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Abstract

Since the first realization of Bose-Einstein condensates in dilute gases, the area of
ultracold atomic physics made numerous contributions to many areas in physics.
In particular Feshbach resonances allow for the investigation of interaction induced
effects in macroscopic quantum systems and heteronuclear quantum gas mixtures
enable investigations of e.g. molecular, few and many body physics.
Within the scope of this thesis two Bose-Einstein condensate mixtures with

tunable interspecies interactions were realized. The mixture of 39K-87Rb is a
novel mixture with tunable inter- and intraspecies interactions. Usually 39K is not
considered for the production of heteronuclear Bose-Einstein condensate mixtures,
since a magnetic field is required to tune the background scattering length to positive
values. However this is circumvented by employing three Feshbach resonances at
the same time to realize dual condensates. This mixture features an interspecies
Feshbach resonance, which was characterized to high precision, as well as very
broad intraspecies resonances in 39K. The control of the interaction between the
species was demonstrated by investigating the quantum phase transition from the
miscible to the immiscible phase of a condensate mixture. The second Bose-Einstein
condensate mixture realized within the scope of this thesis, 41K-87Rb, allows for the
precise tuning of the interspecies interaction, due to the availability of a number
of broad and narrow resonances and, in combination with the 39K-87Rb mixture,
allows for comparative studies.
These two mixtures were used to investigate the three-body problem, one of

the outstanding problems in physics. The simplicity of this quantum mechanical
few-body problem in combination with the resulting complexity make it a perfect
model system to simulate with the two mixtures in this apparatus. One of the best
known theoretical outcomes is the Efimov effect, predicting an infinite number of
geometrically scaled three-body bound states for interactions where no two body
bound state is present. While previous experiments with mixtures of 41K-87Rb
observed an Efimov resonance, no resonance was observed in experiments with
40K-87Rb, despite the similarity of the system. We performed loss measurements
for the detection of these resonances and no Efimov resonances could be observed
for intermediate scattering lengths in both mixtures of 39K-87Rb and 41K-87Rb
solving a longstanding controversy in the field of few-body physics.
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Resumé

Siden Bose-Einstein-kondensater er blevet realiseret i en sky af atomer, er der blevet
lavet talrige bidrag til mange områder i fysikken igennem ultrakolde kvantegasser.
I særdeleshed har Feshbach-resonanser åbnet op for undersøgelser af interaktion-
seffekter i makroskopiske kvantesystemer, og heteronukleare kvantegasblandinger
giver mulighed for at studere f.eks. molekylefysik, og kvantefysik med få og mange
legemer.
Indenfor denne afhandling, er to blandinger af Bose-Einstein-kondensater med

kontrolerbare interaktioner blevet realiseret. 39K-87Rb er en nyskabende blanding
hvor interaktionen både kan kontroleres imellem ens og forskellige atomer. Normalt
betragtes 39K ikke som en mulighed til blandinger af Bose-Einstein-kondensater, da
magnetfeltet er nødvendigt til at gøre spredningslængden positiv. Her udnyttes dog
en unik kombination af to Feshbach-resonanser, der giver mulighed for kondensation
af begge stoffer, sammen med at en tredje resonans, der giver mulighed for at
styre interaktionen imellem stofferne. Denne resonans karakteriseres her til høj
præcision, og bruges til at undersøge kvantefaseovergangen imellem den blandbare
og ikke-blandbare tilstand. Den anden blanding, 41K-87Rb, giver, med både brede
og smalle Feshbach-resonancer, mulighed for præcis kontrol af interaktionen imellem
stofferne og i kombination med den første blanding, fås her et velgenet mulighed
for at lave studier til sammenligning.
Disse to blandinger bruges til at undersøge trelegemeproblemet, der er et af

fysikkens enestående problemer. Kombinationen af enkelthed og kompleksitet i et
kvantemekanisk trelegemesystem, gør det et ideelt system at undersøge med de to
tilgængelige blandinger. Et af de bedst kendte resultater er Efimov-effekten, der
for bestemte interaktioner giver et uendeligt antal geometrisk skallerede, bundne
tilstande for tre legemer, uden bundne tilstande for to legemer. I tidligere eksperi-
menter med blandinger af 41K-87Rb er der blevet observeret en Efimov-resonans,
men i andre eksperimenter med 40K-87Rb kunne en sådan resonans ikke observeres,
på trods af ligheden imellem systemerne. Igennem tabsmålinger af atomer har vi
søgt efter disse resonancer, men ingen Efimov-resonanser blev observeret, hverken
i 39K-87Rb eller 41K-87Rb. Dermed løses en vedvarende kontrovers indenfor fysik
med få legemer.
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1 Introduction

Atoms and their properties have always played a major role to gain insight into
nature. While the Greek philosophers already discussed the concept of discrete units
of matter, it was quantum mechanics that allowed for the complete description of
atoms and the associated phenomena. In the middle of the 1920s, A. Einstein based
on previous work by S. Bose predicted a striking quantum mechanical effect in non-
interacting gases [1, 2]. When cooled below a certain temperature, a macroscopic
fraction of the atoms will start populating the ground state, an effect now called
Bose-Einstein condensation (BEC). Since the first realization in dilute sodium [3]
and rubidium [4] vapors in 1995 this new field has made contributions to many
areas of physics. The high degree of control of the inner and outer parameters of
the samples and the isolation from external influences make BECs a powerful tool
to investigate fundamental effects and to simulate quantum systems. One of the
outstanding effects occurring in samples of ultra-cold gases are magnetic Feshbach
resonances [5], since they allow for precise tuning of the interatomic two-body
interaction and thus enable the production of BECs with tunable interactions [6].

Mixed Bose-Einstein condensates

The outlook to produce and investigate BEC mixtures with distinguishable com-
ponents and tunable interactions triggered considerable interest, since they allow
for the investigations of effects in wide scope ranging from molecular physics [7],
impurity physics [8–11] and precision metrology [12] to few [13, 14] and many body
physics [15].

Various approaches have been used to realize dual species Bose-Bose systems. The
most common one uses different spin states of the same isotope [16]. This allowed
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1. Introduction

e.g. for the realization of spinor quantum gases [17] and the investigation of spin
dynamics [18]. Another approach is to use different isotopes of the same element,
which had been realized in mixtures of 85Rb-87Rb [19] and 168Yb−174 Yb [20] and
used for example for observing miscible and immiscible BECs [19].

The approach presented in this theses uses two different atomic species allowing
for species dependent trapping and tuning of the intra- and interspecies interaction.
This choice allows for a number of investigations including e.g. the production
of ground state molecules with a large electric dipole moment [21], tests of the
equivalence principle due to different masses [22] or in quantum computation [23].
Typically sympathetic cooling with one atomic species with favorable properties
is used for the production of BECs in another species with poor properties for
evaporative cooling. This allowed e.g. the production of quantum degenerated
Fermi gases [24], since s-wave scattering is forbidden for low temperatures due
to the Pauli exclusion principle and thus does not permit evaporative cooling.
Employing this technique it was possible to produce the first 41K BECs [25] and
further improvement of this technique allowed for the first production of dual-species
condensates of 41K-87Rb [26] and for tuning of the interspecies interactions [27].
Since then dual species BECs of 87Rb-133Cs [28, 29], 23Na −87 Rb [30], 87Rb-84Sr
and 87Rb-88Sr [31] have been realized.

The ability to tune the interactions between the different species with the help of
Feshbach resonances make this system extremely interesting. In particular it allows
to produce miscible condensates of different mass being a prime model system to
test the equivalence principle with BECs allowing for long observation times [12].
The precise control of the two-body interaction allows for the investigation of few
body physics in a many body environment, simulating a many body problem, which
normally would be impossible to solve analytically [32] or by doping a majority
component with a second component simulating the behavior of an impurity
under the influence of tunable interactions [8–11]. Moreover interspecies Feshbach
resonances allow for the association of loosely bound dimers and thus the study of
heteronuclear molecular physics [33].
In the experimental apparatus described in this thesis a new BEC mixture

with tunable interactions consisting of 39K and 87Rb was created. 39K is an
unusual species for dual species experiments since the magnetic field is needed
to tune the background scattering length to positive values. By employing two
Feshbach resonances at the same time the condensate was stabilized, while a third
resonance was used to tune the interspecies scattering length. This allowed for the
investigation of miscible and immiscible quantum phases and the determination of
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the interspecies scattering properties with a novel method. Moreover mixtures of
41K and 87Rb have were realized in this apparatus. Since these two mixtures include
the same isotope of rubidium and the masses of the potassium atom differ only
by a small percentage these are the ideal candidates for experiments in few-body
physics.

Few body bound states

The two body problem is one of the standard examples in scattering theory and is
well described and understood. The transition from two to few body physics makes
the system not only more complicated, but at the same time richer of interesting
effects. It was V. Efimov, who realized in 1970 that three identical bosons, that
do not support a two body bound state, support an infinite number of bound
states, geometrically scaled by a constant factor in size and energy [34]. Although
proposed to solve problems in nuclear physics, it turned out to be almost impossible
to verify his predictions in nuclei [13].

Confirmation of the existence of this new effect came from the field of ultracold
gases in 2006. A sample of ultracold 133Cs showed increased three-body losses for
certain interaction strengths, for parameters where no dimer states existed, the so
called Borromean region [35]. Later it was moreover possible to provide evidence
of an Efimov three-body bound state in non-Borromean regions by measuring the
enhanced losses due to inelastic collisions of 133Cs atoms and Feshbach dimers [36]
and show the universality between loss maxima and minima on both sides of the
Feshbach resonance [37] connected to the same Efimov state. A special interest
arose in the investigation of mass imbalanced cases, since this changes the discrete
scaling between the different Efimov states [32], which triggered experiments in
41K-87Rb observing both K-K-Rb and Rb-Rb-K resonances [38]. Moreover the
effect was also observed in distinguishable Fermi gases [39–43] and the binding
energy was determined with the help of RF-spectroscopy [44, 45]. More recently
four [46, 47] and five body [48] Efimov like resonances were observed bound to the
Efimov three-body resonances.

Demonstrating the discrete scaling between different states turned out to be more
difficult. The first attempts showed clear indications only between the loss minima
in the non-Borrromean region [47, 49], and it took until 2014 until it was possible
to measure the discrete scaling between the first two states [50] and confirm the
prediction of the existence of giant Efimov states made 44 years earlier. Work in the
extreme mass imbalanced case showed even signs of the second excited resonance
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1. Introduction

confirming the geometric scaling between the Efimov states [51, 52].
An ongoing discussion concerns the position of the resonances. It turned out, that

the position shows a universal relation to the van der Waals length across species [53]
and Feshbach resonances [54, 55] in single species experiments. Nonetheless the
prediction of the position of the Efimov resonances in the heteronuclear case is still
not feasible from theory and has to be found experimentally, thus simulating the
quantum mechanical three-body problem.
However the case of potassium and rubidium became inconclusive with the

discovery of the absence of Efimov resonances in Bose-Fermi mixtures of 40K-
87Rb [56, 57]. This was in contradiction to the earlier observation in 41K-87Rb,
since the resonances were expected to be in the same position due to the small mass
difference of the potassium atom. These surprisingly different results triggered the
investigations of 39K-87Rb and 41K-87Rb mixtures presented in the last part of this
theses.

Structure of the thesis

The thesis is structured as follows:

• In chapter two some of the underlying physical principles of interacting single
and multi component quantum gases are discussed.

• The experimental apparatus, which was used in this thesis, is introduced in
chapter three. Special focus is laid on some of the problems and solutions
required for working with two component samples.

• In chapter four the production of 39K BECs with tunable interactions, as well
dual species BECs of 39K-87Rb and 41K-87Rb, is presented. The control of the
interactions is demonstrated by high precision characterization of a 39K-87Rb
Feshbach resonance and the observation and analysis of the quantum state
transition from miscible to immiscible BECs.

• Chapter five presents the experimental work on heteronuclear few body
physics. In mixtures of 39K-87Rb and 41K-87Rb the scattering length depen-
dent loss coefficient was measured and no sign of observable Efimov resonances
at intermediate scattering lengths was detected.
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2 Interacting bosonic quantum gases

This chapter focuses on the theoretical background of the experimental work in
this thesis. It starts with a description of the interaction of two level atoms with
external electro-magnetic fields in section 2.1. Section 2.2 introduces the basic
concepts of scattering between two particles and how magnetic Feshbach resonances
can be used to manipulate the scattering properties of atoms. The introduced
scattering concepts are used in subsection 2.2.2 to describe loss processes in two
component samples, which can be used as a tool to detect Efimov resonances,
as described in subsection 2.2.3. The chapter is concluded by a description of
interacting Bose-Einstein condensates (BEC) with one and two components in
section 2.3.

2.1. Two level dressed atom picture

Electromagnetic fields have an immediate effect onto the internal level structure of
an atom. They can, for example, be used to manipulate the internal states of the
atom as will be described in subsection 2.1.2 and subsection 2.1.3, or for trapping
as described in subsection 2.1.1. To model the internal states we introduce the two
eigenstates of our two level atom as |e〉 and |g〉 driven by an external quantized
field to induce a change of the states. The dipole matrix element for a transitions
between the two eigenstates for light polarized in the direction of the x-axis can be
written as [58]

µge = −e〈g|x|e〉, (2.1)
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2. Interacting bosonic quantum gases

with the charge of the electron e. The characteristic frequency connected to the
rate at which the states change is defined as the Rabi frequency

ΩR = |µgeE0~| (2.2)

with E0 being the electric field amplitude, ~ the Planck constant. This system is
well described by the Jaynes-Cummings model considering it a two level atom in a
quantized field. The Hamiltonian of the system can be written as [59]

HJC = Ha + Hl + Hint, (2.3)

consisting of the Hamiltonian of the atom Ha, of the field Hl and the interaction
between field and atom Hint. This Hamiltonian describes transitions between |g〉
and |e〉 as

|e〉|n− 1〉 ↔ |g〉|n〉, (2.4)
with the bare states of the system defined as

|ψ1n〉 =|e〉|n〉
|ψ2n〉 =|g〉|n+ 1〉. (2.5)

For a detuning (∆ = ω − ω0), with the unperturbed atomic transition frequency
ω0 and the frequency of the light field ω, the Hamiltonian of this system can be
expressed as [59]

H(n) = ~
[
nω + ω0

2 λ
√
n+ 1

λ
√
n+ 1 (n+ 1)ω − ω0

2

]
. (2.6)

The detuning dependent Rabi frequency is obtained to Ωn(∆) =
√

∆2 + 4λ2(n+ 1) =√
∆2 + Ω2

R, which for zero detuning becomes the unpertubed Rabi frequency
Ωn(0) = 2λ

√
(n+ 1) = ΩR.

2.1.1. Optical dipole trap
A strong laser beam, that is red detuned to an atomic transition, can be used to
trap atoms in the intensity maximum. The underlying dipole force can be explained
by the coupling of the internal states of the atoms onto the external field. From
Equation (2.6) we get the energy eigenvalues as [59]

E(1n)(∆,r) =
(
n+ 1

2

)
~ω + 1

2~Ωn(∆,r)

E(2n)(∆,r) =
(
n+ 1

2

)
~ω − 1

2~Ωn(∆,r). (2.7)
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2.1. Two level dressed atom picture

We assume that the Rabi frequency Ωn may vary depending on the position in
space and the detuning of the driving field. Figure 2.1 shows the general results
of the state energy dependence on a position depending intensity, e.g. a Gaussian
laser beam. Furthermore the eigenstates |n,±〉 can be written as the dressed states

|n,+〉 = cos (Φn/2)|ψ1n〉+ sin (Φn/2)|ψ2n〉
|n,−〉 =− sin (Φn/2)|ψ1n〉+ cos (Φn/2)|ψ2n〉, (2.8)

with Φn = arctan ΩR
∆ . The force on an atom at rest can now be calculated as

Fdip = −Π1∇E1 − Π2∇E2, (2.9)

by calculating the reduced state populations Π. It has been shown that the force
on the atoms is [60]

Fdip = −~∆ ω2

ω2 + 2∆2 α = −∇
[
~∆
2 log (1 + ω2

2∆2 )
]
, (2.10)

with α = ∇ω
ω

= Ωn
ω
∇Ωn.

Figure 2.1.: (left) Diagram for the level energy shift from the bare atomic transition
without coupling to the dressed states. (right) Dressed level energy
shift depending on the intensity variation across a Gaussian laser beam
for ∆ < 0.

From this it follows that an atom experiences an intensity and detuning dependent
force. Assuming a strongly focused laser beam this force attracts atoms in the
ground state to the center of the beam for ∆ < 0 and repels them for ∆ > 0.
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2. Interacting bosonic quantum gases

2.1.2. Rabi oscillations
Working with cold atomic systems often involves the manipulation of the internal
states of an atom. This includes the change of the hyperfine levels as well as the
magnetic sub states. Detailed descriptions of the manipulation with resonant or
non-resonant time-depending fields can be found in the books of L. Allen and J.
H. Eberly [61] or H. Metcalf and P. van der Straten [62]. Assuming an atom is in
a driving field, the probability of finding the atom in state |1〉 and |2〉 changes in
time according to

|c1(t)|2 =Ω2
R

Ω2
n

sin2(Ωnt/2)

|c2(t)|2 =Ω2
R

Ω2
n

cos2(Ωnt/2). (2.11)

We assume that the radiation is resonant and thus Equation (2.11) simplifies to

|c1(t)|2 = sin2(ΩRt/2)
|c2(t)|2 = cos2(ΩRt/2). (2.12)

It is obvious that the occupation probability of the two states changes in time
with the Rabi frequency as illustrated in Figure 2.2. The maximum occupation
transfer to the other state is only achieved for a resonant driving field and goes
down for a detuning |∆| > 0. Starting with a system prepared in state |2〉 at
t = 0, a pulse with ΩRt equal to π fully transfers the population to state |1〉 and
is referred to as a π pulse. Since the first derivative of |c1(t)|2 at this time is zero
the timing is inherently robust to small variations and can be used for controlled
state preparation. One of the fundamental issues is the decoherence inherently
occurring in experimental systems, leading to the damping of the oscillation as
well as a loss in contrast. Experiments improving the coherence times have been
previously performed on the apparatus described here [63]. A pulse with half this
duration is referred to as a π/2-pulse and prepares the sample in a superposition
of the two states. Though less robust to produce, the superposition of the two
states allows for other applications such as inertial sensing [64, 65], optical lattice
clocks [66] or to explore fundamental quantum physics [67, 68].

2.1.3. Adiabatic passages
Another way to change the internal state of an atom with high efficiency is to
use rapid adiabatic passages. A non resonant field is coupling to two states and
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2.1. Two level dressed atom picture

0 π 2 π 3 π 4 π
0.0

0.2

0.4

0.6

0.8

1.0

t/Ω

|c
1(

t)|

Figure 2.2.: The probability to find an atom in the |2〉 state after undergoing Rabi
oscillations. The driving field is detuned by ∆ = 0 (red), ∆ = ΩR (blue)
and ∆ = 2ΩR (orange).

is swept across the resonance. This transfers the atoms from one state into the
other. This procedure is normally more robust than π-pulses due to an inherent
insensitivity for small deviations in the magnetic field [61].
To transfer the sample from one state to another the process has to be fast

compared to the relaxation time of the system Tdec. In the same way, the process
has to be slow enough for the system to follow the perturbation meaning

ΩR

Tdec
<<

∂ω

∂t
<< Ω2

R. (2.13)

We consider the Hamiltonian described in Equation (2.6) with two coupled states
|1〉 and |2〉 perturbed by an electromagnetic field with frequency ω. The energy
diagram of theses states close to resonance is shown in Figure 2.3.

A transfer from state |1〉 into |2〉 starts on the left side of the figure. The states
are uncoupled and the coupling is applied by the external field ω. The states are
almost degenerate and by sweeping the frequency to the right side the resonance
the state follows the avoided crossing. The sweep has to fulfill the conditions
from Equation (2.13) meaning it has to be rapid compared to the decoherence of
the system but the change in frequency has to be slow enough for the system to
follow adiabatically. By turning off the perturbing electromagnetic field and thus
the coupling, the atom is projected into an eigenstate leading to the transfer of the
population into state |2〉.

An example for such an energy splitting is the Zeeman splitting. In the low-field

9



2. Interacting bosonic quantum gases

0

frequency of the driving field

ΔE
|1

|2
|1

|2

Figure 2.3.: Example for the energy of two dressed states. The uncoupled energies
are drawn in dashed lines, while the eigenstates |1〉(|2〉) for the coupled
system are drawn in orange (blue).

region this can be calculated by the Breit-Rabi formula [69]

EHFS
B (F = I+−1

2 ,mF ) = −A4 +mFgKµKB±
∆E0

2

(
1 + 4mF

2I + 1x+ x2
) 1

2
, (2.14)

with
x = gJµB − gKµK

∆E0
B, (2.15)

where gJ is the fine structure g-factor, µB the Bohr magneton, gK is the nuclear
g-factor, mF the magnetic substate, I is the nuclear angular momentum, B is the
magnetic field strength and ∆E0 = A(I + 1

2) is the hyperfine splitting at zero field.
The relevant constants for potassium and rubidium can be found in references
[70, 71].

2.2. Scattering in ultracold gases
For scattering in ultracold gases, the wave nature of the particles and their species
has to be taken into account. We consider a two body scattering problem of an
incoming and a stationary atom with masses m and the total kinetic energy of
Ekin = ~2k2/m, where k denotes the wave number. The scattering problem is
described by the Schrödinger equation[

p2

2m + V (r)
]
ϕ(r) = Eϕ(r), (2.16)

10



2.2. Scattering in ultracold gases

assuming
ϕ(r) = ϕ0(r) + ϕs(r), (2.17)

for E > 0 and a spherical-symmetric scattering potential [72]. The incoming wave

ϕ0(r) = eikz, (2.18)

is assumed to be a plane wave in the z-direction generating a scattered wave ϕs(r).
For the case of r →∞ the outgoing wave can be described as a spherical wave

ϕs(r) −−−→
r→∞

f(θ)e
ikr

r
, (2.19)

with scattering amplitude fk(θ) depending on the angle θ. The differential scattering
cross section is defined as

dσ

dΩ = |fk(θ)|2 , (2.20)

for the case of two distinguishable atoms [73]. The elastic cross section σ can be
obtained by integrating over all solid angles

σ =
∮

4π

dσ

dΩdΩ. (2.21)

Assuming azimuthal symmetry and using a partial-wave expansion the scattering
amplitude can be written as

fk(θ) =
∞∑
L=0

2L+ 1
k cot δ(k)− ikPL(cos θ), (2.22)

by expanding the scattering amplitude fk in terms of the Legendre polynomials
PL, the scattering phase shift δ(k) and the angular momentum quantum number
L [73, 74].

Assuming the low energy regime with k → 0 and L = 0, the scattering length a
is well approximated by

k cot δ(k) = −1
a

+ 1/2r0k
2, (2.23)

with the s-wave effective range r0 [75]. Since only scattering with L = 0 is considered,
this type of scattering is referred to as s-wave scattering, following the naming
scheme for atomic orbitals.
The scattering cross section in terms of the scattering length is given by

σ ∼= 4πa2. (2.24)

In the case of two indistinguishable bosons the scattering cross section will be
larger by a factor 2, while it vanishes for identical fermions [75].
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2. Interacting bosonic quantum gases

The van-der Waals range

The interatomic potential can be well described by the Lennard-Jones potential [76]
as

V (r) = ε

[(
C12

r

)12
−
(
C6

r

)6]
. (2.25)

It consists of a strong repulsive component determined by the C12 coefficient and
the long range tail determined by the C6 coefficient, while ε describes the depth of
the potential well. The length scale connected to the C6 coefficient is the van der
Waals radius

RvdW = 1
2

(2µC6

~2

)1/4
, (2.26)

with the reduced mass µ of the two atoms. The van der Waals length lvdW =
2RvdW defines the length scale at which interactions between atoms for small
energies take place and thus defines an important boundary. Values for the C6
coefficient in potassium and rubidium mixtures have been determined by Simoni et
al.[77]. Assuming a very low energy scale, the thermal de-Broigle wavelength from
Equation (2.57) might become larger than the spacial extend of the potential. In
this case it will be impossible to resolve the internal structure of the two atoms by
scattering [73]. By exploiting Feshbach resonances, as described in subsection 2.2.1,
one can tune the scattering length a to larger values than lvdW and thus make the
scattering independent from the internal structure of atoms.

The alkali atoms used in this thesis have van-der Waals lengths of about 65 a0 in
potassium [70], about 83 a0 in 87Rb [78] and about 72 a0 between potassium and
rubidium [77, 79], with a0 being the Bohr radius.

2.2.1. Magnetic Feshbach resonances
From the first observation of magnetic Feshbach resonances in atomic clouds by
Inouye et al. [6] in 1998, it has evolved to a versatile tool in ultracold quantum
gases. Besides changing the scattering length this effect can also be used for the
association of weakly bound molecules. A basic explanation is given here, while a
detailed treatment of this extensive topic can be found in C. Chin et al. [79].
Assuming the interatomic potential V0 as shown in Figure 2.4, which for large

distances approaches the potential for two unbound atoms. This ’open channel’
does not support any bound states for the incoming atom with energy Es. Note
that scattering in ultracold atoms takes place close to Es → 0. Another molecular
potential Vc close to the open channel shall support bound states and is thus called

12



2.2. Scattering in ultracold gases

’closed channel’. The relative energy difference between the two channels is tunable
with an external magnetic field. A Feshbach resonance arises when a bound state
in the closed channel with energy Ec energetically approaches the scattering state
with energy Es in the open channel. In this case strong mixing between the states
take place leading to a shift in the scattering phase. As shown in Equation (2.23) a
change in δ is equivalent to a change in the scattering length, which can in return
be controlled by the magnetic field.

0

interparticle distance(arb.unit)

en
er

gy
(a

rb
.u

ni
t)

Es

Ec

Figure 2.4.: Simple two channel picture of a Feshbach resonance. Depicted are the
open channel Vo(r) (orange) and the closed channel Vc(r) (blue) po-
tential. The horizontal arrow depicts the incoming state with the
energy Es (purple) and possible bound states for the open chan-
nel (dashed) and the closed channel (brown and green). Possible
coupling can happen to a bound state with similar energy Ec as the
incoming particle (red).

Close to the resonances the asymptotic behavior of the scattering length can be
approximated by

a(B) = aab

(
1− ∆

B −B0

)
, (2.27)

and for multiple overlapping Feshbach resonances by

a(B) = aab

(
1−

i∑
n=1

∆i

B −B0,i

)
, (2.28)

while abg is the background scattering length, B the magnetic field strength, B0
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2. Interacting bosonic quantum gases

the magnetic field at the resonance center and ∆ the width of the resonance [80].
An example for this dispersive behavior is shown in figure 2.5.
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Figure 2.5.: Example of the magnetic field dependent scattering length from Equa-
tion (2.27) (red) and the associated dimer state from Equation depend-
ing on the magnetic field (2.29) (blue).

Dimer states

The presence of another state with possible bound states is leads to the existence
of a weakly bound dimer state on the positive side of a Feshbach resonance. The
binding energy close to the resonance can be calculated using

ED = ~2

2µa2 , (2.29)

with µ denoting the reduced mass [79]. The corresponding molecular level is shown
in Figure 2.5. This makes it possible to associate molecules by e.g. magnetic field
sweeps [81, 82] or radio frequency association [83, 84]. These molecules are weakly
bound and in a highly excited state. Different techniques have been developed
to transfer them into the absolute ro-vibrational ground state [85, 86]. Since
recombination into the bound state is energetically possible for two atoms, this
state also adds another loss channel not present on the side of negative scattering
length.
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2.2. Scattering in ultracold gases

Resonance strength

To characterize the nature of different Feshbach resonances further, Gribakin and
Flambaum introduced the mean scattering length

ā = 4π
Γ(1

4)2RvdW = 0.955978...RvdW , (2.30)

with Γ defined as the gamma function [87]. The corresponding energy scale [79] is
given by

Ē = ~2

2µā. (2.31)

This allows to set the magnetic width of the resonance in relation to the potential
width and thus to define the resonance strength parameter

sres = abg
ā

δµ∆
Ē

, (2.32)

with δµ the differential magnetic moment between the separate atoms and the bound
state. This dimensionless parameter can be used to characterize the resonance [79,
88, 89]. For sres >> 1 the resonance is considered as an open channel dominated
resonance, where the near threshold scattering and spin character are dominated
by the entrance channel. The scattering properties are very well described by
Equation (2.28). For the case of sres << 1 the resonance is dominated by the
properties of the closed channel. The modeling of the interaction can be more
complicated and a coupled channel analysis can be in place [79]. Sometimes the
open channel dominated resonances are referred to as "broad" resonances and vice
versa the closed channel dominated as "narrow" resonances, although this strictly
speaking refers to the magnetic width ∆.

2.2.2. Losses in scattering

One of the fundamental processes in ultracold gases is scattering between two
particles. It is mostly motivated to be elastic, as it is a fundamental part of
rethermalization and hence in evaporative and sympathetic cooling. Only a fa-
vorable ratio of elastic to inelastic collision opens a "BEC-window" [90] allowing
the production of Bose-Einstein condensates in dilute gases. The occurrence of
inelastic scattering leads in most cases to heating and atom losses from the trap.
These are relatively simple to determine at the end of the experiment and hence
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2. Interacting bosonic quantum gases

are a good to measure. For a single species system the time dependent losses can
be described by [79]

Ṅ(t) = −N(t)
τ
−
∫

[α2n
2(r,t) + α3n

3(r,t)]d3r, (2.33)

with the system dependend loss coefficients α for two and three-body processes,
the one body lifetime τ and the time and position dependent densities n(r,t).

The one body processes described by the first term can be mainly appointed to
collisions with the background gas or for example absorption of photons from a
dipole trap beam. The two and three-body processes on the other hand are sample
dependent.

Two body losses

The second term in Equation (2.33) describes two body losses. They often involve
very unlikely processes, e.g. atoms not in the absolute magnetic ground state, like
the |1,− 1〉 state, decaying into lower lying mF -states. The occurrence of this
process in polarized samples is small as it involves a spin changing collision but
at the same time a conservation of spin, i.e. a change of the total mF . Differing
from one body processes the two body loss coefficient α2 is proportional to the
scattering length as α2 ∝ a2 as shown in Equation (2.24) for the scattering cross
section [55].

Three-body losses

The event of three-body recombination can be understood as a two body scattering
event which has to scatter another particle. It follows, that the rate of this process
must be proportional to the cube of the atom density. It was shown [91], that the
general loss of this process follows an a4 dependence as

α3(a) = C
~a4

m
, (2.34)

where C is a dimensionless factor depending on the system and α3 is the three-body
loss coefficient. Often these events form a molecule of two atoms, while most of
the kinetic energy is carried away by the third atom, which might be lost from the
trap. The molecule might decay into more deeply bound states and by this release
the binding energy in form of kinetic energy, which leads to further losses.
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2.2. Scattering in ultracold gases

The dual species case

By changing the one species case described in Equation (2.33) to a two species
case all possible combinations have to be considered. The different combinations
can have largely differing recombination probabilities and are characterized by
different ratios in the number of lost atoms from each species. This may be caused
by e.g. more likely molecule formation in some of the combinations. Since all of
the three-body events are expected to follow Equation (2.34), their dependence is
expected to be proportional to a4. Due to their low probability we neglect two-body
losses and hence the dual species case is described by the coupled differential
equations

Ṅa =− 2
3αbaa

∫
nbn

2
ad3r

− 1
3αbba

∫
n2
bnad3r

− αaaa
∫
n3
ad3r

− 1
τ

∫
nad3r, (2.35)

Ṅb =− 1
3αbaa

∫
nbn

2
ad3r

− 2
3αbba

∫
n2
bnad3r

− αbbb
∫
n3
bd3r

− 1
τ

∫
nbd3r. (2.36)

Heating effects of three-body recombinations

Besides atom loss, three-body processes involve two heating mechanisms. The
density dependence in Equation (2.33) and Equation (2.36) lead to higher losses in
regions with higher densities, corresponding to positions of lower energy. This leads
to a loss of colder atoms or "anti"-evaporation. As described in subsection 2.2.1 for
positive scattering lengths a molecular bound state exists, which products might
remain trapped. When the binding energy is released, the sample might be heated
by this process. This process turned out to be neglectable as it is of almost no
relevance [49].
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2. Interacting bosonic quantum gases

Looking at a single species sample, the mean kinetic energy U of a lost atom is∫
n3Ud3r∫
n3d3r

= 1
2kBT, (2.37)

with kB being the Boltzmann constant. The average kinetic energy of an atom
in the sample is 3

2kBT , leading to an excess heat corresponding to 1kBT per lost
atom [91]. The total energy of the atoms in the sample is on average 3kBT .
Using the three-body rate from Equation (2.33), the change in temperature can be
obtained as

Ṫ = αT

3N

∫
n3d3r. (2.38)

Considering a two component process characterized by αaab, the mean potential
energy for an atom lost in an a-a-b recombination is βaab = 2

3βa + 1
3βb, with the

corresponding species potential energies

βa =
∫
n2
anbUd

3r∫
n2
anbd

3r
and βb =

∫
n2
bnaUd

3r∫
n2
bnad

3r
. (2.39)

The average total excess energy is then given by 3
2kBT − βaab. Comparing to the

total average energy of 3kBT of a sample with a total number of atoms Na +Nb,
the change in temperature becomes

Ṫ = αaab

3
2kBT − βaab

3kB

∫
n2
anbd3r

Na +Nb

. (2.40)

The different strengths of the combinations described in Equations (2.36) have a
major effect on the decay and will be covered for our case of K-Rb in chapter 5.

2.2.3. Efimov effect
Though two bosonic particles may not feature a bound state in a certain set of
parameters, adding a third particle might give rise to a possible bound state. V.
Efimov realized that this is not only the case for one state, but for an infinite
number of states, all scaled by the same factor [34]. This is illustrated in Figure 2.6
for the first three states. These sates are most easily detected by measuring the
three-body recombination. We consider the region with negative scattering length
as the Borromean region, as it does not provide a two body bound state. The
first trimer state (red) approaches the continuum at a characteristic scattering
length a

(0)
− and gives rise to a peak in the three-body recombination coefficient.

The position of the next trimer state is scaled by a factor e
π
so for the resonance
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2.2. Scattering in ultracold gases

position. For identical bosons this factor is ≈ 22.7, but can vary due to mass scaling.
The trimer states cross the unitary region with an energy scaling of e

2π
so . On the

positive side the states are limited by the dimer state, leading to an atom dimer
resonances (a∗) and recombination minima (a+) [32] in the scattering dependent
three-body coefficient.

a>0

inverse scattering length

binding energy

a-

a*

(0)

(0)

a*
(1)

a*
(2)a-

(1) a-
(2)

a<0

Figure 2.6.: Drawing of possible Efimov states around the pole of a Feshbach res-
onance at 1/a = 0 approaching E = 0 and the dimer state (purple).
The positions of the Efimov resonances a− and the Efimov dimer reso-
nances a∗ are marked. For illustrative purposes the distance between
the states is not to scale.

Hyperspherical coordinates

The universality of three-body physics is most easily understood in terms of the
hyper-spherical formalism. The following arguments concerning Efimov resonances
have been given in [32, 73] with excepts from [92] for the hyper spherical formalism.
The main problem in three-body physics is to solve three-body Schrödinger

equation (
−~2

m

3∑
i=1
∇2
i + V (r1,r2,r3)

)
Ψ = EΨ. (2.41)

To consider an N body problem Jacobi-coordinates can be used. In the case of
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three particles we use

rij = 1√
2

(ri − rj), rk,ij =
√

2
3(rk −

1
2(ri + rj)). (2.42)

r3,12

r12

1

2

3

Figure 2.7.: A possible set of Jacobi coordinates defined by Equation (2.42).

The hyperradius R is defined as the root-mean-square separation of the three
particles

R2 = 1
3(r2

12 + r2
23 + r2

31) = |rij|2 + |rk,ij|2. (2.43)

If the particles are close together, the hyperradius is small, while it becomes large
if one of the atoms is far from the other two. We define the Delves hyperangle [93]
αK as

αk = arctan
(
|rij|
|rk,ij|

)
, (2.44)

with (i, j, k) being a permutation of (1, 2, 3). The hyperangle αk has a range of
0 to π

2 . When atom k is close to the atoms i and j the angle is close to π
2 and

close to 0 when it is far away as shown in Figure 2.8. Thus the magnitudes of the
separation vectors rk,ij and rij are

rij = R sinαk, rk,ij = R cosαk. (2.45)
The wavefunction can be expressed by using the hyperspherical expansion [94].

For every value of R the wavefuction can be expanded into a complete set of
functions of the hyperangles Ω to

ψ (R,α) = 1
R5/2

∑
n

fn(R)φn(R,Ω). (2.46)
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Figure 2.8.: Three examples for different hyperangles, while keeping the hyperradius
contstant.

φn(R,Ω) are solutions to the hyperangular equation [92](
Λ + 2mR2

~2 Vn

)
φn(R,Ω) = λn(R)φn(R,Ω), (2.47)

where Λ denotes the grand angular momentum operator in hyperradial coordinates
and λn the eigenvalue.
The hyperradial wavefunctions fn(R) defined in Equation (2.46) fulfill an infi-

nite set of coupled differential equations. Applying the adiabatic hyperspherical
approximation [95], the coupling terms are neglected and the equations decouple.
They reduce to the independent hyperradial equations[

~2

2m

(
− ∂2

∂R2 + 15
4R2

)
+ Vn(R)

]
fn(R) ≈ Efn(R), (2.48)

for every one of the hyperspherical potentials.
The channel potentials for the hyperradial variable

Vn(R) = [λn(R)− 4] ~2

2mR2 , (2.49)

are defined by the eigenvalues λn(R). To find fn the hyperradial wave equation is
defined as [96] (

− ∂2

∂R2 +
ν2(R)− 1

4
R2 − 2mE

~2

)
fn(R) = 0, (2.50)

where ν is a function of the hyperradius R. The solving of this problem is described
in [92]. For three identical Bosons the solution is [97, 98]

ν cos
(
νπ

2

)
− 8√

3
sin

(
νπ

6

)
=
√

2R
a

sin
(
νπ

2

)
, (2.51)
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where a the interparticle scattering length. The calculations for one distinguishable
and two identical particles can be found in [99]. Assuming the extreme case of
a→∞ the imaginary solutions of ν = ν0 become independent of R and the radial
equation of Equation (2.50) has infinitely many solutions, that are related by

En+1

En
= e−2π/|ν0| ≡ 1

s2
0
, (2.52)

which is also referred to as the Efimov scaling. An example can be seen in Figure 2.6,
where the energies of the different Efimov states scale with a constant ratio.

Mass dependend scaling

The number ν0 is a system dependent constant. A more common value is the scaling
of the relative positions in scattering length of the Efimov resonances denoted here
with s0. For identical bosons this value is s0 = 22.7. By choosing a dual species
mixture with mass imbalance this ratio changes [32]. Some exemplary values are
given in Table 2.1. While the combination of two rubidium and one potassium
atom has an unfortunate scaling of > 100, the case of two potassium and one
rubidium atom is even more unfavorable. Recent experiments on extreme mass
imbalanced mixtures of 7Li-133Cs were able to make use of a more favorable scaling
and resolve higher excited Efimov states [51, 52].

system s0 e(π/s0)

3 identical bosons 1.00624 22.7
39K39K87Rb ≈ 0.2358 ≈ 613 000

39K87Rb87Rb ≈ 0.670 ≈109
40K87Rb87Rb 0.6536 122.7
41K87Rb87Rb 0.644 131.0
41K41K87Rb 0.2462 348 000

7Li133Cs133Cs 1.850 5.465

Table 2.1.: Efimov scaling factors for different three-body systems. Precise values
are adopted from [97]. Values for the 39K-87Rb system have been
estimated from [32].
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2.2. Scattering in ultracold gases

Optical potential

To describe a three component scattering event, one strives to achieve all information
about the incoming as well as the outcoming states. The main interest of the work
in chapter 5 is to explain losses, since the outgoing states cannot be detected and
thus the details of the outgoing channels are not relevant. The model described here
makes use of this simplification and takes only absorption processes into account
such as light in an optical medium and thus cannot provide information about the
products of the recombination. It was proposed by collaborators for three-body
recombination in hetero-nuclear systems [99] and will be used to analyze the data
in chapter 5.
Starting from Equation (2.50) for negative scattering lengths the potential is

defined as
V (R) =

ν2(R)− 1
4

R2 , (2.53)

which is illustrated in Figure 2.9. A barrier region shields the short distance
attractive region from incoming particles. For short distances an imaginary part is
added to account for particle loss, which is caused by a loss of probability modeling
e.g. absorption processes.

0 1 2 3 4

-0.4

-0.2

0.0

0.2

0.4

ρ [|a|]

V
[ρ
/a
]

Figure 2.9.: Illustration of the real part of the optical potential defined in Equa-
tion (2.54). The brown lines correspond to some possible bound state
while the dotted line corresponds to a resonant state for positive energy.

By introducing the imaginary potential Vimag and the cut off radius Rcut the
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potential becomes

2m
~2 V (R) =


ν2(R)− 1

4
R2 if R > Rcut

ν2(R)− 1
4

R2 − Vimag · i if R < Rcut.

(2.54)

The resulting potential is characterized by the barrier around R/a = 1.46 going
over into a decreasing potential as 15/(4R2) for long distances and the short range
attractive region similar to a complex square well. Within the square well a number
of bound states exist, which scale through Equation (2.52). When one of these
states is equal to the total energy of the three particles the tunnel probability is
enhanced and thus the absorption probability. The according negative scattering
length for such resonant behavior can be associated with the observable position of
a scattering dependent loss maximum as a− [99].

Detection of Efimov resonances

In subsection 2.2.2 the different loss processes occurring in an ultracold gas due
to collisions have been introduced. In this section the focus will lie on three-body
losses due to the three-body nature of the Efimov effect. The general scattering
length dependence of the loss coefficient is a4. This is illustrated as red lines
in Figure 2.10. The resonant behavior of the Efimov effect at certain scattering
lengths adds observable features. The expression for these have been calculated
using effective field theory to be [97]

α122(a) =



Cα

sin2[s0 ln[a/a+]] + sinh2[η∗] sinh[η∗]
sinh2[πs0 + η∗] + cos2[[s0 ln[a/a+]]

+ coth[πs0] cosh[η∗] sinh[η∗]
sinh2[πs0 + η∗] + cos2[[s0 ln[a/a+]]

~2a4

m1
if a > 0

Cα
2

coth[πs0]sinh[2η∗]
sin2[s0 ln[a/a−]] + sinh2[η∗]

~2a4

m1
if a < 0,

(2.55)

with m1 being the mass of the minor component denoted by 1 and η∗ as a constant
related to the lifetime of the Efimov trimer. An exemplary spectrum is plotted in
Figure 2.10. The side of negative scattering length shows the characteristic loss
peaks at the resonance positions a−. On the side of positive scattering length a
spectrum of recombination minima a+ can be seen. Since a gas of ultracold atoms
is considered here, the corresponding peaks for the atom dimer resonances a∗ would
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Figure 2.10.: Illustration for a possible Efimov spectrum according to Equa-
tion (2.55) in blue and the expected a4 dependence in the absence of
Efimov resonances.

be either non existend or very small and have thus been neglected. In a mixture
of dimers and atoms they would show up as prominent loss peaks between the
different loss minima on the side of positive scattering length.

2.3. Bosonic atomic gases near zero temperature
A classical gas at high temperatures can be well described by the Maxwel-Boltzman
distribution given the average number of particles n of the i-th energy state εi as

n(εi) = 1
e(εi−µ)/kBT

, (2.56)

with the temperature of the gas T and the Boltzmann constant kB. The chemical
potential µ is considered to be well below the particle energy. The quantum
statistics of the particles are not significant at higher temperatures. These become
relevant when the thermal de Broglie wavelength, given by

λdB = 2π~√
3mkBT

, (2.57)

becomes comparable with the interparticle spacing [58].
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2. Interacting bosonic quantum gases

2.3.1. The ideal Bose gas
For a gas of indistinguishable non-interacting bosons in thermal equilibrium the
average number of atoms in every state εi is given by the Bose-Einstein distribu-
tion [100]

n(εi) = 1
e(εi−µ)/kBT − 1 . (2.58)

For atoms trapped in a harmonic potential of the form

V (r) = 1
2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.59)

with the trapping frequencies ω, the corresponding energy levels are given by

ε(nx,ny,nz) = (nx + 1
2)~ωx + (ny + 1

2)~ωy + (nz + 1
2)~ωz. (2.60)

Here ni are positive integer numbers greater or equal zero. The density of states
for this system is given by

g(ε) = ε2

2~3ωxωyωz
. (2.61)

In terms of thermodynamical properties this can be written in the form

g(ε) = Cαε
α−1, (2.62)

where the coefficient Cα is defined as C3 = 1
2~3ωxωyωz

with α = 3 for a harmonic trap.
We define the average trapping frequency ω̄ = (ωxωyωz)1/3 as the geometric mean of
the three trapping frequencies. For a large number of non-interacting particles N and
low temperatures a good assumption is µ→ 0. We define the critical temperature
Tc as the temperature at which the ground state becomes macroscopically occupied.
The number of particles in excited states at this temperature is determined by

Nex(Tc, µ = 0) =
∫ ∞

0
g(ε)n(ε)dε =

∫ ∞
0

g(ε) 1
eε/(kBTc)−1dε, (2.63)

which in terms of Equation (2.62) becomes

Nex = Cα(kBTc)α
∫ ∞

0
dx

xα−1

ex − 1 = CαΓ(α)ζ(α)(kBTc)α. (2.64)

Here we make the replacement x = ε/kBTc, Γ(α) for the gamma function and ζ(α)
for the Riemann zeta function. From Equation (2.64) one obtains the value of the
critical temperature as

kBTc = N1/α

[CαΓ(α)ζ(α)]1/α . (2.65)
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2.3. Bosonic atomic gases near zero temperature

Since for α = 3 the Riemann zeta function is Γ(3) = 1.202 and the gamma function
is ζ(3) = 2 one obtains for the critical temperature the expression

kBTc = ~ω̄N1/3

[ζ(3)]1/3 ≈ 0.94~ω̄N1/3. (2.66)

Another useful quantity derived from the de Broglie wavelength and the atomic
density is the phase-space density (PSD)

ρ = N

V
λ3
dB = n

(
2π~2

mkBT

)3/2

. (2.67)

It is a measure of the overlap of the single particle wavefunctions in the trap.
Bose-Einstein condensation occurs when the condition ρ ≥ ζ(α) fulfilled. In a
harmonic potential this is the case for ζ(3) = 1.202 and for bosons in a uniform
potential for ζ(3/2) = 2.612 [100].

2.3.2. The Gross-Pitaevskii equation
While the statistical description of the non-interacting Bose gas in the previous
section makes it possible to predict many effects, e.g. the occurrence of a phase
transition to a Bose-Einstein condensate, it does not take into account the interac-
tions between the particles in the ground state and the implications arising from
this.
We consider N interacting bosons within an external potential Vext(r) with

a point like contact interaction described by the interaction strength g and the
Dirac delta function δ(ri − rj). Defining the boson field creation and annihilation
operators with Ψ̂ and Ψ̂† respectively, the many body Hamiltonian is [101]

H =
∫
drΨ̂†(r)

[
− ~2

2m∇
2 + Vext(r)

]
Ψ̂(r) + g

∑
i<j

δ(ri − rj), (2.68)

consisting of terms for the kinetic energy, potential energy and the interaction of
the bosons. Let Φ(r,t) = 〈Ψ̂(r,t)〉 be a complex function defined as the expectation
value of the field operator. This allows a decomposition to

Ψ̂(r,t) = Φ(r,t) + Ψ̂′(r,t). (2.69)

Bogoliubov [102] developed his first order theory by treating Ψ̂′(r,t) as a small
variation of the field operator Ψ̂(r,t).
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2. Interacting bosonic quantum gases

Using the Heisenberg equation with the many body Hamiltonian from Equa-
tion (2.68) [101], one obtains

i~
∂

∂t
Ψ̂(r,t) =

[
Ψ̂(r,t),Ĥ

]
=
[
− ~2

2m∇
2 + Vext(r) +

∫
dr′Ψ̂†(r′,t)V (r′ − r)Ψ̂(r′,t)

]
Ψ̂(r). (2.70)

The effective interaction between two atoms at low energies can be described as
point like interaction and thus as

V (r′ − r) = gδ(r′ − r), (2.71)

where δ denotes the Dirac delta function. The coupling constant g describes the
interaction strength for two interacting bosons and is related to the scattering
length defined in section 2.2 as g = 4π~2a

m
.

Replacing the operator Ψ̂ by the classical field Φ in Equation (2.70) leads to the
Gross-Pitaevskii equation [101]

i~
∂

∂t
Φ(r,t) =

[
− ~2

2m∇
2 + Vext(r,t) + g|Φ(r,t)|2

]
Φ(r,t). (2.72)

Separating the time dependent part of the wave function as Φ(r,t) = φ(r) exp (−iµt/~),
the ground state of the system can be obtained as(

− ~2

2m∇
2 + Vext(r) + gφ(r)2

)
φ(r) = µφ(r), (2.73)

with µ denoting the chemical potential. The first two terms describe the kinetic and
potential energy contributions, while the last one takes the interactions between
the atoms into account. In the case of a large number of atoms and strong repulsive
interactions we can use the Thomas-Fermi approximation [103]. These condition
are normally met in experiments and thus the particle density distribution can be
written as

n(r) = φ2(r) = µ− Vext(r)
g

. (2.74)

2.3.3. The two component Gross-Pitaevskii equation
Up to this point the considered systems have only consisted of one component.
Mixed systems offer a wealth of new possibilities and complications, both exper-
imentally as well as in the theoretical description. Possible realizations include
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2.3. Bosonic atomic gases near zero temperature

mixtures of two different species, as described in chapter 4, different isotopes of
the same bosonic species or of spin mixtures. To describe the equilibrium state the
time independent two component Gross-Pitaevskii equations can be used. These
are similar to Equation (2.73) [100]

µ1ψ1 = − ~2

2m1
∇2ψ1 + V1(r)ψ1 + g11|ψ1|2ψ1 + g12|ψ2|2ψ1, (2.75)

and
µ2ψ2 = − ~2

2m2
∇2ψ2 + V2(r)ψ2 + g22|ψ2|2ψ2 + g12|ψ1|2ψ2. (2.76)

Here the interaction is defined as gij = 2π~2aij
µij

for the two components i and j with
the reduced mass µij = mimj/(mi + mj). The interspecies scattering length is
a21 = a12.

Stability

Assuming a homogeneous gas with constant densities ni = |Ψi|2 and choosing the
phase to be independent of space, the two Gross-Pitaevskii equations simplify
to [100]

µ1 =g11n1 + g12n2

µ2 =g12n1 + g22n2. (2.77)

It can be shown that stability conditions in this case are [100]

g11 > 0, g22 > 0 and g11g22 > g2
12. (2.78)

Since the interaction g is connected to the scattering length, the condition of the
positive sign of the interaction parameter expressed as the requirement of positive
scattering lengths in single and dual condensates. This holds also true for single
species experiments for the production of Bose-Einstein condensates with a large
number of atoms. The maximum number of atoms in a Bose-Einstein condensate
with negative scattering length is determined by

Ncr|a|
aho

= 0.575, (2.79)

at which the condensate collapses [101]. Here the harmonic oscillator length is
given by aho =

(
~
mω̄

)1/2
.
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2. Interacting bosonic quantum gases

Density Profiles

To gain an insight into the density distributions of mixed trapped gases, we assume
the Thomas-Fermi approximation and thus neglect the kinetic energy in the dual
species Gross-Pitaevskii equation (2.75) and (2.76). The result becomes

µ1 =V1 + g11n1 + g12n2

µ2 =V2 + g12n1 + g22n2, (2.80)

which can be expressed as

n1 =g22(µ1 − V1)− g12(µ2 − V2)
g11g22 − g2

12

n2 =g11(µ2 − V2)− g12(µ1 − V1)
g11g22 − g2

12
. (2.81)

It was shown, that depending on the ratios of the parameters, the two samples
may coexist in the same space or will separate [104].
The state of miscible and immiscible condensate can be characterized by the

miscibility parameter for trapped gases [105–107], as used in subsection 4.7.1,
defined as

∆ = giigjj
g2
ij

− 1. (2.82)

In case of positive ∆ the two condensates are miscible and can coexist in the same
region. At ∆ = 0 a phase transition occurs to an immiscible phase in which the
samples repel each other and separate except for an interface region. The stability
conditions in Equation (2.78) predict an unstable mixture for ∆ < −1.

mixture aK(a0) aRb(a0) aKRb(a0) ∆
39K87Rb ≈ 25 (-35) 100 28.5 1.63(-2.68)
41K87Rb 60.54 100 284 -0.93

Table 2.2.: Overview of the corresponding background scattering lengths to detem-
ine the missibility parameter. The value for 39K is chosen for realistic
experimental conditions due to the stability criteria. Values in paren-
thesis are for background values. Values for 41K from [108], 39K-87Rb
mixture subsection 4.7.1. All other from [79].

An overview of realistic experimental conditions as described in chapter 4 is
given in Table 2.2, showing that the basic experimental conditions can vary greatly.
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3 Experimental apparatus

Since the experimental apparatus has previously been described in great detail [109–
111] the focus of this section lies on describing the new experimental techniques
implemented for the production of dual-species BECs.
An overview of the vacuum system is shown in Figure 3.1. The collection

region on the left side consists of a large glass cell to enable efficient loading of a
magneto-optical trap (MOT) for potassium and a dark spontaneous optical force
trap (dark-SPOT) [112] for 87Rb. The potassium and rubidium atoms are provided
by two commercial not isotope enriched dispenser sources (SAESGetters). In
addition, light-induced atom desorption [113] is used to desorb atoms from the
surface of the glass cell.

Subsequent experiments on dual-condensates are performed in a small L-shaped
glass cell (science cell), allowing for good optical access from all six spatial directions.
The two cells are separated by a differential pumping stage assuring pressures of
1×10−11mbar in the science chamber. This allows for long lifetimes of the atomic
samples in the science cell. The transport of the atoms between the cells is realized
with a movable magnetic quadrupole trap described in subsection 3.3.2.

This chapter is structured as follows. In general the focus lies on the production
of 39K and 87Rb dual species condensates. First a general overview of the laser
systems used for the cooling of potassium and rubidium is given in section 3.1,
including the performance of the dark spontanious optical force trap and the optical
molasses. In section 3.3 the procedures for magnetic trapping and transport are
introduced. In section 3.4 the focus lies on the performance of evaporative cooling
in the magnetic trap in dual species experiments. A short introduction into the
detection of ultracold gases and the experimental control is given in section 3.5.
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3. Experimental apparatus

The chapter finishes with the description of the production of rubidium BECs in
the magnetic trap in section 3.7. Parts of this chapter have been included in a
parallel publication [114]. 1

MOT cell

experiment cell
dispenser

differential pumping stage shutter

to ion getter pumps

Figure 3.1.: Overview of the vacuum system. Adopted from [110, 111].

3.1. Laser system for trapping and cooling
The laser system can be divided into the rubidium part as described in subsec-
tion 3.1.1 and the potassium part described in subsection 3.1.2. Since a detailed
description of the laser system has been given in previous PhD-theses [109–111]
the focus in this section is to describe the relevant changes. A general overview of
the involved frequencies is shown in Figure 3.2.
Both systems deliver light for the following purposes:

• Light for trapping and cooling in a MOT, red detuned from the F = 2 →
F ′ = 3 transition at 780 nm for rubidium and 767 nm for potassium.

• Light resonant to the F = 1 → F ′ = 2 transition refered to as repumper,
since it is used to transfer atoms from the F = 1 state back into the cooling
cycle.

1For the internal states of the atoms the notation |F,mF 〉, where F denotes the hyperfine state
and mF the magnetic substate is used.
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3.1. Laser system for trapping and cooling

• Light resonant to the F = 2→ F ′ = 2 transition. This is used to polarize the
samples by optically pumping the atoms into magnetically trappable states
for magnetic transport.

• Resonant light to the F = 2→ F ′ = 3 transition for detection of the atoms.

The experimental apparatus is divided into two parts on two different optical tables
to improve decoupling from vibrations. One table hosts the laser system, while the
other one hosts the vacuum system. The light is guided via optical fibers to the
experiment table which allows for readjusting only parts of the beam path. Light
fulfilling the same purpose used in both species, e.g. the cooling light for the MOT
in 39K and 87Rb, is superimposed on dichroic mirrors and coupled into the same
optical fiber to ease alignment on the experiment table.
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Figure 3.2.: Overview of the relevant levels for the laser cooling for 39K, 41K and
87Rb. Adopted from [110].

3.1.1. Rubidium laser system

An overview of the system is shown in Figure 3.3. The master laser is a grating
stabilized diode laser (DLpro from Toptica) [115], while the repumper laser is a
stabilized linear cavity laser (NarrowDiode from RadiantDyes) [116].
The master laser is stabilized via saturated absorption spectroscopy [117] to

the crossover resonance between the F = 2 → F ′ = 2 and the F = 2 → F ′ = 3
transitions. The spectroscopy light is shifted upwards in frequency by 300MHz by
an acousto optical modulator (AOM) to allow for broad frequency tuning.
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3. Experimental apparatus

The light of the repumper laser is overlapped with the light of the master
laser on a fast photo diode. The beat signal is stabilized via a trombone lock
scheme [118] (see Figure 3.2).
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Figure 3.3.: Sketch of the rubidium laser system. Adopted from [109].

The frequency of the light from the master laser is shifted by an AOM by around
410MHz for cooling and imaging. For cooling in the MOT, the cooling light is
amplified up to 800mW by a tapered amplifier (TA) [119]. For optical pumping
and the depumping in the dark-spot MOT the light is shifted by 2×83MHz in a
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3.2. Dark spontaneous force optical trap

double pass AOM. The repumping light is sent through an AOM and shifted by a
frequency of 110MHz before being coupled into fibers for repumping during the
MOT-phase, optical pumping and before imaging.

3.1.2. Potassium laser system
The laser system for the generation of the light for potassium is depicted in
Figure 3.4. We use grating stabilized diode lasers (DLpro from Toptica) [115] with
an output exceeding 90mW. The spectroscopy light is shifted with a double pass
AOM by 320MHz and then stabilized to the F = 2→ F ′ = 2/3 crossover resonance
in 39K [120].
The beat frequencies of the repumping laser and the cooling laser with respect

to the reference laser are recorded on two fast photo diodes. A phase locked loop is
comparing the beat frequency with a reference frequency from a frequency generator
and the beat frequency is stabilized to a multiple of the reference frequency, thus
this stabilization scheme allows for a convenient change between the different
isotopes by changing the reference frequencies.

The light from the repumping laser is sent through a single pass AOM to allow
for fast switching and frequency adjustment for MOT, Molasses, optical pumping
and repumping before imaging. The light from the cooling laser is sent through a
double pass AOM for the same reasons. The light is then split into imaging, optical
pumping and MOT light. The imaging and optical pumping light are combined
and sent into optical fibers together with the light for rubidium. The MOT light
from the cooling and repumping lasers are overlapped and coupled jointly into
the same TA amplifying the light up to 1W. The TA shows a highly nonlinear
behavior for different frequencies, therefore the relative powers have to be adjusted
in a fixed ratio (see section 3.2) using a Fabry-Perot cavity.

3.2. Dark spontaneous force optical trap
The simultaneous collection of potassium and rubidium in spatially overlapping
magneto-optical traps poses two interrelated problems. First of all, 39K is not
particularly well suited for laser cooling due to its small excited state hyperfine
splitting [121–123]. Thus, only relatively small samples can be collected and special
strategies have to be employed to reach low temperatures [124]. This problem is
aggravated by the interaction of the large rubidium samples with smaller potassium
samples. In particular two processes are involved. Hyperfine changing collisions
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Figure 3.4.: Sketch of the potassium laser system. Adopted from [110, 120]

occur when a the collision of two atoms can exchange the hyperfine state, which
can lead to the release energy of kinetic energy. The second process are light
assisted collisions, where one or both atoms are excited into an attractive molecular
potential. Deexcitation may emit a red detuned photon compared to the one
exciting the system. The excess energy will again be released as kinetic energy
and thus lead to losses and heating. Both processes lead to similar atom losses
from both samples [125], which have a larger relative effect on the small potassium
samples.
We overcome these problems by using a potassium MOT with large cooling

laser beams in combination with a dark-SPOT [112] for 87Rb as shown in Fig. 3.5.
Due to the dark-SPOT, 87Rb atoms at the center of the dual trap accumulate
in the |F = 1〉 state and hence light-assisted collisions are avoided. This dark-
SPOT technique has only been used in 7Li-85Rb mixtures before [126], contrary
to the more common goal to increase the phase-space density in single species
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3.2. Dark spontaneous force optical trap

experiments [112, 127–129].

Dual species MOT

To operate the 39K MOT, a single optical fiber delivers approximately 260mW
of light detuned 24MHz below the transition from the ground state |F = 2〉 to
the excited state |F ′ = 3′〉 and approximately 140mW detuned 32MHz below the
|1〉 → |2′〉 transition. These are called cooling and repumping light respectively,
despite the fact that their roles are not clearly distinct.
This ratio between the amount of repumping and cooling light was chosen,

according to the probability of an atom undergoing a decay to the |F = 1〉 state
during cooling, requiring a 2:1 ratio of cooling to repumping light for 39K.
The same fiber delivers 280mW of cooling light for 87Rb tuned 24MHz below

the |2〉 to |3′〉 transition. About 4mW of repumping light for 87Rb resonant to the
|1〉 → |2′〉 transition is sent through a special fiber to realize a dark-SPOT (see
Figure 3.2)

If experiments with 41K are conducted we use 200mW of light detuned 17MHz
below the transition from the ground state |F = 2〉 to the excited state |F ′ = 3′〉
and 200mW of light detuned 32MHz below the |1〉 → |2′〉 transition is used. Note
that his corresponds to a detuning of both frequencies below the whole upper
hyperfine manifold. Due to the lower detuning of the cooling light the probability
of an atom undergoing a decay to the |F = 1〉 state is higher, requiring a 1:1 ratio
of cooling to repumping light.
This light is split into six beams using achromatic beam splitters as shown in

Figure 3.5. Galilean telescopes are used to magnify the beams to a 1/e2 diameter
of 34mm before intersecting in the MOT region. These large beams allow for
the efficient accumulation of atoms from the background vapor. To adjust the
relative number of atoms in the different species, different loading times are used.
In practice e.g. the 87Rb MOT is fully loaded and 39K is loaded for a short time in
parallel. Since the number of 41K atoms is lower the procedure is reversed in this
case.

Dark Spot MOT

The experimental realization of the dark spot MOT for 87Rb is shown in Figure 3.5.
The repumping light on the |1〉 to |2′〉 transition and depumping light on the |2〉
to |2′〉 transition are delivered in separate fibers. The repumping light is first
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Figure 3.5.: Overview of the laser beams used in the dark-SPOT. Adopted
from[110].

collimated and then magnified to a 1
e2

beam diameter of 22mm in a 2:1 telescope.
The dark spot in the beam is realized by placing a small opaque disk of 6mm
diameter within this telescope. Thus the effective spot size in the collection region
can be varied by translating the disk in the telescope. Due to its large size, the
beam and the imprinted dark spot propagate without considerable diffraction over
the distance required in the experiment. To obtain a central dark region of the
trap surrounded by regions with repumping light, the beam is recycled and passes
the trap for a second time in an orthogonal direction (see Figure 3.5). Additional
depumping light is required in the dark region, since most atoms would otherwise
remain in the cooling cycle while traversing it.
To quantify the number of atoms acquired in the MOT, the fluorescence light

is collected with a lens (focal length 80mm) on a photo diode. The power of the
emitted light is given by

P = N~ω0Γsc, (3.1)

where N is the number of atoms, ω0 is the frequency of the emitted photons and
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3.2. Dark spontaneous force optical trap

Γsc is the photon scattering rate

Γsc = I

2Isat
Γ

1 + I/Isat + (2∆
γ

)
, (3.2)

with the intensity of the light field I, the saturation intensity Isat, the detuning ∆
and the natural linewidth γ [62]. The according values for potassium can be found
in [70] and for rubidium in [71]. Hence the total number of atoms in the MOT
depending on the voltage on the photodiode Udiode is

NRb ≈1.54× 109 atoms/V · UPD
N39K ≈3.60× 108 atoms/V · UPD. (3.3)

These values assume a detuning of 24MHz for 87Rb and no detuning for 39K and an
IRb of u 70mW for 87Rb and IK of u 70mW for 41K. This is due to the fact that the
39K light is tuned to resonance for atom number measurements. Three experiments
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Figure 3.6.: Number of 39K atoms in the dark-SPOT as a function of time in the
presence of no 87Rb (triangles), a bright 87Rb MOT (diamonds) and
Dark-Spot 87Rb MOT (circles).

are performed to characterize the performance of the dual-species optical trap for
mixtures of 39K and 87Rb. Figure 3.6 shows the 39K atom number during MOT
loading under different experimental conditions. The maximum number of 39K
atoms is obtained by loading a single species MOT. In the presence of a bright
87Rb MOT (realized by removing the opaque disk) severe losses lead to an inferior
steady state of about 3×107 39K atoms equivalent to less than half of the number
of atoms compared in the single-species case. By using the dark-SPOT for 87Rb
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Figure 3.7.: Number of 87Rb atoms (triangles) and 39K atoms (circles) as a function
of the dark spot diameter.

these losses are avoided and one obtains almost the same number of 39K atoms as
in the single species MOT.

The size of the dark spot was optimized with respect to both species by measuring
the atom numbers after 25 s loading time as a function of the spot size (see
Figure 3.7). Thus an effective spot diameter of 12mm was chosen. For smaller
sizes, the 87Rb atoms are not depumped properly in the area of the 39K MOT,
resulting in losses. Larger sizes lead to a lower number of 87Rb atoms, while no
further gain of 39K atoms is obtained. Contrary to previous experiments [129], no
decrease in the 87Rb loading rate was observed for this dark spot size. Thus, up to
7× 107 39K and 2.7× 109 87Rb atoms are collected.
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3.2. Dark spontaneous force optical trap

For an effective spot diameter of 12mm the intensity of the depumping beam
was varied (see Figure 3.8) and the number of atoms in the trap was recorded after
25 sec. It shows that the number of 39K atoms increases with the intensity of the
depumping beam and stays constant above 1.5mW showing an efficient decrease in
light assisted collisional losses. The 87Rb sample shows an initial decrease in the
number of atoms for lower intensities hinting towards an inefficient depumping and
hence induced losses without an increase in atom density in the trap center. The
number of atoms rises and approaches a value close to the initial one for intensities
higher than 2.5mW. In practice, the loading times of 39K/41K and 87Rb are adjusted
to obtain an appropriate relative atom number for subsequent sympathetic cooling.

Optical molasses

After loading sufficient atoms in the dual-species optical trap, an optical molasses
is applied to cool the atoms below the Doppler limit. A typical optical molasses
works efficiently, if the excited state hyperfine splitting is much larger than the
natural linewidth γ, which is the case for rubidium but not for potassium.

The molasses for 87Rb atoms is realized by turning off the magnetic field gradient
and detuning the cooling light by −7 γ for a duration of 9ms.

For potassium, the situation is considerably different. Since the hyperfine splitting
is on the same order as the linewidth, a standard molasses procedure is not efficient.
However, it has been shown that sub-Dopper cooling is possible when using a more
advanced scheme [122, 123]. These schemes rely on the fact, that the neighbouring
states lead to a strong depumping into dark states. The population in the bright
state and thus the photon scattering can be controlled precisely by the intensity of
the repumping light. This reduces the photon reabsorption and allows for lower
temperatures

For the case of 39K, this is realized as follows: At the beginning of the molasses
phase, the repumping light power is abruptly lowered to 5% of its initial value
and tuned on resonance. At the same time the cooling light is detuned to −0.5 γ.
Within the following 9ms, its power is linearly ramped down by 50% and the
detuning is simultaneously increased to −2.3 γ.

In experiments with 41K the molasses is performed with repumping light turned
to resonance and lowered to 5% of the initial power. The cooling light is ramped
from −1 γ to −1.5 γ within 9ms while the molasses for 87Rb is performed in
parallel.
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3. Experimental apparatus

3.3. Magnetic trapping and transport
For small magnetic fields the energy of the quantum states used in our experiments
changes according to the linear Zeeman effect E(mF ,B) = gµBmFB [90]. Here g
is the Landé g-factor, µB is the Bohr magneton, mF the magnetic substate and B
the magnetic field magnitude. Since it is impossible to create a local magnetic field
maximum, a trap has to be designed to provide a magnetic field minimum. Therefore
the states |F = 2,mF = 2〉, |F = 2,mF = 2〉 and |F = 1,mF = −1〉, which reduce
their energy for lower magnetic field strengths, are available for magnetic traps.
Both K and Rb atoms in the 42S1/2 manifold have a magnetic field splitting of
|E/(h ·mF )| = 700kHz/G.

3.3.1. Optical pumping

After the optical molasses the atoms are distributed over all magnetic substates.
Since only distinct states are magnetically trappable and a fully polarized sample
is favorable for further experiments both species are optically pumped into the
|2,2〉 state. For this purpose, a homogeneous offset field of 15G is applied and σ+
polarized light close to the |2〉 to |2′〉 transition is applied to both atomic species
for a duration of 1 ms. Additionally, repumper light is applied to prevent atom loss
to the ground state |1〉 manifold. The optical pumping increases the number of
transferred atoms by 50%.

This process is of particular importance for the work with potassium, as collisions
with other spin states induce spin changing collisions that may release energy and
lead to atom loss and heating. Due to the low number of atoms available, already
small losses compared to the other species, would make it impossible to achieve
cold and large enough samples.

3.3.2. Magnetic transport

To obtain an efficient loading of the MOT the background pressure of alkali atoms
has to be high. Since this is contrary to long sample lifetimes, the samples are
mechanically transported from the MOT cell to the science cell (see Figure 3.1).
After optical pumping, both species are transferred into a magnetic quadrupole
trap mounted on a transport stage (404XR from Parker) as depicted in Figure 3.9a.
The current through the quadrupole coils is abruptly increased to 15A to catch the
atoms and then ramped up in 50ms to 45A. The coils produce a magnetic field
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3.3. Magnetic trapping and transport

gradient of B′/I =4.35G/(cm· A) resulting in a gradient of 196G/cm in the vertical
direction. During this procedure the atoms change their spatial spin orientation
while maintaining their spin state. The procedure was optimized empirically to
obtain maximal transfer with minimal additional heating.

10
0 

m
m

50 mm

110 mm

(a) MOT and transport coils

39
.4

 m
m

100 mm

57 mm

22 mm
14.5 mm 26

 m
m

(b) Quadrupole and QUIC coils

Figure 3.9.: (a) MOT cell with surrounding MOT and transport coils. (b) Water
cooled magnetic quadrupole, QUIC and homogeneous magnetic field
generating coils around the science cell. Adopted from [109, 110].

The atoms are then moved to the science chamber within 1.2 s by mechanically
moving the quadrupole coils. There they are loaded into a stationary magnetic
quadrupole potential shown in Figure 3.9b. This is achieved by lowering the
transport gradient to 152G/cm, while increasing the stationary coil gradient within
800ms to 309G/cm. During this transfer, the atomic clouds move a transverse
distance of 4.5 cm into the L-shaped science cell.

3.3.3. Quadrupole and QUIC trap
The quadrupole trap is shown in Figure 3.9b. It consists of two sets of coils with 40
windings with 36.4mm separation on the inner pair and 32 windings with 46.8mm
separation on the outer one. For the use as a magnetic trap they are connected in
an anti-Helmholtz configuration as shown in Figure 3.10 producing a magnetic field
gradient of 8.83G/(A·cm). Since the trap is sensitive to temperature fluctuations
the coils are mounted on a water cooled copper holder. The cooling water is
temperature stabilized to 19±0.1 °C by a chiller (HIB).
After initial evaporative cooling in the quadrupole (QP) trap (see section 3.4)

the samples are transfered into a Quadrupole Ioffe-Pritchard configuration (QUIC)
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MOSFET 1

MOSFET 2 

MOSFET 4

MOSFETs 2 and 4 conducting

 anti-Helmholtz
MOSFET 1

MOSFET 2

MOSFET 3

MOSFET 4

MOSFETs 1 and 3 conducting

Helmholtz
MOSFET 1

MOSFET 2

MOSFET 3

MOSFET 4

all MOSFETs conducting

Stern-Gerlach

MOSFET 3

Figure 3.10.: Switching circuit used to switch between quadrupole trap (anti-
Helmholtz), homogeneous field (Helmholtz) and inhomogeneous
fields for Stern-Gerlach type experiments (Stern-Gerlach). Adopted
from [109].

trap [130] since the sample cannot be cooled to lower temperatures and atoms in
the wrong state cannot be removed in the quadrupole trap (see Figure 3.4) [110].
The trap consist of an additional Ioffe-coil with 60 windings between the

quadrupole coils at a distance of 14.5mm from the geometric axis as shown
in Figure 3.9b. By increasing the current through the Ioffe coil the field mini-
mum and thus the trap center is shifted as shown in Figure 3.12 and transforms
the quadrupole trap into a harmonic trapping potential. To reduce drifts due to
thermal effects the coil is kept small to reduce the thermal load. To stabilize the
temperature the holder is thermally coupled to the water cooled holder of the
quadrupole trap as shown in Figure 3.11. To load the atoms into the QUIC-trap
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Figure 3.11.: Drawing and image of the QUIC magnetic trap.

the current through the Ioffe coil is increased within 1.4 s to 12.85A while the
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3.3. Magnetic trapping and transport

current through the quadrupole coils is held constant at 25A. The magnetic field
in the trapping region is shown in Figure 3.12 providing an offset magnetic field in
the trap center of 1G at the final current.
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Figure 3.12.: Magnetic field along the axis of the Ioffe-coil. Fields are shown for dif-
ferent values of the current through the Ioffe-coil with II = 0A (blue),
II = 8A (yellow), II = 12A (purple) and II = 12.85A (orange). The
current through the quadrupole coils is kept constant at IQP = 25A.

The magnetic potential has a center shifted by approximately 6.5mm compared to
the center of the quadrupole trap and provides axial and radial trapping frequencies
of νa = 17.4 Hz and νr = 195 Hz for 87Rb and νa = 26 Hz (25 Hz) and νr =
291 Hz (284 Hz) for 39K (41K). These frequencies can be measured by displacing
the trapped cloud from its equilibrium position and recording the position after
a certain hold time. An example is given for 39K in an expanded trap is given in
Figure 3.13.

Helmholtz and Stern-Gerlach configuration

To address magnetic Feshbach resonances and to supply a homogeneous magnetic
field for state preparation, the inner coils of the magnetic trap can also be used in
a Helmholtz configuration as shown in Figure 3.10. This produces a homogeneous
field with a strength of 9.51G/A. To produce an inhomogeneous field only one coil
can be addressed. Thus it is possible to conduct Stern-Gerlach type experiments
during time-of-flight to distinguish the different mF components of the sample.
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Figure 3.13.: Trapping frequency measurement of the QUIC trap

3.3.4. High stability current supply

To supply the current to produce the necessary magnetic fields two different power
supplies are used. Figure 3.14 shows the schematic to switch between the two. For
magnetic trapping a line powered high stability power supply (UCS 65A/25V from
High Finesse) is used. This low noise power supply suffered from long term drifts.
These drifts are compensated by an additional servo loop measuring the output
current with a high precision current transducer (Danfysik) and regulating the
setpoint accordingly. To achieve an even better magnetic field stability during our

MOSFET 1

MOSFET 3

MOSFET 4

MOSFET 2

Control MOSFET 

Battery Current Supply

Figure 3.14.: Switching circuit used to switch between the high precision current
supply and the battery supplied high precision current supply.

experiments a battery powered power supply was built. This solution avoids the
50Hz noise typicaly obtained after rectification of the line current. The current is
delivered from three car batteries in series, measured by a high precision current
transducer (IT 200-S ULTRASTAB from LEM ) and regulated with a MOSFET.
The schematics for the controlling servo loop are given in the Appendix in A.2. We
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3.3. Magnetic trapping and transport

measure the magnetic field fluctuations at the position of the atoms by determining
the spectroscopic width of the |1,− 1〉 → |1,0〉 transition at 117.45G. The result is
shown in Figure 3.15. A fit with a Gaussian distribution to the transfered fraction
yields a full width at half maximum of 2.85 kHz. Since the transition frequency
varies with 700 kHz/G the corresponding magnetic field stability is 4.1mG. This
measurement was performed with pulse lengths of 250µs thus leading to a Fourier
limit of the frequency resolution of 4 kHz thus the upper limit for the magnetic
field fluctuation at 117.45G is 5mG.
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Figure 3.15.: Transfered fraction after spectroscopy on the |1,− 1〉 → |1,0〉 transi-

tion as a function the pulse frequency for a magnetic field of 117.45G.
The width of the feature determines the maximum magnetic field
fluctuations.

3.3.5. Magnetic field stabilization
The experiment table is surrounded by three large coils to compensate for the
background magnetic field. These coils provide a compensated field in the region of
the MOT cell. Initially these coils were regulated to compensate the magnetic field
also in the science cell. However, due to the large size of the coils they affected
the magnetic field in a neighboring laboratory. To compensate the magnetic field
around the science cell a smaller set of coils was therefore implemented. Since
these are smaller, the current in the coils can be switched during an experimental
run without influencing other experiments. Besides an overall static compensation,
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3. Experimental apparatus

the magnetic field is actively stabilized in the vertical direction. A magnetic field
sensor (Mag-03 from Bartington) constantly measures the magnetic field close to
the science chamber. A servo loop on a field-programmable gate array (LabVIEW
RIO Evaluation Kit from National Instruments) is used to control the current
through two rectangular coils in Helmholtz configuration. This provides a field with
an opposite phase and thus reduces magnetic field fluctuations. The remaining short
term background magnetic field noise close to the science chamber measured with
an external Hallprobe is 0.5mG while day to day drifts can be mostly neglected.

3.4. Sympathetic cooling of potassium in a
magnetic trap

The sympathetic cooling of potassium is performed in two steps. The first step is
done in the quadrupole trap to make use of the high rethermalization rates [103]
in this configuration. Cooling to quantum degeneracy is however not possible since
Majorana spin flips near the magnetic field zero lead to losses [131].
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Figure 3.16.: Magnetic field dependent energy levels and the evaporative cooling
transition (blue), the reexcitation transition into the |2,1〉 state (green)
and the removal transition (red) for the QUIC trap (left) and the
quadrupole trap (right). Adopted from [110].

The evaporation is achieved by driving transitions from the |2,2〉 state to the
|1,1〉 state as shown in Figure 3.16. The drawback is the production of hot
atoms in the |2,1〉 state due to transitions further away from the center of the
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3.4. Sympathetic cooling of potassium in a magnetic trap

trap [25, 26, 132], which can lead to heating of the potassium sample [110]. This
ultimately prevents the loading of sufficient atoms in the dipole trap to produce
BEC. Hence further cooling is realized in a harmonic magnetic potential, where
losses due to atoms in the |2,1〉 state can be suppressed by driving transitions from
the |2,1〉 state to the |1,1〉 state in the trap center and hereby removing the atoms
in the wrong state [26, 121, 132, 133].

Sympathetic cooling of potassium in a quadrupole trap

The rubidium atoms are evaporatively cooled by using a microwave field which
transfers them from the trapped |2,2〉 state to the untrapped |1,1〉 state as shown
in Figure 3.16. Radio frequency transitions to untrapped mF states would also
remove potassium atoms since both species have the same Zeeman splitting. Due
to the spatial overlap of the two clouds, this leads to sympathetic cooling of the 39K
atoms. In the experiment the microwave frequency is ramped from ν0 + 135 MHz
to ν0 + 30 MHz within 5 s, where ν0 is the frequency of the unperturbed hyperfine
splitting in 87Rb. The quadrupole gradient is simultaneously reduced to 220G/cm.
At this point losses due to collisions with rubidium atoms in the |2,1〉 state become
detrimental and the evaporation is stopped.

Sequence N PSD T (K)
MOT/Molasses 2.7× 109 - 35×10−6

QP trap initially 6× 108 ≈ 9.5× 10−7 ≈ 3.7×10−4

87Rb QP trap end 2.2× 108 4.6× 10−5 1× 10−4

QUIC initially 2× 108 2.6× 10−5 8.3× 10−5

QUIC end 5× 106 0.76 7.9× 10−7

MOT/Molasses 7× 107 - 117×10−6

QP trap initially 2.3× 106 ≈ 1.2× 10−8 ≈ 3.7× 10−4

39K QP trap end 1.5× 106 1.1× 10−6 1× 10−4

QUIC initially 1.5× 106 4.5× 10−7 8.3× 10−5

QUIC end 7× 105 0.24 7.9× 10−7

Table 3.1.: Overview of the number of atoms, temperatures and PSD of 39K and
87Rb in different phases of the experiment.
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Sympathetic cooling of potassium in a QUIC trap
Further microwave evaporative cooling is performed for 28 s by ramping the mi-
crowave frequency from ν0 + 30 MHz to ν0 + 2.54 MHz. Atoms accidentally trans-
ferred into the |2,1〉 state are removed by a second microwave as shown in Figure 3.16
making use of the non zero offset magnetic field in the center of the trap. This
microwave is resonant to the |2,1〉 → |1,1〉 transition at 1G and thus removes the
atoms from the center of the trap. The evaporation is stopped before losses due to
the negative background scattering length of 39K become relevant.

An overview of the achieved temperatures, number of atoms and the correspond-
ing PSD is given in Table 3.1 for mixtures of 39K and 87Rb and in Table 3.2 for
mixtures of 41K and 87Rb.

Sequence N PSD T (K)
87Rb QUIC initially 2.5× 107 5× 10−5 3.3× 10−5

QUIC end 2.6× 106 0.056 1.5× 10−6

41K QUIC end 4.5× 105 0.025 1.5× 10−6

Table 3.2.: Overview of the number of atoms, temperatures and PSD of 41K and
87Rb in different phases of the experiment.

Problems with evaporative cooling in magnetic traps
While the first experiments with 87Rb on the described apparatus [63, 134] used a
hybrid trap configuration [135], this road is not feasible for the mixture of potassium
and rubidium. Figure 3.16 shows the magnetic field dependent energy levels in the
QUIC and QP trap. Microwave radiation is used to drive the |2,2〉 → |1,1〉 transition
to remove the atoms with the highest potential energy from the trap (blue). While
transversing outwards, the same microwave radiation becomes resonant to the
|1,1〉 → |2,1〉 transition (green) and will be transfered back into the trapped
|2,1〉 state. This process is especially harmful since the atoms gain kinetic energy
while moving outwards. While in a QP these atoms cannot be removed, the magnetic
offset in the trap center of a QUIC trap allows to apply a second microwave resonant
to the |2,1〉 → |1,1〉 transition (red) and thus remove atoms in the |2,1〉-state from
the trap [136–138]. Figure 3.17 shows two results when evaporating a 87Rb sample
in the QP and QUIC trap below the critical temperature for BEC. When the second
microwave is applied to clean the sample, no residual atoms in the |2,1〉-state can

50



3.4. Sympathetic cooling of potassium in a magnetic trap

be detected. If the same experiment is conducted without the cleaning microwave
we detect up to 10% of the total number of atoms in the |2,1〉-state at the end of
the evaporation.

(a) without 2nd microwave (b) with 2nd microwave

Figure 3.17.: 87Rb BEC after release from the QUIC trap. The different spin com-
ponents are separated by an inhomogenious field while turning off
the trap. (a) both |2,2〉 and |2,1〉-component visible. (b) same as (a)
but a second microwave frequency resonant to the |2,1〉 → |1,1〉 tran-
sition is applied during evaporation in the QUIC trap removing the
|2,1〉-component.

By using a hybrid trap in single species experiments working with 87Rb this
effect does not cause difficulties [63, 134, 135, 139], since the evaporation in the
quadrupole trap is shorter and thus fewer atoms in the |2,1〉-state are produced.
Moreover the loading process from the QP into the hybrid trap removes atoms in
the wrong state by compensating the gravity by the magnetic field gradient for
atoms in the |2,2〉-state while atoms in other states are not trapped in the vertical
direction. Lowering the magnetic gradient of the trap during evaporative cooling,
to make use of this effect, was evaluated but was not feasible since the collision
rate in a relaxed trap was too low for efficient rethermalization.

However the situation is different for dual species experiments since spin changing
collisions between the components can lead to additional losses [140, 141] and limits
the efficiency of evaporation and sympathetic cooling [140–143].

In the presented apparatus, this ultimately prevented the production of potassium
BECs since the temperatures that were possible to reach in the QP trap were not
sufficiently low to transfer the sample into the dipole trap. The effect of this process
in this apparatus is shown in Figure 3.18. We prepare a sample of 87Rb and 39K in
the QP trap and hold the samples for variable times after the evaporation, while
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fixing the temperature of the 87Rb sample by leaving the microwave radiation on
at the end frequency of the evaporation. We record the temperature of the sample
after different times. The temperature of the 39K rises and a full rethermalization
does not take place. For comparison the same time series is recorded for 39K after
removing the 87Rb sample by a resonant light pulse showing a strongly suppressed
heating. To exclude the effects of inelastic heteronuclear three-body recombination
in this experiment, the microwave is turned off and the temperature of the potassium
sample is recorded in the presence of rubidium.

It shows that a great part of the observed heating must be accounted to the
interaction of the 87Rb sample with the microwave, since one observes a lower
heating although the temperature of the rubidium sample is not kept constant and
thus a great part of the heating must be accounted to the production of atoms in
the |2,1〉-state.

� � �� �� ���

���

����

����

����

 

 

tem
per

atu
re 

(K
)

h o l d  t i m e  ( s )
Figure 3.18.: Heating of 39K due to 87Rb in the |2,1〉 state in the quadrupole trap.

The microwave radiation used for evaporation of 87Rb is kept on
to hold the temperature of the 87Rb sample constant (filled circles),
while the temperature rises in the 39K sample (open circles). If
the microwave radiation is not applied the 39K sample is heated
less (triangles). By completely removing the 87Rb sample the heating
in 39K is strongly suppressed (diamonds).
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3.5. Detection of atomic gases
The detection system used for imaging the cloud is shown in Figure 3.19. After
release from the trap the expanding atoms are illuminated by a resonant light beam.
The maximum time of flight after release in this apparatus can range up to 30ms.
The light beam is afterwards expanded by an f=100mm and an f=300mm lens
with 400mm distance to each other, resulting in a 3 times magnification of the
beam which is imaged onto a CCD camera (Luca from Andor). To increase the
field of view a 1:2 demagnification telescope can be inserted into the beam path.
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Figure 3.19.: Overview of the science cell. The parts relevant for the imaging are
highlighted.

The intention is to determine the integrated atom column density ñ(x,y) of an
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atomic cloud. The attenuation of the incoming beam is given by

I(x,y) = I0(x,y) · e−ñ(x,y)σ, (3.4)

where the effective scattering cross section in terms of the resonants cross section
σ0 is defined as [90]

σ = σ0

1 + 2I/Isat + (4∆2

γ2 )
. (3.5)

In the experiment we take an image of the beam with the absorbing atoms and
one without corresponding to measuring the intensities IA and IB. From this the
optical density can be determined to

D = ln IB(x,y)− ln IA(x,y). (3.6)

Figure 3.20 shows an example of this method for a 39K and a 87Rb sample demon-
strating the strong noise suppression of this method. Since the area of a camera
pixel in the imaging plane and the conversion efficiency of the camera are known,
the number of atoms can be calculated.

To improve the precision of the calculated number of atoms we take the scattering
properties of the atoms into account and calibrate the imaging system with a method
developed in the group of D. Guéry-Odelin [144]. This procedure introduces a factor
α to compensate for these deviations and thus the number of atoms is determined
by

n =
(

log IB − log IA + IB − IA
αIsat

)
α

σ0
, (3.7)

where the scattering cross section for 87Rb is σ0,Rb = 2.907 × 10−9 cm2 and
Isat,Rb = 1.669mW/cm2 [71] and for 39K and 41K the parameters are σ0,K = 2.807×
10−9 cm2 and Isat,Rb = 1.75mW/cm2 [70]. The correction factor α was determined
experimentally to αRb = 1.88 for 87Rb, αK39 = 1.11 for 39K and αK41 = 1.24 for
41K.

In practice absorption images of both species are taken after free expansion at
the end of every experimental run with a detection pulse with a length of 38µs and
circular polarization. To obtain information about both species, the absorption
image of potassium is typically taken after a total time of flight of about 15ms.
This image is shifted into a covered area of the camera chip within 2ms and then
the image of 87Rb is taken. The used light is in both cases resonant to the |2〉
to |3′〉 transition. Since experiments with these species take place in the |F = 1〉
manifold, repumping light is applied 200 µs prior to the imaging light.
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(a) Absorption
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(c) Processed

Figure 3.20.: Principle of the imaging sequence for 39K in the upper and 87Rb in the
lower row. The beam (b) is subtracted from the absorption image (a)
to calculate the optical density (c).

To determine the temperature T of the trapped cloud, we fit a Gaussian distri-
bution to the column density of the image and determine the Gaussian width σi of
the expanding cloud. The width of the cloud is given by

σi(t) =
√
σ2

0 + t2
kBT

m
. (3.8)

Assuming a harmonic trap, the initial width of the cloud is given by

σ0 =
√
kBT

ωim
, (3.9)

where ωi is the trapping frequency of the harmonic potential and m the mass of
the atom. Since the initial size and the expansion are inversely proportional to the
mass, imaging of the lighter species first is favorable.

The state composition can be analyzed by turning on an inhomogeneous magnetic
field generated by one of the coils (see Figure 3.10) in the first 5ms of the expansion.
This fully separates the different mF -components and results in different cloud
positions during imaging allowing for the detection of small admixtures in other
states.
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(a) T ≈ 340 nK (b) T ≈ 250 nK (c) T ≈ 120 nK (d) T < 120 nK

Figure 3.21.: Emerging of a 87Rb-BEC from the thermal cloud while lowering the
temperature. The images are taken 22ms after release from the
QUIC-trap and temperatures are given for the thermal component.

3.6. Experiment control
The experiment is controlled by a LabVIEW program controlling three output
cards in real time. Details of the program can be found in [110]. The output cards
supply 32 digital 5V TTL level output channels (DIO-32HS), 16 analog output
channels with a voltage range of ±10V. These are divided into 8 channels with
a resolution of 12 bit (NI PCI-6713 ) and 8 channels with 12 bit resolution (NI
PCI-6733 ). The system supports the programming of multiple variable arrays,
thus allowing for a continuous operation. This reduces the thermal fluctuations in
the system between single experiments and allowed a large number of experiments
during the night as needed for the experiments detailed in chapter 5.

3.7. 87Rb BEC in the QUIC trap

In case only 87Rb is used, further evaporation in the QUIC trap allows the produc-
tion of almost pure 87Rb BECs. The phase space density as a function of the atom
number during the evaporation is shown in Figure 3.22.
The efficiency of the evaporation can be characterized by the ratio of gain in

phase space density ρ to number of evaporated atoms N as

γ = d ln ρ
d lnN . (3.10)

The efficiencies obtained from linear fits in Figure 3.22 are γ= 2.4 in the quadrupole
trap and γ= 3.2 in the QUIC trap showing the positive effect of avoided Majorana
losses and avoided colissions with atoms in the |2,1〉 state. Figure 3.21 shows the
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Figure 3.22.: Phase space density vs. number of atoms for 87Rb in the quadrupole
trap (diamonds) and QUIC trap (circles).

transition from a thermal cloud to an almost pure BEC. The number of atoms in
the pure BECs are about 5× 105.
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4 Tunable dual-species Bose-Einstein
condensates

The production of quantum gases with tunable interaction includes a number of
peculiarities. This chapter focuses on the experimental methods used to solve these
and to demonstrate the production and control of single and dual species BECs
with tunable inter- and intraspecies interaction.

The chapter is structured as followed. In section 4.1 the production of BECs
in optical potentials is discussed. The utilized dipole trap system is introduced
and the production of 87Rb in these is demonstrated. The methods to control
the internal states of the atoms are introduced in section 4.2. The general work
and characterization of Feshbach resonaces is explained in section 4.3. This leads
the presentation of the production of 39K BECs (see section 4.4), 39K-87Rb dual
BECs (see section 4.5) and 41K-87Rb BEC (see section 4.6) mixtures. The chapter
finishes with a demonstration of the control of the inter- and intraspecies interaction
in section 4.7. The results of parts of this chapter have been included in a parallel
publication [114].

4.1. Trapping in an optical potential
In order to tune the interaction strength magnetic Feshbach resonances will be
exploited and thus the atoms have to be transfered from a magnetic trap into an
optical dipole potential. The overall effective potential of the confining dipole trap
can be written as

U(r) = Udip −mgz, (4.1)

where Udip is the dipole potential, m is the mass of the atom, z is the vertical
coordinate and g the gravitational acceleration. For a dipole trap the potential is
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given by [145]

UDip(r) = 3πc2

2ω3
0

(
Γ

ω0 − ω
+ Γ
ω0 + ω

)
I(r), (4.2)

where c denotes the speed of light in vacuum, ω0 the frequency of a nearby transition,
ω the frequency of the trapping laser and I the local intensity of the trapping laser
beam.

4.1.1. Dipole laser system
The dipole trap is constructed as a far red-detuned, crossed-beam dipole trap at a
wavelength of 1064 nm offering minimal absorption. The light is generated by a
narrow bandwidth monolithic ring laser (Coherent Mephisto) and amplified by a
fiber amplifier (Nufern PSFA-1064-50mW-50W-0 ) as shown in Figure 4.1. The
beam is split up into two beam paths, where each is sent through an acousto-optic
modulators (AOM) providing a 220MHz frequency difference between the beams.
Servo loops are used to stabilize the output power of the beams by modulating
the RF power supplied to the AOMs. The two dipole laser beams are delivered to
the experiment by high-power optical fibers (PMC-1060-10-NA008-3-APC-300-P
from NKT Photonics and PMC-1060-10-NA008-3-APC-300-P from Schäfter und
Kirchhoff ).

Fiber ampli�er

Seed

AOM

to the experiment

AOM

Figure 4.1.: Overview of the laser system to produce and regulate the light used
for the dipole trap. Adopted from [110].
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4.1. Trapping in an optical potential

4.1.2. Recycled crossed dipole trap
The first dipole trap system is shown in Figure 4.2. It was designed to offer the
widest possible temperature range of sympathetic cooling with the available dipole
trap power. The light of the dipole trap beam was recycled to achieve the maximum
possible trap depth. Table 4.2 shows the an overview of the system. The light is
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Figure 4.2.: Overview of the recycled crossed dipole trap. Shown is the dipole
trapping beam in red, the main imaging beam in purple and the
secondary imaging path in green. Adopted from [110].

delivered by an optical fiber and collimated by a lens with 18.57mm focal length.
A polarizing beam splitter is used as a polarization filter. A small part of the beam
is directed onto a photodiode to regulate the trapping power via a servo loop and
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4. Tunable dual-species Bose-Einstein condensates

the AOMs described in subsection 4.1.1. A lens with a focal length of 500mm is
used to focus the beam down to a waist of 168 µm. The beam is collimated on the
other side of the chamber by a lens with a focal length of 100mm and directed
another time through the science chamber, perpendicular to the axis of the first
beam. The polarization is turned with a half-wave plate by 90 degrees to avoid
self-interference effects before the beam is focused with a lens with 200mm focal
length to a waist of 176 µm at the intersection.

The atoms are loaded into the dipole trap as follows. The QUIC trap (Ioffe coil)
is decompressed in 1.2 s by ramping the current through the quadrupole coils to 15
(9)A, which moves the cloud about 1mm further to the center of the cell. Then,
the current in the trap coils is turned off over a period of 0.1 s, while the power in
the dipole beams is ramped up to 6W.
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Figure 4.3.: Trap depth for 39K (87Rb) as blue (red) as a function of the power
dipole trap beam.

The measured trapping frequencies of this trap agree with our simulations for a
waist of w0 ≈ 189 µm and the corresponding power dependent trap depth is plotted
in Figure 4.3. The discrepancy can be accounted to the beam shape after the fiber.
The hexagonal structure is imprinted into the beam profile and deviates from the
assumed Gaussian beam.

To achieve efficient sympathetic cooling in a dipole trap, the trap depth for the
coolant has to be smaller than for the other species. In this experiment the trap
depth for 87Rb is smaller for powers lower than 7W. The trap depth at this point
is about 18µK allowing for an efficient loading of the sample of up to about 2 µK.
The two beam paths were overlapped using imaging systems which simplified the
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4.1. Trapping in an optical potential

Species ωr,d/2π 1
s

ωz,d/2π 1
s

39K 152 214
87Rb 108 152

Table 4.1.: Overview of the trapping frequencies for the different species in the
recycled dipole trap at a power of 16W for a waist of 189 µm.

process significantly. A dichroic mirror that is transparent for the imaging light was
used to split the imaging light it from the trapping light. Lens L2 is simultaneously
part of the imaging system.

Element Inc. Beam L1 L2 L3 L4

Position (mm) 0 18.57 418.57 1018.57 1518.57
Focal length (mm) – 18.57 500 100 200

Waist (µm) 6.25 1006 168 201 176
Waist Position (cm) 0 37.14 915 1123 1868

Table 4.2.: Schematic of the beam profile (top) and calculated data for the beam
waists (bottom) for the recycled dipole trap. The position of the atoms
is marked with orange circles.

The performance for sympathetic cooling is shown in Figure 4.4. The dual
species sample was prepared and the trap depth was lowered by ramping down the
dipole trap power resulting in an evaporative cooling of rubidium. The temperature
of the two species was determined after rethermalization in time-of-flight. The
temperature of the 39K sample follows the temperature of the 87Rb for a wide
range. At a power of 3.5W the samples stop being in thermal equilibrium due to a
vertical displacement of the samples in the trap caused by gravity. This differential
gravitational sag ultimately prevented the achievement of dual condensation in
this trap. However it was possible to obtain the results in subsection 4.1.4 and
section 4.4.
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Figure 4.4.: Temperature of 39K (blue) and 87Rb (red) as a function of the dipole

trap power.

4.1.3. Two beam crossed dipole trap

The design of the recycled dipole trap did not allow for a dual condensation due
to insufficient rethermalization caused by the gravitational sag. By decreasing
the waist of the trapping beams the overlap can be increased but at the same
time the range for efficient sympathetic cooling seen in Figure 4.3 and Figure 4.6
becomes smaller since the point of equal trapping depths for 39K and 87Rb scales
with UCross/w = 0.091 µK

µm [133]. To simplify the design and operation, the trap
design consists of two independent beams as illustrated in Figure 4.5.

MFD (µm) f1(mm) f2 (mm) waist (µm)
1st axis 13.5 18.57 300 100
2nd axis 10 30 600 100

Table 4.3.: Schematic of the beam profile (top) and calculated data for the beam
waists (bottom) for the two beam dipole trap. The position of the
atoms is marked with an orange circle.
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4.1. Trapping in an optical potential

The first beam is delivered by a high power fiber (PMC-1060-10-NA008-3-APC-
300-P from Schäfter und Kirchhoff ) focused by a lens with a focal length of 600mm.
The light for the second beam is delivered by a high power fiber (PMC-1060-10-
NA008-3-APC-300-P from Schäfter und Kirchhoff ) and a lens with 300mm focal
length to focus the beam. The two beams are aligned perpendicular to each other
in the horizontal plane and are both focused to waists of 100 µm at the location of
the atoms.
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Figure 4.5.: Overview of the two beam crossed dipole trap. Shown is the dipole
trapping beam in red, the imaging beam in purple and the secondary
imaging path in green. Adopted from [110].

Figure 4.6 shows the depth of the dipole trap depending on the beam power.
Assuming a rethermalized ensemble, a number of 200 000 39K atoms and an η = 3,
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4. Tunable dual-species Bose-Einstein condensates

where η denotes the ratio of the trap depth to the sample temperature of 87Rb, the
point for the formation of a 39K BEC is corresponding to a dipole beam power of
0.55W and is marked by the vertical dashed line. Here, the immersion is defined by
the Bhattacharyya distance of two Gaussian distributions representing the density
function of the two species. The waist was chosen such that the immersion of 39K
in 87Rb is sufficient to ensure thermalization at this point.
The crossing point between the depths for 39K and 87Rb at 10 µK allows for

efficient loading of atomic samples at temperatures up to 1 µK. Compared to the
recycled dipole trap, evaporation above 1.1W primarily leads to loss of the minority
species, since the trap depth is smaller for potassium than for rubidium, which is
contrary to the aim of sympathetic cooling. Below 1.1W sympathetic cooling of
potassium with 87Rb can work efficiently.
The atoms are loaded into the dipole trap as follows. First the QUIC trap is

decompressed in 1.2 s by ramping the current through the quadrupole coils to 15A
and the Ioffe coil to 9A. The cloud moves about 1mm further to the center of the
cell and cools to a temperature of 400 nK. Then, the current in the trap coils is
linearly turned off over 1 s, while the power in the two dipole beams is ramped up
to 0.9W.
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Figure 4.6.: Trap depth for 39K (87Rb) as red dashed (straight) dependence on
beam power. In blue the calculated immersion of the 39K into the 87Rb
coolant. The vertical black line shows the calculated critical trap depth
for condensation of potassium with N = 200 000 atoms and η = 3

At the end, 4× 105 39K atoms and 4× 106 87Rb atoms with a temperature of
1 µK are loaded into the dipole trap, corresponding to a phase-space density of 0.1
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4.1. Trapping in an optical potential

and 0.5 respectively (see Figure 4.20).
Considering a mixture of 41K and 87Rb the general overlap problem is similar but

smaller due to the lower mass difference. Using this scheme about 2.5× 105 41K
atoms and 4× 106 87Rb atoms at a temperature of 1.5µK can be loaded into the
dipole trap corresponding to a phase space density of 3×10−2 and 5.5×10−3 (see
Figure 4.22).
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Figure 4.7.: Measurement of the trapping frequencies of the two beam dipole trap
for a power of 900mW per beam for 87Rb (closed) and 41K (open).
The measured trapping frequencies are ωr/2π = 89.4 (124) 1/s and
ωz/2π = 119 (170.5) 1/s for 87Rb (41K). The difference in position is
caused by a different time of flight.

Species ωa,Q/2π 1
s

ωr,Q/2π 1
s

ωh,d/2π 1
s

ωz,d/2π 1
s

39K 20.2 65.9 142 199
41K 19.7 64.4 138 194

87Rb 13.5 44.1 102 139

Table 4.4.: Overview for the different species of the trapping frequencies in the
expanded QUIC ωQ and for a dipole trap at a power of 1.1W ωd.

4.1.4. 87Rb BEC in the crossed dipole trap
To produce a 87Rb BEC in an optical potential the cloud is pre-cooled in the
magnetic trap. The evaporation in the QUIC trap is stopped at a temperature
of around 1.5 µK before loading the atoms into the recycled crossed dipole at a
power of 10W. The evaporation is performed by ramping down the dipole trap
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4. Tunable dual-species Bose-Einstein condensates

power in three linear ramps to 2.9W in 8.2 sec. At this point condensation sets in
and almost pure condensates can be produced as shown in Figure 4.8.

(a) T ≈ 110 nK (b) T ≈ 65 nK (c) T ≈ 35 nK (d) T ≈ 20 nK

Figure 4.8.: Emergence of a 87Rb-BEC from the thermal cloud while lowering the
temperature. The images are taken after release from the recycled
dipole-trap and temperatures are given for the thermal component.

The performance of the whole evaporative cooling process is shown in Figure 4.9
and the efficiency of the evaporation corresponding to the definitions in Equa-
tion (3.10) is found to be γ ≈ 2.79. The BEC contains more than 5× 104 atoms,
which is lower than in the following dual species experiments. It can be accounted
to the low trapping frequencies and thus with an inefficent rethermalization during
the evaporation. As shown in Figure 4.8 the images of the coldest clouds feature
two side maxima. These can be accounted to an unwanted reflection in the optical
beam path. The reflection forms a standing wave in the trap corresponding to a
weak one dimensional optical lattice. This effect is unwanted and one of the reasons
this trap was replaced.

4.2. State preparation

To the control the internal states of the samples, microwave (MW) and radio-
frequency (RF) radiation is used. As explained in section 3.4, MW radiation is
used to drive the transitions from the |2,2〉 to the |1,1〉 state in 87Rb. The required
frequency is roughly equal to the hyperfine splitting of 87Rb and thus around
6835MHz [71]. To prepare the hyper fine state in potassium frequencies of about
461.7MHz for 39K and 254.0MHz for 41K are needed [70]. The magnetic sub-states
have a field dependence of 700 kHz/G and thus require RF-radiation in the range
of 1-150MHz to address transitions between them.
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Figure 4.9.: Phase space density during the cooling process as a function of the

number of atoms for 87Rb in the quadrupole trap (squares), QUIC
trap (circles) and the dipole trap (triangles).

4.2.1. Radio frequency system
The system to generate RF-radiation is shown in Figure 4.10. For the frequency
range of 1-150MHz the signal is generated by an arbitrary function generator (VFG
150 from Toptica photonics). This arbitrary function generator allows for the
generation of short pulses as well as longer sweeps. Since the wavelength of a
signal with 10MHz is about 30m, an antenna with a length close to the wavelength
is not feasible. Instead a smaller loop antenna is used which is driven by an
amplifier delivering up to 15W of RF power. For the manipulation of potassium
the signal is generated by a frequency synthesizer (2024 from Marconi). The
signal is amplified to 25W by a power amplifier (KU PA 041050-25A from Kuhne
electronic). To reduce the effects of an impedance mismatch of the antenna, the
loop antenna was tuned to a resonant frequency of 470MHz. The amplifier is
protected from backwards reflections by a circulator (B112FFF from Microwave
Technology Corporation) directing the reflected power into a 50W terminator.

4.2.2. Microwave system
The microwave system is more complex than the radio frequency system since two
frequencies have to be available at the same time in the QUIC and the generation of
frequencies in the region of 6.8GHz is not trivial. For slow frequency sweeps, needed
for the evaporation and adiabatic passages, the arbitrary function generator from
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Figure 4.10.: Schematic of the MW- and RF-generation systems. Filters and
On/Off-switches are not shown. Adopted from [110].

the radio frequency system (VFG 150 ) is connected to a phase locked loop (BCO-
135-145-06950-4-15P from Miteq). This circuit generates the 50th harmonic of the
input signal. The second signal needed to remove unwanted atoms in the wrong
state during the evaporation in the QUIC is generated by driving a step recovery
diode with a frequency of 1GHz. It generates higher harmonics from which the 7th
is picked using a narrow band pass filter. The driving signal is produced by a high
power synthesizer (2024 from Marconi). The combined signal can be regulated
in power using a variable attenuator (AT-E000-HV from Telemeter Electronic).
Afterwards it is amplified by a 1W pre-amplifier and a power amplifier (KU PA
6800 C from Kuhne electronic). Both amplifiers are protected against back reflected
power by circulators (H119FFF from Microwave Technology Corporation), which
directs the reflected power into an 50Ω terminator. The antenna used is an open
loop with a free floating back reflector.

Methods

To address the Feshbach resonances shown in Figure 4.13 for 39K and 87Rb, both
species have to be transferred from the |2,2〉 to the |1,− 1〉 state. This is done by
first transferring the samples simultaneously into the |2,− 2〉 state with a rapid
adiabatic passage and afterwards individually into the |1,− 1〉 state. Experimentally
this is done by sweeping a radio frequency from 6.0MHz to 8.2MHz in 2ms at a
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homogeneous background magnetic field of 10G. The difference in the quadratic
Zeeman splitting between 39K and 87Rb is sufficiently small at this low field.
Afterwards a magnetic field of 1.8G is applied and the 87Rb atoms are transfered
into the lower |1,− 1〉 state using a single resonant microwave π-pulse with a
duration of 6µs. As the last step another rapid adiabatic passage transfers the 39K
atoms to the |1,− 1〉 state by sweeping the background field from 15G to 3.5G
while irradiating the sample with a radio frequency of 450MHz. The different
techniques for each step originate from differences in available power, frequency
tunability and polarization.

For 41K and 87Rb the process is simplified since the |1, 1〉 state for the Feshbach
resonance shown in Figure 4.14 is used and thus no RF sweep is needed. First
a single resonant microwave π-pulse with a frequency of 6838.5265MHz and a
duration of 6.8 µs is applied at a field of 1.8G. To transfer the 41K sample a
magnetic field sweep from 85.4G to 94.9G within 10ms is used. The high field
leads to a larger splitting of the involved energy levels and thus a frequency of
472.33MHz which is similar to the case of 39K is used.

Magnetic field calibration

To calibrate the magnetic field strength at the position of the atoms, the transition
frequency of a magnetic field dependent transition was determined. This can e.g.
be an mF changing transition such as |1,1〉 → |1,0〉 or hyperfine transitions such
as |1,1〉 → |2,2〉. To determinde the field the following experiment was conducted.
A cold sample of 87Rb is prepared in the optical dipole trap in the |2,2〉 state.
The magnetic field is ramped to a certain field and a short MW pulse close to
the |2,2〉 → |1,1〉 transition is applied. An inhomogeneous magnetic field pulse
during expansion separates the two spin components and the relative transfer is
determined. This is repeated for different frequencies. A typical result is shown
in Figure 4.11. After determining the center frequency of the transfer feature the
corresponding magnetic field can be determined using the Breit-Rabi-formula.

Figure 4.11 shows the results for different magnetic fields. The fitted line yields a
current depending slope of the magnetic field of 9.51G/A with an offset of -0.21G.
The overall uncertainty of this procedure arising from the fits is better than 10mG.

4.2.3. Hyperfine changing collisions
It is important to transfer the rubidium sample to the lower manifold first, as
severe losses occur when potassium is transfered first. Figure 4.12 illustrates this
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Figure 4.11.: (left) Typical spectroscopic signal used for the magnetic field cali-
bration. (right) Magnetic field as a function of the applied current
through the quadrupole coils in Feshbach configuration.

effect. When transferring 87Rb before 39K to the |1,− 1〉 state, lifetimes on the
order of 40 sec are observed. This is sufficient for the production of BECs in the
dipoletrap. However if only 87Rb is transfered to the target states the lifetime is
reduced to 20ms. This lifetime is similar to the time needed for the transfer of the
atoms into the ground state and thus the cooling to quantum degeneracy is not
possible as relevant losses set in before the atoms can be transfered.
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Figure 4.12.: Decay of 39K in the dipole trap together with 87Rb in the
|F = 1,− 1〉(|F = 2,− 2〉) state (inset).

This loss can be attributed to hyperfine state changing collisions between the
different samples where 39K and 87Rb exchange the spin state and thus release the
difference energy in the hyperfine energy as kinetic energy. In the case of 39K and
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87Rb this corresponds to a temperature increase for one particle by about 0.3K,
which is not trapped anymore. In the case of transferring 87Rb first this process is
energetically forbidden and hence sufficiently long lifetimes for the final evaporation
to produce dual-species BECs are observed. The same process holds true for a
mixture of 41K and 87Rb and was observed in a similar experiment [27].

4.3. Tuning of the inter- and intraspecies
interactions

The mixture of 87Rb with either 39K or 41K offers a broad spectrum of accessible
interspecies magnetic Feshbach resonances to tune the interaction. Besides the
heteronuclear resonances 39K offers multiple very broad resonances making it
possible to precisely tune the intraspecies interaction of the sample. An overview
of the most important available Feshbach resonances is given in Table A.1.

4.3.1. Feshbach resonances in 39K
The rich Feshbach resonance structure in 39K makes it an ideal candidate for
experiments which require the tuning of the interaction. Especially very precise
tuning capabilites are offered due to multiple broad and experimentally easy
available resonances. The most important resonances for this work are in the
|1,− 1〉 state and shown in Figure 4.13. The resonances at 32.6G and 162.8G form
a broad region with a positive scattering length making it possible to produce 39K
BECs at relatively low magnetic field strengths. Another very favorable resonance
with a width of 52G is located at 403.4G in the |1,1〉 state [146]. Currently this
resonance is not available for experiments with BECs in this experiment since the
mount for the coils producing the magnetic field is made of copper. Fast switching
induces Eddy-currents and thus make the fast field tuning needed to image the
atoms in time-of-flight impossible. A solution would be to image at higher field
with a detuned laser or the rebuild of the mount of a non conducting material.

4.3.2. Interspecies Feshbach resonances

For interspecies Feshbach resonances between 87Rb and potassium the situation
is different for the two different isotopes of potassium. Originally 39K does not
lend itself for heteronuclear experiments with tunable interactions since a magnetic
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Figure 4.13.: Scattering length depending on the magnetic field for 39K (blue) and
between 39K and 87Rb (red dotted) in the |F = 1,mf = −1〉 state.

Feshbach resonance is needed to stabilize the condensate due to the negative
background scattering length. However the situation in the |1,− 1〉 state allows for
experiments by employing three Feshbach resonances simultaneously. Figure 4.13
shows the magnetic field dependent inter- and intraspecies scattering length. The
intraspecies Feshbach resonance at 117G [77] lies in a region where two intraspecies
Feshbach resonances tune the scattering to positive values and can be assumed
to be low and constant. In addition to that, this structure allows the tuning of
the 39K scattering while keeping the scattering length of the second component
constant.
The magnetic field dependent scattering length for a mixture of 41K and 87Rb

for the |1,1〉 state is shown in Figure 4.14 [27]. Since 41K has a positive background
scattering length, magnetic tuning is not required. The broad resonance at 35.2G
allows for precise tuning of the interspecies scatter length. Unfortunately the
scattering length at this Feshbach resonance can not be tuned between 0 a0 and
about 600 a0. Another Feshbach resonance at 78.6G closes this gap.

Characterisation of a heteronuclear Feshbach resonance

Most experiments on heteronuclear mixtures rely on the precise tuning of the
interspecies interaction strength. The experiments described in subsection 4.7.2 and
chapter 5 rely on the precise knowledge of the 39K-87Rb interspecies scattering length
in the vicinity of the interspecies Feshbach resonance shown in Figure 4.13. This
resonance was extensively studied within a larger survey of Feshbach resonances [77].
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Figure 4.14.: Scattering length depending on the magnetic field for 41K and 87Rb
in the |F = 1,mf = 1〉 state.

However, the precision of the resonance position was not sufficient and the width
was only known from theoretical calculations. Hence a precise measurement of the
Feshbach resonance parameters is required.

To determine the position of the center of the Feshbach resonance, the three-body
loss coefficient α was recorded around the center of the Feshbach resonance. This
method has previously been used and shown a higher precision than simple loss
measurements [55]. Here mixed samples with temperatures of about 150 nK and
1 ×105 87Rb and 2 ×104 39K atoms were used. The general concept of three-body
losses is described in subsection 2.2.2. While a simplified analysis for the performed
experiments of determining the Feshbach resonance position is sufficient here, a
more elaborated method is described in chapter 5. Since the absolute precision
of the value of αRbRbK is not relevant in first order a simpler procedure than the
one in chapter 5 is used. We consider only processes where two 87Rb and one 39K
atom is lost and neglect all others. Thus we can describe the loss process by the
following three coupled differential equations.

dNRb

dt
=− 2

3αRbRbKηRbRbKN
2
RbNK , (4.3)

dNK

dt
=− 1

3αRbRbKηRbRbKN
2
RbNK , (4.4)

dT

dt
=1

3
αRbRbK

NRb +NK

ηRbRbKN
2
RbNKT, (4.5)

with αRbRbK being the three-body loss coefficient [38, 55, 91, 147]. The dual species
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Figure 4.15.: Three-body recombination rate close to the Feshbach resonance at
117.56G, with fits to either side of the data. A region of fast decay
in the center of the resonance was excluded.

pre-factor ηRbRbK is defined as

ηRbRbK =
∫
n2
RbnKdr

=
(
πkB
T 2
RbTK

)3/2

γ2
RbγK

·
(
mRbω

2
x,Rb

TRb
+
mKω

2
x,K

2TK

)−1/2

·
(
mRbω

2
y,Rb

TRb
+
mKω

2
y,K

2TK

)−1/2

·
(
mRbω

2
z,Rb

TRb
+
mKω

2
z,K

2TK

)−1/2

(4.6)

with γRb =
(
mRbω̄

2
Rb

2πkB

)3/2
and for potassium retrospectively. It describes the density

dependent overlap of two Gaussian distributions centered at the same position.
Since the samples are trapped in a dipole trap with different gravitational sags
this is a simplification only valid if the size of the cloud is much larger than the
gravitational sag.

We fit the resulting time dependent decay numerically to these coupled differential
equations. The result is shown in Figure 4.15. A region of extremely high losses close
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to the center of the resonance is excluded. Exponential functions as shown in the
figure are fitted to the data and the crossing is determined. The Feshbach resonance
position is thus measured as 117.56±0.02G, where the uncertainty corresponds to
the region of fast decay.
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Figure 4.16.: Temperature of 39K after sympathetic cooling with 87Rb near the
zero crossing of the interspecies scattering length and fit to the data
as described in the text.

To determine the zero crossing of the Feshbach resonance a mixed sample is
prepared in the dipole trap and the efficiency of the sympathetic cooling is measured.
Directly after the state preparation procedure the magnetic field is set to the target
value close to the zero crossing and evaporation on primarily 87Rb is performed.
The evaporation is stopped at 650mW and the temperature of the 39K sample is
measured in time-of-flight.
Since this sample is not in a thermal equilibrium the temperature of the 39K

decreases exponentially depending on the interspecies cross section [148, 149]. The
resulting temperature as a function of the scattering cross-section has the form

T (B) = Teq + ∆Te−ηa2
KRb , (4.7)

with Teq being the equilibration temperature, ∆T the temperature difference be-
tween the samples, η the efficiency of the rethermalisation and aKRb the interspecies
scattering length [27].
Assuming the scattering length as a function of the magnetic field as in Equa-
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tion (2.27) Equation (4.7) yields

T (B) = Teq + ∆Te−η
(
abg

(
1− ∆

B−B0

))2

. (4.8)

The resulting temperatures are shown in Figure 4.16. Equation (4.8) is fitted
with Teq, ∆T , η and ∆ as free parameters. The position of the zero crossing was
determined to 116.35± 0.025G and the resulting width to 1.21± 0.045G which is
in agreement with the previous theoretical results [77].

4.3.3. Higher order Feshbach resonances
We observed multiple loss features in the ultracold mixtures of 41K and 87Rb in
the |1,1〉 state. These were clearly separated from the expected major s-wave
Feshbach resonances at 35.2G and 78.6G. The positions of these higher resonances
are recorded by preparing a mixture of about 2×106 atoms of both species at a
temperature of 700 nK. The magnetic field is ramped to the corresponding field
and the sample and hold there for 600ms. The samples are released from the trap
and the number of the remaining atoms is determined. An overview of the position
of the measured loss features is given in Table 4.5.

assignment Bth (G) Bexp (G)
(331)/(202) 48 48.07

(321) 52 51.67(51.76)
(112) 65 64.73
(102) 73 72.74

Table 4.5.: Overview of the observed and predicted Feshbach resonances 41K and
87Rb. Assignments of the quantum numbers (fmf l

′) are taken from
[150].

These features can be accounted to higher order Feshbach resonances. The
coupling between open and closed channel described in subsection 2.2.1 can be
accounted to dipolar relaxation and spin exchange [79]. Incoming atom pairs
with a non vanishing angular momentum l have been neglected in the discussion
so far. This is due to the fact that for l > 0 this gives rise to a centrifugal
barrier with a height proportional l(l + 1) and higher order partial waves are
suppressed (see Equation (2.22)). Taking these collisions into account gives rise to
new resonances characterized by the closed channel bound state orbital angular
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momentum quantum number lc. Similar to the naming of atomic orbitals, the
resonances with lc = 0 are called s-wave resonances, while resonances with lc = 1
are p-wave and lc = 2 d-wave resonances respectively. The position of the observed
features have been theoretically predicted and partially observed [150]. However
the features at 51.7G, 65G and 73G have not been observed before. The loss
feature around 51.7G is shown in Figure 4.17 and shows the characteristic double
structure of a p-wave resonance [151].
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Figure 4.17.: Example of the double structure of a p-wave Feshbach resonance
between 41K and 87Rb.

4.4. 39K BEC in the recycled optical dipole trap

The production of quantum degenerate samples of 39K is mmore complex than the
production of 87Rb BECs described in subsection 4.1.4. The experiments in this
section have been performed without the positive effects of the dark-spot MOT.
We start with a mixture of approximately 3 · 108 87Rb and 2 · 107 39K atoms loaded
into the quadrupole trap and perform initial sympathetic cooling by evaporation of
87Rb. The cooling is continued after loading into the QUIC trap to remove 87Rb
atoms in the |2,1〉 state (see section 3.4). To make the largest possible use of the
efficient sympathetic cooling in the QUIC trap, all rubidium atoms are sacrificed
in order to cool potassium. Thus all rubidium is evaporated such that we end up
with a pure potassium sample containing approximately 106 atoms at a phase space
density of 0.1 .
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(a) T ≈ 90 nK (b) T ≈ 60 nK (c) T ≈ 30 nK (d) T ≈ 15 nK

Figure 4.18.: Emergence of a 39K-BEC from the thermal cloud while lowering
the temperature. The images are taken 13ms after release from
the recycled dipole-trap and temperatures are given for the thermal
component.

The 39K sample is transfered into the recycled dipole trap (see subsection 4.1.2),
which due to the large waist is highly efficient. Thus the sample stays at a constant
phase space density and with no loss of atoms as shown in Figure 4.19.
Since the background scattering length of 39K is negative a magnetic Feshbach

resonance as shown in Figure 4.13 have to be employed. Hence the atoms are
transfered to the |1,1〉 state with the methods described in section 4.2. Immediately
afterwards the magnetic field strength is ramped from 40 to 60G, corresponding
to a scattering length of 100 a0 to 250 a0. The evaporation is done by ramping
down the power in the dipole trap from 6W to 1.8W in 23.5 sec. Depending on
the chosen value of a the evaporation length of the evaporation has to be adjusted.

Figure 4.19 shows the phase space density as a function of the number of atoms.
According to Equation (3.10) the efficiency of the evaporative cooling in the dipole
trap is γ = 2.8. The performance of the sympathetic cooling is analyzed in
greater detail section 4.5. The transition from a thermal cloud to an almost pure
BEC is shown in Figure 4.18, where we detect condensates containing more than
2× 104 atoms. Due to insufficient repumping, while this experiment was performed,
this value is very likely too low. Comparison of the detection efficiency yielded
a mismatch of a factor of about two, thus the number of atoms in th BEC is
approximately 4× 104 atoms.

4.5. 39K -87Rb dual-BEC in the optical dipole trap

Since 39K has a negative background scattering length it needs to be tuned in the
final evaporation steps before dual condensation by employing magnetic Feshbach

80



4.5. 39K -87Rb dual-BEC in the optical dipole trap

1 0 5 1 0 6 1 0 7 1 0 8 1 0 91 0 - 8

1 0 - 6

1 0 - 4

1 0 - 2

1 0 0

 

 

pha
se-

spa
ce 

den
sity

a t o m  n u m b e r

Figure 4.19.: Phase space density during the cooling process as a function of the
number of atoms for 39K (87Rb) in blue (red) in the quadrupole
trap (triangles), QUIC trap (circles) and the dipole trap (diamonds).

resonances. Figure 4.13 shows the magnetic field dependent scattering length.
Stable 39K condensates have been produced in the entire region between the two
intraspecies Feshbach resonances. For practical purposes it is favorable not to chose
a field close to the interspecies Feshbach resonance at 117.56G. The experimental
adjustments for the change in scattering length proofed to be minor. A typical
sequence produces dual-species BECs at 142.5G to increase the collision rates
which allows to shorten the evaporation sequence.

After pre-cooling in the QUIC-trap the final sympathetic cooling sequence is
performed in the two beam optical dipole trap. After loading into the trap the
magnetic field is raised to 142.5G. At this point 4×106 87Rb and 4×105 39K atoms
at a temperature of 1 µK corresponding to a phase space density of 0.5 and 0.1
are available. The evaporation is done by simultaneously decreasing the intensity
in both dipole beams from 0.9W to 480mW in four linear ramps within 27 s. By
this 87Rb is evaporatively cooled while 39K stays rethermalized. Figure 4.21 shows
typical images of the crossing of the critical temperature. We observe the emergence
of a BEC first for 39K while 87Rb condenses shortly afterwards. The produced
BECs contain typically 4× 104 39K and 1× 105 87Rb atoms.
The efficiency of the evaporation is characterized according to Equation (3.10).

Figure 4.20 shows the measured phase space density as a function of the number
of atoms for the whole sympathetic cooling process. For the evaporation of 87Rb
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Figure 4.20.: Phase space density during the cooling process as a function of the
number of atoms for 39K (87Rb) in blue (red) in the quadrupole
trap (triangles), QUIC trap (circles) and the dipole trap (diamonds).

in the magnetic trap this yields an efficiency of γ = 3.15. For the sympathetic
cooling of 39K γ = 18 is measured, which demonstrates the efficiency of sympathetic
cooling in the absence of strong losses. The evaporation efficiency of 87Rb in the
dipole trap is γ = 1.5 and for 39K it is determined to γ = 5.4, which can be
accounted to two reasons. The number of atoms of the different species becomes
comparable and thus the sympathetic cooling with one coolant is less efficient and
at the same time the temperatures close to condensation might lead to enhanced
inellastic three-body collisions inducing heating and losses. However only a very
small part of the evaporation is carried out in these conditions before reaching dual
condensation.

The same procedure allows also for the production of pure 39K BECs by removing
87Rb. When the power per beam is lowered below 0.4W, 87Rb is not trapped
anymore leading to a single species 39K BEC.
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(a) T ≈ 400 nK (b) T ≈ 215 nK (c) T ≈ 100 nK (d) T ≈ 85 nK

Figure 4.21.: Emergence of 39K (top) and 87Rb (bottom) BECs from their thermal
clouds while lowering the temperature. The images are taken 14
(16)ms for 39K (87Rb) after release from the recycled dipole-trap and
temperatures are given for the thermal component. Note that the
pictures of the different species are from the same experimental run.

4.6. 41K -87Rb dual-BEC in the optical dipole trap

The production of 41K BECs does not require the tuning of the background
scattering length due to its positive value. However we start with a smaller number
of atoms since we do not use enriched atom sources and the natural abundance of
41K is only about 6.7% [70]. This makes the sample susceptible to even minor loss
processes. After loading the pre-cooled sample from the magnetic trap into the
two beam optical dipole potential a total number of 2× 106 87Rb and 2× 105 41K
atoms at a temperature of 2 µK corresponding to a phase space density of 0.032
and 0.007 are available. The sympathetic cooling is performed by decreasing the
intensity of both beams of the two beam dipole trap simultaneously in 4 steps with
a total length of 10 sec reducing the power per beam from 1.1W to 0.43W.
Figure 4.22 shows the emergence of the BECs from the thermal clouds. As

expected the condensation of 41K is observed first followed by 87Rb. The produced
dual species BECs contain about 4.3×104 41K and 3.8×104 87Rb atoms. Figure 4.23
shows the phase space density as a function of the number of atoms. The evaporation
efficiency in the dipole trap according to Equation (3.10) yields for 87Rb γ = 1.9
and for 39K γ = 17.5. The higher efficiency of the evaporation can be accounted to
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Figure 4.22.: Characterization of the sympathetic cooling in 41K (blue) and
87Rb (red) in the QUIC trap (circles) and the dipole trap (diamonds).
(left) Phase-space density as a function of the number of atoms during
evaporative cooling. (right) Temperature as a function the number of
atoms.

the lower relative number of 41K atoms compared to the 87Rb sample.

4.7. Influence of the interaction

As seen in section 2.3 the tuning of the interaction influences the ground state
and expansion behaviour of single species as well as dual species BEC mixtures in
fundamental ways. The creation of 39K single species BECs enable the investigation
of the influence of the interaction onto the expansion dynamics, while the possibility
of changing the scattering of BEC mixtures of 39K and 87Rb enables the observation
of miscible and immiscible quantum phases.

4.7.1. Expansion dynamics

Changing the scattering length corresponds to a change of the release energy when
observed in time-of-flight experiments. For the given experimental parameters, the
Thomas-Fermi approximation can be used to calculate the size of the BEC σ after
a long time of flight t by

σ(t) =
√

2µ
m

1
ω
, (4.9)

84



4.7. Influence of the interaction

(a) T ≈ 600 nK (b) T ≈ 250 nK (c) T ≈ 80 nK (d) T ≈ 60 nK

Figure 4.23.: Emergence of 41K (top) and 87Rb (bottom) BECs from their thermal
clouds while lowering the temperature. The images are taken 14
(16)ms for 41K (87Rb) after release from the recycled dipole-trap and
temperatures are given for the thermal component. Note that the
pictures of the different species are from the same experimental run.

with m being the mass of the atoms and ω the trapping frequency [90]. The
chemical potential µ is given by

µ = ~ω̄
2

(15Na
aho

)2/5
, (4.10)

where N is the number of atoms, a the scattering length and ω̄ = (ωxωyωz)1/3

the geometric mean of the trapping frequencies and aho =
(

~
mω̄

)1/2
the harmonic

oscillator length [101].
To measure the size of the BEC as a function of the scattering length in expansion,

a 39K BEC was created as described in section 4.4. Afterwards the magnetic field
was ramped to the target field within 1 sec in order to tune the scattering length
a. The BEC was released from the trap and an absorption image was taken after
18ms of expansion. Due to the high density of the cloud at the beginning of the
expansion, the interaction will influence the dynamics. Thus the field was kept
constant during the first 5ms of time of flight. Then the magnetic field was switched
of rapidly to take an absorption image. The result of this experiment is shown in
Figure 4.24. The data shows good agreement with the theoretical curve (black line)
following from Equation (4.10).
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Figure 4.24.: Size of the expanded BEC depending on the scattering length (open
circles) and corresponding number of atoms (closed circles). The solid
line shows the theoretical expected values with the expected error
due to atom number fluctuations (dashed).

4.7.2. Miscible and immiscible phases
Dual species condensates with tunable interactions allow for the investigation
of interaction induced quantum phase transitions e.g. from the miscible to the
immiscible phase. This transition has previously been observed in heteronuclear
mixtures e.g. in 87Rb-133Cs [28], different spin states [152, 153], different rubidium
isotopes [19] and in Bose-Fermi mixtures [154, 155]. Theoretical description of
this effect has been gained [105–107] and led the development of new models to
include all possible interactions within dual species samples containing thermal
and condensed fractions [156].
The transition can be characterized by the miscibility parameter

∆ = giigjj
g2
ij

− 1, (4.11)

where gij = 2π~2aij(mi + mj)/(mimj) is the interaction strength. The indices
denote the two species with mass m and the scattering length a (see Equation 2.3.3).
The phase-transition occurs at ∆ = 0, while negative values lead to an immiscible
and positive to a miscible mixtures. The expected behavior is shown in Figure 4.25.

To characterize this behavior a dual BEC was created as described in section 4.5
on the high field side of the interspecies Feshbach resonance characterized in
subsubsection 4.3.2. Afterwards the dipole trap power was ramped up to 1W in
200ms to compress the atomic clouds and the field was ramped to the final value
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Figure 4.25.: Scattering lengths between 39K-87Rb (blue), 39K-39K (orange), 87Rb-
87Rb (yellow) and the miscibility parameter ∆ (purple) around the
phase transition point. The plot assumes a background scattering
length for collisions of 39K and 87Rb of 28.37 a0.

in the miscible or immiscible region within 300ms. After a hold time the sample
was released and imaged after 15 (17)ms time of flight for 39K (87Rb). Similar to
the experiments in subsection 4.7.1 the magnetic field was kept on for the first 6ms
of expansion.
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Figure 4.26.: Single species position after time-of-flight depending on the magnetic
field for potassium (left) and rubidium (right). The direction of
gravity in both cases is downwards.

In the miscible region density distributions, as expected for the self similar
expansion from a harmonic trap, are observed. This is shown in the upper part of
Figure 4.29. In the strongly immiscible case crescend-shaped density profiles are
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Figure 4.27.: Distance after time-of-flight of the miscible to immiscible transition
for potassium (circles) and rubidium (triangles)

observed. This is shown in in the lower part of Figure 4.29, where 39K gets clearly
displaced above and 87Rb below the initial position.
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Figure 4.28.: (left) separation as a function of the miscibillity parameter ∆. Linear
fits for −0.5 < ∆ < 0 and ∆ > 0. (right) Fitting error of the two
linear fits depending on the value of the background scattering length
abg.

To quantify this displacement the center-of-mass of the two clouds was determined
according to R = 1

M

∑i
n=1miri. To account for shifts in position due to the different

magnetic fields these results were related to the positions acquired in single species
experiments shown in Figure 4.26.
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Figure 4.27 shows the resulting shift in position. A clear opposite vertical shift of
the position for the two species can be seen. However this shift cannot be explained
by an in-trap displacement. The Thomas-Fermi radius of the two condensates
are about 5.84 (6.2) µm, while the differential gravitational sag is on the order of
6.47µm. Thus the effect must be accounted to an in-flight interaction during the
expansion and a full analysis is an ongoing project.
The position of the phase-transition point can be used for a novel method to

determine the interspecies background scattering length. For different trial abg the
separation of the two lines is fitted versus δ. Linear dependencies are fitted to the
data for ∆ < 0 and ∆ > 0. The fit error as shown on the right side in Figure 4.27 is
minimized resulting in fits shown on the left side. This determines the background
scattering length to be abg = 28.37 a0. This is comparable with the value predicted
for the absolute magnetic ground state [77].
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39
K
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Figure 4.29.: Sample pictures of 39K and 87Rb (size 450µm by 450 µm) after time-
of-flight for the miscible (top) and the immiscible case (bottom).
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5 Heteronuclear three-body physics

The previous chapters dealt with problems and effects that can mostly be well
described and understood by means of a two body problem or with the help of a
mean field approach. While a general understanding of the two body problem is
widely achieved, the three-body problem offers many new effects and complications
in the description despite its simplicity. A heteronuclear mixture of ultracold
gases is particularly well suited for the study of effects introduced by a changing
interaction due to the superior control with the help of Feschbach resonances. For
this purpose intra- as well as interspecies Feshbach resonances can be employed.
Especially the tuning of the interspecies interaction lends itself to the study of
systems consisting of two identical and one distinguishable particle. One example
from the manifold of arising effects is the Efimov effect, giving rise to three-body
bound states that cannot be understood in terms of two body bound states.

In this chapter experiments on the Efimov effect in different isotope combinations
of bosonic KRb mixtures are presented. It starts with a short introduction to the
current dilemma of previous results and continues with a description of the data
evaluation. The obtained results are presented in section 5.3 with a discussion of
the limitations of the used methods in subsection 5.3.4 and a description of a more
in depth analysis in subsection 5.3.5. The chapter is concluded with a discussion of
the results and possible implications in section 5.4. The content of this chapter is
included in a parallel manuscript [157].
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5.1. Atomic Efimov resonances in ultracold gases
A classical problem in two body physics is the calculation of possible bound states.
The Efimov effect predicts bound states of three atoms in parameter configurations
where no two body bound state is present. This makes it an excellent example for
the transition of two to few body physics.

The mixture of 39K-87Rb and 41K-87Rb offers one of the possible dream options
for the theoretical analysis. It allows to study the influence of the different mass
of the bosonic potassium atom on the bound states while the second species is in
both cases the same rubidium isotope [32, 97].

5.2. Controversy in potassium-rubidium
mixtures

While Efimov physics in mass imbalanced systems is of considerable interest for
few body physics, hitherto only three different heteronuclear mixtures have been
investigated. Initial experiments in a Bose-Bose mixture of 41K-87Rb observed
both Rb-Rb-K and K-K-Rb Efimov resonances [38]. This result was controversially
discussed, since the observation of the K-K-Rb resonance at a− = -22 000 a0 was not
expected at a sample temperature of 300 nK, since this temperature corresponds
to an approximate upper limit for the application of universal physics in terms
of recombination rates of a− = -3219 a0 [158]. The reported positions moreover
disagreed with estimations of the three-body parameter [159] and the position
of the atom-dimer resonance a∗ = 667 a0 showed an unexpected scaling to the
observed position of the Efimov resonance position a− = 246 a0 of a∗

|a−| = 2.7
while theory predicted a value of 0.52 [97]. Moreover the reported three-body
recombination coefficient for a background value and on the resonance [38, 97]
differed by one order of magnitude from the theoretical analysis [97]. This triggered
further experiments in the Bose-Fermi mixture of 40K-87Rb [56, 57]. However these
experiments observed no Efimov resonance and the position of the atom dimer
resonance a∗ = 230 a0 differed by a surprisingly large value considering the same
Rb isotope and the small mass difference between the two involved K isotopes.
Later experiments with the extreme mass imbalanced case of 6Li-133Cs allowed for
the clear observation of multiple Efimov resonances and the scaling between the
states [51, 52], confirming the predicted geometric scaling between the states.
Thus the case of Efimov physics in potassium and rubidium mixtures stayed
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inconclusive. To date no other experimental results of Efimov physics in het-
eronuclear mixtures than the three mentioned are available and prompted our
investigation of the 39K-87Rb mixture. Since these measurement yielded no sign
of an observable Efimov resonance and the first experimental study of 41K-87Rb
provided only measurements for the three-body recombination coefficient for two
points, a full comparison to theoretical predictions, like the determination of the
width of the resonance, was not possible and thus initiated our measurements in
this isotope combination.

5.3. Experiments on Efimov resonances

The existence of an Efimov resonance is most easily detected by an increase of the
three-body recombination rate α for a certain interaction strength in an ultracold
gas. In ultracold atomic systems this quantity can by changed by employing
Feshbach resonances and thus tuning the scattering length a. In the absence of
Efimov resonances α is expected to scale with an a4 dependence in the region of
intermediate interaction strength where Efimov resonances are expected to occur.
The resonances are expected to show up as an increase in α for a < 0 and for a > 0
as either an loss interference minimum or increased losses for collisions between
atoms and dimers (see subsection 2.2.3). Thus we prepared a mixture of ultracold
potassium and rubidium atoms, measured the remaining number of atoms and
temperature of the sample for certain points in time, and calculated from the other
known parameters the corresponding three-body loss coefficient α. We performed
loss measurements in ultracold mixtures of 39K-87Rb and 41K-87Rb. While the
measurements in 39K-87Rb could be performed solely on one Feshbach resonance,
the measurements in 41K-87Rb had to be performed on two resonances to gain
access to the region of 0− 640 a0.

5.3.1. Data evaluation

A typical dataset for the number of atoms and temperature is shown in Figure 5.1.
We analyze the data with regard to the loss processes and heating described in
Equation (2.36). We make use of the fact that three-body losses are dominated
by two heavy and one light atom as predicted from theory [99, 159] and observed
in 41K-87Rb mixtures [57]. We thus can neglect processes with two potassium and
one rubidium atom and Equations (2.36) become
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Figure 5.1.: Overview of the recorded atomic decays and heating during the hold
time in 41K-87Rb mixtures.
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K3,RbRbRbN
3
Rb

T 3 − NRb

τ
,

ṄK =− 1
3αRbRbK ηRbRbKNKN
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K3,KKKN
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αRbRbK ηRbRbKNKN

2
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NRb+NK

+ K3,RbRbRbN
3
Rb

3(NRb +NK)T 2 + K3,KKKN
3
K

3(NRb +NK)T 2 . (5.1)

We replaced the density dependent integrals by the total number of atoms N ,
adjusted by a prefactor η. This takes the density dependent overlap into account
to change from the density to the total number of atoms dependent rate equation.
For the rise in temperature, we include the two single species and the K-Rb-Rb
heating processes. Eliminating the effect of K-K-Rb processes in the interspecies
term allows for the replacement of βheat = 3/2kBT − βRbRbK . The single species
processes have been extensively studied and thus the density dependent three-body
rates α for 41K are α41 =4×10−29 cm6/s [121], for 39K α39 ≈1×10−29 cm6/s [49] and
for 87Rb αRb =3.2×10−29 cm6/s [160]. The conversion factor to the atom dependent
three-body factor is given by K3,KKK = αKKK

mω̄2

2πkB
√

27 [49]. We assume the single
particle losses on the order of the single species sample lifetime without enhanced
interaction which was determined to τ ≈100 s. Note that each of these processes has
loss rates which are at least by one order of magnitude smaller than the measured
rates and thus these do not have a significant contribution to the final result.
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5.3. Experiments on Efimov resonances

These assumptions reduce the coupled differential equation to the fit variables
αKRbRb, the start temperature of the sample T0 and the number of atoms for t = 0
for rubidium N0,Rb and potassium N0,K , which are obtained by numerically fitting
the loss curves with the equations given in Equations (5.1).

5.3.2. Loss coefficient measurements in 39K -87Rb
To measure the three-body loss coefficient in mixtures of 39K and 87Rb the time
dependent decay for different scattering lengths is recorded. The interaction is
controlled by exploiting the s-wave Feshbach resonance at B0= 117.56G in the
|1,− 1〉 state shown in Figure 4.13. The preparation of the samples follows the
procedure described in section 4.5 for the production of BEC mixtures. For
addressing the low field side of the Feshbach resonance the preparation takes place
at 76G and for the high field side at 142G.

scattering length (a0)
102 103 104

te
m

pe
ra

tu
re

(K
)

× 10-6

0

0.2

0.4

0.6

0.8

1

-104 -103 -102

Figure 5.2.: Sample temperatures for different scattering lengths in 39K-87Rb (black
and grey). Linear fit (blue) of the average temperatures for |a| >
200a0 (black) and maximum temperature to observe an Efimov reso-
nance (yellow).

Since non quantum degenerated samples are needed, the evaporation is stopped
at a dipole trap power of 570mW. Afterwards the trapping beams are ramped back
up to a power of 800mW per beam in 200ms to increase the overlap corresponding
to trapping frequencies of ωρ = 2π × 120 (85)Hz and ωz = 2π × 168 (114)Hz for
39K (87Rb). We hold the samples for 500ms before conducting the experiment to
avoid effects from the compression. The produced mixtures typically containing
1.5× 105 (4× 105) 39K (87Rb) atoms at temperatures shown in Figure 5.2.

95



5. Heteronuclear three-body physics

scattering length (a0)
10

2
10

3

th
re
e-
b
o
d
y
re
co
m
b
in
at
io
n
co
effi

ci
en
t
(c

m
6

s
)

10
-28

10
-27

10
-26

10
-25

10
-24

10
-23

10
-22

-10
3

-10
2

10
-28

10
-27

10
-26

10
-25

10
-24

10
-23

10
-22

Figure 5.3.: Measured three-body recombination coefficient in 39K-87Rb samples.
Results from the optical model [99] are shown for no observable Efi-
mov resonances for a < 0 (blue). For a > 0 the expected a4 depen-
dence (blue) and possible resonance positions at a+ = 200 a0 (yellow
dashed) and a+ = 1000 a0 (green dashed dotted) are shown.

We then abruptly change the magnetic field to the according field and wait for a
variable time to record the time dependent decay. The hold times are adapted to
the timescale of the decay process for different scattering lengths. Temperature
and number of atoms are recorded after 14 (16)ms expansion, where we keep the
target field on for the first 6ms of expansion. The resulting curves are fitted with
the procedure described in subsection 5.3.1 and the results are shown in Figure 5.3
showing no increased losses apart from the expected a4-dependence.

5.3.3. Loss coefficient measurements in 41K -87Rb
The interaction dependent three-body loss coefficient in mixtures of 41K and 87Rb
was determined on two different Feshbach resonances in the |1,1〉 state at 38G and
79G shown in Figure 4.14. To determine the scattering length from the magnetic
field a full coupled-channel theory calculation was used [161].
We follow the preparation procedure described in section 4.6, where the evapo-

ration in the dipole trap is performed at a field of 76G and stopped at a power
of 480 to 505mW per beam. Afterwards the power is ramped up to 900mW per
beam corresponding to trapping frequencies of ωρ = 2π × 124 (89)Hz and ωz =
2π × 119 (170)Hz for 41K (87Rb). For measurements on the narrow resonance at
79G the magnetic field is at the same time ramped to a value of 66G. Before the
measurement is performed the sample is held for another 500ms. Typical samples
contain 7.5 × 104 (1.5 × 105) atoms with temperatures shown in Figure 5.4 and
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Figure 5.4.: Sample temperatures for different scattering lengths in 41K-87Rb around
the broad resonance (black and grey). Linear fit (blue) of the average
temperatures for |a| > 200a0 (black) and maximum temperature to
observe an Efimov resonance (yellow).

Figure 5.5. The magnetic field is then abruptly changed to the target field, where
the sample is held for variable times. We adapt the hold times to the different
timescales of the interaction dependent decay processes. The temperature and
number of atoms are recorded after 14 (16)ms expansion, while we keep the target
field on for the first 6ms of expansion.

The obtained results are fitted with the procedure described in subsection 5.3.1
and the resulting loss coefficient is shown in Figure 5.6. We observe a prominent
loss peak at around 500 a0, which we account to a predicted p-wave Feshbach
resonance [150]. As shown in subsection 4.3.3, the collisional spectroscopy around
this feature (see Figure 4.17) resolves clearly the double structure associated with
this type of resonances. In the course of these measurements additional collisional
loss spectroscopy was performed to exclude the effect of other higher order Feshbach
resonances in the results (see subsection 4.3.3).

5.3.4. Limits of detection
The range for the detection of Efimov resonances is limited by the applicability of
universal physics and the unitary limit. The condition that the use of universal
physics is valid for our sample, the scattering length must be larger than the
physical range of interactions arising from the details of the shape of the scattering
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Figure 5.5.: Sample temperatures for different scattering lengths in 41K-87Rb around
the narrow resonance (grey and black). Linear fit (blue) to the average
temperatures for |a| > 200 a0 (black) and maximum temperature to
observe an Efimov resonance (yellow).

potential. This range is expressed by the interatomic potential and thus the van
der Waals radius RvdW is a good measure. For the used mixtures of potassium and
rubidium the van der Waals radius is approximately 72 a0 [77, 79] and thus the
lower limit is determined by 2RvdW ≈ 144 a0.

The maximal detectable loss coefficient in the unitary regime is limited by
finite temperature effects. The corresponding quantity is the thermal wave vector
k =
√

2µkBT/~ defining the maximum scattering length for universal physics as
k = 1/a [158], with µ as the reduced mass and the temperature T .

Figure 5.2 shows the scattering dependent starting temperatures recorded at the
beginning of the loss measurements. A linear function is fitted to the data to take
the heating during ramping to higher scattering lengths into account. The crossing
point to the limit of universal physics lies for positive and negative scattering length
above 2000 a0 and as such only affects the two data points at highest and lowest a.

The same procedure is applied to the data of mixtures of 41K and 87Rb. The
corresponding data is shown in Figure 5.4 for the broad resonance and in Figure 5.5
for the narrow one (see Figure 4.14). The thermal limit in these mixtures is thus
determined to be above 2000 a0 and thus has only an effect on the highest data
point on the narrow resonance and for the datapoints well below -2500 a0.
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Figure 5.6.: Measured three-body recombination coefficient in 41K-87Rb sam-
ples. Results from the optical model [99] are shown for no observ-
able Efimov resonances (blue) and Efimov resonances positions of
a− = −450 a0 (green dashed dotted) and a− = −246 a0 (yellow
dashed) for a < 0. For a > 0 the expected a4 dependence (blue)
and possible resonance positions at a+ = 200 a0 (yellow dashed) and
a+ = 1000 a0 (green dashed dotted) are shown. For a = −350 a0
the measured coefficients for αKRbRb (grey diamond) and αKKRb(grey
square) are shown.

5.3.5. Loss channel analysis

We measure the relative strength of the three-body loss coefficient by preparing
more 41K atoms than 87Rb atoms to favor K-K-Rb losses and record the loss at an
interspecies scattering length of a = −350 a0. We fit αKKRb and αKRbRb numerically
to the model of Equation (2.36). The resulting three-body parameters are αKRbRb =
(1.5± 0.4)× 10−26cm6s−1 and αKKRb = (0.5± 0.2)× 10−26cm6s−1, shown as grey
data points in Figure 5.6, confirming the assumption from subsection 5.3.1.

Moreover we analyze the ratio of lost potassium atoms to rubidium atoms in our
evaluation. The described analysis in subsection 5.3.1 relies on the assumption,
that all three-body loss processes except for the K-Rb-Rb one are negligible, but
since the single species recombination rates are known to good precision we only
neglect the K-K-Rb recombination. This enhances certain processes during the
evaluation and might suppress features showing up in a change of the ratio of lost
rubidium and potassium atoms [162]. Hence Equation (5.1) is modified to allow
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Figure 5.7.: Loss ratio different scattering lengths for samples of 39K-87Rb. The lines
denote the expected (straight) and the measured average atom loss ratio
of 1.91 for positive and 2.39 for negative scattering lengths (dashed).

for a variable ratio characterized by the loss ratio Λ and becomes

˙NRb = −Λ αRbKK ηKRbNKN
2
Rb −

K3,RbRbRbN
3
Rb

T 3 − NRb

τ
, (5.2)

ṄK = −(1− Λ) αKRbRb ηKRbNKN
2
Rb −

K3,KKKN
3
K

T 3 − NK

τ
, (5.3)

Ṫ = βheat
3

αKRbRb ηNKN
2
RbT

NRb +NK

+ K3,RbRbRbN
3
Rb

3(NRb +NK)T 2 + K3,KKKN
3
K

3(NRb +NK)T 2 . (5.4)

The results for the ratio of lost atoms in the different species ∆NRb
∆NK = Λ

1−Λ of
the numerical fits is shown for 39K-87Rb is shown in Figure 5.7. The average
value for positive scattering lengths is 1.91 and 2.39 for negative scattering lengths
corresponding to an overall ratio of 2.15 . Except for low scattering lengths around
2RvdW and below and thus in the relevant region it is close to the expected value
of 2.

Figure 5.8 shows the loss ratio at different scattering lengths for a mixture of 41K
and 87Rb on the broad resonance and Figure 5.9 on the narrow one respectively.
The loss ratio for negative scattering lengths is determined to 1.86 and for positive
scattering lengths to 2.37 on the broad resonance and 2.31 on the narrow one.
This corresponds to an average loss ratio of 2.18 87Rb atoms per lost 41K atom
confirming the results of the previous measurement also in this isotope combination.

Although it allows for differing loss ratios, it is not useful to determine the loss
coefficient with this method. The quadratic dependence on the rubidium density
versus the linear dependence for the potassium density is only modified by the
factor Λ, which does not describe the physical reality. However, the results are
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Figure 5.8.: Loss ratio for different scattering lengths for samples of 41K-87Rb on
the broad resonance. The lines denote the expected (straight) value of
2 and the measured average atom loss ratio of 2.37 for positive and
1.86 for negative scattering lengths (dashed).

very close to the expected ratio of two and thus support the assumption of the
predominant loss channels of loosing two heavy and one light atom, making further
analysis in this direction obsolete.

scattering length [a0]
102 103 104

∆
 N

R
b/∆

 N
K

0

1

2

3

4

5

6

7

Figure 5.9.: Loss ratio for different scattering lengths for samples of 41K-87Rb on
the narrow resonance. The lines denote the expected (straight) value
of 2 and the measured average atom loss ratio of 2.31 (dashed).

5.4. Implications

We determined the three-body loss coefficient in 39K-87Rb and 41K-87Rb mixture
over three to four orders of magnitude for intermediate scattering lengths. Both
systems showed surprisingly no sign of an observable Efimov resonance.
Figure 5.3 shows the resulting loss coefficient as a function of the scattering

length for the 39K-87Rb mixture. No significant deviation from the expected a4

101



5. Heteronuclear three-body physics

dependence are observed. We apply the theoretical framework from the optical
model [99] to our data for negative scattering lengths for no observable Efimov
resonances and to an a4 dependence for positive scattering lengths (blue curve).
The model gives the absolute value of the three-body parameter without rescaling
from the input parameters and the temperature of the sample. From the good
agreement with the theoretical prediction we estimate an upper limit of the overall
relative uncertainty of the three-body parameter of 50%. For positive scattering
lengths the data shows good agreement to the expected a4 dependence and no
increase of the recombination coefficient connected to an atom-dimer resonance
is observed. Interference minima are plotted for a+ = 200 a0 (yellow dashed) and
a+ = 2000 a0 (green dashed dotted) and comparison shows no agreement and thus
we exclude observable Efimov resonances between 2RvdW = 144 a0 and 1000 a0 for
positive and negative scattering lengths.

We determine the average loss ratio between the two species to be ∆NRb/∆NK

= 2.15 , supporting the assignment of the main loss channels in subsection 5.3.5.
Moreover the loss ratio between the species shown in Figure 5.7 does not show any
large systematic increase from the expected value of 2 as predicted by theory in
presence of an Efimov resonance [162].
In the results for a mixture of 41K and 87Rb as shown in Figure 5.6 we observe

a prominent peak in the scattering dependent loss coefficient at around -500 a0
caused by a p-wave resonance. We apply the same optical model to the data as
for 39K with adjusted parameters and temperature for negative scattering lengths
for no observable Efimov resonances and an a4 dependence for positive scattering
lengths (blue curve). From the agreement we deduce a relative uncertainty of the
absolute value of the measured loss coefficient of less than 50%. We show the same
model for possible Efimov resonances at a− =-450 a0 as suggested by the work in
40K-87Rb mixtures [56]. The observed peak structure is in disagreement with the
expected resonance shape of an Efimov resonance supporting the assignment of
the p-wave resonance. Moreover a possible Efimov resonance peak at the earlier
reported position [147] at a− = -246 a0 is shown. The measured loss coefficients is
in disagreement with this peak. For positive scattering lengths α clearly follows
the expected a4 dependence, which was measured for scattering lengths a > 600 a0
an two different Feshbach resonances. Assumed loss minima at a+ = 200 a0 and
a+ = 1000 a0 show no agreement and thus an Efimov loss minimum can be excluded
in this region. Moreover we do not observe increased losses due to an atom-dimer
resonance for any positive scattering length disagreeing with the reported position
of a∗ =667 a0 [147].
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The measured three-body loss coefficients differ slightly between the narrow
and the broad resonance. This can be accounted for by the different preparation
procedures leading to different temperatures for larger scattering lengths, thus
measuring a higher three-body recombination coefficient.
The significant difference in the recombination coefficient between the different

combination channels for a = −350 a0 allows to assign the main loss mechanism to
events involving two rubidium atoms and one potassium atom. This is furthermore
confirmed by the results from subsection 5.3.5 determining a loss ratio between the
different species of ∆NRb

∆NK = 2.18 not varying significantly between the two Feshbach
resonances.

In conclusion, we do not observe any increased losses at intermediate scattering
lengths connected with an Efimov resonance, both in mixtures of 39K-87Rb as well
as 41K-87Rb. The data shows good agreement with the predicted behavior from
the optical model [99] and the results in both mixtures support the findings from
the investigations done in 40K-87Rb [56], where no Efimov resonance was observed.
From their observation of the atom-dimer resonance at a(n)

∗ = 230 a0 universal
scaling predicts the position of the Efimov resonance at a(n)

− = −55000 a0 which is
at a scattering length not observable for us [97]. A lower lying resonance due to
universal scaling would ly at a(n−1)

− = −450 a0 and was not observed and thus the
observed resonance can be probably be accounted as the ground state, unless the
observance of the resonance at a(0)

− is suppressed [163].
This possible position is close to the observed p-wave resonance peak in 41K-

87Rb at a = −500 a0 and thus special attention was paid to excluding this option.
Moreover no increase in the loss of potassium atoms was observed for the investigated
region except for the p-wave resonance similar to the studies in 40K-87Rb [57, 162].
Our findings disagree with earlier work in 41K-87Rb where two resonances were
found and an indication for an atom-dimer resonance was seen [147].
These results show that Efimov resonances are not observable at intermediate

scattering lengths in ultracold potassium rubidium mixtures. This finding is sup-
ported by a similar unpublished experiment in mixtures of 41K-87Rb not observing
any increased losses due to an Efimov resonance and determining the position of
the atom-dimer resonance to a(n)

+ = 360 a0 [164].
Our findings are surprising since one would have expected an observation at

similar positions than the first investigation in 41K-87Rb. All investigated mixtures
share the same rubidium isotope and the masses only differ by a few percent
for the potassium isotope [159]. Although we cannot exclude extremely narrow
resonances the absence can have different reasons. The upper limit for Efimov
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resonances for 40K-87Rb-87Rb recombinations was calculated to a(0)
− < −3× 104 a0

and for recombinations of 41K-41K-87Rb to a(0)
− < −1× 106 a0, which is above the

investigated range [159]. Another reason could be the positive scattering length of
87Rb. It was seen in experiments of 6Li-133Cs that in cases where the intraspecies
scattering length of the heavier component was positive, the occurrence of the
lowest Efimov resonance was suppressed by short range dimer states, while higher
resonances were still visible [163].
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6 Conclusion and Outlook

Within this thesis the first dual species BEC mixtures of 39K-87Rb were realized.
To enable a high number of atoms in the 39K condensate two intraspecies Feshbach
resonances were employed to produce dual species BECs in an optical dipole trap.
The position and the width of a third interspecies resonance were measured to
high precision to Bc = 117.56± 0.02G and ∆ = 1.21± 0.045G. This resonance
was used to control the interspecies interaction and observe the quantum phase
transition between miscible and immiscible BECs and to determine the interspecies
background scattering length to abg = 28.37 a0. Moreover BEC mixtures of 41K-
87Rb were produced and the tuning of the intra- and interspecies interaction was
shown.

These mixtures were used for the investigation of few body physics with respect
to Efimov physics to resolve outstanding questions of similar isotopic mixtures. The
scattering dependent three-body recombination coefficient was recorded for positive
and negative scattering lengths over 3 to 4 orders of magnitude for mixtures of
39K-87Rb and 41K-87Rb. Except for a peak that was assigned to a p-wave Feshbach
resonance the measurements showed no sign of an Efimov resonance. The data for
negative scattering length was compared to a theoretical model of the three-body
loss process and showed good agreement, while the data for positive scattering
lengths showed good agreement to the expected a4 dependence. Thus it was shown
that Efimov resonances are not observable in mixtures of 39K-87Rb and 41K-87Rb
for intermediate scattering lengths, resolving a longstanding controversy in the
field.

The reliable production of condensate mixtures as well as single species conden-
sates with tunable intra- and interspecies interaction allow for a broad spectrum of
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future experiments, some of which are presented in the following.

Few-body phyiscs

While the observation of Efimov resonances in potassium rubidium mixtures is
not possible, a number of different questions can be addressed in the presented
apparatus. Since multiple Efimov loss resonances on different Feshbach resonance
have been observed in 39K samples [49, 55] the position of the second loss resonance
can be estimated to be a− < 22 000a0, which is experimentally accessible on various
broad Feshbach resonances in 39K.

Questions that could be addressed are the universal scaling between the two three-
body states at different Feshbach resonances as well as the universal scaling between
four and five body bound states associated to an Efimov loss resonance [46–48] by
itself as well as across different Feshbach resonances.
The mixture of potassium and rubidium may be investigated further by using

radio frequency association for the direct production of Efimov trimers. This is
possible in homonuclear mixtures of fermions [44] and bosons [45, 165, 166] but has
not been shown in heteronuclear mixtures. The direct determination of the trimer
binding energy would allow for the test of theoretical predictions and indirectly
provide the position of the Efimov loss resonance.

Another interesting area is three-body recombination in the non universal regime
for a → 0, where the interaction highly depends on the details of the scattering
potential. First experiments for single species samples have been performed [167]
and agree with theory [159]. However the heteronuclear case will be an interesting
case to study.

Quantum gases at unitarity

The tuning of the scattering length allows for the realization of unitary quantum
gases when the magnetic field is tuned to the center of a Feshbach resonance
where the scattering length diverges. Thus the scattering length cannot be a
characterizing quantity of the system and the sample properties solely depend
on the density. Although extensively studied in fermionic gases, since the Pauli
blocking suppresses losses, the bosonic case only recently attracted attention.
Investigations of thermal samples of 39K [168] and quantum degenerate samples
of 85Rb [169] showed surprisingly long lifetimes and the emergence of a steady
state, since the decay was slower than the rethermalization. It would be interesting
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to study if the sample can be stabilized on certain resonances in 39K or by the
admixture of a 87Rb component.

Miscible and immiscible quantum phases

The experiments on miscible and immiscible quantum phases in this thesis provide
a foundation for further investigations. The most simple experiment would be to
excite a vertical oscillations of both condensates in the trap and determine the
oscillation frequencies. These should show a large dependence on the miscible or
immiscible behavior of the samples. Another approach is a quench through the
transition between the two phases. When done nonadiabatic, interesting dynamics
are expected [170]. However this might require the implementation of a quasi magic
dipole trap [171] to increase the overlap of the two clouds and to compensate for
the gravitational sag. At the moment a model to take all interactions between
the condensed and the thermal part of the samples is under development and a
collaboration is started to predict possible observations [156, 170].

Molecular physics

A wide range of experiments is possible with heteronuclear Feshbach molecules.
In these experiments a Feshbach resonance is employed to associate atoms into
the loosely bound dimer state [33]. These molecules are highly unstable under
collisions but can be stabilized by loading them into an optical lattice to suppress
collisions [172]. The reduced dimensionality would allow for a controlled study
of reactive collisions with other molecules or atoms. A more elaborate investiga-
tion might aim for a transfer of these loosely bound molecules into more deeply
bound states, since this give rise to a large electric dipole moment and a set of
unconventional quantum phases in optical lattices is expected [173].

Impurity physics

By changing the ratio of the prepared number of atoms, one can create a small
minority component in a condensate mixture acting as an impurity. The tunable
interaction of the impurity with the surrounding atoms allows for the creation
of polarons. This quasi particle is formed by the distortion of the surrounding
medium and has been observed in ultracold Fermi gases [174, 175]. However it
was not realized in Bose gases yet, though it represents a perfect model system
for photons in optical media. The ability to precisely tune the scattering length
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6. Conclusion and Outlook

gives access to the strong coupling regime for attractive as well as for repulsive
interaction. First experiments would aim to compare newly developed theories to
describe the properties of this quasi particle with experimental results [176, 177].
Moreover an Efimov state, present at the same Feshbach resonance, should lead to
a coupling between the two states and an avoided crossing is predicted [178].

The isotopic combinations of 39K-87Rb, 41K-87Rb and single species BECs with
tunable interaction strengths are now reliably available in the presented apparatus,
thus provide ideal conditions to approach these and other scientific questions in
near future.
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A Supplemental figures

Species a,b |Fa,mF,a〉 |Fb,mF,b〉 Bc(G) Bc(G) reference
39K,39K |1,1〉 |1,1〉 25.9 0.47 [146]

|1,1〉 |1,1〉 402.4 52 [146]
|1,0〉 |1,0〉 58.8 9.6 [146]
|1,0〉 |1,0〉 65.6 7.9 [146]
|1,0〉 |1,0〉 471 72 [146]
|1,0〉 |1,0〉 490 5 [146]
|1,− 1〉 |1,− 1〉 33.6 -55 [146]
|1,− 1〉 |1,− 1〉 162.3 37 [146]
|1,− 1〉 |1,− 1〉 560.7 5.6 [146]

39K,87Rb |1,− 1〉 |1,− 1〉 117.56 1.21 -
|1,1〉 |1,1〉 317.9 7.6 [77]

41K,87Rb |1,1〉 |1,1〉 39 37 [27, 79]
|1,1〉 |1,1〉 79 1.2 [27, 79]
|1,1〉 |1,1〉 558.0 81 [77]

Table A.1.: Overview of most relevant s-wave Feshbach resonances in 41K, 39K and
87Rb.
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Figure A.1.: Level structure of the used alkali atoms. Adopted from [110] with
data from [70, 71].
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Figure A.2.: Schematic of the high stability battery powered current supply. Design
by N. Winter.
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