant equations of motion governing the evolution of
the intracavity probe field are then

ȧp =−(κ − i�)ap+iḡp

∑
j

�p(rj )σ (j )
13 +

√
2κH/τain

p , (17)

σ̇
(j )
13 = −(γ − i�)σ (j )

13 + iḡp�p(rj )ap + i�̄c�c(rj )σ (j )
12 ,

(18)

σ̇
(j )
12 = −(γ0 − i�)σ (j )

12 + i�̄∗
c�c(rj )σ (j )

13 . (19)

B. Steady-state susceptibility

These equations can be readily solved in steady state to
obtain the mean value of the intracavity probe field,

ap =
√

2κH/τain
p

κ − i� − iχEIT
, (20)

where the EIT susceptibility is given by

χEIT =
∑

j

iḡ2
p�2

p(rj )

γ − i� + |�̄|2c
γ0−i�

�2
c (rj )

. (21)

For large ensembles of atoms with noncorrelated positions, we
can reformulate Eq. (21) in terms of the local atomic density
ρ(r). Assuming the same transverse profiles for the control
and probe fields �p(r) = �c(r) = exp(−r2/w2), Eq. (21) can
then be recast in

χEIT = ig2
p

2

∫
V

dr ρ(r)
e−2r2/w2

γ − i� + �2
c/2

γ0−iδ
e−2r2/w2

, (22)

where �c = gc|ac|. For an ensemble with a uniform atomic
density, such as ion Coulomb crystals in a linear radio-
frequency trap as used in [61,68–70], and with a large
radial extension as compared to the cavity waist (see, e.g.,
[61,68–70]), the integral can be calculated analytically and
yields a susceptibility

χEIT = ig2
pN

γ − i�

ln(1 + �)

�
, (23)

where

� = �2
c/2

(γ − i�)(γ0 − i�)
(24)

is an effective saturation parameter for the two-photon transi-
tion and N = ρ πw2

2 L is the effective number of atoms defined
in Refs. [68,70]. This result can be compared to the standard
situation in which the control field waist is much larger than
that of the probe field [1,3,71]

χ st
EIT = ig2

pN

γ − i�

1

1 + �
. (25)
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The real and imaginary parts of these susceptibilities are
plotted in Fig. 2 for typical parameters used in the experiments
with ion Coulomb crystals of [61]. They show the typical
transparency window in the absorption profile and the rapid
change in dispersion around two-photon resonance. In com-
parison with the standard one, the all-cavity susceptibility
clearly shows non-Lorentzian line shapes, as expected from its
different dependence with respect to � [Eqs. (23) and (25)].

From Eq. (20) and the input-output relations

aref
p =

√
2κT τap − ain

p , atr
p =

√
2κLτap, (26)

the steady-state cavity transmission and reflection for the probe
field are given by

T ≡
∣∣∣∣∣
atr

p

ain
p

∣∣∣∣∣
2

=
∣∣∣∣ 2

√
κHκL

κH + κL + κA − i� − iχ

∣∣∣∣
2

, (27)

R ≡
∣∣∣∣∣
aref

p

ain
p

∣∣∣∣∣
2

=
∣∣∣∣κH − κL − κA + i� + iχ

κH + κL + κA − i� − iχ

∣∣∣∣
2

. (28)

Using Eqs. (23) and (25) one can then compute the normal
mode spectrum of the probe field transmission. In the collective
strong-coupling regime, when gp

√
N > κ,γ , one expects

three normal modes in the transmission spectrum: two modes

at probe detunings ±
√

g2
pN + �2

c/2, corresponding to the

two-level ensemble modes ±gp

√
N shifted by the presence of

the control field, and one mode at zero detuning for the probe
(two-photon resonance here), corresponding to the cavity EIT
resonance [57,71].

This is illustrated in Fig. 3, where the probe transmis-
sion spectra (normalized to the bare cavity resonant value
4κHκL/κ2)

T0 =
∣∣∣∣ κ

κ − i� − iχ

∣∣∣∣
2

(29)

is represented for the cases of (i) an empty cavity (χ = 0),
(ii) a cavity containing a uniform density ensemble interacting
with the probe field only [χ = ig2

pN/(γ − i�)], and a cavity
containing a uniform density ensemble interacting with a
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FIG. 2. (Color online) Real (blue) and imaginary (red) parts
of the probe first-order susceptibility as a function of the probe
detuning � (solid line: all-cavity EIT [Eq. (23)], dashed line:
standard EIT [Eq. (25)]). The parameters (gp

√
N,γ,γ0,�c) = (2π ) ×

(16,11.2,6 × 10−4,6) MHz are similar to those used in the experi-
ments of Ref. [61].

probe and a control field in an all-cavity (iii) and standard
(iv) EIT situation, for which the probe susceptibility is given
by Eqs. (23) and (25), respectively. One observes indeed that
the value of the cavity transmission in the presence of EIT is
restored to close to the bare cavity resonant value in a narrow
frequency window around resonance. The width of the central
EIT feature can be calculated by expanding the transmission
around two-photon resonance. In the standard case and in the
regime considered previously (γ γ0 � �2

c < g2
pN ), one finds

that the probe transmission is Lorentzian shaped around � = 0
(see, e.g., [3,40]),

T ∝

∣∣∣∣∣∣
1

κ + γ0
g2

pN

�2
c/2 − i�

g2
pN

�2
c/2

∣∣∣∣∣∣
2

∝ 1

|κEIT − i�|2 . (30)
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FIG. 3. Upper panel: Probe field normalized transmission spectra
for an empty cavity (dotted line), a cavity containing a uniform
density ensemble interacting with the probe field only (dashed black
line) and a cavity containing a uniform density ensemble interacting
with a probe and a control field in an all-cavity (solid black line)
and standard EIT situation (gray solid/dashed lines). Parameters:
(gp

√
N,γ,γ0,�c,κ) = (2π ) × (16,11.2,6 × 10−4,6,2.2) MHz. The

solid and dashed grey curves show the standard EIT situation with
control field Rabi frequencies �c = (2π )6 MHz and �c = �

c,eff =
(2π )6/2.2 MHz, respectively. Lower panel: Spectra enlarged around
� = 0. As discussed in the text, the latter value of the effective
Rabi frequency was chosen to illustrate the lineshape difference in a
situation when the all-cavity and standard EIT resonance curves have
comparable halfwidths at half-maximum.
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The interaction thus emulates a cavity with an effective half
width

κEIT = γ0 + κ
�2

c/2

g2
pN

, (31)

which is smaller than the bare cavity half width κ when
gp

√
N > �c. The analysis is a bit more complicated in

the all-cavity case, due to the complex dependence of the
susceptibility with the saturation parameter � and the non-
Lorentzian profile [as can be seen, e.g., from Fig. 3(b)].

The different dependence of the susceptibility with the
effective saturation parameter � makes it, in general, im-
possible to define an effective control field Rabi frequency
in the all-cavity situation which would give the same sus-
ceptibility or transmission as in the standard case. How-
ever, if one is interested in comparing situations in which
the EIT resonance features have similar widths, one can
perform a similar expansion of the normalized transmission
given by Eqs. (23) and (29) around � = 0 and define
an EIT resonance width also in the all-cavity situation.
In the regime �2

c � γ γ0, the all-cavity EIT resonance
width matches the standard EIT one with an effective con-
trol field Rabi frequency �c,eff 
 �c/[(

√
2π2 + 4(ln 2C)2 −

π )/(π2/2 + 2(ln 2C)2)]1/2, where C = g2
N/2κγ is the coop-

erativity parameter for the probe field. For the parameters of
Fig. 3, the scaling factor for the effective Rabi frequency is
∼2.2, for instance. On the other hand, if one was interested
in comparing the minimum absorption level on two-photon
resonance, one could define an effective control Rabi fre-
quency as �′

c,eff ∼ �c/
√

ln(�2
c/γ γ0), in the EIT regime where

�2
c � γ γ0 and for a given value of �c. The resonant absorption

in the all-cavity situation with a control field Rabi frequency
�c could then be effectively compared to that of a standard
situation in which the maximal Rabi frequency has been scaled
by a factor ∼√

ln(�2
c/γ γ0).

Figure 4 shows the corresponding reflectivity spectra for
a cavity having non-negligible round-trip absorption losses,
as observed in the experiments of [61]. In general, since the
reflected field results from the interference between the input
field and the intracavity field, the reflectivity levels have a
slightly more complex dependence on the atomic absorption
and the cavity losses. The reflectivity spectrum exhibits
nonetheless the same qualitative features as the transmission,

with two normal modes at frequencies ±
√
g2

pN + �2
c/2 and

a third one at zero-two-photon detuning corresponding to the
reduction of atomic absorption due to the EIT effect. Effective
control field Rabi frequencies can also be defined in a similar
fashion as previously, as shown, e.g., in Refs. [61,72].

C. Dynamics

In this section we focus on the dynamics toward reaching
the steady state during a resonant EIT interaction (� = 0).
Assuming again a constant control field Rabi frequency and
performing a Laplace transform of Eqs. (17)–(19) yields the
following equations:

(κ + s)ap[s] = i
∑

j

ḡp�p(rj )σ (j )
13 [s] +

√
2κH

τ
ain

p [s],
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FIG. 4. Reflection spectra for the same configurations and param-
eters as in Fig. 3, for a cavity with non negligible roundtrip absorption
losses [(κH ,κL,κA) = (2π ) × (1.5,0,0.7) MHz].

(γ + s)σ (j )
13 [s] = iḡp�p(rj )ap[s] + i�̄c�c(rj )σ (j )

12 [s],

(γ0 + s)σ (j )
12 [s] = i�̄∗

c�c(rj )σ (j )
13 [s],

where the Laplace transform of f is defined by

f [s] = L[f (t)] =
∫ ∞

0
dt e−stf (t) (32)

and we have assumed the initial conditions ap(0) = σ
(j )
12 (0) =

σ
(j )
13 (0) = 0. These equations allow for extracting the Laplace

transform of the intracavity probe field amplitude

ap[s] =
√

2κH/τain
p [s]

κ + s + ∑
j

ḡ2
p�2

p(rj )

γ+s+|�̄c |2�2
c (rj )/(γ0+s)

(33)

and calculate its time evolution by performing the inverse
Laplace transform. It is, however, instructing to look at
the dynamics in the adiabatic limit in which the effective
cavity linewidth emulated by the EIT medium is smaller
than the bare cavity linewidth and the dipole decay rate, i.e.,
κEIT < κ,γ . In this limit it can be shown that the intracavity
field and the optical coherence adiabatically both follow the
ground-state coherence, which evolves at a rate κEIT. In the
standard case, from Eq. (33), one finds that the intracavity
field amplitude increases exponentially with a time constant
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FIG. 5. Probe field normalized transmission as a function of time
(solid black line: all-cavity case, solid grey line: standard case,
dotted grey line: empty cavity) for a resonant probe field (� = 0).
Parameters as in Fig. 3. The control field Rabi frequency is scaled by
a factor 2.2 in the standard situation.

1/κEIT, consistently with the steady-state spectrum analysis
of the previous section. In the all-cavity case the inverse
Laplace transform has to be calculated numerically. It yields
a nonexponential increase in the intracavity field intensity
occurring on a time scale approximately given by 1/κEIT, with
�c scaled as in the previous section.

Figure 5 shows the time evolution of the normalized probe
transmission in the two situations discussed, for the same
parameters as in the previous section and for an input probe
pulse abruptly switched on at t = 0 and a constant control
field. For comparison the (much faster) bare cavity response
is also shown.

IV. OPTICAL SWITCHING

We now turn to the all-optical switching situation, in which
the transition |2〉 ←→ |4〉 is addressed by the switching field
âs , while the control and probe fields are in an EIT situation.
When the switching field is detuned from atomic resonance
(|�s | � γs) and weak enough such that the absorption to
level |4〉 is negligible, its main effect is to light shift level
|2〉, thereby changing the bare EIT resonance condition for
the control and probe fields. When the light shift becomes
comparable or greater than the width of the cavity EIT window,
the transmission of the probe field is inhibited, as the cavity is
switched off resonance by the presence of the switching field.

A. Probe susceptibility

We assume again that almost all the atoms stay in |1〉
and that the control and switching field intracavity Rabi
frequencies have reached their steady-state values �̄c = ḡcac

and �̄s = ḡsas when the probe is injected. Performing a
first-order treatment in the probe field, the equations of motion
for the nonzero coherences are given by

σ̇
(j )
13 =−(γ − i�)σ (j )

13 + iḡp�p(rj )ap + i�̄c�c(rj )σ (j )
12 , (34)

σ̇
(j )
12 =−(γ0 − i�)σ (j )

12 + i�̄∗
c�c(rj )σ (j )

13 + i�̄∗
s �s(rj )σ (j )

14 ,

(35)

σ̇
(j )
14 =−(γs − i�s − i�)σ (j )

14 +i�̄s�s(rj )σ (j )
12 . (36)

Solving Eqs. (34)–(36) in steady state readily yields a mean
intracavity probe field amplitude of the form (20), with a
susceptibility

χSW =
∑

j

iḡ2
p�2

p(rj )

⎡
⎣γ − i�+ �2

c�
2
c (rj )/2

γ0 − i�+ �2
s �

2
s (rj )/2

γs−i�s−i�

⎤
⎦

−1

,

(37)

with �s = gs |as |. For a uniform density medium with an
extension larger than the cavity waist and for fields with
identical transverse profiles, one gets an analytical expression
for the susceptibility

χSW = ig2
pN

γ − i�

[
� ln(1 + � + �s)

(� + �s)2
+ �s

� + �s

]
, (38)

where

�s = �2
s /2

(γs − i�s − i�)(γ0 − i�)
(39)

is defined analogously to the effective EIT saturation parameter
for the probe. This susceptibility can again be compared to that
of the standard case where the control and switching fields have
waists much larger than that of the probe

χ st
SW = ig2

pN

γ − i�

1

1 + �/(1 + �s)
. (40)

B. Probe field transmission spectrum

The real and imaginary parts of both susceptibilities are
shown in Fig. 6 for typical parameter values taken from [61].
As expected, in the standard case, the effect of the switching
field is to shift the position of the EIT resonance by an
amount that corresponds to the ac Stark shift of level |2〉.
The effect is more complex in the all-cavity case, as the shift
for each atom depends on its radial position, thus leading
to an asymmetric frequency behavior of the absorption and
dispersion around two-photon resonance. These effects are
manifest on the probe field transmission spectra, which are
shown in Fig. 7 for different switching field intensities. While,
in the standard configuration, the probe transmission profile
is shifted away from the bare two-photon resonance without
too much distortion as the switching field intensity increases,
it is substantially distorted in the all-cavity case due to the
different ac Stark shifts experienced by atoms at different
radial positions. The accuracy of these analytical expressions
for the susceptibility and transmission have been checked by
numerically solving Eqs. (4)–(16). These findings are also
in good agreement with the experimental observations of
Ref. [61].

V. LOW-LIGHT LEVEL OPTICAL SWITCHING WITH ION
COULOMB CRYSTALS IN CAVITIES

We now turn to the prospects of achieving low-light
optical switching of a single-photon probe field using
ion Coulomb crystals in an optical cavity and base our
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FIG. 6. (Color online) Optical switching susceptibility:
real (blue) and imaginary (red) parts around two-photon
resonance. The solid line shows the all-cavity switching for
(gp

√
N,γ,κ,γ0,�c,γs,�s,�s) = (2π ) × (16,11.2,2.2,0.0006,4,11,

4300,40) MHz. The dashed line shows the standard switching
situation for the same parameters, but with the control and switching
field Rabi frequencies scaled by a factor 2.2 for comparison.

practical discussion on the parameters of Refs. [61,68].
We assume an asymmetric linear cavity geometry similar
to that described in Ref. [61], with length l ∼ 12 mm and
finesse ∼ 4000 and κ 
 κH = (2π )1.5 MHz. We consider
an interaction with 40Ca+ ions on the 3d 3D3/2, mJ =
+3/2 → 4p 2P1/2, mJ = +1/2 (probe), 3d 3D3/2, mJ =
−1/2 → 4p 2P1/2, mJ = +1/2 (control), and 3d 3D3/2,

mJ = −1/2 → 4p 2P3/2, mJ = +1/2 (switching) transitions,
for which the respective maximal ion coupling strengths are
(gp,gc,gs) = (2π ) × (0.53,0.22,0.18) MHz, respectively.
These coupling strengths are standardly defined by
gα = cα

√
3πc3�α/ωα2V (α = p,c,s), where cα and �α

are the Clebsch-Gordan coefficient and partial dipole decay
rate for the transition considered, c is the speed of light, and
V = πw2l/2 is the cavity mode volume (w ∼ 37 μm) [72].
We assume a standard situation and numerically calculate
the steady-state normalized probe transmission by solving
Eqs. (4)–(16) for a probe input field intensity such that the
mean intracavity photon number is one in steady state in an
empty resonant cavity.

Taking an effective collective coupling strength gp

√
N =

(2π )16 MHz renders the crystal-cavity system completely
opaque for the probe field in the absence of control field (T0 ∼
1%). We assume fields with linewidths much smaller than the
atomic and cavity linewidths and take equal cavity decay rates
for all fields. We assume the atomic decay rates as defined
in Eqs. (4)–(16) to be (γ,γs,γ0) = (2π ) × (11.2,11,6 × 10−4)
MHz. For the simulations the control and switching fields
are injected 0.5 μs before the probe field, with rise times
much shorter than the inverse of the cavity field decay rate,
to allow them to reach their steady-state values. The mean
intracavity probe photon number is then calculated in steady
state, yielding the cavity transmission. Using a control field
Rabi frequency �c = (2π )2 MHz allows for increasing the
resonant probe transmission to ∼90%. The variation of the
probe transmission for different switching field detunings �s

and intracavity photon numbers ns is shown in Fig. 8 under
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FIG. 7. (Color online) Probe field normalized transmission spec-
trum for different switching field Rabi frequencies �s : (a) All-cavity
switching. �s = (2π ) × (0,15,25,40) MHz from left to right. Other
parameters as in Fig. 6. (b) Standard switching for the same
parameters but with Rabi frequencies �c and �s scaled by a factor
2.2.

these conditions. For all these simulations we checked that
the absorption of photons to level |4〉 was negligible and
that the depletion of atoms from level |1〉 remained at most
at the percent level. Optical switching is observed to take place
with increasing photon numbers as the detuning is increased,
as expected from the previous discussion and analysis. We
define the minimal switching photon number n∗

s as the minimal
number of intracavity switching photons needed to bring the
normalized transmission from 90% to 10%. In the standard
situation, one can easily show from Eqs. (25) and (29) that
having a 90% transmission in EIT imposes that κEIT � 40γ0.
To get substantial switching we require that the light shift
induced by the switching field �2

s /2�s is a few times the width
of the EIT transparency window κEIT. A numerical estimation
shows that �2

s /2�s ∼ 5κEIT, which gives n∗
s ∼ 400γ0�s/g

2
s .

In agreement with Fig. 8 we find that ∼17 000 photons are
needed for the large detuning of 4.3 GHz used in Ref. [61]
and ∼400 for a detuning of ∼10γs . The previous estimate
is actually still valid for a resonant switching field replacing
�s by γs , which would give a minimal photon number of
∼40 for the parameters of Fig. 8. This illustrative numerical
example is based on the experimental parameters of [61], but
we note that lower switching numbers could, in principle,
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FIG. 8. (Color online) Probe field normalized transmission
on resonance (� = 0) as a function of intracavity switch-
ing photon number ns and for different switching field de-
tunings �s (blue (left) curve: �s = (2π )0 MHz, red (mid-
dle) curve: �s = (2π )110 MHz, green (right) curve: �s =
(2π )4300 MHz). Parameters: (gp

√
N,γ,γs,γ0,κ,�c,�) = (2π ) ×

(16,11.2,11,6 × 10−4,1.5,2,0) MHz.

be reached, e.g., using smaller cavities or stronger switching
transitions.

VI. CONCLUSION

Using a semiclassical theory for the interaction of four-
level atoms with three optical cavity fields, the effect of the
transverse mode profiles on the susceptibility and transmission
spectrum of a probe field experiencing EIT or EIT-based
optical switching has been discussed. Contrarily to the stan-
dard situation where the control and switching field Rabi
frequencies are the same for all atoms, non-Lorentzian EIT
resonance line shapes and asymmetrical switching line shapes
are predicted when all three fields are coupled to the same
cavity mode. Closed analytical forms for the susceptibility
and transmission spectrum of the probe field have been found
to explain these line shapes, in good agreement with numerical
simulations and with experiments using ion Coulomb crystals
in cavities. Last, the prospect for achieving low-light optical
switching with ion Coulomb crystals in moderate finesse
optical cavities was discussed.
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APPENDIX: “LOCALIZED” OR “DELOCALIZED” ATOM
SITUATIONS

In this Appendix we investigate the effect of the atomic
motion on the cavity EIT feature. Free-space EIT with
standing-wave field geometries has been investigated both

theoretically [64,65,67,73–75] and experimentally [13,66],
and the influence of the atomic motion on the storage and
retrieval of pulses in such geometries has been discussed in,
e.g., [64–67].

To discuss the influence of the atoms’ longitudinal veloc-
ities on the cavity field spectrum in an EIT situation in a
relatively simple fashion, one can start from the Hamiltonian
(1) without switching field and neglecting the variation of the
control and probe field Gouy phases and k-vector difference
(kp 
 kc = k)

Haf = −h̄
∑

j

gp�p(rj ) cos(kzj )âpσ̂
(j )
31

− h̄
∑

j

gc�c(rj ) cos(kzj )âcσ̂
(j )
32 + H.c. (A1)

Introducing σ̂
(j )
13,± = σ̂

(j )
13 exp(±ikzj ) and σ̂

(j )
23,± =

σ̂
(j )
23 exp(±ikzj ), the optical dipole operators corresponding

to the two running wave fields propagating with ±k, one can
recast Eq. (A1) into

Haf = −h̄
∑

j

gp�p(rj )âp

σ̂
(j )
31,+ + σ̂

(j )
31,−

2

− h̄
∑

j

gc�c(rj )âc

σ̂
(j )
31,+ + σ̂

(j )
31,−

2
+ H.c. (A2)

Making the same assumptions as in Sec. III, i.e., almost
all atoms in state |1〉, constant, and strong control field
Rabi frequency, one gets equations of motion in an EIT
situation which are similar to Eqs. (17)–(19), but now
include the longitudinal dependence of the coupling with the
fields

ȧp = −(κ − i�)ap + igp

∑
j

�p(rj )
(
σ

(j )
13,+ + σ

(j )
13,−

)
/2

+
√

2κH/τain
p , (A3)

σ̇
(j )
13,± = −(γ − i�)σ (j )

13,± + igp�p(rj )ap(1 + e±2ikzj )/2

+ i�c�c(rj )σ (j )
12 (1 + e±2ikzj )/2, (A4)

σ̇
(j )
12 =−(γ0 − i�)σ (j )

12 +i�∗
c�c(rj )

(
σ

(j )
13,++σ

(j )
13,−

)
/2. (A5)

If the typical time scales for the longitudinal atomic motion
(trapping frequencies, thermal motion,...) are faster than the
EIT dynamics time scale, but still slower as compared to
the atomic dipole dynamics (i.e., if the typical longitudinal
velocity v is such that κEIT � |kv| � γ ), then the terms in
exp(±2ikz) can be averaged out in Eq. (A4) and one retrieves
the “delocalized” situation discussed in this paper or in the ex-
periments of [61]. Physically, this can be explained by the fact
that the moving atoms will only be in two-photon resonance
with the copropagating parts of the standing waves. As the
atoms hence see on average fields with a longitudinal intensity
which is half the maximum of the standing-wave value, their
dipole is reduced which means that the coupling strengths
can be effectively rescaled by 1/

√
2, yielding the effective

Hamiltonian (2).
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FIG. 9. (Color online) Probe field transmission spectrum around
two-photon resonance for the three situations: standard EIT (dotted
line) and all-cavity EIT with localized (dashed line) and delocalized
(solid line) atoms. Parameters as in Fig. 3 with the control field Rabi
frequency scaled by a factor 2.2 in the standard situation.

If we now assume that the atoms are sufficiently cold for
their longitudinal positions to be fixed with respect to the
longitudinal standing-wave structure of the cavity fields during
the EIT interaction, one keeps the longitudinal dependence in
the coupling terms to solve the previous equations of motion,

which are equivalent to

ȧp = −(κ − i�)ap + igp

∑
j

�p(rj ) cos(kzj )σ (j )
13

+
√

2κH /τain
p , (A6)

σ̇
(j )
13 = −(γ − i�)σ (j )

13 + igp�p(rj ) cos(kzj )ap

+ i�c cos(kzj )�c(rj )σ (j )
12 , (A7)

σ̇
(j )
12 = −(γ0 − i�)σ (j )

12 + i�∗
c�c(rj ) cos(kzj )σ (j )

13 . (A8)

Solving Eqs. (A6)–(A8) in steady state yields a susceptibility

χ cold
EIT = i

∑
j

g2
p�p(rj )2 cos2(kzj )

γ − i� + �2
c�c(rj )2 cos2(kzj )

γ0−i�

. (A9)

For a large, uniform density ensemble with random longitudi-
nal ion positions along the cavity axis, one gets

χ cold
EIT = ig2

pN

γ − i�

2 ln[(1 + √
1 + 2�)/2]

�
, (A10)

where � is given by Eq. (24). The probe field transmission
spectrum around two-photon resonance is shown in Fig. 9 for
the same parameters as in Fig. 3(b) in the three situations
considered: standard EIT and localized and delocalized all-
cavity EIT. The localized situation is seen to give rise to a
slightly broader EIT resonance, since the atoms see on average
a slightly higher effective control field Rabi frequency, as one
would intuitively expect.
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