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Abstract
Ultracold quantum gases offer a high degree of experimental control and
constitute an ideal framework for exploring complex quantum systems.
One such case is the paradigmatic example of an electron moving in a
crystal lattice, which is difficult to investigate experimentally in condensed
matter physics. However, this scenario can be simulated in ultracold quan-
tum gases by embedding an impurity into the gas, which then interacts
with its surrounding medium. Such a system is successfully described in
the quasiparticle framework, where the resulting polaron emerges. The po-
laron represents an intriguing many-body quantum system, with numerous
technological prospects.

In this thesis, Bose-Einstein Condensates of 39K are utilized to explore
multiple aspects of the polaron. These include the short-time dynamics of
an impurity suddenly embedded into the condensate, at repulsive impurity-
medium interactions where two polaron states exist. Using an interfero-
metric sequence, the polaron formation is captured and a quantum beat
effect between the polaron states is observed. Benchmarking the system
requires accurate knowledge of the medium density, which sets important
parameters used for comparing extracted results with theoretical predic-
tions. A detailed analysis of the loss processes in the system is therefore
provided, to adequately determine the density at a variable point in the
experimental sequence. Finally, spectroscopic measurements are presen-
ted, which provide access to the spectral response of the impurity, used
for extracting the properties of the polaron. An additional signal is also
observed that is interpreted as arising from an induced interaction between
two polarons, the so-called bipolaron.

These results expand on the current understanding of the properties
of the polaron, especially in regimes where contemporary theories dis-
agree. They also provide insight to resolve the outstanding discrepancies
and point to new areas for exploring impurity physics further.
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Resumé
Danish Abstract

Ultrakolde kvante gasser tillader et højt niveau af eksperimentel kontrol og
sætter de ideelle rammer for at udforske komplekse kvante systemer. Et ek-
sempel herpå, er det paradigmatiske billede af en elektron der bevæger sig
i et krystal gitter, hvilket er svært at undersøge eksperimentelt i faststoffy-
sik. Dette kan dog simuleres i ultrakolde kvante gasser ved at indsætte en
urenhed i gassen, som interagerer med det omgivende medium. Et sådan
system kan beskrives i konteksten af kvasipartikler, hvor den resulteren-
de polaron opstår. Polaronen repræsenterer et spændende mange-legeme
kvante system, med adskillige teknologiske muligheder.

I denne afhandling bliver Bose-Einstein kondensater af 39K brugt til at
udforske forskellige aspekter af polaronen. Disse inkluderer kort-tids dy-
namikken når en urenhed pludselig bliver indsat i kondensatet, i tilfældet
af repulsive unrenhed-medium interaktioner hvor to polaron tilstande eksi-
sterer. Ved at bruge en interferometrisk sekvens, opfanges polaron forma-
tionen og en kvante beat effekt mellem de to polaron tilstande observeres.
Benchmarking af systemet kræver nøjagtig viden om medium densiteten,
som definerer vigtige parametre der bruges til at sammenligne de ekstra-
herede resultater med teorier. En dybdegående analyse af tabs processerne
i systemet gives for at kunne bestemme medium densiten på et vilkårligt
tidspunkt i den eksperimentelle sekvens. Endeligt bliver spektroskopiske
målinger præsenteret for at kunne ekstrahere polaronens egenskaber, og et
signal bliver observeret der tolkes som opstået grundet induceret interak-
tioner mellem to polaroner, også kaldet bipolaronen.

Resultaterne udvider den nuværende forståelse af polaronens egenska-
ber særligt i regimer hvor nuværende teorier er uenige. De giver også ind-
sigt i hvordan de udestående uoverensstemmelser kan løses, såvel som nye
områder hvor urenhedsfysik kan udforskes yderligere.
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CHAPTER 1

Introduction

At the beginning of the 20th century, the development of quantum mech-
anics revolutionized the way we think about physics, signaling a paradigm
shift from classical physics. Starting with Max Planck’s successful de-
scription of black-body radiation by considering energy only in specific in-
tegers, or quanta [5], this notion was extended by Albert Einstein and Niels
Bohr, to describe the photoelectric effect [6] and the hydrogen atom [7].
The breakthrough of Louis de Broglie by describing the wave properties of
matter, paved the way for modern quantum mechanics in the subsequent
work of Erwin Schrödinger, Werner Heisenberg, Max Born, and Pascual
Jordan. Wave mechanics, encapsulated in the famous Schrödinger equa-
tion, allowed for an accurate description of experimental results.

Although more than 100 years old, the effects and consequences of
quantum mechanics continue to challenge and defy our intuition. The as-
tonishing nature of quantum systems is highlighted by experiments, ran-
ging from the legendary Stern-Gerlach experiment, revealing the spin prop-
erty of atomic particles [8], to the continuously performed Bell tests, fur-
thering our understanding of inherent limitations to the available informa-
tion of quantum systems [9–12].
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1.1 Ultracold Quantum Gases
Despite revolutionizing physics, the effects of quantum mechanics are not
observable in our daily lives. Therefore, macroscopic quantum systems
stand out as something truly unique and act as windows into the quantum
world. In the novel work of Satyendra N. Bose and Einstein, they ap-
plied quantum statistics to an atomic bosonic ensemble and showed that at
sufficiently low temperatures the atoms would occupy the same quantum
state [13, 14]. The resulting Bose-Einstein Condensate (BEC), a new state
of matter, exhibits properties only described by quantum mechanics. It is
the inherent property of bosons that allows them to occupy the same quan-
tum state and enables this condensation, in contrast to fermions which do
not have this property. It would take 70 years from the proposal of Bose
and Einstein before the experimental realization and observation of con-
densation for dilute alkali gases were obtained [15, 16]. In ultracold Fermi
gases, the Pauli exclusion principle prevents the pile-up of atoms in the
same quantum state, forcing them into higher energy states instead [17].

The progress of modern quantum mechanics has also led to import-
ant technological inventions, such as the laser [18] and transistor [19]. As
technology is continuously pushed forward, new quantum technologies are
being developed for areas such as sensing and metrology, communication,
computing, and simulation [20]. The idea of quantum simulation is to real-
ize a versatile quantum system to study theories that are otherwise difficult
to test [21]. An atomic gas cooled to ultracold temperatures is an excellent
candidate for such a system and is often referred to as the analog quantum
computer [22]. The controlled environment posed by optical and magnet-
ical potentials allows for tailoring the system to the desired specifications.
The experimental efforts to realize Bose-Einstein Condensation as well as
ultracold Fermi gases, have provided the techniques for efficient trapping
and manipulation of the atoms. In particular, the tunability of the interac-
tion between atoms by using so-called Feshbach resonances, has opened
up for a variety of research directions [23, 24]. Although initially restric-



1.2. Impurity Physics 3

ted primarily to alkali atoms, extensive efforts have been made towards
achieving condensation of the more exotic rare-earths [25–28], furthering
the available atomic species options.

Ultracold quantum gases have cemented themselves as excellent exper-
imental playgrounds, finding usages in simulating various areas of physics
such as superconductors [29], dark matter [30, 31], black holes [32], su-
perfluidity [33] and light manipulation [34].

1.2 Impurity Physics
The concept of impurities is found in many areas of physics, such as as-
tronomy [35, 36], nuclear physics [37, 38] as well as material science and
chemistry [39, 40]. More relatable, impurities play an important role in the
characteristic color of gemstones [41], as well as cloud formation where
dust particles act as nucleation sites for water condensation [42].

In condensed matter physics, an electron moving in an atomic lattice is
a classical example of impurity physics. The interactions between the elec-
tron and atoms distort the lattice, leading to excitations and a consequent
dressing of the electron, as illustrated in Fig. 1.1. To describe this, Lev
Landau and Solomon Pekar used the so-called quasi-particle framework,
where the electron and the phononic lattice excitations are considered to-
gether as a new single particle, the polaron [43].

In the context of ultracold quantum gases, the above scenario may be
simulated by embedding an impurity into the medium, as illustrated in
Fig. 1.1. This allowed for the first experimental realization of the Fermi po-
laron in ultracold degenerate Fermi gases [45–50], with the Bose polaron
observed later in a BEC [51, 52]. The Bose polaron is of special interest
since the bosonic nature of the medium atoms provides a closer resemb-
lance to the original scenario of an electron coupling to the phononic vibra-
tions in the crystal lattice. Although the result of many-body correlations,
the properties of the Bose polaron are effectively described by few-body
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(a) (b)

FIGURE 1.1: (a) In condensed matter physics, the polaron emerges due to in-
teractions between an electron and atoms in a crystal lattice. (b) In ultracold
quantum gases, a similar system can be realized, where an impurity interacts
with the surrounding medium. Adapted from [44].

parameters. As an example, by tuning the two-body interaction between
the impurity and medium atoms, the energy of the impurity is varied. Spec-
troscopy allowed for observation of this characteristic energy shift for both
attractive and repulsive interactions [45, 47, 51–54]. Furthermore, using an
interferometric technique, the initial dynamical evolution of the impurity
towards the formation of the polaron was realized in a Fermi gas for both
attractive and repulsive impurity-medium interactions [55, 56] and later
in a BEC for attractive interactions [57]. This formation is signaled by a
distinct crossover from two-body interactions into a many-body dynamical
regime [1]. For the case of repulsive impurity-medium interactions, the
dynamical evolution of the impurity is inherently more complicated and
has not been investigated in detail for the Bose polaron, until now.

Two polarons may couple to each other by mediated interactions through
their environment, leading to a direct induced interaction between them
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that is inherently attractive and could support the formation of a bound state
known as the bipolaron [58–61]. Induced interactions also lead to Cooper
pairing in conventional superconductors [62] and have numerous technolo-
gical prospects [63–66]. However, the binding energy of this state is only
expected to be significant at large attractive impurity-medium interaction
strengths, making it experimentally challenging to measure. Additionally,
it is debated whether such a state exists, given that the accumulation of
medium atoms at a single impurity could lead to the formation of large
clusters, with a similar experimental signal as the bipolaron [67]. Distin-
guishing between such signals imposes further restrictions on the experi-
mental parameters as well as the data analysis. Recently, investigation of
mediated interactions in a Fermi gas has led to the observation of an energy
shift of the attractive and repulsive branches, with a difference in the direc-
tion of the observed shift for a bosonic and fermionic impurity [68]. This
observation highlights that the mediated interactions can also affect the
single impurity properties. Finally, mediated interactions in Bose-Fermi
mixtures [69] as well as between ions embedded in quantum degenerate
gases have also recently been proposed [70], showcasing the broad interest
and application of this phenomena.

1.3 Few-Body Physics
Few-body physics plays a central role in ultracold quantum gases, as low-
energy elastic collisions dominate the interactions. Ostensibly simple, the
quantum mechanical treatment of few-body physics is highly non-trivial.
The seminal work by Vitaly Efimov predicted the existence of an infinite
series of bound states between three identical bosons, interacting reson-
antly pairwise [71, 72]. Remarkably, such Efimov trimers may form even
in the absence of two-body bound states, which has been experimentally
observed in ultracold quantum gases [73–77]. In particular, the Efimov ef-
fect can be considered as a mediated interaction between two particles by
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a third and has been extended to cover both fermions and multi-component
systems, for which rich features arise by tuning the mass differences and
interactions [78].

A closely related concept is the three-body recombination process, where
three atoms collide, with two of the atoms forming a molecule and the third
atom receiving the leftover energy. Such processes are prevalent in BECs
due to the bosonic nature of the atoms, which allows them to occupy the
same space. In the context of impurity physics, three-body physics is im-
portant both for characterizing the losses it imposes on the system, but also
for understanding how these Efimov-like correlations affect the properties
of the polaron [67, 79, 80].

1.4 Thesis Outline

The thesis is structured as follows:

Chapter 2: Ultracold Quantum Gases & Polaron Physics
A theoretical description of ultracold quantum gases is given and models
for the polaron are reviewed.
Chapter 3: Experimental Cooling and Detection Techniques
A brief overview of the experimental apparatus is provided, together with
a description of the sequence for the production and detection of Bose-
Einstein Condensates for our system.
Chapter 4: Loss Spectroscopy and Three-body Physics
The different spectroscopy techniques utilized in this thesis are explained,
which are used for examining the loss processes in the system. Modeling
the loss processes is important for accurately determining the density of
the system, which is presented in a publication.
Chapter 5: Observation of Deeply Bound Polaronic States
Utilizing a two-pulse spectroscopy sequence, the spectral response of the
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polaron is investigated in detail, and a signal at lower energies is observed
which is interpreted as a bipolaron response.
Chapter 6: Impurity Dynamics with Repulsive Interactions
An interferometric sequence is used for resolving the initial dynamics of
an impurity interacting repulsively with a medium. This is presented in
a publication, where the dynamical regimes are examined and the ener-
gies of the two polaron branches are extracted and compared to theoretical
predictions.
Chapter 7: Conclusion & Outlook
The conclusions of the thesis are provided and future possible experiments
are discussed in an outlook.

In accordance with GSNS rules, parts of this thesis were also used in the
progress report for the qualifying examination.





CHAPTER 2

Ultracold Quantum Gases &
Polaron Physics

To investigate impurity physics in quantum gases, a good theoretical un-
derstanding of both, is necessary. The purpose of this chapter is to examine
the key properties of Bose-Einstein Condensates and Bose polarons.

The structure of this chapter is as follows. A brief introduction to Bose-
Einstein Condensation is given in Sec. 2.1 and in Sec. 2.2 a theoretical
model for the inclusion of interactions is provided, with the experimental
method for tuning it. Few-body physics for ultracold quantum gases are
discussed in Sec. 2.3. Finally, in Sec. 2.4, the theoretical framework of the
polaron is presented and the role of mediated interactions is discussed.

The review of the subjects in Sec. 2.1 and Sec. 2.2 are based on the
theoretical introduction given in Ref. [81]

2.1 Bose-Einstein Condensation
A non-interacting thermal gas of atoms displays a classical behavior and
the atoms are distributed according to their energies as described by the
Boltzmann distribution

f (ϵν) = e−(ϵν−µ)/kBT , (2.1)

9
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where ϵν is the energy, kB is the Boltzmann constant, T the temperature
and µ is the chemical potential. If the temperature is lowered sufficiently,
the wavefunctions of the atoms begin to overlap and quantum statistics
dictate the distribution. For bosons, there is a symmetry requirement of the
wavefunction and they follow the Bose-Einstein distribution

f (ϵν) =
1

e(ϵν−µ)/kBT −1
. (2.2)

This has the unique property that if the temperature is lowered below the
so-called critical temperature, Tc, a macroscopic number of atoms occupy
the ground state of the system even in the thermodynamic limit. This is
also called Bose-Einstein condensation of the atoms and signals a phase
transition in the system. In the case of an external confining 3D harmonic
potential, the fraction of condensed atoms N0 relative to the total atom
number N is given by

N0

N
=

[
1−
(

T
Tc

)3
]
. (2.3)

This formula provides a simple method for evaluating the condensed frac-
tion that remains experimentally relevant, although it does not take into
account the interactions between the atoms, as well as a finite atom num-
ber, both of which modify the critical temperature [82, 83].

2.2 Interactions between Ultracold Atoms
Including interactions in a many-body system is generally complicated, but
by utilizing the low-temperature property of the BEC, it is simplified con-
siderably. For the case of two distinguishable particles interacting through
a spherically symmetric potential, the total cross section is dominated by
the lowest partial wave contribution, also known as s-wave scattering. This
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result is valid in the low-temperature limit, for which the total cross section
is given by

σ = 4πa2. (2.4)

This only depends on the scattering length, a, which is interpreted as the
distance at which two atoms "see" each other. For ultracold dilute gases,
the interparticle distances are much greater than the typical length scale of
the interaction. This means that the many-body interactions are effectively
described by the simple two-body model. The interactions are formally
included through an effective contact potential

Ueff(ri,r j) =
4π h̄2a

m
δ
(
ri − r j

)
=U0δ

(
ri − r j

)
, (2.5)

where m is the mass of the atoms and δ is the Dirac delta function. This
contact potential is then included in the Hamiltonian for the system

H =
N

∑
i=1

(
− h̄2

2m
∂ 2

∂r2
i
+V (ri)

)
+∑

i< j
U0δ (ri − r j), (2.6)

where V is the external potential and a temperature at T = 0 is assumed
such that all atoms are in the condensate. Using a Hartree-Fock approx-
imation, the above Hamiltonian leads to the celebrated Gross-Pitaevskii
equation

− h̄2

2m
∇2ψ(r)+V (r)ψ(r)+U0|ψ(r)|2ψ(r) = µψ(r), (2.7)

where ψ is the wavefunction of the condensed state and µ is the chemical
potential. It resembles that of the Schrödinger equation, but includes a
nonlinear term taking the interactions between the bosons into account and
also has the chemical potential replacing the energy. The wavefunction is
also conveniently related to the atomic density of the condensate through
the relations
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N =
∫

V
|ψ(r)|2, n(r) = |ψ(r)|2. (2.8)

For attractive interactions (a < 0), the condensate is unstable and can lead
to a collapse of the system, which has been experimentally observed [84].
Repulsive interactions (a > 0) are therefore necessary to stabilize the sys-
tem. In this case and for large atom numbers, the kinetic energy term of
Eq. (2.7) may be neglected. This is the so-called Thomas-Fermi approx-
imation and provides a direct solution for the density

n(r) = |ψ(r)|2 = µ −V (r)
U0

. (2.9)

In the case of an external harmonic potential, this has the shape of an in-
verted parabola and the spatial extent of the condensate is given by

R2
i =

2µ
mω2

i
, i = x,y,z (2.10)

where the trap frequencies are given by ωi. Although the results above are
derived for a zero-temperature system, they are still relevant and applicable
when working with finite temperatures in the laboratory.

2.2.1 Feshbach Resonances
The interactions between atoms are tunable through the scattering length
by using so-called Feshbach resonances [24]. These resonances appear
due to the coupling between an open and closed scattering channel. Two
particles initially in an open channel may scatter to a bound state in a closed
channel and then subsequently back to an open channel. By tuning the
magnetic field, the total energy in the open channel is matched to the en-
ergy of the bound state in the closed channel. The effect is that the scatter-
ing length dramatically increases around this point. An empirical formula
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FIGURE 2.1: Magnetic Feshbach resonances of 39K for selected states
of the F = 1 manifold. The intrastate scattering length between atoms
in the |F = 1,mF =−1⟩ state (blue line) and between the atoms in the
|F = 1,mF = 0⟩ state (green line) are shown. The interstate scattering length
between atoms in the |F = 1,mF =−1⟩ and |F = 1,mF = 0⟩ states is also
shown (red line). A resonance is observed around 114 G (gray area), which
allows for tuning between these two states.

for the scattering length provides the inclusion of these resonances as a
function of the magnetic field B

a(B) = abg

(
1− ∆B

B−B0

)
, (2.11)

where abg is the background scattering length between the resonances, B0
is the magnetic field at a Feshbach resonance and ∆B is its associated width.
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The Feshbach resonance structure can differ considerably between atomic
species, but in the case of 39K it is particularly rich. The resonance util-
ized in the experiments in this thesis is for the interstate scattering between
the |F = 1,mF = −1⟩ and |F = 1,mF = 0⟩ states. This resonance is loc-
ated at 114G as shown in Fig. 2.1, where the internal scattering for each
state is also plotted. Noticeably, it is a quite broad resonance, with a tun-
able region for both positive and negative scattering lengths. Additionally,
in this region the internal scattering for the |F = 1,mF = −1⟩ state is re-
pulsive and essentially constant. As will be apparent later, this Feshbach
resonance is an excellent candidate for exploring impurity physics with
the |F = 1,mF = −1⟩ and |F = 1,mF = 0⟩ states acting as medium and
impurity, respectively.

2.3 Three-body Recombination
For the interactions described above, the scattering is usually elastic, but
certain processes exist that lead to the permanent loss of otherwise trapped
atoms. A prime example of this is three-body recombination, where three
atoms collide, with two forming a bound molecule and the third atom re-
ceiving the remaining kinetic energy. The result is that all three atoms
are lost from the trap. This process can be included in the, now time-
dependent, Gross-Pitaevskii equation by the addition of an empirical ima-
ginary term,

ih̄
∂Ψ(r, t)

∂ t
=

(
− h̄2

2m
∇2 +V (r)+U0 |Ψ(r, t)|2

−ih̄
L3

2
|Ψ(r, t)|4

)
Ψ(r, t),

(2.12)

where L3 is the three-body loss rate coefficient [85]. The local loss intro-
duced by this term is proportional to the cube of the atomic density,
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dn
dt

=−L3n3. (2.13)

Given the high densities in the BEC, the loss introduced by Eq. (2.13) can
have dramatic effects on experiments, which are often unwanted. However,
the three-body recombination is also of fundamental interest in itself, as a
method for pinpointing Feshbach resonances [24] and as an observable for
Efimov physics [73, 74]. The latter of these consists of three-body bound
states that appear as resonances in the three-body loss rate when tuning the
interaction between the atoms. Investigations have shown that the three-
body loss rate coefficient has a universal behavior given by

L3 =C
nla4h̄

m
, (2.14)

where nl is the number of atoms in the collision, usually set to 3, and C is
a dimensionless constant depending on the sign of the scattering length, as
well as the system in question [74, 86].

Another loss process to consider is two-body collisions with spin ex-
change where the atoms gain enough kinetic energy to escape the trap-
ping potential and are lost. However, for the two states considered above,
|F = 1,mF =−1⟩ and |F = 1,mF = 0⟩, only three-body recombination is
possible, due to angular momentum conservation. Two-body collisions
therefore require atoms both in the |F = 1,mF =−1⟩ and |F = 1,mF =+1⟩
state, which is specifically utilized for the experiments presented later in
this thesis.

2.4 Polaron Physics
The concept of the polaron originated in condensed matter physics but
has been extensively investigated for ultracold quantum gases in the last
15− 20 years due to the high degree of control featured in these systems.
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For historical context, a brief overview of the original work in condensed
matter physics is first provided before turning to ultracold quantum gases.

2.4.1 Polarons in Condensed Matter Physics
The efforts in condensed matter physics to describe the behavior of an
electron moving in a crystal lattice spans well over 90 years, beginning
with the seminal work of Lev Landau and Solomon Pekar [87, 88]. In
their work, the negatively charged electron ionizes the atoms in the lattice
leading to phonon excitations and a resulting electron-phonon interaction
(EPI). For a free electron moving in a continuous polarizable medium, the
interaction with the lattice is encapsulated in an increased effective mass of
the electron [43]. The increased mass of the electron merited its description
as a new quasiparticle, the polaron.

Following this, a quantum mechanical treatment through second quant-
ization of the EPI was proposed by Herbert Frölich [89]. For weak coup-
ling between the electron and phonons, characterized by a dimensionless
constant α , perturbation theory [90] gives an expression for the second
order energy of the electron at momentum k,

Ek ≃−αω0 +
k2

2m∗ . (2.15)

The first term gives the polaron binding energy EP, and the second term
contains the effective mass of the electron, given by m∗ ≃m(1+α/6). The
increased mass is due to the electron dragging the phonon cloud around as
it moves. For a polaron at rest, k = 0, the number of virtual phonons in the
cloud is given by Nph = α/2, directly linking it to the coupling constant,
which is interpreted as the "thickness" of the phonon cloud [90].

The above result shows that the properties of the electron, i.e. its energy
and mass, are modified through the interactions with the phonon cloud. For
an impurity immersed in an ultracold quantum gas, the same formalism
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applies and a similar behavior can be expected, which is discussed in the
following.

2.4.2 Polarons in Ultracold Quantum Gases
In ultracold quantum gases, interactions between atoms are characterized
by the scattering length, which is tunable through the use of Feshbach res-
onances as described in Sec. 2.2. For an impurity in such a gas, these
interactions lead to a dressing of the impurity much like the case of the
electron in the crystal lattice, and the polaron framework applies.

Extensive theoretical efforts have been made for the description of an
impurity embedded in ultracold quantum gases, with a recent overview in
Ref. [91]. In the case of ultracold Fermi gases, the fermionic nature of
the medium separates it from the bosonic behavior of the phonon cloud in
condensed matter physics. Nonetheless, it is a powerful platform for in-
vestigating impurity physics in the context of Landau’s theory of Fermi li-
quids [92] as well as the Kondo effect [93]. For Bose-Einstein condensates,
the system more closely resembles condensed matter physics given the bo-
sonic nature of the BEC and phonon cloud. The resulting Bose polaron has
distinct quasiparticle properties that are examined in the following. Note
that the terms boson and medium are used interchangeably and refer to the
atoms of the BEC. Expanding on the results of Frölich, the Hamiltonian
describing the interactions between the impurity and bosons is given by

H =∑
k
ϵB

ka†
kak +

1
2V ∑

kk′q
VB(q)a

†
k+qa†

k′−qak′ak

+∑
k
ϵI

kc†
kck +

1
V ∑

kk′q
VI(q)c

†
k+qa†

k−q′a′kck,

(2.16)

with creation operators c†
k and a†

k for the impurity and boson, the free
dispersions ϵB,I

k = h̄2k2

2mB,I
and system volume V [94]. The coupling con-
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stants for medium-medium and impurity-medium interactions are given by
VB(q) and VI(q), respectively. The former of these is assumed to be weak
and described by Bogoliubov theory. The latter is determined through the
impurity-medium scattering length, a, which can be both negative and pos-
itive, leading to attractive and repulsive interactions, respectively.

For weak impurity-medium coupling, perturbation theory provides ex-
act results for the quasiparticle properties at zero temperature [94–96]. In
this limit, the polaron is well-defined for attractive and repulsive interac-
tions. The impurity energy is given by a mean-field energy shift through
the interactions with the medium, with corrections in higher powers of the
scattering length [94]. The so-called quasiparticle residue ZP provides a
measure of its quasiparticle nature, much comparable to that of the ef-
fective mass discussed earlier. It is given by the squared overlap between
the wavefunctions of the polaron and the non-interacting bare impurity,
ZP =

∣∣〈ψ0
∣∣ψpol

〉∣∣2. As the interaction is increased the residue decreases,
signaling that a larger part of the polaron lies in the medium excitations.

For the case of strong coupling, an exact analytical solution does not
exist, and instead, approximations are utilized. These include variational [51,
54, 97, 98] and diagrammatic methods [57, 99, 100] as well as quan-
tum Monte-Carlo (QMC) calculations [53, 101, 102]. This last method
provides numerical exact solutions, which can include all relevant interac-
tions and correlations, but is computationally expensive.

Attractive interactions

The main results for an intuitive variational method in Ref. [54] for attract-
ive impurity-medium interactions are first briefly presented. These results
are completely consistent with those from the diagrammatic method [53],
and the two are used interchangeably throughout this thesis. The vari-
ational ansatz was first developed for the description of the Fermi po-
laron [103] before being extended to the Bose polaron. The wavefunction
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FIGURE 2.2: Energy of the attractive polaron state (green line) as a function
of inverse interaction strength 1/kna. This state converges with the molecular
state (red line) on the repulsive side. The mean-field energy is also plotted
for comparison (black dashed line).

consists of a superposition of an impurity at rest, |0⟩I , and scattering with
a boson into the momentum state, -k,

|Ψ⟩= φ0 |0⟩I ⊗|BEC⟩+
√

NB ∑
k

φka†
k |−k⟩I ⊗|BEC⟩ . (2.17)

The variational parameters are given by φ0 and φk and the condensate is
described by a coherent state |BEC⟩, with the average boson number NB.
This ansatz is used to calculate the expectation value of the kinetic and
potential energy from the Hamiltonian in Eq. (2.16). Minimization of the
total energy gives the relation for the polaron energy as

EP ≡ h̄2κ2

2m
=− Emf

1−κa
, (2.18)
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FIGURE 2.3: Quasiparticle residue ZP of the attractive polaron state as a
function of the inverse interaction strength, 1/kna.

with the mean field energy, Emf =
2π h̄2na

mr
, atomic density of the BEC, n,

and reduced mass of the boson and impurity, mr. This equation is solved by
expressing the parameter κ through the interaction strength of the system
kna, where kn = (6π2n)1/3 is the characteristic wavenumber of the medium
and a is the impurity-medium scattering length. The polaron energy is
scaled by the characteristic energy of the medium, En =

h2k2
n

2m , and is shown
in Fig. 2.2, as a function of the inverse interaction strength 1/kna. The
polaron energy agrees with the mean-field prediction for low interaction
strengths but is observed to cross unitarity at 1/kna = 0, in contrast to
the mean field result which diverges. The attractive polaron eventually
converges with the molecular branch on the repulsive side.

From the above variational method, the quasiparticle residue for the
attractive polaron can also be calculated as
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ZP =
1

1+ 3π
8
√

2

∣∣∣EP
En

∣∣∣
3/2 , (2.19)

which only depends on the scaled polaron energy, EP/En. The residue is
plotted as a function of the inverse interaction strength in Fig. 2.3.

The energy and residue are essential for describing the spectral re-
sponse of the polaron from radiofrequency (rf) spectroscopy [53, 54]. This
experimental technique is further considered later in this thesis.

Repulsive interactions

For repulsive impurity-medium interactions, two distinct polaron states ex-
ist as shown in Fig 2.4. One is the attractive polaron state crossing unit-
arity and converging with the molecular state. The other is the repulsive
polaron state, which becomes increasingly ill-defined when approaching
strong interactions. This is due to both a many-body dephasing effect as
well as the possibility of decaying to the lower-lying attractive branch [91,
104]. Generally, a theoretical investigation of the repulsive polaron beha-
vior is challenging, and different methods give inconsistent results when
approaching strong interactions. This is also highlighted in Fig. 2.4, where
different calculations for the energy of the repulsive Bose polaron state are
plotted as a function of the inverse interaction strength. For low interac-
tion strength, all calculations agree with the mean-field prediction, but as
strong interactions are approached, the discrepancies between the theories
become apparent. Additionally, the energy separation of the attractive and
repulsive polaron states is small at strong interactions but gets significantly
larger at low interaction strengths. Recently, a theoretical prediction for
the existence of metastable states between these two branches was made,
adding to the complexity of theoretical predictions for this system [105].
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FIGURE 2.4: The energy of the repulsive and attractive polaron branches
as a function of inverse interaction strength calculated from a diagrammatic
prediction (green lines) [2]. A truncated basis method (magenta line) [53] and
a Quantum Monte-Carlo simulation (yellow diamonds) [53] are also shown.
The mean field result (black dashed line) and molecular state (red line) are
plotted for comparison. Adapted from Ref. [2].

Strongly interacting regime

Generally, the theoretical models predict a polaron state for both attract-
ive and repulsive impurity-medium interactions, with the former crossing
over to the repulsive side. Experimental evidence for this is found for both
the Fermi polaron [45, 47, 49] as well as for the Bose polaron [51, 52,
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106]. For the former, there is strong evidence that the quasiparticle pic-
ture holds at strong interactions [91, 107–109]. In the case of the Bose
polaron, contemporary theories give different results for the behavior of
the polaron at strong attractive interactions. These can be grouped into two
scenarios. The first predicts a smooth crossover to the molecular state [53,
54, 97, 99] similar to that indicated in Fig. 2.2, with possible modifications
in the presence of Efimov physics [79, 80]. The second scenario predicts
a breakdown and collapse of the attractive polaron [67, 110–112]. There-
fore, experiments must resolve these theoretical discrepancies, along with
those presented for repulsive interactions in Fig. 2.4.

For the case of attractive interactions, the experimental investigations at
strong interactions are presented in Ch. 5, using a spectroscopic technique.
For repulsive interactions, the system is probed using an interferometric
sequence, as presented in Ch. 6.

2.4.3 Mediated Interactions
So far, only a single impurity interacting with the medium has been con-
sidered. For the case of two impurities, an induced interaction mediated
by the medium can lead to a bound state termed the bipolaron. Bipolarons
are of fundamental interest, as they have been suggested as the mechanism
behind organic magnetoresistance [66], high-temperature supercondutiv-
ity [63, 113] and even as a model for quantum dots [114]. For the case of a
Bose-Einstein Condensate, the effective interaction between the impurities
is expected to be more pronounced compared to a Fermi gas, due to the
higher compressibility of the BEC [115].

Theoretical investigations of these mediated interactions between two
impurities in a BEC have predicted the existence of a bipolaron state [58,
116]. In Ref. [58], the binding energy of the bipolaron state was cal-
culated using a diagrammatic method, which was compared to quantum
Monte-Carlo simulations. The ground state energies of the system con-
taining one and two impurities were calculated and given by E1 = EP and
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FIGURE 2.5: Energy of the attractive polaron branch (green line) and the
bipolaron state (blue line) as a function of the inverse interaction strength,
1/kna.

E2, respectively. The binding energy of the bipolaron was then calculated
as EBP = E2 − 2EP. At low impurity-medium interaction strengths, the
binding energy of the bipolaron is small and the system consists of two in-
dependent polarons. The energy of the bipolaron is calculated as the sum
of the binding energy and that of a single polaron as shown in Fig. 2.5 as
a function of the inverse interaction strength. This interpretation connects
the theory to the experiment, where rf-spectroscopy can disassociate the
bipolaron and probe a single polaron, which is further discussed in Ch. 5.
Importantly, it is only in the strongly interacting regime that large devi-
ations from the polaron are observed, which is necessary for experimental
observations.

As discussed previously, multiple theories predict the collapse of the
attractive polaron at strong interaction strengths. The existence of the bi-
polaron is not consistent with these theories but is another intriguing the-
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oretical prediction for the strongly interacting attractive regime.





CHAPTER 3

Experimental Cooling and
Detection Techniques

The experimental apparatus was initially built in Hannover [117, 118], fo-
cusing on experiments with 87Rb [119, 120]. In 2011, the experiment was
moved to Aarhus University and was reconfigured to produce mixtures
of 39K −87Rb with the possibility of 41K−87Rb mixtures as well [121,
122]. Since then, the overall structure of the experiment has remained
the same, but with several modifications from the contributions of later
PhD students [123, 124]. Additionally, the experimental focus has been
on impurity physics for multiple PhD generations by now [44, 123], which
means that only small modifications were necessary on my part.

This chapter provides a brief overview of the experiment, starting from
the initial trapping and cooling of the atoms in Sec. 3.1 until condensation
of the system is achieved as presented in Sec. 3.2. Additionally, the absorp-
tion imaging technique used for the detection of the atoms is discussed in
Sec. 3.3, along with the necessary calibrations. Finally, some of the modi-
fications to the apparatus during my PhD are mentioned in Sec. 3.4.

27
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FIGURE 3.1: Overview of the Magneto-Optical-Trap employed in the exper-
iment. A dark-SPOT for the repumping light and a depumping beam are util-
ized to prevent collisions between 39K and 87Rb atoms. Adapted from [125].

3.1 Dual-species MOT
The experiment was designed to investigate multiple atomic species. This
was realized in 2014, with the observation of Bose-Einstein Condensates of
both 39K and 87Rb [125]. However, in the current status of the experiment,
the rubidium is sacrificed to maximize the potassium BEC, which is then
used exclusively for the experiments.

The rubidium and potassium atoms are initially trapped and cooled in
a Magneto-Optical-Trap (MOT), with an overview in Fig. 3.1. This is
achieved by using the D2 lines at 780 nm and 767 nm for rubidium and
potassium [126], with energy levels shown in Fig. 3.2. A cooling beam for
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FIGURE 3.2: The relevant hyperfine states of 39K and 87Rb for the D2 line,
used for the cooling and trapping schemes. The parentheses show the relative
detuning of the hyperfine states in MHz. Adapted from [126].

the |F = 2⟩ to |F ′ = 3⟩ transition and a repumping beam for the |F = 1⟩ to
|F ′ = 2⟩ transition are used. Here, F and F ′ correspond to the ground
and excited hyperfine states as in Fig. 3.2. Potassium has a small en-
ergy splitting of the excited hyperfine levels compared to rubidium and its
maximum potential in the MOT is more limited. Furthermore, hyperfine-
changing and light-assisted collisions [127, 128] act to further decrease the
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potassium atom numbers, with relatively little effect on the much larger ru-
bidium sample. For these reasons, a so-called dark-SPOT of the repumping
light for rubidium is employed at the MOT center. This forces the rubidium
at the center into the dark state |F = 1⟩ and prevents the above-mentioned
collisions. Additionally, a depumping beam enhances this effect by act-
ively pumping the rubidium atoms at the center directly into the dark state.
These two techniques allow for maximal accumulation of potassium atoms
in the MOT, while still retaining a sufficiently high number of rubidium
atoms [125].

The MOT phase lasts for 25 seconds and is followed by optical molasses
for both atomic species. For the case of 39K this is again more complicated
due to the small excited hyperfine state splitting. However, by using spe-
cific detuning and intensity protocols for the cooling and repumping light,
an effective sub-Doppler cooling regime can be identified [129]. After
this, all the atoms are optically pumped into the magnetically trappable
state |F = 2,mF = 2⟩, and are afterward transported to the so-called sci-
ence cell, which features a higher vacuum. The transport is accomplished
by ramping the magnetic field of the MOT and physically moving the coils,
which are attached to a mechanical sleigh. A new pair of coils at the sci-
ence cell are then used for transferring from the MOT. After the MOT and
molasses phases, the atom numbers of 87Rb and 39K are 2.7× 109 and
7× 107 with temperatures of 35 µK and 117 µK, respectively. At the sci-
ence cell, the trapped potassium and rubidium atoms are now ready for the
next cooling stage, which is evaporative cooling.

3.2 Evaporative Cooling
The rubidium atoms are selectively evaporated using microwave radiation,
to sympathetically cool the potassium sample. To avoid Majorana spin flips
at the center of the trap, a Ioffe coil is introduced to the quadrupole trap,
creating a harmonic potential with an offset at the minimum [130]. The
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evaporation is then performed until the rubidium sample is depleted. The
remaining potassium atoms are then transferred into a 1064 nm crossed
optical dipole trap (ODT), to free up the magnetic field as a tunable para-
meter. Two Rapid Adiabatic Passages (RAP) are utilized to first transfer
the atoms from the |F = 2,mF = 2⟩ state to the |F = 2,mF =−2⟩ state and
then to the |F = 1,mF =−1⟩ state. The atoms have a negative background
scattering length at low magnetic fields [131], and it is necessary to tune it
to large positive values, with the magnetic field, before evaporative cooling
is performed. This allows for the condensation of the atoms, and this is the
starting point for the experiments discussed within this thesis. To detect the
atoms, the trapping potential is turned off and the cloud falls and expands
during a time-of-flight (TOF), with subsequent absorption imaging.

3.3 Absorption Imaging
Absorption imaging uses an imaging beam incident on the atomic cloud
which becomes attenuated due to absorption. For multi-level atoms, this is
described by the Beer-Lambert law [132]

dI
dx

=−n(x)
σ0

α∗
1

1+ I/Ieff
sat

I, (3.1)

where σ0 = 3λ 2
0 /2π is the resonant scattering cross section for a two-level

atom with a transition at the wavelength λ0. The atomic density along
the imaging beam is given by n(x). Finally, Ieff

sat = α∗Isat is an effective
saturation intensity given by the product of the saturation intensity, which
for our system is the D2 line for 39K, Isat = 1.75 mW/cm2 [133], and the
dimensionless parameter α∗. This parameter takes experimental factors
into account such as imperfect polarization and multi-level structure, and
is used for calibrating the imaging system.

The absorption of the imaging beam effectively results in a "hole" in its
intensity profile I(y,z), which is recorded on a camera for each pixel (y,z).
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This is then compared to the case of a reference beam I0(y,z), without
the absorption of the cloud. This allows for the extraction of the column
density ñ(y,z) and optical density od(y,z) of the atomic cloud, which are
found by integrating Eq. (3.1) along the imaging direction,

od(y,z)≡ ñ(y,z)σ0 = α∗ ln
(

I0(y,z)
I(y,z)

)
+

I0(y,z)− I(y,z)
Isat

. (3.2)

The role of the parameter α∗ is to ensure that the observed column dens-
ity of the atomic cloud does not depend on the intensity of the imaging
beam. To calibrate the experimental value of α∗, the intensity of the ima-
ging beam is varied for atomic clouds of constant optical densities while
keeping the number of photons in the imaging beam constant by adjusting
the exposure time. For a chosen region of interest (ROI) on the camera,
the intensities I(y,z) and I0(y,z) are extracted for each pixel. This gives the
following fitting function for α∗ [134]

∑
ROI

ñ(y,z)σ0 = α∗ ∑
ROI

ln
(

I0(y,z)
I(y,z)

)
+ ∑

ROI

I0(y,z)− I(y,z)
Isat

. (3.3)

An example of such a calibration is shown in Fig. 3.3, along with the effect
of varying this parameter on the standard deviation of the optical densities
of the atomic clouds for the different intensities. The minimum lies at the
same value as that extracted from the fit, α∗ = 1.64(8).

The camera itself also requires calibrations consisting of pixel size cal-
ibration and photon calibration. The first is necessary due to the optical
elements used in the imaging setup, resulting in an effective pixel size. It
is performed by letting the atoms fall under the effect of gravity, for which
they are accelerated by 9.815 m/s2. The atoms vertical position on the
camera is given by a quadratic equation, f (t) = at2 +bt + c, as a function
of TOF. This is shown in Fig. 3.4, where the pixel size is extracted as
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FIGURE 3.3: (top) The relation between the logarithmic and linear term of
Eq. (3.3) allows for fitting of the parameter α∗ = 1.64(8). (bottom) This
value of α∗ gives the lowest standard deviation of the optical density (OD)
when varying the intensity of the imaging beam.

pixel size =
9.815

2a
µm
px

. (3.4)

From the fit to the data in Fig. 3.4, the pixel size is calculated to
2.85(1) µm/px. The photon calibration of the camera relates the number
of photon-electron counts recorded at the camera to the number of photons
at the position of the atoms. First, the power in the imaging beam is meas-
ured before and after the science cell, and the average of these is taken as
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FIGURE 3.4: (top) Pixel size calibration, where the atoms fall under gravity
and are fitted to a quadratic model (blue line), which allows for the extraction
of the effective pixel size. (bottom) Photon calibration, relating the number
of photons at the position of the atoms to those detected at the camera with a
linear fit (blue line).

the power at the position of the atoms. The exposure time of the camera
is then varied and the number of counts is plotted as a function of the en-
ergy in the imaging beam. This is shown in Fig. 3.4 and gives the value
2.21× 10−18 J/count, or equivalently 0.0134 Isat µs/count by using the
pixel size and the units of Isat. The imaging transition used for our experi-
ment is the |F = 2⟩ to |F ′ = 3⟩ transition, along with repumping light from
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100µm

FIGURE 3.5: (top) Typical image of a 39K BEC for our system, observed
using absorption imaging after time-of-flight. Adapted from [44]. (bottom)
The density profile of the cloud, with the bimodal fit for the thermal and
condensate visible. Adapted from [124].

the |F = 1⟩ to |F ′ = 2⟩ state. A typical absorption image of a 39K BEC
is shown in Fig. 3.5, where the atom number is evaluated using a bimodal
fit for the condensate and thermal parts of the cloud. The typical value of
the number of atoms in the condensate is 50− 60× 103. The total cycle
time for the experiment from MOT to BEC is just over one minute and the
experiment is often kept running overnight for data acquisition.
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FIGURE 3.6: a) Overview of the sensor and communication to the Grafana
database through the Raspberry Pi. b) Visualization of the sensor values
uploaded to the Grafana database.

3.4 Modifications
In this section, selected contributions to the experiment during my PhD are
highlighted. These include improvements and corrections to the already
existing equipment as well as installations of new features.

Logging and monitoring

Given the long cycle time of the experiment, the experiment is often run-
ning for several hours to ensure a sufficient amount of data is collected.
For the collected data to be consistent and comparable, the system must be
as stable as possible to repeatedly produce equal-sized condensates. Mul-
tiple parameters can influence the stability of the system, such as the room
temperature and humidity, as well as stray magnetic fields from neighbor-
ing laboratories. The last of these is controlled by measuring the magnetic
field with the atoms daily, while also regularly nullifying external magnetic
fields with passive compensation coils that surround the experiment. Addi-
tionally, the experiment is also locked to the same point in the 50 Hz cycle
from the power grid right before magnetic field sensitive measurements are
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performed.
The laboratory itself is positioned underground and the temperature is

controlled by a commercial cooling system. To control the humidity, a
dehumidifier was purchased during my PhD, which attempts to keep the
humidity at a steady level. In order to quantitatively measure how well
these parameters are controlled, multiple sensors are placed around the
laboratory. These employ I2C communication, which means that multiple
sensors can be connected to a single Raspberry Pi by placing them in series.
The data from the sensors are uploaded to the online database Grafana, as
illustrated in Fig. 3.6, which allows for quick visualization of the trend
of the parameters. Besides being useful for monitoring the environment,
general analog-to-digital converter (ADC) modules find broad usages in
the experiment. One example is monitoring the laser light out of specific
optical fibers using a photodiode behind the first mirror after the fiber and
connecting the photodiode to the ADC module. This allows for monitoring
which fiber couplings are drifting overnight and logging this to check for
systematic issues.

Tapered amplifier

Tapered amplifiers are widely used in the experiment to reach the necessary
optical powers for the MOT cooling phase. Although commercially avail-
able, these have typically been homebuilt for our system. At the beginning
of my PhD, I was tasked with building new tapered amplifiers (TA), ac-
cording to the design in Ref. [135]. These differed from the old design,
where everything was permanently glued together, by having a more struc-
tured design where the position of the in- and out-coupling lenses are freely
varied. Initial testing of one of the TA’s is shown in Fig. 3.7. Here, the amp-
lification of the TA is given by the ratio of the output power and the input
seed power, Pout/Pseed , and is observed to deliver large amplifications as
the injection current is increased.
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FIGURE 3.7: The amplification of the TA, Pout/Pseed , as a function of the
injection current. The horizontal line marks the point where Pout > Pseed .

Imaging field

It is critical to have a well-defined magnetic field during the absorption
imaging of the atoms. For this reason, it is good practice to cancel any
background magnetic field, since they may interfere with the experiment
when using low magnetic fields. The magnetic fields are therefore meas-
ured using a magnetic field sensor (Mag-03 from Barington) and the re-
quired field strengths of the coils are calculated. Three compensation coil
pairs surround the science cell, where the coils in the Y- and Z-direction
only cancel background fields.

The X-direction coils also cancel background fields but during the ima-
ging sequence, they are ramped to higher currents to provide a guidance
field. However, due to the slow GPIB communication there is a significant
delay in the ramp as shown in Fig. 3.8. This means that the guiding field
for the imaging sequence is not set until about 15 ms after the trigger has
been issued by the control program. The situation is drastically improved
by using a controllable MOSFET between the power supply (PSU) and the
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FIGURE 3.8: Response time for imaging field from trigger (blue line) to
actual measured current (yellow line) through the compensation coils for a)
GPIB command and b) MOSFET trigger.

coils. The PSU is set to high values much earlier but has its output blocked
by the MOSFET. The field is then set with a digital trigger to the MOSFET,
which has a much better response time, ∼ 4 ms, as also seen in Fig. 3.8.
This leads to a more predictable behavior for this part of the experimental
sequence.

Future plans

Finally, plans for the experimental apparatus are mentioned here. These
include rebuilding the laser system into modular components, to improve
the stability and accessibility of the system. For the potassium laser sys-
tem, there are currently three external-cavity diode lasers from Toptica in
use, which often require attention to ensure adequate output power as well
as sufficient single-mode lasing. For the redesign of the system, only one
or two potassium lasers will be used, and additional TA’s will be installed
to ensure enough output power is achieved. This is possible since 39K has
a very small hyperfine splitting between its ground states, such that both
can be addressed by shifting the frequency with AOM’s.
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As mentioned earlier, the cycle of the system from MOT to BEC is
just over one minute. If this cycle time could be reduced it would be a
significant improvement to the experiment, since the criteria for stability
would be relaxed. Ideas for how to do this include immediate loading of
the MOT after the atoms have been transferred to the science cell or imple-
menting a 2D-MOT in connection with our 3D-MOT for fast and efficient
loading. The former of these has already been tested and concluded to not
be possible due to the science cell not being shielded well enough from the
MOT light. Implementing a 2D-MOT in connection with our 3D-MOT is
therefore a promising candidate that could remove the need for rubidium
as Gray molasses has been shown to be an efficient cooling method for po-
tassium [136]. However, it would also be a major re-configuration of the
system that would require a great deal of effort and time.



CHAPTER 4

Loss Spectroscopy and
Three-body Physics

Radio-frequency (rf) spectroscopy is one of the fundamental probes for in-
vestigating ultracold quantum gases. The spectral response of the system
consisting of an impurity immersed in a Bose-Einstein Condensate allows
for extracting important properties of the emerging Bose polaron. How-
ever, it also contains information on the three-body physics that leads to
losses in these systems. Characterizing these losses is important for ex-
perimental sequences where the system is evolving and allows for tracking
the atom number as a function of the evolution time. The atom number
is central for benchmarking the system to properly compare the observed
results with theoretical predictions.

The chapter is structured as follows: First, the spectral function of the
polaron is discussed in Sec. 4.1. Afterward, the experimental spectroscopic
techniques to probe this are provided in Sec. 4.2. The three-body recom-
bination processes are described in Sec. 4.3, with a discussion of the spe-
cific details of our system. Finally, in Sec. 4.4, the results of the public-
ation [3] are briefly summarized and an outlook is given before the full
content is presented.

41
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FIGURE 4.1: The polaron spectral function A (purple line), as a function of
the energy of the rf-pulse, both scaled by the characteristic energy En (see
main text). The energy of the rf-pulse is measured relative to the bare energy
of the non-interacting impurity. A comparison of the high-frequency tail
and an exact analytical solution (black line) is also shown (inset). Adapted
from [44].

4.1 Spectral Function

For an impurity immersed in a Bose-Einstein Condensate, the resulting
polaron may be investigated with different experimental tools to probe its
properties. One of these is spectroscopy, which probes the spectral re-
sponse of the system. As discussed in Ch. 2, the polaron consists of an
impurity dressed with excitations of the medium it interacts with. This was
modeled as a superposition of the impurity at rest and moving with finite
momentum with an excitation moving in the opposite direction. Therefore,
the system’s expected spectral response consists of a peak corresponding
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to the ground state of the polaron at rest and a tail stretching to higher en-
ergies corresponding to the continuum of excitations. This is illustrated
in Fig. 4.1, where the polaron spectral function was numerically calcu-
lated using a diagrammatic prediction for attractive impurity-medium in-
teractions [57]. The peak displays a clear shift towards negative energies,
relative to the energy of the non-interacting bare impurity at E/En = 0. Ad-
ditionally, the behavior of the high-frequency tail is compared to an exact
analytical solution [137], with excellent agreement.

The observed shift of the peak of the polaron depends explicitly on the
impurity-medium interaction strength, kna. This was described in Ch. 2,
where a is the impurity-medium scattering length and kn = (6π2n)1/3 is the
characteristic wavenumber of the medium with atomic density n. Addition-
ally, the characteristic energy, En = h2k2

n/2m, also provides a convenient
scaling parameter for the observed energy shift. This way of scaling the
system is useful when comparing the results with other experiments and
theoretical predictions, including those with a fermionic medium where
similar scaling parameters are used [91]. Importantly, if the atomic density
is not well known, it can lead to systematic errors between the observed
and expected results. Accurately determining the density is therefore crit-
ical but non-trivial to calculate in the presence of losses. Experimental
methods for probing the spectral function and its connection to the loss
processes of the system are presented in the following section.

4.2 Spectroscopy Techniques

The experimental efforts to record the spectrum of the polaron led to the
first observations of the Fermi polaron [45, 47] and Bose polaron [51, 52].
This was accomplished using the so-called injection protocol, which is a
single rf-pulse sequence. This protocol is presented first followed by a
more advanced two rf-pulse sequence.
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4.2.1 Injection Spectroscopy

For our system [51], the experimental sequence for the injection protocol
is as follows: The system starts with a 39K BEC in the hyperfine state
|F = 1,mF =−1⟩ ≡ |1⟩, acting as the medium. A rf-pulse is applied,
which effectively transfers a fraction of the BEC atoms to the impurity
state, |F = 1,mF = 0⟩ ≡ |2⟩. This transfer only occurs if the rf-pulse is on
resonance with respect to the impurity state. The energy of the impurity
is dependent on the impurity-medium interaction strength, which is con-
trolled through the scattering length, a, and tunable by use of a Feshbach
resonance (see Ch. 2). The observed shift in the energy of the impurity, as
already shown in Fig. 4.1, provides fundamental evidence for the existence
of the polaron. The nature of the injection protocol is thus to probe the
system through the direct transfer to the impurity state.

Due to loss processes in our system, the impurities are lost before de-
tection is possible. These are expected to consist of three-body recombin-
ations involving an impurity and two medium atoms. Therefore, only the
remaining number of medium atoms are detected and this observed loss
of medium atoms is taken as the experimental signal, as high losses are
observed when the rf-pulse is resonant with the impurity state. This is also
called loss spectroscopy, given that the rf-spectrum is inferred from the
loss of medium atoms. An example of this is shown in Fig. 4.2. Far from
the resonance position, a constant atom number is observed. Closer to the
resonance, a dip in atom number is observed, with a minimum that is shif-
ted relative to E/En = 0, which is the measured transition between the |1⟩
and |2⟩ states for thermal atoms. From this signal, the observed spectral
function is extracted by flipping and normalizing the signal as also shown
in Fig. 4.2. As expected, there is a shifted peak with a tail towards higher
energies, which are the fundamental experimental traits of the polaron.

Due to the use of a harmonic trapping potential and a finite rf-pulse dur-
ation, the observed spectral function is broadened significantly. For now,
the exact modeling of the spectral function and the experimental modific-
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FIGURE 4.2: (top) Observed atom number (gray circles) as a function of
the frequency of the rf-pulse in the injection protocol. The data is fitted
with a Gaussian function (black solid line), to extract the atom numbers on-
(dash-dotted horizontal line) and far off-resonance (dashed horizontal line).
Adapted from [3]. (bottom) Normalized spectral response of the impurity
with a shifted peak and a tail stretching towards higher energies.

ations are ignored, and instead, we focus on the difference in the observed
atom losses, off- and on-resonance. These are extracted by fitting the data
with a Gaussian function. This is similar to how the spectral function of
the polaron was initially modeled [51]. For the observed atom numbers in
Fig. 4.2, the difference in the off- and on-resonance numbers is ∼ 1.5×104.
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This number corresponds to the maximal loss of medium atoms in the sys-
tem when the highest number of impurities are generated. In this specific
case, the impurity fraction is 15%, which was measured by performing
Rabi oscillations on the |1⟩ to |2⟩ state transition, with thermal atoms.
From the off-resonance atom number of ∼ 3.3×104, the average number
of medium atoms lost per impurity is calculated to 1.5×104

0.15·3.3×104 −1 ∼ 2.03,
fitting well with the expected number of 2 for perfect three-body recom-
bination. This example outlines a method for extracting information on the
loss process from the observed spectrum. This is further investigated in the
following for a two-pulse spectroscopy sequence.

4.2.2 Ejection Spectroscopy
The injection protocol discussed above is characterized by a single rf-
pulse, which attempts to inject directly into the polaron state. A more
advanced technique is the so-called ejection protocol, which for our system
uses a sequence of two rf-pulses and the third Zeeman substate,
|F = 1,mF =+1⟩ ≡ |3⟩. The sequence is illustrated in Fig. 4.3, with the
relevant loss channels depicted as well. The sequence starts with an ini-
tial rf-pulse that has a duration that is as short as possible and fixed to the
transition between the |1⟩ and |2⟩ states, measured for thermal atoms. The
short duration of this rf-pulse means that it is very broad in the frequency
spectrum, which ensures the population of the impurity state. The system
then evolves through the impurity-medium interactions, with three-body
recombination processes taking place as well. At the end of the evolution
time, the ejection sequence is closed by a final rf-pulse, which attempts to
transfer, or eject, the impurities to the third state, |3⟩. If this is successful,
a peak is observed in the spectrum as explained in the following.

The losses between the medium and impurity state are dominated by
three-body recombination. However, for successful transfer of the impur-
ities to the third state, |3⟩, two-body recombination is possible through
spin exchange collisions between an impurity and a medium atom. This
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FIGURE 4.3: Illustration of the ejection protocol consisting of two rf-pulses,
with the relevant states for our system (see main text). (left) For impurities
in the |2⟩ state, the losses are dominated by three-body recombination of one
impurity and two medium atoms. (right) For impurities in the |3⟩ state, the
losses involve only one impurity and one medium atom. Adapted from [3].

process is much faster and only results in one medium atom lost per im-
purity. Thus, if the second rf-pulse is resonant with the impurity energy, a
lower atom loss due to two-body recombination is observed as a peak in
the spectrum, from which the properties of the polaron can be extracted.
An example of this is shown in Fig. 4.4, resembling that of the injection
protocol in Fig. 4.2. The spectrum consists of a peak and a tail, which now
extends towards lower energies.

Just as for the injection spectrum discussed above, the exact form of
the spectral function for the ejection protocol is ignored for now, and only
the atom numbers off- and on-resonance are considered. The spectrum
in Fig. 4.4 is fitted with a Gaussian function to extract the atom number
off- and on-resonance, as also indicated in the figure. The atom number
off-resonance corresponds to the case where the second rf-pulse has ef-
fectively no impact and all impurities remain in the |2⟩ state and are lost
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FIGURE 4.4: Observed atom number (gray circles) for the ejection protocol.
This spectrum is similar to that observed for the injection protocol in Fig. 4.2
consisting of a peak and a tail, which is now stretching towards lower en-
ergies. The data is fitted with a Gaussian function (black solid line) to ex-
tract the atom number on- (dash-dotted horizontal line) and far off-resonance
(dashed horizontal line). Adapted from [3].

through three-body recombination. From the observed atom number off-
resonance, the number of medium atoms lost per impurity, due to three-
body recombination, can be estimated. This was exactly the scenario dis-
cussed for the injection spectrum at resonance. If the second rf-pulse is
resonant, a lower total loss of medium atoms is observed, which is due to a
combination of three-body recombinations during the evolution time, and
two-body spin-exchange collisions after the rf-pulse. In the limit of very
short evolution time, the loss observed at the peak is expected to be purely
two-body.

This section has thus introduced the injection and ejection protocols,
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with examples of typical spectra for both. Besides being of interest in
terms of characterizing the properties of the polaron itself, these spectra
also contain information regarding the loss processes for an impurity em-
bedded in a Bose-Einstein Condensate. The loss processes are important
to characterize such that they can be properly accounted for when invest-
igating polaron physics. This is further discussed in the following section.

4.3 Three-body Recombination
For the case of a pure medium, three-body recombination processes are
well described by including an empirical term to the GP equation (see
Ch. 2). This leads to a differential equation for the atom number

dN
dt

=−L3

∫
n(r)3d3r, (4.1)

where L3 is the three-body loss rate coefficient, and n is the atomic density.
For the case of a harmonic trapping potential, the density distribution of
the condensate is well described in the Thomas-Fermi approximation as

n(r) = n0

[
1−
( r

R

)2
]
. (4.2)

The peak density and spatial extent of the condensate are given by n0 and
R = (2µ/mω2)1/2, with the geometric mean of the trapping frequencies
ω = (ωxωyωz)

1/3 as well as the chemical potential µ . From this density
distribution, the integral in Eq. (4.1) gives the solution

dN
dt

=−L3
7
6

154/5

(14π)2

(
mω

h̄
√

aB

)12/5

N9/5, (4.3)

where aB is the scattering length between the BEC atoms [138]. This equa-
tion can be numerically solved and fitted to experimental data in order to
extract the three-body loss rate coefficient, L3. The above procedure only
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works for repulsive interactions (aB > 0) between the BEC atoms, which
collapses for attractive interactions [84]. For this reason, the regime of
negative scattering lengths is usually investigated using thermal gases.

For a thermal gas, the density distribution in a harmonic trap is given by
a Gaussian distribution, with an explicit dependence on the atom number
and temperature. This results in two coupled differential equations for
the temperature and atom number, which can be numerically solved by
comparing with experimental data, allowing for the extraction of the three-
body loss rate coefficient [74, 86]. To compare the results of the condensed
and non-condensed systems, the suppression of density fluctuations in a
BEC needs to be accounted for [139]. This leads to a suppression of the
three-body loss rate for the BEC by a factor of 6, compared to the non-
condensed gas.

In the specific case of 39K , the three-body loss rate has been invest-
igated at both positive and negative scattering lengths, for a single com-
ponent gas in a harmonic trap [74, 140], as well as recently in a box po-
tential [141]. These provide strong experimental evidence for a universal
behavior of the three-body loss rate given by, L3 ∝ a4. Note that the scat-
tering length has now been generalized to a, to separate it from the internal
scattering length of the BEC, aB, which appears through the Thomas-Fermi
density distribution. In the context of impurity physics, it is the interstate
scattering length between the medium and impurity state, a, that the three-
body loss rate is expected to show a dependence on. The universal behavior
can be qualitatively understood in terms of the two-body scattering cross
section (see Eq. (2.4)). The cross section is proportional to a2 and by intro-
ducing a third atom another factor of a2 is included, giving the a4 behavior
for the three-body recombination.

In the context of this thesis, the system of interest is that of a mix-
ture of the medium and impurity state given by the internal states of 39K,
|F = 1,mF =−1⟩ ≡ |1⟩ and |F = 1,mF = 0⟩ ≡ |2⟩. The loss of this sys-
tem is described by a set of coupled differential equations for the number
of the medium and impurity atoms, NB and NI ,
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dNB

dt
=− 2

3
LBBI

3

∫
nB(r)2nI(r)d3r− 1

3
LBII

3

∫
nB(r)nI(r)2d3r

−LBBB
3

∫
nB(r)3d3r,

(4.4)

with an equivalent one for NI , by swapping the indexes [142]. The three
terms on the right represent the different three-body recombination chan-
nels of the system, which have different dependencies on the atomic dens-
ities n(r). The interactions in the system are described by the internal
scattering lengths of each component, aB and aI , as well as their interstate
scattering length, a. Usually, only one of these is tuned through a Feshbach
resonance, with the others at relatively constant values.

Previous investigations of 39K in the context of bright solitons and
quantum droplets explored the three-body recombination losses of the |1⟩
and |2⟩ states [143–145]. It was found that three-body recombination of
three atoms in the |2⟩ state dominated the losses. The losses due to three-
body recombination in the |1⟩ state, as well as those between the |1⟩ and
|2⟩ states, were found to be comparable to background losses [146]. How-
ever, for these investigations, the intrastate and interstate scattering lengths
were all below 100a0, which is much smaller than those used in this thesis
for investigating polaron physics.

In the impurity limit of the above mixture, the system only contains
a small fraction of the |2⟩ state. Such a setting allows for excluding the
second loss channel term in Eq. (4.4), given that the low density of the
impurities significantly decreases their internal scattering probability. Ad-
ditionally, the interstate scattering length between medium and impurity is
typically tuned to very large values. The three-body recombination due to
an impurity and two medium atoms is therefore expected to dominate the
losses of the system, on the timescales typically considered. Experimental
investigations of the medium losses for attractive impurity-medium inter-
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actions using the ejection protocol are further discussed in the following
section, leading to the paper [3].

As a final comment on three-body physics, it is noted that the exist-
ence of three-body bound states, described by Efimov physics as briefly
discussed in Ch. 2, are observed as sharp resonances in the three-body
loss rate when tuning the scattering length [73]. This effect is enhanced for
highly mass-imbalanced systems, where a light atom can more easily medi-
ate interactions between two heavy atoms [78]. This has been experiment-
ally exploited for systems containing 6Li−87Rb [147] and 6Li−133Cs mix-
tures [148, 149]. Additionally, for the case of an impurity immersed in a
Bose-Einstein Condensate, the effects of Efimov physics have been pre-
dicted to significantly affect the attractive polaron energy [79, 80], or even
cause a collapse at strong interactions [67]. In our system, the medium and
impurity have equal masses and the expected effects of Efimov physics
are significantly reduced. In fact, the scattering threshold for the impurity-
medium-medium trimer state is |a−| = 3× 105a0 [51], which is orders of
magnitude above the scattering lengths we typically use.

4.4 Three-body Physics in the Impurity Limit
in 39K

Characterizing the losses of an impurity embedded in a Bose-Einstein Con-
densate is critical for understanding and analyzing the experimental res-
ults. Three-body recombination losses have previously been theoretically
investigated for repulsive impurity-medium interactions to account for the
observed discrepancies between the theoretical and experimentally extrac-
ted energies of the repulsive polaron branch [53]. It has also been exper-
imentally investigated with an ejection protocol at attractive [57] and re-
pulsive [2] impurity-medium interactions and analyzed with a simple em-
pirical model. In the following paper [3], the losses at attractive impurity-
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medium interactions are re-investigated and analyzed using a new model,
which allows for extracting the atom number of the medium at a vari-
able time in the ejection protocol. Such a method is valuable for ejection
spectroscopy to estimate the density of the system at the point where it is
probed, which is further emphasized in Ch. 5.

4.4.1 Results

The losses in the ejection protocol consist of either three-body recombin-
ation during the evolution time or fast two-body spin-exchange collisions
after the second rf-pulse has been applied. The decay of the medium is ob-
served by varying the evolution time and generally contains both types of
losses. By utilizing the limits of the observed decay, the real decay curve
representing only three-body recombinations of one impurity and two me-
dium atoms is obtained. This real decay curve is fitted with a differential
equation describing this loss process, for which the density distribution of
the BEC in the harmonic trap is specifically utilized. From this fit, the
three-body loss rate coefficient is extracted and by varying the impurity-
medium scattering length, this coefficient is traced from weak to strong
interactions. A good agreement with the expected universal behavior of a4

is observed, with an eventual saturation at large scattering lengths.
The extracted three-body loss rate coefficients allow for calculating the

medium atom number at any point in the ejection protocol. This is import-
ant when performing ejection spectroscopy to estimate the atomic density
at the point of applying the second rf-pulse, which sets the characteristic
scaling parameters En and kn. If these parameters are not accurately known,
systematic discrepancies between the extracted and theoretical polaron en-
ergies can be expected. It is also shown that the medium atom number
can be extracted directly from the observed ejection spectrum, which is
compared to the results from applying the three-body loss rate coefficients,
with good agreement.
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Finally, the number of medium atoms lost per impurity is extracted
experimentally as a function of the impurity-medium interaction strength.
This is observed to increase at strong interactions, where as many as 3-
4 medium atoms are lost per impurity on average. This is interpreted as
a result of secondary collisions in the system, after the initial three-body
recombination process.

4.4.2 Outlook
In the impurity limit of mixtures, the three-body recombination processes
are simpler to model and the observations are easier to interpret. The ex-
tracted values of the three-body loss rate coefficients are fairly consistent
with those for a single component thermal gas of 39K at similar scattering
lengths [74, 140, 150]. However, for a single component gas, the scattering
is between three identical bosons, whereas for our results the scattering is
between two identical bosons and a third boson. Importantly, the interac-
tions tuned are those between the third boson (the impurity) and the two
identical bosons (the medium atoms). Such systems have been predicted to
show distinct behavior in terms of the scaling dependence of the scattering
length [151] and the dimensionless parameter C [152], although still with
a a4 dependence to leading order.

Compared to the previous investigation of the losses in our system [57],
it is clear that the empirical model of the decay will overestimate the
three-body recombination losses. At the time, good quantitative agree-
ment between the experimental data and the modified theory was observed,
which merited the use of this model.

As discussed in Sec. 4.3, there are important differences between a
thermal and condensed gas when investigating three-body recombination
losses. In addition to these, the high densities of the BEC may also affect
the losses, which have been observed to suppress the three-body recom-
bination [153]. It may therefore be relevant to re-investigate the three-body
recombination losses observed here, for thermal gases in the impurity limit.



4.4. Three-body Physics in the Impurity Limit in 39K 55

It is a surprising result that the observed number of medium atoms lost
per impurity increases to as much as 4 for strong impurity-medium inter-
actions. Secondary collisions have been quantitatively investigated for re-
pulsive interactions [74], and are understood to be caused by an avalanche
effect [154]. For our system, these secondary collisions are assumed to
only involve medium atoms such that a consistent behavior for ejection
spectroscopy can be expected, even at strong interactions.

It would be natural to extend the above results to the repulsive side of
impurity-medium interactions. Much of the theory described here should
apply to this side, and a similar overall behavior is expected. However, the
response at large scattering lengths may prove difficult to probe given the
inherent instability of the repulsive polaron state.

Finally, the results of this paper [3] may also find a use for the multiple
experiments that investigate impurity physics through loss spectroscopy
with 39K [52, 106], to properly account for these processes. The methods
and techniques can of course also be extended to other systems as well.

4.4.3 Publication
For the following paper [3], I was part of conducting the experiment and
collecting the experimental data. I also performed the data analysis, in-
cluding all the figures and I wrote the first draft of the paper.

The paper will be submitted to Physical Review A under the American
Physical Society organization, after the submission of this thesis.



Three-body Physics in the Impurity Limit in 39K

A. M. Morgen,1 S. S. Balling,1 M. T. Strøe,1 M. G. Skou,1 and J. J. Arlt1
1Center for Complex Quantum Systems, Department of Physics and Astronomy,

Aarhus University, Ny Munkegade 120, DK-8000 Aarhus C, Denmark
(Dated: August 27, 2024)

Loss spectroscopy is an important tool for investigating systems where intrinsic loss processes prevent direct
observation of the constituents. Here, we discuss the use of loss spectroscopy to evaluate the properties of
impurities embedded in a Bose-Einstein Condensate (BEC), based on two- and three-body loss processes. The
impurity limit of the system allows for the quantitative evaluation of the three-body loss processes including
two BEC atoms and one impurity. This loss process is analyzed on a microscopic level, allowing us to extract
the associated three-body loss rate coefficient. It enables the extraction of the density of the BEC at a variable
point in the experimental sequence, which is of crucial importance for understanding the effects of impurities at
strong interactions. Moreover, we demonstrate a method for extracting the density directly from the observed
spectrum and compare the results. Both methods allow for an evaluation of the number of lost medium atoms
per loss event, which exceeds 2 at strong interactions. These additional losses are interpreted as a consequence
of secondary collisions in the medium.

I. INTRODUCTION

Loss processes in ultracold quantum gases often compli-
cate measurements, adding to the complexity of analyzing
and interpreting the observed results. One such case is atom
interferometry where atomic losses impose additional deco-
herence on the quantum system [1–5]. However, for a wide
range of experiments, the atomic loss is the observable from
which exciting physics can be inferred. An example is Efi-
mov physics, where a peak in the observed loss rate of atoms
is indicative of three-body bound states [6, 7]. Similarly, Fesh-
bach resonances can also be inferred from the observed losses,
which increases as the resonance is approached [8]. Losses
may even be used to investigate exotic quantum phase tran-
sitions such as the Mott insulator to superfluid transition [9]
and nonequilibrium phase transitions in circuit quantum elec-
trodynamics [10].

For an impurity embedded in a Bose-Einstein Condensate
(BEC), spectroscopy is the principle tool for probing the spec-
tral response of the emerging quasiparticle state as the inter-
action between the impurity and medium atoms is tuned [11–
14]. Due to three-body recombination, losses of atoms in
both the medium and impurity states are expected and often
prohibit direct observation of the impurities. Instead, the ob-
served loss of medium atoms is used to infer the properties of
the impurity. In addition, they provide insight into the few-
body physics characterizing the loss processes. The losses
also change the system itself, which is characterized by the
atomic density of the system. Accurately modeling the losses
is therefore necessary to estimate the density of the system
when probing it, in order to interpret the results and avoid sys-
tematic discrepancies between experimental results and theo-
retical predictions.

Loss processes for an impurity immersed in ultracold gases
have previously been investigated for 87Rb−133 Cs [15] and
41K −87 Rb [16] mixtures, where the impurity limit allows
for isolating the possible three-body recombination processes.
This is also exploited for our system, where a BEC of 39K is
utilized.
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FIG. 1. Illustration of the ejection spectroscopy sequence with the
relevant states depicted and loss channels due to a) three-body re-
combination and b) two-body spin exchange collisions. c) Injection
and d) ejection spectroscopy signals at inverse interaction strength of
1/kna=−1, fitted with Gaussian functions. For ejection, an increase
of medium atoms is observed at the resonance frequency, while for
injection a decrease is observed. The dashed line refers to the case
of maximal loss for ejection and no loss for injection. The dashed-
dotted line shows the maximal gain of medium atoms for ejection
and maximal loss in ejection.

In the context of loss spectroscopy, the observed loss of
medium atoms is dependent on successfully transferring the
medium atoms to the impurity state. This loss is largest when
the transfer is largest, which is the case at the resonance fre-
quency between the two states. This single-pulse sequence for
spectroscopy is also known as injection spectroscopy, due to
the nature of injecting into the medium state. Here, we show
that a third state can be used in a two-pulse spectroscopy se-
quence referred to as ejection spectroscopy [17], to evaluate
the nature of the loss mechanism. In the ejection sequence,
the impurities are initially created with a radio frequency (rf)
pulse, followed by a variable evolution time until a second
rf-pulse probes the system by transferring the impurities out
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again.
The paper is organized as follows. An introduction to the

experimental ejection sequence is provided in Sec. II, with an
overall description of our system in Sec. III. The loss channels
of our system are considered in Sec. IV, with calculations for
the medium density at a variable time in the ejection sequence.
The three-body loss rate is analyzed and compared to theoreti-
cal predictions in Sec. V, along with previous empirical analy-
sis in Sec. VI. In Sec. VII, the atomic density is calculated and
in Sec. VIII the number of medium atoms lost per impurity is
investigated. Finally, a conclusion on our results is provided
in Sec. IX.

II. LOSS SPECTROSCOPY TECHNIQUE

The ejection spectroscopic measurement is initiated by a
short rf-pulse, that creates a superposition of atoms in the
medium state, |1⟩, and the impurity state, |2⟩. The system
is then allowed to evolve before a second rf-pulse is applied,
which transfers the impurity atoms to a third state, |3⟩. This
transfer only happens if the frequency of the second rf-pulse
matches the energy difference between the |2⟩ and the |3⟩
state. Importantly, only three-body losses are allowed be-
tween the |1⟩ and the |2⟩ state, but two-body losses are pos-
sible between the |1⟩ and the |3⟩ state, as also illustrated
in Fig. 1. The latter occurs faster but results in fewer lost
medium atoms. Consequently, the observed loss of atoms in
the medium state is lowered if the transfer to state |3⟩ is suc-
cessful, and a peak of medium atoms is observed at the res-
onance energy. The ejection spectroscopy sequence together
with the different loss channels are illustrated in Fig. 1, with
examples of ejection and injection spectra.

Ejection spectroscopy offers the advantage that the system
is first prepared and allowed to evolve and settle before it is
probed. Conversely, injection spectroscopy directly probes
the system with the initial transfer, which generates additional
excitations in the system, effectively shifting the observed
spectral function [17].

III. EXPERIMENTAL IMPLEMENTATION

Our experiment is performed with BECs of 39K, produced
in an optical dipole trap [18] in the ground state |F = 1,mF =
−1⟩ ≡ |1⟩, with F and mF the total angular momentum quan-
tum number and its projection, respectively. The impurity
state is the |F = 1,mF = 0⟩ ≡ |2⟩ state, with the third state,
|F = 1,mF = +1⟩ ≡ |3⟩, used for the ejection sequence. An
interstate magnetic Feshbach resonance at 113.8 G, between
the medium, |1⟩, and impurity state, |2⟩, [19, 20], allows
for tuning of the interactions, characterized by the impurity-
medium scattering length, a.

In experiments involving ultracold quantum gases, char-
acteristic parameters associated with the atomic density, are
used for convenient scaling of the system. These parameters
are the characteristic energy, En = ℏ2k2

n/2m and wavenum-
ber, kn = (6π2n)1/3, which also enters the impurity-medium
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FIG. 2. Illustration of the expected decay of the medium atom frac-
tion, N(t)/N0, with an initial atom number N0 and impurity frac-
tion χ = 10%, in terms of the real (green solid line) and observed
decay curves (red dashed line). The former of these is the result
of pure three-body recombination between medium and impurity
atoms, whereas the latter also contains additional two-body losses.
The decay curves start at different medium atom fractions, indicated
by the horizontal lines.

inverse interaction strength, 1/kna, where n is the atomic den-
sity of the medium. In the ejection sequence described above,
it is the density at the point of applying the second rf probe
pulse that is relevant for calculating the scaling parameters En
and kn. However, it is not equal to the observed density at
the end of the experimental sequence, which is lower since
all impurities are always lost before detection, either through
two- or three-body recombination. This makes it necessary to
develop a method for reconstructing the atomic density at a
variable time in the ejection sequence.

IV. ATOM NUMBER RECONSTRUCTION

In the following, two approaches for calculating the
medium atom number at a variable time in the ejection se-
quence are presented. The first of these involves recording the
loss rate of medium atoms in the presence of impurity atoms.
The second utilizes the observed atom number in the ejection
spectrum to infer the number of the medium atoms at the point
of probing the system.

A. Decay curve reconstruction

To calculate the density of the system at a variable time, the
loss process associated with the interaction between atoms in
the |1⟩ and |2⟩ states is examined. If this loss rate is known,
the density at any point during the ejection sequence can be
determined from the initial density.

In order to measure the loss rate, the number of medium
atoms as a function of time is observed using the ejection se-
quence for a chosen initial impurity concentration. Addition-
ally, the probe pulse has a short duration and is fixed with re-
spect to the |2⟩ to |3⟩ transition. The expected outcome of this
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FIG. 3. Example of reconstructed decay N(t)/N0 from the observed
decay using Eq. (3), at low scattering length (−200a0). The data is
fitted with Eq. (10) (black dashed line) and the three-body loss rate
coefficient, L3, is extracted.

measurement is illustrated in Fig. 2, where two decay curves
are plotted. One of these is the real decay curve, representing
the loss of medium atoms due to interactions between atoms
in the |1⟩ and |2⟩ states, assuming perfect three-body recombi-
nation. The second decay curve is the observed decay curve,
which lies below the real decay due to the additional two-body
losses occurring after the probe pulse.

Assuming a BEC with initial N0 atoms, the first rf-pulse
populates the impurity state with a fraction, χ , of the total
atom number. The real decay of the medium atoms starts at
N0(1− χ) and decreases down to N0(1− 3χ) for long times.
The observed decay always has additional losses due to the
transfer to the |3⟩ state in the ejection sequence, which means
that it starts at N0(1−2χ) and decays to N0(1−3χ) for long
times. Despite this difference, it is possible to reconstruct the
real decay from the more involved observed decay. The re-
constructed decay then only reflects the loss process between
the medium and impurity state, as desired. Reconstruction re-
quires adding the number of atoms lost after the probe pulse
to the observed data points.

This number of atoms is derived by considering the fol-
lowing. During the evolution time, interactions between the
impurity and medium atoms lead to losses, and the number of
medium atoms at a variable time is given by

N(t) = N0(1−χ)−η3(N0χ −Ni(t)), (1)

where η3 is the number of medium atoms lost per impurity
in the |2⟩ state, expected to be equal to 2 for perfect three-
body losses, Ni(t) is the remaining number of impurity atoms
at time t, N0 is the initial BEC atom number and χ is the initial
impurity fraction. The probe pulse transfers the remaining im-
purities to the third state, |3⟩, where additional losses decrease
the number of observed medium atoms to

Nobs(t) = N(t)−η2Ni(t), (2)

where η2 is the number of medium atoms lost per impurity in
the |3⟩ state, expected to be equal to 1 for perfect two-body

losses. To obtain Ni(t), the observed atom number for long
evolution times is considered. In this case, all impurities are
lost before the probe pulse is applied and the observed atom
number is N∞ ≡ N(t → ∞) = N0(1− χ)−η3N0χ . The dif-
ference between Nobs(t) and N∞ corresponds to the number of
medium atoms ”saved” from three-body recombination. This
difference is also equal to the number of impurities at time t,
Ni(t), times the difference in the loss coefficients η3 and η2.
Inserting this result into Eq. (2) and rearranging gives

N(t) = Nobs(t)+η2
Nobs(t)−N∞

η3 −η2
. (3)

The above equation then allows for reconstructing the real
decay, N(t). The coefficient η2 (η3) is experimentally mea-
sured from the observed decay at short (long) evolution times,
where only two-body (three-body) losses are observed. An
example of a reconstructed decay curve is shown in Fig. 3,
at low impurity-medium scattering length. As expected, the
reconstructed decay starts at 0.9N0 and decreases to 0.7N0 at
long times.

B. Spectroscopy reconstruction

In the above derivation, it was the evolution time between
the two rf-pulses in the experimental sequence that was var-
ied, with their respective frequencies fixed. For the ejection
spectroscopy sequence, the probe pulse has a longer duration
(typically ∼ 20 µs for our system) to provide a sufficient en-
ergy resolution and its frequency is varied to record the spec-
trum, as also shown in Fig. 1. In this case, a similar calculation
for reconstructing the atom number is possible, as explained
in the following. If the probe pulse is off-resonant, all impu-
rities remain in the |2⟩ state and are lost through three-body
recombination, and the observed atom number off-resonance
is Noff-res = N∞. If the probe pulse is on resonance, the re-
maining impurities are transferred to the |3⟩ state, and the ob-
served atom number corresponds to Non-res = Nobs, as given
by Eq. (2). The difference between the observed on- and off-
resonance atom number is Non-res −Noff-res = Ni(t)(η3 −η2).
This is slightly different compared to the desired term Ni(t)η3,
which should be added to Noff-res to acquire Eq. (1). However,
under the assumption of exact three- and two-body losses,
η3 − η2 = 1, the atom number at the point of applying the
probe pulse is

N(t) = Noff-res +η3(Non-res −Noff-res). (4)

The results of Eq. (3) and (4), provide a framework for recon-
structing the medium atom number to exclude the additional
losses taking place after the probe pulse. Importantly, from
the former of these, the decay is reconstructed and the loss
processes are examined. The latter is used in the context of
ejection spectra, where an accurate determination of the den-
sity is necessary for calculating the characteristic scaling pa-
rameters, En and kn, to compare the extracted features with
theoretical predictions.
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V. THREE-BODY LOSS ANALYSIS

In a more microscopic approach, the three-body recombi-
nation loss process is examined in this section and compared
to the reconstructed decay according to Eq. (3). The starting
point is the following differential equation for the number of
medium atoms

dNB

dt
=− 2

3
LBBI

3

∫
n2

BnId3r− 1
3

LBII
3

∫
nBn2

I d3r

−LBBB
3

∫
n3

Bd3r−NB/τ,
(5)

where the subscripts B and I, refer to the medium and impu-
rities, with atomic densities nB and nI [7, 21]. The three-body
loss rate coefficient L3 is specified for the particular loss chan-
nel for each of the terms. Losses due to collisions with back-
ground atoms are modeled by the term −NB/τ . Given that
only the medium atoms are observed, we set NB ≡ N. The
differential equation is simplified by the following considera-
tions. The impurity density is much smaller than the BEC,
which means that the second term in Eq. (5) is neglected.
Additionally, the scattering length between the BEC atoms is
only 10a0 and the timescale associated with the measurements
is much shorter than those associated with background colli-
sions, such that the third and fourth terms can be neglected as
well. These considerations transform Eq. (5) into

dN
dt

=−2
3

L3

∫
n2

BnId3r, (6)

with L3 ≡ LBBI
3 . The generated impurities are expected to

retain the same distribution as the BEC [13] and we there-
fore make the approximation, nI = ρnB, where ρ is the den-
sity fraction of impurities in the system. This corresponds to
single-mode approximation. Inserting this into Eq. (6) yields

dN
dt

=−2
3

L3ρ
∫

n3
Bd3r. (7)

Using the Thomas-Fermi approximation for the density distri-
bution of the BEC, the above integral has a well-known solu-
tion [22]. The density fraction of impurity atoms in the system
is time-dependent and can be written in terms of the medium
and impurity atom numbers as

ρ(t) =
Ni(t)
N(t)

, (8)

where Ni(t) and N(t) are the number of impurity and medium
atoms at time t, respectively. The relation between these is
given by Eq. (1), where solving for Ni(t) and inserting into
Eq. (8) yields

ρ(t) =
N(t)/N0 +χ(1+η3)−1

N(t)/N0
. (9)
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FIG. 4. Extracted three-body loss rate coefficients (gray points) as
a function of the impurity-medium scattering length, a. A fit to the
data with Eq. (12) (blue dashed line) captures the saturation and the
initial a4 behavior (black dotted line) assuming nl = 3. The error of
this fit is indicated by the blue shaded region.

Inserting these results into Eq. (7) gives the following differ-
ential equation for the decay of the medium atom number

dN
dt

=− 1
2!

2
3

L3
7
6

154/5

(14π)2

(
mω̄
ℏ

)12/5 1

a6/5
B

N9/5

× N/N0 +χ(1+η3)−1
N/N0

,

(10)

where aB is the medium-medium scattering length and
ω = (ωxωyωz)

1/3 is the average trap frequency. The reduced
effect of atom-bunching for a BEC, also means that the ob-
served L3 is expected to be lower compared to the case of a
thermal cloud [23]. For a thermal gas, the probability of find-
ing three atoms close together is 3! times higher compared to
an ideal BEC. For our system, this suppression factor of the
three-body recombination is expected to be lower, given that
only two of the three particles are BEC atoms. As a result, we
include a suppression factor of 1/2! in Eq. (10) [24, 25].

This differential equation is solved numerically and fitted
to the reconstructed decay, as shown in Fig. 3, with L3 as a
free parameter. The three-body loss rate coefficient is inves-
tigated at different impurity-medium interactions by repeat-
ing this measurement at varying impurity-medium scattering
lengths, a. The extracted three-body loss rate coefficients are
shown in Fig. 4, which are observed to initially increase as |a|
is increased, but start to saturate at large values of |a|. The be-
havior of the three-body loss rate coefficient, L3, is expected
to follow a universal behavior given by

L3 = nlC
ℏ
m

a4, (11)

where nl is the number of atoms in the collision and C is a
dimensionless constant, effectively acting as a free fitting pa-
rameter [26]. As the scattering length is increased, the three-
body loss rate is expected to eventually saturate for a system
with a finite temperature [21, 27]. To account for this satura-
tion, the three-body loss rate is modified to
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Leff =

(
1

Lmax
+

1
L3

)−1

, (12)

where Lmax is a fitted saturation value and L3 is given by
Eq. (11). This effective three-body loss rate is fitted to the
experimental data and plotted in Fig. 4, with the universal be-
havior shown independently. The fit captures the data well,
from the universal a4 behavior for small scattering lengths
toward the saturation at large scattering lengths. The fitted
value, C = 7.69(3.33)×102, is higher than the expected the-
oretical prediction of ∼ 1.33× 102, for two identical bosons
interacting with a third boson [28]. For comparison, the cor-
responding value for three identical bosons interaction reso-
nantly pairwise is C = 4.56×103 [29].

The fitted saturation value, Lmax = 5(1)× 10−24 cm6/s,
can be compared to the theoretical saturation value of the
thermal part of the cloud, for which the temperature can
be estimated [30]. This theoretical value is calculated to
1.17 × 10−19 cm6/s, which is considerably higher than the
fitted value. The theoretical calculation is also for the case of
three identical bosons which is not necessarily the same as for
our system, where only two identical bosons are interacting
with a third boson.

Based on the extracted loss rate coefficients in Fig. 4, the
atom number for a variable time in the ejection sequence can
be evaluated using Eq. (10). This calculation only requires
the initial atom number, impurity fraction, and evolution time,
all of which are known. This makes it possible to estimate
the density before the experimental sequence. This stands in
contrast to Eq. (4), where the density is evaluated from the
observed atom number on- and off-resonance for the ejec-
tion spectrum. Before comparing the results of these two
approaches, the method employed for our previous results is
briefly examined in the following section.

VI. EMPIRICAL ATOM NUMBER DETERMINATION

An empirical solution for the observed decay of the medium
atoms has previously been employed for our system in Ref. [3,
5], where it was approximated as an exponential decay and
fitted with

Nobs(t) = Ae−Γt +B, (13)

where Γ is the associated loss rate of the observed decay. A
solution in the form of an exponential decay for the differen-
tial equation in Eq. (6), requires that the spatial average of the
density is constant with respect to time.

In Fig. 5, the observed decay of the medium atoms and the
exponential fit are shown, and compared to the numerically
solved differential equation in Eq. (10) for the reconstructed
decay. The exponential fit is observed to capture the data well,
but the two decay curves also clearly represent different inter-
pretations. The conclusion is that the loss rate extracted from
the exponential fit to the observed decay typically overesti-
mates the losses between the medium and impurity states.
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FIG. 5. Observed, Nobs/N0, (red circles) and reconstructed, N(t)/N0,
(gray circles) atom number fractions at a = −200a0, fitted with the
exponential decay of Eq. (13) (red dashed line) and the differential
equation in Eq. (10) (gray dashed line), respectively.

VII. ATOMIC DENSITY DETERMINATION

For experiments investigating impurity effects, the density
of the system at the point of applying the probe pulse is the
desired parameter, which is calculated from the atom number.
The calculation of the medium atom number from the three-
body loss rate coefficient in Eq. (10), relies on the assumption
that the transferred impurity fraction and evolution time are
well known. However, the effect of the finite duration of the
probe pulse, effectively increasing the evolution time, is not
inherently accounted for. The fraction of atoms transferred to
the impurity state also contains some inherent uncertainties,
since it is obtained from thermal atoms and not for a BEC. On
the contrary, the method encapsulated by Eq. (4) for extraction
of the medium atom number directly from the observed ejec-
tion spectrum does not require these parameters to be exactly
known, as they are incorporated into the observed atom num-
ber on- and off-resonance. Calculating the density from the
reconstructed atom number for each of these two approaches
provides insight into how well they compare, as well as the
inherent limitations of the experimental parameters.

The peak density of the system is calculated in the Thomas-
Fermi approximation from the observed atom number N,

n0 =
15N
8π

(
m
2µ

)3/2

ω̄3, (14)

with the average trap frequency, ω = (ωxωyωz)
1/3, and chem-

ical potential, µ .
The calculated densities are shown in Fig. 6, as a function

of the inverse interaction strength. The measurements have
evolution times around the same duration as the probe pulse
of 20 µs. The three different calculations agree well with each
other for low interaction strengths, whereas some discrepan-
cies are observed at high interaction strengths, where the re-
sults from the differential equation lie systematically above
the other methods. Calculated densities for a specific inter-
action strength and varying evolution times are also shown in
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FIG. 6. Calculated peak densities at the point of applying the probe pulse in the ejection spectroscopy sequence using Eq. (4) (blue circles),
the differential equation in Eq. (10) (green circles), and the exponential fit in Eq. (13) (red circles), as a function of (left) the inverse impurity-
medium interaction strength and (right) the evolution time between the rf-pulses.

Fig. 6. It is clear that the exponential fit overestimates the
density of the system at short times and underestimates it for
long times, compared to the other methods. For long evolu-
tion times, the loss rate is expected to slow down since the
density is continuously decreasing, which the exponential fit
in Eq. (13) does not account for. On the other hand, this effect
is expected to be encapsulated in both the differential equa-
tion in Eq. (5) as well as the reconstructed atom number in
Eq. (4). Both of these methods show a much slower decrease
in the calculated densities. For short evolution times, a sub-
stantial part of the losses take place during the probe pulse
duration, resulting in an effective longer evolution time. This
effect is only expected to be encapsulated in the reconstructed
atom numbers from the ejection spectra. Nonetheless, both
methods agree well with each other at short evolution times,
leading to the conclusion that the effects of the finite duration
of the probe pulse are small.
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FIG. 7. Extracted general medium loss factor, η , as a function of time
for different inverse interaction strengths, 1/kna=−4.2 (blue), −3.2
(red), −2.4 (green), −1.6 (orange), −0.9 (purple), −0.4 (magenta),
−0.2 (gray) and −0.1 (black). For weak interaction strengths, we
observe the expected loss of 1 and 2 medium atoms per impurity for
short and long times, respectively. For large interaction strengths, the
losses are heavily increased, even at short times.

VIII. DOMINANT LOSS MECHANISMS IN ATOM
NUMBER DETERMINATION

To obtain a more detailed understanding, the loss coeffi-
cients η3 and η2, defined in Sec. IV, are further examined.
The loss coefficients are central for reconstructing the atom
number from Eq. (3) and Eq. (4), and for evaluating the atom
number through the differential equation in Eq. (10). Nomi-
nally, they should be equal to 2 and 1, corresponding to the
number of medium atoms lost per impurity in the |2⟩ and |3⟩
state, respectively. In the following, they are extracted exper-
imentally.

The observed decay in Fig. 2 is evaluated for very short and
long evolution times. In the former case, the probe pulse is
applied immediately after the first rf-pulse, and the observed
losses are attributed to two-body processes between the |1⟩
and |3⟩ state. For long evolution times, maximal losses be-
tween the |1⟩ and |2⟩ state have already taken place through
three-body processes when the probe pulse is applied. Gener-
ally, a loss coefficient for all evolution times can be extracted
as

η =
N0(1−χ)−Nobs(t)

N0χ
, (15)

from which the loss coefficients η2 and η3 are extracted in
the limits of short and long evolution times, respectively. For
intermediate evolution times, the loss coefficient, η , contains
contributions from both loss processes and provides insight
into the dominant loss mechanism of the system. This loss
coefficient is presented in Fig. 7 as a function of evolution
time for different interaction strengths. For weak interaction
strengths, the loss coefficient is indeed observed to be close
to 1 for short evolution times and increases to 2 for long evo-
lution times, as expected. However, for strong interactions,
the losses are heavily increased, and the number of medium
atoms lost per impurity increases to 3−4. In this regime, the
losses are also increased even for very short evolution times.

The observed increase of lost medium atoms at large in-
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FIG. 8. Extracted η3 loss factor as a function of the inverse in-
teraction strength, calculated from the observed atom number off-
resonance.

teraction strengths in Fig. 7, does not coincide with a sudden
increase of the three-body loss rate coefficient in Fig. 4 that
would indicate a loss behavior beyond the universal a4 depen-
dency, as would be expected from higher order Efimov states.
This is not surprising given that the scattering threshold for the
impurity-medium-medium Efimov trimer is |a−|= 3×105 a0,
well above the values used here [11, 31]. Instead, the addi-
tional observed loss is attributed to secondary collisions in the
system [7, 32].

The results of Fig. 7 can also be compared to the loss co-
efficient, η3, calculated from the off-resonance atom number
in the ejection spectra. The off-resonance atom number was
described in Sec. IV and allows for the calculation of

η3 =
N0(1−χ)−Noff-res

N0χ
, (16)

which is consistent with the form of the general loss coeffi-
cient in Eq. (15). The calculation of the loss coefficient η3,
requires input for the impurity fraction, which is estimated by
performing Rabi oscillations with thermal atoms on the |1⟩ to
|2⟩ transition, in an otherwise identical experimental setting.
The obtained loss coefficients are shown in Fig. 8 as a function
of inverse interaction strength. A clear increase in the loss co-
efficient for large interaction strength is observed and it is only
for quite weak interaction strengths below 1/kna = −2, that
agreement with the expected pure three-body loss of η3 = 2,
is observed. Both of these limits are in good agreement with
the ones observed in Fig. 7, showing the same overall behav-
ior.

IX. CONCLUSION

In summary, we have examined the loss processes for an
impurity immersed in a Bose-Einstein Condensate, to deter-

mine the atomic density of the BEC at a variable time in the
ejection sequence. This was previously analyzed based on an
exponential fit to the observed decay of medium atoms as a
function of the evolution time [3, 5]. We now provide a micro-
scopic analysis, by reconstructing the decay due to the losses
between the medium and impurity state and include a realistic
model for the three-body recombination processes. The three-
body loss rate coefficient was extracted as a function of the
impurity-medium interaction strength and observed to agree
well with the expected universal behavior of a4, with an even-
tual saturation at large scattering lengths. The density at the
end of the ejection sequence was then calculated from the ini-
tial density and the extracted three-body loss rate.

Additionally, the density was also calculated directly from
the observed ejection spectra using a method that only relies
on the observed atom number. A comparison with the three-
body calculation showed good agreement, both for varying
interaction strength, as well as evolution time. Some discrep-
ancies close to unitarity were observed, highlighting the lim-
itations for modeling the three-body processes in this regime.
Although the differences between the models are small, they
can lead to systematic uncertainties which are important to
account for when performing precision measurements.

Finally, the observed number of medium atoms lost per im-
purity, as a function of the interaction strength between im-
purity and medium atoms and the evolution time, is observed
to increase when approaching unitarity at 1/kna = 0. This
was interpreted as caused by additional collisions between the
medium atoms after the initial three-body recombination pro-
cess.

The presented methods open up new ways to investigate
collisional processes in ultracold gases, where the impurity
limit of mixtures is specifically exploited to isolate these pro-
cesses. The intricate loss processes of two identical bosons
interacting with a third boson investigated here, show that
the extracted three-body loss rate coefficient is lower, com-
pared to investigations of single-component thermal gases of
39K [7, 21], as expected [28]. Additional effects may also
be considered when utilizing a BEC, such as the expected
suppression of the three-body recombination at high densi-
ties [33].

Our results may find usage for systems directly involved
with loss spectroscopy of 39K [12, 14], but can also be
extended to systems working with solitions and quantum
droplets [34–36], Efimov physics [7, 21, 37], and collisional
avalanches in BECs [32, 38].
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Three-body recombination at large scattering lengths in an ul-
tracold atomic gas, Phys. Rev. Lett. 91, 123201 (2003).

[27] J. P. D’Incao, H. Suno, and B. D. Esry, Limits on universal-
ity in ultracold three-boson recombination, Phys. Rev. Lett. 93,
123201 (2004).

[28] K. Helfrich, H.-W. Hammer, and D. S. Petrov, Three-body
problem in heteronuclear mixtures with resonant interspecies
interaction, Phys. Rev. A 81, 042715 (2010).

[29] E. Braaten and H.-W. Hammer, Efimov physics in cold atoms,
Annals of Physics 322, 120 (2007), january Special Issue 2007.

[30] B. S. Rem, A. T. Grier, I. Ferrier-Barbut, U. Eismann, T. Lan-
gen, N. Navon, L. Khaykovich, F. Werner, D. S. Petrov,
F. Chevy, and C. Salomon, Lifetime of the bose gas with res-
onant interactions, Phys. Rev. Lett. 110, 163202 (2013).

[31] J. Levinsen, M. M. Parish, and G. M. Bruun, Impurity in a
Bose-Einstein condensate and the Efimov effect, Physical Re-
view Letters 115, 125302 (2015).

[32] J. Schuster, A. Marte, S. Amtage, B. Sang, G. Rempe, and
H. C. W. Beijerinck, Avalanches in a bose-einstein condensate,
Phys. Rev. Lett. 87, 170404 (2001).

[33] R. Chapurin, X. Xie, M. J. Van de Graaff, J. S. Popowski, J. P.
D’Incao, P. S. Julienne, J. Ye, and E. A. Cornell, Precision test
of the limits to universality in few-body physics, Phys. Rev.
Lett. 123, 233402 (2019).
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CHAPTER 5

Observation of Deeply Bound
Polaronic States

Spectroscopy can be utilized to probe polarons in ultracold quantum gases
as presented in the previous chapter. This is further investigated in this
chapter, where the focus now lies on accurate modeling of the spectral
function of the polaron, to extract its energy as a function of the impurity-
medium interaction strength. Additionally, a signal at lower energies than
the polaron is observed and interpreted as the bipolaron response of the
system.

The chapter is structured as follows: First, the ejection protocol is dis-
cussed in Sec. 5.1 in the context of recording the polaron spectrum. The
theoretical spectral function of the polaron is described in Sec. 5.2 along
with the necessary experimental considerations. In Sec. 5.3, the recorded
ejection spectra are presented and the polaron signal is investigated, fol-
lowed by an interpretation of the observed bipolaron response.

5.1 Ejection Spectroscopy
The ejection protocol used for probing the system has already been out-
lined in Ch. 4, but a summary is provided here. The protocol, which is il-
lustrated in Fig 5.1, consists of two rf-pulses with a variable evolution time

65
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FIGURE 5.1: Overview of the relevant states within the ejection protocol for
our system. The scan range of the frequency of the second rf-pulse from |2⟩
to |3⟩ is indicated by the vertical bar. An illustration of the energy shift of the
polaron and bipolaron states is also shown. Adapted from [44].

between them. The first rf-pulse is resonant with the |F = 1,mF =−1⟩ ≡
|1⟩, to |F = 1,mF = 0⟩ ≡ |2⟩ state transition, and ensures transfer from
the medium, |1⟩, to the impurity state, |2⟩. The system is then allowed to
evolve before probing it with the second rf-pulse (referred to as the probe
pulse) that attempts to transfer the impurities to the third state,
|F = 1,mF =+1⟩ ≡ |3⟩. If this secondary transfer is successful, an in-
crease in the remaining number of medium atoms in the |1⟩ state is ob-
served due to the different dominant loss mechanisms for the impurities
in the |2⟩ and |3⟩ states (see Ch. 4). By scanning the frequency of the
probe pulse across the resonance, the energy shift of the impurity state, re-
lative to the natural transition between the |2⟩ and |3⟩ states, is measured,
E = Erf−E23. An example of an ejection spectrum is shown in Fig. 5.2. It
consists of a peak that is shifted towards negative energies, relative to the
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FIGURE 5.2: Ejection spectrum at 1/kna = −1, where the energy of the
probe pulse is scanned across the resonance, E = Erf −E23. A peak is ob-
served with a clear shift from E/En = 0, as well as a tail, towards negative
energies.

measured transition frequency between the |2⟩ and |3⟩ states for thermal
atoms corresponding to E = 0. It also has a tail that extends towards neg-
ative energies, corresponding to the continuum of excited states.

For attractive impurity-medium interactions, 1/kna < 0, mediated in-
teractions between two polarons have been predicted to lead to a bound
state known as the bipolaron [58]. Ejection spectroscopy is a promising
candidate for investigating such a state, given that the impurities are al-
lowed to evolve and interact before the system is probed. This is not the
case for injection spectroscopy, and so far such a state has not been ob-
served in the experimental results using injection spectroscopy [51, 53].

The bipolaron state is also illustrated in Fig. 5.1, and is expected to
be more deeply bound than the polaron. However, it is only at strong
interactions, |1/kna| < 1, that the binding energy of the bipolaron signi-
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ficantly exceeds the ground state energy of the polaron. For an ejection
spectrum, the polaron and bipolaron signals will thus overlap at weak in-
teraction strengths, but start to separate at strong interactions.

In Sec. 5.2, the spectral function for modeling the ejection spectra, such
as the one observed in Fig. 5.2, is presented. In the following, the experi-
mental considerations for optimizing the ejection protocol for the observa-
tion of bipolarons are discussed.

5.1.1 Experimental Considerations
The two rf-pulses that comprise the ejection protocol provide experimental
control of the impurity concentration and evolution time of the system,
as well as the spectroscopic resolution of the measurement. Both of the
rf-pulses are square pulses in the time domain and thus correspond to sinc-
functions in the frequency domain.

Before performing the experimental sequence outlined above, rf-spectro-
scopy and Rabi oscillations are performed on thermal atoms between the
|1⟩ and |2⟩ states, and between the |2⟩ and |3⟩ states. Typical examples
of these are shown in Fig. 5.3. The rf-spectroscopy measures the res-
onances of the natural transitions for an experimentally chosen magnetic
field, which can also be solved through the Breit-Rabi formula [126]. This
allows for extracting the magnetic field strength which is then used for
calculating the impurity-medium scattering length, a, from the Feshbach
resonance (see Fig. 2.1). Experimentally, the interaction strength kna is
varied, through a rather than the density, n, which also enters through
kn = (6π2n)1/3, but is much more inconvenient to control. The Rabi oscil-
lations, also shown in Fig. 5.3, allow for tracing the transferred fraction of
atoms between each state as a function of pulse duration. This measure-
ment is used for setting the impurity concentration, controlled by the dura-
tion of the first rf-pulse. The frequency of this pulse is set to the measured
transition between the |1⟩ and |2⟩ state and has a short duration to keep
it broad in frequency space and short with respect to the evolution time.
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FIGURE 5.3: (top) Spectroscopy with thermal atoms where a Gaussian fit
(blue line) on the observed fraction of transferred atoms (gray circles) is used
for determining the resonance of the transition from the |2⟩ to |3⟩ states.
(bottom) Observed Rabi oscillations as a function of pulse duration, fitted
with a Sine (blue line) to extract the frequency. Equivalent measurements for
the |1⟩ to |2⟩ transition is also performed.

Given that the polaron peak in the experimental signal is proportional to
the number of "ejected" impurities, having a high impurity concentration
will further enhance this signal. This is explicitly investigated later, where
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a high impurity concentration of 20% is observed to give a good signal-to-
noise ratio.

During the evolution time, the impurity-medium interactions lead to
the formation of polarons and possibly also bipolarons. The formation
time of polarons has previously been investigated for our system, which is
shortest at strong interactions where it takes 5−10 µs [57]. The formation
time of bipolarons is unknown but presumably takes longer than for the
polarons, which means that evolution times longer than 10 µs should be
used. Additionally, the finite lifetime of the polaron poses a natural limit
on the allowed evolution times, which at strong interactions is estimated to
be around 50 µs for our system [1].

Finally, the duration of the probe pulse, on the |2⟩ to |3⟩ transition, sets
the frequency resolution of the measurement σ f = 1/πT , where σ f is the
"width" of the sinc function and T is the duration of the square pulse. This
duration should be as long as possible to optimize the resolution of the po-
laron and possible bipolaron signals, but it is limited due to the finite life-
time of the system. A compromise between having a good spectroscopic
resolution and a sufficient experimental signal is therefore necessary. The
power of the rf-pulse is adjusted such that it is close to a π-pulse for the
chosen duration, to maximize the transfer of the impurities to the third state
|3⟩.

5.2 Spectral Function
Accurate modeling of the spectral function for the polaron is necessary
to evaluate the observed spectral response of the system. In particular,
a potential bipolaron signal should appear as a feature not accounted for
in the polaron model. Previous models for the observed spectral func-
tion of the polaron from injection spectroscopy measurements include a
Gaussian fit [51] and an empirical model for the peak and many-body con-
tinuum [53]. In the case of ejection spectroscopy, the variational (Chevy)
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ansatz in Ref. [54] (see Ch. 2) for the description of the attractive polaron
state, leads to the following rf-spectrum, A(ω,n), of the polaron

En ·A(ω,n) =2πZPδ
(

h̄ω −EP

En

)

+θ
(

EP − h̄ω
En

)
3π

2
√

2
ZP

(
EP

h̄ω

)2√EP − h̄ω
En

.

(5.1)

Here, En =
h̄2k2

n
2m is the characteristic energy with wavenumber

kn = (6π2n)1/3 and density n. The frequency of the probe pulse is given
by ω and the quasiparticle residue and energy of the polaron are given by
ZP and EP, respectively. Finally, the functions δ and θ are the Dirac delta
and Heaviside step functions. The spectral response given by Eq. (5.1)
consists of a peak described by the Dirac delta function, shifted by the po-
laron energy, and a continuum towards more negative energies matching
the qualitative behavior of the spectrum in Fig. 5.2. Note that the tail in
the above spectral function is reversed compared to that in Ref. [54]. This
is due to the reversed level scheme where the ejection state lies below the
impurity state and not above it, as shown in Fig. 5.1.

Based on the spectral function in Eq. (5.1), the polaron spectral re-
sponse of the system can be predicted. However, due to the harmonic trap-
ping potential, the atoms experience an inhomogenous density distribution.
This means that the interaction strength kna varies throughout the medium
and the impurities are affected accordingly, with the most bound polaron
at the center of the trap. Probing this system thus gives a broadened signal
due to a response from impurities at different densities.

In the following, modifications to the spectral function in Eq. (5.1) are
described. These include averaging the spectral function over the density
distribution of the trap and a convolution with the probe pulse shape. Both
of these result in a broadening of the spectral function, which can then be
compared to the experimental data.
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5.2.1 Trap Averaging
The spectral function for the polaron presented in Eq. (5.1) is specified at
a single density, which is trap averaged by integrating it over the density
distribution, n(r), of the system,

⟨En ·A(E,n)⟩=
1
N

∫
d3rn(r) ·En ·A(E,n), (5.2)

where N is the total atom number and E = h̄ω is the energy probed. For
a BEC in an external harmonic trapping potential, the Thomas-Fermi ap-
proximation discussed in Ch. 2 provides a good description of the density
distribution, which is given by

n(r) = n0

[
1−
( r

R

)2
]
, (5.3)

where the peak density, n0, is connected to the atom number through
N = 4πR3 ·2/15 ·n0, where R is the Thomas-Fermi radius given by Eq. (2.10).
The integral variable in Eq. (5.2) is transformed to units of densities, and
the trap average of the spectral function is calculated as

⟨En ·A(E,n)⟩=
15
4n0

∫ n0

0
dn

n
n0

√
1− n

n0
En ·A(E,n). (5.4)

The term, 15
4n0

n
n0

√
1−n/n0, is then the general probability distribution

function of the density in the Thomas-Fermi approximation. In the fol-
lowing, the trap averaging procedure for the polaron peak and continuum
are treated separately.

Polaron peak

From Eq. (5.1), the polaron peak AP(E,n) has the form

AP(E,n) = 2πZP(n)δ (E −EP(n)), (5.5)
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where the density dependence of the quasiparticle residue and polaron en-
ergy is shown explicitly. The polaron energy can be generalized as a func-
tion on the form f (kna) = EP/En, which has a dependence on the inter-
action strength kna. This function is taken to be the theoretical polaron
energy, but it could in principle also be previous experimental results. The
theoretical polaron energy is scaled by the characteristic energy En, but for
the experimental results it is the most bound polaron that is of interest, and
therefore the spectral function is scaled with the characteristic energy at
the center of the trap En0 ,

En0 ·AP(E,n) = 2πZP(n)δ

(
E/En0 − f (kna)

(
n
n0

)2/3
)
. (5.6)

The Dirac delta function is approximated by πδ (x) = limη→0 = η
x2+η2 ,

which is numerically calculated using an appropriate small value for η .
Inserting the approximation for the Dirac delta function yields

En0AP(E,n) = 2ZP(n)
η

(
E/En0 − f (kna)

(
n
n0

)2/3
)2

+η2

. (5.7)

The trap average for the peak is then performed according to

⟨En0 ·AP(E,n)⟩=
15
4n0

∫ n0

0
dn

n
n0

√
1− n

n0
En0 ·AP(E,n), (5.8)

which accounts for the observed responses from the polaron peaks at dif-
ferent densities, each with a continuum that is considered in the following.

Polaron continuum

The continuum of the polaron spectral function Acont(E,n) is given by
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En ·Acont(E,n) =θ ( f (kna)−E/En)
3π

2
√

2
ZP(n)

×
(

f (kna)
E/En

)2√
f (kna)−E/En.

(5.9)

This is also trap averaged numerically in the same way as the polaron peak,

⟨En ·Acont(E,n)⟩=
∫ n0

0
dn

n
n0

√
1− n

n0
En ·Acont(E,n). (5.10)

As shown in Eq. (5.8), the peak is scaled by the energy at the center of the
trap but the continuum is scaled by the energy at the local density, En. This
means that the total trap averaged spectral function is modified to

A(E)≡ ⟨En0 ·A(E,n)⟩=
15
4n0

∫ n0

0
dn

n
n0

√
1− n

n0

[
En0 ·AP(E,n)

+
En0

En
En ·Acont(E,n)

]
.

(5.11)

Given that the initial spectral function in Eq. (5.1) is normalized, it is nu-
merically verified that the trap averaged result from Eq. (5.11) is as well.
This corresponds to the appropriate amount of spectral weight distributed
in the polaron peak and continuum, which is essentially determined by the
quasiparticle residue.

5.2.2 Convolution
The trap averaged spectral function from Eq. (5.11) is further convolved
with the probe pulse shape. As already mentioned, this is a sinc function in
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frequency space, Asinc(ω) = sin(ω)/ω . The observable effect on the spec-
trum is the associated intensity (Asinc(ω))2. The convolution is performed
numerically in terms of energies as

Aconv(E) = A(E)∗ (Asinc(E))2. (5.12)

Additionally, the spectral function is normalized after the convolution, and
a scaling parameter A is added which is used for fitting,

Atot(E) = A
Aconv(E)∫

dE Aconv(E)
. (5.13)

5.2.3 Density Estimation
The result of Eq. (5.13) can only be used to compare the polaron spectral
function at the theoretical energy with the experimental data. This is due
to the fact that the trap averaging procedure requires the polaron energy
f (kna) to be known for all densities. Such a comparison is only correct if
the estimated density of the system is accurate.

In Ch. 4, a method for extracting the density of the system at the point
of applying the probe pulse in the ejection protocol was discussed. For
an ejection spectrum, it gives the number of medium atoms at the time of
probing as

N = Noff-res +η3(Non-res −Noff-res), (5.14)

where Noff-res and Non-res are the observed atom numbers off- and on-
resonance. The parameter η3 is the number of medium atoms lost per
impurity due to three-body recombination, which can be extracted from
the off-resonance atom number (see Ch. 4). The peak density of the con-
densate is then calculated in the Thomas-Fermi approximation

n0 =
15N
8π

(
m
2µ

)3/2

ω3, (5.15)
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with average trap frequency ω = (ωxωyωz)
1/3, chemical potential µ and

mass m. Besides being used for the trap average calculation, the peak
density is also used for scaling the observed spectrum through the charac-
teristic energy En and wavenumber kn. This corresponds to benchmarking
the experimental results against the most bound polaron at the center of the
trap where En and the interaction strength kna are largest.

5.2.4 Fitting Parameters

The polaron spectral function in Eq. (5.13) can now be compared to exper-
imental results by plotting it at the theoretical polaron energy, calculated
from the estimated density above. Alternatively, it can also be fitted as
explained in the following.

The fitting parameter A allows for scaling the overall amplitude of the
theoretical spectral function to match the experimental results. In order to
allow for a discrepancy between the theory and experimental data, the gen-
eralized function of the polaron energy is modified to f (kna)→ f (kna)∆EP ,
where ∆EP is a fitting parameter. This does not change the overall scaling
dependence of the polaron energy but allows a small deviation from the
theoretical polaron energy.

The above modifications to the polaron spectral function, together with
the fitting parameters, allow for extracting the polaron energy from the
observed ejection spectra.

5.3 Experimental Ejection Spectra
In this section, the experimentally recorded ejection spectra for attractive
impurity-medium interactions are presented. The above analysis provides
the theoretical prediction for the spectral response of the polaron in our
system, which can be used for benchmarking the experimental technique.
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Afterward, the observed low-lying signal is analyzed and interpreted as a
bipolaron signature.

5.3.1 Polaron Signal
Two examples of ejection spectra fitted with the polaron spectral function
are shown in Fig. 5.4. These have probe pulse durations of 20 µs and 40 µs,
with evolution times of 30 µs and 10 µs, respectively. The evolution time
is not very well defined given that the probe pulse duration is comparable
to it. This adds to an effective evolution time, which should be similar
for both spectra. The polaron spectral function after only trap averaging
is also shown, where both the peak and continuum are plotted separately.
Most of the broadening of the signal comes from the convolution with the
probe pulse, most prominently observed for the 20 µs probe pulse data.
This also means that the shape and form of the peak and continuum are
not resolved to a degree where they can be quantitatively described inde-
pendently. However, after taking these broadening effects into account the
data is well captured by the spectral function, which does display a clear
shift towards negative energies as expected. Using the fitting parameter
∆EP , this shift is experimentally extracted and interpreted as the polaron
energy. This is investigated as a function of the impurity-medium interac-
tion strength and plotted in Fig. 5.4.

The extracted energies are compared to both the variational calcula-
tion for the polaron energy (see Eq. (2.18)), as well as a previous quantum
Monte-Carlo (QMC) result [53]. The experimentally extracted energies
are observed to follow the variational calculation even at very strong inter-
actions, where the QMC result starts to deviate from this. The extracted
polaron energy in Fig. 5.4 corresponds to the most bound polaron at the
peak density, which is at the edge of the polaron peak function. After the
broadening due to the probe pulse shape, this position is quite close to the
maximum of the signal. Extracting the energy as the center of a Gaussian
fit is therefore not far off, although, for longer probe pulse duration and/or
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FIGURE 5.4: (top) Ejection spectra at 1/kna = −1 with (left) 20 µs and
(right) 40 µs probe pulse duration. The experimentally observed data (gray
circles) are fitted with the polaron spectral function after trap averaging and
convolution with the probe pulse shape (green dashed line). Additionally,
the polaron peak (light green solid line) and continuum (dark green solid
line) after only trap averaging are shown. (bottom) Extracted polaron ener-
gies from the ejection spectra as a function of the inverse interaction strength
(green points), for both 20 µs (circles) and 40 µs (diamonds) probe pulse dur-
ation. These are compared to the theoretical polaron energy from Eq. (2.18)
(green solid line) and results from a quantum Monte-Carlo simulation (yel-
low diamonds) [53]. Error bars are 1σ confidence intervals from the fitting
together with propagated density uncertainties in En and kn.
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stronger interaction strengths, this difference is expected to be significant.
Importantly, the first injection spectroscopy measurements used a simple
Gaussian model for extracting the energy of the polaron [51]. This is dis-
cussed further at the end of the chapter.

Although the 40 µs duration probe pulse data provides much better
resolution of the energy, its duration is comparable to the expected finite
lifetime of the polaron at 1/kna = −1 [1]. The lifetime further decreases
as the interaction strength is increased, which means that impurities are
potentially lost from the system before or during the probe pulse. This
effect is strongest for the most bound polarons and would lead to a lower
observed shift of the polaron peak. However, the extracted energies from
both the 40 µs and 20 µs probe pulses are observed to agree with the vari-
ational calculation even at strong interactions.

The fitting of the polaron spectral function and extraction of the energy
thus provides a good benchmark for modeling of the spectrum. It also
builds confidence in the modification of the spectral function in terms of
trap averaging, pulse shape convolution, and density estimation.

5.3.2 Bipolaron Signal
As discussed in Ch. 2, multiple theoretical predictions for the polaron at
strong attractive interactions exist. In the following, I have chosen to refer
to the observed low-lying feature as the bipolaron signal, to provide a con-
sistent analysis.

As mentioned earlier, ejection spectroscopy is a good candidate for in-
vestigating mediated interactions between two polarons, due to having a
free evolution time where such interactions can take place. The resulting
bipolaron is expected to appear in the observed rf-spectrum as a signal at
lower energies relative to the polaron signal. Multiple spectra are shown
in Fig. 5.5, for both 20 µs and 40 µs probe pulse duration at varying inter-
action strengths. To reliably resolve both the polaron and bipolaron signal,
their overlap needs to be sufficiently small. This is found to be the case



80 Chapter 5. Observation of Deeply Bound Polaronic States

-6 -4 -2 0 2
-0.2

0

0.2

0.4

0.6

0.8

-6 -4 -2 0 2
-0.2

0

0.2

0.4

0.6

0.8

-6 -4 -2 0 2

0

0.5

1

-8 -6 -4 -2 0 2 4
-0.2

0

0.2

0.4

0.6

-4 -2 0 2

0

0.5

1

-3 -2 -1 0 1

0

0.5

1

1.5

-4 -2 0 2
-0.2

0

0.2

0.4

0.6

-4 -2 0 2

0

0.5

1

1/kna = -1

-0.5

-0.35-0.35

-0.2-0.2

-1

-0.5

FIGURE 5.5: Ejection spectra at varying inverse interaction strength for (left
column) 20 µs and (right column) 40 µs probe pulses. The experimental data
points (gray circles) are fitted with the polaron spectral function (green solid
line) and a Gaussian fit to the bipolaron signal (blue solid line), with the sum
of these also shown (purple solid line).
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at large interaction strengths, where the energy difference between the two
becomes larger than the broadening of the signals due to the probe pulse
duration, and thus provides a cutoff for the datasets where a bipolaron sig-
nal can be considered. For 20 µs probe pulse duration, this is found around
1/kna ≃−0.6, whereas for 40 µs it is around 1/kna ≃−1.

Throughout all measurements, a signal is constantly observed at large
negative energies, which is interpreted as a bipolaron signal and fitted with
a Gaussian function. This very simple fitting model is chosen since the
bipolaron spectral function is not known. The observed additional spectral
weight is particularly visible for the 40 µs data set, presumably as a result
of its improved energy resolution.

The fitting procedure for the datasets in Fig. 5.5 consists of an initial
fit for the polaron spectral function to determine the energy shift of this
signal. This fit is constricted to only the data points at energies higher than
2 f (kna), to avoid the polaron fit being "dragged" out to the observed bi-
polaron signal. This dragging effect is also considered later. The polaron
energy is fixed to the fitted value and only its amplitude is allowed to vary
freely, while simultaneously fitting a Gaussian to the bipolaron signal. Ad-
ditionally, given that the bipolaron signal always appears at lower energies
relative to the polaron signal, only the data points at negative energies are
included in the fitting procedure for the Gaussian function.

Energy

The center of the fitted Gaussian is used for determining the bipolaron en-
ergy. From the discussion for the fitting of the polaron spectral function,
it is clear that the extracted bipolaron energy, from the center of the Gaus-
sian fit, is not the most bound bipolaron. However, the width of the polaron
signal is primarily due to the convolution with the sinc function, which is
set by the probe pulse duration. Assuming the same to be true for the bi-
polaron signal, this means that its trap averaged spectral function, before
the convolution, is much narrower and the contribution to the spectral func-
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FIGURE 5.6: Extracted polaron (green points) and bipolaron energies (blue
points) along with the theoretical polaron and bipolaron energy (solid green
and blue line, respectively). Both the results from the 20 µs (circle) and
40 µs (diamond) datasets are shown. The results from a previous quantum
Monte-Carlo calculation are also provided (yellow points) [53]. Error bars
are 1σ confidence intervals from the fitting together with propagated density
uncertainties in En and kn.

tion from the peak density is assumed to be close to the center position of
the observed peak.

The extracted bipolaron energies are shown in Fig. 5.6, together with
the experimental polaron energies from Fig. 5.4 and theoretical polaron
and bipolaron energies. The theoretical bipolaron energy corresponds to
its binding energy and the energy of a single impurity such that it con-
verges to the polaron energy for low interaction strengths. This is also our
interpretation of the experimental ejection sequence i.e. the probe pulse
disassociates the bipolaron state and ejects a single polaron into the |3⟩
state. This is formally stated in terms of the detuning of the probe pulse
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δk = EBP −EP,k − ϵk, (5.16)

where EP,k is the polaron energy of the remaining impurity with momentum
k and ϵk = h̄2k2

2m is the kinetic energy of the impurity transferred to the |3⟩
state, with momentum −k.

The extracted bipolaron energies are observed to somewhat follow the
theoretical prediction for the first few points, but fall off as unitarity is
approached at 1/kna = 0. For the two bipolaron energy data points at
1/kna = −1, the spectroscopic resolution is at its limit and some overlap
between the two signals is expected, which could explain why the extracted
bipolaron energies are overestimated with respect to the theory.

Evolution time

Given the discrepancies between the extracted bipolaron energies and the
theoretical prediction, the signal is probed further by considering the rel-
ative spectral weight of the observed signals. This relative spectral weight
is obtained from the area under the Gaussian fit relative to the sum of this
and the polaron spectral function. The bipolaron spectral weight is expec-
ted to show a dependence on multiple parameters such as the evolution
time, interaction strength, and impurity concentration.

The evolution time is considered first, which is varied at a fixed inverse
interaction strength of 1/kna = −0.4, an impurity concentration of 20%,
and 20 µs probe pulse duration. The observed relative spectral weight of
the bipolaron signal is shown in Fig. 5.7, where an increase for short times
is observed with a slow decrease for longer times. This is indeed the overall
expected behavior, i.e. the bipolarons take time to form and then eventually
decays. For short evolution times the probe pulse duration is much longer
than the evolution time, which results in a longer effective evolution time
than depicted in Fig. 5.7. This is interpreted as the reason for the high
constant signal at very short evolution times. It is also important to note
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FIGURE 5.7: Relative spectral weight of the extracted bipolaron signal (blue
points) as a function of evolution time of the system at fixed interaction
strength of 1/kna = −0.4. Error bars are 1σ confidence intervals from the
fitting.

that the decrease of the observed bipolaron signal does not coincide with an
equal loss of the polaron signal, which is well-defined for all the evolution
times considered here.

Interaction strength

The next parameter considered is the impurity-medium interaction strength.
This needs to be sufficiently high for the bipolarons to form and be ex-
perimentally distinguishable from the polaron signal. As the interaction
strength is further increased, the impurities are expected to rapidly accu-
mulate medium atoms. This increases the mediated interaction between the
impurities and a larger bipolaron signal is expected to be observed. How-
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FIGURE 5.8: Relative spectral weight of the bipolaron signal for the (blue
circles) 20 µs and (blue diamonds) 40 µs probe pulse data points, as a function
of the inverse interaction strength between the impurity and medium atoms.
For clarity, the extracted spectral weights at similar interaction strengths have
been averaged (see Fig. 5.6). Error bars are 1σ confidence intervals from the
fitting, together with propagated density uncertainties in kn.

ever, plotting the extracted relative spectral weight of the bipolaron signal
as a function of the inverse interaction strength in Fig. 5.8 does not provide
a clear picture of this dependence, as the extracted relative spectral weights
fluctuate around 0.2 and 0.3. The observed statistical uncertainties of the
extracted relative spectral weights partly reflect this observed variability,
but more than this it shows that the Gaussian fit is likely to over- or under-
estimate the bipolaron signal. This highlights the lack of fully resolving
the observed bipolaron signal, as a consequence of the finite lifetime of the
impurities leading to a compromise between the probe pulse duration and
signal quality. The three-body losses are also increased at high interaction
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FIGURE 5.9: Ejection spectra at varying impurity concentrations and as a
consequence also varying interaction strengths, ranging from 1/kna = −0.4
at 5% to −0.8 at 30%. The evolution time is fixed to 20 µs for all the data
sets. The polaron spectral function at the theoretical energy (green line) is
fitted to the data, and the expected position of the bipolaron signal is indic-
ated as a Gaussian centered at the theoretical bipolaron energy (blue dashed
line). Note the varying x-axis scaling due to varying En as the impurity con-
centration is increased.
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strengths, further affecting a possible interaction strength dependence.

Impurity concentration

Finally, the bipolaron signal dependence for varying impurity concentra-
tions is investigated. The impurity concentration is of special interest as
it is expected to strongly affect the probability of bipolaron formation. It
is, therefore, a good candidate for verifying that the observed signal truly
stems from a bipolaron state and is not just the result of an exotic effect
from the single polaron state. However, as mentioned earlier this para-
meter also determines the data quality for our system. In Fig. 5.9, data sets
for varying impurity concentrations from 5% to 30% are shown. The most
striking effect of increasing the impurity concentration is the improvement
of the quality of the data, reflected in the uncertainty of each data point.
For small impurity concentrations of 5-10%, the noise in the data is sig-
nificant but gets noticeably smaller as the concentration is increased and a
consistent signal emerges for impurity concentrations at 15% and above.
Additionally, it is seemingly improved even further towards 30%, which
may prove beneficial for future investigations, although it is also close to
a total loss of observed medium atoms due to three-body recombination.
Additionally, at 30% one might wonder if the notion of ’impurity’ starts to
lose its meaning as the system approaches a balanced mixture.

Varying the impurity concentration also has the effect of varying the
medium density. For the data sets in Fig. 5.9 this means that the meas-
urements have the same impurity-medium scattering length but varying
densities, resulting in different inverse interaction strengths ranging from
1/kna = −0.4 at 5% to −0.8 at 30%. A direct comparison between these
datasets of the extracted polaron or bipolaron features is therefore not ap-
propriate. However, they are individually fitted with the polaron spectral
function, at the theoretical polaron energy given the good agreement ob-
served in Fig. 5.6. A Gaussian at the theoretical bipolaron energy is also
plotted to indicate the expected position of the bipolaron signal. For the
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30%

FIGURE 5.10: Ejection spectra at 30% impurity concentration, fitted with
the polaron spectral function (green line) with the energy as a free parameter.

datasets below 20% concentration, the bipolaron signal should be separ-
ated from the polaron signal. For higher concentrations, the lower interac-
tion strength means that a possible bipolaron signal significantly overlaps
with the polaron signal. At the high impurity concentrations of 25% and
30%, the data also shows a clear shift in the position of the peak which
coincides well with the expected position of the bipolaron signal. This
specific analysis thus shows that the data can in principle accommodate a
bipolaron interpretation when varying the impurity concentration.

If the energy of the polaron is chosen as a free parameter, the polaron
spectral function can qualitatively describe the data alone, as shown in
Fig. 5.10. To do this, the fit has to significantly shift the energy of the
polaron, which is shown in Fig. 5.11 as a function of the impurity concen-
tration. The spectrum at 5% is excluded from this analysis given the large
observed noise. The energies are plotted relative to their individual theor-
etical polaron energies at peak density, E/EP. The observed energy shift
is more than twice the theoretical polaron energy for the highest impurity
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FIGURE 5.11: (left) Extracted energies for the polaron fit as a function of
the impurity concentration. The extracted energies are scaled relative to their
respective theoretical polaron energies. The varying interaction strength is
also indicated as a secondary x-axis on top. (right) Comparison of the fit-
ted polaron energies (green circles) and the theoretical polaron (green line)
and bipolaron (blue line) energies, as a function of the inverse interaction
strength. The varying impurity concentrations can be read off the left figure.

concentration. The actual fitted polaron energies are also plotted and com-
pared to the theoretical polaron and bipolaron energies. Considering that
the interaction strength decreases with increasing impurity concentration,
it would be remarkable if the observed energy shift of the polaron is due
to the increased impurity concentration. Thus, for the data sets in Fig. 5.5,
a simple shift of the polaron energy cannot account for the observed sig-
nal. Therefore, the increase in the extracted polaron energies is attributed
to an increasing overlap between the polaron and bipolaron signals, which
effectively ’drags’ the polaron fit out. Recently, a shift of the polaron en-
ergy due to mediated interactions between the impurities was observed in
a Fermi gas [68]. The observed shift here is much larger, which could be
due to the higher compressibility of the BEC [115].
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The data sets in Fig. 5.9 show that our system must utilize an impurity
fraction between 15% and 30% to ensure an appropriate signal. A system-
atic investigation of the effect of the impurity concentration on the extrac-
ted signal at very low impurity concentrations is not feasible, as the exper-
imental noise washes it out. Additionally, to vary the impurity concentra-
tion at fixed interaction strength, a simultaneous tuning of the scattering
length is required, further complicating these measurements. Such meas-
urements may provide further information to fully resolve the observed
discrepancies regarding the impurity concentration and bipolaron signal.

Probe pulse duration

The effect of varying the probe pulse duration has already been shown in
the case of 20 µs and 40 µs. For the data presented in Fig. 5.5, a more
resolved bipolaron signal was observed when increasing the probe pulse
duration. Here, the use of a very short probe pulse is considered instead,
where the opposite behavior is expected. Ejection spectra for probe pulse
durations of 10 µs, 20 µs and 40 µs, are presented in Fig. 5.12. The fit-
ted polaron spectral function captures the width of the experimental data
very well for all probe pulse durations. The changing scale of the x-axis
also clearly demonstrates the improved resolution for the longer pulse dur-
ations. It is also clear that the convolution with the probe pulse shape is
the dominating effect for the width of the experimental data. However, if
the probe pulse duration were to be increased even further, it would be-
come potentially longer than the lifetime of the bipolaron at high impurity-
medium interactions, as observed in Fig. 5.7.

This short investigation shows that the experimental effect of the probe
pulse is well understood and accounted for. It is included by convolution
of the spectral function with the probe pulse shape, which provides the
necessary modification for a consistent comparison with the experimental
data.
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FIGURE 5.12: (top left to bottom, clockwise) Data sets with 10 µs, 20 µs, and
40 µs probe pulse duration, fitted with the polaron spectral function (green
line). The changing scale of the x-axis shows how the spectroscopic resolu-
tion improves by increasing the pulse duration.

5.4 Conclusion
In this chapter, the spectroscopic results using the ejection protocol were
presented for attractive impurity-medium interactions. The expected po-
laron spectral response was described and the experimental modifications
of this signal were explored to model the experimental data. The trap aver-
aging of the spectral function and convolution with the probing pulse led to
a significant broadening. Good agreement between the calculated polaron
spectral function and the experimental data was observed for all impurity-
medium interaction strengths. Compared with previous injection spectro-
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FIGURE 5.13: (top) Comparison of the extracted polaron energies for the
ejection spectra presented in this thesis (green circles/diamonds) with our
previous experimental injection spectroscopy results (blue diamonds) [53].
(bottom) Comparison is now made with the results of injection spectroscopy
in a box potential (red circles) [106] as well as the result from the variational
calculation (green solid line) and QMC results [53] (yellow diamonds).

scopy measurements [51, 53], the ejection spectroscopy results presented
here offer a higher precision of the polaron energy, as is shown in Fig. 5.13.
The extracted polaron energies agree with the theoretically predicted val-
ues from the variational calculation, even as unitarity is approached, al-
though lying somewhat systematically below it. This is similar to the pre-
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vious QMC results [53], which start to deviate from the variational cal-
culation close to unitarity by as much as −0.35En. This comparison is
shown in Fig. 5.13, along with recent results from Ref. [106], where injec-
tion spectroscopy on Bose polarons was performed using a box potential.
The use of a box potential for trapping the atoms has the advantage that
the density distribution is in principle homogeneous. This eliminates the
need for trap averaging the spectral function, which is much narrower as
there is only a single density in the system. The energies were extracted
using a Gaussian fitting model. However, large discrepancies are observed
at strong interactions, where the box potential results fall off the theoret-
ical polaron energy around 1/kna =−1 and goes to a more constant value
around −0.4En. Further investigations of the Bose polaron include meas-
uring its quasiparticle residue, which can be inferred from Rabi oscilla-
tions on the polaron [47, 104], eliminating the need for estimating it from
the area of the observed spectral response. The ejection technique used
here exclusively for attractive impurity-medium interactions may also be
extended to repulsive interactions. This case is more complicated due to
the presence of both an attractive and repulsive polaron branch, which is
further investigated in Ch. 6.

For the ejection spectra in Fig. 5.5, a consistent signal at lower energies
than the polaron was observed, which was interpreted as a bipolaron signal.
Interpreting the spectral response of this signal is difficult since its spectral
function is not known and a simple Gaussian model was applied. This ana-
lysis allowed for the extraction of the energy, which was compared to the
theoretical prediction of the bipolaron in Fig. 5.6. Investigating the spec-
tral weight of the bipolaron signal as a function of evolution time showed
the expected dependence, while it was more inconclusive when varying the
impurity-medium interaction strength. Finally, when varying the impurity
concentration the observed behavior agreed with the bipolaron interpret-
ation, assuming the theoretical bipolaron energy is correct. A systematic
investigation of this parameter with constant interaction strength, would be
the natural next step to verify the results. Another interesting parameter to
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vary is the medium-medium interaction strength, which is ∼ 10a0 for the
Feshbach resonance utilized. This low value may allow for a very large
accumulation of medium atoms around the impurity, compared to the case
of higher repulsive medium-medium interactions.

As a final comment, it was discussed at the end of Ch. 4 that the
impurity-medium-medium trimer state has an expected scattering threshold
at −3× 105a0 [51, 80], which is much larger than those considered here.
Theoretical work on the impact of these effects regarding an impurity im-
mersed in a BEC has shown that the formation of large clusters of a single
impurity and BEC atoms is possible [67]. Additional work has further
highlighted the relation between a possible bound bipolaron state and Efimov
trimers, although for the case of an impurity-impurity-medium state [59].
Importantly, these assume a large mass difference between the impurity
and medium atoms, to enhance the Efimov physics. For our system, these
effects are highly suppressed and can therefore not account for the ob-
served experimental signals.



CHAPTER 6

Impurity Dynamics with
Repulsive Interactions

In this chapter, results for the initial dynamics of an impurity immersed in
a medium are presented. To resolve the interactions between the impur-
ity and medium atoms at short timescales, an interferometric sequence is
utilized. First, the concept of the coherence function is briefly described in
Sec. 6.1. The interferometric sequence is then described in Sec 6.2 and has
previously been used to investigate the Fermi polaron [55, 56], as well as
the Bose polaron for attractive impurity-medium interactions [1, 57]. The
results for the Bose polaron with attractive impurity-medium interactions
are presented in Sec. 6.3, followed by a discussion on the theoretical de-
scription for the case of repulsive interactions. Finally, the publication for
the experimental investigations of the Bose polaron for repulsive impurity-
medium interactions is introduced and presented in Sec. 6.4.

6.1 Coherence Function

Many-body correlations are a central concept for the formation of polarons.
In ultracold dilute gases, the equilibration of an impurity suddenly im-
mersed in a medium is studied through the coherence function, C(t). This

95
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function is connected to the time-dependent Green’s function of the impur-
ity

G(t) =−iC(t) =−i⟨ΨBEC|ĉ(t)ĉ†(0)|ΨBEC⟩, (6.1)

where ΨBEC is the wavefunction of the BEC and ĉ† (ĉ) is the creation
(annihilation) operator for the impurity [155]. The coherence function de-
scribes the overlap between the initial state and the time-evolved impurity
state. As the system evolves, this overlap is reduced due to the scattering
processes between the impurity and medium atoms, and the system is said
to decohere.

The extraction of the coherence is possible through the use of an inter-
ferometric sequence, which is presented in the following section.

6.2 Interferometric Sequence
The experimental sequence starts with a 39K BEC, in the
|F = 1,mF = −1⟩ ≡ |1⟩ state, acting as the medium. The impurity state
is given by the |F = 1,mF = 0⟩ ≡ |2⟩ state. A Ramsey-like interferometric
sequence is used for the experimental observation of the coherence. It con-
sists of two short radiofrequency (rf) pulses with a variable time between.
In the original work of Ramsey [156], the rf-pulses are π/2 pulses, which
results in a balanced mixture. In the context of impurity physics, only
a small fraction in the impurity state is wanted and thus π/7 pulses are
utilized. The general idea of the sequence is shown in Fig. 6.1: The first rf-
pulse creates a superposition between the medium and the impurity state,
with roughly 5% in the impurity state. The system is then allowed to
evolve, during which scattering and loss processes occur. The Bloch vec-
tor starts to precess resulting in a phase, φc, and an overall shrinkage of
the Bloch sphere is expected. The final rf-pulse closes the interferometric
sequence and has a variable phase, φ , relative to the first rf-pulse, that is
scanned to match the precession.
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(a) (b) (c)

φ
φC

2

1

FIGURE 6.1: The interferometric sequence used in the experiment is illus-
trated using the Bloch sphere. The north and south poles represent the |1⟩
(medium) and |2⟩ (impurity) states, respectively. a) A short rf-pulse creates
a superposition with 5% in the impurity state. b) During the free evolution
time, the Bloch vector precesses with a phase φC due to interactions in the
system and causes a shrinkage of the Bloch sphere in addition to losses. c) A
final rf-pulse closes the interferometric sequence, with a variable phase rel-
ative to the first rf-pulse to track the precession. Adapted from [57].

The impurities that are not transferred back to the medium state after
the second rf-pulse, eventually undergo three-body recombination with the
medium atoms. The observable is then the number of remaining medium
atoms after these losses. Examples of raw datasets are presented in Fig. 6.2,
where the observed atom number shows a clear sinusoidal dependence on
the phase of the second rf-pulse, as expected for the interferometric se-
quence. A decrease in amplitude, which is a sign of decoherence, as well
as a phase shift is observed for increasing evolution times. The evolution
time is scaled by the characteristic time of the system, tn = h̄/En, connect-
ing it to the characteristic energy, En = h̄2k2

n/2m, and the wavenumber,
kn = (6π2n)1/3, which are determined by the medium density, n. The si-
nusoidal behavior in Fig. 6.2 is modeled by N(φ) = N0 −A cos(φ −φc),
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FIGURE 6.2: Observed medium atom number as a function of the phase of
the second rf-pulse in the Ramsey-like sequence for three different evolution
times. With increasing evolution time the amplitude of the sinusoidal signals
decreases as well as acquires a phase shift, which is marked by the gray
points.

which is fitted to the data to extract the amplitude A and phase φc. From
this fit, the normalized coherence function is extracted as

C(t) = |A (t)/A (0)|eiφc(t). (6.2)

The above procedure highlights the method for tracing the amplitude and
phase of the coherence function to observe the decoherence of the system
as a function of time. The theoretical characteristic dynamical regimes
governing the decoherence of the system are examined in the following
section.
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6.3 Characteristic Dynamical Regimes
The interferometric sequence described above has already been used to in-
vestigate the Bose polaron for attractive impurity-medium interactions [57].
The theoretical framework developed for understanding these results can,
with some modifications, be successfully extended to the repulsive side.
The results for the attractive side are therefore briefly summarized, before
turning to the case of repulsive interactions.

Generally, the theoretical description of the decoherence of the system
is obtained from the Fourier transform of the spectral function A(ω) of the
polaron

C(t) =
1

2π

∫ +∞

−∞
A(ω)e−iωtdω. (6.3)

This equation can be evaluated at short times by the use of special sum
rules as well as the exact result for the high-frequency tail of the spectral
function [137]. Additionally, by using a diagrammatic prediction for the
full spectral function, the coherence function in Eq. (6.3) can be evaluated
for all times [57].

6.3.1 Attractive Interactions
For the case of attractive impurity-medium interactions, a single polaron
branch exists. Distinct dynamical regimes were found in Ref. [57] that de-
scribe the decoherence of the system when the impurity is introduced to
the medium. These dynamical regimes are shown in Fig. 6.3, where the
vertical axis shows the evolution time and the horizontal axis shows the
inverse impurity-medium interaction strength, 1/kna, with the impurity-
medium scattering length a. The early dynamics of the system are gener-
ally governed by two-body interactions which are dominated by the high-
frequency components of the system, given by the tail of the polaron spec-
tral function. A short-time expansion of the coherence function provides
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FIGURE 6.3: Dynamical regimes for the attractive Bose polaron as a func-
tion of both the inverse interaction 1/kna, as well as the evolution time t/tn.
Adapted from [57].

the behavior for the two-body universal regime as [57]

C(t)≃ 1− (1− i)16/9π3/2
(

t
tn

)3/2

. (6.4)

It has a characteristic scaling of t3/2 and shows a universal behavior with
no dependence on the scattering length, defining a unitarity-limited dy-
namical regime in Fig. 6.3. For weak interaction strengths, the dynamics
transition into a two-body weak coupling regime, described by mean-field
interactions. The decoherence in this regime is given by
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C(t)≃ 1− iEmft/h̄− (1+ i)
(

t
tw

)1/2

, (6.5)

where Emf = 4π h̄2na/m is the mean field energy and characteristic time
scale tw = m/32π h̄n2a4.

Eventually, the dynamics enter the many-body regime, which is de-
scribed by the full spectral function of the polaron, containing a peak as
well as a continuum of excitations (see Chap. 2). In Ref. [57], this was
calculated from a nonpertubative diagrammatic approach in the so-called
ladder approximation, which yielded the following spectral function

A(ω) = ZP2πδ (ω −ωP)+8π
h̄3/2n

m3/2ω5/2
Θ(ω −ωP)

1+ h̄
ma2ω (1− 4π h̄na

mω )2
. (6.6)

Here, ZP is the quasiparticle residue, h̄ωP is the polaron energy, and δ is
the Dirac delta function. It is similar to the spectral function from the vari-
ational calculation presented in Chap. 5. The first term corresponds to the
ground state of the polaron and the second term is the continuum of high-
momentum impurity states and Bogoliubov excitations. The step function
Θ(ω −ωP) is introduced to move the continuum above the polaron peak to
make it self-consistent. The spectral function has a high energy tail scaling
as ω−5/2, which connects to the t3/2 decay of the coherence function in the
universal dynamical regime. For weak interactions the second term in the
denominator becomes relevant, resulting in the transition from the univer-
sal to weakly interacting two-body dynamics. For strong interactions, this
transition is suppressed, as also illustrated in Fig. 6.3.

The decoherence in the two-body dynamical regimes, as well as in the
many-body regime, are thus fully encapsulated in Eq. (6.6). In Ref. [57],
it was compared to the extracted coherence amplitudes from the interfero-
metric sequence and observed to capture the decoherence for all times as
shown in Fig. 6.4, for both strong and weak interactions. By comparing it
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FIGURE 6.4: Coherence amplitude as a function of time for (top) strong
(1/kna = −0.01) and (bottom) weak (1/kna = −2) interactions. The two-
body universal regime is given by the blue dashed line along with the blue-
shaded region. The weak two-body dynamical regime is given by the green
dot-dashed line and green-shaded region. The many-body regime is given
the orange line and orange-shaded region. Adapted from [57].

with the two-body universal and weak predictions in Eq. (6.4) and (6.5),
the crossover times between the dynamical regimes were extracted.

For comparing the models with the experimental data in Fig. 6.4, the
density distribution due to the harmonic trapping potential has to be ac-
counted for. The harmonic potential induces an inhomogeneous density



6.3. Characteristic Dynamical Regimes 103

distribution which modifies the observed decoherence of the system. This
is accounted for by trap averaging the coherence function similar to how
the spectral function was trap averaged in Chap. 5, Eq. (5.4). Additionally,
three-body recombination losses are included through an empirical expo-
nential decay model as also discussed in Chap. 4. This leads to a global
loss of coherence, modeled as C(t)→ C(t)exp(−Γt), where Γ is the loss
rate [57]. In light of the results in Chap. 4, it would be more appropriate to
describe the losses through the three-body loss rate coefficient K3. How-
ever, good quantitative agreement between theory and experiment is still
observed using the empirical model.

For attractive interactions, the dynamical regimes are thus well under-
stood and the extracted experimental coherences match the theoretical pre-
dictions quantitatively.

6.3.2 Repulsive Interactions

In the case of repulsive impurity-medium interactions, the system is inher-
ently more complicated. Two distinct quasiparticle states exist, referred to
as the attractive and repulsive polaron branches (see Chap. 2). To probe the
system, the interferometric sequence described in Sec. 6.2 is again utilized
and both branches are initially populated. Upon closing the sequence, an
interference effect between the two polaron states is expected. This is ob-
served as a quantum beat effect in the extracted coherence function, which
contains information of both branches. Such a quantum beat effect has
been observed for the case of the Fermi polaron [56], but not for the Bose
polaron until now.

The two-body universal regime described in Eq. (6.4) for attractive in-
teractions, is also expected to be valid for repulsive interactions. However,
the presence of the attractive polaron state is accounted for by utilizing a
second-order expansion of the coherence function
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FIGURE 6.5: Observed coherence amplitude, |C(t)|, (gray circles) at an in-
verse interaction strength of 1/kna=+0.3. The universal behavior (blue line)
described by Eq. (6.4), gives a slower decoherence compared to Eq. (6.7)
which has the second-order corrections (red line). Adapted from [1].

C(t)≃ 1− (1− i)k3/2

(
t
tn

)3/2

− k2

(
t
tn

)2

, (6.7)

with k3/2 = 16/9π3/2 and k2 = ZP(EP/En)
2/2 − 4/(3πkn|a|) [1]. The

former of these represents the universal behavior, while the latter is the
second-order contribution from the peak and tail of the attractive polaron,
with quasiparticle residue ZP and energy EP. This correction is entirely real
and therefore only affects the coherence amplitude. The coherence func-
tion is also trap averaged and three-body losses are included similar to the
case for attractive interactions. The second-order expansion is observed
to account for the faster initial decoherence observed at strong repulsive
interactions, as shown in Fig. 6.5.

For the weak-coupling regime, the full form of the coherence function



6.3. Characteristic Dynamical Regimes 105

0 1 2 3 4 5 6 7

-1

-0.5

0

0 2 4 6 8 10

-1

-0.5

0

FIGURE 6.6: Extracted experimental data points for the phase evolution
(gray circles) for both (top) intermediate and (bottom) weak interaction
strengths at 1/kna = +0.7 and +1.5. The data is compared with the coher-
ence function in the weak-coupling regime given by Eq. (6.8) (green line),
and the first-order expansion (black line).

is utilized [155],

C(t) = e−iEmft/h̄e−(1+i)(t/tw)
1/2
. (6.8)

The first-order expansion of this equation is equal to Eq. (6.5), which
captured the observed decoherence in the weak-coupling regime for at-
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tractive interactions. For repulsive interactions, the full exponential form
given above is found to be essential for describing the phase evolution of
the coherence function. This is highlighted in Fig. 6.6 at intermediate and
weak interaction strengths. For intermediate interaction strengths, the up-
swing observed in the extracted phase evolution is exactly captured only
by the full form provided by Eq. (6.8). For weaker interaction strengths,
the phase evolution is observed to agree with the first-order expansion.

In contrast to the case of attractive interactions, the diagrammatic pre-
diction that led to the spectral function in Eq. (6.6) does not give a good
quantitative description when applied to the repulsive side. Presumably,
the reason for this is that it does not describe the repulsive polaron ad-
equately. However, it is still expected to give a qualitative description of
the system, which merits the use of an empirical model to account for the
presence of the two quasiparticle states,

C(t)≃ Zg exp(−iEgt/h̄)+Zr exp(−i(Er/h̄− iΓr/2)t). (6.9)

The first and second terms describe the attractive and repulsive polaron,
respectively, each with a residue and energy. Additionally, due to the inher-
ently unstable nature of the repulsive polaron, a damping term, exp(−Γr/2t),
is introduced. This model is only expected to describe the system beyond
the universal regime, given by the timescale ta = ma2/h̄. Additionally, at
strong interaction strengths the repulsive polaron is no longer well defined
and the above model breaks down.

This section has thus introduced the models describing the decoherence
of our system. Importantly, the similarities and differences in the case of
attractive and repulsive impurity-medium interaction strengths were high-
lighted. This connects to the following section, where repulsive interac-
tions are investigated further.
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6.4 Quantum Beat Spectroscopy of Repulsive
Bose Polarons

The publication presented in the following [2] investigates the early dy-
namics of the Bose polaron for repulsive interactions between the impurity
and medium. The system is investigated using the Ramsey-like interfer-
ometric sequence described in Sec. 6.2. A single dataset has previously
been recorded at strong repulsive interactions where no quantum beat was
observed [1].

6.4.1 Results

In the following publication [2], the interferometric sequence is used to
extract the coherence function of the system as a function of time. The be-
havior of both the coherence amplitude and phase, are well captured by the
early universal dynamics and observed to transition into the weak-coupling
regime. The crossover time associated with this transition is extracted as a
function of impurity-medium interaction strength and excellent agreement
with a theoretical prediction is observed.

For intermediate to weak interactions, a clear quantum beat signal is
observed in the coherence amplitude. The energy difference between the
two polaron branches is extracted by applying a phenomenological model
for the coherence function. Additionally, the energy of the repulsive branch
is independently extracted from the observed linear evolution of the coher-
ence phase in the weak-coupling regime. Putting these together, the ener-
gies of both branches are extracted and compared to theoretical predictions.
In the case of the attractive branch, the extracted energies do not allow for
a distinction between the attractive polaron state and the molecular state.
The extracted energies for the repulsive branch lie systematically above the
mean-field prediction and fluctuate around a quantum Monte-Carlo (QMC)
simulation.
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6.4.2 Outlook
The interaction strengths investigated in this publication [2] are primarily
focused on intermediate to weak interactions. This is due to the increased
decoherence effects for the repulsive branch when approaching unitarity at
1/kna = 0, where full decoherence is reached before the quantum beat sig-
nal is expected to appear. From the depicted dynamical regimes in Fig. 3
of the manuscript, a transition from the weak-coupling dynamics is expec-
ted for sufficiently long times. Such a transition occurs due to the inherent
instability of the repulsive polaron branch, which can decay down into the
attractive branch. This transition is expected to manifest itself in the phase
evolution at long times, where it should go to positive values.

The quantum beat signal is also only visible for the coherence amp-
litude, although expected to appear in the phase evolution as well. How-
ever, the oscillations for the phase are predicted to be much smaller than
those for the amplitude, requiring a high-precision measurement for obser-
vation. Such features may be more prominent when confining the atoms in
a box potential [106].

The discrepancies of the repulsive polaron branch discussed in Chap. 2
are still not fully resolved. Although the results presented here agree
with the QMC results, the difference between the theoretical predictions
is small, and high-precision measurements are necessary.

6.4.3 Publication
For the following publication [2], I was part of designing and planning the
experiment. I also performed the data analysis, made the figures, and wrote
the first draft of the article. For the experimental part of the data analysis
section in the supplementary information, I performed the data analysis,
wrote the draft, and made the figures.

This article has been submitted to Physical Review Letters under the
American Physical Society organization and is currently under review.
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The physics of impurities in a bosonic quantum environment is a paradigmatic and challenging many-body
problem that remains to be understood in its full complexity. Here, this problem is investigated for impurities
with strong repulsive interactions based on Ramsey interferometry in a quantum degenerate gas of 39K atoms.
We observe an oscillatory signal that is consistent with a quantum beat between two co-existing coherent quasi-
particle states: the attractive and repulsive polarons. The interferometric signal allows us to extract the polaron
energies for a wide range of interaction strengths, complimenting earlier spectroscopic measurements. We fur-
thermore identify several dynamical regimes towards the formation of the Bose polaron in good agreement with
theory. Our results improve the understanding of quantum impurities interacting strongly with a bosonic envi-
ronment, and demonstrate how quasiparticles as well as short-lived non-equilibrium many-body states can be
probed using Ramsey interferometry.

As famously argued by Landau, a bare impurity particle
smoothly evolves into a quasiparticle as the interaction with a
surrounding quantum environment is adiabatically increased.
Whereas the concept of quasiparticles was originally devel-
oped to understand the motion of electrons in solids [1], it
now has a much broader scope and forms an incredibly suc-
cessful platform for understanding strongly interacting quan-
tum many-body systems [2–6].

Ultracold quantum gas experiments have in recent years im-
proved our understanding of quasiparticles, as they allow one
to perform Landau’s gedanken experiment by tuning the in-
teraction strength between an impurity atom and a surround-
ing quantum gas. This has led to the observation of the
Fermi polaron [7–9], whose low-temperature properties are
now well understood theoretically [10–12]. Furthermore, its
non-equilibrium formation dynamics [13, 14] and mediated
interactions between two Fermi polarons [15] have been ob-
served. There is also strong experimental evidence for the
Bose polaron with an energy [16–19] and formation dynam-
ics [20, 21] that matches theoretical predictions well for at-
tractive interactions. For repulsive interactions, the spectro-
scopic measurements are generally complicated with broader
signals due to damping, the possible presence of few-body
bound states, and a many-body continuum. Except in the
perturbative regime [22, 23], there are indeed many differ-
ent theoretical predictions, reflecting the richness of the prob-
lem [24–35].

In this Letter, we use Ramsey interferometry to probe the
non-equilibrium dynamics of impurities in a weakly inter-
acting Bose-Einstein condensate (BEC) for repulsive interac-
tions. The underlying method is illustrated in Fig. 1. We ob-
serve a fast initial decay and a revival in the amplitude of the
oscillatory interferometric signal. This revival corresponds to
a quantum beat, indicating the presence of two states, which
we refer to as the repulsive and attractive branches. The inter-
ferometric measurements allow for a characterization of the
energy of these branches as a function of interaction strength.

Repulsive branch

Attractive branch

FIG. 1. Illustration of the employed Ramsey interferometry method
and a simplified energy landscape of the system as a function of in-
verse interaction strength 1/(kna). A first radio frequency (rf) pulse
(black arrow) is applied to a Bose-Einstein condensate (BEC) in the
initial electronic state |1⟩ (blue dots), which generates a small admix-
ture in the impurity state |2⟩ (red dots). Its interaction with the back-
ground BEC results in attractive and repulsive Bose polaron branches
(green lines). A second rf pulse closes the interferometric sequence.
The presence of two polaronic branches leads to the observation of a
beat signal in the amplitude of the oscillatory interferometer output.

Based on the initial decay, several non-equilibrium dynamical
regimes are identified and explained theoretically. These in-
terferometric results provide valuable information on impurity
dynamics and the energy of the Bose polaron for strong and
repulsive interactions, complimenting previous spectroscopic
measurements [16, 19].

The experiment is performed with 39K atoms in an opti-
cal dipole trap [36] and follows the same procedure as the in-
vestigations for attractive impurity-medium interactions [20].
The medium is a BEC in the |F = 1,mF =−1⟩ ≡ |1⟩ hy-
perfine state, where F and mF denote the total angular mo-



mentum quantum number and its projection, respectively.
The |F = 1,mF = 0⟩ ≡ |2⟩ hyperfine state constitutes the im-
purity state. The interaction between atoms in these two
states is characterized by the scattering length, a, which
can be controlled with a magnetic Feshbach resonance at
113.8G [37, 38]. As a result, the interaction strength kna can
be tuned at will from attractive, kna < 0, to repulsive, kna > 0,
interactions, where kn = (6π2nB)

1/3 is determined by the av-
erage density, nB, of the BEC. The typical energy scale of the
system is given by En = ℏ2k2

n/(2m), with the mass m of 39K,
which also provides the characteristic timescale tn = ℏ/En.

The interferometric sequence is initiated by a radio fre-
quency (rf) pulse on resonance with the atomic transition be-
tween the |1⟩ and |2⟩ states [39], which produces a small 5%
coherent admixture of the impurity state. Subsequently, the
system evolves at the chosen interaction strength kna for a
variable time, t, until a second rf pulse with a variable phase
φ between −π and π is applied. We extract the signal from
the loss of atoms due to three-body recombination, involv-
ing two condensate atoms and one impurity. The final num-
ber of atoms in the BEC has a sinusoidal dependence on
the phase of the second rf pulse, which we parametrize as
N(φ) = N0−A cos(φ −φc). The normalized coherence func-
tion is then given by, C(t) = |A (t)/A (0)|eiφc(t), which cor-
responds to the time-dependent Green’s function of the im-
purity, G(t) =−iC(t) =−i⟨ΨBEC| ĉ(t)ĉ†(0) |ΨBEC⟩, with the
state of the BEC |ΨBEC⟩, and the creation operator for the im-
purity, ĉ† [14, 20].

The observed coherence amplitude and phase evolution are
shown in Fig. 2 for three interaction strengths on the repulsive
side of the resonance, displaying a number of striking fea-
tures. The coherence amplitude shows a fast initial decay and
a clear revival for intermediate and weak interaction strengths
in Figs. 2 (c) and 2 (e). The phase initially increases and then
reverses on a characteristic timescale, in Fig. 2 (d), indicating
the crossover between different dynamical regimes.

Importantly, the dynamics entails the population of a con-
tinuum of states, which together with decoherence effects in
the system, leads to a decrease in the coherence amplitude. On
top of this, the energy difference between the attractive and re-
pulsive branches (see Fig. 1) leads to a quantum beat signal.
In the following, the results shown in Fig. 2 are discussed in
detail, and the energies of the attractive and repulsive branches
are inferred from the signal.

Theoretically, the coherence function can be obtained from
a Fourier transform of the spectral function. At short times,
an expansion in orders of t/tn yields

C(t) = 1− (1− i)k3/2

(
t
tn

)3/2

− k2

(
t
tn

)2

, (1)

valid for times t ≪ ta = ma2/ℏ. The second term is a con-
sequence of unitarity-limited two-body interactions [41] with
the universal constant k3/2 = 16/(9π3/2) [20, 42]. The third
term is an approximate second-order correction with k2 =(

Zg (Eg/En)
2 /2−4/(3πkn|a|)

)
, which takes the attractive

polaron with energy Eg and residue Zg, as well as the high-
frequency tail of the spectral function [21] into account.

The measured coherence function in Figs. 2 (a) and 2 (b)
for strong repulsive interactions 1/(kna) = 0.4 indeed agrees
well with Eq. (1) at short times, as was also observed for at-
tractive interactions [21]. We are, thus, able to quantitatively
account for both the fast initial decay of the coherence ampli-
tude as well as the initial positive phase evolution [43]. At in-
termediate interaction strengths of 1/(kna) = 0.7 in Figs. 2 (c)
and 2 (d), similarly good agreement is obtained for short
times, showing the presence of a universal regime, where
Eq. (1) is valid, also in this case. For weak interactions at
1/(kna) = 1.5, shown in Figs. 2 (e) and 2 (f), the universal
regime contains only a few data points, since ta = 0.2tn.

For intermediate to weak interactions, the attractive polaron
state lies close to the molecular state, whose energy to first or-
der is given by −ℏ2/ma2. Therefore, the quantum beat signal
between the two branches enters the dynamics on the same
timescale, ta =ma2/ℏ, as the system exits the unitarity-limited
regime [40]. As a result, we expect a dynamical regime de-
scribed by weak coupling dynamics superimposed with quan-
tum beats after t = ta, which is qualitatively different from the
case of attractive interactions, 1/(kna) < 0, where no beating
is observed. The weak coupling dynamics is to a good ap-
proximation described by

C(t) = e−iEmft/ℏe−(1+i)(t/tw)1/2
. (2)

In this case the dynamics is governed by the mean-field phase
evolution with Emf =

4πℏ2anB
m , and the coherence decays on an

interaction strength dependent timescale tw = m
32πℏn2

Ba4 [44],
following a stretched-exponential form.

For longer times, the measured coherence amplitude and
phase in Figs. 2 (c) and 2 (d) both agree well with this predic-
tion, without, however, capturing the crossover from the ini-
tial dynamics or the beat signal. This is expected since Eq. (2)
does not include the low-lying attractive polaron branch.

To examine the crossover in detail, the associated crossover
time is extracted from the coherence phase [45]. We pin-
point the time at which the experimentally extracted coher-
ence phase becomes closer to the result of Eq. (2) rather than
Eq. (1). The crossover time is identified with the time between
this and the previous data point. The extracted times are pre-
sented in Fig. 3, along with the expected dynamical regimes.
The extracted crossover timescale is in very good agreement
with the transition between unitarity-limited dynamics (blue
region) and weak-coupling beating dynamics (orange region),
set by the timescale ta =ma2/ℏ for 1/(kna)> 0.5. This shows
the existence of universal behavior at short times for all inter-
action strengths, extending the result in Ref. [20] to repulsive
interactions.

For strong interactions, there is no regime where Eq. (2) is
accurate. Instead, the short-time unitarity-limited dynamics
given by Eq. (1) is expected to transition directly to many-
body dynamics for later times, consistent with the case of
strong attractive interactions [20]. Theoretically, it is expected
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FIG. 2. Impurity dynamics at three characteristic interaction strengths. The coherence function is given for (a,b) strong 1/(kna) = 0.4, (c,d)
intermediate 1/(kna)= 0.7, and (c,f) weak 1/(kna)= 1.5 interaction strengths. For comparison, theoretical results for the unitarity-limited case
in Eq. (1) (blue dashed line) and for weak two-body interaction Eq. (2) (green dash-dotted line) are shown, without any free fitting parameters.
Additional decoherence effects in the system due to three-body losses and the inhomogeneous density distribution, beyond Eqs. (1) and (2),
are accounted for in the theoretical description [40].

FIG. 3. Dynamics of impurity evolution for repulsive interactions.
The characteristic dynamical regimes are indicated as a function of
inverse interaction strength 1/(kna) and evolution time t/tn. The ex-
perimentally extracted crossover times (blue dots) indicate the tran-
sition from universal (blue region) to weak coupling and beating dy-
namics (orange region). For strong interactions and long times, the
repulsive polaron decays, and the system is expected to transition
into another dynamical regime (yellow region), in which the attrac-
tive polaron dominates the dynamics.

that the repulsive polaron eventually dampens out, resulting
in the attractive polaron dominating the dynamics, at which
point the system enters a new dynamical regime (Fig. 3 yel-
low region). Experimentally, however, we did not observe
signatures of this crossover. This is expected, since we the-
oretically observe that trap-induced density inhomogeneities
significantly delay the crossover in the diagrammatic predic-
tion [40].

We now turn to analyze the quantum beat signal, clearly
visible in Figs. 2 (c) and 2 (e), and present throughout the or-

ange region in Fig. 3. Importantly, such a signal is not present
for attractive interactions of 1/(kna)< 0, but a similar feature
was observed in interferometric investigations of the Fermi
polaron [14]. In close analogy, the signal stems from the quan-
tum interference of the repulsive and attractive branches, as
demonstrated in the following. We apply a phenomenological
model for the coherence function

C(t) = Zg e−iEgt/ℏ+Zr e−iErt/ℏe−Γrt/2, (3)

which we expect to give a good description for weak to in-
termediate coupling strengths, where the repulsive polaron
is well-defined. Indeed, this describes two states; a ground
state at energy Eg, and a damped excited state with energy
Er > Eg and damping rate Γr, corresponding to the attrac-
tive and repulsive polarons with residues Zg and Zr, respec-
tively. This implies two main features of the coherence func-
tion for weak-coupling beating dynamics. The slope of the
phase corresponds to the energy of the repulsive branch since
it is expected to have the largest residue, i.e. φC ≈ −Ert/ℏ.
For sufficiently strong coupling, Zg > Zr, the above argument
no longer holds and the repulsive polaron energy cannot be
extracted. In addition, the squared amplitude of the coherence
function contains a sinusoidal oscillation at a frequency corre-
sponding to the energy difference between the two branches.

Based on this approach, the experimental coherence ampli-
tude squared and phase are fitted with the functions

|C (t)|2 = Ae−t/τ1 cosωt +Be−t/τ2 , (4)
ϕc = Aϕ −Bϕ t. (5)

This corresponds to the modulus squared of Eq. (3) with an
additional exponential decay of the oscillation amplitude to



model three-body decay and other loss mechanisms. This is in
line with previous interferometric investigations, where three-
body losses were introduced as a global loss of coherence [20,
21]. Conversely, we expect the linear behavior of the phase
evolution to be more robust and any small effect should be
encapsulated in the fitting parameters, Aφ and Bφ . The energy
difference can be extracted from the fitting parameters as Er −
Eg = ℏω . An example of the coherence amplitude fit is shown
in the inset of Fig. 2 (e). Generally, a single revival is resolved,
due to the decoherence effects and losses in the experiment
discussed above [40]. Furthermore, the repulsive branch is
expected to be damped, such that the beat signal, even in an
ideal setting, attenuates in time.

Additionally, the fit directly yields the energy of the repul-
sive branch, Er = ℏBϕ . This technique, however, can only
be used when the phase evolution shows a linear evolution
for long times. This is the case for the phase evolution in
Fig. 2 (f) but not for Fig. 2 (d), where the last data point
shows an increase. This limits our analysis to 1/(kna)> 0.85.
To avoid the influence of the unitary regime, the linear fit
is, additionally, restricted to t > ta. Figure 4 (upper panel)
shows the obtained energies for the repulsive branch for this
range of interaction strengths. These energies lie consistently
higher than the simple mean-field expectation and agree with
a Monte-Carlo prediction [19]. Moreover, they lie systemat-
ically higher than our diagrammatic calculation based on the
ladder approximation [40]. In fact, we find that the diagram-
matic approach only qualitatively describes the dynamics at
repulsive interactions, in constrast to what was observed for
attractive interactions, where it compares quantitatively well
with experiments [20, 21]. We attribute the discrepancy at re-
pulsive interactions to the lacking ability of the diagrammatic
approach to accurately describe the repulsive polaron branch
in this regime.

Based on these results, the energy of the attractive branch
is obtained by subtracting the extracted energy difference
from the repulsive branch energy Eg = Er −ℏω as shown in
Fig. 4 (lower panel). The energies agree with both the attrac-
tive polaron energy, obtained from diagrammatic calculations,
and the molecular energy with an effective range given by the
Van der Waals length of our medium, R∗ = 60a0 [16, 40]. Ex-
perimentally, we cannot distinguish between these two results.
However, the rf response of the molecular state is expected to
be very small compared to the attractive polaron state, as has
been previously measured for the Fermi polaron [8]. In par-
ticular, since the molecular state does not have a plane wave
component, we expect such a signal to scale with the density
of generated impurities. This is indeed much weaker than the
response from the attractive polaron state scaling with the den-
sity of the entire BEC. With this in mind, the above agreement
confirms our interpretation of the beat signal arising from an
interference between the two polaron states. Furthermore, the
simple linear fitting for the repulsive branch energy yields a
robust measurement beyond the accuracy obtained spectro-
scopically [16]. Note that we see no evidence of the recently
predicted presence of meta-stable states at intermediate ener-
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FIG. 4. Energies of the repulsive and attractive branches as a function
of the inverse interaction strength. The measured energies are shown
as gray points and the result of our diagrammatic calculation is indi-
cated by green dashed lines [40]. (top panel) The repulsive branch
energies lie clearly above the simple mean-field expectation (black
dash-dotted line) and is consistent with a quantum Monte-Carlo pre-
diction (yellow dashed line, diamonds) as well as a variational trun-
cated basis method calculation (magenta dashed line) [19]. (bottom
panel) The attractive branch energies do not allow for a distinction
between the diagrammatic result and the molecular energy (red line).

gies between the two branches [35].
In conclusion, we have performed Ramsey interferometry

on a BEC of 39K to investigate the physics of Bose polarons in
a wide range of repulsive interactions. The observed quantum
beat signal is consistent with a repulsive and attractive quasi-
particle branch that form and exist in a coherent superposition.
From the beat frequency and the slope of the coherence phase,
we determine the energy of these branches. The repulsive
branch lies systematically above the simple mean-field
expectation and are consistent with a quantum Monte-Carlo
prediction [19]. Furthermore, the initial dynamics is seen
to agree very well with the exact unitarity-limited behavior
with the non-analytical time-dependence of t3/2 [20, 42],
and the crossover to a weak-coupling regime closely follows
the expected t = ma2/ℏ behavior for 1/(kna) > 0.5. At
even stronger interactions of 1/(kna) < 0.5, the dynamics
follows the unitarity-limited behavior for long times. This,
along with the quantitative discrepancy from the diagram-
matic calculations, calls for further theoretical analyses,
especially at intermediate to strong repulsive interactions of
0 < 1/(kna)< 1.
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SI. EXPERIMENTAL DATA ANALYSIS

A. Extracted energy differences

The quantum beat signal observed for the coherence amplitude in the main manuscript was fitted with a phenomenological
model and the energy difference between the repulsive and attractive branches was extracted. In combination with the linear fit
of the phase evolution, this was used to find the energy of the attractive and repulsive branches.

Figure S1 shows all extracted energy differences as a function of the inverse interaction strength. Additional energy differences
at high interaction strengths are included, where the linear fit of the phase evolution fails but a quantum beat is still observed
in the coherence amplitude, as is the case for 1/kna = 0.7 in Fig. 2 (c) and (d) in the main manuscript. The extracted energy
differences show a general increase from strong to weak interactions, which is primarily due to the large negative energy of
the attractive branch. For large interaction strengths and consequently small values of 1/(kna) < 0.7, no quantum beat signals
are observed. We attribute this to the rapid damping of the repulsive polaron along with the universal decay of the coherence
function and rapid decoherence processes in our experiment.
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FIG. S1. Energy differences. Energy differences between the attractive and repulsive branches extracted from the beat signal in the coher-
ence amplitude (gray points). For comparison, the energy difference between the attractive and repulsive polaron energy obtained from the
diagrammatic calculation in Sec. SII B (green dashed line) is shown. Moreover, the energy difference between the mean-field energy and the
molecular energy (red line) is indicated.

Figure S1 also compares the data with, the energy difference between the attractive and repulsive polaron energy calculated
in Sec. SII B and with the energy difference between the mean-field energy and the molecular energy. The data is in good
agreement with both predictions but does not allow for a distinction between them.

B. Decoherence from impurity losses

The loss of impurity atoms leads to faster decoherence of the system and is mainly caused by three-body losses with medium
atoms, which has to be accounted for. The lifetime of impurity atoms was previously investigated for attractive interactions
between the impurity and the medium [1] and the same approach is used here for repulsive interactions. In brief, the experimental
sequence starts with a Bose-Einstein condensate (BEC) in the |F = 1,mF =−1⟩ medium state. An initial radio frequency pulse
produces a 10% admixture in the |F = 1,mF = 0⟩ impurity state, as opposed to the 5% used in the experimental sequence



described in the main manuscript. This is to increase the extracted signal, as well as being the maximal impurity admixture for
the sequence in the main manuscript after both pulses. Following the initial pulse, impurity atoms are lost due to three body
collisions, where two medium atoms are lost for each impurity atom. After a variable wait time the remaining impurities are
transferred to the third state, |F = 1,mF = 1⟩, using a π-pulse. In this state the impurity atoms are quickly lost due to two-body
collisions with medium atoms. The final atom number in the medium state is then observed as a function of the waiting time
for various interaction strengths. Since the two loss processes lead to a different number of lost medium atoms, this sequence
allows for a measurement of the impurity lifetime by measuring the number of medium atoms. An exponential fit of the form
∼ exp(−Γlosst) is applied for each data set, to extract the loss rate Γloss. The observed loss rates for repulsive interactions (green
points) are shown as a function of inverse interaction strength in Fig. S2. For comparison, Fig. S2 also includes the previously
measured loss rates for attractive interactions (red points) [1]. An empirical fit of the form, β1+β2 exp(β3/kna) was performed to
extract the loss rate at arbitrary interaction strengths. The theoretically calculated coherence function is then modified according
to C(t)→C(t)exp(−Γlosst), before comparison with the experimental results in Fig. 2 of the main manuscript.
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FIG. S2. Loss rates. Measured loss rates of impurity atoms embedded in a Bose-Einstein condensate as a function of the inverse interaction
strength. The measured loss rates for repulsive interactions (green points) are shown together with previous experimental data for attractive
interactions [1] (red points). The solid lines indicate fits to the data (see text).

C. Decoherence from density inhomogeneity

The harmonic trap used in the experiment leads to an inhomogeneous density distribution of the atomic clouds. This causes
additional decoherence of the system since the impurities at high medium density at the center of the cloud evolve differently
compared to those at the edge.

It is therefore necessary to perform a local density approximation of the theoretical coherence function [1]. This corresponds
to an integration of the coherence function over its density dependent terms according to

⟨C(t)⟩= 15
4n0

∫ n0

0
dn

n
n0

√
1− n

n0
C(t), (S1)

in the Thomas-Fermi approximation. The theoretically calculated coherence function is then modified according to C(t) →
⟨C(t)⟩, for comparison with the experimental results in Fig. 2 of the main manuscript.

SII. THEORETICAL ANALYSIS

A. Exact short-time dynamics at weak coupling

Here, we derive the exact short-time dynamics for repulsive interactions at weak coupling 1/kna ≫ 1. The analysis is similar
to the one described in the Supplementary Material of ref. [1]. The coherence dynamics is in general calculated from the Fourier



transformation of the zero momentum spectral function, C(t) =
∫ +∞
−∞ dωe−iωtA(ω)/2π . We may decompose this as

C(t) =
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dω
2π

e−iωtA(ω)
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In refs. [1, 2] it is shown that
∫ +∞
−∞

dω
2π ωA(ω) ∝ 4πℏaB/m, where aB is the medium-medium scattering length. Hence, this term

can safely be omitted. An exact expression for the second term at short times was also previously determined [1] from the exact
high-frequency tail of the spectral function [2] to yield the contribution

Ctail(t) =
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dω
2π
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)]
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with ta = ma2/ℏ, and Γ(ν ,x) =
∫ ∞

x dssν−1es the upper incomplete gamma function. This calculation, hereby, fully accounts for
the exact high-frequency tail. The third term in Eq. (S2) can be omitted only at times shorter than ℏ/|Eg|, where Eg is the energy
of the attractive polaron. For 1/kna ≪−1, this coincides with the mean field timescale, whereas at unitarity Eg ≃−En, such that
C(t) = 1+Ctail(t) up to times of order tn. For positive scattering lengths, the attractive polaron, however, eventually approaches
the energy Em = −ℏ2/ma2 of a universal Feshbach molecule. Since the associated timescale of this state coincides with ta,
ℏ/|Em|= ta, it will have a considerable contribution for times t > ta. At weak coupling, this may be evaluated exactly, because
the ladder approximation in this limit provides the correct perturbative description. In particular, as the energy approaches
Em =−ℏ2/ma2, the residue can be computed from the expression [3]
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1

1+ 3π
8
√

2

( |Eg|
En

)3/2 → 1
1+ 3π

4
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→ 4
3π
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The first equality here is obtained by combining Eqs. (S13) and (S14) in the Supplementary Material of Ref. [3]. In this regime,
A(ω) = 2πZgδ (ω −Em/ℏ) for ω < 0. As a result, the third term in Eq. (S2) at weak coupling is given by

Cg(t) =
∫ 0
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The total short-time coherence function is then

C(t) = 1+Ctail(t)+Cg(t) = 1− 2
3π
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For t ≪ ta, this yields the same unitarity-limited behavior as for negative scattering lengths,

C(t) = 1− (1− i)k3/2

(
t
tn

)3/2

, (S7)

with k3/2 = 16/(9π3/2). On the other hand, the dynamics for times t > ta is now qualitatively different from the one found for
negative scattering lengths. In particular, comparing Eq. (S6) to the weak coupling behavior

Cw(t) = 1− 2
3π

(kna)3 − iEmft
ℏ

− (1+ i)
√

t
tw
, (S8)

with tw = m
32πℏn2

Ba4 in Fig. S3 demonstrates that the full dynamics shows oscillations around the behavior described by Eq. (S8)

at a frequency given by 1/ta = ℏ/ma2. The modification of the coherence phase is, however, seen to be minor.

B. Polaron energies in the ladder approximation

Here, we briefly outline the calculation of the attractive and repulsive polaron energies in the ladder approximation [4]. In
the experiment, the medium-medium scattering length is knaB ≃ 0.01. We, therefore, assume that the relevant physics can be
explained by assuming an ideal BEC. The impurity Green’s function G−1(ω) = ω + iη −Σ(ω) (evaluated at zero momentum



FIG. S3. Short-time dynamics at weak coupling. The coherence amplitude (a), (b) and phase (c), (d) at indicated interaction strengths. The
blue line describes unitary behavior valid for t ≪ ta (Eq. (S7)), the green line is described by Eq. (S8), while the full dynamics in red is
described by Eq. (S6).

and equal masses), is expressed in terms of the self-energy Σ(ω), which in the ladder approximation may additionally be written
as Σ(ω) = nBT (ω). Here,

T (ω) =
1

m
4πℏ2ã(ω)

−Π(ω)
(S9)

is the T -matrix, and 1/ã(ω) = 1/a+R∗mω includes the effect of the finite range parameter R∗ [5]. For the Feshbach resonance
in question the range parameter is estimated to be R∗ = 60a0 [6]. We find this to be important to quantitatively capture the
attractive polaron energy in the regime 1/kna > 0.5. Finally, Π(ω) =−im3/2(ω + iη)1/2/(4πℏ5/2) is the pair propagator, and η
is a positive infinitesimal. The attractive polaron energy is then determined by the equation Eg/ℏ= Σ(Eg/ℏ), while the repulsive
polaron energy satisfies Er/ℏ= Re[Σ(Er/ℏ)] for Er > 0. We find that these equations can equivalently be expressed as

Eg

En
=

4
3π

1
1

kna + knR∗ Eg
2En

−
√

|Eg|
2En

,

Er

En
=

4
3π

1
kna + knR∗ Eg

2En(
1

kna + knR∗ Er
2En

)2
+ Er

2En

. (S10)

Using knR∗ ≃ 0.06, the numerical solution of these equations leads to the results in Fig. 4 of the main text.

C. Phase evolution with and without trap averaging

Using the ladder approximation, we, here, provide strong theoretical evidence that the initial evolution of the coherence phase
follows the repulsive polaron energy. We also show that trap averaging leads to a severe delay or even prevention of the crossover
into the dynamical regime dominated by attractive polaron dynamics.

The coherence function is calculated as the Fourier transform of the zero momentum spectral function, C(t)=
∫ +∞
−∞ dωe−iωtA(ω)/2π .

The spectral function A(ω) =−2ImG(ω) is evaluated within the ladder approximation described in the previous subsection. In
particular, G−1(ω) = ω + iη −Σ(ω), is evaluated from the self-energy

Σ(ω)

En
=

4/3π
1

kna + knR∗ ℏω
2En

+ i
√

ℏω
2En

. (S11)



In Fig. S4, we show the resulting phase evolution ϕC(t) = arg(C(t)). This is shown both for a homogeneous system and
in a harmonic trap. For the latter, we use a local density approximation to evaluate the trap-averaged coherence function
⟨C(t)⟩ = 15

4n0

∫ n0
0 dn n

n0

√
1− n

n0
C(n, t), as described previously in Sec. SI C. The key insights of this calculations are the follow-

ing. (1) The initial behavior of the phase follows the one corresponding to the repulsive polaron: −iErt/ℏ, and not the mean-field
energy. This is also the case for the system in a trap. Experimentally, this allows us to extract the repulsive polaron energy from
the short-time linear slope of the phase. (2) For a homogeneous system, as the repulsive polaron dampens out, the phase rapidly
switches behavior and starts following the attractive polaron phase evolution −iEgt/ℏ. (3) In the harmonic trap, this crossover
is either severely delayed as in Fig. S4(right), or entirely washed out as in Fig. S4(left).

We find, however, that the ladder approximation does not quantitatively describe the phase evolution. It seems to overestimate
the overall amplitude of the beat signal between the repulsive and attractive polarons. Furthermore, the repulsive polaron energies
extracted in the experiment lie systematically above the ones found in the ladder approximation.

FIG. S4. Phase evolution in the ladder approximation. The coherence phase is shown for two indicated interaction strengths for a homoge-
neous system (red line) as well as in a harmonic trap (black line). We also show the phase evolution corresponding to repulsive and attractive
polarons (blue and green lines, respectively), as well as the mean field phase evolution in grey.
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CHAPTER 7

Conclusion & Outlook

In this thesis, multiple aspects of impurity physics were investigated for
the particular case of the Bose polaron. This included both attractive and
repulsive impurity-medium interactions and allowed for a detailed compar-
ison with theoretical models.

In Chap. 4, three-body recombination processes for an impurity im-
mersed in a BEC were investigated for attractive impurity-medium inter-
actions. Accurate modeling of the losses allowed for extracting the three-
body loss rate coefficient as a function of the impurity-medium scattering
length. From this, the density of the system was estimated at a variable time
in the ejection protocol. This was compared to an entirely experimental
method, with good agreement between the two. Finally, it was found that
the loss processes resulted in more medium atoms lost per impurity than
expected. This was interpreted as the result of secondary collisions in the
systems.

In Chap. 5, spectroscopy results using the ejection protocol were presen-
ted, for attractive impurity-medium interactions. A polaron signal was ob-
served and compared to the theoretical prediction with good agreement
after taking experimental modifications into account. Additionally, exper-
imental evidence for the observation of the bipolaron state was presented
and analyzed.

In Chap. 6, an interferometric sequence was utilized for probing the
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short-time dynamics of an impurity immersed in a BEC, with repulsive
impurity-medium interactions. The results revealed distinct dynamical re-
gimes, as well as a quantum beat effect arising from the interference of the
repulsive and attractive polaron states. Finally, the energies of these states
were extracted and compared to theoretical predictions.

Outlook

The results for the Bose polaron presented in this thesis are readily exten-
ded to other interesting features of impurity physics. These include ap-
plying ejection spectroscopy for repulsive impurity-medium interactions
to capture both the attractive and repulsive branches and varying the im-
purity concentration at fixed attractive interaction strengths to investigate
the bipolaron signal further. In the following, select research directions for
impurity physics are discussed.

Ramsey measurements

In Chap. 6, the Bose polaron was investigated by varying the phase of
the second rf-pulse in the interferometric sequence for different evolution
times. The repulsive polaron energies were then extracted from the linear
behavior of the phase evolution. These were observed to lie systematically
above the mean field result, fluctuating around the quantum Monte-Carlo
results. This result prompted the need for a higher precision measurement
of the repulsive polaron energy, to better distinguish between the theoret-
ical predictions. The preliminary results of this investigation are briefly
presented here.

First, an alternative method for investigating the energy of the repulsive
state is proposed. In the standard Ramsey measurement, the frequencies
of both interferometric pulses are varied together and the relative phase
between the pulses is fixed to π . Additionally, a sufficiently long evolution
time is used to ensure the formation of polarons. The sequence is illustrated
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(a)

2

1 (c)

2

1(b)

FIGURE 7.1: Ramsey measurement illustrated on the Bloch sphere, when the
frequencies of both rf-pulses are exactly resonant to the |1⟩ to |2⟩ transition.
a) The initial rf-pulse creates the superposition of the |1⟩ and |2⟩ states. b)
During the evolution time, the Bloch vector does not precess since the rf-
pulses have zero detuning. c) The final rf-pulse has a π-shift relative to the
first rf-pulse and the atoms are transferred back to the |1⟩ state. If the rf-
pulses are not resonant, the Bloch precesses in b), and the final rf-pulse will
not have an ideal transfer back to the |1⟩ state.

using the Bloch sphere picture in Fig. 7.1, where the medium and impurity
states are at the top and bottom, respectively. The initial rf-pulse creates a
superposition of the impurity and medium state, with only a small fraction
in the former. During the evolution time, the precession of the Bloch vec-
tor is given by the detuning of the rf-pulse to the polaron state. If this is
on resonance, the Bloch vector remains stationary and the second rf-pulse
has the optimal conditions for transferring the impurities back to the me-
dium state. If the frequency of both rf-pulses are varied, the Bloch vector
precesses during the evolution time and characteristic Ramsey fringes are
observed in the medium atom number according to
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FIGURE 7.2: (top) Example of a Ramsey measurement at 1/kna = +1.3,
where a shifted maximum of atom numbers, with respect to E = 0, is
observed. (bottom) Extracted energies of the repulsive polaron state (red
squares) as a function of inverse interaction strength. These are compared to
the results from the phase evolution analysis (grey points) in Chap. 6, as well
as the quantum Monte-Carlo results (yellow diamonds), mean-field energy
(black dash-dotted) and diagrammatic prediction (green solid line).
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N(δ ) = A
[

sin(δτp/2)
δτp/2

]2

cos2
(

δT
2

)
. (7.1)

Here the detuning and duration of the rf-pulses are given by δ and τp, re-
spectively. The evolution time of the system is T and A is an amplitude,
used for fitting to the experimental signal. The duration of the rf-pulses is
much shorter than the evolution time and the sinc function is slowly vary-
ing compared to the cosine. An example of this is shown for 1/kna =+1.3
in Fig. 7.2, where clear oscillations of the atom number are observed as a
function of varying the rf-pulse frequency. A maximum is observed close
to E = 0 at positive energies. This shifted peak is taken as the shift of
the energy of the repulsive polaron. The measurement is then repeated for
different interaction strengths, with the extracted polaron energies shown
in Fig. 7.2. These energies are compared to those already presented in
Chap. 6 along with the theoretical predictions. Similar to the energies ex-
tracted from the phase evolution, the energies are observed to fluctuate
around the quantum Monte-Carlo calculation. The extracted energies rep-
resent a higher precision measurement as reflected in their small vertical
error bar, but they have roughly the same fluctuation as the phase evolution
results. is is attributed to some underlying systematic uncertainty that is
not accounted for and these measurements are still being investigated.

Orthogonality catastrophe

The medium-medium interaction strength is expected to affect the stability
of the polaron and if tuned to zero, the so-called orthogonality catastrophe
has been predicted to occur [157, 158]. As this zero crossing is approached
the quasiparticle residue approaches zero and the polaron becomes ill-
defined. Investigating the medium-medium interaction thus provides in-
sight into the stability of the system by changing the compressibility of
the BEC. For our system, the Feshbach resonance at 114 G utilized in
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FIGURE 7.3: Intrastate scattering lengths for the |F = 1,mF = 0⟩ state
(green line) and the |F = 1,mF = 1⟩ state (purple line), as a function of
the magnetic field. An interstate Feshbach resonance between these is
located around 40 G (orange line). Additionally, a zero crossing for the
|F = 1,mF = 0⟩ state appears at ≈ 41 G (gray area).

this thesis gives a constant medium-medium scattering length around 10a0,
which is relatively low.

However, around 40 G the internal scattering length for the
|F = 1,mF = 0⟩ state can be tuned through a zero crossing as shown in
Fig. 7.3. Additionally, a Feshbach resonance between the |F = 1,mF = 0⟩
and |F = 1,mF =+1⟩ states is present at a magnetic field in the close vi-
cinity. The |F = 1,mF = 0⟩ state could then be used as the medium state
and the |F = 1,mF =+1⟩ as the impurity state. The production of a BEC
in the medium state should be simple, as it has a Feshbach resonance at
slightly larger magnetic fields, which could be utilized to ensure effective
evaporative cooling.
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Alternatively, multiple Feshbach resonances exist at high magnetic fields
> 400 G, which would require several modifications to the existing appar-
atus to realize.

Quantum engine

A final example of future prospects for experiments lies beyond impurity
physics and explores the area of thermodynamics. A classical engine is
characterized by a cycle where heat and work are transferred in and out of
the system by a working fluid. Multiple cycles exist that seek to optimize
the efficiency of this transfer by expanding and compressing the working
fluid under specific conditions. In the context of ultracold quantum gases,
one can design a cycle where the gas is compressed and expanded while
varying the scattering length of the atoms. This results in an energy transfer
between the magnetic and optical fields. Such a cycle was investigated in
Ref. [159] using 7Li, both in the case of a thermal and condensed gas,
where the latter was observed to have a higher efficiency in terms of the
released energy after a full cycle.

However, the tuning range of the scattering length of the medium was
only considered in the range of 100− 250a0, for which our system can
be extended considerably further. This tuning, along with the different
possible cycles [160–163], opens up new interesting physics to explore,
with very few modifications to our current experimental setup.

Final remarks

With the conclusion of this thesis, my contributions to the field of impur-
ity physics have been laid out and the stage is now set for our system to
continue exploring this field as well as new exciting physics. Although
the scientific achievements were highlighted, the biggest advancement has
been the technical skills and personal development I have acquired along
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the way. I now look forward to a new chapter in my life, where new chal-
lenges await.
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[141] J. ř. Etrych, G. Martirosyan, A. Cao, J. A. P. Glidden, L. H. Dogra,
J. M. Hutson, Z. Hadzibabic and C. Eigen, ‘Pinpointing feshbach
resonances and testing efimov universalities in 39K’, Phys. Rev.
Res. 5, 013174 (2023).

https://doi.org/10.1088/1361-6455/ad53ae
https://doi.org/10.1088/1361-6455/ad53ae
https://doi.org/10.1119/1.4867376
https://doi.org/10.1209/0295-5075/104/63002
https://doi.org/10.1103/PhysRevLett.104.223004
https://doi.org/10.1007/s003400050805
https://doi.org/10.1103/PhysRevLett.79.337
https://doi.org/10.1103/PhysRevLett.79.337
https://doi.org/10.1103/PhysRevA.98.052706
https://doi.org/10.1103/PhysRevA.98.052706
https://doi.org/10.1103/PhysRevResearch.5.013174
https://doi.org/10.1103/PhysRevResearch.5.013174


144 Bibliography

[142] L. J. Wacker, N. B. Jørgensen, D. Birkmose, N. Winter, M. Mikkelsen,
J. Sherson, N. Zinner and J. J. Arlt, ‘Universal three-body physics
in ultracold KRb mixtures’, Physical Review Letters 117, 163201
(2016).

[143] P. Cheiney, C. R. Cabrera, J. Sanz, B. Naylor, L. Tanzi and L. Tar-
ruell, ‘Bright soliton to quantum droplet transition in a mixture of
bose-einstein condensates’, Phys. Rev. Lett. 120, 135301 (2018).

[144] G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wolswijk, F.
Minardi, M. Modugno, G. Modugno, M. Inguscio and M. Fattori,
‘Self-bound quantum droplets of atomic mixtures in free space’,
Phys. Rev. Lett. 120, 235301 (2018).

[145] T. G. Skov, M. G. Skou, N. B. Jørgensen and J. J. Arlt, ‘Observation
of a lee-huang-yang fluid’, Phys. Rev. Lett. 126, 230404 (2021).

[146] S. Lepoutre, L. Fouché, A. Boissé, G. Berthet, G. Salomon, A.
Aspect and T. Bourdel, ‘Production of strongly bound 39K bright
solitons’, Phys. Rev. A 94, 053626 (2016).

[147] R. A. W. Maier, M. Eisele, E. Tiemann and C. Zimmermann, ‘Efimov
resonance and three-body parameter in a lithium-rubidium mix-
ture’, Phys. Rev. Lett. 115, 043201 (2015).

[148] R. Pires, J. Ulmanis, S. Häfner, M. Repp, A. Arias, E. D. Kuhnle
and M. Weidemüller, ‘Observation of efimov resonances in a mix-
ture with extreme mass imbalance’, Phys. Rev. Lett. 112, 250404
(2014).

[149] S.-K. Tung, K. Jiménez-García, J. Johansen, C. V. Parker and C.
Chin, ‘Geometric scaling of efimov states in a 6Li−133Cs mixture’,
Phys. Rev. Lett. 113, 240402 (2014).

https://doi.org/10.1103/PhysRevLett.117.163201
https://doi.org/10.1103/PhysRevLett.117.163201
https://doi.org/10.1103/PhysRevLett.120.135301
https://doi.org/10.1103/PhysRevLett.120.235301
https://doi.org/10.1103/PhysRevLett.126.230404
https://doi.org/10.1103/PhysRevA.94.053626
https://doi.org/10.1103/PhysRevLett.115.043201
https://doi.org/10.1103/PhysRevLett.112.250404
https://doi.org/10.1103/PhysRevLett.112.250404
https://doi.org/10.1103/PhysRevLett.113.240402


Bibliography 145

[150] S. Roy, M. Landini, A. Trenkwalder, G. Semeghini, G. Spagnolli,
A. Simoni, M. Fattori, M. Inguscio and G. Modugno, ‘Test of the
universality of the three-body efimov parameter at narrow feshbach
resonances’, Physical Review Letters 111, 053202 (2013).

[151] J. P. D’Incao and B. D. Esry, ‘Scattering length scaling laws for ul-
tracold three-body collisions’, Phys. Rev. Lett. 94, 213201 (2005).

[152] K. Helfrich, H.-W. Hammer and D. S. Petrov, ‘Three-body problem
in heteronuclear mixtures with resonant interspecies interaction’,
Phys. Rev. A 81, 042715 (2010).

[153] R. Chapurin, X. Xie, M. J. Van de Graaff, J. S. Popowski, J. P.
D’Incao, P. S. Julienne, J. Ye and E. A. Cornell, ‘Precision test of
the limits to universality in few-body physics’, Phys. Rev. Lett. 123,
233402 (2019).

[154] J. Schuster, A. Marte, S. Amtage, B. Sang, G. Rempe and H. C. W.
Beijerinck, ‘Avalanches in a bose-einstein condensate’, Phys. Rev.
Lett. 87, 170404 (2001).

[155] K. K. Nielsen, L. A. Peña Ardila, G. M. Bruun and T. Pohl, ‘Critical
slowdown of non-equilibrium polaron dynamics’, New Journal of
Physics 21, 043014 (2019).

[156] N. F. Ramsey, ‘A new molecular beam resonance method’, Physical
Review 76, 996–996 (1949).

[157] P. W. Anderson, ‘Infrared catastrophe in fermi gases with local scat-
tering potentials’, Phys. Rev. Lett. 18, 1049–1051 (1967).

[158] N.-E. Guenther, R. Schmidt, G. M. Bruun, V. Gurarie and P. Massig-
nan, ‘Mobile impurity in a Bose-Einstein condensate and the ortho-
gonality catastrophe’, Physical Review A: Atomic, Molecular, and
Optical Physics 103, 013317 (2021).

https://doi.org/10.1103/PhysRevLett.111.053202
https://doi.org/10.1103/PhysRevLett.94.213201
https://doi.org/10.1103/PhysRevA.81.042715
https://doi.org/10.1103/PhysRevLett.123.233402
https://doi.org/10.1103/PhysRevLett.123.233402
https://doi.org/10.1103/PhysRevLett.87.170404
https://doi.org/10.1103/PhysRevLett.87.170404
https://doi.org/10.1088/1367-2630/ab0a81
https://doi.org/10.1088/1367-2630/ab0a81
https://doi.org/10.1103/PhysRev.76.996
https://doi.org/10.1103/PhysRev.76.996
https://doi.org/10.1103/PhysRevLett.18.1049
https://doi.org/10.1103/PhysRevA.103.013317
https://doi.org/10.1103/PhysRevA.103.013317


146 Bibliography

[159] E. Q. Simmons, R. Sajjad, K. Keithley, H. Mas, J. L. Tanlimco,
E. Nolasco-Martinez, Y. Bai, G. H. Fredrickson and D. M. Weld,
‘Thermodynamic engine with a quantum degenerate working fluid’,
Phys. Rev. Res. 5, L042009 (2023).

[160] Y.-Y. Chen, G. Watanabe, Y.-C. Yu, X.-W. Guan and A. del Campo,
‘An interaction-driven many-particle quantum heat engine and its
universal behavior’, npj Quantum Information 5, 88 (2019).

[161] O. Abah, M. Paternostro and E. Lutz, ‘Shortcut-to-adiabaticity quan-
tum otto refrigerator’, Phys. Rev. Res. 2, 023120 (2020).

[162] J. Koch, K. Menon, E. Cuestas, S. Barbosa, E. Lutz, T. Fogarty, T.
Busch and A. Widera, ‘A quantum engine in the BEC–BCS cros-
sover’, Nature 621, 723–727 (2023).

[163] J. A. Estrada, F. Mayo, A. J. Roncaglia and P. D. Mininni, ‘Quan-
tum engines with interacting bose-einstein condensates’, Phys. Rev.
A 109, 012202 (2024).

https://doi.org/10.1103/PhysRevResearch.5.L042009
https://doi.org/10.1038/s41534-019-0204-5
https://doi.org/10.1103/PhysRevResearch.2.023120
https://doi.org/10.1038/s41586-023-06469-8
https://doi.org/10.1103/PhysRevA.109.012202
https://doi.org/10.1103/PhysRevA.109.012202

	Abstract
	Resumé
	Preface
	List of publications
	Contents
	Introduction
	Ultracold Quantum Gases
	Impurity Physics
	Few-Body Physics
	Thesis Outline

	Ultracold Quantum Gases & Polaron Physics
	Bose-Einstein Condensation
	Interactions between Ultracold Atoms
	Feshbach Resonances

	Three-body Recombination
	Polaron Physics
	Polarons in Condensed Matter Physics
	Polarons in Ultracold Quantum Gases
	Mediated Interactions


	Experimental Cooling and Detection Techniques
	Dual-species MOT
	Evaporative Cooling
	Absorption Imaging
	Modifications

	Loss Spectroscopy and Three-body Physics
	Spectral Function
	Spectroscopy Techniques
	Injection Spectroscopy
	Ejection Spectroscopy

	Three-body Recombination
	Three-body Physics in the Impurity Limit in K
	Results
	Outlook
	Publication


	Observation of Deeply Bound Polaronic States
	Ejection Spectroscopy
	Experimental Considerations

	Spectral Function
	Trap Averaging
	Convolution
	Density Estimation
	Fitting Parameters

	Experimental Ejection Spectra
	Polaron Signal
	Bipolaron Signal

	Conclusion

	Impurity Dynamics with Repulsive Interactions
	Coherence Function
	Interferometric Sequence
	Characteristic Dynamical Regimes
	Attractive Interactions
	Repulsive Interactions

	Quantum Beat Spectroscopy of Repulsive Bose Polarons
	Results
	Outlook
	Publication


	Conclusion & Outlook
	Bibliography

