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Abstract

Bose-Einstein condensates (BEC) serve as excellent platforms for studying
quantum physics in regimes that are otherwise inaccessible, since both
internal and external parameters are highly controllable. In particular, the
interactions between the constituent particles can be tuned arbitrarily by
the use of Feshbach resonances, which enables many different research
directions. In the studies presented in this thesis, BECs of 39K are used to
study three topics, which are made possible by the rich Feshbach resonance
structure of the atomic species.

In the first experiment, the physics of impurities interacting with a
bosonic medium is studied. The impurity picture is realized by transfer-
ring a small fraction of the BEC population into another state and the BEC
thus composes a bosonic environment for the impurities. The experiments
investigate the dynamical properties of the system across different interaction
strengths and reveal how the system evolves from an initial superposition
state into polaron quasiparticles. These experiments serve as a quantum sim-
ulation of a phenomenon that is challenging to study in its original context
of solid state physics.

The second direction constitutes the experimental realization of a Lee-
Huang-Yang (LHY) fluid. In this experiment, the interactions strengths and
atom numbers in a two-component BEC are tuned such that the usually dom-
inant mean-field interactions cancel. The interactions of the system are then
governed by the next-order contribution to the energy, which originates in
quantum fluctuations. The dominant contribution from quantum fluctuations
manifests in the monopole oscillation frequency of the system, which is
measured and found to agree with detailed simulations. The realized LHY
fluid serves as a platform for new quantum simulation experiments and for
observing even-higher order effects.

The final study concerns BECs with vanishing two-body interactions. In
this case, the interactions in the system are governed by three-body scattering,
which influence the collective behaviour similar to the previous experiment.
Measuring this effect using 39K requires the production of BECs at a larger
magnetic field strength than previously done using the experimental appara-
tus, and within the thesis, current progress towards such an experiment is
described.
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Resumé
Danish Abstract

Bose-Einstein-kondensater (BEC) udgør en fremragende platform for un-
dersøgelser af kvantefysikken i regimer, som ellers er svært tilgængelige,
da både interne og eksterne parametre kan kontrolles til høj præcision. I
særdeleshed kan vekselvirkningsstyrken mellem BEC’ets partikler justeres
arbitrært gennem brugen af Feshbach resonanser, hvilket muliggør mange
forskellige forskningsområder. I denne afhandling anvendes BEC’er af 39K til
at studere tre forskellige emner, der alle mulliggøres af denne kaliumisotops
særegne Feshbach resonansstruktur.

I det første eksperiment undersøges fysikken af urenheder som interage-
rer med et bosonisk medie. Urenhedsbilledet realiseres ved at overføre en
lille brøkdel af BEC-populationen til en anden tilstand, og BEC’et udgør
således et bosonisk miljø for urenhederne. I eksperimenterne undersøges
systemets dynamiske egenskaber for forskellige vekselvirkningsstyrker, og
det observeres hvordan systemet udvikler sig fra en superpositionstilstand til
polaroniske kvasipartikler. Eksperimenterne udgør en kvantesimulering af
et fænomen som ellers er udfordrende at undersøge indenfor faststoffysikken,
som er dets oprindelige kontekst.

Det andet forskningsprojekt udgør den eksperimentelle observation af
en Lee-Huang-Yang (LHY) -fluid. I dette eksperiment justeres vekselvirk-
ningsstyrkerne og atomtallene i et tokomponent-BEC, således at de normalt
dominerende middelfeltsinteraktioner udgår. Systemets vekselvirkninger
styres da af bidraget til energien af næste orden, som stammer fra kvante-
fluktuationer. Det dominerende bidrag fra kvantefluktuationer manifesterer
sig i systemets monopoloscillationsfrekvens, og denne måles til at være i
overensstemmelse med detaljerede simuleringer. Den realiserede LHY-fluid
udgør en lovende platform for nye kvantesimuleringseksperimenter og til
målinger af effekter af endnu højere orden.

Det sidste studie omhandler BEC’er med forsvindende tolegemeinterak-
tioner. I dette tilfælde styres systemets interaktioner af trelegemespredning,
hvilket influerer dets kollektive opførsel på lignende måde som i det forrige
eksperiment. For at måle denne effekt med 39K er det nødvendigt at produ-
cere BEC’er ved højere magnetfeltsstyrker end der før er anvendt med det
eksperimentelle apparatur. I denne afhandling beskrives fremskridt mod et
sådant eksperiment.
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Preface

This thesis culminates four years of research performed during my time
in the Ultracold Quantum Gases Group lead by Jan J. Arlt. The research
was carried out in the MIX laboratory, and explores the physics of 39K
Bose-Einstein condensates with tunable interactions.

My path into the research group began when I first met Jan, who taught
the course in atomic, molecular, and optical physics in my third year as
a Bachelor student. At that point, I knew that I wanted to do research
in experimental physics, however, I was not sure about which subject to
pursue. I remember Jan showing pictures from the lab and explaining how
today physicists are able to manipulate atoms in order to study fundamental
quantum mechanics experimentally.

My discussions with Jan lead me to doing my Bachelor’s project in his
research group in the first half of 2016. The project consisted of designing
and constructing a laser system for eliminating the gravitational sag between
ultracold samples of Rb and K, and was performed under supervision of
Lars J. Wacker, who at the time was a postdoc in the group. Lars taught me
how to work with optics and lasers, and his passion for research was a big
inspiration.

After finishing my Bachelor’s project, I participated in the summer stu-
dent programme at CERN. Here I got my first real experience of working as
an experimental physicist at the ISOLTRAP experiment. I want to thank my
supervisor Vladimir Manea, and the rest of the team for being so welcoming
and inspiring me to continue in experimental physics, even though I did not
end up in nuclear physics.

In the first year of my Master’s studies, I began to realize just how
fascinating ultracold quantum gas experiment are. It never ceases to amaze
me how BEC experiments simultaneously serve as examples of textbook
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quantum physics while also enabling research at the frontiers of physics. I
therefore did not hesitate when Jan asked me to join the group as a PhD
student on the MIX experiment, of which I was already familiar based on
my Bachelor’s project. Thanks for giving me the opportunity to study such
a fascinating topic, for your supervision, and for your understanding during
the inevitable stressful periods of a PhD project.

Most of my work in the group was performed in close collaboration with
Nils B. Jørgensen and Magnus G. Skou who, together with myself, made up
the MIX team throughout a large part of my PhD studies. Thanks to both
of you for making the time in the MIX lab such an enjoyable experience.
Thanks to Nils for your mentoring, and to Magnus for sharing the ups and
downs of running a quantum gas experiment. I will really miss our times in
the lab. In the last year, Andreas M. Morgen joined the team as the newest
PhD student. It has been a pleasure to work together on the new research
projects and I wish you the best of luck going forward. I am sure that great
results are to come.

In addition to those mentioned above, the extended research group com-
posed of the MIX, Lattice, and HiRes teams have featured some fantastic
people throughout the last four years. Thanks to Theis, Anders, Mick, Mikkel,
Toke, Søren, Jeppe, Claus, Robert, Ottó, Jens, Carrie, and Dipto – you have
been phenomenal colleagues. Special thanks go to Carrie, Andreas, Robert,
Magnus, Jan, and Mick for proofreading parts of the thesis and providing
valuable feedback.

During my time as a PhD student, I have also been a part of the organizing
groups for the annual PhD day, and the 2021 edition of the Young Atom
Opticians conference. Thanks to everyone who helped out and made the
events possible despite the coronavirus pandemic. It was a real pleasure to
meet and work together with so many people from different research groups.

Finally, I want to thank my family and friends for their support during
my PhD studies, and a very special thanks goes to Emilie for her unwavering
support and for listening to my frustrations while going through similar
challenges in her own studies.

Thomas Guldager Skov,
Aarhus, Wednesday July 28th, 2021.
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CHAPTER 1
Introduction

Throughout the twentieth century, the understanding of the physical world
was revolutionized by the development of quantum mechanics, which de-
scribes the physics of objects at small length scales. Its name is derived from
one of its core concepts, namely that physical quantities are restricted to
certain values and are therefore quantized. This concept was first employed
by M. Planck who hypothesized the quantization of energies to explain the
blackbody radiation spectrum [1]. Soon after, it was used by A. Einstein to
explain the photoelectric effect [2], and in 1913, N. Bohr hypothesized the
quantization of the hydrogen atom [3], which provided an explanation for its
emission spectrum.

Another central concept of quantum mechanics is that of wave-particle
duality, which says that quantum mechanical objects may be described as
either waves or particles depending on the context, as exemplified by the
light quanta used by Einstein to explain the photoelectric effect. These light
quanta can be considered as particles, called photons, and carry momentum
as measured by A. Compton in experiments on inelastic scattering of X-
rays on electrons [4]. In his 1924 PhD thesis, L. de Broglie postulated
that all matter has characteristics of both particles and waves, and this
remarkable statement was verified experimentally in the following years,
where diffraction phenomena were observed using electrons [5, 6] and atoms
[7]. Consequently, quantum mechanical objects such as electrons and atoms
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2 Chapter 1 ⋅ Introduction

are described by wave functions Ψ(r, t), which are spread out in space,
rather than as localized particles, and these wave functions can display wave
phenomena such as diffraction and interference. The matter-wave concept
was extended by E. Schrödinger, who introduced the equation governing the
physics of quantum mechanical wave functions [8], and in 1926, the wave
function was interpreted statistically by M. Born with its modulus square
|Ψ(r, t)|2 describing the probability of finding the particle at position r at
time t [9].

One of most striking examples of a matter-wave phenomenon is perhaps
the concept of Bose-Einstein condensation. Based on work by S. N. Bose on
the statistics of photons [10], Einstein extended the theory to massive parti-
cles and concluded that below a critical temperature, a macroscopic fraction
of the population would be in the quantum mechanical ground state [11].
The resulting state of matter has since become known as a Bose-Einstein
Condensate (BEC) and constitutes a macroscopic quantum mechanical ob-
ject where a large number of atoms all occupy same coherent matter wave.
Moreover, a BEC is also macroscopic in terms of its size, which for dilute
gases is large enough to be probed by optical means [12].

In 1995, more than 70 years after Einstein’s original proposal, the tech-
niques for cooling and confinement of neutral atoms had finally matured
sufficiently to enable the production of BECs. This was exemplified by three
different research groups independently realizing BECs in 87Rb, [13],23Na
[14], and 7Li [15] within the same year. Four years later, the first degen-
erate Fermi gas was realized in 40K [16]. In 2001, the Nobel prize was
awarded to E. Cornell, W. Ketterle, and C. Wieman for “the achievement
of Bose-Einstein condensation in dilute gases of alkali atoms, and for early
fundamental studies of the properties of the condensates” [17]. Today, more
than 100 research groups worldwide investigate the physics of BECs and
their technological applications [18].

In addition to improving the fundamental understanding of the physical
world, the development of quantum mechanics lead to significant techno-
logical achievements such as the transistor [19] and the laser [20], which
served as the technological foundation of the information age. The scientific
and technological developments throughout the twentieth century are known
together as the first quantum revolution, and with the coming of the new
millennium, a second quantum revolution has begun [21]. Today, systems
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are engineered to have quantum mechanical properties, which enable new
types of computing [22], cryptography [23], and sensing [24], as well as
quantum simulation, as first envisioned by R. Feynman in 1982 [25].

Feynman argued that since nature is quantum mechanical, the platform
on which one attempts to simulate it, must also be quantum mechanical. In
particular, BECs serve as an excellent platform for quantum simulation ex-
periments, since both the internal and external degrees of freedom are highly
controllable. This is exemplified by how the external potential provided by
off-resonant laser light [26] can be tailored arbitrarily using beam shaping
techniques and by the tunability of the interatomic interactions via mag-
netic Feshbach resonances [27]. This controllability enables the simulation
of other quantum systems in regimes that are otherwise inaccessible, and
quantum simulation experiments find application in such diverse fields as
solid state physics, quantum chemistry, high-energy physics, and cosmology
[28]. In addition to the platform provided by BECs, quantum simulation
experiments can also be realized in systems such as ultracold atoms in opti-
cal lattices [29, 30], trapped ions [31], photons [32], and superconducting
circuits [33].

In this thesis, BECs of 39K are employed to explore three different re-
search directions, which all make use of the ability to tune the interaction
strength, parametrized by the scattering length, via Feshbach resonances.

The first considers the general scenario of an impurity interacting with
a surrounding medium, where the impurity-medium interactions can lead
to the formation of polaron quasiparticles. This scenario was considered
by L. Landau and S. I. Pekar in the context of electrons interaction with
a crystal lattice [34–36] and has since found numerous applications with
examples ranging from high–TC superconductors [37] to Λ-particles in nu-
clear matter [38]. Experimentally, the polaron scenario has been realized
in both fermionic [39–47] and bosonic [48–50] quantum gases. These ex-
periments serve as a prime examples of quantum simulations, since the
impurity-medium interaction strength can be tuned arbitrarily and the di-
luteness of ultracold gases results in density-dependent timescales being
sufficiently large for time-resolved experiments.

In this project, the dynamical evolution of impurities immersed in a BEC
was studied, and the results were published in Refs. [51, 52]. The impurity
scenario was realized by transferring a small fraction of the BEC population
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into a different internal state with the majority component serving as the
medium. By using an interferometric sequence, the impurity coherence was
measured from weak to strong impurity-medium interactions. The dynam-
ical evolution of the impurity coherence reflects the underlying scattering
processes between the impurity and medium atoms, and the measurement
thus enabled tracking the evolution from an initial coherent superposition
state to the emergence of polaronic quasiparticles.

The second research direction concerns the Lee-Huang-Yang (LHY) fluid
proposed by our group in 2018 [53], which was experimentally realized in
this work and lead to the publication of Ref. [54]. The thesis title is based
on this project since it contains my largest contribution. By tuning the atom
numbers and interaction strengths in a two-component BEC, the usually
dominant mean-field contribution to the energy can be cancelled such that
the interactions in the system are governed by the next-order contribution
to the energy density, which originates in quantum fluctuations. This con-
tribution was first calculated in 1957 by Lee, Huang, and Yang [55] and is
therefore known as the LHY correction. In recent years, the LHY correc-
tion has been employed to realize quantum droplets [56–61] in systems that
would otherwise collapse due to attractive mean-field interactions. Similar
experiments were performed using dipolar quantum gases [62–65], which
most recently, culminated in the observation of supersolid behaviour in these
systems [66–68].

The LHY fluid was realized experimentally in a mixture of two internal
states of 39K, and the collective behaviour of the system was measured. The
experimental results were compared to detailed simulations of the system,
taking into account the experimental preparation method and the effect of
inelastic losses, which confirmed that the interactions are governed by the
LHY correction. The realized LHY fluid serves as a promising platform for
new quantum simulation experiments since the interactions scale differently
compared to a typical BEC, and it may enable the measurement of even
higher-order effects.

The final research direction also considers a system with vanishing mean-
field interactions, however, in this case, the scattering length is tuned to zero
such that both mean-field and LHY contributions vanish. The interactions of
the system are then governed by three-body collisions characterized by the
three-body scattering hypervolume [69, 70]. Similar to the LHY fluid, the
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influence of three-body interactions is predicted to manifest in the collective
excitations from which the size of the three-body scattering hypervolume can
be inferred [71]. Measuring this effect thus serves as a natural continuation of
the previous research project. The experimental realization of this scenario,
however, requires the production of BECs at larger magnetic fields than
previously achieved using the experimental apparatus. The procedure must
therefore be changed accordingly, and in this work, progress towards this
experiment is presented, which includes the successful production of 39K
BECs at the required magnetic field strength.

Thesis Outline

The remaining thesis is structured as follows:
Chapter 2 Bose-Einstein Condensation in Dilute Atomic Gases.

The essential theory required to understand Bose-Einstein con-
densation is presented along with the basics of scattering theory,
which enables a description of the condensed state and its ele-
mentary excitations.

Chapter 3 Atom-Light Interactions.
The basic interaction between atoms and electromagnetic ra-
diation is presented. It is shown how coherent laser radiation
can be used to manipulate the internal state of atoms, and how
light can be used to cool and confine atomic samples, which
enables the production of BECs.

Chapter 4 Production of 39K Bose-Einstein Condensates.
An overview of the existing experimental apparatus, which
is capable of producing BECs of 39K, 41K, and 87Rb is given.
The recently added optical setup for a third trapping beam is
described in more detail, and the resulting trap potential is
characterized.

Chapter 5 Impurity Dynamics.
Experiments on the dynamical evolution of impurities interact-
ing with a surrounding BEC are presented. By measuring the
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impurity coherence using an interferometric method, different
regimes of impurity scattering are identified and the evolution
towards polaron quasiparticles is observed.

Chapter 6 Lee-Huang-Yang Fluid.
The experimental realization of a Lee-Huang-Yang fluid is
presented. Detailed simulations of the system are performed
and compared to experimental measurements of the collec-
tive behaviour, which confirm that the system interactions are
governed by the LHY correction.

Chapter 7 Progress on Hypervolume Experiments.
Progress towards a new experiment measuring the three-body
scattering hypervolume is presented. 39K BECs are success-
fully produced and imaged under the necessary experimental
conditions, and preparatory measurements are described.

Chapter 8 Conclusion and Outlook.
The results of PhD project are summarized and an outlook for
future research directions is provided.



CHAPTER 2
Bose-Einstein Condensation in

Dilute Atomic Gases

The wave-like nature of particles becomes relevant when the corresponding
wavelength of the particle is comparable to the characteristic size of the
system. For massive particles, the thermal de Broglie wavelength

�T =

√

2πℏ2
mkB T

, (2.1)

can be used to describe the spatial extent of the wave function, where ℏ is the
reduced Planck constant, m is the mass, kB is the Boltzmann constant, and
T is the temperature. For quantum mechanical effects to become important,
�T must be on the order of the interparticle spacing.

The free electrons in a solid can be considered as an example. The lattice
spacing in a typical solid is around d = 0.3 nm [72], so setting �T = d and
inserting the electron mass yields T ≲ 6 × 104K. The free electrons in a
solid are thus definitely quantum mechanical.

Conversely, for a dilute gas with density n ∼ 1 × 1014 cm−3, temperatures
on the order of µK are necessary for the wave functions to start overlapping1.

1: The used value for the density is typical of an atomic oven [73].

7



8 Chapter 2 ⋅ Bose-Einstein Condensation in Dilute Atomic Gases

It is thus clear that dilute atomic gases must be cooled down to very low
temperatures for quantum mechanical effects to become important.

When this is the case, two or more identical particles are likely to occupy
the same single-particle state, and the quantum statistics of the particles
therefore becomes relevant. It is therefore important whether the particles in
question are bosons or fermions. Bosonic wave functions are symmetric un-
der particle exchange, whereas fermionic wave functions are anti-symmetric.
As a consequence, indefinitely many bosons may occupy the same single-
particle state, whereas two identical fermions cannot, since then the total
wave function equals zero.

In statistical physics, this fact reveals itself when looking at the average
number of particles in a state �. The resulting Fermi-Dirac (FD) and Bose-
Einstein (BE) distribution functions look as follows,

fFD (��) =
1

e(��−�)∕kB T + 1
(fermions), (2.2)

fBE (��) =
1

e(��−�)∕kB T − 1
(bosons), (2.3)

where �� is the energy of state � and � is the chemical potential. In the
limit of high temperatures, � ≪ �0 such that e(��−�)∕kB T ≫ 1 for all ��. Inthis case, both distributions reduce to the Maxwell-Boltzmann distribution
f (��) ≈ e−(��−�), highlighting that in this limit, the quantum statistics of the
particles is unimportant.

Conversely, for low temperatures, the subtle sign difference of the distri-
bution functions Eqs. (2.2) and (2.3) turns out to have dramatic consequences
as will be revealed in the following sections. In particular, for the bosonic
atoms considered in this thesis, a macroscopic population condense in the
quantum mechanical ground state below a critical temperature.

The remainder of the chapter is structured as follows. In Sec. 2.1, the
basic theory for Bose-Einstein condensation of non-interacting particles is
described. After this, the basic concepts of scattering theory are presented in
Sec. 2.2 as a prerequisite for understanding the interactions in ultracold gases
and BECs. The derivation of the celebrated Gross-Pitaevskii equation for
the condensed state is then outlined in Sec. 2.3 and some of its applications
are discussed. Finally, in Sec. 2.4 the spectrum of elementary excitations in
a BEC is presented, leading to the Lee-Huang-Yang correction to the ground
state energy.
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2.1 Bose-Einstein Condensation of

Non-Interacting Particles

The basic properties of BECs such as the critical temperature and condensate
fraction can be derived by considering a gas of non-interacting bosons. The
derivations within this section are based on a combination of the books by
C. J. Pethick and H. Smith [12] and D. V. Schroeder [74], as well as a set of
excellent lecture notes by G. M. Bruun [75].

The starting point is a system of non-interacting bosons in thermal equi-
librium, distributed across states � according to Eq. (2.3). From Eq. (2.3)
it is evident that � ≤ �0, for the Bose distribution function to be positive
when evaluated for the lowest-lying state. The chemical potential can be
found from the total atom number by summing up the occupancy of each
single-particle state. By setting the ground state energy to zero, �0 = 0, thetotal atom number can be written as

N = 1
e−�∕kB T − 1

+ ∫

∞

0
d� g(�)
e(�−�)∕kB T − 1

= N0 +Nex , (2.4)
where the occupancy of the lowest lying state N0 has been separated out
explicitly. The number of atoms in excited states Nex can be determined
in a semi-classical approximation assuming that N is large and that the
temperature is large compared to the level spacing T ≫ Δ�∕kB , whichallows the sum over excited states to be converted into an integral. Here,
g(�) is the density of states, which describes the number of single-particle
states per unit energy. Equation (2.4) determines the chemical potential �,
which increases from negative values towards 0 as the temperature decreases
while keeping N fixed. This in turn, causes the first term of Eq. (2.4) to
increase, which results in a macroscopic population of the ground state.

2.1.1 Critical Temperature

The condensation occurs at the critical temperature TC , which is determined
from the lowest temperature, where all particles can be distributed among the
excited states. The integral over excited states in Eq. (2.4) has its maximum
value for � = 0, so TC can be determined by setting � = 0 andN0 = 0,

N = Nex (TC , � = 0) = ∫

∞

0
d� g(�)
e�∕kB TC − 1

. (2.5)
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The density of states depends on the external potential confining the
atoms, and here the most relevant cases are The 3D homogeneous system of
volume  (3D box) and the 3D harmonic oscillator potential of frequencies
!i (i = x, y, z). For these cases, the density of states are

g(�) = m3∕2
√

2π2ℏ3
�1∕2, 3D box, (2.6)

g(�) = �2

2ℏ3!x!y!z
, 3D harmonic oscillator. (2.7)

The density of states can generally be written in the form g(�) = C���−1,where C� is a constant and � = 3∕2 and 3 for the 3D box and harmonic
oscillator, respectively. The integral in Eq. (2.5) has solution

N = C�Γ(�)� (�)(kB TC )�, (2.8)
where Γ(�) is the Gamma function and � (�) is the Riemann zeta function.
The critical temperatures for the two cases are then given by

kB TC =
2π

� (3∕2)2∕3
ℏ2n2∕3

m
≈ 3.31ℏ

2n2∕3

m
, 3D box, (2.9)

kB TC =
ℏ!̄N1∕3

� (3)1∕3
≈ 0.94ℏ!̄N1∕3, 3D harmonic oscillator,

(2.10)
where

!̄ = (!x!y!z)1∕3 (2.11)
is the geometric mean of the harmonic oscillator frequencies.

Before moving on, it is worthwhile to reflect on the above results for the
critical temperature. In deriving Eqs. (2.9) and (2.10), the temperature was
assumed to be larger than the level spacing, TC ≫ Δ�∕kB . Bose-Einsteincondensation is thus a remarkable consequence of the quantum statistics of
the bosonic particles. For a system obeying Maxwell-Boltzmann statistics,
particles would also pile up in the ground state for T → 0, however this
would only happen for kB T ≪ Δ�. As such, the large critical temperature for



Observation of a Lee-Huang-Yang Fluid 11

Bose-Einstein condensation is a direct consequence of the counting statistics
coming from the symmetry requirement of the bosonic wave function and is
thus a macroscopic quantum mechanical effect.

In the beginning of the chapter, it was stated that the thermal de Broglie
wavelength must be on the order of the interparticle spacing for the quantum
mechanical nature of the particles to become important. This criterion can
be written in terms of the phase-space-density PSD = �3Tn, defined as thenumber of particles within a cube of sides �T . Evaluating the phase-space-density at TC for a 3D box yields PSD = � (3∕2) ≈ 2.612, and it must
therefore approach unity for Bose-Einstein condensation to occur.

2.1.2 Condensate Fraction

The fraction of atoms in the condensate below TC , can be determined by
first considering the number of atoms in excited states

Nex = C�Γ(�)� (�)(kB T )�. (2.12)
Dividing by Eq. (2.8) for the critical temperature and using thatNex (T ) =
N −N0(T ) then yields

N0 = N
[

1 −
(

T
TC

)�]

(2.13)

for the number of particles in the condensate with � determined by the
external potential.

As shown here, several important properties of BECs can be calculated
from the assumption of non-interacting atoms. Including finite particle
numbers and interactions smoothes out the BEC transition [76], however,
the critical temperature and condensate fraction derived here hold to a good
approximation [77].

2.2 Sca�ering in Atomic Gases

In the previous section, the dilute gas consisted of non-interacting particles.
In reality, interactions between the atoms in the gas have significant impact
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on the wave function of the condensate, and in certain cases it can even
cause it to collapse as described in Sec. 2.3. In this section the basics of
scattering theory are presented based on a combination of the books [12, 72,
78, 79]. Using the method of partial waves, it is shown how the scattering
cross section depends on a single parameter, called the scattering length. It is
furthermore shown how this parameter can be tuned by an external magnetic
field, which directly enables the research directions considered in Chs. 5 to 7
of this thesis.

The scattering of two distinguishable particles is considered. In centre-
of-mass (COM) coordinates, the wave function for the relative motion can
be written as

 = eik⋅r +  sc (r), (2.14)
where the first term is an incoming plane wave with wave vector k describing
the COM motion, the second term is a scattered wave describing the relative
motion, and r is the relative coordinate of the particles. For large interatomic
distances, the scattered wave is an outgoing spherical wave. The wave
function then becomes

 = eikz + f (�)e
ikr

r
, (2.15)

where the relative velocity of the incoming wave has been chosen as the z-
direction and the scattering amplitude f (�) is a function of only the scattering
angle �, when considering scattering in a spherically symmetric potential.

In the low energy limit valid for ultracold atomic gases k → 0 and
f (�)→ −a, where a is a constant called the scattering length. Inserting this
into Eq. (2.15) then yields

 = 1 − a
r
, (2.16)

and a thus gives the intercept of the asymptotic wave function with the r-axis.
The differential cross section d�∕dΩ is defined as the ratio between

the incident probability current through the infinitesimal area d� and the
scattered probability current through the infinitesimal solid angle dΩ. From
Eq. (2.15), it can be calculated that

d�
dΩ = |f (�)|2. (2.17)
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The scattering amplitude and the total cross section can be determined by the
method of partial waves as follows. For spherically symmetric potentials, the
wave function for the relative motion can be expanded in terms of Legendre
polynomials Pl(cos �),

 =
∞
∑

l=0
AlPl(cos �)Rkl(r). (2.18)

The radial wave functions Rkl(r) satisfy the radial equation
d2Rkl(r)

dr2 + 2
r
dRkl(r)

dr +
[

k2 −
l(l + 1)
r2

−
2mr
ℏ2

U (r)
]

Rkl(r) = 0, (2.19)

where U (r) is the potential and the energy of the state E = ℏ2k2∕2mr withreduced massmr has been inserted. From Eq. (2.19), the radial wave function
for r →∞ can determined to,

Rkl(r)→
1
kr
sin

(

kr − lπ
2
+ �l

)

, (2.20)

where �l is the l-wave phase shift describing the effect of the interaction
on the l’th partial wave. By considering Eq. (2.15) in the limit of large r,
expanding the incoming plane wave in Legendre polynomials and inserting
Eq. (2.20), the scattering amplitude can be found to,

f (�) = 1
2ik

∞
∑

l=0
(2l + 1)(ei2�l − 1)Pl(cos �). (2.21)

The total cross section can then be obtained by integrating the differential
cross section over all solid angles:

� = 4π
k2

∞
∑

l=0
(2l + 1) sin2 �l. (2.22)

The scattering length can be determined from the requirement, that the
asymptote of the radial wave function in Eq. (2.20) vanishes at r = a. For
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ultracold gases, the dominant contribution comes from s-wave scattering
with l = 0, which results in the s-wave scattering length

a = − lim
k→0

1
k
tan �0(k). (2.23)

Evaluating Eq. (2.22) for l = 0 then yields

� = 4π
k2
sin2 �0 = 4πa2, (2.24)

when inserting Eq. (2.23) and the total cross section is thus determined
solely by the scattering length. For identical bosons, one must also take into
account that the wave function must be symmetric under particle exchange.
The resulting cross section for s-wave scattering then becomes � = 8πa2.
For identical fermions, � vanishes for l = 0. The simple dependence of the
interparticle interactions contained in Eq. (2.24) turns out to have significant
consequence as will be shown in the next section.

2.2.1 Feshbach Resonances

The scattering length a determines the scattering cross section and thus
the strength of the interaction as explained in Sec. 2.2. In Sec. 2.3 it will
be shown how the value of a has a significant impact on the theory of the
condensed state, and the ability to tune its sign and magnitude therefore
enables a multitude of research directions.

In this section, the phenomenon of magnetic Feshbach resonances is
considered, which allows a to be tuned from −∞ to∞ by simply controlling
the external magnetic field. To understand the occurrence of Feshbach
resonances, the scattering theory must be extended to the multi channel case,
where the term channel describes the set of quantum numbers characterizing
the atoms taking part in a scattering process.

It turns out that the scattering properties in one channel can be drastically
altered by the presence of a bound state in a different channel. This resonance
phenomenon was investigated independently in the context of nuclear reac-
tions [80] and to describe the asymmetric line shape resulting from inelastic
scattering of electrons on helium [81]. Since its first observation in ultracold
gases [82], the utilization of Feshbach resonances has become an invaluable
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Figure 2.1: (a) Schematic representation of a the occurance of a Feshbach resonance.
A pair of atoms with energy given by the black arrow scatter in the open channel
(blue). The presence of a bound state in the closed channel (orange) leads to strong
mixing between the two channels, as the particles in the open channel can scatter
via an intermediate state in the closed channel. The vertical arrow indicates how the
energy of the bound state can be tuned via themagnetic field. (b) Feshbach resonance
structure for selected states of 39K. The red curve corresponds to scattering between
|F = 1, mF = −1⟩ atoms [83, 84], the green curve to |F = 1, mF = 0⟩ atoms [85],
and the dashed blue curve to interstate scattering [48, 86]. Panel (a) is adopted from
Ref. [87].

tool in the cold atom community, and in this section, the basic properties of
Feshbach resonances are described based on the review by Chin et al. [27].

Figure 2.1(a) shows a schematic representation of how a Feshbach reso-
nance occurs based on the two channels featuring the molecular potentials
given in blue and orange. For large interatomic separations, the open channel
(blue) connects to two free atoms. The low-energy collision processes in
an ultracold gas happens with energy just above the scattering threshold of
this channel. For a Feshbach resonance to occur, the energetically closed
channel (orange) must support a bound state near the threshold of the open
channel. If the energy of the bound state is close to the scattering state in
the open channel, strong mixing between the two channels can occur. This
process can be interpreted as two particles in the open channel scattering
via an intermediate state in the closed channel, before quickly decaying back
into the open channel.
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If the magnetic moments of the states in the open and closed channels are
different, the position of the bound state can be tuned relative to the threshold
of the open channel. As a consequence, the scattering length depends on the
magnetic field B and the scattering length takes the form

a(B) = abg

(

1 − Δ
B − B0

)

, (2.25)

where abg is the background scattering length reflecting the off-resonant
value, B0 denotes the resonance position and Δ the width of the resonance
[27]. ForB = B0, the scattering length diverges, and this regime is referred to
as the unitary regime. The origin of this term comes from the sin2 �0 factor ofthe cross section in Eq. (2.24) which becomes unity at the resonance position.
In this regime, the relevant parameter of the interparticle interactions is no
longer the scattering length, but the thermal de Broglie wavelength for
thermal atoms, and the interparticle spacing for a BEC.

The implications of Feshbach resonances on the field of ultracold atomic
gases cannot be understated. As an example, Fig. 2.1(b) shows the Feshbach
resonance structure of the |F = 1, mF = −1⟩ and |F = 1, mF = 0⟩ statesin 39K investigated in this thesis. Importantly, the tunability of the scatter-
ing length allows Bose-Einstein condensation of 39K despite its negative
background scattering length, which otherwise prevents condensation as
considered in Sec. 2.3. Furthermore, the rich Feshbach resonance structure
enables the different research directions presented in Chs. 5 to 7, which all
rely on the ability to tune the relevant interactions strengths.

2.2.2 Inelastic Collisions

Until now only elastic collisions where the total kinetic energy is conserved
have been considered. Collision processes may, however, also occur where
the kinetic energy of one or more of the colliding particles increases enough
for the particle to leave the trap. For two-body collisions, this may occur if
there is an exit channel available with lower energy. In this case, the two
particles may be lost in spin-exchange processes where the excess energy is
converted to kinetic energy.

Another loss mechanism comes from collisions involving three particles.
In this case, two of the colliding particles may form a diatomic molecule,
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where the binding energy of the molecule is converted to kinetic energy
leading to loss of all three particles. The three-body loss coefficient, L3, isgiven by [88]

L3 = C
3ℏ
m
a4, (2.26)

where C is a system-dependent dimensionless factor. The resulting loss
rate in the atom number N is can be determined by integrating the local
three-body loss rate L3n3 over the sample,

Ṅ
N
= −L3⟨n2⟩, (2.27)

where ⟨… ⟩ denotes the average over the density distribution in the trap.
In many cases, the above loss mechanism limit the achievable densities

and lifetimes of trapped ultracold gases. However, loss measurements also
serve as a powerful probe enabling the characterization of Feshbach reso-
nances [82], observation of Efimov states [89], and the loss of atoms can be
used as a spectroscopic signal [48].

2.3 The Gross-Pitaevskii Equation

In this section, the theory of the condensed state is presented and used to
derive the Gross-Pitaevskii equation, which governs the physics of a BEC
when including interactions. The derivations are based on Refs. [12, 75,
90].

All particles in the BEC occupy the same single particle wave function
�(ri) with the usual normalization,

∫ dr |�(r)|2 = 1, (2.28)

and the total wave function is thus a symmetrized product ofN single-particle
wave functions,

Ψ(r1, r2,… , rN ) =
N
∏

i=1
�(ri). (2.29)
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In general, two atoms in the condensate interact via the potential Vint (ri−rj).The system consist of a dilute gas of atoms, and the interparticle separations
are therefore large compared to the typical distances where two atoms interact.
In terms of the density and scattering length, this corresponds to na3 ≪ 1
meaning that the number of atoms within a “scattering volume” is small.
This enables replacing the interatomic by a contact potential

Vint (ri − rj)→ U0�(ri − rj), (2.30)
where �(r1−r2) is the Dirac delta function, andU0 is related to the scatteringlength by

U0 =
4πℏ2a
m

. (2.31)
The Hamiltonian for a gas ofN interacting atoms is then given by

Ĥ =
N
∑

i=1

[

− ℏ
2m
∇2i + Vtrap (ri)

]

+ U0
∑

i<j
�(ri − rj), (2.32)

where Vtrap (r) is the external trap potential. The energy of the N-particle
state is given by the expectation value of the Hamiltonian in Eq. (2.32),
E = ⟨Ψ|Ĥ|Ψ⟩,

E = N ∫ dr
[

−�∗(r) ℏ
2

2m
∇2�(r) + Vtrap (r)|�(r)|2 +

N − 1
2

U0|�(r)|4
]

.

(2.33)
Introducing the condensate wave function  (r) = N1∕2�(r) with the nor-
malization condition

∫ dr | (r)|2 = N (2.34)

makes the density n(r) = | (r)|2. Ignoring terms of order 1∕N , the energy
then becomes

E = ∫ dr
[

− ∗(r) ℏ
2

2m
∇2 (r) + Vtrap | (r)|2 +

1
2
U0| (r)|4

]

. (2.35)
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From here, Eq. (2.35) is minimized under the constraint that the total number
of particles (Eq. (2.34)) is constant. This is done by minimizing E − �N ,
with the chemical potential entering as a Lagrange multiplier. The resulting
equation is then the time-independent Gross-Pitaevskii (GP) equation,

− ℏ
2

2m
∇2 (r) + Vtrap (r) (r) + U0| (r)|2 (r) = � (r). (2.36)

Equation (2.36) has the form of a Schrödinger equation with the chemical
potential as the eigenvalue and an additional non-linear term in the poten-
tial corresponding to the mean field produced by the other atoms in the
condensate. The time-dependent generalization of Eq. (2.36) has the form,

iℏ
) (r, t)
)t

= − ℏ
2

2m
∇2 (r, t) + Vtrap (r) (r, t) + U0| (r, t)|2 (r, t),

(2.37)
which is known as the time-dependent Gross-Pitaevskii equation. Solving
Eqs. (2.36) and (2.37) thus allows determination of ground states and dy-
namics of the condensate wave function, and in Chs. 6 and 7, they will be
used extensively to model the experiments.

2.3.1 Thomas-Fermi Limit

Despite the assumption that the atomic gas is dilute or weakly interacting
in the sense na3 ≪ 1, interactions turn out to have a large effect on the
condensate wave function. For a harmonically trapped BEC, the strength
of the interactions relative to the kinetic energy is determined by the di-
mensionless quantity Na∕aho , where aho =

√

ℏ∕m!̄ is the characteristic
quantum mechanical length scale of the harmonic oscillator. This parameter
is typically on the order of 103 to 104, resulting in interactions dominating
the condensate wave function.

In the limitNa∕aho ≫ 1, the kinetic energy term in Eq. (2.36) can be
neglected such that

(

Vtrap (r) + U0| (r)|2
)

 (r) = � (r), (2.38)
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which is known as the Thomas-Fermi approximation. Solving for the density
then yields

n(r) = | (r)|2 =
� − Vtrap (r)

U0
(2.39)

for � > Vtrap (r) and n(r) = 0 outside. The density distribution thus has theform of an inverted parabola which vanishes at the Thomas-Fermi radius
RTF defined by � = Vtrap (RTF ). For a harmonic trapping potential

RTF = aho

(

15Na
aho

)1∕5

, (2.40)

and the radius of the condensate is thus typically wider than aho as a conse-
quence of the interaction term in Eq. (2.36). The condition for the boundary
of the cloud � = Vtrap (RTF ) can be interpreted in the sense that the trap
potential is “filled up” to the height of the chemical potential.

2.3.2 Collapse for A�ractive Interactions

For negative scattering lengths a < 0, the energy of the gas given by
Eq. (2.35) is lowered by increasing the density in the centre of the trap.
This effect is counteracted by the zero-point kinetic energy of the condensate
wave function, however, for sufficiently attractive interactions, the system
collapses and, as a consequence of the increased density, atoms are lost due
to three-body recombination. The resulting Bose nova has been observed ex-
perimentally by preparing a BEC at repulsive interactions before employing
a Feshbach resonance to make a < 0 [91–95]. For a spherically symmetric
trap, the critical atom number for stability can be calculated to [96]

Ncr a
aho

= −0.575, (2.41)

and the experimentally measured atom number after collapse approximately
matches this value [92].
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2.3.3 Inelastic losses

Three-body losses can readily be included within the framework of the
time-dependent GP equation, by assuming that the lost atoms leave the
cloud without interacting with the remaining atoms. This is done by adding
imaginary loss terms of the form −iℏ(K3∕2)| |4 to the right hand side of
Eq. (2.37) [97]. This leads to a decay in the modulus square of the wave
function proportional to the cube of the density,

)
)t ∫

dr | |2 = −K3 ∫
dr | |6, (2.42)

where due to the indistinguishability of bosonic atoms [98, 99] the three-
body loss coefficient K3 is reduced by a factor 1∕3! compared to the loss
coefficient for thermal atoms.

2.3.4 Mixtures

In the case where two species of atoms are simultaneously condensed, the
GP equation must be extended to account for both intra- and interspecies
interactions. By denoting the two species by subscripts i, j = 1, 2, the
two-component GP equations can be written as

− ℏ2

2m1
∇2 1 + Vtrap, 1 (r) 1 + g11| 1|2 1 + g12| 2|2 1 = �1 1, (2.43)

and
− ℏ2

2m2
∇2 2 + Vtrap, 2 (r) 2 + g22| 2|2 2 + g12| 1|2 2 = �2 2, (2.44)

where the constants gij are related to the intra- and interspecies scatteringlengths aij by gij = 2πℏ2aij∕mij with reduced mass mij = mimj∕(mi + mj).Equation Eqs. (2.43) and (2.44), can be applied both in the case of different
atomic species such as the 39K–87Rb mixtures previously investigated using
the experimental apparatus [100] and for mixtures of spin states, which is the
focus of Ch. 6. By considering the energy functional leading to Eqs. (2.43)
and (2.44), the following stability conditions can be derived,

g11 > 0, g22 > 0, and g11g22 > g
2
12. (2.45)
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At the mean-field level, stability thus requires that the intraspecies interaction
strengths must each be repulsive, and if the interspecies interactions are
attractive, they must be overcome by the combined intraspecies repulsion.
The last requirement can be rewritten in the terms of the scattering lengths
by introducing

�a = a12 +
√

a11a22, (2.46)
which is used extensively to characterize the system in Ch. 6.

2.3.5 Numerical Simulations of the Gross-Pitaevskii

Equation

Many interesting problems can be analysed by solving the GP equation such
as the calculation of ground states for different trap potentials and interaction
strengths, and the dynamical behaviour of the condensate wave function.

In Chs. 6 and 7 the numerical toolbox GPELab [101, 102] is used exten-
sively in order to solve the extended GP equations describing the physical
systems. To compute the ground state of Eq. (2.36), GPELab uses the
projected gradient method [103], which is commonly referred to as the
imaginary time method [104] in the physics community.

The basic principle consists of the expanding the wave function in energy
eigenstates Ψ =

∑

n cne−iEnt∕ℏ n, and making the substitution t = −i�.
By letting the time evolution happen in imaginary time �, states of higher
energy En will decay faster. If one then renormalizes Ψ after each numerical
iteration, the wave function converges towards the ground state with lowest
energy.

GPELab includes several methods for performing the time evolution.
Within this work, the Backward Euler pseudoSPectral (BESP) scheme is
used for the ground state calculations as generally recommended [101], and
the Time-Splitting pseudoSPectral (TSSP) scheme is used for the dynamical
calculations. Further detail on the methods employed by GPELab is out of
the scope of the thesis, since it was only used as a tool for the numerical
calculations.
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2.4 The Bogoliubov Approximation

In this section the elementary excitations of a BEC are considered based on a
microscopic theory for the Bose gas, which includes the quantummechanical
nature of the excitations. This leads to the famous Bogoliubov spectrum,
and allows the calculation of the leading order corrections to the condensate
density and ground state energy. The derivations in this section are based on
Refs. [12, 75, 90].

The effective Hamiltonian in Eq. (2.32) describingN interacting bosons,
can be written in second-quantized form as,

Ĥ = ∫ dr
[

−  ̂†(r) ℏ
2

2m
∇2 ̂(r) + V (r) ̂†(r) ̂(r)

+
U0
2
 ̂†(r) ̂†(r) ̂(r) ̂(r)

]

. (2.47)

In this notation, the bosonic field operator  ̂†(r) creates a boson at r, and
V (r) is the external potential. The field operator can be expanded in single-
particle creation operators

 ̂(r) =
∑

�
��(r)â�, (2.48)

where â†� creates a particle in the single-particle state |��⟩.A BEC has a macroscopic population in the ground state, and it is
therefore sensible to view the system as the condensed state plus a fluctuation
term. This approach was first employed by N. Bogoliubov [105] and formally
corresponds to writing the field operator as

 ̂(r) =
√

N0�0(r) +
∑

�>0
��(r) =  (r) + � ̂(r), (2.49)

where the single-particle operators for the ground state have been replaced
by their eigenvalues â0 ∼ â†0 ∼

√

N0, assuming that N0 ≫ 1. Note, that
if the fluctuation term � ̂(r) is neglected, Eq. (2.47) reduces to Eq. (2.32),
which is the Hamiltonian used to derive the GP equation.
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2.4.1 Elementary Excitations

A uniform Bose gas consisting ofN atoms confined within the volume 
is now considered. Within the Bogoliubov approximation, Eq. (2.47) can
be diagonalized by introducing the quasiparticle operators �̂†p and �̂p, whichcreate and destroy elementary excitations with momentum p, respectively.
The Hamiltonian thus becomes

Ĥ =
N2U0
2

+
∑

p (p≠0)
�p�̂

†
p�̂p −

1
2

∑

p (p≠0)
(�0p + n0U0 − �p), (2.50)

and the resulting energy spectrum has the form
�p =

√

(�0p)2 + 2�0pn0U0, (2.51)
where �0p = p2∕2m. In the limit of small momenta, the spectrum has the linear
dependence characteristic of sound waves �p ≃ sp, where s = √

n0U0∕mis the speed of sound. Conversely, for large momenta �p ≃ n0U0 + �0pcorresponding to the energy spectrum of free particles shifted by the mean
field.

In Fig. 2.2, the spectrum is shown together with the linear dispersion
valid for p� ≪ 1. Here, the healing length � = ℏ∕√2mn0U0 describes thelength scale over which the condensate wave function varies when subjected
to a localized perturbation. In these units, the Bogoliubov spectrum can
readily be interpreted: For small energies corresponding to length scales
longer than the healing length, the BEC has time to respond and the excitation
can be regarded as a phonon. However, when p ∼ 1∕�, the BEC can no
longer respond to the excitation, which can be regarded as a free particle.

2.4.2 Depletion of the Condensate

When including interactions in the description of the Bose gas, the con-
densate atom number is lowered and this is referred to as depletion of the
condensate. The depletion can be determined by considering the operator
for the total particle number given by

N̂ =
∑

p
â†pâp = N0 +

∑

p (p≠0)
â†pâp, (2.52)
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Figure 2.2: Bogoliubov spectrum for the energy of the elementary excitations.
Eq. (2.51) is shown in blue and the linear dispersion valid for p� ≪ 1 is shown in
dashed orange.

where the replacement â0 ∼ â†0 ∼
√

N0 for the ground state has been made.
The number of particles in excited states can be evaluated by expressing

Eq. (2.52) in terms of the quasiparticle operators �̂p. Remarkably, it turns out
that in the ground state with no elementary excitations present, there is still
a fraction of atoms with momentum larger than zero, since the zero-point
energy of the Bogoliubov modes causes fluctuations in the atom number.
The relative size of the fluctuations to the total density can be calculated to

nex
n0

= 8
3
√

π
(n0a3)1∕2, (2.53)

such that
n = n0 + nex = n0

(

1 + 8
3
√

π
(n0a3)1∕2

)

. (2.54)

Since na3 ≪ 1 for most experimental cases, the quantum depletion is typi-
cally on the order of one percent. However, by tuning the scattering length
using Feshbach resonances, the depletion can be enhanced and in 2017
Eq. (2.53) was directly measured using a 39K BEC confined in an optical
box potential [106].
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2.4.3 The Lee-Huang-Yang Correction to the Ground State

Energy

When calculating the ground state energy using Eq. (2.50), one has to include
the energy contribution from fluctuations in addition to the contribution from
the condensed state. To do this consistently, the simple approximation of U0for the effective interaction cannot be used, since it is only valid for small
momenta and the sum in Eq. (2.50) diverges linearly when p→∞. In order
to make a consistent calculation, one must use an effective interaction which
is cut off at momentum pc . For small pc and E = 0, the effective interaction
is given by

U (pc ) = U0 +
U 2
0


∑

p (p<pc )

1
2�0p

, (2.55)

and evaluating the ground state energy omitting momenta in excess of the
cut-off then yields

E0 =
N2U0
2

− 1
2

∑

p (p<pc )

[

�0p + n0U0 − �p −
(nU0)2

2�0p

]

. (2.56)

If one now choses the cut-off momentum such that ms ≪ pc ≪ ℏ∕a, the
result becomes independent of pc . Using that n0 ≃ n, the ground state energycan be calculated to

E0

=
n2U0
2

[

1 + 128
15
√

π
(na3)1∕2

]

. (2.57)

This calculation was first performed by Lee, Huang, and Yang in 1957 [55],
and the second term in the square brackets is therefore known as the LHY
correction. Since the LHY correction describes the energy contribution from
quantum fluctuations, it has the same

√

na3 scaling as the depletion.



CHAPTER 3
Atom-Light Interactions

In order to realize a BEC in a dilute gas, the atomic sample must be con-
fined and cooled below the critical temperature. In practice, this is done by
manipulating the atomic sample using electromagnetic fields in the form
of static fields and radiation. In this chapter, the interaction of atoms with
coherent electromagnetic radiation is presented, since it forms the basis for
many of the steps in BEC production and allows the manipulation of the
internal state of the atoms, which is used in the experiments of Chs. 5 and 6.
The atomic interaction with static magnetic fields is discussed in Ch. 4.

The chapter is structured in the following way. In Sec. 3.1, the atomic
interaction with coherent light is presented within the dipole approximation.
The concepts of Rabi oscillations and adiabatic passages, which are used to
manipulate the internal state of atoms are then derived in Sec. 3.2 and Sec. 3.3.
Following this, the Bloch vector, which gives a useful representation of the
atomic state is presented in Sec. 3.4, and subsequently, it is used to explain
Ramsey interferometry in Sec. 3.5. The mechanical forces on atoms resulting
from the interaction with electromagnetic radiation are then discussed, with
Sec. 3.6 presenting the radiation-pressure force, which enables laser cooling.
Finally, the dispersive dipole force leading to optical trapping is presented
in Sec. 3.7. The derivations in this chapter are primarily based on the notes
by D. A. Steck [107].

27
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3.1 Two-Level Atom Interacting with Coherent

Light

For the purposes considered within this work, a semi-classical description of
the atom-light interaction is sufficient. In this case, the atom is treated as a
two-level system that interacts with a classical electromagnetic field, which
is assumed to be monochromatic with angular frequency ! corresponding
to the output of a laser.

The electric field is thus given by E(t) = êE0 cos(!t), where ê is the
unit polarization vector of the field and E0 is its amplitude. The spatial
dependence of the field has been neglected, which corresponds to making
the dipole approximation, where the wavelength of the field is assumed to
be much larger than the extent of the atom.

The atom is approximated as a two-level system with ground state |g⟩ and
excited state |e⟩. The two states are separated by the energy splitting ℏ!0,where !0 is the resonant transition frequency, and the difference between thelaser frequency and the atomic resonance is given by the detuningΔ = !−!0.The total Hamiltonian of the atom and field is the sum of the free atomic
Hamiltonian and the interaction Hamiltonian

H = HA +HI , (3.1)
where HA = ℏ!0|e⟩⟨e| is the atomic Hamiltonian with the ground-state
energy is set to zero. The interaction Hamiltonian in the dipole approximation
is given by

HI = −d ⋅ E, (3.2)
where d is the atomic dipole operator in terms of the electron position reand the elementary charge e

d = −ere . (3.3)
In terms of the atomic lowering operator � = |g⟩⟨e|, d can be written as

d = ⟨g|d|e⟩(� + �†) (3.4)
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such that the interaction Hamiltonian becomes
HI = −⟨g|d|e⟩(� + �†) ⋅ E. (3.5)

The electric field can be decomposed into positive- and negative-frequency
components E(t) = E(+)0 e−i!t + E(−)0 ei!t. Since the expectation value of �
has the time dependence e−i!0t, Eq. (3.5) will result in terms oscillating as
e±i(!+!0)t. In the rotating wave approximation, these rapidly oscillating terms
are neglected since they average to zero. The interaction Hamiltonian can
then be written as

HI =
ℏΩ
2
(�ei!t + �†e−i!t) (RWA), (3.6)

where the Rabi frequency

Ω = −
⟨g|ê ⋅ d|e⟩E0

ℏ
, (3.7)

characterizes the strength of the atom-field coupling, and ⟨g|ê⋅d|e⟩ is referred
to as the dipole matrix element.

3.2 Rabi Oscillations

The time-dependent populations of the ground and excited states can now be
determined using the Schrödinger equation iℏ| ⟩ = H| ⟩ by writing the
atomic state as

| ⟩ = cg |g⟩ + ce |e⟩, (3.8)
where cg and ce carry all the time dependence of the state. Projecting with
⟨g| and ⟨e|, respectively, then yields the coupled differential equations

ċg = −i
Ω
2
ce ei!t

ċe = −i!0ce − i
Ω
2
cg e−i!t. (3.9)
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Transforming into a frame rotating with the laser field, c̃e = ce ei!t, thenyields the equations of motion
ċg = −i

Ω
2
c̃e

̇̃ce = iΔc̃e − i
Ω
2
cg , (3.10)

which can be solved to determine the populations |cg |2 and |c̃e|2 of theground and excited states. For an atom that is initially in the ground state,
cg (0) = 1 and c̃e(0) = 0, the populations can be calculated to

Pg (t) = |cg (t)|2 =
Ω2

Ω̃2
cos2

(1
2
Ω̃t

)

,

Pe (t) = |c̃e(t)|2 =
Ω2

Ω̃2
sin2

(1
2
Ω̃t

)

, (3.11)

where Ω̃ =
√

Ω2 + Δ2 is the generalized Rabi frequency. Equation 3.11
describes the phenomenon of Rabi flopping, where the population oscillates
between the ground and excited state with frequency Ω̃ when subject to
near-resonant radiation. This is shown in Fig. 3.1(a) for different detunings
Δ. When Δ = 0 the period of the oscillation is T = 2π∕Ω, which leads to
the following terms for an atom interacting with resonant light: A π-pulse
corresponds to a pulse with duration such that Ωt = π, which promotes an
atom initially in the ground state to the excited state. Likewise a π∕2-pulse
transfers the population into a 50:50 superposition of the ground and excited
state, and a 2π-pulse results in the system ending back in the ground state
after the pulse. If the detuning is non-zero, the Rabi oscillations occur with
larger frequency Ω̃ > Ω and with a smaller amplitude of Ω2∕Ω̃2. In panel
(b) of Fig. 3.1, the excited state population is shown as a function of the
detuning for a fixed pulse duration. In terms of Δ, Eq. (3.11) takes the form
of a sinc2-function, which results in the side-lobes seen on the figure.

3.3 Adiabatic Passages

Manipulating the internal states of an atom by exposing it to radiation of a
certain duration finds many applications within atomic and quantum physics,
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a b

Figure 3.1: Excited state population for a two-level atom interacting with an
electromagnetic field, where the atom starts in the ground state. (a) The population
is shown as a function of time t for Δ = 0 (solid blue), Δ = Ω (dashed red), and
Δ = 2Ω (dash-dotted green). The population undergoes Rabi oscillations with
frequency determined by Ω̃. (b) Excited state population as a function of detuning
for fixed interaction timesΩt = π (solid blue),Ωt = π∕2 (dashed red), andΩt = π∕4
(dash-dotted green).

and is e.g. used extensively in interferometry experiments [108]. This
method of state preparation is, however, sensitive to amplitude and frequency
jitter of the radiation, and for long term stability, themethod of rapid adiabatic
passages is generally preferred, since it is less sensitive to these instabilities
[109].

A rapid adiabatic passage can be understood by considering the atom-
light coupling in the dressed state picture and determining the new eigenstates
of the Hamiltonian Eq. (3.1) as follows. The equations of motion for the
ground and excited state coefficients (Eq. (3.10)) can be written in matrix
form

[ ̇̃ce
ċg

]

= −i
[

−Δ Ω∕2
Ω∕2 0

] [

c̃e
cg

]

= − i
ℏ
H̃

[

c̃e
cg

]

. (3.12)
Diagonalizing the Hamiltonian then yields the energy eigenvalues

E± = −
ℏΔ
2
± ℏΩ̃

2
, (3.13)
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|g⟩

|g⟩

|e⟩

|e⟩

Ω |+⟩

|−⟩

Figure 3.2: Energies of the bare and dressed states of a two-level system coupled
to an electromagnetic field. The bare states are shown in dashed black, and the
dressed states |±⟩ are shown in blue and red, respectively. The coupling lifts the
degeneracy at Δ = 0 and causes an energy splitting of Ω.

which has eigenvectors |±⟩ corresponding to the dressed states.
In Fig. 3.2, a schematic representation of the relevant energies are shown

together with the bare states energies 0 and −ℏΔ for the ground and excited
states, respectively. The coupling to the electromagnetic field causes an
avoided crossing with a splitting given by the coupling strength Ω. An adia-
batic passage from the ground to excited state now corresponds to sweeping
the frequency of the field sufficiently slowly across the resonance, such that
the state is able to follow the |−⟩ state from the left where |−⟩ ≃ |g⟩ to
the right where |−⟩ ≃ |e⟩. In a rapid adiabatic passage, the speed of the
frequency sweep is chosen such that it is fast compared to the relaxation time
of the system Tdec , but slow enough that the system can follow adiabatically.
This criterion can be written as

Ω
Tdec

≪ )!
)t

≪ Ω2, (3.14)

where !∕2π is the frequency of the radiation.
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3.4 The Bloch Vector and Bloch Sphere

The Bloch vector is a valuable tool when describing coherent interactions
between a two-level atom and electromagnetic radiation, since it allows
complex state evolutions to be visualized as a vector confined to a sphere
of unit radius. Within this work, it is used to describe the interferometric
sequence employed in the experiments of Ch. 5. The Bloch vector uses the
expectation values of the Pauli operators ⟨�i⟩ as the dynamical coordinates
for the atomic evolution. These are given by

�x =
[

0 1
1 0

]

= � + �†,

�y =
[

0 −i
i 0

]

= i(� − �†),

�z =
[

1 0
0 −1

]

= |e⟩⟨e| − |g⟩⟨g| = �†� − ��† (3.15)

and operate on states with the ordering

| ̃⟩ =
[

c̃e
cg

]

, (3.16)

where cg = c̃g.The expectation values of the Pauli operators are related to the density
matrix of the state � = | ⟩⟨ |, where ��� = c�c∗� . For | ̃⟩ they become

⟨�x⟩ = ⟨�⟩ + ⟨�†⟩ = �̃eg + �̃ge,
⟨�y⟩ = i⟨�⟩ − i⟨�†⟩ = i(�̃eg − �̃ge),
⟨�z⟩ = �ee − �gg, (3.17)

where the tildes indicate that the coherences are in the rotating frame. Here
��� is the population of the state in component �, and the coherences
��� = c�c∗�e

i(��−�� ) contain information about the relative phase between
components � and �. The equations of motion for the density matrix ele-
ments can be determined from Eq. (3.10) and from these, the time evolution
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of the Bloch variables in Eq. (3.17) can be determined to
⟨�̇x⟩ = Δ⟨�y⟩
⟨�̇y⟩ = −Δ⟨�x⟩ − Ω⟨�z⟩
⟨�̇z⟩ = Ω⟨�y⟩. (3.18)

These equations can now be written in terms of the Bloch vector ⟨�⟩ =
⟨�x⟩x̂ + ⟨�y⟩ŷ + ⟨�z⟩ẑ resulting in the torque equation

̇
⟨�⟩ = ℘ × ⟨�⟩, (3.19)

where ℘ = Ωx̂ − Δẑ is the precession vector. From the definition of the
cross product, the torque vector ̇

⟨�⟩ is perpendicular to ⟨�⟩ and the change
in the Bloch vector is therefore always normal to itself making its lengths a
constant of motion1.

As seen from Eq. (3.17), the z-component of the Bloch vector describes
the populations in the two states, where the ground and excited states corre-
spond to the south and north poles of the Bloch sphere, respectively. The
x- and y-components contain the coherences �̃eg and �̃ge and the azimuthal
angle between them represents the relative phase of the ground and excited
states.

The evolution of the Bloch vector is shown for different circumstances in
Fig. 3.3. Panel (a) shows the effect of a resonant pulse where Δ = 0. In this
case, the Bloch vector rotates around x̂ with a rotation frequency set by Ω
and traces out the blue circle on the sphere. A π-pulse thus corresponds to a
rotation from the south pole to north pole, and a π∕2-pulse causes the Bloch
vector to end up at the equator. In panel (b) the light pulse is detuned with
respect to the resonance frequency of the two-level system, which makes the
Bloch vector rotate around an axis that is titled in the z-direction. Because of
this, the trace of the Bloch vector never reaches the north pole corresponding
to the detuned Rabi flops of Fig. 3.1(a). Panel (c) shows the effect of turning
off the radiation. In this case, the Bloch vector precesses around ẑ with
speed set by the detuning. Transforming back to the non-rotating frame

1: This is only the case when excluding dephasing effects such as atomic collisions, which
result in shrinking of the Bloch vector in the xy-plane. The effect of spontaneous emission
is a rotation towards the south pole corresponding to the ground state.
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Figure 3.3: Evolution of the Bloch vector ⟨�⟩ on the Bloch sphere. (a) Effect of a
resonant pulse. The Bloch vector (orange) rotates around ℘, which is aligned with
x̂. (b) Effect of a detuned pulse. The Bloch vector rotates around an axis that is
tilted in the z-direction and thus never reaches the north pole, resulting in imperfect
transfer. (c) Evolution after turning off the pulses. The Bloch vector precesses
around ẑ with speed set by the detuning.

corresponds to adding ! to the precession frequency, and the Bloch vector
thus precesses with frequency set by −Δ + ! = !0. The free evolution thus
corresponds to the precession of the excited state phase relative to that of
the ground state. In the case of adiabatic passages, the frequency sweep
corresponds to continuously changing the direction of ℘, and thus the axis
about which the Bloch vector rotates [110].

3.5 Ramsey Interferometry

The Bloch sphere picture is a convenient frame in which to describe the
concept of Ramsey interferometry [111, 112], which is widely used in the
context of atomic clocks [108, 113] and in the experiments of Ch. 5.

A Ramsey sequence consists of three steps. The sequence is initialized by
a π∕2-pulse which for Δ = 0 prepares the system in an equal superposition
state of |g⟩ and |e⟩. Following this, the system is allowed to evolve for a
time T , during which the relative phase between the states causes the Bloch
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Figure 3.4: Excited state population after a Ramsey interferometry scheme as a
function of the detuning Δ. The scheme consists of two π∕2 pulses separated by an
evolution time T and results in so-called Ramsey fringes. The width of the central
fringe is given by 1∕2T .

vector to precess around the z-axis. Finally, a second π∕2-pulse causes
another rotation of the Bloch vector, and its final position is determined by
the accumulated phase 'C = −Δ ⋅ T between the pulses. If Δ ⋅ T is an
integer multiple of 2π, the second pulse rotates the state in the same direction
as the first pulse. Conversely, if Δ ⋅ T is an integer multiple of π, the second
pulse rotates the state back towards |g⟩. As a consequence, the excited state
population is sinusoidal in Δ with a period 2π∕T , and an example of the
resulting Ramsey fringes is shown in Fig. 3.4.

In the context of atomic clocks, the Ramsey scheme allows one tomeasure
an atomic transition frequency very precisely by increasing the free evolution
time T , as the width of the central fringe is given by 1∕2T .

In addition to making precise spectroscopic measurements, the Ramsey
scheme can also be employed to track the phase evolution of the system by
varying the phase of the second pulse ' and thereby the axis around which
the state is rotated. This method is used in Ch. 5 to track the dynamical
evolution from a population-imbalanced superposition state into polaron
quasiparticles.
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3.6 Optical Molasses

In addition to manipulating the internal state, the interaction with laser
light also leads to mechanical forces on atoms, which can be used to cool
and confine atomic gases. Laser cooling was separately proposed in the
context of neutral atoms [114] and ions [115], and shortly after, the first
experimental realization was demonstrated on Mg+–ions in 1978 [116]. For
neutral atoms, experimental breakthroughs came in the following decadewith
the realization of a three-dimensional optical molasses [117], the Zeeman
slower [118], and the magneto-optical trap [119].

When an atoms absorbs a photon from a laser beam, the photon momen-
tum ℏk (wave vector k) is transferred to the atom. As a consequence, the
atom experiences an average force due to the radiation pressure of

Frad = ℏkRsc , (3.20)
where

Rsc =
(Γ∕2)3

Δ2 + (Γ∕2)2
I
Isat

, (3.21)
is the scattering rate, Isat = ℏ!0Γ∕2�0 is the saturation intensity, �0 is theabsorption cross section, and Γ is the linewidth of the transition.

The radiation-pressure force can be used to cool atoms by exposing them
to two counter-propagating laser beams with frequency tuned below the
atomic resonance. If an atom with velocity v moves against the propagation
direction of a laser beam with detuning Δ, the frequency of the laser light
will be Doppler-shifted resulting in an effective detuning Δ + kv. As the
light is shifted into resonance, the scattering rate increases, which leads to an
average force opposite to the propagation direction of the beam. The average
force has no contribution from re-emission of photons since the spontaneous
emission is symmetric. Re-emission does however cause fluctuations of the
force, which cause the mean square of the velocity to increase, which leads
to heating [120].

Adding the contribution from the two beams yields the radiation-pressure
force
Frad = ℏk

(Γ
2

)3( 1
(Δ − kv)2 + (Γ∕2)2

− 1
(Δ + kv)2 + (Γ∕2)2

)

I
Isat

,

(3.22)
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and in the limit of small velocities, this can be expanded to lowest order in v
yielding

Frad =
ℏk2Γ3
2

Δ
(Δ2 + (Γ∕2)2)2

I
Isat

v (3.23)

which results in a frictional force for Δ < 0 leading to the term optical
molasses for the beam configuration.

In addition to the cooling resulting from the frictional force, the atom
also experiences heating due to the random nature of the absorption and
re-emission events. Each time an atoms absorbs and emits a photon, it
experiences two momentum kicks of magnitude ℏk, and the mean square of
the atomic velocity thus increases by 2(ℏk∕m)2 due to recoil heating.

By balancing the contributions to the change in ⟨v2⟩ from the optical
molasses and recoil heating, the equilibrium kinetic energy can be determined
and converted to a temperature via

1
2
m⟨v2⟩ = 3

2
kB T . (3.24)

This finally yields the Doppler temperature

kB TD = ℏΓ
2
, (3.25)

which is the lower limit for the achievable temperature in an optical molasses
using an optimal detuning Δ = −Γ∕2. For the experimentally relevant
atomic species 39K and 87Rb, the Doppler temperatures are 145 µK [121]
and 146 µK [122], respectively.

The limit given by the Doppler temperature was originally thought to be
the lowest achievable temperature using laser cooling, with early experiments
seemingly in agreement [117, 123]. Soon after, however, temperatures below
the Doppler limit were measured in laser cooling experiments [124, 125],
which was attributed to polarization gradient cooling [126]. Such schemes
are now deliberately employed to cool atomic samples below the Doppler-
limit after an initial Doppler cooling stage.
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3.7 The Dipole Force

When the electromagnetic radiation is far-detuned from the atomic transition,
absorption of photons is unlikely and the main effect of the light field consists
of inducing an electric dipole moment in the atom. This leads to a force
resulting from the potential of the induced dipole in the average electric
field of the light, which was first used to trap neutral atoms by Chu et al.
[127]. Since then, optical trapping using the dipole force has become an
essential tool in the field of ultracold quantum gases, since it enables the
confinement of atoms in states that are untrappable using magnetic fields,
and enables the magnetic field to be used as for other purposes such as tuning
of the interaction strengths [27]. The content of this section is based on a
combination of the the notes by Steck [107] and the review by Grimm et al.
[26].

For a two-level system interacting with a classical radiation field, the
dipole force arises directly from the dressed state picture with the energies
given by Eq. (3.13). For a constant detuning Δ, the energies of the states
|±⟩ depend on the generalized Rabi frequency Ω̃, which in turn scales with
the amplitude of the electric field. As a consequence, the energy shifts of
the states |±⟩ depend on the intensity of the radiation, which is shown in
Fig. 3.5 for a laser beam with a Gaussian intensity profile and Δ < 0. The
ground and excited states are shifted in opposite directions by the coupling
to the light field, and as the energy shift is spatially dependent, it can be
interpreted as the relevant potential for the motion of the atoms.

For a large red detuning Δ < 0, |Δ| ≫ |Ω|, the bare ground state is
equal to |−⟩ (see Fig. 3.2), and the energy of the ground state can therefore
be calculated as

E− = −
ℏΔ
2
− ℏΩ̃

2
= −ℏΔ

2
− ℏ
2
|Δ|

√

1 +
|Ω|2

Δ2

≃ −ℏΔ
2
−
ℏ|Δ|
2

(

1 +
|Ω|2

2Δ2

)

=
ℏ|Ω|2

4Δ
=

|⟨g|ê ⋅ d|e⟩|2|E0|2
4ℏΔ

. (3.26)

The electric field amplitude can be written in terms of the field intensity
I = c�0|E0|2∕2, where c is the speed of light in vacuum, and �0 is thevacuum permittivity. The dipole matrix element can be written in terms of
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Figure 3.5: Schematic energy diagram for the dressed states |±⟩. The energies
are shown for a constant detuning Δ < 0 and a Rabi frequency given by the light
field with a Gaussian intensity distribution (orange). The energy shift serves as an
effective potential for the atomic motion, and for Δ < 0, atoms in the ground state
are attracted towards the intensity maximum.

the natural linewidth of the transition Γ = |⟨g|ê ⋅ d|e⟩|2!30∕3π�0ℏc3, and theresulting dipole potential can then be determined to
Udip (r) =

3πc2Γ
2!30

I(r)
Δ

. (3.27)

Thus, the strength of the dipole force Fdip (r) = −∇Udip (r) can be controlledby the light intensity. Furthermore, the sign of the dipole potential is deter-
mined by the detuning, such that the potential is attractive for red-detuned
light (Δ < 0) and repulsive for blue-detuned light2 (Δ > 0).

These attributes of the dipole force enables the use of far-detuned laser
beams to confine atoms spatially in many different configurations. The
simplest relevant example is the potential resulting from a focused Gaussian
beam with power P , which has the intensity profile

I(r, z) = 2P
πw2(z)

exp
(

−2 r2

w2(z)

)

. (3.28)

2: For Δ > 0 the bare ground state |g⟩ equals the |+⟩ state, and one must calculate E+ to get
the result of Eq. (3.27).
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Here the 1∕e2 radius of the beam is given by

w(z) = w0

√

1 +
(

z
zR

)2

(3.29)

with the Rayleigh length zR = πw2
0∕� and beam waist w0. If the potentialdepth U0 exceeds the thermal energy of the atomic ensemble, the potential

can to a good approximation be considered as a cylindrically symmetric
harmonic oscillator

Udip, focused Gaussian (r, z) = −U0

[

1 − 2
(

r
w0

)2

−
(

z
zR

)2
]

. (3.30)

For an atom with mass m, the oscillation frequencies (or trap frequencies)
are then !r =

√

4U0∕m!20 and !z =
√

2U0∕mz2R in the radial and axial
directions, respectively. In the case of ultracold atoms, the external potential
can thus be characterized by the trap frequencies, which can be determined
experimentally as described in Sec. 4.4.

For multi-level atoms the dipole potential given in Eq. (3.27) is generally
not sufficient, since the ground state energy shift has contributions from
several excited states. One therefore has to sum up the energy shifts due to
the coupling to all relevant excited states, which for alkali atoms corresponds
to including both states of the D line doublet, which is described in Sec. 4.1.
The energy shift of state i is thus given by

ΔEi =
∑

j≠i

|⟨j|HI |i⟩|2

i − j
, (3.31)

whereHI is the interactionHamiltonian in the dipole approximation (Eq. (3.2))
and i is the unperturbed energy of state i. For a two-level atom, Eq. (3.31)
reduces to Eq. (3.27) for the ground state.

For the alkali atoms considered in this thesis, summing over the D1 and
D2 lines and using linearly polarized light results in the dipole potential

U = πc2
2

(

ΓD1
!3D1ΔD1

+
2ΓD2
!3D2ΔD1

)

I(r), (3.32)

where !i is the angular frequency of transition i, Γi is its linewidth, and Δiis the detuning of the laser light from the transition.





CHAPTER 4
Production of

39
K Bose-Einstein

Condensates

The experiments conducted within this thesis are all performed using BECs
of 39K, which has a rich Feshbach resonance structure that enables the
interactions in the system to be tuned. All presented experiments start from
a 39K BEC confined in an optical dipole trap, and this chapter gives an
overview of the experimental steps leading to this point. For more details on
the specifics parts, the reader is referred to the theses of Nils Winter [128]
and Lars J. Wacker [129] which provide a thorough description of the current
edition of the apparatus.

The machine was originally constructed in Hannover, Germany [130,
131] before being moved to Aarhus in 2011. Experiments on the original
87Rb apparatus lead to the realization of a gravity compensated atom laser
[132], the extension of the coherence time of the 87Rb clock transition by
employing spin self-rephasing [133], and recently, data that was recorded just
before moving the apparatus has been interpreted as a simulation of anXXZ
spin model [134]. After the move to Aarhus, the machine was modified to
produce 39K–87Rb and 41K–87Rb mixtures [100]. Since then, it has been used
for experiments on few-body physics with both K–Rb mixtures [135] and
39K [136], for the investigation of the phase separation and dynamics of two-
component BECs [137], and for the observation of attractive and repulsive

43
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polarons in a 39K BEC [48, 138]. Within my time in the research group, the
apparatus has been used to investigate the dynamical formation of polarons
in a BEC [51, 52] (Ch. 5) and to realize a Lee-Huang-Yang fluid [54] (Ch. 6),
where for the latter, an additional laser beam along the vertical direction
was added to the optical dipole trap. Most recently, progress has been made
towards BEC production at high magnetic fields, which is described in Ch. 7.

The chapter is separated in four parts: First, the relevant properties of 39K
and 87Rb that enable BEC production are presented in Sec. 4.1. Following
this, an overview of the apparatus is given in Sec. 4.2, where the major steps
in the experimental procedure are presented. A detailed description of the
optical setup for the vertical trapping beam is then given in Sec. 4.3, and
finally the resulting optical dipole trap is characterized in Sec. 4.4.

4.1 Properties of
87

Rb and
39

K

In order to produce a BEC, the atomic sample must be trapped and cooled
below the critical temperature as described in Sec. 2.1. This is generally
achieved by manipulating the atoms using electromagnetic radiation and
magnetic fields. A detailed understanding of the internal energy structure of
the atomics species is therefore required. In this thesis, the experiments are
performed using BECs of 39K, which are prepared by sympathetic cooling
with 87Rb. The most relevant properties of these species are given in the
following section based on Refs. [121, 122], which contain comprehensive
information on the different isotopes of Rb and K.

87Rb and 39K are both alkali atoms featuring a single valence electron,
and therefore the energetic structure of the electronic states is reasonably
simple. The ground states of 87Rb and 39K have primary quantum numbers
n = 5 and n = 4, respectively, and orbital angular momentum quantum
number L = 0 such that the corresponding term symbol n2S+1LJ for the
states can be written 52S1∕2 and 42S1∕2, where S is the spin quantum number
and J = L + S is the total electronic angular momentum. The first excited
state has orbital angular momentum L = 1 and the spin-orbit coupling
therefore splits it into two fine structure states with J = 1∕2 and J = 3∕2.
The transitions from the ground state to the these states are known as the
D1 and D2 lines, respectively. Both atomic species have nuclear spins of
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I = 3∕2making the total angular momentum F = J + I an integer and both
are therefore bosons. The coupling to the nuclear spin results in the hyperfine
states with F = 0, 1,… , J + I . For most purposes in the apparatus, only
the D2 line is relevant, and the corresponding states are therefore shown in
Fig. 4.1, with the respective optical wavelengths in nm and the hyperfine
splittings relative to the n2S1∕2 and n2P3∕2 states given in MHz. Throughout
the thesis, the levels of the hyperfine ground state manifold are labelled
by |F ⟩ and those of the n2P3∕2 excited state manifold are labelled by |F ′

⟩.
When the state ket contains two quantum numbers, they refer to the total
angular momentum F and its projection mF unless otherwise specified.

For the optical transitions considered here, the example most similar
to a two-level atom are the cycling transitions |2,±2⟩ → |3′,±3′⟩ of the
D2 line of 87Rb. These transitions are closed in the sense that the electric
dipole selection rules only allow the excited states to decay to the given states
with F = 2. As a consequence, these transitions are generally used for laser
cooling and imaging of 87Rb. For 39K the situation is more complicated since
the hyperfine levels of the excited state manifold feature small spacings of ∼
10MHz, which is on the order of the natural linewidth of the D2 line Γ∕2π =
6.035(11)MHz [121]. Trying to drive the |2⟩ → |3′⟩ transition of 39K thus
also populates the |2′⟩ state, which generally makes 39K less well-suited for
laser cooling [139–143]. The apparatus presented here remedies this issue
by performing much of the cooling of the 39K sample sympathetically with
87Rb.

4.1.1 Response to a Magnetic Field

When an atom interacts with an external magnetic field, the energies of its
internal states are shifted according to their magnetic quantum numbers and
the magnetic field strength. As a consequence, magnetic fields can be used to
trap specific states, to adjust the resonant transition frequencies, and to tune
the interaction strength via Feshbach resonances. In this section, the most
important results for atoms interacting with magnetic fields are presented
based on Refs. [107, 122].
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Figure 4.1: D2 lines of 87Rb and 39K. The figure is adopted from [128] with data
from Refs. [121, 122]. The numbers in parentheses give the shifts in MHz from the
unperturbed states.

The Hamiltonian describing the atomic interaction with a magnetic field
is given by

HB =
�B
ℏ
(gsS + gLL + gII) ⋅ B

=
�B
ℏ
(gSSz + gLLz + gIIz)Bz, (4.1)

where �B is the Bohr magneton, and B is the magnetic field which is taken to
be along the z-direction. L is the orbital angular momentum of the electron,
S the electron spin, I the nuclear spin, while gS , gL, and gI are respective
g-factors. If the energy shift due to the magnetic field is small compared
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to the hyperfine splittings, F is a good quantum number and HB can be
seen as a small perturbation to the zero-field eigenstates of the hyperfine
HamiltonianHhfs , |F ,mF ⟩. The energy shift to lowest order is then givenby

ΔE = mFgF�BBz (4.2)
where gF is the hyperfine Landé g-factor. This low-field dependence is knownas the Zeeman effect. For the ground state hyperfine manifold, gF ≃ −1∕2 for
F = 1 and gF ≃ 1∕2 for F = 2, and the magnetically trappable weak-field
seeking states are thus |F = 1, mF = −1⟩ and |F = 2, mF = 1, 2⟩.For strong magnetic fields where the energy shift due to the magnetic
field is large compared to the hyperfine splitting, F is no longer a good
quantum number. In this case, the hyperfine interaction can be seen as a
perturbation to the strong-field eigenstates |J , mJ ; I, mI⟩ and to lowest order,the energies can be calculated to
E

|J ,mJ ,I ;mI ⟩ = AhfsmImJ

+ Bhfs
9(mImJ )2 − 3J (J + 1)m2I − 3I(I + 1)m

2
J + I(I + 1)J (J + 1)

4J (2J − 1)I(2I − 1)
+ �B(gJmJ + gImI )B, (4.3)

where Ahfs and Bhfs are the magnetic-dipole and electric-quadrupole hyper-
fine constants. In this regime the coupling between J and I has been broken
by the external magnetic field, and the resulting linear dependence on the
magnetic field strength is known as the hyperfine Paschen-Back effect.

In the intermediate regime, the eigenstates are superpositions of the states
|F ,mF ⟩ and |J , mJ ; I, mI⟩ and one generally has to numerically diagonalize
the HamiltonianHhfs +HB in order to find the energy shifts. For the special
case of J = 1∕2 corresponding to e.g. the ground states of 87Rb and 39K,
the Hamiltonian can be diagonalized analytically resulting in the Breit-Rabi
formula for the energies [144]

EF=I±1∕2, mF = −
ΔEhfs

2(2I + 1)
+ gI�BmFB

±
ΔEhfs
2

(

1 +
4mFx
2I + 1

+ x2
)1∕2

, (4.4)
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Figure 4.2: Energies of the states in the 42S1∕2 manifold of 39K as a function
of magnetic field calculated using the Breit-Rabi formula (Eq. (4.4)). Due to the
small hyperfine splitting of 39K, the energy levels quickly differ from the linear
Zeeman shift given by Eq. (4.2). After the intermediate regime, the states again
depend linearly on the magnetic field strength as given by the Paschen-Back effect
(Eq. (4.3)). The states are labelled according to their low-field quantum numbers
|F ,mF ⟩.

where

x =
�B(gJ − gI )B

ΔEhfs
, (4.5)

and ΔEhfs is the hyperfine splitting. In Fig. 4.2 the energies of the states in
the 42S1∕2 manifold of 39K are shown as a function of magnetic field using
the Breit-Rabi formula with the states labelled according to their low-field
quantum numbers |F ,mF ⟩. The small hyperfine splitting of 39K cause the
system to enter the intermediate regime already at small magnetic fields,
and for the F = 1 states, the linear Zeeman effect thus becomes invalid at
∼ 10G. For large magnetic fields, the energies once again become linear in
the magnetic field as the system enters the Paschen-Back regime.
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Figure 4.3: Feshbach resonance structure for the lowest hyperfine manifold of
39K. The intrastate scattering length as a function of magnetic field is shown in red
for atoms in the |1,−1⟩ state [83, 84], in green for atoms in the |1, 0⟩ state [85],
and in orange for atoms in the |1, 1⟩ state [83]. The magnetic field used for BEC
production is marked by the dashed black line.

4.1.2 Feshbach Resonance Structure

In order to create a stable BEC, the scattering length must be positive, other-
wise the system can collapse in a Bose nova as explained in Sec. 2.3.2. For
87Rb this is not an issue since the species has a constant scattering length of
∼ 100 a0 and only features narrow Feshbach resonances [145]. This, how-
ever, makes 87Rb a relatively poor candidate for experiments with tunable
interaction strengths. For 39K, the situation is different as it has a negative
background scattering length, and production of stable 39K BECs thus re-
quires tuning the scattering length via Feshbach resonances. Figure 4.3
shows the Feshbach resonance structure of the three states of the lowest
hyperfine manifold of 39K with the scattering lengths of the |1,−1⟩, |1, 0⟩,
and |1, 1⟩ states shown in red, green, and orange, respectively.

Fortunately, the |1,−1⟩ state features two broad resonances at 33.6 and
163G which produce a ∼ 130G wide window where the scattering length
is positive [83, 84, 146]. This enables BEC production, which is typically
performed at a magnetic field of 39.6G where the scattering length is 165 a0
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as shown by the dashed black line in Fig. 4.3. The interspecies scattering
lengths between different combinations of states in 87Rb and 39K has been
investigated in Refs. [147, 148], and the interspecies resonance at 117.56G
[100] was employed in a previous experiment using this apparatus [137].
For the experiments presented here, 87Rb is only used to sympathetically
cool the smaller 39K sample, which takes place in the |2, 2⟩ state for both
species. Here, the interspecies scattering length is ∼ 28 a0 for the relevantmagnetic fields [147].

4.2 Overview of the Apparatus

The experimental setup is composed of two optical tables; one for preparing
the majority of laser beams used for manipulating the atoms, and one which
contains the vacuum chamber. The two tables are referred to as the laser
table and the experiment table, respectively. On the laser table, the light
which is used to cool, manipulate, and image the atoms is prepared. In
practice, this corresponds to locking the laser frequencies relative to Doppler-
free absorption signals, controlling the frequencies using acousto-optical
modulators, amplifying the laser powers using tampered amplifiers, and
coupling the light into optical fibres, which deliver the light to the experiment
table. Since the D2 lines of 87Rb and 39K feature transition wavelengths
of 780 nm and 767 nm, the same optical components can be used for both
species

The vacuum system on the experiment table is separated in two parts
with each end connected to a glass cell allowing good optical access. On one
side, the initial trapping and cooling takes place in a magneto-optical trap
(MOT) and the glass cell is therefore referred to as theMOT cell. Evaporative
cooling, Bose-Einstein condensation, and performing the experiments takes
place in the second glass cell on the other side, which is referred to as
the science cell. The two sides of the vacuum system are connected via a
differential pumping stage, which enables lower pressures and thus longer
lifetimes of the trapped samples in the science cell.
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4.2.1 Magneto-Optical Trap

The starting point of the experimental procedure is a MOT, which was first
realized for sodium atoms in 1987 [119]. In a MOT, an atomic vapour is
simultaneously cooled and confined by the use of counter-propagating laser
beams with a frequency that is red-detuned to an atomic transition, and a
quadrupole magnetic field, which supplies a magnetic field gradient. The
cooling and confinement are caused by the momentum kicks experienced by
the atom when absorbing photons from the laser light. Here, the absorption
rate depends on the atomic velocity due to the Doppler effect, which shifts
the red-detuned light into resonance as described in Sec. 3.6, and on the
position due to the magnetic field gradient, which shifts the energy levels
via the Zeeman effect.

The employed dual-species MOT is constructed to simultaneously trap
and cool both Rb and K. The atoms are loaded from a background vapour
which is supplied by commercial dispensers. During the MOT phase, atoms
stuck on the glass surfaces are detached by light-induced atom desorption
using ultraviolet light emitting diodes [149], which significantly increases
the number of captured atoms.

An overview of the MOT region of the apparatus is shown in Fig. 4.4. In
order to trap and cool the atoms along all directions, the MOT is composed
of six cooling beams intersecting in the centre of two coils in anti-Helmholtz
configuration, which supply the quadrupole magnetic field. The cooling
light is red-detuned in relation to the |2⟩ → |3′⟩ transition, however, since
there is a finite probability of driving the |2⟩ → |2′⟩ transition, atoms will
accumulate in the |1⟩ state as atoms in the |2′⟩ state can decay to both |1⟩
and |2⟩. Additional repumping light working on the |1⟩ → |2′⟩ transition is
therefore needed to reintroduce the atoms into cooling cycle.

As explained in Sec. 4.1, the hyperfine splittings of 39K are small, and
the roles of the cooling and repumping light are therefore not clearly distin-
guished causing relatively few atoms to be captured in theMOT. Furthermore,
dual-species MOTs suffer from losses due to light-assisted collisions, which
is especially harmful to the already small 39K samples [150]. To circum-
vent this issue, the 87Rb MOT is operated in a dark-SPOT configuration,
which has previously been used to increase the phase-space density of single-
species MOTs [151–154] and to reduce light-assisted collisions in mixtures



52 Chapter 4 ⋅ Production of
39

K Bose-Einstein Condensates

[155, 156]. In this configuration, the 87Rb atoms are deliberately made to
accumulate in the dark |1⟩ state in the centre of the trap. This is achieved by
cutting out the central part of the 87Rb repumping beam, and by supplying
additional depumping light tuned to the |2⟩ → |2′⟩ transition. The result
is an increase in the captured number of 39K atoms by more than a factor
2 compared to loading with a bright 87Rb MOT, and during the 25 second
duration of the MOT phase ∼ 1 × 108 39K and ∼ 3 × 109 87Rb atoms are
captured [100].

After the MOT phase, the magnetic field is turned off and the atoms are
further cooled below the Doppler limit in an optical molasses. Here, the small
hyperfine splittings of 39K again serve as a complication and the 39Kmolasses
is therefore realized using the technique of Landini et al. [142], which takes
advantage of the small hyperfine splittings causing a natural depumping
into the dark |1⟩ state. By ramping the light intensities and the detuning of
the cooling light, the fraction of atoms coupled to the cooling light can be
controlled to yield an optimal cooling power with minimal reabsorption of
spontaneously emitted photons. After the optical molasses the 39K and 87Rb
samples have temperatures of 117 µK and 35 µK, respectively [129].

4.2.2 Magnetic Trap and Evaporative Cooling

After the MOT phase, both species are pumped into the magnetically trap-
pable |2, 2⟩ state by applying a homogeneous magnetic field of 15G while
driving the �+ transition from |2⟩ to |2′⟩ using circularly polarized light. The
current in the MOT coils is then increased in order to realize a quadrupole
trap, and the atoms are transferred to the science cell by mechanically moving
the MOT coils, which are mounted on a translational stage. Here, the atoms
are transferred to another quadrupole trap composed of stationary coils, and
the MOT coils are returned to their initial position.

The next cooling step consists of evaporative cooling, where the most
energetic atoms are selectively removed from the trap, which lowers the
temperature of the remaining atoms as the system rethermalizes. The first
part of the evaporative cooling stage is performed in the quadrupole trap
since it features large rethermalization rates [157]. In this stage, 87Rb atoms
are selectively removed using microwave radiation to transfer atoms from
the |2, 2⟩ state to the untrapped |1, 1⟩ state. This is shown schematically in



Observation of a Lee-Huang-Yang Fluid 53

Figure 4.4: Schematic overview of the MOT region of the experimental apparatus.
In addition to the shown trapping beams (light red), two MOT beams in the perpen-
dicular direction to the figure plane (not shown) provide trapping and cooling along
the vertical direction. The MOT beams contain the cooling light for both species
and the repumping light for 39K. The central part of the repump beam for 87Rb
(dark red) is cut out using an opaque disk and it is therefore supplied separately.
Additional depumping light (green) accelerates the accumulation of 87Rb atoms in
the dark |F = 1⟩ state. A photodiode is used to measure the fluorescence signal
from the atoms in the MOT. The figure is adopted from Ref. [129] and a similar
figure was published in Ref. [100].

Fig. 4.5(a) with the energy levels of the mF states in the F = 1 and F = 2
manifolds depending on the position due to the Zeeman effect. The atoms
in the trappable states are shown in red, and the microwave radiation is
shown by the squiggly arrows. During evaporative cooling, the frequency
of the radiation is swept to lower values, thus continuously removing the
most energetic atoms as shown by the blue arrow. The employed microwave
radiation is, however, also resonant with the |1, 1⟩ → |2, 1⟩ transition in the
outer regions of the trap as shown in green. As a consequence, energetic
87Rb atoms are reintroduced in the trap, leading to heating of the 39K sample
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[158, 159]. Furthermore, an additional complication in the quadrupole trap
comes fromMajorano spin flips at the zero point of the magnetic field, which
lead to further losses [160].

In order to avoid both of these issues, the second part of the evaporative
cooling is performed in a Quadrupole Ioffe-Pritchard Configuration (QUIC)
trap [161], which realizes a harmonic trapping potential without a magnetic
field zero as shown in Fig. 4.5(b). In this stage, additional microwave
radiation (shown in red) resonant with the |2, 1⟩ → |1, 1⟩ transition in the
centre of the trap is applied to remove the unwanted 87Rb atoms [139, 140,
159]. At this point, the microwave sweep is continued until all 87Rb atoms
have been removed from the trap. Alternatively, the sweep is stopped before
this if a 39K–87Rb mixture is desired, and if only 87Rb atoms are loaded
during the MOT phase, BECs containing ∼ 2 × 105 atoms can be realized in
the QUIC trap. The total duration of the evaporative cooling stage is about
30 seconds.

4.2.3 Bose-Einstein Condensation in the Optical Dipole Trap

After removing all 87Rb atoms, the 39K sample is transferred to an optical
dipole trap (ODT) for the final evaporation. The ODT consists of two
crossed 1064 nm laser beams propagating along the horizontal x- and y-
directions. This enables the magnetic field to be tunable in order to realize
the positive scattering length needed for the production of stable BECs. To
this end, the coils used for the quadrupole trap are reconfigured to Helmholtz
configuration, which provides a homogenousmagnetic field along the vertical
z-direction in the centre of the science cell.

After loading the atoms into the ODT, they are transferred to the |1,−1⟩
state using two consecutive rapid adiabatic passages. The first one transfers
the atoms from |2, 2⟩ to |2,−2⟩ by sweeping a radio frequency, while apply-
ing a constant magnetic field. Afterwards, the second transfer from |2,−2⟩
to |1,−1⟩ is performed by sweeping the magnetic field, while irradiating the
sample with a constant radio frequency.

Themagnetic field is then changed to 39.6G corresponding to a scattering
length of 165 a0 as shown in Fig. 4.3, and the sample is evaporatively cooled
by lowering the powers in the ODT beam in exponential ramps with a
duration of ∼ 5 seconds depending on the desired final temperature. The
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Figure 4.5: Schematic of the evaporative cooling in the magnetic trap. The energy
levels of the states in the F = 1 and F = 2manifolds depend on the position via the
Zeeman effect. 87Rb atoms (red) are selectively removed using microwave radiation
resonant with the |2, 2⟩ → |1, 1⟩ transition (blue). The microwave frequency is
swept to lower values, continuously removing the most energetic 87Rb atoms, while
the remaining 87Rb and 39K atoms rethermalize to a lower temperature. The same
microwave radiation is resonant with the |1, 1⟩ → |2, 1⟩ transition at the edge of
the trap (green), which reintroduces energetic atoms into the trap. (a) The first part
of the evaporative cooling is performed in a quadrupole trap which features large
rethermalization rates. (b) The second part of the evaporative cooling is performed
in a harmonic QUIC trap, where the energetic atoms in state |2, 1⟩ can be removed
by a separate microwave frequency (red). The figure is adopted from [128].

end result is a nearly pure 39K BEC of up to ∼ 1 × 105 atoms after a total
experimental duration of ∼ 70 seconds, which serves as the starting point
for the experiments described in Chs. 5 and 6.

Detection of the atoms is performed using absorption imaging after
time-of-flight (TOF) expansion with a typical duration of 15 to 30 ms. The
imaging is typically performed along the x-direction, which serves as the
primary imaging axis, but the apparatus can also be configured for imaging
along the z-direction, in order to measure the trap frequency along the x-axis.

In a typical imaging sequence, the magnetic field is kept on in the begin-
ning of the TOF, since crossing the Feshbach resonance at 33.6 G, while
the atomic density is still large, leads to losses. In order to analyse the state
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100µm

Figure 4.6: Typical image of a 39K BEC consisting of ∼ 5 × 104 atoms after
ramping the magnetic field to the vicinity of the Feshbach resonance at 114 G. The
BEC is imaged after 28 ms time-of-flight. The figure is adopted from Ref. [163].

composition of the atomic cloud, one of the coils can be used to generate
a magnetic field gradient during TOF, fully separating the mF components
such that the respective clouds can be analysed separately. Subsequently,
the main magnetic field is turned off and a separate pair of Helmholtz coils
surrounding the science cell are applied to realize a homogenous magnetic
field of 1G along the x-direction, which sets the quantization axis during
imaging. Since the experiments are performed in the F = 1 manifold,
linearly polarized repumping light resonant with the |1⟩ → |2′⟩ transition
is applied along the z-direction 200 µs prior to absorption imaging. The
circularly polarized detection light hits the atoms along the x-axis and drives
the �+ transition |2⟩ → |3′⟩. An example of a typical absorption image after
processing is shown in Fig. 4.6.

The extraction of atom numbers from the absorption images is calibrated
using the method of Reinaudi et al. [162], where the saturation intensity I sat0is corrected by a dimensionless calibration parameter �∗, which accounts
for the specific conditions under which the images are taken, such as the
polarization of the imaging light and the structure of the involved states.
More details on the calibration procedure is given in Ch. 7.

4.2.4 Magnetic Field Stabilization and Calibration

Experiments with ultracold gases generally require precise magnetic field
control in order to consistently prepare the system in the same configuration,
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for reducing the width of spectroscopic measurements and to control the
interaction strength via magnetic Feshbach resonances. To this end, several
approaches are employed in order to minimize the error on the magnetic
field.

After transferring the atoms to the ODT, the current source is switched
to a home-built power supply consisting of a set of car batteries. These are
decoupled from the 50 Hz AC signal of the power grid, and noise at 50 Hz
and higher harmonics is therefore reduced. The influence of the power grid
is further minimized by triggering the final parts of the experiment on the 50
Hz signal of the power grid. This is achieved by pausing the experiment until
the 50 Hz signal reaches a desired phase in its period, which is measured by a
small circuit. The trigger is generally enabled just before the radiofrequency
(rf) pulse which typically initializes the experiment. Finally, the background
magnetic field is actively stabilized using a large pair of coils surrounding the
science cell, which are controlled using a proportional-derivative-integral
(PID) controller connected to a magnetometer.

The magnetic field is typically calibrated by performing radiofrequency
spectroscopy on the |1,−1⟩ → |1, 0⟩ transition in 39K using cold thermal
clouds prepared by inefficient evaporative cooling in the ODT. The state
composition after the rf pulse is analysed by separating the states using a
magnetic field gradient as described in Sec. 4.2.3.

A typical spectroscopy signal showing the resulting population in the
|1, 0⟩ state as a function of the applied radio frequency is shown in Fig. 4.7(a)
together with a Gaussian fit to the data. The magnetic field can be extracted
from the centre frequency of the spectroscopy signal using the Breit-Rabi
formula (Eq. (4.4)). The measurement in panel (a) corresponds to a magnetic
field of 116.412(3) G where the error is based the width of the peak. A
detailed characterization of the magnetic field precision can be found in the
thesis of Nils B. Jørgensen [87], where long probe pulses were used to reduce
spectral width of the pulse. These measurements found a lower limit to the
obtainable precision of 1 mG caused by long term drifts in the background
magnetic field.

Panel (b) shows Rabi flops between the same states recorded at the same
magnetic field as panel (a) together with a sinusoidal fit to the data, which
yields a Rabi frequency ofΩ∕2π = 1.4(6) × 105Hz. Detailed measurements
of the first flank of the Rabi oscillation signal are typically used in order to
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determine the population in the |1, 0⟩ state as a function of the duration of
the rf pulse as shown in Sec. 6.4.

Panels (c-d) show magnetic field calibrations for the regions used in
the impurity dynamics (Ch. 5) and LHY fluid (Ch. 6) experiments. The
magnetic field calibration of panel (d) has a slope of 9.47(2)G∕A and an
offset of −0.2(1)G. Calibrations such as those in panels (c-d) are generally
made for the magnetic field regime of the specific experiment. However, if
precise knowledge of the magnetic field is required, a separate spectroscopy
measurement is carried out before or after the experiment.

4.3 Construction of a Spherical Optical Dipole

Trap

In Ch. 6, the Lee-Huang-Yang fluid is theoretically investigated in a spher-
ically symmetric harmonic potential, and it is shown how the monopole
frequency can be used to characterize the system. As explained in Sec. 4.2.3,
the apparatus is able to produce BECs in a typical crossed ODT consisting
of two Gaussian beams propagating along the horizontal directions. In this
configuration, realizing a spherically symmetric potential is, however, a
challenge, since both beams contribute to the potential along the vertical di-
rection making the trap asymmetric. In order to compare with the theoretical
predictions and ensure excitation of the monopole mode, the ODT therefore
had to be modified in order to realize equal trap frequencies in all directions.
To this end, a third trapping beam along the vertical direction was added to
the ODT such that two beams contribute to the potential in each direction.
In this section, the setup for the additional ODT beam is described in detail.

Fig. 4.8 shows the laser system responsible for preparing the three ODT
beams. The 1064 nm light is produced by a narrow bandwidth monolithic
ring laser (Coherent Mephisto), which is amplified by a fibre amplifier
(Nufern PSFA-1064-50mW-50W-0). After amplification, the laser light
passes through two optical isolators and is split in separate paths using
polarizing beam splitter cubes, where the distributions are set by adjusting
the preceding half-wave plates. The beam paths labelled ODT1 and ODT2
correspond to the original trapping beams propagating along the x- and
y-directions, respectively, and the path labelled ODT3 delivers laser light
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a b

c d

Figure 4.7: Typical spectroscopy signal, Rabi oscillations, and magnetic field
calibrations. Radiofrequency spectroscopy signal (a) and Rabi flops (b) on the
|1,−1⟩ → |1, 0⟩ transition in 39K. The measurements were performed at current
of 12.273 A and the centre of the spectroscopy signal yields a magnetic field of
116.412(3) G based on the Breit-Rabi formula (Eq. (4.4)). The extracted Rabi
frequency is Ω∕2π = 1.4(6) × 105Hz. (c-d) Magnetic field calibrations in the
regions used for the impurity dynamics (c) and LHY fluid (d) experiments. The
error bars are smaller than the markers.

for the vertical beam. Each beam is sent through an acousto-optic modulator
(AOM), and subsequently to the experiment via polarization maintaining
optical fibres. The power in each beam is controlled by adjusting the rf
power that is applied to the AOM using PID controllers, which compare the
set point to a photodiode signal after the optical fibre.
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Figure 4.8: Schematic of the setup for generating the laser light used in the optical
dipole trap. Left: The 1064 nm laser light is generated by a seed laser and amplified
by a fibre amplifier. Right: The output from the fibre amplifier is split in three paths,
which are sent to three separate AOMs allowing the intensity of each beam to be
controlled separately. Subsequently, the three beams are sent to the experiment via
optical fibres. The figure is based on earlier versions from Refs. [128, 129].

The optical setup for the ODT3 beam after the optical fibre is shown in
Fig. 4.9 with panel (a) showing an overhead view of the optical breadboard
above the science cell. The ODT3 light is coupled out using a fibre collimator
with an f=60mm lens, after which a polarizing beam splitter cube fixes the
polarization direction. Following this, a fraction of the light is reflected
of a glass plate and directed onto a photodiode, which measures the beam
power. The output voltage of the photodiode serves as the process variable
for the PID controller, which adjusts the laser power via the AOM in Fig. 4.8.
The ODT3 beam then passes through an f=700mm lens, which sets the
beam size in the focus. A half-wave plate is used to control the polarization
direction, before the beam is overlapped with the vertical imaging beam
using a short-pass dichroic mirror. The beam is then directed through a hole
in the optical breadboard and sent to the science cell below, which is shown
from a sideways view in panel (b). The beam waist in the middle of the
science cell was measured to 61 µm by directing the beam onto a camera and
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Figure 4.9: Schematic of the optical setup for the vertical trapping beam (ODT3).
(a) Overhead view of the optical setup above the science cell. The ODT3 light (red)
is coupled out from the optical fibre and the polarization is fixed by the polarizing
beam splitter cube. A fraction of the light is directed onto a photodiode, which is
used to control the power in the beam via a PID controller that regulates the rf power
of an AOM before the optical fibre. The light then passes through an f=700mm
lens, which sets the beam size in the focus, and a half-wave plate for polarization
control, before it is directed through a hole in the optical breadboard towards the
science cell. The vertical imaging light is shown in green. (b) Sideways view of
the science cell showing the paths of the ODT3 and imaging beams. (c) After
passing through the science cell, the ODT3 beam is directed onto a beam dump via
a dichroic mirror, such that it does not hit the camera used for vertical imaging.

fitting a Gaussian function to the recorded beam profile. Panel (c) shows an
overhead view of the final part of the ODT3 beam setup after after passing
through the science cell. Here, the ODT3 beam is separated from the vertical
imaging light by a dichroic mirror, and directed onto a beam dump, such
that is does not hit the vertical imaging camera.
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4.4 Characterization of the Optical Dipole Trap

With the implementation of the vertical ODT beam, the trap can be made
spherically symmetric by adjusting the relative intensities of the three beams.
This is done by first calculating the total dipole potential from all three
beams using Eq. (3.32). The trap frequencies along the three Cartesian axes
are then calculated by Taylor expanding the potential around its minimum,
and the beam powers are chosen such that the calculated frequencies are
equal. The calculated powers serve as the starting point for a following
iterative adjustment of the beam powers until the measured trap frequencies
are approximately equal with a relative deviation to the geometric mean on
the order of maximally 5%.

In practice, the trap frequencies are measured by preparing a BEC in the
|1,−1⟩ state in the desired trap configuration. The powers in all beams are
then abruptly increased by ∼ 10% for 1 ms, after which the powers are once
again decreased to the values giving the desired trap potential.

Along the vertical direction, the gravitational potential generally lowers
the location of the trap center, such that the atomic cloud is slightly lowered
compared to crossing point of the horizontal ODT beams. Increasing the
horizontal ODT powers thus raises the location of the trap minimum resulting
in vertical dipole oscillations after returning to the desired trap. Along the
horizontal directions, the method relies on the vertical ODT beam being
slightly misaligned compared to the crossing of the horizontal beams, such
that increasing the power of the vertical beam relative to the horizontal
beams shifts the trap minimum towards the focus of the vertical beam. In
practice, the magnitudes of the relative changes are adjusted such that clear
dipole oscillations of the atomic cloud are realized at the lowest possible
amplitude to stay within the harmonic part of the Gaussian trap potential.

Following a variable evolution time, the BEC is subsequently released
from the trap and imaged after TOF expansion with a duration of 28 ms. To
measure the trap frequencies along all Cartesian axes, separate measurements
are carried out with absorption imaging along the x- and z-directions.

Due to imperfections in the optical setup, the axes of the trapping potential
lie in a frame (x′, y′, z′), which is rotated with respect to the reference frame
(x, y, z) set by the imaging axes. The resulting oscillation data measured in
the (x, y, z) frame thus corresponds to a beat signal between the eigenmodes
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of frequency !′i, i = x, y, z, in the reference frame of the trap, which can be
obtained by implementing a rotation of the coordinate system in the analysis
[164–166]. In practice, the centre-of-mass motion in the reference frame of
the trap is assumed to be described by

r′ =
⎡

⎢

⎢

⎣

Ax sin(!′xt + �x)
Ay sin(!′yt + �y)
Az sin(!′zt + �z)

⎤

⎥

⎥

⎦

, (4.6)

where Ai, !′i, and �i are the amplitudes, angular frequencies, and phase
offsets of the oscillations. In the reference frame defined by the imaging
setup, the position of the atomic cloud is then given by

r = Rz(�z)Ry(�y)Rx(�x)r′, (4.7)
where Ri(�i) is the basic rotation matrix which rotates the coordinate system
around axis i′. To extract the trap frequencies !′i, Eq. (4.7) is simultaneously
fitted to the cloud positions measured using the x- and z-imaging systems.

In Fig. 4.10 typical data from a trap frequency measurement is shown
together with a fit of Eq. (4.7). Panels (a-b) show data with imaging in the
x-direction, and panels (c-d) show the data with imaging in the z-direction.
The x-, y- and z-component of the fitted position r are shown in green, blue,
and red, respectively. The experimental sequences are identical except for
the difference in imaging directions.

The fit of Eq. (4.7) to the data yields trap frequencies !′x = 2π ×
118.5(1)Hz, !′y = 2π × 115.3(2)Hz, and !′z = 2π × 108(1)Hz, and ro-
tation angles �x = 101(4)°, �y = 120(2)°, and �z = −125(3)°, where the
large rotation angles are not unexpected due to the small difference between
the trap frequencies. The three frequencies are then combined into a geo-
metric mean !0 = (!′x!′y!′z)1∕3, which results in !0 = 2π × 113.7(1)Hz forthe shown data set.
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Figure 4.10: Typical trap frequency measurement. The cloud positions after
time-of-flight expansion are shown for imaging along the x- (a-b) and z-axes (c-d),
together with a simultaneous fit of Eq. (4.7) to data from both imaging directions.
The x-, y- and z-component of the fitted position r are shown in green, blue, and
red, respectively. The y-positions are different within the two data sets due to the
destructive imaging technique. A similar figure was published in Ref. [54].



CHAPTER 5
Impurity Dynamics

The concept of an impurity interacting with a surrounding medium is a
general problem in physics and finds application in many fields. The most
prominent example is that of electrons interacting with a crystal lattice as
considered by Landau and Pekar [34–36], where the electron charge disturbs
the crystal lattice leading to a local polarization. As a result, the electron is
dressed by the lattice phonons and together, the electron and the surrounding
disturbance can be described as a quasiparticle called a polaron as shown
schematically in Fig. 5.1(a). Since its first conceptualization, the polaron
picture has found application in many contexts and is an important concept
when describing many-body systems ranging from 3He-4He mixtures [167],
high-temperature superconductors [37, 168], colossal magnetoresistance
[169], organic semiconductors [170], and Λ-particles in nuclear matter [38].

Within the last decade, the polaron problem has received significant
attention in the ultracold gas community, where the polaron scenario can be
realized by introducing a minority component of another state or species in
a quantum gas as pictured in Fig. 5.1(b). The high controllability offered
in these systems allows systematic studies of the polaron across different
interaction strengths and dimensions, and furthermore, the diluteness of
ultracold gases results in density-dependent timescales being sufficiently
large for time-resolved experiments.

In this chapter, an experiment is presented whichmakes use of this feature
to probe the short-time dynamics of impurities immersed in a BEC. By em-

65
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ploying a Ramsey-type interferometry scheme, the characteristic timescales
of the dynamical evolution are extracted and the onset of polaron formation
is observed. These results have been published in Refs. [51, 52] and was
presented in the PhD thesis of Magnus G. Skou [163]. Since publication
of Ref. [51] the data has been reanalysed based on an improved calibration
of the atom numbers from the absorption images. When comparing the
contents of this chapter to that of Ref. [51], minor differences in the data
and theoretical results are therefore visible, however, as the data depends
only weakly on the atom numbers through the density, the main conclusions
are the same as in the publication.

The chapter is structured as follows. First, a general introduction to
polarons in ultracold quantum gases is given in Sec. 5.1. Subsequently, the
experimental method used to probe the dynamical evolution of impurities
in a BEC is presented in Sec. 5.2, and in Sec. 5.3, the relation between the
experimental signal and the impurity coherence is presented. In Sec. 5.4,
the theoretical predictions for dynamical behaviour of the coherence are
presented, which is followed by descriptions of the primary experimental
decoherence mechanisms in Sec. 5.5. Following this, the experimental
results are presented in Sec. 5.6 and compared to the theoretical predictions.
Finally, the chapter is summarized in Sec. 5.7 and possible future research
directions are discussed.

My primary contributions in this chapter have been in the designing
and conducting the experiments with some involvement in the data anal-
ysis, which was mainly carried out by Magnus G. Skou. The theoretical
description of the experiment presented in Secs. 5.3 and 5.4 was developed
by our collaborators Kristian K. Nielsen and Arturo Camacho-Guardian of
the research groups lead by Thomas Pohl and Georg M. Bruun.

5.1 Polarons in Ultracold �antum Gases

Within the field of ultracold quantum gases, polarons have been investigated
in both fermionic and bosonic mediums. In both types of experiments,
the impurity picture is fulfilled by immersing a minority component into
majority component, which can either be a degenerate Fermi gas or a BEC.
The quantum statistics of the impurity component is generally not crucial
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a b

Figure 5.1: Polarons in solid-state physics and quantum gases. (a) An electron
(blue) perturbs the crystal lattice (orange) forming a polaron composed of the
electron dressed by lattice phonons. (b) An impurity atom (blue) interacts attractively
with a surrounding gas of medium atoms (orange) leading to a polaron composed
of the impurity atom and the surrounding medium atoms. The figure is adopted
from Ref. [163].

since in most cases, impurity-impurity interactions can be neglected due to
the low concentration. In the case of a bosonic medium used in this work,
the medium atoms are often just labelled as bosons and parameters regarding
these are denoted by the subscript B.

The impurity-boson interaction strength is typically characterized by the
inverse interaction strength 1∕kna, where a is the impurity-boson scatter-
ing length and kn = (6π2nB )1∕3 is the characteristic wavenumber with the
condensate density nB . By employing a Feshbach resonance between the
impurity and medium atoms, a can be tuned from −∞ to∞, and the sign
of 1∕kna thus corresponds to attractive (negative) or repulsive (positive)
interactions. The interaction strength increases for 1∕kna → 0, which cor-
responds to the unitary regime of the Feshbach resonance as described in
Sec. 2.2.1. The condensate density sets the energy scale En = ℏ2k2n∕2mB ,where mB is the mass of the condensate bosons and En is independent ofthe interactions strength.
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Figure 5.2: Energy diagram of the Bose polaron. The energy of the Bose polaron
calculated using a diagrammatic approach is shown in green [138], the mean-field
energy is shown in dashed purple, and the molecule binding energy is shown in
dotted red. The figure is adopted from Ref. [163].

In Fig. 5.2 the energy diagram of the Bose polaron is shown as a function
of 1∕kna. A diagrammatic prediction for the polaron energy [138] (green) is
compared to themean-field energyEmf = 2πℏ2nB a∕mr (dashed purple), andthe binding energy of the molecule associated with the Feshbach resonance
ℏ2∕2mr a2 (dotted red), where mr is the reduced mass of the impurity and
medium atoms. For attractive interactions (1∕kna < 0) the polaron energycorresponds to themean-field energy in theweakly-interacting limit, however,
for stronger interactions Emf diverges indicating the breakdown of the mean-
field picture. In contrast, the energy of the attractive polaron decreases when
approaching the resonance and crosses it to approach the molecular energy.
This can be understood from the qualitative argument that the extreme case
of the attractive polaron is a molecule. On the repulsive side (1∕kna > 0)the polaron energy becomes increasingly damped when approaching the
resonance as it can decay into the molecule state and the lower lying attractive
polaron state.

In addition to the energy spectrum, the polaron is characterised by its
effectivemass and the quasiparticle residueZ. The effectivemass is modified
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compared to the bare impurity due to the interactions with the medium,
and in the bosonic case, it can be interpreted as the impurity dragging
along a cloud of virtual phonons [171]. The quasiparticle residue defined
as √Z = ⟨ non-int | pol ⟩ describes how much of the non-interacting state
| non-int ⟩ is contained in the polaron state | pol ⟩.

5.1.1 Fermi Polarons

The first polaron experiments in ultracold gases were performed using im-
purities immersed in a Fermi sea [172, 173], and such experiments serve
as an important platform for investigating Fermi liquid theory [167], the
Anderson orthogonality catastrophe [174] and the Kondo effect [175]. The
first observation of polarons in ultracold gases was published in 2009 where
rf spectroscopy was used to extract the polaron energy and quasiparticle
residue on the attractive side of a Feshbach resonance [39]. Following this,
the effective mass of the Fermi polaron was obtained from collective excita-
tions [40] and frommeasurements of the equation of state [41]. Subsequently,
the repulsive Fermi polaron was observed in rf spectroscopy experiments in
two [42] and three dimensions [43]. Complementary to the spectroscopic
measurements, the Fermi polaron was investigated in time-domain using
Ramsey interferometry [44, 45], and further spectroscopic measurements
have investigated the Fermi polaron at resonant interactions [176], as a
function of temperature [46], and across an orbital Feshbach resonance [47].

5.1.2 Bose Polarons

As shown in Sec. 2.4, the low-energy excitations of a BEC follow a linear
dispersion similar to phonons in a crystal, and the analogy to the solid-
state polaron is thus generally stronger than for fermions. Seven years
after the first observation of Fermi polarons, the generic Bose polaron was
observed in parallel spectroscopic measurements of the polaron energy
spectrum, which were performed at JILA [49] and by our group [48, 138].
In addition to these experiments, several groups have investigated impurities
immersed in a Bose gas in various settings such as fixed impurities [177–
179], impurities in an uncondensed medium [180], and in one dimension
[181, 182]. Most recently, the temperature dependence of the polaron was
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measured in spectroscopy experiment on equilibrated ground state polarons
[50]. Since the first experimental observations of the Bose polaron, there has
been great theoretical interest in its formation dynamics [183–187], which,
as in the fermionic case [44, 45, 188], can be tracked by measuring the
coherence of the system using an interferometric sequence [44, 45, 178,
179, 189]. In the following sections, an experiment is presented, where a
modified Ramsey interferometry scheme is employed to track the dynamical
evolution of the system from a coherent superposition state with a minority
component into polaronic quasiparticles.

5.2 Experimental Method

The experiment starts with a 39K BEC in the |F = 1, mF = −1⟩ ≡ |1⟩ state
prepared in an optical dipole trap as described in Ch. 4. The employed trap
has a geometric mean of the trap frequencies ∼ 2π×65Hz resulting in an av-
erage condensate density nB ≃ 1 × 1014 cm−3, which sets the corresponding
timescale tn = ℏ∕En ≃ 4 µs. In order to realize the Bose polaron, the same
method as in Ref. [48] is employed, where a small fraction of the population
is transferred to the |F = 1, mF = 0⟩ ≡ |2⟩ state, which acts as impurities in
a medium composed of the initial BEC in the |1⟩ state.

The impurity-boson scattering length a is tuned via a Feshbach resonance
at 113.8G [48, 86, 146], where conveniently, the boson-boson scattering
length is approximately constant at aB ≃ 9 a0. The Feshbach resonance
structure of the relevant states is shown in Fig. 5.3 with the experimentally
investigated regime shown in grey shading. Within this regime, the impurity-
impurity scattering length is constant and negative at∼ −20a0, however sincethe population in the impurity state is small, impurity-impurity interactions
can be neglected. For the experiments presented here, a is generally restricted
to negative values and the unitary limit (a→ ±∞), since the energy spectrum
of the polaron is simpler on the attractive side of the Feshbach resonance as
shown in Fig. 5.2.

In order to study the dynamical evolution leading to polaron formation,
the experimental sequence has to first prepare, and then probe the system
after a given evolution time. In practice, this is done by employing a modified
Ramsey scheme, shown schematically in Fig. 5.4 using the collective spin
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Figure 5.3: Relevant Feshbach resonances for the impurity dynamics experiment.
The scattering length between atoms in state |1⟩ is shown in red [84], and between
atoms in states |1⟩ and |2⟩ is shown in dashed blue [86]. The grey area shows the
magnetic field regime, where the experiments are performed.

on the Bloch sphere [190]. Instead of the usual Ramsey scheme discussed
in Sec. 3.5, the orientation of the Bloch vector is kept close to the initial
one, which ensures a low population in the impurity state. In practice, the
interferometric sequence is initialized by a 0.5 µs radiofrequency (rf) pulse
tuned to the atomic resonance frequency between states |1⟩ and |2⟩, which
prepares the system in a superposition state with ∼ 5% of the population
in the impurity state (panel (a)). Subsequently, the system is allowed to
evolve for a time t with phase evolution and decoherence determined by
the interactions between the impurity state and the surrounding BEC (panel
(b)). Finally, the interferometric sequence is closed by a second rf pulse with
variable phase ' (panel (c)). After the interferometric sequence, the system
is held in the ODT for a duration of 2 ms, where three-body loses remove the
remaining population in the impurity state. The result of the interferometric
sequence is a sinusoidal dependence of the final number of atoms in the |1⟩
state on the probe phase

N(', t) = N0 −(t) cos
(

' − 'C (t)
)

, (5.1)
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φ
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Figure 5.4: Schematic of the interferometric sequence illustrated using the collec-
tive spin on the Bloch sphere. The north pole represents the initial state |1⟩ of the
BEC and the south pole represents the impurity state |2⟩. (a) A short radiofrequency
pulse prepares the system in a population imbalanced collective superposition state.
(b) The subsequent evolution due to interactions between the impurity state and the
bosonic environment results in a phase evolution 'C and a contraction of the Bloch
sphere. (c) A second pulse with variable phase ' rotates the Bloch vector again. A
similar figure was published in Ref. [51]

whereN0 is the average number of atoms after the sequence, and (t) and
'C (t) are the amplitude and phase of the oscillations, respectively. The final
number of atoms in |1⟩ after the interferometry sequence is measured using
absorption imaging after 28 ms of TOF expansion, and Eq. (5.1) is fitted
to the data. Example interference signals are shown for 1∕kna = −1.8 inFig. 5.5 and as seen, the measured amplitude and phase depend on the time
between the interferometry pulses. In following sections, it is shown how
the amplitude and phase of the interferometry signal are directly related to
the impurity coherence, which has a temporal evolution determined by the
interactions between the impurity and medium state.

5.3 Theoretical Model of the Pulse Sequence

As mentioned, the experimentally measured interference signal is directly
related to the impurity coherence. This connection follows from a theoretical
model of the pulse sequence, which is outlined in this section. A more
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Figure 5.5: Interference signal recorded at different evolution times for 1∕kna =
−1.8. The final atom number is shown as a function of the probe phase and evolution
time, and the solid lines are fits of Eq. (5.1) to the data. The grey lines and open
circles show the extracted amplitude and phase, respectively. A similar figure was
published in Ref. [51].

detailed description can be found in the supplemental information of Ref.
[51].

The experimental sequence can be modelled theoretically by considering
the combined effect of the three steps shown in Fig. 5.4. Initially the system
is in the condensed state |BEC⟩ with no impurities present. The experiment
is then initialized by a rf pulse with phase ' = 0, duration �t, and where Ω
is the Rabi frequency. The Hamiltonian for the rf transfer can be written in
the rotating frame as

Hrf (') = ℏΩ
∑

k

[

e+i'c†kbk + e
−i�b†kck

]

, (5.2)

where the operators b†k and c†k create an atom with momentum k in the
medium and impurity states, respectively. Following the pulse, the system
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is allowed to evolve for duration t under the system Hamiltonian

H =
∑

k
�k
(

c†kck + b
†
kbk

)

+
B
2

∑

k,q,p
b†k+pb

†
q−pbqbk +




∑

k,q,p
b†k+pc

†
q−pcqbk,

(5.3)
where impurity-impurity interactions have been neglected, �k = ℏ2k2∕2m, mis the mass of 39K, and  is the system volume. Here  = 4πℏ2a∕m, B =
4πℏ2aB ∕m are the zero energy scattering matrices for the impurity-boson and
boson-boson interactions, respectively. Finally the rf evolution operator is
applied again with a variable phase '. Since the durations of the rf pulses in
the experiment are shorter than the subsequent dynamics, the time evolution
operator can be split in three parts

tot (t) = rf (', �t)rf (0, �t), (5.4)
where rf (', �t) = e−iHrf (')�t and  = e−iHt. By requiring that Ω�t ≪ 1 to
stay in the single impurity limit, the rf evolution operator can be expanded
to second order in Ω�t,

rf (', �t) ≃ 1 − iHrf (')�t −
(Hrf (')�t)2

2
. (5.5)

The mean number of atoms in the impurity state after the two pulses can
then be determined to

Nc (t) = ⟨BEC| †
tot(t)

∑

k
c†kcktot (t)|BEC⟩

= NB 2(Ω�t)2Re
[

1 + e−i'iGbc (t)
]

, (5.6)
whereNB is the initial number of atoms in the condensate and

Gbc (t) = −
i
NB

∑

k,q
⟨BEC|b†k(t)ck(t)c

†
q(0)bq(0)|BEC⟩ (5.7)

is the impurity-boson Green’s function with ck(t) =  †(t)ck(0) (t) the
time-evolved annihilation operator for the impurity, and likewise for bk(t).
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Since the medium atoms are condensed in the zero-momentum mode, the
dominant contribution to Gbc comes from k = q = 0 such that

Gbc (t) ≃ −i⟨BEC|c0(t)c
†
0(0)|BEC⟩ = G0(t), (5.8)

using b0|BEC⟩ ≃
√

NB |BEC⟩ and ⟨BEC|b†0(t) ≃ ⟨BEC|b†0(0) ≃
√

NB ⟨BEC|under the assumption that the impurity dynamics has negligible effect on
the BEC. The impurity-boson Green’s function is related to the normalized
impurity coherence through iG0(t) = C(t)∕C(0) [184]. By setting C(0) = 1
and dividing out the system volume  , the impurity density after the two rf
pulses becomes

nc (t) = nB 2(Ω�t)2Re
[

1 + e−i'C(t)
]

, (5.9)
where nB = NB ∕ is the initial density.

Since the experiment is performed in a harmonic trap, the atomic density
is spatially dependent. This can be taken into account by performing a
local density approximation nc (r, t) = nB (r)2(Ω�t)2Re

[

1 + e−i'C(r, t)
]

with C(r, t) being the local coherence. The number of impurities after the
two rf pulses then becomes

Nc = ∫ d3r nc (r, t) = NB 2(Ω�t)2Re
[

1 + e−i'C(t)
]

, (5.10)

where C(t) = ∫ d3r n(r)C(r, t)∕NB is now the trap averaged coherence.
Three-body recombination after the pulse sequence results in the twomedium
atoms being removed for every impurity and the final remaining number of
atoms is then

N = NB − 3Nc = NB
(

1 − 6(Ω�t)2Re
[

1 + e−i'C(t)
])

= N0 − 6NB (Ω�t)2|C(t)| cos(' − 'C (t)), (5.11)
where N0 = NB (1 − 6(Ω�t)2) and the coherence has been expressed in
terms of its amplitude and phase C(t) = |C(t)|ei'C (t). It can now be seen
that the final atom number has the same form as Eq. (5.1) which is fitted to
the interference signal, and the normalized coherence amplitude |C(t)| =
|(t)∕(0)| and phase 'C (t) can be extracted from fits of Eq. (5.1) to the
data.
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5.4 Theoretical Description of Impurity Dynamics

With the connection between the experimental signal and the impurity co-
herence established, the theoretical prediction for the temporal evolution
of the coherence is now considered. The impurity coherence is in general
equal to the Fourier transform of the impurity spectral function A(!) at zero
momentum

C(t) = 1
2π ∫

+∞

−∞
d!A(!)e−i!t, (5.12)

where A(!) describes the probability that a particle with momentum k (here
zero) has energy ℏ! and is thus related to the experimental spectra obtained
in spectroscopy measurements [39, 42, 43, 46, 47, 49, 50, 176]. Since
there is no exact expression for the spectral function for arbitrary interaction
strengths, the theoretical predictions for the coherence depends on the regime
of validity for the model of A(!) used in Eq. (5.12).

5.4.1 Short-Time Behaviour of the Coherence

The short-time behaviour of the coherence is determined by the high-energy
part of the spectral function. In this limit, the spectral function is determined
by two-body physics and an exact expression for A(!) can be determined
[191]

lim
!→∞

A(!) = 1
2π

C2
NB

√

ℏ
m

(

a∕aB − 1
)2

1 + ma2 !∕ℏ
⋅
1
!3∕2

= K
1 + !ta

⋅
1
!3∕2

. (5.13)

Here C2 = 8πmaB 2∕ℏ2 ⋅ dEBEC ∕daB is the two-body contact of the BEC,
K = (4∕3π) ⋅ (1 − aB ∕a)2(kn|a|)3∕

√

ta, and ta = ma2∕ℏ. By Fourier trans-forming Eq. (5.13), the following expression for the coherence can be ob-
tained

C(t) ≃1 − i
Emf t
ℏ

+ 2
3π
(kn|a|)3

[

1 − 2
√

π
eit∕taΓ

(

3
2
, i t
ta

)

]

, (5.14)

where Emf = 4πℏ2nB a∕m is the mean-field energy due to impurity state
interactions with the BEC and Γ is the incomplete gamma function. Since
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Eq. (5.13) is valid for high energies, Eq. (5.14) describes the coherence in
the short-time limit. Equation (5.14) has the limiting forms

C(t) =

⎧

⎪

⎨

⎪

⎩

1 − (1 − i) 16
9π3∕2

(

t
tn

)3∕2
t ≪ ta

1 + 2
3π
(kn|a|)3 − iEmf t∕ℏ − (1 + i)

(

t
tw

)1∕2
t ≫ ta.

(5.15)

That is, for short times t ≪ ta the coherence evolves universally with a power-law exponent of 3/2 and timescale tn which is independent of interaction
strength. Conversely, for t ≫ ta the dynamics is governed by the mean-field
phase evolutionEmf t∕ℏ and the coherence decays with a power-law exponent
of 1/2 on the interaction strength dependent timescale tw = m∕32πℏnB 2a4.Note, that the limiting cases of Eq. (5.15) are still only valid in the short-time
regime.

The origin of the power laws in Eq. (5.15) can be traced back to the
cross section �(k) = 4πa2∕(1 + (ka)2) for s-wave scattering between the
impurity and a boson from the condensate with wavenumber k. At time
t the characteristic collision energy is given by E ∼ ℏ∕t such that k =
√

2mE∕ℏ ∼
√

m∕ℏt and the typical velocity of the collision partners is
v ∼

√

ℏ∕mt. For short times t ≪ ta, the collision energies are high such
that ka ≫ 1. The cross section then becomes � ∼ 1∕k2 = ℏt∕m. Assuming
that the decoherence is caused by collisions, the coherence changes by
Ċ(t) = −nB �v. Integrating while setting C(0) = 1 then yields the (t∕tn)3∕2power law of Eq. (5.15). The same arguments can be used for t ≫ ta whichyields the (t∕tw )1∕2 power law. The time ta thus marks the crossover from
high-energy unitarity limited scattering with a cross section independent of
a, to the weak coupling regime with a cross section ∼ a2.

5.4.2 Many-Body Dynamics

Beyond the regime of two-body scattering described by Eqs. (5.14) and (5.15),
the dynamics of the system is governed by many-body physics. To describe
this regime, a diagrammatic theory [138, 192] can be used to obtain the
zero-temperature spectral function
A(!) = Z2π�(! − !P ) + 8π

ℏ3∕2nB
m3∕2!5∕2

⋅
Θ(!)

1 + ℏ
ma2!

(

1 − 4πℏnBa
m!

)2
. (5.16)
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Figure 5.6: Comparison between the diagrammatically calculated spectral function
and the high-energy limit for 1∕kna = −0.76. The diagrammatic result is shown as
an orange solid line, and the high-energy limit is shown in dashed purple. The inset
shows a zoom on the high energy tail, where the theories coincide. The figure is
adopted from Ref. [163].

Here �(x) is the Dirac delta function, Θ(!) is the Heaviside step function,
ℏ!P is the polaron energy andZ is the quasiparticle residue. Equation (5.16)
contains a delta-function at the polaron peak as well as a continuum of
high-momentum impurity states and Bogoliubov excitations. In Fig. 5.6
the spectral function of Eq. (5.16) is compared to the high-energy limit of
Eq. (5.13). Evidently, the diagrammatic results of Eq. (5.16) recovers the
exact result of Eq. (5.13) in the limit of large !, and furthermore describes
the low-energy behaviour governed by polaron peak and the many-body
continuum. By averaging Eq. (5.16) over the density distribution in the
harmonic trap and performing a Fourier transformation, the coherence can
thus be calculated at arbitrary times and interaction strengths, and compared
to the experiment.

5.4.3 Dynamical Regimes

Since Eq. (5.16) describes the whole energy spectrum and therefore the full
temporal evolution of the coherence, it can be used to extract the borderlines
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between the different regimes of impurity dynamics, being the strong and
weak coupling dynamics contained in Eq. (5.15) and the many-body regime,
respectively. The borderlines between the different regimes are shown in
Fig. 5.7, where they are drawn as sharp lines even though the transitions
are smooth. The borderlines in Fig. 5.7 can be extracted by considering the
relevant parts of the second term in the spectral function Eq. (5.16)

m3∕2!5∕2
[

1 + ℏ
ma2!

(

1 −
Emf
ℏ!

)2
]

(5.17)

where the second term of the parenthesis is written in terms of Emf . In
the limit of large ! the dynamical behaviour is governed by high-energy
two-body scattering and the second term in the square brackets can be
neglected. The spectral function thus goes as !−5∕2 resulting in the t3∕2
dynamics of Eq. (5.15). For lower energies, corresponding to longer times,
the term becomes relevant as ! < ℏ∕ma2 corresponding to t > ta, whichthus marks the crossover from strong coupling to weak coupling dynamics,
where the spectral function goes as !−3∕2 resulting in t1∕2 dynamics. Finally,
by considering the content of the inner parenthesis, the transition to many-
body dynamics can be found to occur when ! > Emf ∕ℏ corresponding to
t > tmf = ℏ∕Emf .The transition from weak coupling to many-body dynamics can only
occur for interaction strengths where ta remains the shortest timescale of the
system. This ceases to be the case for strong interactions when ta = tmf or
Emf ≥ ℏ2∕ma2 corresponding to 1∕(kn|a|) = (2∕3π)1∕3 ≃ 0.60. Beyond thisinteraction strength, the many-body regime emerges directly from the strong
coupling dynamics at the transition time tmb = m∕((16π2)1∕3ℏn

2∕3
B ) ≃ 1.4tn,which can be found from the condition 1∕(kn|a|) ≃ 0.60. Note that the

borderlines in Fig. 5.7 assumes a homogeneous density and that they should
not be understood as sharp boundaries, but as smooth transitions.

5.5 Experimental Sources of Decoherence

In addition to the decoherence caused by the dynamical scattering of impu-
rities, there are three experimental sources of decoherence that influence
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Figure 5.7: Dynamical regimes of impurity dynamics. The dashed line shows
the transition from two-body universal to weak coupling dynamics, the dotted line
shows the transition from weak coupling to many-body dynamics, and the dash-
dotted line shows the two-body universal to many-body transition. A similar figure
was shown in Ref. [51].

the interference signal, namely dephasing from the inhomogeneous density
distribution of the harmonic trap, the finite lifetime of atoms in the impurity
state, and shot-to-shot magnetic field fluctuations. These must all be taken
into account in order to compare the theoretically predicted behaviour of the
coherence to the experimental data.

Dephasing from Harmonic Trap

Within the harmonic potential provided by the ODT, the density distribu-
tion of the BEC follows the Thomas-Fermi profile described in Sec. 2.3.
Consequently, the density dependent terms in the model for the coherence
evolve differently across the trap with the fastest evolution in the central
region. In the collective spin picture of Fig. 5.4, the state thus becomes
broadened during the phase evolution between the two interferometry pulses.
The density distribution can be included in the theoretical predictions for
the coherence by performing a local density approximation as described in
Sec. 5.3, which in the short-time limits of Eqs. (5.14) and (5.15) corresponds
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Figure 5.8: Influence of the harmonic trap potential on the coherence. The co-
herence amplitude is shown for (a) 1∕kna = −2.0, (b) 1∕kna = −0.76, and (c)
1∕kna = 0.01. The diagrammatic prediction of Eq. (5.16) is shown with and
without trap dephasing in solid orange and dashed red, respectively. The general
short-time prediction in Eq. (5.14) is shown in dotted purple. None of the other
experimental decoherence mechanisms are included in the plot. A similar figure
was shown in Ref. [51].

to replacing the density by its average value, since all terms are linear in
density. The effect of the density distribution on the coherence is shown in
Fig. 5.8, where the predicted coherence from the diagrammatic theory is
shown with (solid orange) and without (dashed red) including the density
distribution. When excluding the density distribution, the coherence decays
slowly and for weak interactions it is predicted to settle at the quasiparticle
residue Z [184]. For stronger interactions, the coherence can display oscil-
lations due to interference between different parts of the spectral function.
This has been observed for the Fermi polaron in experiments employing an
approximately homogenous medium [44, 45]. For the experiments consid-
ered here, the additional decoherence from the density distribution averages
out the oscillations, and eventually results in a complete loss of coherence
preventing the extraction of Z.
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Impurity Lifetime

In order to vary the strength of the impurity-medium interactions, the experi-
ments are performed near a Feshbach resonance. As explained in Sec. 2.2.2,
the three-body loss coefficient scales as a4 and has an increasing influence on
the experimental signal as the scattering length diverges when approaching
the centre of the Feshbach resonance. The effect on the signal is a loss
of contrast as impurity atoms are lost between the two pulses of the inter-
ferometry sequence. To measure the lifetime of the impurity atoms, the
following method is employed: A BEC in the |1⟩ state is prepareed under
similar conditions to those of the interferometry experiments, and 10% of
the population is then transferred to the |2⟩ state in order to initialize the
loss measurement. The sample is then held for a variable time under which
three-body recombination takes place, removing two medium atoms for
every impurity atom. Subsequently, any remaining population in the |2⟩
state is transferred to the |F = 1, mF = 1⟩ ≡ |3⟩ state, which undergoes
rapid two-body spin changing collision with atoms in the |1⟩ state. As a
result, the atoms that are transferred to the |3⟩ state are still lost, however,
in this case only one atom in the |1⟩ state is lost for each impurity atom.
Finally the remaining number of atoms in the |1⟩ state is determined by
absorption imaging after TOF expansion. The experiment is repeated for
different values of 1∕kna, and the loss rate Γ is extracted by performing an
exponential fit ∼ exp (−Γt) to the remaining atom number. Figure 5.9 shows
the extracted loss rate as a function of 1∕kna together with an empirical fit
�1 + �2 exp(�3∕kna), and the inset shows example loss measurements. As
seen, the loss rate increases by an order of magnitude when approaching
the resonance centre at 1∕kna = 0. Note, that in reality the loss coefficient
reduces again on the positive side of the resonance, however, since the ex-
periments are only performed using attractive interactions and at unitarity,
the empirical fit is valid, and the losses are included in the theoretically
predicted coherence as C(t)→ C(t) exp(−Γt).

Magnetic Field Fluctuations

The third experimental decoherence mechanism comes from shot-to-shot
fluctuations in the magnetic field, which introduces an additional varying
detuning Δ between the rf pulse and the bare atomic transition. For each
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Figure 5.9: Loss rate of the impurity state under the employed experimental
conditions. The measured loss rates are shown as a function of inverse interaction
strength together with an empirical fit �1 + �2 exp(�3∕kna). Inset: Example loss
measurements for 1∕kna = −4.4 (blue), 1∕kna = −2.0 (green,) and 1∕kna = −0.45
(purple). The atom numbers have been scaled with the initial and final atom numbers,
and error bars have been omitted for clarity. A similar figure was shown in Ref.
[51].

experimental sequence, this detuning results in an additional phase shift of
2πΔ ⋅ t which leads to decoherence when averaging multiple experimental
runs. To include this effect, it is assumed that Δ follows a normal distribu-
tion exp (−�2∕2�2noise(t)

)

∕
√

2π�2noise(t), where �noise(t) = 2πΔnoise t and �
is the additional phase. Since the experimental data is collected over many
experimental sequences, the magnetic field fluctuations are included in the
coherence by integrating over the phase distribution

C(t)→ C(t) 1
√

2π�2noise(t)
∫

∞

−∞
d� exp(−i�) exp (−�2∕2�2noise(t)

)

. (5.18)

The magnitude of Δnoise is obtained by performing the interferometric mea-
surement at 1∕kna = −4.8, where interactions are sufficiently weak that
decoherence from higher-order impurity dynamics can be neglected. Instead
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Figure 5.10: Decoherence due to shot-to-shot fluctuations in the magnetic field.
The measured coherence amplitude is shown for 1∕kna = −4.8. The mean-field
coherence amplitude including the effects of the finite impurity lifetime and inhomo-
geneous density distribution is shown in dashed blue. A fit of Eq. (5.18) to the data
is shown in solid green and is used to determine the additional detuning originating
from shot-to-shot fluctuations of the magnetic field. A similar figure was shown in
Ref. [51].

the temporal evolution of the coherence is given by the mean-field energy
distributed over the harmonic trap ∫ d3r exp(−iEmf (r)t∕ℏ)n(r), the impu-
rity lifetime, and the shot-to-shot magnetic field fluctuations. The observed
coherence amplitude is shown in Fig. 5.10 together with the mean-field deco-
herence (dashed blue) and a fit of Eq. (5.18) withΔnoise as a fitting parameter
(solid green). The extracted detuning is given by Δnoise = 1.4(1) kHz whichcorresponds to ∼ 3mG (the relative Zeeman splitting between the |1⟩ and
|2⟩ states is 0.5 kHz∕mG at the relevant magnetic fields). In practice, deco-
herence from shot-to-shot fluctuations in the magnetic field primarily affects
experiments at weak interaction strengths, since for strong interactions the
impurity lifetime is the primary experimental decoherence source.
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Figure 5.11: Impurity dynamics for weak interactions. The measured coherence
amplitude (a) and phase (b) are shown for 1∕kna = −1.8. The diagrammatic
prediction is shown in solid orange, and the two-body universal and weak coupling
limits are shown in dashed blue and dash-dotted green, respectively. The smooth
transitions between the two-body weak coupling (green), and many-body regimes
(orange) is indicated by the colour gradient. A similar figure was shown in Ref.
[51].

5.6 Experimental Results

With models for the experimental decoherence sources, the data can now be
compared to the theoretical predictions for the coherence. The experiment
is performed at different values of 1∕kna ranging from weakly attractive to
unitary interactions, and experimental values for the coherence amplitude
and phase are extracted from fits of Eq. (5.1) to the interferometry signal,
which yields the amplitude of the Ramsey signal (t) and the coherence
phase 'C (t). As explained in Sec. 5.3, the normalized coherence amplitude
can then be determined as |C(t)| = |(t)∕(0)|. For each data set, (0) is
determined from a fit of the general short-time prediction (Eq. (5.14)) with
an overall amplitude to the data within tn. The theoretical predictions forthe coherence amplitude all include the experimental decoherence effects
described in Sec. 5.5.

Experimental results for weak interactions (1∕kna = −1.8) are shownin Fig. 5.11 with the coherence amplitude and phase in panels (a) and (b),
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respectively. The phase data is shown for a shorter time than the amplitude,
since the extracted phase becomes unreliable for longer evolution times.
The experimental data is compared to the theoretical short-time limits of
Eq. (5.15) with the two-body universal and weak coupling limits shown in
dashed blue and dash-dotted green, respectively. The diagrammatic predic-
tion is shown in solid orange, and the transition from weak coupling (green)
to many body dynamics (orange) is indicated by the colour gradient. For
the weak interactions considered here, the transition time from two-body
universal dynamics ta = 0.2tn is so short that it is unobservable within
the experimental resolution. As a consequence, both the amplitude and
phase data immediately follows the t1∕2 evolution of the two-body weak
coupling regime until t ∼ tmf , where it deviates from the two-body predic-
tion. From here the data continues to agree with the diagrammatic theory,
which includes many-body dynamics, across the investigated range. The
dynamical evolution of the impurity coherence thus shows how the system
is initially governed by two-body collisions before entering a regime where
a many-body description is necessary.

Figure 5.12 shows the experimental results for an intermediate interaction
strength of 1∕kna = −0.67 together with the two-body universal couplingand diagrammatic predictions, following the same line styles as Fig. 5.11.
The t1∕2 behaviour of the two-body weak coupling is not observable since
t ≫ ta is not reached before the smooth transition to many-body dynamics
and it is therefore not shown. The coherence amplitude is shown for the full
data range in panel (a) and panel (b) provides a zoom of the initial data for
the time span where the phase (panel (c)) can be reliably extracted. Here the
two-body universal regime is within the data resolution and is indicated by
the blue colouring. For this interaction strength, the data initially follows
the two-body universal t3∕2 behaviour before transitioning into the many-
body regime at t ∼ tmf . The data again shows good agreement with the
diagrammatic prediction for all evolution times.

In Fig. 5.13(a), the evolution of the coherence is shown for unitary inter-
actions (1∕kna = 0.01) with the coherence phase shown in the inset. For thisinteraction strength, the many-body dynamics emerge directly from the two-
body universal coupling regime, and the theoretical predictions are therefore
only shown for these cases. The line styles and colour gradients have the
same meanings as for the previous cases. For the coherence amplitude, the



Observation of a Lee-Huang-Yang Fluid 87

a

b c

Figure 5.12: Impurity dynamics for intermediate interaction strength. The mea-
sured coherence amplitude (a-b) and phase (c) are shown for 1∕kna = −0.67. Panel
(a) shows the coherence amplitude for the full data range, and panel (b) provides
a zoom of the initial data corresponding to the range where the extraction of the
phase is reliable. The diagrammatic prediction is shown in solid orange, and the
two-body universal limit is shown in dashed blue. The smooth transitions between
the two-body universal (blue), two-body weak coupling (green), and many-body
regimes (orange) are indicated by the colour gradients. A similar figure was shown
in Ref. [51].
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data initially follows the two-body universal prediction very well before
deviating and connecting with the diagrammatic many-body prediction at
longer times. For the coherence phase, the data shows excellent agreement
with both theoretical predictions within the duration where the phase can be
reliably extracted.

For long times the phase evolution 'C (t) → −Ep t∕ℏ is governed by
the polaron energy Ep . By differentiating the phase evolution to obtain the
instantaneous energy E(t) = −ℏd'C ∕dt, the dynamical emergence of the
polaron can therefore be observed. In Fig. 5.13(b), the instantaneous energy
is shown for unitarity interactions, where the experimental values have
been determined by piecewise linear fitting to the data. The instantaneous
energy extracted from the phase evolution of the diagrammatic prediction
and the equilibrated polaron energy [138] are shown in solid and dashed
lines, respectively. The data again follows the theoretical prediction well and
the measurement thus show the dynamical emergence of the Bose polaron
as the system equilibrates.

5.6.1 Dynamical Regimes

The dynamical evolution of the impurity coherence is governed by the
underlying collision processes as explained in Sec. 5.4.3, where the transition
times between the different regimes were determined by investigating the
spectral function (Eq. (5.16)). Here, these transition times are determined
experimentally by comparing the measured coherence amplitude to the
theoretical predictions.

The two-body universal to two-body weak coupling transition is given
by ta, which enters in the general prediction for the short-time behaviour
of the coherence in Eq. (5.14). In order to extract ta, a simultaneous fit of
Eq. (5.14) to the initial coherence amplitude and phase data is therefore
performed. Since the interferometry pulses have duration 0.5 µs ∼ 0.1tn, itis not immediately clear that ta which is on the same order of magnitude
can be extracted from the data. The specific value of ta however affectsthe functional shape of the coherence amplitude and phase for times much
longer than itself, and it can thus be extracted as explained in detail in Ref.
[52].
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Figure 5.13: Impurity dynamics at unitary interactions, 1∕kna = 0.01. (a) Mea-
sured coherence amplitude and phase (inset). The diagrammatic prediction is shown
in solid orange, and the two-body universal limit is shown in dashed blue. (b)
Instantaneous energy obtained from the time derivative of the coherence phase. The
diagrammatic prediction is shown in solid orange and the equilibrium polaron en-
ergy is shown in dashed orange [138]. The smooth transition between the two-body
universal coupling and many-body regimes is indicated by the colour gradient. A
similar figure was shown in Ref. [51].
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Figure 5.14: Transition times between the dynamical regimes of impurity dynamics
as a function of the inverse interaction strength 1∕kna. The theoretically predicted
regimes are shown using different background colours, and the smooth transitions
between them are are indicated by the gradients. The fitted values of of the two-body
universal to two-body weak coupling transition time ta are shown as circles, and
the experimental transition times from the two-body weak coupling and two-body
universal regimes to many-body dynamics are shown as a upwards and downwards
pointing triangles, respectively. A similar figure was shown in Ref. [51].

For the transition to many-body dynamics, no simple expression is avail-
able which can be used to determine the transition time, and a simple com-
parison between the experimentally measured coherence amplitude and the
theoretical prediction is therefore performed: The data point at the shortest
time, which is more than two standard errors away from the general short-
time prediction Eq. (5.14) is identified and the time halfway between this
and the previous data point then gives the experimental value for the onset
of many-body dynamics, with the error given by the data resolution.

This method works in the limits of weak and strong interactions, however,
for intermediate interaction strengths dephasing from the inhomogeneous
density distribution causes the diagrammatic result to coincide with the
short-time prediction for longer times as shown in Fig. 5.8(b), and no clear
transition can be identified.
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The dynamical regimes are shown in Fig. 5.14, where the theoretical
transition times determined for a homogenous system are shown by the
colour gradients, indicating that the transitions are smooth. The experimen-
tally determined values of ta are shown as circles, and the experimental
transitions from two-body weak coupling and universal dynamics to the
many-body regime, are shown as upwards and downwards pointing triangles,
respectively.

The experimental values for ta increase with stronger interactions show-
ing excellent agreement with the theoretically predicted transition time. This
highlights how the short-time behaviour of the coherence is determined by
the average density as explained in Sec. 5.5, since the theoretical transition
time is determined for a homogenous system.

For the many-body transitions, good agreement with the theoretical
transition time is found for unitary and intermediate interaction strengths,
whereas for weak interactions, the agreement is qualitative. Note, however,
that the employed method for extracting the many-body transitions relies
heavily on the quality of single data points. Moreover, for longer times the
density must be included by integrating over the its distribution, making
the comparison to the homogenous system less applicable. Together, the
extracted transition times nonetheless grant a complete picture of impurity
dynamics, showing how the system evolves from a regime governed by
few-body processes to one with emerging many-body correlations, which
signal the onset of polaron formation.

5.7 Summary and Outlook

In this chapter, the dynamical evolution of impurities in a BEC was investi-
gated using an interferometric method. The experiments yielded measure-
ments of the impurity coherence and enabled tracking the evolution of the
system from a coherent superposition state into polaronic quasiparticles.

Three distinct regime of impurity dynamics were identified theoretically
and measured experimentally from weakly attractive to unitary interactions.
At short times, a universal t3∕2 decay of the coherence was observed, originat-
ing in high-energy two-body scattering independent of the coupling strength
between the impurities and the bosonic medium. For weak interactions, an
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intermediate dynamical regime was identified with the coherence displaying
a t1∕2 decay originating in low-energy two-body collisions, before transition-
ing into a regime governed by many-body physics. For strong interactions,
the many-body dynamics was found to emerge directly from the two-body
universal coupling regime. Across the investigated interaction strengths,
good agreement was found between the experimental results and theoretical
predictions, which shows that the polaron phenomenon is well-understood in
the time domain. Together with the spectroscopic measurements in the fre-
quency domain [48–50], the results presented here contribute to a combined
description of the polaron.

The method employed here enables investigation of bosonic analogues
to Anderson’s orthogonality catastrophy [193] and transport processes [194,
195] in the time domain. Similar experiments performed at repulsive in-
teractions will be able to explore the combined effect of the two polaron
branches, and to investigate the multi-phonon bound states predicted for
repulsive interactions [183]. By increasing the population in the impurity
state, effective interactions between polarons could be investigated, which
are predicted to influence the transport properties in condensed matter sys-
tems [171]. Additionally, an increased impurity concentration could allow
for the spectroscopic observation of bipolarons, which are bound states of
two polarons [196]. Furthermore, the polaron energy at unitarity has been
predicted to be a universal function of |a−|n1∕3, where a− is the scatteringlength at which the first Efimov trimer appears [197], and this dependence
could be observed by spectroscopic measurements at unitarity with varying
density.

Currently, both interferometric and spectroscopic experiments are com-
plicated by the inhomogeneous density distribution due to the harmonic
trapping potential. In interferometric measurements, the inhomogeneous
density contributes with an additional dephasing mechanism, while spectro-
scopic signal are broadened due to the density dependence of the polaron
energy. Both types of experiments could thus be improved by performing
them in a so-called box trap, where a uniform density distribution can be
realized [198]. Initial considerations for realizing such a trap can be found
in Ch. 8.



CHAPTER 6
Lee-Huang-Yang Fluid

In many contexts, mean-field theory as exemplified by the GP equation
(Eq. (2.36)) provides a very good description of BECs. For large interaction
strengths one must, however, go beyond the mean-field picture of interactions
in order to accurately describe the system. The first beyond-mean-field
correction to the energy of a Bose gas is the LHY correction which includes
the zero-point energy of the Bogoliubov modes presented in Sec. 2.4.3. In
most cases, it results in a small correction to the dominant mean-field energy,
however, recently there has been great scientific interest in systems where
beyond-mean-field effects have a large influence. A striking example is the
LHY fluid proposed by our research group in 2018 [53], where by tuning
the atom numbers and scattering lengths of a Bose-Bose mixture, one can
realize a system where the interactions are entirely governed by quantum
fluctuations. In this chapter, the experimental realization of the LHY fluid is
presented, which was published as Editor’s Suggestion in Physical Review
Letters [54].

Prior to this work, the influence of the LHY correction has been observed
experimentally using several methods. The first observation used fermionic
6Li, where on the BEC side of the BEC-BCS crossover an up-shift of the
collective oscillation frequencies was measured in agreement with quantum
Monte Carlo simulations [164]. Following this, the LHY correction has
been observed in measurements of the equation of state for 6Li [41, 199] and
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7Li [200], and in Bragg spectroscopy measurements of 85Rb near a Feshbach
resonance [201]. In 2015, the LHY correction became a hot research topic
based on the proposal of Petrov [56], who showed that the repulsive energy
contribution from the LHY correction can be used to stabilize a quantum
mixture, which would otherwise collapse under attractive mean-field forces.
The resulting quantum droplets were subsequently observed experimentally
in both homo- [57–60] and heteronuclear [61] bosonic mixtures. Simulta-
neously, the LHY correction was also employed in the context of dipolar
quantum gases, where tuning the relative strengths of contact interactions,
dipole-dipole interactions, and quantum fluctuations lead to the formation
of dipolar quantum droplets [62–65]. More recently, this has culminated in
the observation of supersolid behaviour in these systems [66–68].

The chapter is structured as follows: First, the theoretical description
of a LHY fluid is presented in Sec. 6.1 based on Ref. [53]. Sec. 6.2 then
describes the experimental method used for realizing a LHY fluid in 39K.
Following this, the numerical simulations used to model the experimental
system are described in Sec. 6.3. Finally, in Sec. 6.4 the experimental results
are compared to simulations, and in Sec. 6.5 an outlook is given.

Within the work of this chapter, I have been involved in all aspects
besides the theoretical description in Sec. 6.1, which was developed by Nils
B. Jørgensen. The experiments were designed and conducted in cooperation
with the rest of the research group, while the simulations and data analysis
were performed by me.

6.1 Theoretical Description of a LHY Fluid

The starting point for the theoretical description of a LHY fluid is a two-
component BEC at zero temperature. Excluding the LHY correction, it is
described by the mean-field energy functional

EMF = ∫ dr
(

∑

i

[

ℏ2|∇ i|2

2mi
+ Vini

]

+ 1
2
∑

ij
gijninj

)

, (6.1)

where  i(r) =
√

Ni�(r) is the condensate wave function with atom number
Ni and single-particle wave function�i(r), and ni(r) = | i(r)|2 is the density
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of component i. Furthermore, the coupling strengths gij = 2πℏ2aij∕mij arethe same as in Sec. 2.3.4, the two components have equal masses m =
m1 = m2, and the external potential is a spherically symmetric harmonic
oscillator, Vi(r) = V1(r) = V2(r) = m!20r

2∕2. For a specific choice of
interaction strengths and relative densities g12 = −√g11g22, corresponding
to �a = a12 +√

a11a22 = 0, and n2 =
√

g11∕g22n1, all mean-field terms in
Eq. (6.1) cancel and the system becomes non-interacting at the mean-field
level. In this case, the interactions are governed by the next-order LHY
correction. For a two-component Bose gas, it is given by [56, 202]

ELHY


= 8
15π2

m3∕21 (g11n1)5∕2f

(

m2
m1
,
g212
g11g22

,
g22n2
g11n1

)

, (6.2)

where f > 0 is a dimensionless number. For the homonuclear case, f is
given by [56]

f (1, x, y) = 1

4
√

2

∑

±
(1 + y ±

√

(1 − y2) + 4xy)5∕2, (6.3)

whereas for the heteronuclear case, an effective expression for Eq. (6.2) has
been derived recently [203]. Using Eq. (6.3), the LHY energy functional
Eq. (6.2) can be written in terms of the scattering lengths

ELHY


=
32
√

2π
15

ℏ2

m
∑

±
(a11n11 + a22n2 ± �)5∕2, (6.4)

where � = [(a11n1 − a22n2)2 + 4a12n1n2]1∕2. For �a = a12 +
√

a11a22 = 0
and n2 =

√

g11∕g22n1 Eq. (6.2) thus becomes
ELHY


=
256

√

πℏ2

15m
(n|a12|)5∕2, (6.5)

where n = n1 + n2. Including this term in the energy functional and defin-
ing | |2 = | 1|2 + | 2|2 with  2 =  1(g11∕g22)1∕4 then yields the single-
component energy functional

E = ∫ dr
[

ℏ2|∇ |2

2m
+ V | |2 +

256
√

πℏ2

15m
(|a12|)5∕2| |5

]

, (6.6)
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and this system is denoted a LHY fluid. The corresponding GP equation is

� =

[

− ℏ
2

2m
∇2 + V (r) +

128
√

πℏ2

3m
|a12|

5∕2
| |3

]

 , (6.7)

with the chemical potential �. Equation (6.7) is analogous to Eq. (2.36) for a
single-component BEC, but with a | |3 term instead of usual the | |2 term
frommean-field interactions. The LHY fluid thus has promising applications
in the context of quantum simulation, since it allows the simulation of
systems with a quartic nonlinearity in the wave function. Similar to a single-
component BEC, the strength of the LHY interaction can be characterised
by the ratio of the interaction energy to the kinetic energy. For the LHY
fluid, this is given by the dimensionless parameter U = N3∕2

|a12∕aho |5∕2,which is used to characterise the LHY interaction strength in the following
sections.

6.1.1 Monopole Oscillation Frequency of a LHY Fluid

Measurements of collective excitations serve as a powerful probe of the
underlying interactions in ultracold gases. Indeed, some of the first BEC
experiments [204–207] confirmed the theoretical predictions [208–210] for
the oscillation frequencies of a BEC in an asymmetric trap by employing
a quick step in magnetic field gradient, modulating the curvature of the
magnetic field, or shining in a far-detuned laser beam. Since then, collective
excitation measurements have continued to find applications in the field of
ultracold gases. In particular, they are sensitive to beyond mean-field effects
as evident from the first measurement of the LHY correction [164], in the
context of dipolar supersolids [211, 212], and as a probe of the three-body
scattering hypervolume [71]. Thus, the monopole oscillation frequency can
serve as a probe of the LHY interactions and can be used to confirm the
realization of a LHY fluid.

By inserting a trial wave function into Eq. (6.6) and expanding the
resulting effective potential around equilibrium, the monopole oscillation
frequency of a LHY fluid can be determined to [53]

!LHY = !0

(

4 + 45
8
ELHY
Epot

)1∕2

, (6.8)
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Figure 6.1: Comparison of the monopole oscillation frequencies of a LHY fluid
(red) and a single-component BEC (green) in a spherically symmetric trap. The
oscillation frequencies are shown as a function of the corresponding dimensionless
parameters for the interaction strength (N3∕2

|a12∕aho |5∕2 for the LHY fluid and
Na∕aho for the BEC), and the Thomas-Fermi limits for both cases are shown as
dashed lines.

where ELHY and Epot are obtained by evaluating the LHY and potential en-
ergy terms from Eq. (6.6). As seen from Eq. (6.8), the monopole frequency
of the atomic cloud constitutes a direct probe of the LHY interaction energy.
In the non-interacting limit, ELHY can be neglected and Eq. (6.8) yields
!non-int ∕!0 = 2, which is the usual result for non-interacting particles con-fined in a harmonic oscillator potential. In the Thomas-Fermi limit, where
the LHY energy dominates the zero-point kinetic energy !LHY, TF ∕!0 =
√

13∕2 ≃ 2.55. For comparison, applying the same method to a single-
component BEC yields [12]

!BEC = !0

(

4 +
3EMF
2Epot

)1∕2

, (6.9)

which has the same non-interacting limit of!non-int ∕!0 = 2 as the LHY fluid,
but a lower frequency in the strongly interacting limit !BEC, TF ∕!0 =

√

5 ≃
2.24. The monopole frequency of the LHY fluid thus experiences a bigger
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shift for increasing interactions than a single-component BEC. In Fig. 6.1,
the monopole oscillation frequencies of a LHY fluid and a single-component
BEC are shown as a function of their respective dimensionless parameters
for the interaction strength. The monopole frequency of the system can thus
serve as a probe of the LHY interactions.

6.2 Experimental Method

In order to realize a LHY fluid experimentally, the two employed states must
feature a favourable Feshbach resonance structure for realizing �a = 0. This
is the case for the |F = 1, mF = −1⟩ ≡ |1⟩ and |F = 1, mF = 0⟩ ≡ |2⟩
states of 39K, which were also used in experiments on homonuclear quantum
droplets [57–60] and in the polaron experiments of Ch. 5. The Feshbach
resonance structure for the two states is shown in Fig. 6.2 with the scattering
lengths for collisions between atoms in state |1⟩ shown in red, between atoms
in state |2⟩ shown in green, and the scattering length between the two states
shown in dashed blue.

Based on models for the Feshbach resonances presented in Refs. [59,
84, 86] the system is found to fulfil �a = 0.0(3) a0 at 56.83G with a11 =
33.3(3) a0, a22 = 84.2(3) a0, and a12 = −52.97(1) a0. This magnetic field is
shown as a dotted black line in Fig. 6.2, and with these scattering lengths,
the requirement for the relative densities is n2∕n1 = 0.629(3) correspondingto 40% of the total atom number in state |2⟩.

The experiment starts from an almost pure BEC in the |1⟩ state prepared
at a homogeneous magnetic field of 39.6G in an ODT composed of beams
along the two horizontal axes as described in Ch. 4. From here, the magnetic
field is linearly ramped to the target field in the vicinity of �a = 0 over 10 ms.
Following the magnetic field ramp, the vertical ODT beam is turned on and
the three ODT beam intensities are linearly ramped over 0.3 seconds to the
desired intensities for realizing a symmetric trapping potential. Subsequently,
a rf pulse of variable duration tuned to the bare atomic transition transfers
part of the atoms to the |2⟩ state, thus realizing the desired atom number
ratio. Due to the sudden change in interaction strengths resulting from the rf
transfer, the system starts to contract and strong monopole oscillations are
initialized directly by the preparation method. A schematic representation of
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Figure 6.2: Feshbach resonance structure in the vicinity of �a = 0. The scattering
lengths for collision between atoms in state |1⟩ is shown in red [84], between atoms
in state |2⟩ is shown in green, and the scattering length between the two states is
shown in dashed blue [86]. The magnetic field where �a = 0 is shown as a dotted
black line. The green curve for collisions between atoms in state |2⟩ is provided by
the group of S. Kokkelmans and is based on the K–K potentials of Ref. [213].

the experiment is shown in Fig. 6.3(a) which displays a LHYfluid undergoing
monopole oscillations in an ODT composed of three beams.

After the transfer, the system is held for a variable hold time before
being released from the trap. During 28 ms of TOF expansion, a magnetic
field gradient of 3 ms duration is applied to separate the two states before
absorption imaging, as shown in the typical absorption image displayed in
Fig. 6.3(b).

The two clouds are analysed separately and the cloud radii along the
y- and z-directions are extracted by fitting a Thomas-Fermi profile to the
images for each evolution time. Figure 6.3 shows a typical measurement at
�a = 0, where the atom number ratio was tuned to the required value for LHY
fluid. The radii along the y- and z-directions after 28 ms of TOF are shown
as blue dots and red triangles, respectively, and the grey lines are fits of a
model function to the mean radius. The evolution of the |1⟩ and |2⟩ states
are shown in panels (a) and (b), respectively. The temporal evolution in the
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Figure 6.3: (a) Schematic representation of the experiment showing a LHY fluid
undergoing monopole oscillations in a spherical potential composed of three red-
detuned laser beams. (b) Typical absorption image after time-of-flight expansion
during which atoms in states |1⟩ and |2⟩ are separated by a magnetic field gradient.
A similar figure was published in Ref. [54].

radii feature large amplitude oscillations due to the experimental preparation
method. For both states, the different radii oscillate in phase confirming that
the oscillations are monopolar. Furthermore, the two states initially oscillate
jointly, however with increasing time, inelastic losses in the |2⟩ state [57–60]
result in a small phase difference and a deviation from regular sinusoidal
behaviour.

6.3 Numerical Simulations

Since the system is initialized out of equilibrium and features large ampli-
tude oscillations and inelastic losses, a direct comparison to the theoretical
prediction of Sec. 6.1 is not possible. In particular, the asymmetric inelastic
losses result in a deviation from the ideal density ratio for a LHY fluid, which
render the single-component framework of Eq. (6.7) invalid with increasing
evolution time. In order to model the experiment, detailed simulations of the
full two-component system including the LHY contributions and inelastic
losses are therefore performed using extended GP equations. These can be
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Figure 6.4: Extracted BEC radii of atoms in states |1⟩ (a) and |2⟩ (b) after 28 ms
time of flight as a function of evolution time. The radii along the y- and z-directions
are shown as blue circles and red triangles, respectively, and the grey lines are fits
of Eq. (6.15) to the mean radius. The data was recorded for !0 = 2π × 113.1(6)Hz
andN = 2.3(3) × 104 corresponding to U = 0.5(1). A similar figure was published
in Ref. [54].

written as
�i i =

(

− ℏ2

2mi
∇2 + V + �(i)MF + �

(i)
LHY

)

 i, (6.10)

where �i is the chemical potential, V (r) = m!20r
2∕2 is the spherically

symmetric potential, and contributions from both mean-field interactions
�(i)MF and quantum fluctuations �(i)LHY are included. For equal masses, the
mean-field contributions are given by

�(i)MF =
4πℏ2
m

(

aiini + aijnj
)

, (6.11)
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and based on Eq. (6.4), the contribution from quantum fluctuations can be
written as

�(i)LHY =
16
√

2π
3

ℏ2

m
∑

±

[(

aii ±
a2iini − aiiajjnj + 2a

2
ijnj

√

(aiini − ajjnj)2 + 4a2ijninj

)

×
(

aiini + ajjnj ±
√

(aiini − ajjnj)2 + 4a2ijninj

)3∕2
]

,

where the chemical potentials have been determined via the usual relation
�i = )E∕)Ni. Note that for cases where �a < 0, �(i)LHY acquires a small
imaginary component, however, as pointed out in Ref. [56], the LHY energy
is insensitive to small variations in �a, and in particular its sign. This has
justified setting �a = 0 explicitly in previous work on self-bound droplets
[56, 58, 214]. Here, only the real part of �(i)LHY is included in the numerical
simulations. Note that a consistent theory which avoids this issue was
recently developed [215].

To include inelastic losses in the dynamical simulations, empirical loss
terms are added to the right hand side of the time-dependent generalization
of Eq. (6.10) as described in Sec. 2.3.3 and previously employed in Refs.
[58, 60, 61, 97]. For each component i the loss terms take the form

− iℏ
2

(

Kiii| i|
4 + 2

3
Kiij| i|

2
| j|

2 + 1
3
Kijj| j|

4
)

 i, (6.12)
where, Kijk denotes the three-body loss coefficients and the factors in front
of each term take into account how many atoms are lost by the given loss
process. The three-body loss coefficients are given by

Kiii =
1
3!
K th
iii

[

1 + 6
n2i

)(ELHY∕)
)gii

]

, (6.13)
and

Kiij =
1
2!
K th
iij

[

1 + 2
n2i

)(ELHY∕)
)gii

+ 2
ninj

)(ELHY∕)
)gij

]

, (6.14)

where K th
ijk denote the thermal three-body loss coefficients, the factors 1∕2!

and 1∕3! are due to the indistinguishability of bosonic atoms [98, 99], and
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the terms involving the energy density ELHY∕ given in Eq. (6.4) include
beyond mean-field corrections to the three-body correlation functions of the
mixture [59].

6.3.1 Modelling the Experiment

Based on the equations describing the physical system given above, the exper-
imental procedure can be modelled, which is done using the two-component
framework of the numerical toolbox GPELab [101, 102]. The system is de-
scribed as two interacting BECs and thermal atoms are therefore neglected in
the analysis. As evident from Fig. 6.4, the dynamics of the system occurs on
a millisecond time scale, and since the experiment is initialized by a rf pulse
of microsecond duration, the transfer is modelled as follows: First the ground
state of a 39K BEC ofN1 = N atoms in the |1⟩ state is calculated using the
single-component GP equation (Eq. (2.36)) extended to include the LHY
correction (Eq. (2.57)). The BEC is confined in a the spherical trap potential
and the scattering length a11(B) is chosen to correspond to the experimental
value set by the magnetic field B. Subsequently, the mixture is initialized by
copying the calculated wave function and adjusting the atom numbersN1and N2 to the desired ratio. Since the wave function of state |2⟩ is copied
from the calculated wave function of state |1⟩, adjusting the relative atom
numbers directly translates into the density ratio. The scattering lengths a12and a22 are likewise chosen according to the magnetic field. Note that this
model for the transfer assumes that the initially created superposition state
decoheres fast enough that it can be considered a mixture from the beginning.
The dynamical evolution of the two wave functions is then calculated using
the extended GP equations described above. The loss coefficients involving
atoms in the |1⟩ state have previously been measured to be compatible with
the 39K background value of 7.74 × 10−29 cm6s−1 [59, 89, 216], and this
value is therefore used for K th

111, K
th
112, and K th

122. The loss coefficient for the
channel involving three |2⟩ atoms is set to K th

222 = 5.4 × 10
−27 cm6s−1 based

on Ref. [58], which is compatible with measurements in Ref. [59].
Similar to the experiment, the system is initialized out of equilibrium and

the wave functions evolve dynamically as a response to the transfer without
any adjustment of the confining potential. Figure 6.5 shows results of the dy-
namical two-component simulations for �a = 0 and n2∕n1 =

√

a11∕a22 such
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Figure 6.5: Typical results of the dynamical two-component simulations. (a)
Simulated radii for a LHY fluid without including losses. (b-c) Simulated radii
(b) and atom numbers (c) for a LHY fluid including inelastic losses. Results for
atoms in states |1⟩ and |2⟩ are shown as solid orange and dashed purple lines,
respectively. The simulations were performed using a spherical trap with trap
frequency !0 = 2π × 113.6Hz and atom number N = 4 × 104 corresponding to
U = 1.2. Panels (b) and (c) were published in a similar figure in Ref. [54].

that the system is initialized as a LHY fluid. The simulations were per-
formed using a spherical trap with !0 = 2π × 113.6Hz and atom number
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N = 4 × 104 corresponding to U = 1.2. Panel (a) shows the simulated root-
mean-square radii of the wave functions for the |1⟩ (solid orange) and |2⟩
(dashed purple) states as a function of time without including inelastic losses.
Similar to the experiment, the transfer initializes large amplitude oscillations
as the system contracts towards its new equilibrium radius. When excluding
losses, the wave functions of the two states oscillate jointly throughout the
simulation duration with only minor differences appearing in the numerically
calculated radii.

Panels (b-c) show the corresponding simulation results when including
inelastic losses. The simulated radii are shown in panel (b), and the cor-
responding atom numbers are shown in panel (c). As the clouds contract,
the density increases which results in increased inelastic losses coinciding
with the minima in the radii. As expected, this severely influences the atom
number in state |2⟩, leading to a decay in the oscillations. Since the losses
primarily affect atoms in state |2⟩, the density ratio starts to deviate from
n2∕n1 =

√

a11∕a22 resulting in increasing mean-field interactions. As a
results, the atoms in state |1⟩ feel an additional repulsion, which explains the
increasing offset and amplitude visible in their cloud radius. The oscillation
frequency is therefore determined both by the initial evolution governed by
the dominant LHY interactions, as well as the further evolution, where the
mean-field interactions become increasingly relevant.

The evolution of the simulated radii r as a function of time t is fitted
using the function

r(t) = r0 + st + A sin(!t + �) exp(−t∕�), (6.15)
where r0 is an offset radius, s is a slope, A is the oscillation amplitude, !
is the angular frequency, � is a phase offset, and � is the time constant
describing the growth or decay of the oscillations. Note that this function
does not include the frequency chirp arising from the increasing mean-
field interactions, and it therefore extracts the average oscillation frequency
within the considered evolution time. As a consequence, it is essential that
the same time span is considered when comparing the extracted frequency
from simulation and experiment.

In practice, a duration of 13 ms is chosen in order to cover ∼ 3 oscillation
periods, while a sizeable fraction of atoms remain in the |2⟩ state. Due to the
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Figure 6.6: Simulated oscillation frequencies of atoms in the |1⟩ state as a function
of LHY interaction strength. Results with and without inelastic losses are shown as
blue circles and green squares, respectively. The low-amplitude limit is shown as
a red line and the non-interacting limit is shown as a dashed black line. A similar
figure was published in Ref. [54].

strong losses of atoms in state |2⟩, the experimental data quality is generally
much better for state |1⟩, and the oscillation frequency is therefore extracted
from this state when comparing the simulated oscillations to experiment.

In Fig. 6.6 the simulated monopole oscillation frequency of the |1⟩
state is shown as a function of the LHY interaction strength for a spherical
trap with !0 = 2π × 113.6Hz based on the typical experimental values.
Separate simulations have confirmed that varying the trap frequency in
the range 111-118 Hz has negligible influence on the extracted frequency.
The simulation results with and without including losses are shown as blue
circles and green squares, respectively. For comparison, the theoretical
predictions for an ideal LHY fluid in the low-amplitude limit (Eq. (6.8))
is shown in red, and the non-interacting limit is shown in dashed black.
For small U all results that include the LHY correction show an upward
trend, however with increasing U , the simulated large-amplitude oscillations
feature a pronounced reduction in frequency compared to the low-amplitude
case. Including inelastic losses result in a further reduction of extracted
frequency, which settles at !∕!0 ∼ 2.18 for the investigated trap.
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Figure 6.7: Simulated energy contributions from interactions throughout the exper-
imental duration. The LHY and mean-field energies per particle are shown in solid
blue and dashed orange, respectively, for U = 0.15 (a), U = 0.27 (b), U = 0.58 (c),
U = 1.2 (d), U = 2.2 (e), and U = 5.0 (f). A similar figure was published in Ref.
[54].

6.3.2 Energy Evolution

The inelastic losses result in a violation of n2∕n1 =
√

a11∕a22 , and it is
therefore natural to consider to which extent the realized system can be
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considered a LHY fluid. In order to evaluation this question quantitatively,
the evolution of the LHY and mean-field energies throughout the simula-
tion duration are considered. In practice this corresponds to evaluating the
mean-field and LHY contributions to the energy by numerically integrating
the corresponding energy density over all space using the calculated wave
functions. In Fig. 6.7 the LHY (blue) and mean-field (dashed orange) ener-
gies per particle are shown for selected values of U . The energies evolve
dynamically showing peaks as a consequence of the increased density as
the system contracts. For small U corresponding to panels (a-c), the LHY
energy dominates the mean-field energy throughout the data range and the
system can safely be labelled a LHY fluid within the first three oscillations.
For larger U the mean-field energy, however, becomes comparable to the
LHY energy at the second contraction as exemplified in panels (d-f) and
the system can only initially be considered a LHY fluid. Nonetheless, the
initially dominant LHY interactions has a large influence on the evaluated os-
cillation frequency as evident from Fig. 6.6 when comparing the simulation
results to the non-interacting limit of !∕!0 = 2.Importantly, the deviation from an ideal LHY fluid is as a consequence
of the experimental preparation method, which results in enhanced losses
due to the strong contraction, and its lifetime could potentially be increased
by preparing the system using another method.

6.4 Experimental Results

Based on the detailed theoretical description, a comparison with experimen-
tal data is now possible. In the following, all experiments are initialized as
described in Sec. 6.2. A BEC in the |1⟩ state is prepared in a spherical trap
at the target magnetic field, and the experiment is initialized by transferring
a fraction of the population to the |2⟩ state using a rf pulse. The duration of
the rf pulse is chosen based on a measurement of Rabi oscillations between
the |1⟩ and |2⟩ states using thermal clouds, performed at a magnetic field of
56.831(2)G corresponding to �a = 0. The state composition was analysed
by applying a magnetic field gradient during TOF expansion, and in Fig. 6.8
the population in the |2⟩ state is shown as a function of pulse duration. The
line shows a parabolic fit to the data, which is used to extract the initial
population in a given experiment from the applied pulse length.
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Figure 6.8: Population in the |2⟩ state as a function of the duration of the rf pulse.
The measurement was performed using thermal clouds at the magnetic field of
56.831(2)G corresponding to �a = 0. The line shows a quadratic fit to the data,
which is used to determine the population from the pulse length in the different
experiments. The error bars are smaller than the markers.

The resulting oscillation data after performing the rf transfer has the form
shown in Fig. 6.4. In order to ensure that the oscillations are monopolar,
Eq. (6.15) is first fitted separately to the radii along the y and z directions
to extract the oscillation frequencies !i and the corresponding fit errors.
The frequency difference �! = |!y − !z| is then evaluated and data where
�! = 0 does not lie within a 2� confidence limit is discarded. For data
where the criterion is fulfilled, another fit of Eq. (6.15) to the mean radii
r = (ry + rz)∕2 is performed in order to determine the monopole oscillation
frequency !.

The atom number for each experiment is determined from the number
of atoms in the |1⟩ state before the rf pulse. This method is employed
because the severe inelastic losses of state |2⟩ reduce the atom number in the
beginning of the TOF when the density is still large. The trap frequencies
are measured using the method described in Sec. 4.4, and the values for the
employed traps are given in Appendix A.1 along with the deviations from
the geometric mean along the individual axes.
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6.4.1 Interaction Strength

In a first experiment, the monopole oscillation frequency was investigated
as a function of the LHY interaction strength by preparing the system at
�a = 0 and employing a rf pulse of 1.3 µs duration to realize the density ratio
n2∕n1 =

√

a11∕a22 . The LHY interaction strengthU was varied by adjusting
the total number of BEC atoms in the |1⟩ state before the rf pulse through
the loading time of 39K in the dual-species MOT, and the trap frequency was
kept in the range of 111-116 Hz1.

The experimental data is shown in Fig. 6.9 where the different markers
correspond to measurements using different trap frequencies as given in the
caption. The vertical error bars are dominated by the uncertainty on the trap
frequency !0, and the horizontal errors are dominated by the uncertainty
on the atom number. The solid blue line shows the simulated oscillation
frequencies calculated for !0 = 2π × 113.6Hz including inelastic losses,
and the dotted blue line shows simulation results without losses. These
curves were also shown in Fig. 6.6. The loss coefficient involving three
atoms in the |2⟩ state K th

222 is two orders of magnitude larger than the other
coefficients, and it therefore contributes with the largest source of error on
the numerical simulations. In the droplet experiments of Refs. [58, 59] an
uncertainty on the value ofK th

222 of a factor 2 is given, which is therefore usedas an upper bound for the loss coefficient. Simulation results where K th
222has been multiplied by a factor 2, while keeping the other loss coefficients

constant, are therefore shown as a dash-dotted blue line. For comparison, the
low-amplitude limit of the LHY fluid is shown in red and the non-interacting
limit is shown in dashed black.

The experimental data follows the simulated results including losses
very well, showing an initial increase in oscillation frequency until U ≃ 1.5,
before settling on a value determined by the influence of the large ampli-
tude oscillations and losses. The measured oscillation frequencies are thus
consistent with the theoretical prediction for a LHY fluid undergoing large
amplitude oscillations and decaying via losses of the |2⟩ state. Addition-
ally, the experimental data differs strongly from the non-interacting limit
highlighting the large influence of the LHY correction on the oscillation
frequency, even for large U where the LHY energy only dominates initially
as shown in Fig. 6.7.

1: Changes in !0 from day to day are inevitable because of drifts in the optical setup
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Figure 6.9: Observed monopole oscillation frequency as a function of the inter-
action strength of the LHY fluid for spherical traps with !0 = 2π × 113.1(6)Hz
(circles), 113.7(1)Hz (squares), 115.3(4)Hz (diamonds), 111.1(3)Hz (downwards
triangles), and 110.9(5)Hz (upwards triangles). Simulated results calculated for
!0 = 2π × 113.6Hz including inelastic losses are shown as a solid blue line. The
dotted and dash-dotted lines correspond to simulations without losses and a doubled
loss coefficient for the channel involving three atoms in the |2⟩ state, respectively.
The red line shows the monopole frequency of an ideal LHY fluid in the low-
amplitude limit and the dashed black line shows the non-interacting limit. A similar
figure was published in Ref. [54].

6.4.2 Magnetic Field Strength

In a second set of experiments, the monopole oscillation frequency was
investigated as a function of magnetic field around the optimal value cor-
responding to �a = 0. The experiment was performed using a spherical
trap with !0 = 2π × 110.9(5)Hz and atom numberN = 9.4(6) × 104. This
corresponds to U = 4.1(4) for �a = 0 and is thus in the limit of relatively
large interaction strengths. As shown in Sec. 6.3.2, this means that the LHY
and mean-field contributions to the energy are similar in magnitude after the
first contraction. It is therefore interesting to investigate how the competition
between the large LHY interactions and the strong losses, which pull the
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system towards a mean-field description, influence the measured oscillation
frequency. The duration of the rf pulse was kept constant throughout the
measurement, and the ideal density ratio n2∕n1 =

√

a11∕a22 was thus onlyfulfilled initially for the data point corresponding to �a = 0. Within the
range of employed magnetic fields, this corresponds to a relative deviation
of ±10%, which is included in the simulations.

Figure 6.10: Monopole frequency of the spin mixture depending on magnetic field
and �a. Experimental results for !0 = 2π × 110.9(5)Hz and N = 9.4(6) × 104
corresponding to U = 4.1(4) are shown as grey points. Simulated results using
the same parameters with and without including the LHY correction are shown in
blue and orange, respectively. Here, the solid lines correspond to the best values for
the loss coefficients, the dash-dotted lines feature a doubled loss coefficient for the
channel involving three atoms in the |2⟩ state, and the dotted lines neglect losses.
The shaded region indicates the uncertainty on the calculated value of �a at the
optimal magnetic field of 56.83G. The horizontal errors on the experimental results
are smaller than the markers. A similar figure was published in Ref. [54].

The experimentally extracted oscillation frequencies are shown in Fig. 6.10
as a function of magnetic field and �a. As evident from Fig. 6.2, a11 and a12
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are approximately constant within the investigated magnetic field regime and
�a is therefore primarily determined by a22. The grey shading corresponds
to the uncertainty on �a at the optical magnetic field of 56.83G, which is cal-
culated by propagating the uncertainties on the individual scattering lengths
into �a. Simulation results including the LHY terms in the extended GP
equations are shown using the same line styles as in Fig. 6.9, and simulation
results excluding the LHY terms are shown in orange2. Without the repul-
sive LHY contribution, the inelastic losses of atoms in state |2⟩ are further
enhanced, and for �a ≲ 0 the simulated radii therefore feature a pronounced
kink after the first contraction where most of the atoms in the |2⟩ state are
lost. This results in bad fits of Eq. (6.15) and the orange lines therefore only
resemble the qualitative behaviour of the monopole oscillation frequency.
A comparison of the simulated oscillations with and without including the
LHY correction is shown in Appendix A.2, where the effect of neglecting the
LHY correction is discussed. For magnetic field corresponding to �a < 0
the relative density ratio starts below the optimal value n2∕n1 <

√

a11∕a22due to the constant duration of the rf pulse. With increasing hold time in the
trap, the losses of atoms in state |2⟩ result in a further decrease of n2∕n1, anddroplet formation is thus not allowed. Nonetheless, the simulation results
without losses show an increase in frequency for increasingly negative �a,
which agrees qualitatively with the prediction for quantum droplets [56, 217,
218].

For �a ≳ 0 the experimental data follows the simulation results including
the LHY terms and the best value for the loss coefficients very well. For �a <
0 the agreement is less good which can be attributed to the large dependence
on the exact values of the loss coefficients in this regime. The large influence
of the LHY interactions on the measured oscillation frequency is clearly
seen when comparing to the simulation results excluding the LHY terms.
Here the oscillation frequency drops steeply towards the non-interacting
limit of !∕!0 = 2 when approaching �a = 0 from the positive side and for
�a < 0 the system collapses due to the attractive mean-field interactions.
Similar to the experiments on quantum droplets, the repulsive interaction
from quantum fluctuations thus prevents the mixture from collapsing, and the
experimentally determined oscillation frequency is stable against variations

2: For the simulations excluding LHY terms in the extended GP equations, the terms involving
ELHY ∕ in Equation (6.14) have also been neglected.
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in the magnetic field. This agrees with the theoretical prediction of [53],
which showed that the monopole frequency of the LHY fluid is stable in a
window around the ideal scattering lengths for the lossless case.

6.4.3 Atom Number Ratio

In the final set of experiments, the monopole oscillation frequency was in-
vestigated as a function of the initial atom number ratio set by the duration
of the rf pulse. The magnetic field was kept constant at the value corre-
sponding to �a = 0, and the experiments were performed for U = 4.1(4),
similar to the experiment of the magnetic field dependence. The results
are shown in Fig. 6.11 as a function of the atom number ratio N2∕N1and rf pulse duration together with simulation results using the same line
styles as in Fig. 6.9. The grey shading corresponds to the optimal ratio
N2∕N1 = n2∕n1 =

√

a11∕a22 = 0.629(3) calculated at a magnetic field of
56.83G, with the uncertainty determined by propagating the errors on the
scattering lengths.

The simulated frequencies generally follow an increasing trend with
larger values ofN2∕N1 until approaching an equal mixture. In this regime,
the simulations results without losses become irregular for the |1⟩ state
resulting in a bad fit of Eq. (6.15), which causes the apparent decrease in
oscillation frequency. This is not seen for the simulations including losses
as the atom number ratio is pulled to lower values by the inelastic losses. A
figure comparing these cases is shown in Appendix A.3.

The experimental data does not display a strong dependence on the initial
atom number ratio in the vicinity of the ideal density ratio. This was also
predicted in Ref. [53], where it was explained that adding an atom to either
component at the point where �a = 0 andN2∕N1 =

√

a11∕a22 results in anegligible energy contribution due to the mean-field terms being cancelled.
ForN2∕N1 ≳

√

a11∕a22, the data follows the simulation results with the best
values for the loss coefficient very well, whereas forN2∕N1 <

√

a11∕a22 theexperimentally extracted oscillation frequencies are systematically higher
than the simulation results. This could indicate that the system is not well
described by assuming a two-component mixture in the imbalanced case,
or that the excellent agreement for N2∕N1 ≳

√

a11∕a22 is coincidental,considering the general spread of the data. The simulation results nonetheless
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captures the general magnitude of the oscillation frequency, when compared
to the non-interacting limit of !∕!0 = 2.

Figure 6.11: Monopole frequency of the spin mixture as a function of the initial
relative atom number and rf pulse duration. Experimental results for !0 = 2π ×
110.9(5)Hz andN = 9.4(6) × 104 corresponding to U = 4.1(4) are shown as grey
points, and simulated results using the same parameters are shown in blue. The
solid line correspond to the best values for the loss coefficients, the dash-dotted line
features a doubled loss coefficient for the channel involving three atoms in the |2⟩
state, and the dotted line neglects losses entirely. The grey shading indicates the
error on the optimal ratioN2∕N1 =

√

a11∕a22 for the magnetic field where �a = 0.

6.5 Summary and Outlook

In this chapter, the experimental observation of a LHY fluid was presented.
Based on measurements of the collective oscillation frequency and detailed
numerical simulations, it was possible to verify the creation of a system
where the interactions are initially governed by quantum fluctuations. The
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monopole oscillation frequency of the system was investigated as a function
of the LHY interaction strength and showed excellent agreement with the
theoretical predictions. Moreover, the oscillation frequency was found to be
stable against variations around the ideal magnetic field and initial atom num-
ber ratio, showing that the quantum fluctuations dominate the interactions in
a regime around the ideal values.

Further experiments using the current setup could consist of measuring
the LHY energy using a Ramsey interferometry scheme, similar to the one
employed in Ch. 5, in order to track the relative phase evolution of the
states. Thus, the decoherence time of the system could simultaneously be
measured and used to verify the assumption of a decohered mixture used in
the simulations.

The realization of a LHY fluid in 39K could be improved based on the
recent work of Ref. [219], which measured the effect of the LHY correction
on a Rabi coupled 39K BEC using the same states as in this work. Here
the authors employed an adiabatic passage to prepare the system, where the
shape and duration of the rf pulse was chosen such that is was adiabatic with
respect to both the internal-state dynamics and the radial evolution of the
wave function. This preparation method thus avoids the strong contraction
and corresponding enhancement of losses which limited the lifetime of
the LHY fluid in this work. Lavoine et al. [219] furthermore showed that
during the Rabi coupling, the losses of state |1⟩ and |2⟩ are symmetric which
simplifies the preparation method. Asymmetric losses after the adiabatic
passage would however still limit the lifetime, and a system with less severe
losses is preferable for further experiments.

Building on the results of Minardi et al. [203], a promising candidate
could therefore be the 41K–87Rbmixture, which was recently found to support
the existence of long-lived quantum droplets [61]. The apparatus used for this
work has previously been employed in the production of dual-species 41K–
87Rb condensates [129], however, because of the different masses, the two
components have a differential gravitational sag, which must be compensated
to realize the requirement n2∕n1 =

√

a11∕a22 for a LHY fluid. This could be
achieved using a magnetic field gradient by exploiting the different magnetic
moments of the species [61] or by an additional ODT beam with a “magic
wavelength” [137, 220]. This would allow further investigations of the LHY
dominated regime with interesting research directions including higher-order
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collective modes and different trap geometries. The LHY fluid furthermore
provides a promising platform for observing even higher-order effects such
as the next-order correction to the energy of a Bose gas, EWHPS [221, 222],
and on a broader scale, its realization enables new quantum simulation
experiments utilizing the quartic non-linearity governing the interactions of
the system.





CHAPTER 7
Progress on Hypervolume

Experiments

In the limit where the s-wave scattering length a vanishes, the properties
of the system are still determined by few-body scattering processes. In
particular, for a = 0 the interactions in the system are governed by three-
body interactions, characterized by the three-body scattering hypervolume
D [69, 70], which has units of length to the fourth power.

In Ref. [71], D is calculated for different interaction potentials, and
it is shown how three-body interactions can be used to stabilize quantum
droplets. Furthermore, the dependence of the collective mode frequencies on
D is calculated, showing that the monopole mode in a symmetric harmonic
potential features the strongest dependence on its magnitude. By measuring
the monopole frequency at a = 0, it is thus possible to infer the size of D.

Given that our apparatus has the capability to produce spherically sym-
metric potentials, working towards a measurement of D is a natural continu-
ation of the research presented in Ch. 6, which also investigated a system
with vanishing mean-field interactions.

The regime around a = 0 has been investigated previously in several
contexts. An initial experiment prepared a 85Rb BEC at a = 0 before
initiating a collapse by changing a to negative values [94]. Following this, the
expansion dynamics of a 7Li BEC at a = 0 was investigated in a waveguide

119
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potential in the context of soliton formation [223]. The expansion of BECs
at a = 0 was also investigated in free space using 133Cs [224, 225] and
39K [226], which showed that the expansion energy was minimized for a
vanishing s-wave scattering length. In the context of atom interferometry,
experiments with 39K [227] and 133Cs [228] in optical lattices showed that
tuning a to zero lead to an increased coherence time of Bloch oscillations.
Other experiments investigated the region where a = 0 in the context of
the magnetic dipole interaction, where strong dipolar effects were observed
in 52Cr by reducing a relative to the magnetic dipole interaction [229], and
evidence of a weak anisotropic magnetic dipole interaction for small a was
observed in 7Li [230].

In this chapter, our recent progress towards a measurement of D is
presented. In Sec. 7.1, the relevant results of Ref. [71] are reviewed and their
results are compared with numerical simulations of the system. Following
this, the experimental feasibility of measuring the three-body scattering
hypervolume using 39K is discussed in Sec. 7.2, where further simulations of
the experimental signal are presented. Section 7.3 describes the experimental
procedure for production of 39K BECs in the specific state and magnetic
field regime, where the measurement of D is to be performed. Finally in
Sec. 7.4, initial experiments towards the determination of the magnetic field
where a = 0 and measurements of the loss coefficient are presented.

Within this chapter, all simulations and the data analysis was performed
by me. The experimental efforts were lead by me and performed in collabo-
ration with the newest PhD student of the team Andreas M. Morgen.

7.1 Bose-Einstein Condensates at Vanishing

s-wave Sca�ering Lengths

The energy-density of a uniform BEC at a = 0 is given by [69]

(n) = ℏ2Dn3

6m
+… , (7.1)

where n is the number density, m is the atomic mass, and the dots indicate
smaller terms of higher power in n. The extended Gross-Pitaevskii equation
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including the three-body scattering hypervolume is thus [71]

iℏ ̇ = − ℏ
2

2m
∇2 + V  + 4πℏ

2a
m

| |2 + ℏ2D
2m

| |4 , (7.2)

where  (r, t) =√

N�(r, t) is the condensate wave function with atom num-
berN and single-particle wave function �(r, t), while the external potential
V (r) = m!20r

2∕2 is assumed to be a spherically symmetric harmonic oscil-
lator with trap frequency !0. The LHY term which scales with a5∕2n3∕2 has
been neglected, since a ≃ 0 in the following calculations.

In general, D is a complex number with the real and imaginary parts
corresponding to elastic and inelastic scattering, respectively. The imaginary
part is proportional to the three-body recombination rate [231, 232] via

L3 = −Im(D)ℏ∕m, (7.3)
whereL3 is the three-body loss coefficient. Inelastic losses due to three-body
recombination can thus readily be included in Eq. (7.2) by allowing D to
have an imaginary part.

In Ref. [71], Mestrom et al. solves the three-body problem for different
two-body interaction models that all contain the long-range atomic van der
Waals attraction. The authors find that the real part of D is universally
fixed by the van der Waals range rvdW = (mC6∕ℏ2)1∕4∕2, where C6 is thecoefficient describing the long-range behaviour of the interaction. In the
vicinity of a = 0, D is thus determined by a and rvdW , with its real part
Re(D) ranging from ∼ 100 to 200 r4vdW in the range a = − 0.1 rvdW to
a = 0.1 rvdW .

As explained in Sec. 6.1, measurements of the collective excitations in
quantum gases serve as a powerful probe of the interatomic interactions.
In Ref. [71], a time-dependent Gaussian trial wave function is used to
investigate how the collective mode frequencies ! at a = 0 depend on the
following parameter for the interaction strength

K = 2DN2

9
√

3π3a4ho
, (7.4)

where aho is the harmonic oscillator length, and D is assumed to be a real
number. The frequencies of the different modes are compared for different
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symmetries of the external potential, and the monopole mode in a isotropic
geometry turns is found to experience the biggest shift in oscillation fre-
quency with a Thomas-Fermi limit of !3bd, TF = 2

√

2!0.The frequency of the monopole mode can also be determined by simulat-
ing the system in GPELab by implementing Eq. (7.2). In a first simulation,
the system is considered for a = 0 and D is considered to be a real number,
thus neglecting losses. The ground state of the system is first determined,
after which oscillations are initialized by rescaling the simulation grid by a
factor 1∕1.001 and renormalizing the wave function. This makes the wave
function slightly narrower than the calculated ground state, and it therefore
undergoes monopole oscillations when subsequently calculating dynamical
evolution in the harmonic potential. The factor of 1∕1.001 was chosen to
ensure a small oscillation amplitude. The dynamical simulation outputs the
root-mean-square radius of the wave function as a function of time, and
the oscillation frequency ! can thus be determined by fitting a sinusoidal
function to simulation data.

In practice, the system is assumed to consist of 39K atoms with a van der
Waals range of ∼ 65 a0 [233–235], and the value of Re(D) is extracted fromthe results of Ref. [71], which calculatedD as a function of a for different two-
body interaction potentials. For the Lennard-Jones type potential Re(D) =
144r4vdW at a = 0, and this value is used in the simulation. The trap frequency
is held constant at a value of !0 = 2π × 300Hz, and K is varied through the
atom numberN .

The monopole oscillation frequency at a = 0 is shown as a function of
K in Fig. 7.1 with a logarithmic x-axis. The result of Mestrom et al. [71]
using a Gaussian trial wave function is shown in solid green, the simulation
result is shown in dashed orange, and the Thomas-Fermi limit is given in
dotted black. The inset shows a zoom around small values ofK with a linear
axis with the Thomas-Fermi limit of a mean-field BEC shown in dash-dotted
black.

Both the analytical and simulation results connect with the non-interacting
limit of ! = 2!0 for vanishing K , while for large K , both results approach
the Thomas-Fermi limit of !3bd, TF = 2

√

2!0. In the intermediate regime,
the result using a Gaussian trial wave function features a steeper increase
than the simulated result. This is not surprising since the Gaussian ansatz
features a higher central density than the actual ground state, which has
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Figure 7.1: Comparison of the calculated monopole oscillation frequencies. The
solid green line shows the results of Mestrom et al. [71] using a trial wave function,
the dashed orange line shows simulation results, and the dotted black line shows the
Thomas-Fermi limit. The inset shows a zoom around small values ofK with a linear
x-axis, and the Thomas-Fermi limit of a mean-field BEC shown in dash-dotted
black.

a wider profile as a consequence of the repulsive three-body interaction.
Performing the simulation for different values ofN , !0, or D results in the
same behaviour of ! as a function of K .

The simulated results of Fig. 7.1 show that the monopole oscillation
frequency at a = 0 depends strongly on the value of D, and differs remark-
ably from the expected oscillation frequency of 2!0 for a BEC at a = 0
excluding the three-body interactions. Furthermore, the calculated oscilla-
tion frequency exceeds the Thomas-Fermi limit of a mean-field BEC already
for K ∼ 0.7 corresponding to an experimentally feasible atom number of
8 × 104 for the considered trap. As a consequence, the monopole frequency
serves as a strong experimental signature of the three-body scattering hyper-
volume and its magnitude can be inferred from the experimentally measured
oscillation frequency.
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7.2 Experimental Feasibility

In order to measure the three-body scattering hypervolume, the mean-field
contribution to the energy density must removed by tuning a to 0 by address-
ing a Feshbach resonance which features a zero-crossing in the scattering
length. This is realizable using 39K due to its rich Feshbach resonance
structure.

At low magnetic fields, the |1, 0⟩ state features a zero-crossing at 44 G,
which was shown in Fig. 2.1(b). However, as evident from the LHY fluid
experiments presented in Ch. 6, using this state is complicated by its large
three-body loss coefficient. Calculations by the group of S. Kokkelmans
show that even in the vicinity of the zero-crossing, the three-body loss
coefficient is ∼ 3 × 10−28 cm6s−1, which is an order of magnitude larger
than the background value of 7.74 × 10−29 cm6s−1∕3! = 1.29 × 10−29 cm6s−1
used for the other states in Ch. 6.

Fortunately, all three states of the F = 1manifold feature wide Feshbach
resonances at larger magnetic fields. Figure 7.2(a) shows the intrastate
Feshbach resonances of the three states in the magnetic field regime of 300
to 600 G. The scattering length as a function of magnetic field is shown
in red for the |1,−1⟩ state, in green for the |1, 0⟩ state, and in orange for
the |1, 1⟩ state. Of these, the zero-crossing for the |1, 1⟩ state is preferred
since its Feshbach resonance has been employed and studied in several other
experiments, such as those in Refs. [83, 85, 89, 140, 189, 226, 227, 236].
Furthermore, the |1, 1⟩ state is the absolute ground state of 39K, and it is
therefore expected to feature the smallest losses since e.g. two-body spin-
changing collisions are forbidden. The magnetic field for the zero-crossing
of this state is marked by a dashed black line in Fig. 7.2(a)

In Fig. 7.2(b) a zoom around the |1, 1⟩ zero-crossing is shown where
the calculated scattering length is provided by the group of S. Kokkelmans.
Based on this calculation the location of the zero-crossing is found to be
350.7 G, which matches the value obtained by using the usual formula for
the scattering length in the vicinity of a Feshbach resonance1 [27]

a(B) = abg

(

1 − Δ
B − B0

)

, (7.5)

1: Equation (7.5) was also given in Sec. 2.2.1, but is repeated here for ease of reference.
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a b

Figure 7.2: Intrastate Feshbach resonances for the F = 1 manifold of 39K at large
magnetic fields. (a) The scattering length is shown as a function of magnetic field is
shown in red for |1,−1⟩ [83], in green for |1, 0⟩ [146], and in orange for |1, 1⟩ [189].
The magnetic field for the zero-crossing of the |1, 1⟩ state is marked by a dashed
black line. (b) Zoom around the zero-crossing for the |1, 1⟩ state. The calculated
scattering length is provided by the group of S. Kokkelmans and is based on the
K–K potentials of Ref. [213].

with background scattering length abg = −29 a0 and width parameter Δ =
−52G from Ref. [83] and the resonance position B0 = 402.70(3)G from
Ref. [189].

7.2.1 Magnetic Field Dependence

In Ref. [71], the three-body scattering hypervolume was calculated as a
function of a in a regime around a = 0. Since the value of a can be calcu-
lated as a function of magnetic field using Eq. (7.5), the dependence of the
monopole frequency on the magnetic field can be simulated using GPELab.

Fig. 7.3 shows the simulatedmonopole oscillation frequency as a function
of magnetic field and a for a constant atom number of N = 1 × 105 and
varying trap frequencies !0 as given in the legend. The Thomas-Fermi limit
for a mean-field BEC is shown by the dashed line. The simulation was
performed using the same method as for the results in Fig. 7.1, and the used
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values for D are extracted as a function of a from the results of Ref. [71]
using a Lennard-Jones potential. Within the investigated range, Re(D) varies
from 144 to 104 rvdW (from lower to higher magnetic fields).

The simulated monopole oscillation frequency depends strongly on the
trap frequency for a = 0, where the variation in trap frequency corresponds
to changing K from 0.1 to 4.3. For larger magnetic fields where a > 0, the
dependence on the trap frequency decreases as the mean-field term scaling
with an becomes dominant, and the monopole oscillation frequency tends
towards the mean-field Thomas-Fermi limit. These simulation results again
predict a large effect of three-body interactions on the monopole oscillation
frequency in the vicinity of a = 0, and measuring the effect experimentally
is therefore viable.

7.2.2 Inelastic Losses

The effect of inelastic losses can readily be implemented in the simulations
by including the imaginary part of D in Eq. (7.2). The three-body loss
coefficient for atoms in the |1, 1⟩ state has previously been measured to
L3 = 1.3 × 10−29 cm6s−1 in the region of the zero-crossing [227], and from
Eq. (7.3) this corresponds to Im(D) = −59 r4vdW, which is on the same order
of magnitude as the results for Im(D) given in Ref. [71].

Including losses generally has two effects on the simulated results. The
first is illustrated in Fig. 7.4, which shows simulated radii (a) and atom
numbers (b) as a function of time for Re(D) = 135 rvdW and Im(D) =
−59 r4vdW. The ground states were calculated using a trap frequency !0 =
2π × 300Hz and varying atom numbers N as given in the legend. The
oscillations were initialized by abruptly increasing the trap frequency by
10% to !f = 2π × 330Hz, and the corresponding values of K also given
in the legend are calculated from !f . For larger N or !f , the losses tendto extinguish the oscillations since their effect scales with the square of the
density as evident from Eq. (7.2). This is effect is seen in the atom number,
where the relative effect of losses are larger for largerN . For small K , the
oscillation frequency can be extracted by fitting the model function Eq. (6.15)
used for the LHY fluid experiments to the simulated radii, however, for larger
K the oscillations are damped too strongly for this to work. The second effect
of the losses is an effective lowering of K with increasing evolution time as
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Figure 7.3: Simulated oscillation frequencies for vanishing and small positive
scattering lengths. The markers show simulated monopole oscillation frequencies
for atom numberN = 1 × 105 using the trap frequencies given in the legend. The
Thomas-Fermi limit of ! =√

5!0 for a mean-field BEC is shown in dash-dotted
black. The simulation results at a = 0 correspond to K varying from 0.1 to 4.3.
The values of Re(D) used in the simulation vary from 144 to 104 rvdW within the
investigated range (from lower to higher magnetic field), and are based on the results
of Ref. [71] using a Lennard-Jones type potential.

the atom number decreases. As a consequence, the oscillation frequency is
chirped towards lower values.

Experimentally, the first issue can be circumvented by increasing the
oscillation amplitude. One method is to perform a larger jump in the trap
frequency, corresponding to a bigger change in the powers of the trapping
beams. Another method consists of quenching the system into a = 0 similar
to the LHY fluid experiments of Ch. 6, which could be done by either
abruptly changing the magnetic field or using a fast transfer into the state.
These methods, however, result in a more challenging comparison to theory,
since the resulting large-amplitude oscillations are expected to influence
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Figure 7.4: Simulation results for vanishing scattering length including inelastic
losses. The root-mean-square radius (a) and atom number (b) normalized to their
initial values are shown as a function of time. The ground states were calculated
using a trap frequency of !0 = 2π × 300Hz and the oscillations were initialized by
abruptly increasing !0 by 10%. The atom numbers and corresponding values of K
based on the final trap frequency are given in the legend.
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the oscillation frequency. This is especially the case for the second method,
where the system is initialized in a state that is very different from the ground
state after the quench. In any case, inelastic losses will affect the oscillation
frequency, and a complete simulation of the system is likely necessary in
order to extract Re(D).

Alternatively, the resonance frequency could potentially be extracted
through modulation spectroscopy. In this method, monopole oscillations
would be excited by modulating the powers in the trapping beams, and
the system response could be investigated as a function of the modulation
frequency. This method can for example be used for trap frequency measure-
ments, where the number of atoms that are lost due to parametric heating
are used as the spectroscopic signal.

7.3 Production of
39

K BECs in the Absolute

Ground State

The remainder of the chapter describes the current status of the experimental
effort towards measuring the three-body scattering hypervolume. The shown
results should be considered as work in progress, and the described methods
are subject to change with further investigation. Compared to Ch. 4, which
provided an overview of the apparatus, the following sections feature more
details on the experimental procedure, which allows the content of this
chapter to be used as a reference for future progress.

As explained in the previous section, a 39K BEC in the |1, 1⟩ state is
desired in order to address the zero-crossing of the scattering length at 350.7
G. To simplify the experimental procedure and enable the production of
large BECs, the evaporative cooling is therefore performed in the |1, 1⟩ state
in the vicinity of the Feshbach resonance at 402.7G as done previously in
Refs. [140, 143, 226].

7.3.1 State Preparation

The procedure for the production of 39K BECs in the |1, 1⟩ state is similar to
the normal method explained in Ch. 4, up to and including the transfer to
the ODT. At this point the sample consists of a thermal cloud of 39K atoms
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in the |2, 2⟩ state. After the transfer to the ODT, the coils are switched to
Helmholtz configuration realizing a homogenous magnetic field along the
vertical direction, which is ramped to a strength of 27 G over a 5 ms duration.

Here, a rapid adiabatic passage is performed from the |2, 2⟩ to the |1, 1⟩
state. The state transfer is performed by sweeping the homogeneousmagnetic
field from 27 G to 33 G over a duration 10 ms, while irradiating the sample
with a constant radio frequency of 526.992 MHz. The frequency of the
radiation was chosen based on a spectroscopic measurement performed
at a Helmholtz current corresponding to the centre of the magnetic field
sweep. The duration and range of the magnetic field ramp was optimized
experimentally by analysing the resulting state composition after separating
the mF components with a magnetic field gradient during TOF expansion.

7.3.2 Imaging of
39

K at Moderate Magnetic Fields

After the transfer to the |1, 1⟩ state, the magnetic field is linearly ramped to
the vicinity of the Feshbach resonance at 402.7 G over a duration of 250
ms. At this point, however, a complication appears due to the design of the
mount of the Helmholtz coils, which is made of copper to ensure efficient
water cooling.

The normal scheme for absorption imaging takes place using a homoge-
nous magnetic field of 1 G along the x-direction in which the imaging light
propagates. This magnetic field is applied during TOF expansion, while the
vertical field from the main Helmholtz coils is turned off. This procedure
works for magnetic fields strengths up to at least 150 G, which was used in
the experiments of Ref. [137]. However, rapidly turning off the coils from a
large magnetic field results in Eddy-currents in the copper mount, and the
magnetic field direction is thus unable to change to the x-direction within
the duration of the TOF expansion [129]. This issue could be circumvented
by rebuilding the mount in a non-conducting material, or by performing
the imaging at large magnetic fields using the method of Ref. [237], which,
however, would require a significant reconfiguration of the optical setup.

Since the normal imaging scheme does not work after ramping to high
magnetic fields, the imaging is performed while keeping on the Helmholtz
field, which thus sets the vertical z-direction as the quantization axis. How-
ever, to avoid big changes in the optical setup, the imaging is performed
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at moderate magnetic field strength as follows: After releasing the atoms
from the ODT, the magnetic field strength is kept in the range of 400 G
during the first 4 ms of TOF. Subsequently, the magnetic field is ramped to
a desired strength of 60 G over a duration of 5 ms. The following 7 ms of
TOF expansion and the imaging are then performed at this magnetic field,
and the frequencies of the imaging and repump light must therefore be tuned
such that they are resonant with the relevant transitions at 60 G.

The energies of the relevant states are shown as a function of the magnetic
field strength in Fig. 7.5. The energies of the 42S1∕2 manifold are shown in
the lower panel and were calculated using the Breit-Rabi formula (Eq. (4.4)).
The energies of the states in the 42P3∕2 manifold are shown in the upper
panel and were calculated by numerically diagonalizing the Hamiltonian
H = Hhfs +HB, whereHhfs is the hyperfine Hamiltonian (Steck [122] Eq.
15) andHB is the Hamiltonian describing the interaction with the magnetic
field (Steck [122] Eq. 20). The states are coloured according to the their
low-field quantum number F , and the high-field quantum numbers |mJ , mI⟩are given to the right.

At a magnetic field of 60 G, the lower 42S1∕2 manifold is in the interme-
diate magnetic field regime, while the states of the upper 42P3∕2 manifold
are in the Paschen-Back regime. In the Paschen-Back regime, the electronic
and nuclear angular momenta become uncoupled, and selection rules for
dipole allowed transitions are therefore given by

ΔI = 0, (7.6)
ΔmI = 0, (7.7)
ΔJ = ±1 (7.8)
ΔmJ = 0,±1, (7.9)

and the nuclear spin I is therefore unaffected by the radiation according to
the first two rules.

The proposed transitions for the imaging scheme are shown in Fig. 7.5
by the blue and red arrows, and in the following, the quantum numbers
of the states in the 42P3∕2 manifold with J = 3∕2 are denoted by primes.
The blue arrow corresponds to repumping light which transfers the atoms
from the | − 1∕2, 3∕2⟩ to the |1∕2′, 3∕2′⟩ state. From here the atoms can
decay back to either the | − 1∕2, 3∕2⟩ or |1∕2, 3∕2⟩ states. The imaging is
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Figure 7.5: Energy as a function of magnetic field for the 42S1∕2 (lower) and 42P3∕2
(upper) manifolds of 39K. The origins of the two y-axes are separated by 391.1 THz.
The states are coloured according to their weak-field quantum numbers F = 1
(blue), 2 (red), 3 (green), 4 (orange). The strong field quantum numbers of the states
|mJ , mI⟩ are given to the right. The repump and imaging transitions are shown by
the blue and red arrow, respectively.
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therefore performed on the |1∕2, 3∕2⟩ to |3∕2′, 3∕2′⟩ transition, which is
closed according to the selection rules given in Eq. (7.9).

The imaging is performed using the same laser beams as normally such
that the imaging light propagates along the x-direction, while the repumping
light hits the atoms along the z-direction from above. In order to achieve an
absorption signal, the laser frequencies and polarizations must be changed
such that they can drive the transitions described above. The imaging and
repump light are supplied by separate lasers, which are the same as those
used for cooling and repumping light in the MOT phase. The imaging beam
is supplied by the cooling laser and this name is therefore also used here.

The frequencies of the two lasers are both locked relative to a master
laser which is stabilized via saturated absorption spectroscopy to the F =
1, F = 2→ F ′ crossover resonance in 39K [238], which lies 49MHz above
the unperturbed 42S1∕2 → 42P3∕2 transition frequency of 391.1 THz. The
beat frequencies between the master laser and the cooling and repump lasers,
respectively, are recorded on fast photodiodes, and the beat frequencies are
stabilized to references set by a frequency synthesizer using phase locked
loops. The locking scheme was designed in this way to enable easy switching
between the different isotopes of K by changing the reference frequency of
the beat locks [128, 129]. This ability is also used here, since it enables the
frequencies to be changed without changing the optical setup. In order to
match the transitions given in Fig. 7.5, the frequencies of the imaging and
repump beams must be shifted upwards by∼ 100MHz compared to the usual
imaging scheme, which is achieved by changing the beat lock frequencies
after the MOT phase of the experiment using GPIB commands.

In the desired imaging scheme, both beams address �+-transitions, and
the beam polarizations must be chosen accordingly, while taking into ac-
count the quantization axis set by the homogenous magnetic field in the
vertical direction. The repumping light propagates along this direction and
hits the atomic cloud from above. In order to drive the �+ transition, a
quarter-wave plate is therefore inserted in its beam path to achieve a circular
polarization. The imaging beam hits the atoms along the x-direction which
is perpendicular to the quantization axis. In order to drive the �+-transition,
the light polarization is therefore chosen to be linear along the y-direction
by exchanging the quarter-wave plate, used in the normal imaging scheme,
for a half-wave plate.
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The ability of the linearly polarized light to drive �±-transitions can
be seen by considering the dipole matrix element ⟨g|ê ⋅ d|e⟩ with the unit
polarization vector pointing in the y-direction ê = (0, 1, 0) and d = −ere =
−e(x, y, z). In this case, ê ⋅ d = −ey = −er sin � sin� and the azimuthal
part of the dipole matrix element becomes

∫

2π

0
d� ei(me−mg)� sin�

= 1
2i

[

∫

2π

0
d� ei(me−mg+1)� − ∫

2π

0
d� ei(me−mg−1)�

]

, (7.10)

where mg and me are the magnetic quantum numbers of the |g⟩ and |e⟩
states, respectively, and � is the azimuthal angle. The integrals in the square
brackets equal zero unless me − mg = ∓1, respectively, and thus correspond
to �±-transitions [239].

Figure 7.6(a) shows the measured atomic signal as a function of the
frequency of the imaging light using the imaging scheme described above.
The red line shows a Lorentzian fit to the data, which yields a centre frequency
of 411(2)MHz and corresponds to a magnetic field of 69(1) G. This value is
9 G above the expected magnetic field of 60 G from the calibration, which
shows that the magnetic field does not settle on its final value within the 7
ms from the end of the current ramp and the imaging.

Figure 7.6(b) shows the measured atomic signal as a function of the
rotation angle of the half-wave plate, which controls the polarization di-
rection of the imaging beam. The blue line is a sinusoidal fit to the data,
which yields an oscillation period of 89.2(2)° and agrees very well with the
expected period of 90°, given the low amount of data points. The data shows
how the absorption signal can be extinguished completely by choosing the
polarization to be parallel to the magnetic field axis thus that the light is
unable to drive the required �+ transition.

The frequency of the repump light can now be chosen based on the
measured magnetic field strength of 69 G. The measurement is performed
similar to that of Fig. 7.6(a) with the beat lock frequency of the imaging
light kept constant at 411 MHz, while the frequency of the repump light
relative to the master laser is varied. The measurement resulted in a more
than 30MHzwide signal with a flat top, signalling that the repump transition
is saturated.
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a b

Figure 7.6: Absorption signal depending on the frequency of the imaging beam and
its polarization direction. (a) Normalized atomic signal as a function of the frequency
difference between the imaging laser and the master laser, which is controlled by
the reference frequency of the beat lock. The red line shows a Lorentzian fit to the
data. The fitted centre frequency of 411(2)MHz corresponds to a magnetic field
of 69(1) G. (b) Normalized atomic signal as a function of the rotation angle of the
half-wave plate controlling the polarization direction of the imaging beam. The blue
line shows a sinusoidal fit to the data with a fitted oscillation period of 89.2(2)°.

7.3.3 Atom Number Calibration

With a working imaging scheme, a preliminary calibration of the measured
atom number can be performed using the method of Reinaudi et al. [162].

The intensity attenuation of the imaging beam can be described by the
Lambert-Beer law, which for a two-level atom interacting with resonant light
and including saturation effects is given by

dI
dx = −

�0n(x)
1 + I∕Isat

I. (7.11)

Here, n(x) is the atomic density, Isat = 1.75mW∕cm2 is the saturation
intensity of the D2 line of 39K [121], and �0 = 3�2∕2π is the resonant
scattering cross section with � the wavelength of the transition. Integrating
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Eq. (7.11) along the x-direction yields the column density ñ,
ñ�0 = ln

(

I0
I

)

+
I0 − I
Isat

, (7.12)
where ñ�0 is referred to as the optical density, and the probe image I(x, y)
contains the shadow cast by the atoms, while the reference image I0(x, y)contains only the probe beam.

In the method of Reinaudi et al. [162], the absorption imaging is cali-
brated by introducing an effective saturation intensity I effsat = �∗Isat . Here,the correction factor �∗ takes into account experimental factors causing the
system to deviate from a simple two-level model, such as the multi-level
structure of the atoms, and the polarization of the imaging light. With this
correction factor, Eq. (7.12) takes the form

ñ�0 = �∗ ln
(

I0
I

)

+
I0 − I
Isat

, (7.13)
and the calibration consists of determining �∗ by imaging atomic clouds
prepared with a constant optical density, while varying the intensity of the
imaging light.

In practice, the calibration is performed by preparing thermal clouds
of 39K in the |1, 1⟩ state at a large magnetic field of ∼ 390G, which are
imaged using the scheme presented in the previous section. The intensity of
the imaging beam is varied, while the absorbed number of photons is held
constant by adjusting the exposure time accordingly between 18 and 228 µs.

The intensities I(y, z) and I0(y, z) are extracted for each pixel (y, z)
within a region of interest (ROI), and the correction parameter is determined
from a fit of Eq. (7.13) to the data, where the three terms have been summed
across the ROI

∑

ROI
ñ(y, z)�0 = �∗

∑

ROI
ln
(

I0(y, z)
I(y, z)

)

+
∑

ROI

I0(y, z) − I(y, z)
Isat

. (7.14)

The fit parameters are thus �∗ and the sum of the optical density across the
region of interest∑ROI ñ(y, z)�0.The calibration data is shown in Fig. 7.7, together with the fit of Eq. (7.14),
which yields a correction factor of �∗ = 3.6(8). The total atom number can
be determined from the other fit parameter as N = Apx

∑

ROI ñ(y, z) =
3.6(5) × 105, where Apx is the pixel area in the imaging plane of the atoms.
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Figure 7.7: Preliminary calibration of the atom number using the method of
Reinaudi et al. [162]. The intensity of the imaging beam I0 was varied while
the absorbed number of photons was held constant by adjusting the exposure time
accordingly. The line shows a fit of Eq. (7.14) to the data, which yields the correction
factor �∗ = 3.6(8).

7.3.4 Magnetic Field Calibration

In order to accurately address the Feshbach resonance at 402.7 G, the mag-
netic field must be calibrated in this region. The magnetic field is typically
inferred from radiofrequency spectroscopy measurements on cold thermal
clouds, performed between the |1,−1⟩ and |1, 0⟩ states as described in
Sec. 4.2.4. In this method, the state composition after the radiofrequency
pulse is determined by applying a magnetic field gradient during TOF to
separate the states such that they can be analysed separately.

At a magnetic field of 69 G, where the new imaging scheme takes place,
the splittings between the F = 1 states are too large to simultaneously image
all components, and the usual procedure cannot be applied. Instead, since
the repump light is only resonant with the |1, 1⟩ state, a successful transfer
to another state results in a smaller number of evaluated atoms.

In practice, the calibration is performed by ramping the current in the
Helmholtz coils to the target value over 250 ms after performing the rapid
adiabatic passage described in Sec. 7.3.1. Here, the |1, 1⟩ → |1, 0⟩ transition
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a b

Figure 7.8: Magnetic field calibration at high currents. (a) Typical spectroscopic
signal from driving the |1, 1⟩ to |1, 0⟩ transition. The normalized atomic signal of
the |1, 1⟩ state is shown as a function of the applied radio frequency, and the purple
line is a Gaussian fit to the data. The data corresponds to a Helmholtz current of
40.13 A. The magnetic field is determined from the centre frequency of the Gaussian
fit using the Breit-Rabi formula (Eq. (4.4)). (b) Magnetic field calibration. The
magnetic fields determined from the spectroscopic measurements are shown as a
function of the Helmholtz current, together with a linear fit to the data. The error
bars are smaller than the markers.

is addressed using a square rf pulse of 250 µs duration, and subsequently,
the atoms are imaged as described in Sec. 7.3.2.

Figure 7.8(a) shows typical spectroscopic data for a Helmholtz current of
40.13 A. The normalized atomic signal is shown as function of the applied
radio frequency, together with a Gaussian fit to the data. The magnetic
field is determined from the centre frequency using the Breit-Rabi formula
(Eq. (4.4)). Figure 7.8(b) shows the resulting magnetic fields from the
spectroscopy data as a function of the Helmholtz current. The line shows
a linear fit to the data, which gives the magnetic field calibration. The fit
yields a slope of 9.501(2) G/A and an offset of -0.29(8) G.
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7.3.5 BEC production

Bose-Einstein condensation is typically performed at a magnetic field where
the scattering length is in the range of 100 to 200 a0. For the Feshbach
resonance of the |1, 1⟩ state at 402.7 G, this corresponds to a magnetic field
range of ∼ 391 to 396 G.

After transfer to the |1, 1⟩ state, the magnetic field is ramped to its
target value over 250 ms. From here the powers in the trapping beams are
lowered in exponential ramps with a total duration of ∼ 7 to 10 seconds,
which, depending on the final trap depth, results in BECs consisting of
∼ 1 × 105 atoms. In Fig. 7.9(a) a processed absorption image of such a BEC
is shown, which was produced at a homogenous magnetic field of 395.9 G
corresponding to 193 a0. Figure 7.9(b) shows the optical density integrated
along the vertical direction fitted with a bimodal model, where the thermal
part is shown in orange, and the sum of the thermal and BEC distributions
is shown in red.

7.4 Preparatory Experiments with
39

K at Large

Magnetic Fields

With a working scheme for BEC production and a calibrated magnetic
field and imaging system, initial experiments towards a measurement of the
three-body scattering hypervolume can now be performed. In this section,
two preliminary experiments are presented and discussed. In the first, an
experimental verification of the expected magnetic field for the location
of the zero-crossing is attempted, while in the second, a measurement of
the three-body loss coefficient in the vicinity of the Feshbach resonance is
presented.

7.4.1 Location of the Zero-crossing

Performing a measurement of the three-body scattering hypervolume re-
quires precise knowledge of the magnetic field where a = 0. For other
Feshbach resonances, this magnetic field has been determined experimen-
tally by measuring the point of least efficient rethermalization. This has
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Figure 7.9: Absorption image of a quasi-pure Bose-Einstein condensate in the
|1, 1⟩ state consisting of 1.1 × 105 atoms after 16 ms of time-of-flight expansion.
(a) Absorption image after processing. (b) Integrated optical density (blue) and
a bimodal fit to the data. The thermal part of the fit is shown in orange, and the
bimodal distribution containing both the thermal and condensed parts is shown in
red.

been done by performing evaporative cooling of thermal clouds at different
magnetic fields and measuring the resulting temperature. The location of the
zero-crossing can then be determined by a Gaussian fit to the temperature as
a function of the magnetic field strength [85, 240].

A more sophisticated method was first used by Thalhammer et al. [241]
and has previously been employed to measure the zero-crossing of both in-
terspecies [100] and interstate [48] resonances using this apparatus. During
thermalization, the temperature decreases exponentially with a rate propor-
tional to the elastic scattering cross section, which scales with a2 as shown
in Sec. 2.2. The final temperature after a fixed thermalization time is thus
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given by [241]
T = A1 + A2 exp

(

−A3a2(B)
)

, (7.15)
where Ai, i = 1, 2, 3, contain information about the temperature and rether-
malization rates, and a(B) is given by Eq. (7.5).

In a first effort to determine the location of the zero-crossing experi-
mentally, evaporative cooling of atoms in the |1, 1⟩ state was performed
in the ODT at different magnetic field strengths with a final trap depth of
U0∕kB ∼ 2 µK. The resulting temperature of the thermal cloud is shown as
a function of magnetic field in Fig. 7.10(a), however, the data features no
peak to be identified as the location of the zero-crossing.

An alternative experiment was therefore performed in the following way:
First, initial evaporative cooling was performed at a magnetic field of 392.6G
corresponding to a = 120 a0 until a final trap depth of U0∕kB ∼ 3 µK. Here,
the magnetic field was ramped to its target value over a 10 ms duration and
after 5 ms of hold time, the powers in the trapping beams were abruptly
lowered yielding a trap depth of U0∕kB ∼ 0.6 µK. The sudden reduction of
the potential depth results in the most energetic atoms leaving the trap, which
corresponds to cutting away the high-velocity tail of the Maxwell-Boltzmann
distribution for the atomic velocities. Afterwards, the sample was held in the
trap for a duration of 1 second, where the system was allowed to rethermalize,
before subsequent TOF expansion and absorption imaging.

The final temperature after the experimental procedure is shown as func-
tion of the magnetic field in Fig. 7.10. As expected, the evaluated temperature
decreases for higher magnetic fields as the rethermalization becomes more
efficient with increasing scattering length, and for lower fields there is a weak
signature of a peak in the temperature. A fit of Eq. (7.15) to the data is shown,
where the coefficients Ai, and the width of the Feshbach resonance Δ enter
as free parameters. The fit yields a width parameter of Δ = −59(5)G, which
differs from the expected width of Δ = −52G [83]. The data, however, only
features a very weak signature of a peak, and the discrepancy is therefore
not surprising. The peak could potentially be made narrower by increasing
the rethermalization time, which would amplify the effect of the small differ-
ences in scattering length around the zero-crossing. When characterizing the
interstate Feshbach resonance at 114G for scattering between atoms in the
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a

b

Figure 7.10: Rethermalization measurement in the vicinity of the zero-crossing.
The final temperature of the sample as a function of magnetic field is shown using
two different methods. (a) The sample was evaporately cooled at different magnetic
fields until a final trap depth of U0∕kB ∼ 2 µK. (b) The depth of the trap potential
was abruptly reduced, and the sample was allowed to rethermalize for 1 second in
the new trap. The line shows a fit of Eq. (7.15) to the data which yields a width
parameter of Δ = −59(5)G for the Feshbach resonance.
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|1,−1⟩ and |1, 0⟩ states, a rethermalization time of 5 seconds was necessary
in to get a sufficiently sharp peak at the zero-crossing [87]. The measurement
of the interstate zero-crossing used another method than the one employed
here, nonetheless, increasing the hold time after lowering the trap depth is
an obvious next step.

Note that at this point, it is unclear to which extend the three-body
scattering hypervolume influences the rethermalization in the vicinity of
a = 0. However, since the probability for three atoms to interact scales
with the density cubed, three-body interactions are likely to have negligible
effects on the dilute thermal clouds.

Alternatively, the position of the zero-crossing (and possibly the size of
D) could be determined from measurements of the size of the condensate.
This was done using 39K by Roati et al. [226], where the minimal size after
TOF expansion was identified with the zero-crossing of the scattering length.
A similar experiment was used to measure the influence of the magnetic
dipole interaction on a 7Li BEC, where phase-contrast imaging was employed
to measure the in-trap size of the condensate [230].

7.4.2 Loss Measurements

A complete simulation of the dynamics of the system requires knowledge of
the three-body loss coefficient, which corresponds to the imaginary part of
D through Eq. (7.3). With a known value of Im(D) the system dynamics can
be simulated for different values of Re(D) and a comparison of experiment
and simulation can thus be used to infer the size of Re(D).

The three-body loss rate can be determined by measuring the evolution
in the atom number and temperature as a function of hold time in the trap,
and this method has been used extensively in the context of Efimov physics,
where the presence of an Efimov state results in an increased three-body loss
coefficient [85, 89, 135, 136, 242].

In an inhomogeneous system, the loss rate of the atom number can be
determined by integrating the local three-body loss rate [88] over the sample.
For a thermal cloud, the density distribution is given by the temperature T
and the geometric mean of the trap frequencies !0, and the atom number
thus follows the differential equation [88]

dN
dt = −

N3

T 3
, (7.16)
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where  = L3(m!20∕2πkB )3∕
√

27.
Since three-body recombination primarily results in losses from the

centre of the trap where the density is highest, the atomic cloud experiences
anti-evaporation heating. Furthermore, if the recombination products remain
trapped, the released binding energy contributes with recombination heating.
Including both effects, the differential equation for the temperature becomes

dT
dt = 

N2

T 3
T + Th
3

, (7.17)

where kB Th is the energy gained from recombination heating per lost atom.
The loss coefficient can be determined from experimental data by numer-

ically solving the coupled differential equations of Eqs. (7.16) and (7.17) and
comparing the solution to the data. In practice this is done by performing a
least-squares fit of the numerically determined solution to the data with the
initial atom numberN0, initial temperature T0, the recombination heat Thand the three-body loss coefficient L3 entering as free parameters

A preliminary loss measurement was performed at a magnetic field of
400.7 G corresponding to a ∼ 700 a0. The atomic sample was evapora-
tively cooled until a trap depth of U0∕kB ∼ 2 µK after which the potential
depth was increased to U0∕kB ∼ 4 µK in order to stop further evaporative
cooling. Subsequently, the sample was held in the trap for a variable time
allowing three-body recombination to take place, before TOF expansion and
absorption imaging.

The results of the loss measurement is shown in Fig. 7.11 with panels
(a) and (b) showing the atom number and temperature as a function of
time, respectively. With increasing hold time, the atom number decreases
due to three-body recombination, while the temperature increases due to
anti-evaporation and recombination heating. The apparent settling of the
temperature at ∼ 400 nK could indicate the onset of evaporative cooling as
the temperature matches the typical 1/10 ratio of the temperature to the trap
depth for successfully confining atoms in an ODT. The lines show a fit of
the solution to the coupled differential equations of Eqs. (7.16) and (7.17)
as described above. The data marked by open circles have been excluded
from the fit to avoid the influence of evaporative cooling. The fit yields Th =
0.5(1) µK and a three-body loss coefficient L3 = 2.1(2) × 10−24 cm6s−1,
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Figure 7.11: Measurement of the three-body loss coefficient at a magnetic field of
400.7 G corresponding to a ∼ 700 a0. (a) Atom number and (b) temperature as a
function of hold time in the optical dipole trap. The lines show a fitted solution to
the coupled differential equations of Eqs. (7.16) and (7.17). The data marked by
open circles have been excluded from the fit, since the settling of the temperature
indicated the onset of evaporation cooling. The fit yields a recombination heat of
Th = 0.5(1) µK and a three-body loss coefficient of L3 = 2.1(2) × 10−24 cm6s−1.
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which has the same order of magnitude as the value measured by Zaccanti
et al. [89] using the same state and magnetic field.

For smaller interaction strengths, initial measurements using thermal
clouds have proven unsuccessful since the three-body recombination rate is
too low to observe a significant loss in the atom number within a realistic
experimental duration. For low and vanishing scattering lengths, the loss co-
efficient therefore has to be measured by observing three-body recombination
losses in a BEC as done for a < 600 a0 by Zaccanti et al. [89].

7.5 Summary and Outlook

In this chapter, preparatory work for a new experiment using a 39K BEC with
vanishing s-wave scattering length was presented, with the aim of measuring
the three-body scattering hypervolume D.

Initial simulations of the system were carried out, and the results agreed
with the analytical results of Mestrom et al. [71] and showed how the
monopole oscillation frequency of the system serves as a strong probe of
the three-body scattering hypervolume. Further simulations could explore
how the system responds to different methods of initializing the oscillations
when the effect of losses is included. Furthermore, it will be interesting to
simulate the system response to a modulation of the trapping potential, and
evaluate whether this method provides a clearer experimental signal than
oscillation measurements, which are strongly influenced by losses. A third
set of simulations could investigate the in-trap and post-TOF sizes of the
BEC to evaluate of there is a measurable difference in sizes compared to
calculations excluding three-body interactions.

On the experimental side, 39K BECs were successfully produced at the
large magnetic field strengths necessary to address the zero-crossing of the
scattering length. A new imaging scheme with the quantization axis in the
vertical direction was implemented, and a preliminary calibration of the
imaging system was performed. Following this, the magnetic field was
calibrated in the regime of the Feshbach resonance, and initial attempts
of locating the zero-crossing experimentally were presented. Finally, an
example measurement of the three-body loss coefficient in the vicinity of
the Feshbach resonance was performed.
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The next experimental steps will consist of improving the measurements
presented in Sec. 7.4 to determine the magnetic field of the zero-crossing and
the three-body loss coefficient. With these parameters determined, the stage
is set for performing oscillation measurements at a = 0. By comparing the
experimental measurements to simulations including the imaginary part of
D through the determined three-body loss coefficient, it should be possible
to infer the size of the real part of the three-body scattering hypervolume
and compare to the results of Mestrom et al. [71].





CHAPTER 8
Conclusion and Outlook

In this thesis, the work performed during my PhD studies was presented.
The project considered three separate research directions, which were all
pursued using BECs of 39K with tunable interactions.

In Ch. 5, the dynamical evolution of impurities interacting with a BEC
was investigated by using an interferometric method to track the state evolu-
tion. This enabled measuring the evolution of the system from a coherent
superposition state into polaronic quasiparticles. Across the investigated
interaction strengths, good agreement was found between the experimental
results and theoretical predictions, which highlights the increasing under-
standing of polaron physics.

The experimental realization of a LHY fluid was presented in Ch. 6. By
comparing the measured oscillation frequency of the system with detailed
numerical simulations, it was possible to verify the creation of a LHY fluid,
where the interactions are governed by quantum fluctuations. The monopole
oscillation frequency of the system was investigated as a function of the LHY
interaction strength and showed excellent agreement with the theoretical
predictions. Furthermore, the measured oscillation frequency was found to
be stable against variations around the ideal magnetic field and initial atom
number ratio, showing that quantum fluctuations dominate the interactions in
a regime around the ideal values. The results pave the way for new quantum
simulation experiments and measurements of even higher order effects.
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In Ch. 7, progress towards a new experiment strongly related to the LHY
fluid experiment was presented. Here, the aim is measure the three-body
scattering hypervolume through measurements of the collective excitations
at the magnetic field where the s-wave scattering length vanishes. For 39K,
this point is located at large magnetic field strengths, which necessitates
changing the experimental procedure compared to the previous experiments.
Within the PhD project, BECs of 39K were created at the required magnetic
fields, and the stage is therefore set for these experiments.

In addition to the ongoing work towards a measurement of the three-body
scattering hypervolume, several other research directions are being pursued
which are discussed below.

Impurity Dynamics

Together with the spectroscopic measurements [48–50, 138], the interfero-
metric experiments presented in this thesis contribute to a complete picture
of the Bose polaron in both frequency and time domain. A new article is
in preparation where the timescales of polaron formation, decay, and the
different probing techniques are compared [243]. Moreover, the polaron
energy is extracted from the interferometric data, and a first measurement of
impurity dynamics with strongly repulsive impurity-medium interactions
is presented. Further investigations could explore weaker repulsive interac-
tions, where it should be possible to observe a quantum beat between the
two polaron branches, or a measurement of the quasiparticle residue through
Rabi oscillations as was done for the Fermi polaron [42].

Bipolarons

Even without significant direct interactions between the impurities, bosonic
polarons may interact by exchanging density fluctuations in the BEC [244].
These polaron-polaron interactions can lead to the formation of a bound
state named a bipolaron, which has been investigated theoretically for weak
[245] and strong interactions [196]. Importantly, for strong interactions, the
bipolaron energy is shifted significantly compared to that of the polaron, and
a spectroscopic measurement of the bipolaron energy is therefore currently
pursued.
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Figure 8.1: Ejection spectrum measured for an impurity-medium interaction
strength of 1∕kna = −0.12 and a 30 µs evolution time. The measured normal-
ized spectral response is shown as circles, and the red line shows a fitted line shape
function, which includes additional broadening from the inhomogeneous density
distribution and finite length of the spectroscopy pulse. The contribution from
polarons is shown by the dashed green, while the part associated with bipolarons is
shown in dash-dotted blue.

Until now, the most promising results have employed the following
technique: An initial imbalanced superposition state is first created using a
short rf pulse as in the interferometric experiments. In a following variable
evolution time, polarons and bipolarons are allowed to dynamically form,
before a spectroscopy pulse ejects atoms out of the bipolaron state and into
a third state. A typical spectroscopy signal using this method is shown in
Fig. 8.1 and consists of a main peak due to the ejection of polarons, and
a shoulder which is tentatively associated with bipolarons. A physically
motivated line shape model (red line) containing contributions from both
polarons (dashed green) and bipolarons (dash-dotted blue) is fitted to data
and can be used to extract the bipolaron energy. Further details on these
experiments and the fitting procedure are out of the scope of this work, but
can be found in the thesis of Magnus G. Skou [163].
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Box Potential

The above-mentioned experiments all suffer from complications due to
the inhomogeneous density distribution present in the harmonic oscillator
potential. For interferometric measurements, the inhomogeneous density
contributes with an additional decoherence mechanism, whereas spectro-
scopic signals are broadened due to the density dependence of the polaron
and bipolaron energies.

This effect can be eliminated by the use of a so-called box trap [198],
which for BECs with a sufficiently large scattering length, results in a uniform
density distribution. Such a box trap can be constructed using laser light that
is blue-detuned compared to an atomic transition, which results in a repulsive
potential as explained in Sec. 3.7. A typical configuration consists of a
cylindrical trap geometry, which can be realized using a hollow tube beam
and two end caps [246–248]. Experiments on two-dimensional systems have
similarly been realized using a hollow beam and a tight optical lattice [249,
250]. Common to these experiments is the need to produce a hollow beam.
This can be done actively using programmable spatial light modulators [246]
or by “painting” a time-averaged potential [251], or via passive components
such as custom-made masks [249] and axicons [247, 248, 250, 252]. The
possibility of constructing a cylindrical beam using the axicon setup of
Hueck et al. [250] has been investigated in the Master’s thesis of Anders
P. Hansen [253], and a 10W laser with a wavelength of 532 nm has been
purchased for providing the necessary light.

In addition to the potential provided by the light beams, gravity con-
tributes with a linear potential in the vertical direction. In order to create a
flat-bottomed three-dimensional potential, the effect of gravity must there-
fore be cancelled using a linear potential with opposite gradient. This can be
achieved optically by creating a time-averaged potential for the atoms using
acousto-optic deflectors [58, 254], by using a magnetic field gradient [246,
247], or via a static electric field gradient in the case of polar molecules
[248].

In order to perform the experiments on impurity physics, the following
criteria must be fulfilled: First, the employed medium state must have a
positive scattering length to enable stable BEC production. Secondly, the
scattering length of the medium atoms must be sufficiently large that the
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Figure 8.2: Feshbach resonance structure relevant for impurity physics using 39K
at large magnetic fields. The scattering lengths for different state combinations are
shown as function of the magnetic field based on the calculated resonances structure
of Lysebo and Veseth [146]. (a) Scattering length as a function of magnetic field for
interactions between atoms in state |1, 1⟩ (solid orange), |1, 0⟩ (solid green), and
between the states (dashed purple). (b) Scattering length as a function of magnetic
field for interactions between atoms in state |1, 0⟩ (solid green), |1,−1⟩ (solid red),
and between the states (dashed blue).

mean-field repulsion results in a sizeable region of uniform density. Third,
a Feshbach resonance between the impurity and medium states must be
available for tuning the interaction strength, and finally, the employed states
must all experience the same trapping potential, which puts an additional
requirement on the gravity compensation.

The first method has the advantage, that the same Feshbach resonance at
113.8G used in the previous experiments on impurity physics can be readily
employed, since the “painted” potential can be made independent on the
magnetic sublevels by using linearly polarized light [26]. However, at this
magnetic field the scattering length of the usual medium state |1,−1⟩ is only
9 a0, which might be insufficient to realize a large region of uniform density
with the available atom numbers. This could readily be investigated using
GPELab to calculate the ground states of a BECs with varying atom number
confined in a realistic box potential. Using this resonance is not possible
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if gravity compensation is to be performed with a magnetic field gradient,
since the |1,−1⟩ and |1, 0⟩ states have different magnetic moments in the
vicinity of 113.8G.

In order to use a magnetic field gradient for gravity compensation, one
has to perform the experiments at a magnetic field strength, where the states
are in the Paschen-Back regime. Here, the energies of the relevant states
of the lowest hyperfine manifold of 39K have the same linear dependence1
proportional to mJB, where B is the magnetic field strength and mJ = −1∕2(see Eq. (4.3)), which allows the same gradient to compensate for gravity
for all of the states.

Fortunately, the F = 1 manifold of 39K features Feshbach resonances
in the Paschen-Back regime that allow experiments on impurity physics.
These are shown in Fig. 8.2 for the |1, 1⟩ and |1, 0⟩ state combination in
panel (a), while the |1, 0⟩ and |1,−1⟩ combination is shown in panel (b).
The |1, 0⟩ state could be used as the medium, since it features a scattering
length ∼ 100 a0 at the location of the resonance between the |1, 0⟩ and
|1, 1⟩ states at ∼ 450G as shown in panel (a). Alternatively, the Feshbach
resonance structure of the |1, 0⟩ and |1,−1⟩ states enables experiments with
an approximately constant negative impurity-medium scattering length with
a varying medium scattering length using the |1,−1⟩ resonance at ∼ 560G
as shown in panel (b).

In summary, the presented results and discussed possibilities highlight
the versatility of using 39K in quantum gas experiments, since its Feshbach
resonance structure enables a multitude of exciting research directions.

1: There is a minor difference between the gradients caused by the nuclear magnetic moment,
however, the corresponding nuclear g-factor is about a factor 1 × 10−4 smaller than gJ .



APPENDIX A
Supplementary Material – LHY

Fluid Experiments

This appendix contains additional information for the LHY fluid experiments
presented in Ch. 6. Appendix A.1 contains a table with the measured trap
frequencies, in Appendix A.2 the effect of neglecting the LHY correction in
the simulation is discussed, and in Appendix A.3 simulation results for an
initially equal mixture are shown.

A.1 Measured Trap Frequencies

Table A.1 shows the measured trap frequencies used in the LHY fluid exper-
iments along with the frequency differences with respect to the individual
axes.

A.2 E�ect of Neglecting the LHY Correction

In Fig. A.1 the simulated oscillations for �a = 0 are shown with (a-c)
and without (d-f) including the LHY correction. The simulations were
performed using a spherical trap with !0 = 2π × 110.9Hz and total atom
numberN = 9.4 × 104 corresponding to the experiment of Sec. 6.4.2. The
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Figure !0∕2π (!′x−!0)∕2π (!′y−!0)∕2π (!′z−!0)∕2π(Hz) (Hz) (Hz) (Hz)
5.6 113.1(6) 3(1) 0.1(9) −3.3(8)

◻ 113.7(1) 4.8(2) 1.6(2) −6(1)
115.3(4) 0.4(4) −4(1) 3.5(4)
111.1(3) 1.1(8) −3.5(6) 2.5(7)

5.6
5.7 110.9(5) 1(1) −4.2(9) 3(1)
5.8

Table A.1: Measured trap frequencies corresponding to the experiments of Ch. 6.
The geometric mean are given along with the deviations from the mean along each
axis.

results for the components in the |1⟩ and |2⟩ states are shown in solid orange
and dashed purple, respectively. The upper panels show the simulated root-
mean-square radii without including losses. Panel (a) thus corresponds to a
LHY fluid undergoing large amplitude oscillations due to the experimental
preparation method, while panel (b) shows the evolution of a system which
starts out as non-interacting due to the cancellation of mean-field interactions.
Despite the irregular oscillations, fitting Eq. (6.15) to the simulated radii
yields an oscillation frequency of!∕!0 ∼ 2 as evident from the dotted orange
line in Fig. 6.10. The simulated radii when including losses are shown in
the middle panels of Fig. A.1, and the lower panels show the corresponding
evolutions in the atom number. Panel (b) thus shows the radial evolution of a
system, which starts out as a LHY fluid, but where the mean-field interactions
increase as a consequence of the cascading inelastic losses evident in panel
(c). For the simulations in panel (e), the repulsive LHY interactions are not
present to counteract the mean-field energy, which appears due to the losses.
These cause the component in the |2⟩ state to experience an increasing mean-
field attraction, which further amplifies the losses and causes the population
to decrease rapidly as shown in panel (f). The component in the |1⟩ state
consequently experiences an increasing repulsion, which causes a violent
expansion after the first contraction and results in a prominent kink in the
simulated radius. The complicated dynamics of the wave functions result in
bad fits of Eq. (6.15) and the orange lines in Fig. 6.10 therefore only resemble
the qualitative behaviour of the monopole oscillation frequency.
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A.3 Equal Mixture Simulations

In Fig. A.2 simulated oscillations for �a = 0 are shown for an equal mixture
of the components in states |1⟩ (solid orange) and |2⟩ (dashed purple). The
simulations were performed using a spherical trap with !0 = 2π × 110.9Hzand total atom number N = 9.4 × 104 corresponding to the experiment
of Sec. 6.4.3. Panel (a) shows the root-mean-square radii as a function of
time without losses, and the radii including losses are shown in panel (b)
with the corresponding evolution of the atom numbers in panel (c). The
simulations correspond to the rightmost points of the dotted and solid blue
lines of Fig. 6.11, respectively. The results without losses show the irregular
oscillations of the component in the |1⟩ state, which causes the steep decline
in the extracted oscillation frequency in Fig. 6.11. This behaviour is not
present for the simulations including losses, as the relative atom number
N2∕N1 is pulled towards lower values by the losses.
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Figure A.1: Results of the dynamical two-component simulations for !0 = 2π ×
110.9Hz andN = 9.4 × 104 corresponding toU = 4.1. Results for the components
in the |1⟩ and |2⟩ states are shown in solid orange and dashed purple, respectively.
The simulations were performed for �a = 0 correspond to the simulation data for
this value in Fig. 6.10. The simulations were performed with (a-c) and without (d-f)
including the LHY correction. The simulated root-mean-square radii are shown as
a function of time excluding (upper panels) and including (middle panels) inelastic
losses. The corresponding evolutions in the atom numbers for the simulations
including losses are shown in the lower panels.
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Figure A.2: Results of the dynamical two-component simulations for !0 = 2π ×
110.9Hz and N = 9.4 × 104 starting from an equal mixture of states |1⟩ (solid
orange) and |2⟩ (dashed purple). (a) Simulated radii without including losses. (b-c)
Simulated radii (b) and atom numbers (c) including inelastic losses.
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