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Preface

When I joined Michael Budde’s Quantum Gas Laboratory at Aarhus University

as MSc-student in autumn 2005, the sensation of the rapid development that

has taken place in the field of cold quantum gasses over the last decades, was

immediately felt. The 87Rb based BEC-experiment had been designed for future

addition of an additional atomic species (lithium), it provided coils designed for

doing Feshbach physics and had good optical access for multi-axis imaging and

3D optical lattices.

At the time we were working toward observing Bose-Einstein condensation

in our own experimental setup. And though this was in itself not much of a

novelty in the international physics community already back then, the many

ideas of what - hopefully - new and exciting experiments to plan for, made it

an extremely inspiring environment to work in. With successful achievement

of Bose-Einstein condensation in early 2006 the path was thus open for these

experiments. A key feature for these was the addition of 3D optical lattices to

the setup, which Henrik Kjær Andersen implemented within his PhD.

At the time of finishing my MSc thesis early 2007, the status and stability

of the experimental setup was thus quite good. As an example, I remember

giving ”live” demonstrations of Bose-Einstein condensation, and even the 3D

lattice Mott-insulator transition, to visiting high-school classes. There was no

need to be there long time in advance, however, because the system was so

stable that BECs could always be produced within 15 minutes after arriving in

the lab. This experimental consistency is a testimony of both Michael Budde’s

design, as well as both Jesper Fevre Bertelsen’s and Henrik Kjær Andersen’s

careful initial buildup of the experiment.

Continuing as PhD student in the lab, my first project was a restructur-

ing of the laboratory computer control system, which could not practically be

scaled to include the planned addition of a second atomic species. A ”home-

designed” FPGA-based solution was settled for, which I started developing. It
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was also decided to hire a new post-doc to implement the lithium setup, and

the experimental plans as a whole seemed well underway.

Shortly before the new post-doc Sung Jong Park’s actual arrival, however,

Michael Budde announced that he would be leaving the university in favour

of a private company. Quite obviously, this new situation was unexpected for

everybody, and there was a period of time where it wasn’t really clear what

would happen, at least not to us left in the group. The message that did come

through to Sung Jong and myself was that a new group leader would probably

be hired within half a year (i.e. summer 2008), and that we shouldn’t make any

larger plans or investments in laboratory equipment until then, but simply finish

up some smaller lab projects. As time went on, however, the expected date of

having a new group leader was continuously postponed, and it became clear

to Sung Jong and myself that we had to come up with our own experimental

plans.

Sung Jong and I approached the situation a bit differently. He was quite op-

timistic that publishable results would come out of BEC experiments that would

basically be fully analyzable in a non-interacting, mean-field, scalar model, i.e.

essentially the single particle Schrödinger equation. While I, being less opti-

mistic in this respect, started discussing the possibilities of doing spin-changing

interaction experiments in optical lattices with my official theoretical supervisor

Klaus Mølmer, in addition to the lab activities.

Sung Jong’s experimental approach proved to be extremely fruitful, yielding

large amounts of good and interesting experimental data. Some of this data

we could readily interpret, but needed a good angle of approach to actually get

it published, while other experiments gave interesting, but at the time not fully

understandable results.

With the arrival of the new group leader Jan Arlt and post-doc Jacob Sher-

son in early summer 2010, suitable perspectives for publication were found on

some of our older data. Additionally, some of the previously unexplained obser-

vations have triggered a renewed and still ongoing experimental and theoretical

investigation. I look forward to getting both our older data published, as well

as the very new and exciting results on localized states, which we are now

beginning to understand in more detail.



Chapter 1

Introduction

1.1 Thesis Outline

The field of ultra-cold quantum gases has experienced a tremendous evolution

since the ground-breaking achievement of Bose-Einstein condensation in 1995

[4, 12]. Today many sub-disciplines exist within the cold quantum gas world,

which span a large parameter space: Bosonic or Fermionic particles and their

mixtures, atomic or molecular particles, static or controllable interactions and

scalar or spinor condensates, just to name some of the keywords that distinguish

the many research groups dealing with ultra-cold quantum gases.

In this context, the present thesis is closely tied to the physics of Bose-

Einstein condensates in optical lattices. It is structured closely around 3 up-

coming publications, and the list of chapters covers the following subjects.

• Chapter 1 is a general introduction to the physics underlying Bose-Einstein

condensation.

• Chapter 2 is a brief overview of our experimental setup. Most of this is

covered in detail elsewhere, but included here for completeness.

• Chapter 3 is an introduction to the physics of optical lattices used in the

articles, i.e. the AC Stark shift and the non-interacting single particle

band-structure.

• Chapter 4 presents our experiments on optical lattice calibration tech-

niques.

3



4 CHAPTER 1. INTRODUCTION

• Chapter 5 demonstrates time-dependent optical lattice control as a ver-

satile tool with applications to e.g. matter wave interferometry.

• Chapter 6 presents recent results on wave-packet dynamics and local-

ized states, which have turned out to fit very well with the theoretical

description used in the time-dependent lattice control chapter.

• As a separate appendix, an introduction is given to an FPGA-based lab-

oratory control system, which I have developed as part of my PhD. This

is not connected with the rest of the thesis, but is included as a quick

overview chapter for future group members.

1.2 Bose-Einstein Condensation

Bose-Einstein condensation of Bosonic atoms can be derived as a consequence

of thermodynamics and Bosonic statistics. The current chapter briefly reviews

the basic steps leading to the prediction of the condensation.

If we make the simplifying approximation that the atoms are non-interacting

(and have no spin), we can write the Hamiltonian, H, as a sum over single

particle spatial modes [39, eq. 2.3.8]

H =
∑
k

~ωkn̂k (1.1)

where n̂k = a†kak.

Following [39, eqs. 3.4.35, 3.4.41] we define the entropy of the system in

terms of the density operator as

S = −kBtr
(
ρ ln(ρ)

)
(1.2)

Using that ρ is diagonal in the single-particle spatial mode occupation num-

ber basis, n̄, this is

S = −kB
∑
n̄

ρn̄n̄ ln(ρn̄n̄) (1.3)

The basic postulate of thermodynamics is that the entropy in equilibrium is

maximized, subject to the relevant constraints. In our case, these constraints

are the ensemble average of the energy, U = tr(ρH), [39, eq. 3.4.44] and the

number of atoms, N =
∑

k nk, in addition to the overall normalization of ρ.

We maximize σ = 1
kB
S subject to this set of constraints using the method

of Lagrange multipliers [20, 39]. Under a (diagonal) variation δρn̄n̄, the first
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order variation in σ is

δσ = −
∑
n̄

δρn̄n̄
(
ln(ρn̄n̄) + 1

)
(1.4)

The variation in U is similarly

δU =
∑
n̄

δρn̄n̄

∞∑
k=0

~ωknk (1.5)

while the variation in N is

δN =
∑
n̄

δρn̄n̄

∞∑
k=0

nk (1.6)

At last, we need to keep the probability-normalization tr(ρ) = 1 fixed. To this

end we write the variation

δtr(ρ) =
∑
n̄

δρn̄n̄ (1.7)

To carry out the constrained optimization, we introduce the Lagrange mul-

tipliers β for the constraint on U , −βµ for the constraint on N (to comply

with common notation) and γ for the normalization constraint. An extremum

is then given by solutions to

δσ − βδU + βµδN − γδtr(ρ) = 0 (1.8)

Since this must hold for an arbitrary variation δρn̄n̄ it must hold for each term

in the sum over n̄ separately. Inserting the variations and dividing by δρn̄n̄, we

get

−
(
ln(ρn̄n̄) + 1

)
− β

∞∑
k=0

~ωknk + βµ

∞∑
k=0

nk − γ = 0 (1.9)

The solution for ρn̄n̄ is

ρn̄n̄ = exp

(
−β

∞∑
k=0

~ωknk + βµ
∞∑
k=0

nk − γ − 1

)
(1.10)

Defining the grand partition function Z [28, eq. 11.14]

Z =
∑
n̄

exp

(
−β

∞∑
k=0

~ωknk + βµ
∞∑
k=0

nk

)
(1.11)
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we may, instead of adjusting γ to keep ρ is normalized, write (1.10) as

ρn̄n̄ =
1

Z
exp

(
−β

∞∑
k=0

~ωknk + βµ

∞∑
k=0

nk

)
(1.12)

Since both E =
∑∞

k=0 ~ωknk and N =
∑∞

k=0 nk are sums over k, we may

write Z and ρn̄n̄ as a products. For Z this reads

Z =
∑
n̄

∞∏
k=0

exp (−β~ωknk + βµnk)

=
∞∏
k=0

∑
nk

exp (−β~ωknk + βµnk)

=
∞∏
k=0

Zk (1.13)

where we’ve introduced the single state grand partition function Zk (see [28,

eq. 11.19] for a discussion of the last step).

We can thus write ρn̄n̄ as a product of independent single-state population

probabilities

ρn̄n̄ =
∏
k

exp (−β~ωknk + βµnk)

Zk

(1.14)

Writing the energies of the single particle states as ϵk = ~ωk, the form of Zk is

a geometric series [28, eq. 11.21],

Zk =
∞∑

nk=0

eβ(µ−ϵk)nk (1.15)

which converges if and only if µ < ϵk (since β > 0). The value is

Zk =
1

1− eβ(µ−ϵk)
(1.16)

Observe that
∂ ln(Zk)

∂µ
=

1

Zk

∞∑
nk=0

βnke
β(µ−ϵk)nk (1.17)

Using that the single state population probability is pk(n) =
eβ(µ−ϵk)n

Zk
, the mean

occupation number, ⟨nk⟩, for the single particle state k can thus be expressed

as

⟨nk⟩ =
1

β

∂ ln(Zk)

∂µ
(1.18)
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Inserting (1.16) and carrying out the differentiation, we finally get

⟨nk⟩ =
1

eβ(ϵk−µ) − 1
(1.19)

This is the Bose-Einstein distribution. The Lagrange multiplier β is related to

the temperature as β = 1
kBT

(this is the definition of temperature), while µ is

called the chemical potential.

From the Bose-Einstein distribution, the prediction of Bose-Einstein con-

densation follows trivially. The total (average) number of particles, N , can be

written

N =
∑
k

⟨nk⟩ (1.20)

For most energies, the energy levels are very closely spaced, and we may ap-

proximate the sum over single particle states by an integral.

The only exception to the integral approximation arises from the possibility

that for the lowest energy state ϵ0, we have ϵ0 ≈ µ. In this case (1.19) is seen

to be divergent, which implies that the ground-state can have a macroscopic

population. This is Bose-Einstein condensation.

In order to estimate at what temperature this might happen, we set ϵ0 = µ

and express the excited state population as an integral over energies. For a

harmonic trap in 3 dimensions with trap frequencies ωx, ωy, ωz, the density of

states is [38, eq. 2.10]

g(ϵ) =
ϵ2

2~3ωxωyωz

(1.21)

Choosing the zero level for the energy scale to be at ϵ0, and setting N = Nexcited

to estimate the transition temperature, the integral is then [38, eq. 2.16].

N =

∫ ∞

0

g(ϵ)
1

eβcϵ − 1
dϵ (1.22)

where βc =
1

kBTc
and Tc denotes the critical temperature.

Carrying out the integration, Tc is given by [38, eq. 2.20]

kTc =
~ω̄N1/3

ζ(3)1/3
≈ 0.94~ω̄N1/3 (1.23)

where ζ(x) is the Riemann zeta function and ω̄ = (ωxωyωz)
1/3 is the geometric

mean of the trap frequencies.

In this chapter we have thus shown that a cloud of non-interacting trapped

Bosonic atoms in a harmonic potential will undergo Bose-Einstein condensation

at sufficiently low temperatures. This macroscopically occupied quantum-state
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is a quite extraordinary physical phenomenon as it displays the quantum char-

acteristics known from single atoms and elementary particles on a macroscopic

and easily observable scale.

In the laboratory, we can thus take pictures of quantum mechanical wave-

phenomena, that before the realization of Bose-Einstein condensation were well

known, but could not be manipulated or probed experimentally to the extent

that is now possible.



Chapter 2

Experimental Setup and Methods

2.1 Overview

The creation of a BEC involves multiple steps, each of which is an interesting

subject in its own right. In our experimental setup (see Fig. 2.1), we largely fol-

low the approach of [25], and more detailed accounts of our implementation can

be found in [2, 5, 6]. For completeness and to document recent changes, how-

ever, this chapter briefly reviews both the experimental setup and the methods

used to obtain a Bose-Einstein Condensate (BEC).

The vacuum chamber consists of two parts separated by a differential pump-

ing hole: A ”high pressure” part (P ∼ 2 × 10−10 torr) with a cylindrical glass

cell, where we cool and trap 87Rb atoms in a Magneto-Optic Trap (MOT).

And a ”low pressure part” (P < 10−11 torr), where the lifetime due to rest gas

collisions is about 2 min. A sketch of the vacuum chamber and associated fixed

and movable quadrupole-coils is shown in Fig. 2.2.

After the initial accumulation of 87Rb atoms in the MOT, the experimental

sequence leading to the creation and detection of a BEC consists of magnetic

transport into the low pressure part, forced radio-frequency evaporative cool-

ing in the science chamber and, finally, absorption imaging. These steps are

described individually in the following sections.

2.2 Magneto-Optic Trap and Optical Pumping

The MOT setup consists of a cylindrical glass cell with an attached ion-pump

and electrically heatable rubidium dispensers. To produce the cooling and re-

9
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Figure 2.1: CAD drawing of the essential parts of our experimental setup.
Ion-pums, titanium sublimation pumps and windows have been removed in
the drawing.

pumping light for the MOT, we use a standard diode laser setup [25, 26, 47]

placed on a separate laser table. The light is fiber-coupled into 3 polarization

maintaining fibers, and close to the MOT each fiber is split using polarizing

maintaining 50/50 fiber beam-splitters. This provides balanced intensity levels

for the 3 pairs of counter-propagating MOT laser beams, even in case of drifting

fiber-coupling efficiencies. Six telescopes with built-in λ/4-plates collimate the

fiber-outputs and deliver circularly polarized expanded light-beams to the MOT.

For normal operation a sufficient power-level of cooling light in each beam is 18

mW, and the detuning relative to the cyclic |2S1/2, F = 2⟩ → |2P3/2, F = 3⟩
cooling-transition is −23 MHz. The |2S1/2, F = 1⟩ → |2P3/2, F = 2⟩ repump

light is primarily present in one of the counter-propagating pairs, and the typical

measured power level here is 2× 1 mW.

One pair of the movable quadrupole trap-coils (detailed in section 2.3) is

used at low current (16 A, radial field gradient 5.76G/cm) to provide the

magnetic field for the MOT. During the last 35 ms of the MOT phase we

compress the MOT by detuning the cooling lasers. This is to minimize heating

when the magnetic trap is turned on [25].

After the compressed MOT phase, the quadrupole field is briefly turned

off, and a separate coil-pair in a Helmholtz-like configuration is pulsed on to

provide a uniform bias-field. Under this field atoms are pumped into the |F =

2,mF = 2⟩ dark-state by a separate σ+ polarized ”pump-laser” beam tuned to

the F = 2 → F ′ = 2 transition. Ramping the current in the quadrupole-coils

up to 250 A catches around 90 % of the atoms (see Fig. 2.3) in the magnetic

QP-trap, and immediately after this the transport into the low-pressure region

begins.
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Ø 4 cm

Science chamber

P~2x10 torr
-10

P<10 torr
-11 Corner

Glass cell MOT

Movable traps

Stationary trap

Figure 2.2: Sketch of our glass-cell MOT and steel vacuum chamber. The
coils constituting the magnetic traps are symbolized by the dashed circles.
The distances from the MOT to the corner and from the corner to the
science chamber are 49 cm and 37 cm, respectively.

After several years of operation under undisrupted vacuum conditions, the

originally installed rubidium dispensers are now running dry. It has thus become

relevant to extend the previous 8-10 sec MOT loading time considerably, so

that a change of dispensers can be postponed to coincide with an upcoming

moving of the lab.

An unexplained experimental observation was, however, that a long MOT

load time, despite reaching a similar MOT-fluorescence level, would lead to

smaller BECs. The problem turned out to be that a load-time dependent hys-

teresis effect in an electro-mechanical shutter delayed the cutoff of cooling light

by more than 1 ms. For now, the issue has been fixed by leaving a larger

time-gap between cooling cutoff and optical pumping, but in the long term

it is expected that the problem will be resolved by replacing the home-built

shutter-drivers with Uniblitz drivers matching the shutters in use.

Another experimental oddity is that the pressure-reading derived from the

ion-pump current (Varian Star-Cell w. Dual Ion Pump Controller) has risen by

two orders of magnitude over the last years. In 2007 the pressure-reading for
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Figure 2.3: Fluorescence signal at recapture in MOT after variable hold
time in a purely magnetic QP trap in the MOT region. The data shows
a MOT-cell lifetime of 17 seconds (due to background gas collisions). The
experimental sequence is triggered by a 100 mV MOT fluorescence photo-
detector signal, and the 22.8 mV offset is due to reflected cooling-light. The
QP-trap capture efficiency is thus 91%.

the MOT section was initially 2× 10−10 torr. Since then it has increased: First

by a factor of 10 in 2008 as noted in [2], and since by another factor of 10,

which initially went unnoticed. The increased reading cannot reflect the real

pressure, however, as the measured lifetime of atoms held in the magnetic trap

has actually increased considerably since 2007. Current lifetime measurements

for magnetically trapped atoms in the MOT-cell region yield 17 seconds (see

Fig. 2.3), which increases to 21 seconds when turning the dispenser heating

current off. This is consistent with a simple rate-equation description of the

MOT fluorescence level, which is observed to rise toward its saturation level on

a similar time-scale. An in depth investigation of the actual pressure would thus

probably reveal the opposite conclusion, namely that the pressure in the MOT

chamber has in fact fallen since 2007.
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2.3 Transport with Movable Quadrupole Traps

The two movable magnetic quadrupole traps are mounted on computer con-

trolled mechanical positioning systems similar to [25]. One QP-trap (the MOT-

QP) moves the atoms from the MOT to the corner of the chamber while the

other (the Conveyor QP) moves them from the corner to the science chamber

(see sketch in Fig. 2.2). Mounted directly on the science chamber is a third

pair of QP-coils and a smaller Ioffe coil, which together provide the trapping

field during evaporative cooling.

The atoms are trapped using the linear Zeeman shift, which for a magnetic

field of magnitude B(r) provides the trapping potential

V (r) = gF mF µB B(r) (2.1)

where gF = −1/2 for the F = 1 hyperfine state and gF = 1/2 for the F=2

hyperfine state of the electronic 2S1/2 groundstate of 87Rb. The ”low-field

seeking” states |F = 1,mF = −1⟩, |F = 2,mF = 1⟩ and |F = 2,mF = 2⟩
are thus potentially trappable.

The quadrupole traps can be approximated by two circular current loops

with radius R and separation distance 2A. Around the zero-point in the middle

of the trap the magnetic field increases linearly in all directions with the axial

gradient being twice the radial gradient. Near the minimum the magnitude of

the magnetic field can thus be well approximated by [29]

B(ρ, z) ≈ ∂|B|
∂ρ

√
ρ2 + 4z2 (2.2)

where ∂|B|/∂ρ is the radial magnetic field gradient.

The magnetic field from our coils can be calculated using a numerical im-

plementation of the Biot-Savart law. These calculations show that for our pur-

poses, the magnetic field from the coils can be very accurately approximated

by the field from two circular windings with axial distance A, radius R and

current-scaling I. Comparing with the numerical code, the best fitting values

for A, R, I, and the associated field gradient and barrier height, are listed in

table 2.1.

The maximum current we can use in our coils is 400 A which is limited by

the current supply, but presently no experimental sequence is using more than

300 A in any coil.

Similarly to the movable coils, the Ioffe and quadrupole coils, mounted

directly on the science chamber, are cast in epoxy for mechanical stability.

Together they form a Quadrupole-Ioffe configuration (QUIC) trap [16], which
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Coil MOT QP-trap Conveyor QP-trap
Afit(cm) 3.941 7.082
Rfit(cm) 3.2 4.21
Ifit(A/A) 16.0 32.17
Radial field gradient (G/(cm A)) 0.36 0.20
Field barrier height (G/A) 0.77 0.59

Table 2.1: Quadrupole coil parameters

we transform from QP to QUIC configuration by ramping the Ioffe coil current

from zero (bypassed) up to the full QP current, at which point the Ioffe and

QP-coils form a series circuit.

The measured turn-off time of the QUIC current is 260 µs, but residual

eddy-currents in the chamber walls die out on a slightly longer (millisecond)

time-scale. For BEC imaging with long time-of-flights (TOF), e.g. TOF > 10

ms, there is, however, no sign of residual induced fields.

2.4 Evaporative Cooling

The creation of BECs by standard forced radio-frequency evaporative cooling is

well described in the literature [46]. Basically, an RF frequency magnetic field

couples the magnetic spin states, causing a transfer from a low-field seeking

trapped state to a high-field seeking untrapped state for any atom passing the

shell-like set of points r defined by the resonance condition hνRF = µBgF |B(r)|.
By sweeping down the RF frequency, the resonance condition shell gradually

shrinks toward the trap center. This process continuously removes the upper

tail of the motional energy distribution of the atoms. And if the sweep rate

is slow enough to keep the distribution close to equilibrium, this evaporative

cooling of atoms will be very efficient.

Due to the aforementioned lack of rubidium in the heatable dispensers, the

evaporative cooling sequence has recently been re-optimized in order to make

BECs from smaller MOT starting conditions, while making the most of the low

background pressure in the science chamber.

To this end, the RF frequency ramp was changed from an exponential ramp

to linear ramp segments covering the set of RF frequency intervals shown in the

first column of table 2.2. With the frequency intervals fixed, optimization of the

sweep times was carried out on all but the first interval by plotting number of

atoms and fitted phase-space density. Figure 2.4 shows the phase-space density

and atom number scatter for the optimum sweep times given in column 2 of 2.2.
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Frequency interval Sweep time Run numbers
55MHz → 15MHz 8 sec N.A.
15MHz → 5.5MHz 15 sec 57 → 61
5.5MHz → 2.2MHz 15 sec 52 → 56
2.2MHz → 900 kHz 8 sec 47 → 51
900 kHz → 600 kHz 1.25 sec 42 → 46
600 kHz → 385 kHz 1.5 sec 37 → 41

Table 2.2: RF ramp intervals and optimized time-parameters. Experimental
run numbers from June 17., 2010.

1000000 1E7
1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

1000000 1E7

1E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

100

3738 394041

4243
44

45
46 47 48 495051 52

5253
545556

57

5859
60

61

 

 

ph
as

e 
sp

ac
e 

de
ns

ity

atom number

Figure 2.4: Phase-space density plot during evaporation. Points are labeled
by their run-numbers on June 17., 2010.

Comparing the run-numbers in table 2.2 and figure 2.4, one sees a significant

variation within each group of supposedly identical runs. This is attributed to

unstable initial conditions from the MOT.

2.5 Absorption Imaging

The detection method used for all experiments described is standard absorption

imaging with beams resonantly tuned to the |S1/2, F = 2⟩ → |P3/2, F
′ = 3⟩

transition [46, 5, 2]. The resolution varies slightly between the different imaging

axes, but is on the order of 5 microns with 2 microns/pixel (1.94 microns/pixel
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on the x-axis camera, which is used exclusively for the data presented here).



Chapter 3

Optical Lattices

3.1 Introduction

Optical lattices provide one of the most important tools used in the study of

ultra-cold quantum gases. While being conceptually simple and experimen-

tally accessible, they allow a vast range of interesting and non-trivial physical

phenomena to be studied in fairly ”clean” experiments.

The basic unifying concept of optical lattice physics is that interference

patterns of standing wave laser-fields create a ”potential landscape”, in which

atoms move. For ultra-cold atoms, the thermal de Broglie wavelength is com-

parable to the wavelength of optical lasers. Even the motional dynamics of

ultra-cold atoms in optical lattices are thus within the realm of quantum me-

chanics.

The all important distinguishing feature of optical lattices, as compared

to formally similar systems in e.g. solid state physics, is the extraordinary

controllability of the lattice potential:

• The potential scales with the laser intensity, which is easily controlled

over a large parameter range and with fast and accurate dynamics.

• The potential shape can be controlled both statically and dynamically by

a number of specialized techniques. Transverse shaking of the lattice,

acceleration of the lattice and changing the angle between incident laser

beams to modify the interference pattern are just a few of the many

techniques in common use.

17



18 CHAPTER 3. OPTICAL LATTICES

• For atomic species with hyperfine structure, the potential experienced by

different |F,mF ⟩ states depends on both laser polarization and relative

detuning. Elaborate schemes for e.g. spin-dependent transport make use

of this state-dependence of the potential.

Combining the versatility of optical lattices with RF fields (coupling ⟨F,m′
F |HRF |F,mF ⟩

states), MW fields (coupling ⟨F ′,m′
F |HMW |F,mF ⟩ states), close to resonance

laser fields (coupling to electronically excited atomic states for e.g. molecule for-

mation) and strong B-fields (for Feschbach physics), gives an almost unlimited

range of interesting experiments based on optical lattices.

The ongoing theoretical and experimental research based on optical lattices

is, however, not solely motivated by its academically appealing nature. One

of the more practical reasons for studying lattice physics is that complex solid

state systems like high-temperature superconductors are very difficult to analyze

theoretically. In this respect optical lattices fulfill two related purposes:

• They provide a well controlled experimental ”test-bed” for many-body

quantum theory developments.

• And they can be used to realize ”quantum simulators”, i.e. to implement

a well controlled physical model of an interesting physical system. This

usage is conceptually similar to the now obsoleted analog computers, but

can be justified because ab initio digital simulation of even moderately

sized many-body quantum systems is not yet possible with contemporary

super-computers.

3.2 AC Stark-shift Induced Potentials

The physical mechanism underlying optical dipole traps and lattices can be

explained both classically, semi-classically and in a ’dressed state’ picture using

second order perturbation theory [21]. Each approach offers a different trade-off

between physical intuition and theoretical rigor.

3.2.1 Classical and Semi-Classical Approaches

Consider a neutral atom at position r. In the (semi-)classical approaches, it is

observed that an oscillating laser field

E(r, t) = ê Ẽ(r) e−iωt + c.c. (3.1)
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gives rise to an induced atomic polarization

p(r, t) = ê p̃(r) e−iωt + c.c. (3.2)

which is approximately linear in the E-field, as described by the frequency de-

pendent complex polarizability α,

p̃ = αẼ (3.3)

Although related through Kramers-Kronig relations, the real and imagi-

nary parts of α(ω) convey information about different physical mechanisms.

The imaginary ”out-of-phase” response describes the power absorbed (and re-

emitted spontaneously)

Pabs = ⟨ṗE⟩ (3.4)

=
ω

ϵ0c
Im(α) I (3.5)

while the real ”in-phase” response describes the dipole-potential arising from

the interaction between induced polarization and E-field,

Udip = −1

2
⟨pE⟩ (3.6)

= − 1

2ϵ0c
Re(α) I (3.7)

Here both Pabs and Udip are averaged on a full cycle, and

I = 2ϵ0c|Ẽ|2 (3.8)

has been substituted to facilitate practical calculations.

A basic property of classical harmonic oscillators is that far below and above

resonance, the phase of the response is close to 0 and π, respectively, i.e. a non-

dissipative reactive response. In the current context, this implies that for large

laser detunings, the dipole interaction can be non-negligible while spontaneous

emission is efficiently suppressed. It also quite intuitively explains why red-

detuned laser fields give rise to negative potentials, which may trap atoms in

intensity peaks, while blue-detuned fields tends to repel atoms from the intensity

peaks.

More quantitatively one may derive the approximate results for a two-level

system,

Udip(r) =
3πc2

2ω3
0

Γ

∆
I(r) (3.9)
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Γsc(r) =
3πc2

2~ω3
0

(
Γ

∆

)2

I(r) (3.10)

where Γsc(r) = Pabs/(~ω) is the experimentally relevant scattering rate, while

Γ is the spontaneous decay rate and ∆ is the laser detuning. By letting both

detuning ∆ and intensity I(r) become large, it follows immediately that the

scattering rate can be made arbitrarily low for a given potential depth.

Inserting numbers, one may verify that for e.g. 87Rb, where Γ ≈ 2π · 6
MHz [43], it is in principle fully feasible to realize trap depths on the order

of micro Kelvin, with spontaneous scattering rates on the order of 10−3 Hz.

Practical traps are, however, limited by other heating mechanisms on a shorter

timescale [40].

For later reference, it is noted that the spontaneous decay rate, Γ, is related

to the electric dipole operator matrix element through

Γ =
ω3
0

3πϵ0~c3
|⟨e|µ̂|g⟩|2 (3.11)

but it may also be estimated classically.

3.2.2 Dressed State Picture

A quantitative treatment of the induced dipole potential should take into ac-

count both the fine and hyperfine level splittings of the ground and excited

states, instead of the above two-level description. In this case it proves advan-

tageous to do a second order perturbative treatment of the energy shifts of the

combined atom and field system.

The non-degenerate second order perturbative energy shift is

∆Ei =
∑
j ̸=i

|⟨j|HI |i⟩|2

Ei − Ej

(3.12)

where the interaction Hamiltonian HI = −µ̂E is given in terms of the electric

dipole operator µ̂.

Starting with a two-level atom with levels |g⟩ and |e⟩, the relevant non-

interacting ’dressed’ states are |g, n⟩ and |e, n − 1⟩, having n and n − 1 field

quanta respectively. The difference between the corresponding dressed state

energies is given by the detuning, Eg − Ee = ~∆. The energy-shift for the
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ground state thus becomes∗

∆Eg =
|⟨e|µ̂|g⟩|2

~∆
|E|2 (3.13)

=
3πϵ0c

3

ω3
0

Γ

∆
|E|2 (3.14)

=
3πc2

2ω3
0

Γ

∆
I (3.15)

using (3.11) and (3.8). It is noticed that this perturbative energy-shift of the

dressed atom ground-state is identical to the (semi-)classical dipole interaction

potential given in (3.9).

Extrapolating the very reasonable correspondence between the optical dipole

potential and the dressed state AC Stark-shifts, one may now also calculate the

optical dipole potentials for the plethora of fine and hyperfine levels in real alkali

atoms using dressed-state perturbation theory. While the basic procedure is to

include the additional states and coupling-terms in (3.12), additional simplifi-

cations arise from the fact that all the involved dipole operator matrix-elements

are expressible in a single reduced dipole matrix-element, corresponding to the

spin independent electric dipole coupling of electronic orbital states.

The simplifying sum-rules of the involved Wigner 6-j symbols and Clebsch-

Gordan coefficients are outside the scope of this thesis. The end results may,

however, be classified according to whether the detuning is large or small with

respect to the fine and hyperfine structure splittings.

At intermediate detuning with resolved excited state fine-structure, but un-

resolved excited state hyperfine-structure, |∆| ≫ ∆′
HFS, the dipole potential is

found to be

Udip(r) =
πc2Γ

2ω3
0

(
2 + PgFmF

∆2,F

+
1− PgFmF

∆1,F

)
I(r) (3.16)

Here P = {0,±1} corresponds to linearly or circularly polarized light, while

∆2,F , ∆1,F are the detunings corresponding to the transitions between the

relevant F hyperfine groundstate and the centers of the hyperfine-split P3/2

and P1/2 excited states (the D2 and the D1 line).

At large detuning with unresolved fine-structure, ∆ ≫ ∆′
FS, the dipole

potential is found to be

Udip(r) =
3πc2

2ω3
0

Γ

∆

(
1 +

1

3
PgFmF

∆′
FS

∆

)
I(r) (3.17)

∗Since µ̂ is actually a vector operator, an implicit assumption about the E-field
polarization is made here.
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Here ∆ is the detuning with respect to the center of the D-line doublet (neglect-

ing the hyperfine structure completely). At very large detunings, as used in our

experimental setup, this expression is identical to the semi-classically derived

result (3.9).

There are, however, two important issues to keep in mind with the above

results. Firstly, as pointed out explicitly in [21], the use of non-degenerate

second order perturbation theory is only valid for purely linear π or circular

σ± polarizations, since in this case no coupling exist between the degenerate

ground-states. For mixed polarizations, Raman couplings between the degener-

ate ground-states are present, and the above procedure fails.

Secondly, the rotating wave approximation has been used throughout. In

settings where ∆ ≪ ω0, this is fully justified. In our laboratory setup, however,

the resonant transition is at 780 nm, while the lattice lasers operate at 914 nm.

Since the AC Stark-shift is proportional to 1/∆, the relative strength of the

neglected potential terms are thus expected to be on the order of

|∆co−rotating|
|∆counter−rotating|

=
914− 780

914 + 780
(3.18)

≈ 8% (3.19)

which is a quite significant correction.

3.3 Lattice Band Structure

In optical lattices the AC Stark shift is used to create a periodic potential,

and the simplest realization consists of two counter-propagating laser beams of

identical amplitude and linear polarization. The plane-wave laser fields,

E± = ê Ẽ ei(kx∓ωt) + c.c. (3.20)

gives rise to a standing wave interference pattern,

⟨|E+ + E−|2⟩ = 4|Ẽ|2 + 2 Ẽ2 ei2kx + 2 Ẽ∗2 e−i2kx (3.21)

= 4|Ẽ|2
(
1 + cos(2kx)

)
(3.22)

where Ẽ is assumed real in the last step. The spatial modulation at 2k is our

prime interest here, since the associated AC Stark shift gives rise to a modulated

atomic dipole potential. By adding more counter-propagating laser beams, the

lattice modulation can be extended from 1 to 2 or 3 dimensions.

In order to analyze the behavior of a BEC in such an optical lattice, we shall

not only make the usual mean-field approximation [38], but also neglect the
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non-linear interaction term in the resulting Gross-Pitaevskii equation. In this

limit, the whole condensate is thus described by the single-particle Schrödinger

equation for each individual atom(
−~2

2M
∇2 + V (r)

)
Ψ(r) = EΨ(r) (3.23)

3.3.1 Reciprocal Space Bloch Theorem

Just as in the theory of crystalline solids, the periodicity of V (r) implies a par-

ticular ”Bloch-Floquet” form of the eigenstate solutions. To see this explicitly,

consider that in reciprocal space multiplication is convolution. The k-space

Schrödinger equation is thus

~2k2

2M
Ψ̃(k) +

1√
2π

(
Ṽ ∗ Ψ̃

)
(k) = E Ψ̃(k) (3.24)

For a general 3D periodic potential V (r + Ri) = V (r), where Ri are the

crystal-vectors spanning a unit cell, the k-space potential takes the form of a

reciprocal lattice

Ṽ (k) =
∑

ni,nj ,nk

Vninjnk
δ(3)(k− niKi − njKj − nkKk) (3.25)

with Ki ·Rj = 2πδij.

We now make the ansatz that the k-space wave-function is defined on a

similar reciprocal lattice with an offset q,

Ψ̃q(k) =
∑

ni,nj ,nk

Ψqninjnk
δ(3)(k− q− niKi − njKj − nkKk) (3.26)

From (3.24) and (3.25) it follows that the offset reciprocal lattice forms a closed

subspace where (3.24) can be diagonalized. This, in turn, justifies the ansatz.

The offset, q, of the k-space grid corresponds to the phase-factor in the

more common direct-space formulation of the Bloch-theorem,

Ψ(r) = eiq·r u(r) (3.27)

u(r+Ri) = u(r) (3.28)

3.3.2 The 1D Lattice Band-Structure

For the 1D lattice, the numerical diagonalization proceeds as follows. Since

only discrete k-values corresponding to points on the offset reciprocal lattice
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are of interest, we change free variable from k to the discrete index n. The

Schrödinger equation then reads

~2(q + nK)2

2M
Ψq(n) +

∑
m

V (n−m)Ψq(m) = Eq Ψq(n) (3.29)

where Ψq(n) and V (n) are vectors of discrete Fourier coefficients for u(x) and

the potential V (x). For V (x) = (V0/2) cos(Kx), as in an optical lattice, the

expression simplifies to

~2(q + nK)2

2M
Ψq(n) +

V0

4

(
Ψq(n− 1) + Ψq(n+ 1)

)
= Eq Ψq(n) (3.30)

Finally, expressing q in units of the recoil wavenumber kr = K/2 (i.e., the

wavenumber of the lattice light, kr = 2π/λ), and Eq and V0 in units of recoil

energy, Er =
~2k2r
2M

, the numerical eigenvalue equation reads

(q + 2n)2Ψq(n) +
V0

4

(
Ψq(n− 1) + Ψq(n+ 1)

)
= Eq Ψq(n) (3.31)

which can be solved numerically as a tri-diagonal matrix eigenvalue problem by

truncating at finite n. In figure 3.1 the 3 lowest eigenvalues are plotted for

q ∈ (−kr, kr), i.e. the first Brillouin-zone. The lattice depth used for the figure

is V0 = 2Er, and for comparison the free-particle dispersion curves are also

plotted.
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Figure 3.1: Band-structure (blue) and free particle dispersion curves
(green). The lattice depth is V0 = 2Er, and the numerical representation is
truncated to 40 discrete Fourier-components.





Chapter 4

Lattice Calibration Techniques

The main results of this chapter are to be published in [37].

4.1 Introduction

The investigation of ultracold atomic samples in optical lattice potentials is of

vast interest, since it allows for a new experimental approach to study strongly

correlated lattice systems. The research field has therefore expanded rapidly over

the past years and both the static [7] and dynamic properties [31] of ultracold

atoms in optical lattices have been investigated in detail. However, the precise

determination of the lattice depth remains a cumbersome and time-consuming

task in most experiments.

A number of common calibration techniques were developed in early work

[13, 10] using 1D lattices and a summary was provided in [31]. These techniques

have been refined in more recent work [18]. Here we demonstrate the use of

Kapitza-Dirac scattering, Landau-Zener tunneling and parametric excitation for

optical lattice depth calibration.

The starting point for the experiments reported in this chapter is a Bose-

Einstein condensate with about 3× 105 rubidium atoms in the F = 2,mF = 2

state, held in a magnetic QUIC trap. The trap frequencies are 12.3 Hz in

the axial (horizontal) direction, and 37.9 Hz in radial directions (see Fig. 4.1).

Along the vertical direction a lattice is formed by a λ = 914 nm retro-reflected

laser beam with a 1/e2 waist of 120 µm. After a variable interaction time ∆t,

the condensate is released and images are taken after time-of-flight.

27
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Figure 4.1: Measurement of the radial frequency in the QUIC trap config-
uration. The motion is initiated by a sudden change of trap current.

4.2 Kapitza-Dirac Scattering

Kapitza-Dirac scattering of a BEC by an optical lattice was first reported in

1999 [35]. The atomic diffraction pattern thus obtained with short standing-

wave pulses is frequently used for the lattice depth calibration [13, 41, 42, 32]

due to its high accuracy.

When a standing wave of short duration and constant amplitude is applied

to a condensate, its time-of-flight images show diffracted patterns, where the

population in each momentum component displays oscillatory behavior. The

physical mechanism behind the seemingly complex observed interference phe-

nomenon is conceptually very simple, as outlined below.

Before turn-on of the lattice pulse, the mean-field condensate wave-function

is in the ground state, i.e. a Gaussian in the limit of vanishing interaction, or

an inverted parabola in the Thomas-Fermi approximation [38]. In the following,

we stick to the non-interacting model.

Approximating the lattice turn-on as an instantaneous change of trapping-

potential, we project the initial wave-function onto the energy eigenstates of the

new potential. As the initial wave-function spans a large number of individual

lattice sites and has constant phase, the projection onto the Bloch-eigenstates

will only populate a narrow range of quasi-momenta, ~q, around q = 0. Eigen-
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states from multiple bands will, however, contribute. Since all of these states

have different energy, the time evolution of the system during the pulse-time,

∆t, is given by phase-factors, exp(−iEm(q ≈ 0)∆t/~) for each component.

At the end of the lattice pulse, the resulting state is projected onto plane

waves, i.e. momentum eigenstates. And as the magnetic trapping potential is

turned off at the same time, the amplitude of the projection onto each of these

plane-wave momentum-eigenstates is directly mapped to the real-space position

by the evolution during time-of-flight. It is important to recognize that each

|m, q ≈ 0⟩ state will project onto multiple pn = 2n~kr states. And, vice versa,

each of the observed pn components will in general contain contributions from

multiple bands, and thus display complex oscillatory behavior corresponding to

the relative phase evolution of the bands.

For shallow lattice-depths and short enough pulse durations, the effect of

the periodic lattice potential is just to modify the phase, but not the amplitude,

of the mean-field wave function. The momentum distribution in this ”thin

grating” limit can be expressed by Bessel functions [35].

For longer, but weak pulses, the momentum distribution is found to display

simple oscillations. In the band-structure picture used here, this is because the

initial projection primarily populates states |m = 0, q ≈ 0⟩ and |m = 2, q ≈ 0⟩,
i.e. band 0 and 2, while the first band is not populated due to parity.

For deeper lattices the higher bands become important, and the evolution

of each pn(∆t) component must be calculated numerically. The non-periodic

oscillations of pn(∆t) can thus be used for calibration without any lattice depth

limit, provided that a fast numerical 1D band-structure calculation is used within

in the fit routine.

To examine the deep lattice Kapitza-Dirac scattering experimentally, the

lattice pulse is applied to the BEC for a duration ∆t. The lattice and magnetic

trap are then turned off simultaneously, and the BEC is allowed to expand freely

for 14 ms. After the expansion, we take absorption images showing clearly

separated momentum components pn = 2n~kr.
For each scattering order n, we measure the atom number Nn. In figure 4.2

we plot Nn/NT vs ∆t (NT is the summed total atom number) and comparing

with the numerically fitted band-structure calculation (solid curves), we find

that all orders give the same value of the lattice depth, here V0 = 40.8Er.

In this way, we can determine the correspondence between the signal from a

photo-detector probing a sample of the lattice beam, and the actual lattice

depth. The Kapitza-Dirac scattering method is thus a fast and reliable tool for

lattice depth calibration, which covers a broad range of lattice depth regimes.
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Figure 4.2: Time evolution of each momentum component as a function of
Kapitza-Dirac pulse duration (∆t). Blue, red, green, and purple correspond
to the momentum order n = 0, 1, 2, 3, and 4, respectively. All momentum
components give the same result for the optical lattice depth.

4.3 Bloch Oscillation and LZ-Tunneling

Coherent splitting of a condensate by Landau-Zener (LZ) tunneling can occur

when matter waves are accelerated in an optical lattice, and Bloch oscillation of

the non-tunneling fraction even allows multiple consecutive splittings to occur

at regular intervals [3]. Morsch et al. [30] loaded BECs of rubidium atoms

into a shallow optical lattice that was subsequently accelerated by chirping the

frequency difference between the lattice beams. From the resulting interference

pattern, the condensate group velocity in the frame of reference of the lattice

was calculated and plotted against the lattice velocity, clearly showing the Bloch

oscillations. They also demonstrated LZ tunneling as a tool for measuring the

optical lattice depth as well as the effects of the mean-field interaction between

the atoms in the condensate [10]. Recently, Bloch oscillations of condensates in

a vertical lattice are being used in the context of atom interferometry [17, 22].
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4.3.1 Bloch Oscillation

When a matter-wave packet with narrow quasi-momentum distribution around

q(t) is subjected to a constant uniform external force, the quasi-momentum will

increase similarly to the momentum of a free particle. In the case of gravitational

acceleration, g, of an atom with mass m, the quasi-momentum is thus [31]

~q(t) = ~q0 +mgt (4.1)

At the edge of the Brillouin-zone (q = kr), the periodic lattice potential

fulfills the condition for Bragg-reflection of the wave-packet into q = −kr. In

the band-structure picture, one may think of the same physical process as an

adiabatic following at the avoided crossing of the bands. For vanishing lattice

depth, the band-structure is identical to the free-particle dispersion curve, and

there is no energy-gap between any of the bands crossing at q = ±kr (or at

q = 0 for higher bands). For increasing lattice depth, however, avoided crossings

of the energy-bands appear. The lowest band-gap can be seen clearly in figure

3.1, while the higher band-gaps open at increasing lattice depths. For increasing

gap width compared to the acceleration, the probability that the particle will

make an adiabatic ”jump” from one band to another, instead of continuing the

Bloch cycle in the same band, diminishes.

4.3.2 Landau-Zener Theory

To analyze the transition probability between the bands, an approximative time-

dependent Hamiltonian description can be used. One of the few exactly solvable

systems involving time-dependent Hamiltonians is the classic two-level crossing

Landau-Zener problem,

H(t) =
~
2

(
αt Ω

Ω −αt

)
(4.2)

where α and Ω are real constants. For small band-gaps, this models the avoided

crossings occurring in the band-structure picture, while for larger gaps, the non-

linearity of the bands becomes significant.

The Hamiltonian (4.2) is defined in the diabatic basis, whose energy eigen-

values cross for Ω = 0, and are given by Ediab = ±~
2
αt. For Ω ̸= 0, the

time-dependent adiabatic eigenvalues are

Eadiab = ±~
2

√
Ω2 + α2t2 (4.3)
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Figure 4.3: General form of an avoided two level crossing with adiabatic
levels (solid) and diabatic levels (dashed). Dimensionless, Ω = α = ~ = 1.

The avoided crossing of the adiabatic levels, and the crossing diabatic levels are

shown schematically in figure 4.3.

If Ω2/α ≫ 1, i.e. if the system changes slowly or the coupling is large, the

probability of a ”jump” across the avoided crossing gap, from one adiabatic

level to the other, is vanishing. The system state instead follows the adiabatic

curves. In the other limit, Ω2/α ≪ 1, the system will follow the diabatic levels

and jump across the gap.

The probability, p, that a system prepared in a particular adiabatic state

at t = −∞ will make a non-adiabatic transition and be found in the other

adiabatic state (i.e. the same diabatic state) at t = ∞ is [45, 44]

p(∞,−∞) = e−πΩ2/(2α) (4.4)

This simple result can be derived by means of contour integration, without

actually solving the time-dependent Schrödinger equation explicitly [48].

In the context of optical lattice band-structure, the analytical result from

the Landau-Zener model can be used to describe the dynamics of accelerated

lattices.

4.3.3 Experimental Verification of the Landau-Zener Model

To study the splitting by LZ tunneling, we switch off the magnetic trap and let

the atoms evolve in the combined lattice and gravitational potential. Ideally

this should map a large part of the wave-function onto the q ≈ 0 states of the

lowest band, which would then undergo quasi-momentum evolution as described

above. In reality, some practical problems occur.

While turning off the magnetic QUIC-trap, induced currents in chamber

walls and other nearby metallic objects can have a significant influence on the
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Figure 4.4: Landau-Zener tunneling between the two lowest energy bands
of a condensate in an optical lattice as a function of the lattice depth. The
blue solid line is the curve from Eq. (4.6) and the dots correspond to the
experimental images shown below in (a)-(f)

magnetic field gradient at the trap center. In particular, there may be an

asymmetry between the currents induced in metallic objects near the upper and

lower quadrupole coil, respectively, as witnessed by the following example:

Few cm above the upper QP-coil in the QUIC trap, there is an aluminum

bread-board with a hole for the vertical imaging and lattice light. The board was

installed when implementing the optical lattices, but it soon became apparent

that it would act as a low-resistance inductive circuit with a calculated time-

constant of several milliseconds. Due to its placement close to the upper QP-

coil, the inductive coupling was strong, and experimentally it was found to

impart a large Zeeman-broadening on the optical transition used for imaging,

even in 10 ms time of flight experiments. An easy, and sufficient, solution was
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to cut a slit in the bread-board to open the loop-circuit.

In the current setup, the temporary field asymmetry during QUIC turnoff

seems to be the opposite: A small but significant upward momentum-kick results

from the trap turnoff. The interpretation is that induced currents in the vicinity

of the lower QP-coil create a gradient in the B-field amplitude, which in turn

accelerate the atoms very briefly in the upward direction. In order to load the

trapped condensate wave-function into the lowest lattice-band, one can thus

either wait until the vertical momentum of the released condensate becomes

zero, before (semi-adiabatically) ramping up the lattice power. Or, alternatively,

turn on the lattice adiabatically while still in the magnetic QUIC trap, and use

a sufficient lattice-depth to suppress any LZ tunneling out of the lowest band

during the QUIC turnoff.

The experiments presented in the next chapter use the former method, while

here the latter approach is used with an initial lattice depth of 2.4 Er. In this

way we initiate well defined Bloch oscillations in the lowest band. The period

of the oscillation is given by

τB =
2~kr
mg

(4.5)

where g is the gravitational acceleration and m is the 87Rb mass, resulting in

τB close to 1 ms.

If the condensate is subjected to the acceleration a and crosses the band gap

∆ at the Brillouin-zone edge, the analytical tunneling probability from LZ-theory

is

r = exp
(
−ac

a

)
= exp

(
− λ∆2

8~2a

)
(4.6)

where ac is the critical acceleration and a is gravitational acceleration in our

experiment.

During the first Bloch oscillation period, the lattice depth is ramped down,

so that a chosen fraction of the condensate tunnels to the second band when

the quasi-momentum reaches the edge of the Brillouin-zone. Since higher band-

gaps are much narrower, the atoms that tunnel to the second band are essentially

free, and can be seen as the lower components in Fig. 4.4 (a) to (f).

The other fraction is Bragg reflected as described above. During the next

1 ms Bloch period, the lattice is then ramped down completely, releasing also

the reflected fraction. These atoms are visible as the upper components in

figure 4.4 (a) to (f).

The tunneling propability is measured directly from the number-ratio of the

split condensates, rather than measuring the number of atoms that remain

trapped after some multiple of the Bloch period τB [10]. We find that with
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the lattice depth independently calibrated using Kapitza-Dirac scattering, the

observed splitting ratio is in good agreement with LZ theory, as shown by the

solid curve in figure 4.4.

4.4 Lattice Modulation

A third method of measuring the lattice depth is by direct modulation of the

lattice amplitude. This method is only useful in a regime where the lattice is

deep enough to support atoms against gravity in both band 0 and band 2.

After loading the BEC into the optical lattice, the magnetic trap is turned

off. The lattice amplitude is modulated to excite the atoms from the lowest

band (band 0) to the second excited band (band 2) for a time scale of a few

milliseconds. A set of images are taken in a certain time after the modulation

is finished. Deep lattice depths leads to the regime of 2D pancake shaped

condensates where tunneling between adjacent lattice sites is suppressed. In

this case, the images of the atomic cloud in the optical lattice are taken at

various holding times which show that the atoms are trapped in the lattice

against gravity. Even though the lattice depth is deep enough to hold atoms in

both bands, a small fraction are heated to even higher bands by the modulation,

and fall out of the lattice by tunneling.

For the purpose of detecting the population in the excited band, the mag-

netic and the lattice potential are switched off to perform time-of-flight experi-

ments. By making the lattice turn-off an adiabatic ramp (while still taking less

than τB), the second band population is mapped to the p = ~(q ± 2kr) mo-

mentum components, and can thus be separated from the band 0 population,

which map to p = ~q under time-of-flight. Plotting the relative population in

each band as a function of the modulation frequency gives a narrow resonance

peak, as shown in figure 4.5.

4.5 Summary

Three different methods of lattice depth calibration has been investigated, and

their practical use demonstrated. Each method has both advantages and disad-

vantages, however, and the choice between the three thus depends on several

parameters.

Both the Landau-Zener tunneling method and the lattice modulation method

gives data which can easily be interpreted. For the lattice modulation, the curve

of potential depth versus resonant modulation frequency is sufficient to inter-
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Figure 4.5: The atoms are excited by modulating the depth of the optical
lattice, and the population in the excited band is measured by adiabatically
mapping the atoms in each band to the free particle momentum space (see
text). The narrow resonance at 58.4 kHz comes from the energy difference
between band 0 and band 2, corresponding to a lattice potential with a
depth of 38.7 Er (blue solid curve in the inset). The insert displays the dis-
crepancy between the harmonic oscillator level-splitting (red dashed curve
in the inset) and the calculated distance at q = 0 between band 0 and 2
(blue curve in the inset)

pret the results. One should, however, be cautious that the implementation of

lattice modulation used here assumes that the widths of both band 0 and 2 are

negligible. The method is thus primarily useful for large lattice depths. Another

complication is that it can take a long time to find the resonance to begin with,

if no good initial guess exists.

Lattice calibration by Landau-Zener tunneling also gives a fairly simple anal-

ysis of the experimental data. The critical acceleration ac can be extracted

from the observed splitting ratio r and the known acceleration a, and compared

with tabulated values from a 1D band-structure calculation. When using only

the gravitational acceleration, however, it covers just a narrow range of lattice

depths. This limits its practical usefulness in our current setup.

The Kapitza-Dirac method, with a 1D bandstructure calculation being called
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repeatedly in the loop of a numerical fitting algorithm, is more involved in terms

of data-analysis than the other methods. Once implemented in the lab routines,

however, a clear advantage is that it applies to a much broader range of lattice

depths, and is experimentally straight forward.





Chapter 5

Dynamically Controlled Lattices

The main results of this chapter are to be published in [36].

5.1 Introduction

This chapter reports on the splitting of a BEC in the presence of a time-

dependent optical lattice potential. First we demonstrate that a matter wave

packet can be divided into a set of discrete momentum components, whose

number and fractions can be precisely controlled using a time-dependent lattice

depth. Next we study an atomic Bose-Einstein condensate, which is set in mo-

tion by displacing the magnetic trap, in the presence of time-dependent optical

Bragg mirrors. We demonstrate high-order Bragg reflection of the oscillating

condensate due to multi-photon Raman transitions, and we demonstrate the ini-

tial steps toward realizing a recombination of a split condensate in a harmonic

trap.

5.2 Overview

Two distinct scenarios are investigated. In a first experiment we initiate Bloch

oscillations in a vertical lattice under the constant force of gravity. Time-

dependent control of the Landau-Zener tunneling rate enables us to realize a

controlled matter wave beam splitter and a coherent matter wave source with

controlled output coupler.

In a second experiment we investigate the coherent splitting of a Bose-

Einstein condensate with an optical lattice in the presence of an external mag-

39
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netic trapping potential. This allows us to investigate a matter wave splitter

based on high-order Bragg reflection. Finally, time dependent first order Bragg-

mirrors in a harmonic trap demonstrate multiple splittings of a condensate.

The dynamics of a condensate in an optical lattice is governed by the band

structure of the periodic potential. The quadratic energy spectrum of a free

particle splits up into bands which are labeled by the eigenenergies En(q) with

the eigenstates |n, q⟩, where n denotes the band index and q the atomic quasi-

momentum, as described in chapter 3. The bands are separated by energy gaps

whose size depends on the lattice depth as shown in Fig. 5.3. As a consequence

the dynamics of an atom moving in such a potential is dramatically altered.

If an atom is subject to a force along the lattice axis, the band structure

causes the atom to start oscillating instead of being constantly accelerated.

These so-called Bloch oscillations occur, since an atom is Bragg reflected as

it approaches the edge of the Brillouin zone. The Bloch period is given by

τB = 2~kr/(ma), where kr = 2π/λLat, m is the atomic mass, and a is the

acceleration. The Bloch period corresponds to the time it takes for the atoms

to be accelerated from one end of the Brillouin zone to the other. If the lattice

beams are arranged to create a periodic potential along the vertical direction, a

condensate can be held against gravity for several seconds in a sufficiently deep

lattice potential, while the atoms perform Bloch oscillations.

When the lattice potential is reduced and the band gap narrows, Landau-

Zener tunneling between Bloch bands starts to occur. In this regime the tunnel-

ing probability can be calculated from Landau-Zener theory. If the condensate is

moving with acceleration a through the avoided crossing region of the En−1(q)

and En(q) bands, the tunneling probability can be approximated by

Pt(n) = exp
(
−ac

a

)
= exp

(
− π∆2

n

4nkra~2

)
(5.1)

[13] where we give the generalized expression for tunneling between bands n

and n − 1 for future reference. Here ac is the critical acceleration, ∆n is size

of the band gap at the quasimomentum n~kr, and a is the acceleration of the

atoms with respect to the lattice rest frame. In the experiments described in

Sec. 5.3, the acceleration a is determined by gravity, while in Sec. 5.4 a is

related to the slope of the harmonic potential at the instantaneous position of

the atoms. The generalization to n > 1 follows from section 4.3.2 by noting

that α in equation 4.4 is linear in n.

Since the experiments are carried out with ensembles of particles, their in-

teraction modifies the single particle band structure outlined above. This effect

is most pronounced at the edge of the Brillouin zone and can be described by
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a mean-field nonlinearity that causes a modification of the tunneling behavior.

The tunneling rates in two directions between the Bloch bands also become

different [24]. This work, however, is restricted to the weak interaction regime,

where the tunneling probability is well approximated by the Landau-Zener for-

mula. Experimentally the tunneling probability is set by controlling the optical

lattice depth and can be suppressed completely when the lattice depth is in-

creased.

5.3 Controlled Matter Wave Beam Splitter

In a first set of experiments we demonstrate that time-dependent control of

the Landau-Zener tunneling rate enables us to realize a controlled matter wave

beam splitter and output coupler.

To initiate the splitting mechanism, the magnetic trap is suddenly switched

off and the atoms evolve in the combined lattice and gravitational potential.

The atoms start to perform Bloch oscillations and each time they reach the

edge of the Brillouin zone a fraction of the atoms can tunnel to a higher band.

If the lattice depth is chosen such that atoms in higher bands with n ≥ 1 are

not bound, these atoms start to fall under the influence of gravity. Thus the

condensate is split each time the edge of the Brillouin zone is encountered and

atoms with n ≥ 1 fall out of the lattice while Bragg reflected atoms remain

trapped. If the tunneling probability Pt(n) is held fixed and the initial atom

number is N0 the number of atom tunneling out of the lattice on the m’th

Bloch period is N0(1 − Pt(1))
m−1Pt(1) and N0(1 − Pt(1))

m atoms remain

in the lattice. This mechanism was indeed used within the first experiments

with Bose-Einstein condensates in optical lattices [3] and later investigated in

detail [30, 10, 24].

Alternatively however, the dynamical control available in experiments with

optical lattices can be used to enhance this static situation. If the lattice depth

is controlled synchronously with the Bloch oscillation period, the tunneling rate

can be controlled individually for each tunneling event and thus the fraction of

outcoupled atoms can be determined at will for each Bloch cycle.

Within our experiments the following sequence is used to realize this beam

splitter. After production of a Bose-Einstein condensate the magnetic trap is

switched off to release the atoms. Within this process the atoms receive a small

initial upwards velocity of 9mm/s and hence reach q = 0 after 920µs due to

gravity.

The Bloch oscillations are initiated by turning on the lattice at a depth suf-
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Figure 5.1: The condensate is divided n sub-condensates using time-
dependent control of the tunneling probability. In order to produce n sub-
condensates with the same fraction, the tunneling probability is controlled
by adjusting the lattice depth for each Bloch cycle. For example, tunneling
probabilities of 1/6, 1/5, 1/4, 1/3, 1/2 are used to produce 6 clouds with
the same size as shown on the right.

ficient to completely suppress Landau-Zener tunneling (typically 2.4 Er) after

the atoms have started to move downwards, and before reaching the Bragg

momentum (~kr). The lattice depth is ramped up within 200µs which is fast

compared to the Bloch period τB = 1.0ms, and sufficiently slow to ensure that

the free space momentum is mapped to the zeroth band state with correspond-

ing quasi momentum. To tailor the emission we then adjust the lattice depth for

each subsequent Bloch oscillation to enable controlled Landau-Zener tunneling.

The fraction of outcoupled atoms is given by Eq. 5.1.

Figure 5.1 shows that the condensate can thus be divided into n sub-

condensates by varying the tunneling probability according to 1/n, 1/(n − 1),

..., 1/2 for subsequent Bloch cycles and releasing the last one without splitting.

Time-dependent control of the optical lattice depth can also be used to

completely suppress the tunneling by increasing the lattice depth. In Fig. 5.2

we illustrate such controlled splitting of matter waves by releasing three matter

wave packets with the same size while blocking the tunneling for three Bloch

periods.

The precise control of the emission of matter wave packets demonstrated

here is available for several tens of Bloch oscillations, but the time scale of the
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Figure 5.2: The condensate is divided into 3 sub-condensates which are
released on selectable Bloch cycles. The first (bottom) and last (top) wave-
packets are released in Bloch oscillation cycle 1 and 6. The third one be-
tween them is released during cycle 2, 3, 4 or 5, while tunneling is completely
suppressed for the other Bloch cycles.

experiments is ultimately limited by the presence of interactions in the Bose-

Einstein condensate, which destroy the Bloch oscillations. However, recently

long-lived Bloch oscillations [17, 22] have been realized by using Feshbach res-

onances to strongly reduce the interaction strength. This technique could po-

tentially also be used here to extend the number of available Bloch oscillations,

and thus wave packets.

Moreover, the outcoupler presented here can also be employed if a set of

wavepackets with different quasimomenta are present in an optical lattice. In

that case, produced e.g. by phase-matched scattering [8, 23, 19], a set of

matter waves oscillate in the lowest band with different phases, and each one

could be emitted or retained selectively with the time-dependent outcoupler.

5.4 Matter Wave Splitting in Harmonic Trap

In a second experimental approach we investigate the coherent splitting of a

Bose-Einstein condensate with an optical lattice in the presence of an external

magnetic trapping potential. This approach allows us to investigate both a

matter wave splitter based on high-order Bragg reflection and multiple splittings
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of a matter wave.

To induce motion, the minimum of the combined gravitational and magnetic

potential is suddenly shifted in the y direction (the vertical axis) by increasing

the current to the QUIC coils (from 150 A to 200 A). After this displacement, the

BEC undergoes harmonic motion with an amplitude of 89.6 µm and oscillation

period T = 19.5 ms. For future reference we define the first and second turning

points at t = T/2 and t = T as P1 and P2, respectively. In the experiment,

we focus on the Bragg reflection and Landau-Zener tunneling of a BEC as it

is accelerating and decelerating in the external potential. After triggering the

harmonic motion in the magnetic trap, an optical lattice potential along the

y-axis is briefly applied to the BEC at different times to induce the controlled

splitting.

We have previously discussed the dynamics of a BEC initially at rest as it

is being accelerated across the band edge. If, on the other hand, a conden-

sate with high initial momentum is decelerated while in a lattice, Landau-Zener

tunneling between higher excited bands and higher order Bragg reflection can

happen depending on the lattice depth (see Fig. 5.3). In the harmonic exter-

nal confinement this occurs as the condensate approaches one of the classical

turning points coming from the trap center.

Bragg scattering for atoms can be described as a multi-photon Raman pro-

cess, in which an atom of initial momentum p = n~kr along the lattice axis is

transferred to a superposition of the initial momentum state and the state with

momentum p = −n~kr. The integer n is the order of the Bragg scattering,

and obviously 2n photons are exchanged for each scattered atom.

Let us consider an atom moving from higher to lower bands. Remember

that in the overall harmonic external confinement this means that in position

space the atoms are approaching one of the turning points. As illustrated in

Fig. 5.3, even the higher band-gaps open at sufficiently large lattice depths,

which means that different orders of Bragg reflection can occur at the avoided

crossings.

We denote the partially reflecting Bragg mirror at the transition from band

n to band n − 1 by BMn. For example, for the potential depth of 4.6 Er,

Fig. 5.3 (middle) shows how part of the condensate is Bragg reflected on BM2

in a 4-photon process. If the lattice is kept on, the transmitted (and thus still

decelerating) fraction will subsequently reach BM1, where it is fully reflected. In

real space this corresponds to the second-order Bragg reflected part of the cloud

reversing direction of propagation, whereas the unreflected part continues being

decelerated until it is first-order Bragg reflected without reaching the classical

turning point.
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Figure 5.3: High-order Bragg reflection scheme. Half of the condensate
is reflected on BM1 (left), BM2 (middle), or BM3, which correspond to
the first-, second-, and third-order Bragg reflection, respectively. When
the fraction of the condensate transmitted through BMn reaches the quasi-
momentum corresponding to BMn−1, it is fully reflected if the lattice is
still turned on (see fig. 5.4 (b) and (d)). Otherwise only the single BMn

splitting occurs, resulting in 2n~k momentum difference between the split
components (fig. 5.4 (a), (c) and (e))

5.4.1 High Order Bragg Reflection

In the first experiment we apply the lattice before reaching the turning point

(P1). Varying the time at which the lattice is ramped up, the motion in the ex-

ternal confinement allows us to implement an initial quasi-momentum in bands

n=1,2, and 3. In each case we adjust the lattice depth to implement a tunnel-

ing probability of about Pt(n) = 0.5. Since the duration at which the lattice is

pulsed on is short compared to the total oscillation period, T , we can consider

the dynamics to occur at a single spatial point. This means that the force can

be considered uniform throughout the duration of the lattice dynamics.

For the lowest lattice depth, Fig. 5.4 (a), the dynamics is simply a 50/50

splitting, followed by a short period of propagation in the lattice for both clouds.

The release and subsequent time-of-flight (tTOF = 12ms) shows two clouds

separated by approximately xTOF = 2~k
m
tTOF, where m is the atomic mass.

For the deeper lattices, however, we first realize a 50/50 splitting on BMn

followed by a complete n-1’st order Bragg reflection on BMn−1 for the part that

tunneled to a lower band. By turning off the lattice before the tunneled and
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Figure 5.4: Time-of-flight images. The condensate is split by the interaction
with optical lattices with the depth of (a) 1.1 Er, (b) and (c) 5.0 Er, (d) and
(e) 13.5 Er. The upper cloud in (a), (c), and (e) is the fraction without any
reflection, and the lower cloud in all images is the one reflected from BMn,
i.e. BM1 for (a), BM2 for (b) and (c), BM3 for (d) and (e). The upper clouds
of (b) and (d) have been transmitted on BMn and subsequently reflected
on BMn−1.

reflected part comes back to the BMn mirror, we expect two peaks separated

by xTOF but shifted by (n−1)xTOF relative to the BM1 case. This can be seen

in Fig. 5.4 (b) and (d).

The second, full Bragg reflection can be avoided by turning off the lattice

before q = (n− 1)~k is reached. In this case, as illustrated in Fig. 5.4 (c) and

(e), we get a cloud unaffected by the lattice and one shifted by nxTOF.

This series of matter wave splittings demonstrates a large momentum trans-

fer beam splitter [9, 13]. Our experiments thus show that higher-order Bragg

reflections can be manipulated by controlling the lattice depth and pulse timing.

5.4.2 Recombination of Split Clouds

An interesting application of the beam splitting process would be to utilize the

harmonic confinement to recombine parts of the cloud that have been split

earlier. We investigate this by pulsing on Bragg mirrors in the vicinity of both

turning points (P1 and P2) in the harmonic trap (see Fig. 5.5).
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Figure 5.5: Principle of the recombination experiment. Blue curves show
spatial harmonic oscillation of the condensate in the harmonic confinement,
while the red lines schematically indicate the positions where the 50/50
BM1 mirrors split the condensate. In the experiment of Fig. 5.6 (b), only
the first Bragg mirror pulse is used, while in Fig. 5.6 (c), both are used.

Figure 5.6 (a) shows the condensate after the first two turning points (P1

and P2) without an optical lattice. A Bragg mirror (BM1) with tunneling

probability of 0.5 and duration less than one Bloch period is pulsed on briefly

before the condensate reaches the turning point P1 to produce two equally split

condensates with 2~kr initial momentum difference. The split wave-packets are

reflected at the classical turning points P1 and P2, and then the images are

grabbed after turning off the magnetic field and time-of-flight (Fig. 5.6 (b)).

In addition to the intended vertical oscillatory motion, a significant difference

in transverse position between the Bragg-reflected and transmitted clouds is

evident. The origin of this transverse motion is currently being investigated.

In order to recombine the split clouds, we apply a 2nd Bragg pulse in the

vicinity of the second turning point, P2, at the time when the two clouds

are (ideally) spatially overlapped but with opposite momenta (see figure 5.5).

The Bragg reflected part of the first cloud now has the same momentum as the

transmitted part of the second and vice versa. Figure 5.6 (c) is the time-of-flight

image taken when turning off the magnetic field 2 ms after passing the second

turning point P2. As can be seen, unfortunately the transverse movement is so

large that the recombined clouds are not spatially overlapped and therefore no
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Figure 5.6: Images (a), (b), and (c) are taken at t = 48 ms, and trap is
turned off at 21.5 ms, i.e. right after the second turning point, where mo-
mentum difference is large (see Fig. 5.5). (a) The BEC undergoes harmonic
motion in magnetic trap potential without lattice light. (b) The BEC is
split into two clouds by the Bragg mirror (BM1) at P1. The two clouds are
not on a vertical line (y axis) due to undesired motion along the z direction.
(c) The split clouds are split again from the Bragg mirror (BM1) at P2.

interference effects can be observed.

5.5 Summary

In summary, we have demonstrated high contrast coherent matter wave packet

splitting using time-dependent control of the intensity of standing light waves.

In this way the tunneling probability in each Bloch oscillation period was ad-

justed to control the outcoupled fraction dynamically, and even suppress tun-

neling completely.

We have furthermore demonstrated the dynamics of a BEC in a combined

potential consisting of a magnetic trap and an optical lattice. We initiated BEC

motion by suddenly displacing the magnetic trap, and used this to demonstrate

high-order Bragg reflection. Finally, we have used two distinct Bragg-mirror

pulses close to the classical turning points in a harmonic trap to (almost) im-

plement a matter-wave Mach-Zender interferometer, which unfortunately so far

is misaligned due to transverse motion in the trap.



Chapter 6

Quasi-Continuum Wavepacket

Coupling to Localized States

The main results of this chapter are to be published in [27].

6.1 Introduction

In the preceding chapters dealing with single-particle bandstructure dynam-

ics like Kapitza-Dirac scattering, Bloch-oscillation and Landau-Zener tunneling,

the primary experimental detection technique has been time-of-flight imaging.

Some of the described mechanisms, e.g. Bloch-oscillation, also display char-

acteristic behavior in position-space, which could be probed directly. It might

thus seem obvious to also image the condensate dynamics in direct space, rather

than to map the reciprocal space using time-of-flight.

However, it is not obvious that such an approach could also provide useful

results for condensates held in a combined lattice and magnetic trap. The

tight magnetic confinement normally used during the evaporative cooling yields

condensates that are barely resolvable with our imaging setup. And since the

absorption-imaging beams are close to resonance, both the extraordinarily high

in-trap optical density of the condensates, and the Zeeman-shifts due to the

trap B-field, would seem to be prohibitively complicating factors, making time-

of-flight imaging a better option.

By using weak magnetic confinement together with a 1D optical lattice

with the option of amplitude modulation, in-trap imaging of condensates was,

however, found experimentally to give very intriguing results. Both localized
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stationary states [34] and states displaying moving wave-packet characteristics

was observed in-trap. This chapter presents some of the recent data and results

that have so far come out of the investigation.

6.2 Experimental Setup

Following the evaporative cooling and BEC creation, the QUIC trap is relaxed

to 12.3 and 37.9 Hz trapping frequencies in the axial and radial directions,

respectively.

An optical lattice with a depth of typically 16Er is adiabatically turned

on to load the BEC into the (mean-field) groundstate of the combined QUIC

and lattice potential. The lattice is intensity-modulated (5-20% peak-to-peak

amplitude) with a frequency ν for a variable time-span, (0.5-10 ms). After a

variable hold-time, absorption images are taken in-trap.

6.3 Stationary Localized Atoms

Using a 10 ms modulation pulse, the in-trap images display patterns of ”outly-

ing” atomic clouds of varying optical density (see Fig. 6.1 and 6.2).

By varying the hold-time between modulation and imaging, the outlying

clouds are found to be stationary, and they survive a complete turn-off of the

magnetic trapping potential (see Fig. 6.3). The QUIC turn-off removes the

diffuse cloud of quasi-continuum atoms visible between the central BEC and

the outlying clouds, but leaves the positions of the peaks unchanged.

Figure 6.4 shows how diagonalization of the 1D Schrödinger equation with

our trap potential leads to both localized and various degrees of delocalized

eigenstates, which can explain the observed stationary states [34]. Figure 6.4

also shows clear similarities with the band-structure of periodic lattices, with

”bands” 0, 1 and 2 below, and bands ≥ 3 in the quasi-continuum.

The numerical diagonalization of the symmetric 1D potential leads to solu-

tions which are ±1 eigenstates of parity. A particular eigenstate thus typically

has a component localized on both the left and right flanks of a particular band.

Moving away from the bottom of the band, however, the P = ±1 eigenstates

form perfectly degenerate pairs. Physically this means that even though an

atom initially localized on one flank is described as a coherent superposition of

two split eigenstates, it will, due to the degeneracy, not tunnel from one side

to the other.
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Figure 6.1: In-trap images of condensate and outlying peaks for different
modulation frequencies. Image sizes are 40 × 70 pixels (square pixels, size
(1.94µm)2).
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Figure 6.2: In-trap images of condensate and outlying peaks for different
modulation frequencies. Image sizes are 40× 100 pixels (square pixels, size
(1.94µm)2).
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Figure 6.3: Outlying stationary clouds and central BEC imaged in super-
imposed vertical lattice and magnetic trap (A), and with the magnetic trap
turned off during the hold-time (B). Both central BEC and outlying states
are seen to be trapped by the lattice alone in (B).

6.4 Local Tilted Band-Structure Picture

Numerical diagonalization of the 1D Schrödinger equation into localized eigen-

states gives an adequate description of the experimentally observed properties

of the stationary states in the combined potential. The physical mechanisms

involved can, however, be illuminated by a local tilted band-structure picture.

This allows for an intuitive understanding of the transition between figure 6.3

(A) and (B), and connects nicely with the previous chapters. While less rigorous,

this approach also helps in the interpretation of the non-stationary wave packets

described below. Fundamentally, however, it is only a different perspective on

the same physics.

The combination of the magnetic and lattice potentials is not periodic, since

the harmonic confinement destroys the 1D periodicity of the lattice. The con-

cepts of Bloch-oscillation and Landau-Zener tunneling can, however, still be

applied here, due to the scale-difference between the relevant magnetic trap

dynamics and the lattice spacing. A qualitative, if not quantitative, under-

standing of the experiments presented below can thus be gained by considering

the harmonic confinement of the magnetic trap to be a ”locally linear tilt” of

the lattice. Wave-packets of narrow quasi-momentum distribution are thus ac-
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Figure 6.4: Spectrum of the 1D Schrödinger equation with combined co-
sine lattice potential VL = s cos(kx)2, s = 18Er, and harmonic confinement
VB = 1

2
mω2

0x
2, ω0 = 2π ·38.4Hz. The lower and upper dotted red lines (and

shading in between) indicates VB and VB + s, while the black to light blue
shading of the eigenstate solutions discriminates between localized eigen-
states (black) to increasingly delocalized eigenstates (light blue).

celerated and undergo Bloch-oscillation or Landau-Zener tunneling under the

assumption of constant acceleration. To use this picture, the quasi-momentum

distribution cannot be infinitely narrow, however, since the spatial extent of

the wavepacket must also be small compared to the motion in the harmonic

confinement. It is thus a qualitative picture, which should be used with some

care.

Considering the situation in Fig. 6.3 (B) in detail, we see that all 3 peaks are

supported against gravity by the lattice alone. There are at least two mechanism

by which this can occur. One is that the lattice is so deep that site-to-site

tunneling is suppressed on the experimental timescale. The lattice depth used

for Fig. 6.3 is 18Er (in the trap center), which corresponds to a total width of

the zeroth band of ~ω, with ω = 2π ·40Hz. Even in the zeroth band, dynamics

would thus be visible, although quite slow.

The other mechanism is repeated Bragg-reflections on the lattice potential,

i.e. Bloch oscillations. Writing the band-gap, ∆, of equation 5.1 in units of the

recoil energy, the critical acceleration determining if Landau-Zener tunneling
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will occur is

ac =
∆

Er

h2π2

8m2λ3
(6.1)

i.e. ac = (∆/Er) · 34.3m/sec2. With ∆/Er ≈ 7 for the lowest band-gap and

∆/Er ≈ 4 for the second, LZ-tunneling out of both 0th and 1st band is thus

heavily suppressed, when considering the gravitational acceleration.

If we assume that Bloch-oscillation in some band is the mechanism support-

ing the atoms against gravity at all 3 positions, the Landau-Zener tunneling

(and accompanying loss) out of the given band must be suppressed when the

lattice is tilted due to gravity. And, consequently, the LZ-tunneling will be even

more suppressed for any acceleration smaller than g.

Returning to Fig. 6.3 (A), we can estimate the local acceleration at the

outlier-positions due to the harmonic confinement. With vertical trap frequency

ω = 2π ·37.9Hz, and offset distance d = 50µm, the local acceleration a = ω2d

is 2.8m/s2, which is smaller than the gravitational acceleration. From the

above considerations, the localized stationary states can thus be understood

both in terms of localized eigenstates, and Bloch oscillation. Whether the

Bragg-scattering is a first or higher order Raman-process will depend on the

particular band in which the Bloch-cycle occurs, as described in chapter 5.

6.5 RF-Cut of Localized States

Here we consider the localized states arising with lattice depth s = 16 and

modulation frequency ν = 32 kHz. To confirm experimentally that no tunneling

takes place between the observed stationary states while the magnetic trap is

on, we can apply an ”RF-knife”, which works just like the standard RF forced

evaporative cooling. Sweeping the RF frequency will flip the spin of any atoms

passing through the resonance condition shell defined by hνRF = µBgF |B(r)|.
The gravitational sag in the weak magnetic confinement is xsag = g/ω2

0 =

173µm (ω0 = 2π · 37.9Hz). It follows that a downward RF frequency sweep

will flip the spins of the lower localized atoms first, then the central state, until

finally reaching the upper localized state (since even the upper localized state

is below the magnetic minimum in the trap). Figure 6.5 shows this process,

while Fig. 6.6 shows that it is also possible to selectively remove the central

component, while leaving the localized states untouched.

By removing all but the upper localized state, it is possible to do an isolated

lifetime measurement on these atoms while both lattice and harmonic confine-

ment is on. Figure 6.7 shows the result of cutting away all but the upper peak

and waiting for a variable time after the end of the RF-sweep. The initial rapid
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Figure 6.5: Cutting away lower and central in-trap peak with RF-knife.

decay was initially a surprise. With the approach of section 6.4, however, this

is readily explained by noticing that an (accidentally) spin-flipped fraction of

the upper state will still undergo Bloch-oscillation, and thus be confined in the

vertical lattice direction, provided that the new local acceleration is not too

large. The spin flipped atoms will thus not necessarily be expelled vertically

due to gravity, but may leave the fitted region much slower by ”spilling out”

of the lattice beam sideways. In future RF-cut experiments, it is thus crucial

to check this and, if needed, allow enough time for the atoms to escape before

evaluating if the RF-cut is at the desired depth.

6.6 Band-Categorization of the Stationary States

Although the basic confining mechanism can be understood both from the

localized eigenstates in Fig. 6.4 and from the suppression of LZ-tunneling in

section 6.4, the above experiments have not addressed the question of which

”bands” of Fig. 6.4 are actually involved.

To investigate this, we have mapped out the position of the localized peaks

for a range of modulation frequencies ν. For the pictures in Fig. 6.1, the lattice

depth is set to s = 16, the modulation duration is 10 ms, and the modulation

frequency is varied. Each localized state is observed to move further away for

increasing ν, and for frequencies in the range 36-39 kHz, two distinct localized

peaks are visible on each side. Figure 6.8 shows the fitted distance between the
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Figure 6.6: Cutting away the central peak with RF-knife. All dimensions
in 1.94µm pixels.

central peak and the peaks on the lower side.

The energy of an n’th band localized state with mean distance x to the trap

center will have two distinct components, as can be seen from Fig. 6.4. One is

the potential energy in the harmonic potential at x,

Ev =
1

2
mω2

0x
2 (6.2)

while the other is the mean value of the n’th band-energy, averaged over the

quasimomentum. Choosing E0(q = 0) as the energy reference (it is the initial

state), the 1D bandstructure calculation of chapter 3 gives

E1 = ⟨E1(q)⟩
= 18.7 kHz · h

E2 = ⟨E2(q)⟩
= 33.4 kHz · h (6.3)

for the chosen lattice depth of 16Er.

To find the expected positions of localized states, we make the assump-

tion that the total energy gained by the localized atoms during the vibrational
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Figure 6.7: Lifetime measurement of the upper localized peak after cutting
away lower and central states with RF-knife (two different atom number fit
methods ploted). The initial decay is, most likely, the slow escape of spin
flipped atoms in the upper peak (see text).

excitation is νh, such that

νh =
1

2
mω2

0x
2 + En (6.4)

for a localized state in band n. This leads to the estimated mean distance from

the trap center

x = 12.7µm ·
√

(ν − En/h)/kHz (6.5)

The square-root fits shown along with the points labeled n=1 data (upper

curve) and n=2 data (middle curve) in Fig. 6.8 show very good agreement with

the theoretical estimates from (6.5) and (6.3). We thus conclude that most of

the observed peaks correspond to band 1 and 2 states, while no population has

been detected in the localized band 0 states.

The third curve at the bottom may have an interpretation as classical

turning-points for states in the third band. Since these are not localized

states, the relevant parameter for this interpretation would instead be the energy

E3(q = 0).
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Figure 6.8: Fitted positions of the lower outlying peaks as function of lattice
modulation frequency ν.

6.7 Quasi-Continuum Wavepacket Excitation

Having identified the stationary states as localized band 1 and 2 eigenstates,

we need investigate the mechanism by which these states are being populated.

Using a large amplitude, short (500µs) lattice modulation at ν = 31 kHz, a set

of non-stationary ”wave-packet” states is observed (see Fig. 6.9). Plotting the

positions of the two wavepackets, shows how they move away from the center

and turn around (Fig. 6.10).

To analyze this behavior in the local tilted bandstructure picture, consider

the 1D bandstructure for the s = 16 lattice, shown in Fig. 6.11. A preliminary

interpretation of the recently observed data is the following: During the 500µs

modulation pulse, a band 4 wave-packet centered around q = 0 (corresponding

to extended quasi-momenta ~q = ±4~kr) is prepared in a two-step excitation.

The transition is clearly off-resonant at the experimentally chosen frequency,

but since the modulation is very strong, power-broadening ensures that the

|n = 4, q ≈ 0⟩ state is populated.

The populated state is interpreted as two counter-propagating wavepackets,

while the 8 photon Raman process, which is the physical origin of the band-
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Figure 6.9: In-trap image showing the two moving ”wavepackets”. Image
taken at 3ms hold time after a 500µs, ν = 31 kHz vibrational excitation
pulse of large amplitude (2.16 V p-p, mean lattice depth set by 1.64 V signal
on photo-detectors, corresponding to s = 16).

gap, is neglected. The corresponding ”free particle” initial velocity of the wave-

packets is thus

v =
4~kr
m

(6.6)

= 20.1mm/s

Treating the quasi-momentum ~q as the momentum of a classical particle

moving in a harmonic trap (with ω0 = 2π · 37.9Hz), the times at which the

quasi-momentum passes the avoided crossings at q = nkr, 0 ≤ n < 4 are

tn =
arccos

(
n
4

)
ω0

(6.7)

giving t3 = 3.0ms. Subtracting the half the width of the 500µs modula-

tion pulse, the estimated time to observe a (6-photon Raman process) Bragg-

reflection on the avoided crossing between band 3 and 2 in Fig. 6.10, would

thus be at 2.785ms, and at a velocity of 15.1mm/sec. Both of these numbers

agree very well with the data of Fig. 6.10, which cannot be explained by simple

harmonic motion at ω0.
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Figure 6.10: Fitted vertical positions of the two ”wavepackets” (see Fig. 6.9)
as a function of hold-time. The turning-point is interpreted as a 6-photon
Bragg scattering (see text).

6.8 Controlled Preparation of Localized States

The recent results of the preceding section suggests a cleaner way to populate

the localized states, and opens up a wealth of interesting future experimental

possibilities.

Firstly, the range of excitation frequencies that was observed to produce

band 1 localized states in Fig. 6.8 was in the range 30 to 39 kHz. This roughly

corresponds to the range of frequencies in the 2. band, and suggests that the

band 2 states make it possible to populate higher-momentum states in a two

step excitation.

To generate high momentum wave-packets without using excessive ampli-

tude modulation, a possibility is thus to chose a lattice-depth, where the two

steps are both resonant at q = 0. This occurs at approximately s = 14 with an

excitation frequency of 27.6 kHz (for our λ of 914 nm), as shown in Fig. 6.12.

This ensures that both of the two excitation steps will be resonant at q = 0.

However, instead of simply modulating the lattice at the corresponding fre-
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Figure 6.11: 1D bandstructure for s = 16Er lattice. Red lines indicate
energies hν and 2hν (relative to E0(q = 0)) for the modulation frequency
ν = 31 kHz.

quency, it may also prove interesting to use an adiabatic-following picture for

the vibrational coupling. As is well known from e.g. optical and RF-transitions,

the rotating wave approximation leads to time-independent coupling Hamilto-

nians, which have avoided crossings of the eigenstate levels at zero detuning. A

degenerate two-step excitation thus corresponds to avoided crossings of three

intersecting energy-levels. By sweeping the frequency, adiabatic following can

thus be used to transfer the population from the lower to the upper state.

Returning to the localized states, the created high-momentum wave-packet

now propagate away from the trap center and are decelerated by the confining

potential. In the local band-structure picture, they thus loose energy. In reality,

of course, this loss corresponds exactly to the potential energy gained in the

harmonic confinement potential.

After moving down the band-structure curves of Fig. 6.11 or 6.12, a second

lattice modulation pulse of identical or different frequency can now couple the

third band to e.g. the first band, in which the wave-packet remains station-

ary due to Bloch-oscillations. Since this coupling occurs at a macroscopically

different spatial position, the result is a localized trapped state, according to

section 6.4.
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Figure 6.12: Two-step resonant excitation scheme for wavepackets. Red
lines indicate energies hν and 2hν (relative to E0(q = 0)) for 27.6 kHz.

While this scheme describes (in separated, discrete pump/probe steps), how

the current 10 ms long excitation pulse could in principle populate the localized

states, there are many other options. One could, for instance, ramp down the

lattice intensity adiabatically as soon as the initial wavepackets are created, in

order to avoid the Bragg-reflection seen in Fig. 6.10. In this way, the free-

particle wave-packets would decelerate undisturbed down into the first or even

zeroth band, after which the lattice intensity could be ramped adiabatically up

again.

This scheme might seem elaborate, but the results from the previous chap-

ters clearly show that dynamical adiabatic ramping of the lattice power on the

Bloch-oscillation timescale τB is experimentally feasible. And for the wave-

packet motion analyzed here, the accelerations are of the same order as g, or

smaller, making it just as feasible in the current context.
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Appendix A

Configurable Digital Ramp

Generator and DDS Programmer

A.1 Design Constraints

The purpose of the Configurable Digital Ramp Generator and DDS Programmer

(from now on, the ”FPGA-board”) is to handle the serial programming of the

DAC and DDS chips that provide analog control-ramps and swept frequency

signals for multiple different purposes in the lab.

The DAC and DDS boards are placed in Euro-Rack modules around the

lab. Previously these were programmed serially from one of the DIO 64 boards

in the main computer, using long coax-cables. To have greater capacity, less

cables filling up the lab, and less worries about impedance matching of cable

terminations, the DIO 64 board driving the DACs will be replaced by multiple

FPGA-board modules, each one placed in the same Euro-Rack as the DAC and

DDS chips, it controls. A set of standard USB-2.0 hubs distributes data from

the main (ECS) computer to the FPGA-boards.

A.1.1 Digital Ramp Generator

To lighten the computational burden on the main computer, the FPGA boards

should handle the generation of linear ramps internally. I.e., to sweep the voltage

of a particular analog channel from v0 to v1, the main computer should only need

to send a short data package containing the essential parameters. Enumerating

the ramp data packages for the channel by i, the parameters would be: start

time t0(i), start value v0(i), end value v1(i) and slope of ramp α(i). The stop
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time t1(i) of ramp i is of course given implicitly by

t1(i) = t0(i) +
v1(i)− v0(i)

α(i)
(A.1)

If a second ramp i + 1 has t0(i + 1) > t0(i), but t0(i + 1) < t1(i), the ramp

generator should jump to the new ramp start value v0(i+1) at time t0(i+1) and

continue on ramp i+1, without waiting to finish the ramp segment i currently

in progress. Alternatively, if t0(i+1) > t1(i), the output value of the generator

should be kept constant on v1(i) in the time interval t1(i) to t0(i + 1), where

the new ramp i+1 would start from value v0(i+ 1). If ramp i is the last ramp

segment, the value v1(i) should be kept until system reset or the start of a new

experimental run. Aditionally, the ramp generator should handle the situation

of α(i) = 0 and/or v0(i) = v1(i) gracefully.

The binary package format used to send the data actually uses vlow = (α >

0) ? v0 : v1 and vhigh = (α > 0) ? v1 : v0 instead of v0 and v1, but this is just a

technical detail chosen to make the implementation of the FPGA-logic slightly

simpler.

The behaviour outlined above ensures that we can use the digital ramp

generator seamlessly with the existing ECS system. We can still use non-linear

ramps (S-curves, exponentials etc.) by using piecewise linear approximation,

but the needed sample rate can be much lower than in the previous system,

where every sample of the many channels were generated individually by the

ECS computer.

A.1.2 DDS Programmer

Direct Digital Synthesis (DDS) constructs analog sine-waves with controllable

frequency, phase and amplitude in the digital domain. We use the Analog

Devices AD9954 DDS-chip for a few different purposes:

• To generate the RF frequency sweeps needed for the evaporative cooling.

• For the moving/accelerated lattice axis (z), two phase-locked AD9954

chips provide the AOM-controlled offset frequencies for the counter-propagating

beams.

• Finally, an AD9954 chip is intended to provide an adjustable-frequency

RF-input to a Mini-Circuits microwave-mixer for sideband generation.

The operation of the AD9954 is controlled by writing a set of internal reg-

isters through a serial port[1]. The settings do not take effect immediately, but
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only at the rising edge of the I/O update pin. One can thus load a new con-

figuration into the internal registers and let the settings take effect at a latter

time.

The AD9954 has several different modes of operation, and a few very

counter-intuitive (and un-documented) surprises in store for the unwary. To

cope with this, and to provide maximum flexibility, the DDS programmer mod-

ule should not enforce a particular mode of operation. Instead, it should simply

act as a ”command sequencer”. The i’th data-package written to the DDS

programmer module should thus contain the following information: The time

at which the settings should take effect t0(i), the number of bytes of data to

write and the data-block itself. It is thus the responsibility of the calling appli-

cation, not the DDS programmer, to ensure that the data-block conforms to

the specifications of the AD9954. Only transfer of the data, and the timing of

the subsequent I/O Update signal, is handled by the DDS programmer.

Refering to table 8 of the AD9954 manual[1], an example command block,

setting the high and low frequency tuning words (FTWs) of a linear sweep

to FTW0 = 0x11111111 and FTW1=0x2222FFFF, would be the 10 byte com-

mand: 0x0411111111062222FFFF. Here 0x04 and 0x06 are the addresses of the

FTW0 and FTW1 registers. The linear sweep mode implemented internally in

AD9954 is very similar to the operation of the ramp generator described above,

including the behaviour when two ramps overlap in time. In a normal com-

mand, one would thus, in addition to FTW0 and FTW1, also set the registers

determining the sweep rate.

The full details of the DDS programming modes is beyond the scope of this

appendix. But it should be mentioned that the important linear-sweep mode

of the AD9954 behaves somewhat unexpectedly if the FTW0/1 registers are

reprogrammed while a sweep is in progress. A workaround is to formally always

sweep the frequency upward from FTW0 to FTW1. Sweeps that physically go

downward in frequency are then implemented using Nyquist frequency wrap-

around: The upper half of the possible values of the 32 bit FTWs corresponds

to frequencies above the Nyquist frequency, i.e.:

f = fs × FTW
232

for 0 ≤ FTW ≤ 231 (A.2)

f = fs ×
(
1− FTW

232

)
for 231 < FTW ≤ 232 − 1 (A.3)

where fs is the externally supplied sample rate of the DDS, typically 400 MHz.

Because we do not have an absolute synchronization of the clock oscillators

defining the frequency of the DDS chips and the timing of the FPGAs, we

cannot avoid acquiring an arbitrary phase-shift if, at any point in a sequence of

frequency sweeps, the sweep direction is changed. In all other cases (even for
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discontinuous frequency jumps), the phase will be continuous, unless explicitly

programmed to have a discontinuous jump. Physically this means that if we

want to investigate phenomena where the phase development of the quantum-

system is referenced to the RF-field source (e.g. Stückelberg oscillations) and

need to reverse the sweep direction during the interaction, a different linear-

sweep mode of operation should be used. In other cases the Nyquist wrap-

around technique should suffice.

A.2 Implementation of Ramp Generator and DDS

Programmer

A.2.1 VHDL and the FPGA design work-flow

Internally FPGAs consist of small blocks of digital logic, typically 4-bit Look-

Up Tables (LUTs) that can implement any Boolean function of 4 inputs and

one output. Since this is equivalent to a 16 bit RAM block with individual

addressing of each bit, the boolean function implemented by a LUT depends

on what 16 bits of data it stores. Connecting together a large number of LUTs

(and other, more specialized sub-circuits and RAM-blocks), one can implement

very powerful digital processing in an FPGA.

Working directly with LUTs is not practical, just as few software program-

mers use assembly-code for large projects. Instead the design intent is captured

in a higher-level ”Hardware Description Language”. The two most popular ones

are called Verilog and VHDL, each having different strengths and weaknesses.

VHDL is the language used for the current project, and here, as with most

languages, abstraction is the key to success. Abstraction and hiding of details is

achieved through VHDL ”entities”. Semantically these correspond to the more

well-known ”classes” of object-oriented programming (OOP): Each entity can

be instantiated many times (like objects). But while an OOP object consists of

data with an associated set of imperative function routines, a VHDL ”instance”

becomes a real electronic sub-circuit constructed from LUTs, when the design

is loaded into an FPGA. When its I/O-pins (called ”ports” in VHDL lingo) are

connected, an instance will thus respond to a given stimulus concurrently with

the operation of all the other entity instances.

Larger projects are built as a hierarchy of entities, with each one containing

instances of other (sub-)entities. These are then connected to each other and

the ports of the enclosing entity through the VHDL-equivalent of electric wires,

called ”signals”.
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A finished VHDL design thus consist of an instance of the ”top-level” entity,

depending on many sub-entities. The ports of this top-level entity is mapped

to (a subset of) the physical pins of the FPGA-chip using a ”constraints file”.

An absolutely minimal design example having only a clock-signal input would

thus map the physical clock-input pin of the FPGA to the clock-input port of

the top-level VHDL entity.

Finally, the design is ”synthesized” and ”implemented” by software tools

supplied by the FPGA vendor. This translates the VHDL description of the

design to an explicit representation in terms of LUTs and their interconnec-

tions. Our FPGA boards have a Xilinx Spartan-3, XC3S1000 FPGA[49], and

the integrated development environment used is the ISE Webpack from Xilinx.

To move the design into hardware, a binary configuration file is generated

and loaded into the FPGA. Finally, when obvious design-bugs have been cleared

out, the configuration file can be saved to a flash-ROM included on the FPGA-

board, and a jumper set so that it will automatically be loaded into the FPGA

at power-on. This is the operating mode that will be used in the laboratory.

A.2.2 Internal Bus Interconnect and USB I/O

To avoid unforeseen pitfalls, the top-level design of the VHDL code has been

structured to conform with the well-tested ”Wishbone” bus interconnection

standard[33]. Several topologies are possible within this framework, but we use

a shared bus topology similar to the one shown in figure A.1.

The MASTER #i and SLAVE #j modules shown are instances of VHDL en-

tities that conform to the Wishbone standard. A MASTER modules can initiate

a data transfer on the bus by setting its CYC_O output high. If no other MASTER

modules are transferring data, the ARBITER module will then immediately grant

ownership of the bus to the MASTER module by setting the appropriate GNT()

and GNT# signals. If another MASTER is currently transferring data, the request-

ing MASTER is forced to wait for the current transfer to finish (because it won’t

receive an ACK_I signal from a SLAVE). And if two MASTER modules request

ownership on the same clock cycle, the ARBITER will resolve the conflict using

a round-robbin scheme.

Assuming that no conflicts occur, the data transfer will proceed according

to the Write Enable signal, WE_O, of the active master module. If high, a data

word is transfered from the master to a slave, otherwise a word is read from a

slave by the master. The ADR() signal vector encode both which SLAVE module

and which register internally in the slave is involved.
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WISHBONE SoC Architecture Specification, Revision B.3 130 

Figure A-22.  WISHBONE shared bus with multiplexor interconnections.
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Figure A.1: ”Wishbone” shared bus example. Figure from[33].
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In the current project, the Wishbone interconnect (all the signals shown in

figure A.1) has been dimensioned to accommodate up to 4 master modules and

32 slave modules. The with of both the address bus ADR() and data busses

DWR() and DRD() is 8 bit. The most significant 5 bits of ADR() thus determines

which of the 32 SLAVE modules gets a STB_I signal, while the least significant

3 bits determines which of the 8 possible internal registers of each SLAVE is

addressed.

Many of the modules (entities) in the project can be classified as either

Wishbone masters or slaves. To get an overview, the most important ones are:

Wishbone masters: The USB/EPP Communication module and the Data Re-

distribution Module.∗

Wishbone slaves: Digital Ramp Generator, DDS Programmer, External Mem-

ory FIFO Module, System Control Module.

Non-Wishbone modules: DAC Driver Module.

A typical configuration instantiates one USB/EPP Communication module,

one Data Redistribution Module, one System Control Module and one External

Memory FIFO Module. The number of instantiated Digital Ramp Generator

modules correspond to the number of analog channels driven by the FPGA-

board, which is typically 16, 20 or 24. Corresponding to these numbers, there

are resources left to instantiate 2, 1 or 0 DDS Programmer modules on each

FPGA-board. The operation of these modules are described in turn below.

A.2.3 USB/EPP Communication Module

On the FPGA board there is, in addition to the FPGA itself, several other IC

chips. One of them is a Cypress Semiconductor FX2[11]. This small CPU

handles USB-2.0 data-traffic to and from the FPGA-board. The manufacturer

of the FPGA-boards has programmed the FX2 with firmware that translates

USB-2.0 data packages to/from the very simple EPP parallel port protocol[14].

Used together with an accompanying DLL module[15], it is thus quite simple

to read/write single bytes on eight pins of the FX2 chip.

These eight bi-directional data-pins, along with a few handshake lines, are

connected directly to pins of the FPGA. The purpose of the communication

∗An experimental implementation of a 16 bit CPU core, that is not used in the final
system, also belongs in the Wishbone masters category.
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module is to connect this external USB/EPP communication interface to the

internal Wishbone bus. By doing so, an application running on a computer

connected via USB, is able to read and write to/from any address in any of the

Wishbone slave modules instantiated in the FPGA.

A.2.4 Digital Ramp Generator

This module implements the requirements of the ramp generator outlined in

section A.1.1. The detailed specification of the data-package format is as fol-

lows: t0 (32 bit), vlow (16 bit), vhigh (16 bit), sign of sweep direction s (1 bit)

and unsigned sweep-rate r (31 bit).

The data-packages are written one byte at a time to the internal address 0

of the relevant ramp generator module. Internally this module has a 2048 byte

FIFO-buffer with an 8 bit wide input port and 32 bit wide output port. Data

written to address 0 is pushed onto this FIFO buffer.

At the other end of the FIFO a state machine compares the timestamp with

a global 32 bit time signal. When there is a match, the rest of the data-package

is read from the FIFO and into counters that produce the actual ramp output.

This loading takes only few clock-cycles (at a clock-rate of fclk = 40 MHz), so

the state machine can handle very closely spaced ramp commands. They must

be sorted according to timestamp, however.

The limiting values of the 16 bit output v is given by vlow and vhigh, and

the sweep-rate between these depend on r as follows:

dv

dt
=

s r fclk
231

(A.4)

With the maximum value r = (231 − 1), v can thus sweep the full range of

output, from v = 0 to v = (216 − 1), in 1.6 ms. Even though the sweep is

internally in steps of 1, the sweep-rate is thus actually limited by the bandwidth

of the analog circuitry buffering the DAC board outputs. At the other end of

the scale, r = 1 corresponds to one LSB step of the output every 54 seconds,

which should be more than adequate for any experiment.

A.2.5 DAC Driver Module

For every 4 Digital Ramp Generators, there is one DAC Driver Module. These

generate the serial programming data for the connected DAC boards, with each

board having 4 analog outputs.

The serial programming clock rate can be adjusted to avoid transmission

errors in the cables connecting to the DAC boards. The 4×16 bit input signals
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are thus sampled at as high a rate, as the serial clock rate allows for. The

lack of strict synchronization between the digital ramps and the serial output

sampling is not expected to be a problem.

An advantage of the clean separation between the Digital Ramp Generators

and the DAC Driver Modules is that, if the need should arise, it would be easy to

insert a digitally configurable Proportional/Integral/Derivative (PID) feedback

controller in between the two. The ramp generator would thus supply the

target value, while the actual current value would be captured by a connected

ADC. There are enough unused I/O-pins on the FPGA-boards to support a few

external ADCs, but they have not been included in the standard design yet.

A.2.6 DDS Programmer

This module is very similar to the Digital Ramp Generator on the input side.

Command packages are likewise stored into a 2048 byte FIFO buffer, and the

data format is similar: t0 (32 bit), number of bytes in the data-block, N , (8

bit) and data-block (N × 8 bit).

The data in a block is sent serially to the connected DDS as soon as it

becomes available in the FIFO. The state machine then waits for a match

between t0 and the global time. When this happens, the I/O Update pin on

the DDS-chip is pulsed, after which the state-machine starts to load the next

data-block, as it becomes available.

A.2.7 External Memory FIFO Module

A limitation in the above scheme is the limited depth of the 2048 byte FIFO

buffers used in both the Digital Ramp Generators and the DDS Programmers.

These FIFOs can only hold 170 of the 12 byte data-packages used in the ramp

generator, and even less DDS commands. For long, linear sweeps, this is fully

adequate. But using exponential or s-curve sweeps, one might need much more

linear segments.

To accommodate the extra data on the FPGA-board, an on-board 16 MB

RAM chip is used. The external memory FIFO module exposes 8 MB of this

memory space as a FIFO buffer with 8 bit read and write port width.

The module is a Wishbone slave, and writing to its internal address 0 pushes

data onto the FIFO buffer, while reading from 0 pops data off the FIFO. Notice

here, that the Wishbone standard does not imply that reading from an address

should return the data last written. An address can just as well represent each

end of a large FIFO.
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In the standard implementation, the external memory module is assigned

the 5-bit Wishbone slave address 0. Reading and writing to the external FIFO

thus both happens at the absolute address 0.

A.2.8 Data Redistribution Module

This module works in conjunction with the previous one as follows: Instead of

writing the Digital Ramp data-packages and DDS command packages directly

to their destination modules, all the commands are prepended with a header

specifying the destination address (8 bit) and the amount of data in the com-

mand (8 bit). The commands are then sorted according to their time-stamp

and written to the external FIFO buffer located at the absolute address 0.

The redistribution module, which is a Wishbone master, continuously mon-

itors whether the external FIFO is empty. And when it is not, its state machine

reads data from the FIFO and distributes it according to the address and data-

size fields of the headers.

The module also monitors the ”full” signal from the FIFO-buffers in all the

receiving Ramp Generator and DDS Programmer modules, halting its operation

as needed. The complex interplay of having two simultaneously active Wish-

bone masters (the communication and data redistribution modules) is handled

gracefully by the Arbiter module.

A.2.9 Timing, Triggering and the System Control Module

Not all the functionality of this module has been implemented yet, but most

of its intended functionality is already present in the top-level module, and

collecting it into its own sub-entity is thus mostly a matter of making the code

more tidy and readable. Its purpose is to control the overall operation and

global control signals of the FPGA-board.

Presently, all important modules in the system are connected to a global RE-

SET signal, which ensures a well defined starting condition for each sub-system

(e.g. by clearing the many FIFO buffers and resetting state-machines). The

RESET signal is connected to a push-button on the board and is also automati-

cally asserted for a few clock-cycles after power-on. The System Control Module

should, being a Wishbone slave, provide a set of registers that enable e.g. a

global RESET to be initiated by software on the connected host-computer, and

not only by manually pressing a button.

The timing and triggering is another important subject. Since the different

FPGA-boards throughout the lab need to be in perfect synchronization, they
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use a common external time source. Presently the FPGA quadruples a 10 MHz

laboratory reference clock using an internal PLL (Phase Locked Loop). The

resulting 40 MHz clock is then used as the ”logic clock” on each FPGA-board,

to which everything else is synchronized.

When an external trigger-signal (connected on a dedicated BNC-input like

the 10 MHz clock signal) is received, a 32 bit ”current time” signal starts

counting from 0 at a rate of 10 MHz. As described in the above sections, it

is this ”current time” signal that triggers the individual DAC and DDS ramps.

Note however, that if DAC ramps or DDS commands with t0 = 0 are written

to the FPGA-board before triggering, they will execute immediately since the

reset value of the time-counter is zero. This behavior is intended, as it supports

setting startup-values on the analog channels and initial configurations of the

DDS chips.

For added flexibility, future versions of the System Control Module should

complement the hardware-triggered mode with a software trigger register, so

that both experiments depending on a hardware trigger signal (e.g. the MOT

fluorescence-level) and purely software triggered experiments can coexist in the

same setup.




