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ABSTRACT

Ultracold atomic gases provide an excellent setting for studying regimes
of quantum physics that are not accessible otherwise. A principal ele-
ment is the freedom to choose the interaction strength between atoms
arbitrarily, facilitated by Feshbach resonances. In this thesis, a series of
studies on ultracold Bose mixtures with tunable interactions are pre-
sented. The studies are divided into three different research paths, each
exploring a different area of physics.

The primary research path concerns the physics of impurities. For
the first time, the polaron quasiparticle in a Bose-Einstein condensate
is observed. Experimentally, the polaron is studied by performing ra-
dio frequency spectroscopy of a 3K Bose-Einstein condensate, which
is used to simultaneously create and characterize the impurity quasi-
particle. The observations are successfully compared to a comprehen-
sive theory, which confirms the existence of well-defined polaron states.
The results are further supported by several models which treat relevant
physical aspects.

The second research path investigates the properties of dual-species
Bose-Einstein condensates of 37K and 8’Rb. The main focus is the phase
separation of the two components, which can be controlled by tunable
interactions. The in-trap distributions and expansion behavior is stud-
ied theoretically and compared with experimental observations, which
reveals interesting features. The studies show that it is challenging to
predict the phase separation from the interaction strengths only.

In the third research path, the three-body physics of KRb mixtures
is explored. Previously, the first observation of a heteronuclear Efimov
resonance was made in a *'K®'Rb mixture, but has since been debated.
Here, thorough measurements are performed in both 4'K8Rb and 39K
87Rb mixtures. No Efimov resonances are observed in either mixture.
Preliminary measurements performed in a single-component 3K en-
semble are presented as well, and reveal an intriguing temperature de-
pendence of an Efimov resonance.

The results presented in the thesis open up for exciting new opportu-
nities to study unexplored regions in the realm of quantum mechanics.






RESUME (DANISH ABSTRACT)

Ultrakolde atomare gasser gor det muligt at udforske omrdader af kvante-
fysikken, der ellers ikke er tilgaengelige. Et af nogleelementerne er adgan-
gen til frit at veelge interaktionsstyrken imellem atomer igennem brugen
af Feshbach-resonanser. I denne afhandling prasenteres en raekke stu-
dier af ultrakolde blandede Bose-gasser med regulerbare interaktioner.
Studierne forgrener sig ud i tre forskellige retninger, der hver udforsker
et omréde af fysikken.

Den vigtigste forskningsretning omhandler fysikken bag urenheder.
For forst gang er kvasipartiklen kaldet en polaron blevet observeret i et
Bose-Einstein-kondensat. Polaronen er studeret ved at foretage spek-
troskopi af et 39K Bose-Einstein-kondensat, hvilket p4 en gang danner
og karakteriserer urenhedskvasipartiklen. Observationerne bliver sam-
menlignet med en omfattende teori, hvilket bekrafter eksistensen af vel-
definerede polarontilstande. Resultaterne bliver yderligere bakket op af
flere modeller, der omhandler relevante fysiske aspekter.

Den anden forskningsretning undersager egenskaber bag dobbelte
Bose-Einstein-kondensater af 39K og 8’Rb. Der bliver fokuseret pé fa-
seseparationen imellem de to komponenter, der kan kontrolleres igen-
nem interaktionerne. Fordelingen af atomerne i feelden og deres opfor-
sel, nér de ekspanderer, bliver studeret teoretisk og sammenlignes med
eksperimentelle observationer, hvilket afslorer interessante egenskaber.
Studierne viser, at det er udfordrende at forudse fasesepareration ude-
lukkende ud fra interaktionerne.

I den tredje forskningsretning udforskes trelegemefysikken i KRb-
blandinger. Den forste observation af en heteronuklear Efimov-resonans
blev foretaget i en ' K8’Rb-blanding, men er siden da blevet blevet kri-
tiseret. Som en del af denne afhandling er der udfert grundige malin-
ger i bade Y'K8Rb- og 3K 8"Rb-blandinger, men der observeres ingen
Efimov-resonanser. Her praesenteres desuden indledende malinger af en
Efimov-resonans i 3K, der viser en uventet temperaturafhengighed.

Resultaterne, der praesenteres i denne athandling, giver anledning til
nye muligheder for at undersege uudforskede omrader af kvantefysik-
kens verden.
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CHAPTER

INTRODUCTION

More than a 100 years ago, Niels Bohr hypothesized the quantization of
the hydrogen atom, which initiated a new era of perceiving Nature [1]. To
this day, the atom remains an essential object of study at the forefront of
physics research. Advancements in technology and experimental tech-
niques now allow dilute samples of atoms to be cooled down to tempera-
tures well below a millionth of a kelvin, where the fundamental quantum
nature of particles unravels in a striking manner. The hallmark example
is the Bose-Einstein condensate where a macroscopic number of parti-
cles accumulate in the quantum-mechanical ground state to form a new
state of matter where quantum phenomena become apparent [, B].
The theory of quantum mechanics has been extremely successful in
explaining a vast number of phenomena in our universe. This includes
the behavior of subatomic particles, the structure of the periodic table of
elements, covalent bonds of molecules, as well as the existance of neu-
tron stars. Quantum mechanics is also essential in modern technology,
through inventions such as the transistor and the laser. Currently, the
rules of quantum mechanics are being utilized in the development of a
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new generation of technology, such as quantum computation, quantum
cryptography, and quantum simulation [4].

A quantum simulator employs a versatile physical environment to
mimic another system which is otherwise difficult to study [5]. Atomic
gases cooled to ultracold temperatures are excellent candidates for such
quantum simulators. In particular, atomic trapping potentials can be
tailored arbitrarily, the composition of particles within a system can be
controlled to a high degree, and different kinds of interactions are avail-
able and tunable at will. By these means, ultracold gases have proven to
be a capable setting for exploring and probing physical phenomena in
parameter regimes which are not accessible in natural condensed mat-
ter systems [B].

Especially the prospect of choosing the interaction strength of a sys-
tem at will has opened up a wealth of research paths [6-10]. This lib-
erty is not restricted to quantum gases of a single component; tunable
interactions in multi-component gases allow a wide range of phenom-
ena to be studied. One prominent example is the recent interest of the
mobile quantum impurity immersed in a medium with which it inter-
acts. Ground-breaking research performed with ultracold Fermi gases
have recently provided many new insights to this fundamental problem
in physics [9, T1-186].

In this thesis, studies of ultracold bosonic mixtures with tunable in-
teractions are presented. The research branches into three different di-
rections.

The primary study is the first observation of a polaron in a Bose-
Einstein condensate [17, I8]. The polaron is a quasiparticle composed
of an impurity and its excitations of the surrounding medium [I9, 20],
and it is crucial in understanding exotic and technologically important
materials [21-23]. However, the general scenario of an impurity interact-
ing with its surrounding is found in many different areas of physics. It is
therefore highly interesting to study the properties of impurities and po-
larons in the flexible environment offered by ultracold mixtures of tun-
able interactions.

Moreover, the properties of two-species Bose-Einstein condensates
with tunable interactions are explored [24-28]. This setting is usable to
study the dynamics of interacting macroscopic quantum systems, which

2
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is a non-trivial and highly relevant research field, since it is relevant in
understanding a new generation of quantum technology.

The third topic of the dissertation is few-body physics [27, 28]. Quan-
tum mechanical few body-physics is conceptually simple but offers a
remarkable richness, of which the Efimov effect is a primary example.
Here, the two-body interactions of three particles produce an intricate
spectrum of three-body bound states with universal characteristics. Ul-
tracold quantum gases have become a primary tool for exploring such
few-body systems, due to the tunability of interactions. However, since
the properties of these systems are universal, the resulting phenomena
stretch beyond the field of ultracold gases [0, 29].

The areas of research investigated within each topic are introduced
in greater detail later, together with important experimental and theo-
retical results.

Within the work of this dissertation, two additional studies were car-
ried out but not included in the main text. The first study is purely theo-
retical and considers using ultracold atoms in superimposed optical lat-
tice potentials for one- and two-qubit quantum gates [30]. The second
study is mainly technical and presents a simple new method to stabilize
a laser frequency by the employment of a field-programmable gate array
to implement laser lock electronics [31]. The published manuscripts are
found in Appendix A.

1.1 Ultracold mixtures of **°K and 'Rb

The research of this thesis utilizes the tunable interactions offered by
ultracold mixtures of bosonic 39K and 8'Rb, briefly introduced here. By
tuning the magnetic field, the interaction strengths within these systems
can be altered through the employment of Feshbach resonances [8].
The Feshbach resonance structure for a mixture of 3Rb and 3°K in
the |F =1, mp = —1) hyperfine state is introduced in Fig. [1(a). The in-
teraction strength is parameterized by the scattering length a, which is
shown in units of the Bohr radius ay. Two 3°K Feshbach resonances offer
awide region of positive scattering length [32], and within this region, an
interspecies Feshbach resonance is located [33]. This remarkable struc-
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Figure 1.1: Feshbach resonance structure and interaction strengths of ultracold
39K and ®"Rb. (a) Scattering length of 3K and ®'Rb in the |F = 1, mp = —1) state
where the solid blue line is for 3K, dash-dotted red line is for 8’Rb and dashed
purple line is between 3°K and ®"Rb. (b) Scattering length in 3°K spin mixtures,
where the solid blue line is for the |F =1, mp = —1) state, dash-dotted orange
line is for the |F =1, mp = 0) state, and dashed green line is between the two
states.

ture allows production of mixtures and dual-species condensates of 39K
and 8"Rb with tunable interactions. Otherwise, 3K is not an obvious can-
didate for a constituent in dual-species condensates since it has a neg-
ative background scattering length, which prohibits the production of
large stable condensates [34, B5].

The region of positive scattering length additionally contains Fesh-
bach resonances which open up possibilities for tuning interactions of
spin mixtures of 3K atoms, as shown in Fig. [ZT(b). An interstate reso-
nance allows tunable interactions between 3°K atoms in the |1,-1) and
|1,0) states and, furthermore, the interactions of atoms in the |1,0) state
are tunable by two Feshbach resonances [32, B6].

The 39K 87Rb system is thus rich in possibilities. Not only can the
interaction within one species be modified, but interactions between
species and spin states are also tunable.

The experimental apparatus used and described within this disser-
tation is additionally capable of producing ultracold mixtures of 'K and
87Rb, a system which also contains Feshbach resonances allowing tun-

4
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able interspecies interactions. In the absence of other species, only very
narrow Feshbach resonances exists for both 'K and 8’Rb atoms [32, 37].

1.2 Thesis outline

Chapter 2, Properties and Interactions of Ultracold Mixtures: Some
of the key physical principles important for ultracold quantum gases
are explored, including Bose-Einstein condensation of non-interacting
bosons, interatomic interactions, and the Gross-Pitaevskii equation. The
three main research topics of the thesis are also introduced in great de-
tail. This includes overviews of key experimental and theoretical find-
ings.

Chapter B, Experimental Procedure and Apparatus: The apparatus
used within this dissertation is introduced, and the procedure to obtain
ultracold samples is summarized.

Chapter @, Tunable Dual-Species Bose-Einstein Condensates: A Se-
ries of studies of dual-species Bose-Einstein condensates of 3K and 8'Rb
are presented. First, the relevant Feshbach resonance is characterized
experimentally. Next, the phase separation and dynamics dual-species
condensates are examined theoretically. Finally, the expansion proper-
ties of dual-species condensates are investigated.

Chapter B, [Three-Body Physics in >’K and Mixtures of KRb: The
three-body physics in the two isotope mixtures 39K 8’Rb and *'K8”Rb are
studied. Furthermore, the temperature dependence of an Efimov reso-
nance in 3K is characterized.

Chapter B, DObservafion of Polarons in a Bose-Finsfein Condensafe:
The observation of polarons in a Bose-Einstein condensate is presented.
This includes a characterization of the relevant Feshbach resonance, a
examination of the experimental approach and procedure, and a de-
tailed discussion of the results. Furthermore, a number of different mod-
els are presented to better understand the experimental findings.

Chapter [, Thesis Conclusions: The key results of the thesis are sum-
marized and an outlook is provided.







CHAPTER

PROPERTIES AND INTERACTIONS
OF ULTRACOLD MIXTURES

In this chapter a number of selected relevant topics will be examined
theoretically. This includes basic theory of Bose-Einstein condensation,
theory of interatomic interactions, and more specific subjects such as
Efimov and polaron physics. The main aim of this chapter is to outline
some central theoretical derivations and theories, not to present them in
full detail. Some topics are also covered more thoroughly by presenting
relevant experimental results from literature. This serves as both intro-
duction and perspective for the experimental results presented later in
the thesis.

The phenomenon of Bose-Einstein condensation concerns a macro-
scopic occupation of the quantum-mechanical ground state and was
originally hypothesized by S. N. Bose and A. Einstein in 1924-1925. The
theory was first developed by Bose for quanta of light, known today as
photons [38], and afterwards for particles with mass by Einstein [3Y, 40].
These original theoretical works considered particles without interac-
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tions, and since ultracold atomic gases typically have relatively weak in-
teractions, these theories apply well.

Bose-Einstein condensation is, however, also found in other systems.
The superfluidity of He, which was discovered in 1938, is believed to be
due to partial Bose-Einstein condensation, and many properties of su-
perfluid He are similar to those of gaseous condensates. However, the
high particle density of liquid He results in strong interactions, and theo-
ries of Bose-Einstein condensation must be heavily modified to describe
these systems. In fact, due to interactions, only about 10 % or less of the
He atoms can enter a Bose-Einstein condensate [21]].

The creation of Bose-Einstein condensates in dilute gases in 1995
was therefore the first realization of “true” Bose-Einstein condensates [?,
3]. More recently, Bose-Einstein condensation has also been observed
in systems of quasiparticles, which are collective excitations that are ef-
fectively described as particles. Quasiparticle condensates composed of
magnons [47], exitons [43] and exciton polaritons [44] have thus also
been observed. Even more recently, condensation of photons was ob-
served in an optical microcavity [45], bringing to life the original theory
of Bose.

The interactions between neutral alkali atoms are mainly mediated
through collisions. Due to the ultralow temperatures of quantum gases,
the collisions can be described in a relatively simple framework. One of
the powerful tools of quantum gases is magnetic Feshbach resonances
which allow the strength of the collisional interactions to be tuned. The
ability to change the interaction in a system to arbitrary values opens
up a wealth of research directions. This includes the main studies con-
ducted within this thesis; dual-species condensates with tunable inter-
actions, three-body physics and the Efimov effect in KRb mixtures, and
the observation of the polaron quasiparticle in a Bose-Einstein conden-
sate.

The rest of this chapter is structured as follows. The theory behind
condensation of non-interacting bosons as suggested by Bose and Ein-
stein is reviewed in Sec. EZ1I. Then, interactions in ultracold gases is ex-
amined in Sec. 22, and the possibility to tune these interactions by uti-
lizing Feshbach resonances is introduced in Sec. Z3. The impact of in-
teractions to the condensed state is discussed in Sec. Z4 by outlining the
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derivation of the Gross-Piteavskii equation. Additionally, the equation
is extended to include two components, which is directly relevant for
experimental work presented later in the thesis. The final two sections
concern specific research topics which are also relevant for experimen-
tal work presented later. In Sec. 1, Efimov physics is introduced, and,
finally, in Sec. 226 polaron physics in ultracold gases is examined.

2.1 Condensation of Non-Interacting Bosons

Bose-Einstein condensation is a macroscopical accumulation of parti-
cles in the quantum-mechanical ground state. The phenomenon arises
from the quantum statistics of non-interacting particles. The derivations
presented in the following are from reference [41].

In general, quantum effects appear if the density of particles satisfies

~Y

N 3
V;LdB>1, (2.1)

where N is the number of particles in a volume V and

h
Agp = —— (2.2)

vonmkgT

is the thermal de Broglie wavelength where £ is the Planck constant, kg
is the Boltzmann constant, m is the particle mass, and T is the tempera-
ture.

IfEq. (Z0) is fulfilled, the wave functions of different particles overlap
due to a large de Broglie wavelength and effects of quantum mechanics
are important.

In quantum mechanics particles are sorted into two catagories de-
pending on their spin; fermions and bosons. Bosons have integer spin
and do not obey the Pauli exclusion principle. Indistinguishable bosons
are thus able to accumulate in a single quantum state. By assuming that
light quanta have this behavior, Bose derived Planck’s law of radiation
without any assumptions from classical physics [38]. This idea was ex-
tended from light quanta to matter particles by Einstein [39, 40], and the
concept of a Bose gas was born.
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A Bose gas is governed by Bose-Einstein statistics which dictate that
the mean occupation number of the single-particle state v is given by
the Bose distribution function

1

elev=—w/ksT _ 1’ 2.3)

feE(€V) =
where p is the chemical potential and €, is the energy of the state. At
high temperatures p lies well below the energy of the lowest energy state
€o and the distribution can be approximated by the Maxwell-Boltzmann
distribution fgg(ey) = e~Ev-wlksT At lower temperatures, the chemical
potential approaches €, from below, but can never exceed the energy of
this lowest state, as the Bose distribution function would become nega-
tive, which is unphysical.

If at any point the number of particles in the ground state becomes
large, the system has a Bose-Einstein condensate. The temperature at
which this happens is denoted the critical temperature of Bose-Einstein
condensation T.. When the system does not have a condensate, all par-
ticles N can be accounted for by considering particles in excited states
only Nex. The greatest value of u for which this is the case is when p
equals the energy of the lowest energy state of the system €y which can
be set to 0. Using a semi-classical approximation where the energy spec-
trum is treated as a continuum, the number of particles at the critical
temperature can be expressed as

gle)

ec/kpTe _ 1’ 2.4)

(e9)
N = Nex(Te, = 0) :f de
0
where g(e) is the density of states. In a box of volume V the density of
states is

Vm3/2 12
8(e)= 212278 (2.5)

where 7 is Planck’s reduced constant, and solving Eq. (Z4) yields

Zn’,—lz n2/3

i 2.6
[£(3/2)1* m (26

BTc
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2.1. Condensation of Non-Interacting Bosons

where ( is the Riemann zeta function and n = N/V is the density. This
critical temperature can also be expressed in terms of the de Broglie
wavelength

ndgp = ((3/2) ~ 2.612, 2.7)

where the left-hand side is known as the phase-space density p. This
critical temperature is reminiscent of Eq. (Z1), but now derived strin-
gently for bosons.

In experiments the particles are typically confined by a harmonic
trap. For a three-dimensional harmonic oscillator potential of frequen-
cies wy, wy, w,, the density of states is

2

< 2.8
g(e) DTy, (2.8)
which with Eq. (224) gives
A Nl/3
pTe =~ ~ 0.94hON'", 2.9)
[C(3)]

where @ is the geometric mean of the trap frequencies @ = (W wyw,) 13,

The peak phase-space density in such a trap is

ho \3
) . (2.10)

POSC:N(m

If one considers bosons in a harmonic oscillator, it is not surpris-
ing that at some sufficiently cold temperature particles start to enter
the ground state. What is truly remarkable is that the temperature T,
at which this happens corresponds to an energy which is much greater
than the energy level spacing of the harmonic oscillator

kg Te =~ 0.94h0ON"3 > hao, 2.11)

for any system with a macroscopic number of particles.
Below T, the number of particles in the Bose-Einstein condensate N
is given by

No(T) = N — Nex(T). (2.12)

11
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By solving Eq. (Z4) for a three-dimensional harmonic oscillator poten-
tial with an arbitrary T and p = 0, a simple expression for the condensate
fraction is obtained

1=
N

No T\
. (2.13)
T,

Expressions for the critical temperature of Bose-Einstein conden-
sation and the condensate fraction have thus been derived for bosons
without interactions. Corrections to these can enter through e. g. inter-
actions and finite particle numbers, but in most contexts the equations

above provide a good estimate of what is found experimentally.

2.2 Interactions Between Ultracold Atoms

In ultracold atomic gases, the interparticle spacing is typically far greater
than the range of atom-atom interactions. The interactions are strong,
but only occur when atoms are close together. Consequently, two-body
interactions are usually dominating, although three- and higher-body
interactions can become important, which is discussed later. The many-
body wave function of a large ensemble of atoms varies slowly in space,
but when two atoms approach, rapid spatial variations occur. To avoid
evaluating this in detail, the idea of an effective mean-field interaction
is often used, where the short-wavelength degrees of freedom have been
integrated out.

In this section, basic concepts behind scattering of neutral atoms are
introduced, based on references [41, 46]. It is shown that interactions
can be described in terms of a single parameter, denoted the scattering
length, which describes the strength of the effective interaction. Addi-
tionally, the coupling between different scattering channels gives rise to
Feshbach resonances, which makes it possible to tune this interaction
strength.

12



2.2. Interactions Between Ultracold Atoms

2.2.1 Interatomic Potentials and the van der Waals
Radius

Ultracold atoms are usually subject to a polarizing magnetic field. The
van der Waals interaction caused by the electric dipole-dipole interac-
tion between atoms has a range which is much greater than the size
of an atom. The exact potential between two atoms V(r) is difficult to
calculate from theory alone and often a semi-empirical potential is em-
ployed. One such potential is the Lennard-Jones potential which can be
expressed as

V) = G G (2.14)

12 16
It consists of a short-range repulsive term and a long-range attractive
term determined by the empirical coefficients Cy, and Cg, which can be
determined experimentally. The range of the long-range van der Waals
interaction between two atoms, known as the van der Waals radius Rygw,
is connected to the Cg coefficient

1 (ZerG)M 2.15)

Ryqw = E h2
where m, = m;my/(m; + my) is the reduced mass of the two atoms of
masses m; and my [8]. This provides a general magnitude of the range
of interactions.

The Lennard-Jones potential for a pair of 8’Rb atoms compared with
their van der Waals radius is shown in Fig. P71, with Cg and Cj values
from reference [47]. It is remarkable that the length scale of the interac-
tions is far greater than the size of the atoms and the extend of the deep
potential. Due to the low energy of the atoms, the long range r° tail
of the van der Waals interaction is significant even at long ranges. Addi-
tionally, alkali atoms have a large electrical dipole moment because of
their loosely bound electron.

The van der Waals radii relevant to the work within this thesis have
been determined to be approximately 654y for all isotopes of K [48], 83 ay
for 8’Rb [27] and 724, between K and Rb [B3], where aq is the Bohr
radius.

13
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interatomic potential (arb. units)

0 50 100 150
interatomic separation r/ag

Figure 2.1: The interatomic potential of two 8’Rb atoms. The potential shown
as a solid blue line is calculated using the Lennard-Jones potential Eq. (ZZ15).
The wave function at large r is shown in dashed light green, and a sketch of a
more accurate wave function which oscillates in the presence of an attractive
potential is shown as a dotted dark green line. Additionally, the magnitude of
the van der Waals radius R,qw and the scattering length a of 8'Rb is shown.

2.2.2 Basic Scattering Theory

The elastic scattering between two particles is considered. In coordi-
nates relative to the center-of-mass, the motion satisfies a Schréodinger
equation with the mass m;.

The scattering is described by composing the wave function of an
incoming wave and a scattered wave

Y () = Winc (1) + Yo (1). (2.16)

The incoming wave can be described as a plane wave of wave number £,
chosen to propagate in the z-direction, and at large r the scattered wave
is an outgoing spherical wave
. eikr
w(r) =e* + f(O)—, (2.17)
r

where f(0) is the scattering amplitude. It has been assumed that the in-
teraction between atoms is spherically symmetric, such that f only de-

pends on the angle 6 between relative momentum of the atoms before
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2.2. Interactions Between Ultracold Atoms

and after the scattering. The square modulus of f describes the proba-
bility do of scattering at a certain solid angle d<2 as follows

da_

10 1f(0)%, (2.18)

which is denoted the differential cross section. By integration of all solid
angles the total scattering cross section is obtained

do
= | —=dQ. 2.19
o a0 (2.19)
Due to the axial symmetry of the problem, the wave function can be ex-
panded in terms of Legendre polynomials P;(cos8)

y(r) =) AjP(cosO) Ry (r), (2.20)
=0

where the radial wave function Ry, (r) for r — oo is given approximately
by

]
Riy(r) ~ —sin(kr—l—”+6l), 2.21)
kr 2

where 6 is the scattering phase shift. By inserting Eq. (Z220) and (ZZ1)
into Eq. (Z19) one can obtain an expression for the cross section as a
sum of partial wave cross sections

o0 4
o=Y 0, o= k—Z(Zl+1)sin25l. 2.22)
=0

This approach is naturally only useful when a small number of partial
waves contribute to the scattering, which is indeed the case at low en-
ergies. This can be argued by considering the centrifugal barrier ~ /(I +
1)/r? which becomes difficult to overcome with increasing . A low en-
ergy particle cannot overcome this barrier to see the actual interatomic
potential. Thus, only the I = 0 scattering is significant for atoms at ultra-
cold temperatures. This type of scattering is referred to as s-wave scat-
tering, following the naming of atomic orbitals.
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With only s-wave scattering being important, f(8) loses its angular
dependence and can be expressed as a constant —a which is referred to
as the scattering length. For k — 0, Eq. (ZI7) can now be written as

yr)=1- %Z, (2.23)

and a thus provides the interception of the wave function on the r axis
as shown in Fig. P71I. Note that this is for large r. The actual wave function
oscillates rapidly in the presence of the attractive van der Waals poten-
tial.

More formally, a can also be defined as

. tandy
a=-lim (2.24)
k—0
from which f = —limy_¢ a can be derived.
The total cross section can now also be calculated
o=0q9= Ana®. (2.25)

The scattering between two particles can thus be described by a single
parameter a of dimensionality length, which can be interpreted as the
distance at which two particles see each other in a scattering event.

It is possible to calculate scattering lengths of simple interatomic
trial potentials, as outlined in the following, where a hard core poten-
tial with a van der Waals tail 7% is examined. The value of the scattering
length oscillates as the radius of the hard core is increased, in a man-
ner similar to a mathematical tangent function. The oscillatory behav-
ior is connected to the disappearance of bound states as the potential
gets more shallow. As the radius is increased and a bound state of the
attractive potential is about to disappear into the continuum, the inter-
action strength increases towards +oo. As the radius is increased further,
the strength increases from —oo, towards 0, and increases again towards
+0o when a new bound state approaches the continuum. Thus, the value
of the scattering length a can in principle take on any value from —oo to
+00 and it depends sensitively on the exact potential, since a bound state
near the continuum has a strong influence.
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2.2. Interactions Between Ultracold Atoms

It is not possible to make precise predictions of the scattering length
for large atoms from theory alone. Instead, a Lennard-Jones type poten-
tial can be employed including a number of C coefficients, which can be
determined experimentally. From such a potential, the scattering length
can be calculated.

It is possible to extend the use of the scattering length to a many-
body context. By using the Born approximation to first order, the scat-
tering length can by calculated as

a= ﬁfdrU(r), (2.26)

where U(r) is an arbitrary interatomic potential. This expression shows
that the interaction can be described by an effective interaction

2nh*a
fdrU(r) = =g. (2.27)
my

In this manner, the interactions of a physical system of many particles
which have a complicated dependence on the interparticle separations
and potentials, can be effectively described by a single parameter g pro-
portional to the scattering length. It is now also clear that the sign of a
directly determines whether the nature of an interaction is attractive or
repulsive.

The physical size of systems are on the order of several pum, much
larger than typical scattering lengths. Therefore, the interaction between
two particles at positions r and r’ can be described by a contact form

U, r)=gbrx-r), (2.28)

where ¢ is the Dirac delta function. This effective interaction is highly
useful when including interatomic interactions to the description of a
Bose-Einstein condensate.
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2.2.3 Three-Body Recombination

Until now, elastic two-body scattering was discussed. Depending on the
exact states of the atoms, two-body inelastic scattering is often not al-
lowed due to conservation of energy, momentum and spin. However,
when three atoms collide, it is possible for two of the atoms to form a
deeply bound molecule where the excess energy is converted into ki-
netic energy. This energy is typically large enough for the involved atoms
to leave the trap in which they are held. This process, denoted three-
body recombination, thus results in atom loss.

As obtained from the scattering cross section Eq. (Z225), the proba-
bility of two atoms colliding is proportional to a. The probability of one
more atom entering the collisional process adds another factor a?, and
three-body recombination is thus proportional to a*. In a similar man-
ner, the probability of two atoms colliding is proportional to the density
n and the probability of a three-body process is proportional to n?.

Assuming all three atoms are lost, the general three-body recombi-
nation rate is

3n
Ly =C—a’, (2.29)
m

where C is a dimensionless factor depending on the system [49]. The
resulting loss rate is

N_. >

N L3n”. (2.30)
In most experimental systems the atom density is inhomogeneous due
to a trapping potential, which have to be taken into account to under-
stand the losses. In a harmonic trap, the density is larger in the center of
the trap. Additionally, atoms found in the center are more likely to have
a lower energy. Three-body losses thus preferentially remove atoms of
low energy from a harmonic trap, also resulting in heating of the sys-
tem. This heating process is opposite to evaporative cooling, where the
most energetic atoms are removed to cool a system. Three-body losses
are discussed in more detail in Chapter B.
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2.3. Feshbach Resonances

2.3 Feshbach Resonances

A Feshbach resonance is a scattering phenomenon which can be uti-
lized to tune the scattering length a to arbitrary values. The first obser-
vation of a Feshbach resonance in an ultracold gas was performed in
a gas of sodium atoms [b0]. Since then, the ability to choose the inter-
action strength of your system at will has made Feshbach resonances a
central tool in the field of ultracold gases [8].

When ultracold atoms scatter, the only internal states of relevance
are the hyperfine states of the atoms. The presence of multiple hyper-
fine states results in different scattering channels as shown schemati-
cally in Fig. PZA(a). Here an atom is scattering in the open channel, with
vanishing kinetic energy due to low temperature. If a bound state of a
closed channel is near the scattering continuum, it couples to the scat-
tering state, changing the scattering phase and scattering length. This is
especially interesting when the open and closed channels have different
magnetic moments. If so, the position of the bound states in the closed
channel can be shifted relative to the open channel, allowing the scat-
tering length to be tuned by changing the magnetic field. As a result, a
magnetic scattering resonance is formed: a Feshbach resonance [8].

In the vicinity of a Feshbach resonance the scattering length can be
expressed as a function of the magnetic field

B) = apg[1- —2F 2.31
a( )—abg( B—BO)' (2.31)
where B is the magnetic field [8]. The Feshbach resonance is character-
ized by three parameters; the width A, the position By, and the back-
ground scattering length ap; which describes the interaction strength
far away from the resonance. In Fig. Z2(b), a plot of Eq. (231 is shown,
which displays how the scattering length can be tuned by control of the
magnetic field. The precision of the magnetic field limits the precision
with which the interaction can be tuned, especially near the resonance
position By where the scattering length diverges. Here the three-body re-
combination rate is also greatly enhanced due to the a* dependence of
Eq. (=29).
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Figure 2.2: Schematic overview of a Feshbach resonance. (a) The scattering of
atoms in an open channel can be affected by the presence of a bound state in a
closed channel, if the state is close to the continuum, which creates a Feshbach
resonance. (b) The scattering length in the vicinity of the Feshbach resonance.
(c) The bound molecular state in the closed channel couples to the continuum.
The energy of this state is shown as a solid red line and the dashed light red line
show universal behavior Ey, = #%/2m;a? near the resonance center.

In Fig. PZA(c) the binding energy of the bound molecular state which
causes the Feshbach resonance is shown. At the resonance center it cou-
ples to the scattering state, creating an avoided crossing with the contin-
uum, which results in a binding energy of

hZ

= —-:. 2.32
2ma? (2.32)

Eyp
The scattering length is related to the binding energy, independent of de-
tails of the interatomic potential. Additionally, it is clear that a Feshbach
resonance can be utilized to tune the interaction range far beyond the
characteristic size of an interatomic potential Ryqw. In this regime inter-
actions become independent of the details of the potentials and acquire
a universal character. Consequently, the physical phenomena arising in
such a system can be applied to many different systems in nature. In
general, the extent of universal region is dependent on the width of a
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resonance. A broad resonance Ar > 1G has a relatively large universal
region, whereas a narrow resonance Ar < 1G does not [8].

The avoided crossing between the molecular state and the scatter-
ing state can also be utilized to create bound molecules. By performing
a rapid adiabatic sweep of the magnetic field across a Feshbach reso-
nance, from negative to postive interactions, pairs of atoms can enter
the weakly bound molecular state [8, b1]. The approximate size of such
a molecule is set by the scattering length.

As explained above, the scattering length diverges when a molecu-
lar state of a closed channel approaches the scattering continuum. It is
worth noting that this behavior is similar, as when considering the in-
fluence of bound states in the open channel. As discussed in Sec. 22, an
interatomic potential having a bound state which approaches the con-
tinuum results in a divergence of the scattering length. The divergence of
the scattering length due to a Feshbach resonance is similar, the bound
state is merely in a different channel.

At the exact center of the Feshbach resonance, the scattering length
diverges towards infinity, which is known as the unitary regime. The ori-
gin of this name is the sin®§, term in the partial wave cross section
Eq. (Z22), which reaches its maximum value of unity. The scattering
length a is here no longer the relevant length scale of interactions. In-
stead, it is replaced by the de Broglie wavelength Eq. (Z2) in a thermal
gas, or the interparticle spacing n'/3 in a condensed gas [57].

2.4 Interactions in the Condensed State

In Sec. T, the statistical origin of Bose-Einstein condensation of non-
interacting bosons was presented, followed by an introduction to the in-
teractions of ultracold gases in Sec. Z2. In this section, the impact of in-
teratomic interactions on the Bose-Einstein condensate is introduced.
The Gross-Pitaevskii equation is derived, based on reference [41]. This
equation is similar to the Schrédinger equation, but describes the con-
densed state including interactions. The equation is extended to two-
component Bose-Einstein condensates, which is relevant for the studies
of dual-species Bose-Einstein condensates presented in Chapter @.
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2.4.1 The Gross-Pitaevskii Equation

To derive the Gross-Pitaevskii equation, a fully condensed Bose gas of N
particles at T = 0 is considered. The resulting physics is however often
also valid for the condensed fraction of a partially condensed ensemble
with T # 0.

It is assumed that all particles are in the same single-particle state
which has the usual normalization

f drjp®)|? =1, (2.33)

and that the wave function is a symmetrized product of single-particle
wave functions

N
W(ry, 12, tN) = [ ] s, (2.34)
i=1

Interactions are included by a mean-field approach, which use the ef-
fective contact interaction gé(r —r’), where g = 4hi?a/m. The resulting
Hamiltonian is

N
=Y
i=1

where V (r)ex is an external potential. The corresponding energy of the
state of Eq. (Z34) is

E:Nfdr

For a large number of particles, the local interaction energy is well ap-
proximated by

2

p.

—L + Vext (x;)
m

5 +g) 6@ —rj), (2.35)

i<j

N-1
2

h2
%|V¢(r)|2+Vext(r)|<,b(r)|2+ glpm*|.  (2.36)

NONV-D Ly (2.37)
—g=~=-Vn"g, .
v 85378

where n is the density n = N/V.Itis convenient to include the density in
the wave function and thereby introduce the concept of the wave func-
tion of the condensed state

wx)=NY"2p@m), n@=ly@? N= f drjy ()% (2.38)
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With this, the energy described by Eq. (Z36), can be expressed as

h—zw ()12 + Vexe ()] (r)|2+1 [y (r)[* (2.39)
om v ext() Y zgw ) .

E(y) :fdr

for N > 1. To arrive at the Gross-Pitaevskii equation, this energy is mini-
mized with respect to variations of ¥ (r) and its complex conjugate ¥ * (r),
by the method of Lagrange multipliers. The constraint 6E — u6N = 0,
where p is the chemical potential, ensures that the number of particles
is conserved. After some calculations, this provides

hZ
Py (r) = —%v2+vext(r)+g|w(r)|2 w(r), (2.40)

which is the time-independent Gross-Pitaevskii equation. It is useful for
both numerical and analytical calculations of condenstate properties,
including ground state and dynamical behavior.

In a harmonic trap, the strength of the interaction can be parameter-
ized by the dimensionless quantity Na/ aqsc, where agsc = Vi/ m is the
oscillator length. In many contexts a and N are thus equivalent.

If a is negative, the interaction will tend to shrink the condensate
wave function spatially. This is counteracted by the kinetic energy term
which tries to increase the size of the condensate. For sufficiently attrac-
tive interactions the kinetic energy can, however, not prevent a collapse
of the wave function towards a singularity. For a spherical trap [34] the
critical lower bound of a stable condensate is
( Na

Aosc

) =—-0.575. (2.41)
crit

Collapsing condensates have been observed experimentally by prepar-
ing a condensate at repulsive interactions, and subsequently changing
the interactions to be negative via a Feshbach resonance [35, 53-57], a
phenomenon known as a Bose nova. As the condensate contracts, the
density increases rapidly and atoms are lost due to three-body recombi-
nation. The remaining number of atoms after the losses is approximately
provided by Eq. (Z-41).
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To produce large, stable condensates, it is therefore required that the
atoms of the condensate have a = 0. This fact is crucial to the experi-
mental procedure which will be introduced in Chapter B, where 3K has
a negative background scattering length, making Feshbach resonances
a necessary tool for producing Bose-Einstein condensates.

For Na/ass. > 1 it is possible to apply the Thomas-Fermi approxi-
mation which neglects the kinetic energy by simply removing the Lapla-
cian term. By doing so, one can easily obtain information about the con-
densate ground state [34], e. g. radius

RZ=2ulme?,  i=xy,z (2.42)

chemical potential

o 152/5 ( Na )2/5 .43
ho 15 \dosc) '
and energy per particle
E 5
~ = (2.44)

Itis thus possible to describe properties of an interacting many-body
quantum state—the Bose-Einstein condensate—through relatively sim-
ple means.

2.4.2 Two-Component Bose-Einstein Condensates

The framework of the Gross-Pitaevskii equation can be extended to de-
scribe Bose-Einstein condensates of two components

2

h
my(r) = —WV2+Vext,1(l‘)+g11|1V1(l‘)|2+glz|1l/2(l‘)|2 Y1(r),
1

Moo (r) = Pa(r), (2.45)

hZ
—z—mzv2 + Vext2(1) + ga2lwa(0)1* + graly (1) 2

where 1 and 2 refer to the two components [41]. The two components,
are thus described by a set of equations, coupled by the interactions
8ij = 2nh2aij/mij, where m;; = m;m;/(m; + m;) and a;; is the scat-
tering length between atoms of components i and j.
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One interesting property to study is the stability of two overlapping
Bose-Einstein condensates determined by their interactions. With the
prospect of utilizing Feshbach resonances, this stability can be studied
systematically.

Within the Thomas-Fermi approximation it has been shown that the
stability can be expressed through a simple relation between the inter-
actions

Agap = 3282 _ (2.46)

812

where g1; and g»; are typically positive [68, bY]. In the interval Ag,p > 0
the two condensates can overlap spatially. If however Agqp, < 0, the two
condensates cannot stably coexists in the same region of space.

When Agap < 0 and gp2 < 0, the attractive interactions between the
two condensates overcome the repulsive potential of the seperate con-
densates, resulting in a collapse similar to that of a single component
Bose nova.

If however Agyp < 0 and g12 > 0, a new phenomenon emerges. The
repulsion between the two condensates is so large that the two conden-
sates phase separate spatially, with an interface segregating them. In this
state, the condensates are described as immiscible, whereas two con-
densates with interactions Ag,p > 0 are said to be miscible.

The phase separation and density profiles of two-component con-
densates have been studied both theoretically [58-74] and experimen-
tally [/5-78]. However, experimental imaging of atoms have a limited
spacial resolution, which typically hinders the observation of separation
in situ. Instead, the two components are released from their trap and
imaged after some duration of time-of-flight expansion. The miscibil-
ity of two-component condensates is thus often analyzed based on data
aquired after a dynamical expansion and not by an investigation of the
ground state.

In Chapter 8, the time-of-flight expansion of two-component con-
densates are studied. Here, one central aim is to discuss the validity of
using data acquired after time-of-flight to determine the miscibility of
the condensates. Additionally, it is debated whether the criterion set by
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Eq. (Z48) is a meaningful property of two-component condensates at
all.

2.5 Efimov Physics in Ultracold Gases

In 1970, V. Efimov predicted that three identical spinless particles inter-
acting via two-body forces could produce a series of three-body bound
states, where no two-body bound state exists [?9]. The theoretical pre-
diction was initially made in context of nuclear physics, e.g. three a-
particles of a 2C nucleus, but detection in nuclei has failed so far [79].

Efimov physics is a central example of the universality of low-energy
physics, since the properties of Efimov states are independent of many
microscopic details of a given system. Consequently, Efimov physics can
be applied to a wide range of fields [10].

In 2006, the first observation of Efimov states was made in an ultra-
cold gas of cesium atoms [80]. This initiated a strong interest to the field
of few-body and Efimov physics in context of ultracold gases which is
covered in several reviews [0, 81-84]. These reviews are the basis for the
introduction to Efimov physics given in the following. Furthermore, an
overview of the experimental accomplishments of the field is provided.
This serves as introduction and perspective to the experimental studies
of Efimov physics presented in Chapter B.

What makes ultracold gases especially suitable for studying Efimov
physics is the prospect of employing Feshbach resonances to tune the
interatomic interaction. The presence of an Efimov state at a given in-
teraction manifests as a change of the three-body recombination rate
Ls. To study Efimov physics in an atomic gas, ultracold temperatures are
required, but the gas does not need to be condensed.

The origin of Efimov physics is an attractive three-body force, aris-
ing from the two-body forces between three particles. The appearance
of Efimov states near a Feshbach resonance is shown in Fig. Z3(a). The
first Efimov state appears at a negative scattering length a_, and extends
across the Feshbach resonance to a positive scattering length a., where
it connects with the molecular dimer state. The next Efimov state ex-
ists inwards at stronger interactions relative to the first and has a similar
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Figure 2.3: Efimov states in the vicinity of a Feshbach resonance. (a) The nested
structure of Efimov states is shown as green lines and the molecular state as a
red line. The manifestation of Efimov states in the recombination rate is shown
at various interaction strengths for negative a in (b) and positive a in (c). The
recombination rate in absence of Efimov states, plotted in light blue, increases
regularly proportional to a* towards the center of the Feshbach resonance. In
the presence of Efimov states, a periodic modulation of the recombination rate
appears, as shown in dark blue.

structure across the Feshbach resonance, appearing and disappearing
at interactions al’ and ail). This nested structure of states continues in-
definitely.

The alteration of three-body recombination coefficient L3 due to the
presence of Efimov states is shown in Fig. Z3(b-c). If an Efimov trimer
state has the same energy as three unbound atoms, a strong coupling
occurs which opens up additional decay paths. If a sample of atoms is

held at an interaction ", the three-body recombination is therefore in-
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creased, compared to if no Efimov state is present. Such a loss resonance
is referred to as an Efimov resonance.

Similarly to three atoms, an atom and a dimer will undergo enhanced
recombination at interactions a"”. Additionally, the three-body recom-
bination coefficient has regions of reduced recombination for attractive
interactions, which are labeled by a"”. These minima of L3 are due to a
destructive interference between two different decay paths in the atom-
dimer channel [86, B7].

The interactions at which the Efimov states appear are linked by a
universal scaling law

a(”“) ain+1) ain+1)

/s -
e’ = = = =~ 22.7, (2.47)
am a(+n) afkn)

where sy = 1.00624 describes the scaling which, together with the po-
sition of the first resonance a_, dictate the properties of all the trimer
states. The position of the first Efimov resonance a- is also known as
the three-body parameter, as it indicates at what interactions three-body
physics become important. Compared to a-_, the first atom-dimer reso-
nance appears at a’?/ a"V =~ —1.06 and the first recombination mini-
mum at g/ a(+”+1) ~ —22.7/4.9. The size of an Efimov trimer is given ap-
proximately by the scattering length at which it appears. Its binding en-
ergy is on the order of the dimer binding energy, and scales with e =2%/% ~
1/515at1/a=0.

The three-body recombination in presence of Efimov states can be
expressed together with Eq. (Z229) as

sinh(2n-)
sin?[soIn (a/a_)] +sinh?7_

C(a) = 4590 ifa<0 (2.48)

C(a) =67.1e” 2 (sin2 [soln(a/ay)] + sinh? n+)

+16.8(1—e ")  ifa>0, (2.49)
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where 7). is the elasticity parameter which describes the width of a res-
onance and is connected with the lifetime of the trimer state [B1, 84].
These expressions are used to calculate L3 in Fig. Z3(b-c), with .. = 0.05,
a_ =650ay, and a, = —4.5a_. The three-body recombination rate in the
absence of Efimov states is plotted by setting the sin?-terms to 1.

In theory, the nested Efimov states continue indefinitely, but in prac-
tice, various constraints limit the region of interactions where Efimov
physics can be studied. The lower limit of this window is when the in-
teraction range is comparable to the van der Waals radius |a| ~ Rygw-
Here, the scattering starts to depend sensitively on the details of the in-
teratomic potentials, and universality and Efimov physics is lost.

Several different mechanisms introduce upper limits of the interac-
tion strength. The typical limit is the temperature, which defines the
extension of atomic wave functions through the de Broglie wavelength
given by Eq. (Z22). No matter the value of |a|, atoms which interact by
contact interactions do not see each other at a distance |a| if their wave
functions do not overlap [88]. Another upper limitation is the physical
size of the system which must necessarily be larger than |al. Finally, a
finite resolution of the magnetic field can limit the resolution of |a| at
strong interactions.

2.5.1 Studies of Homonuclear Efimov Physics

Efimov resonances have presently been observed within several differ-
ent atomic species [B0, B9—97], including Fermi spin mixtures of three
components [93, 94], and universality has been confirmed across dif-
ferent Feshbach resonances [95-98]. Remarkably, the value of the three-
body parameter a_ is universally determined by the van der Waals ra-
dius of a given species as Rygw/a- = 9.7, except for very narrow reso-
nances [498, 94]. The physical interpretation of this relation is that a de-
crease in the two-body interactions at Ryqw results in an effective bar-
rier in the three-body potential at a similar distance, which prevents the
particles from seeing the nonuniversal potentials at short distances [99—
107].
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Furthermore, the universal scaling of approximately 22.7 has been
studied by observation of the second Efimov resonance [[03] and by
observation of multiple recombination minima [8Y, 90]. Evidence of an
excited-state trimer has also been observed in a three-component Fermi
gas [104]. Moreover, the atom-dimer recombination resonance has been
observed [T05-107] and trimers have been associated directly by using
radio frequency radiation [T0OB-10]. Very recently, Efimov trimers were
associated by sweeping the magnetic field away from a resonantly in-
teracting Bose gas, in a manner similar to association of molecules by
sweeping across a Feshbach resonance [I11].

Additional studies include the observations of four- [127] and five-
body [I13] states associated with the three-body Efimov states and of
the impact of temperature on an Efimov resonance [114].

Recently, the first unambiguous experimental observation of Efimov
physics outside the field of ultracold gases was made in a beam of He by
Coulomb explosion imaging of the trimer states [[[15].

2.5.2 Heteronuclear Efimov Physics

The original theoretical work by Efimov involved three identical spinless
particles [29]. If one of these is exchanged with a new particle, the prop-
erties of the Efimov states are changed dramatically, depending on the
properties of the new particle and its interaction with the others. This
scenario is relevant for two-neutron halo nuclei such as !'Li, where two
neutrons orbit the core nucleus [10, [79].

Systems of different particles are more complicated to describe than
systems of identical particles, but can potentially provide a richer spec-
trum of Efimov states. When exchanging one of the identical bosons of
mass m; with a new particle of mass m,, new aspects have to be taken
into account, which influence a_ and sy.

The relative mass m;/m, influences the scaling sy. A system of two
heavy particles and one light is considered “Efimov-favoured”, since the
scaling a”*V/a"" decreases, which allows for easier detection of mul-
tiple resonances. The opposite is the case for two light and one heavy
particle, where the scaling increases [118].
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Furthermore, the tunability of the interactions is generally restricted
to the interactions between the two different types of particles, whereas
the interaction between the identical particles remains constant and rel-
atively low. This also results in an increased scaling factor [T16].

The value of a_, the three-body parameter, is still universal, but the
physical origin of the universality is different, depending on whether the
system is Efimov-favoured or not [98, 'T6]. As a consequence a- can not
be expressed as a trivial function of Ryqw [IL16]. Except for heavily mass-
imbalanced systems, a_ is generally not experimentally accessible.

Heteronuclear Efimov resonances have been observed in mixtures
of “ K8 Rb [117], ®Li'*3Cs [I18, 119], and °Li®"Rb [120] and atom-dimer
recombination maxima has been observed in mixtures of °K8Rb [121]
and *'K8Rb [122].

The °Li!33Cs system has proved very rewarding to study. Due to the
mass imbalance, up to three consecutive Efimov resonances have been
observed [119], the effect of the interaction between the identical bosons
has been studied [123, 124], and the universality across Feshbach reso-
nances has been shown experimentally [98, 125, 126].

The first observation of a heteronuclear Efimov resonance was per-
formed in a *'K8"Rb system [[[17], but these results have been heavily
debated [I16, 121, 1277]. This controversy motivated the study of three-
body physics in KRb mixtures presented in Chapter B, and will be dis-
cussed in more detail there.

2.6 Polarons in Ultracold Gases

The scenario of a mobile impurity interacting with its surroundings is
central in physics. A key example is an electron moving in a crystal lat-
tice. The charge of the electron can displace nearby ions to create a lo-
cal polarization of the lattice as shown in Fig. Z4. In other terms, the
electron is dressed by lattice phonons. This composition of an impu-
rity particle interacting with excitations of the surrounding medium is
best described in terms of a quasiparticle, denoted a polaron [19, 20].
This concept is important in understanding various exotic materials [2T,
22] and semiconductors of technological importance [?3]. However, the
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Figure 2.4: Polarons in solid-state physics and ultracold quantum gases. In
solid-state physics, a moving electron can perturb the surrounding lattice to
form a quasiparticle called a polaron, which is shown artistically to the left. In
a similar manner, an impurity in an ultracold gas can perturb the surrounding
medium to form the same quasiparticle, as shown to the right. The image is
reprinted with permission from reference [I37]. Credit: APS/Carin Cain.

picture of an impurity immersed in an interacting medium is found in
diverse areas of physics, such as superfluid He-*He mixtures [I78], A-
baryons in nuclear matter [129], and high-temperature superconduc-
tors [130]. Even elementary particles acquire their mass through cou-
pling to a medium of Higgs bosons [I31].

Being able to understand the general properties of an impurity in-
teracting with its surroundings is therefore highly desirable. The field of
ultracold quantum gases provide an excellent setting to do so, given the
capability to tune interactions, the high degree of purity and the flexibil-
ity of dimensionality and traps.

The first observation of a polaron in an ultracold gas was made in
2009 in a Li Fermi gas [I1]. Since then additional studies have been
conducted, altogether providing new insights to the interacting impu-
rity. Despite immense theoretical interest, a polaron in a Bose-Einstein
condensate had not yet been observed until very recently.

Within this thesis, the first observation of a polaron in a Bose Ein-
stein condensate—the Bose polaron—is reported. The result is covered
in Chapter B and was published in parallel with a similar study from
JILA 7, 133].
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Figure 2.5: Two polaron branches in the vicinity of a Feshbach resonance. At at-
tractive interactions an attractive polaron branch exists, extending across uni-
tarity and approaching the molecular state. At repulsive interactions a repulsive
branch exists, which becomes increasingly damped when approaching strong
interactions, due to the presence of lower-lying states.

In the remainder of this section, a short introduction to polarons in
ultracold gases is given. This includes an overview of the important re-
sults from literature. The properties unique to the Bose polaron will be
discussed and, finally, various theoretical models for describing the po-
laron will be introduced.

The typical method to study polarons in ultracold gases is to perform
spectroscopy in an ultracold mixture of two components. One compo-
nent serves as medium and the other as impurities. The impurities must
necessarily have a significantly lower relative density. The impurity com-
ponent is initially prepared in a state which is weakly or non-interacting
with the majority component. To perform spectroscopy, a pulse trans-
fers the impurities into a state which interacts strongly with the medium,
typically through a Feshbach resonance. The interaction changes the en-
ergy of the impurities, which is measured by comparing the transition
energy of the spectroscopy with the bare transition. Research on po-
larons in ultracold gases thus typically revolves around, but is not re-
stricted to, studying the energy of the impurities.

A generic energy diagram of an impurity interacting with a medium
through a Feshbach resonance is shown schematically in Fig. 5. Two
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branches exist: the repulsive polaron at repulsive interactions, and the
attractive polaron at attractive interactions.

At weak interactions, the polaron energy is well described by mean-
field theory E = 2nh?an/ m,, where n is the density of the medium, a
refers to the impurity-medium scattering length, and m; is the impurity-
medium reduced mass. Near the Feshbach resonance center, a mean-
field description is however no longer valid. The strong interaction per-
turbs the surrounding medium, either repelling or attracting the par-
ticles of the medium, depending on the branch. The relation between
interaction strength and energy therefore becomes non-trivial and vari-
ous theoretical methods are used to determine the characteristics of the
strongly interacting polaron.

A remarkable feature of the attractive polaron branch is its extension
across unitarity where it approaches the molecular branch. This behav-
ior can be understood by a qualitative argument; the extreme case of an
impurity attracting the surrounding atoms is indeed a molecule, where
one medium atom is bound to the impurity.

The energy of the repulsive polaron branch increases as strong inter-
actions are approached. However, near unitarity the polaron state be-
comes increasingly unstable, since it can decay to lower-lying states. As
a consequence, the repulsive polaron becomes increasingly damped at
strong interactions.

Some other interesting properties of the polaron is its effective mass
which changes due to the coupling with the medium and its quasipar-
ticle residue Z. The quasiparticle residue is a measure of how much of
the non-interacting particle state |@.1) is contained in the polaron state
[¥por?, which can be quantified as VZ = (WN1l¥pon). The residue can
thus take on values between 0 and 1 and can be obtained directly from
the Rabi frequency when driving a transition between the two states. The
remaining spectral weight lies in excitations of the medium, at higher
energies than the polaron.

2.6.1 Studies of Polaron Physics in Ultracold Gases

Fermi polarons have been investigated experimentally in several studies
since the first observation in 2009 [I1]. Initially, only an attractive po-
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laron branch was believed to exist [134-136], which was also the subject
of this first observation.

The repulsive polaron was later hypothesized [I37-140] and experi-
mentally observed in two parallel studies [13, 14]. Here, the stability and
quasiparticle residue of repulsive polarons were measured [I3] and the
energy-momentum excitation spectrum of polarons in two dimensions
was observed [I4].

The decoherence of impurities has also been determined using spin-
echo [I41] and the ultrafast dynamics of the impurities were studied by
rapidly tuning interactions [15]. Furthermore, the effective mass of po-
larons was measured by studying collective excitations of an imbalanced
Fermi gas [I47] and by utilizing in situ imaging of a Fermi gas of two-
components to determine its equation of state [I2]. Remarkably, a neg-
ative effective mass of repulsive polarons was recently observed [16].

2.6.2 The Bose Polaron

The experimental progress on the Fermi polaron led to an immense the-
oretical interest in the bosonic counterpart, e.g. see references [143—
49]. Several studies of impurities in bosonic gases had been performed,
including charged impurities [Th0-152], fixed impurites [153, T54], and
impurities interacting with an uncondensed bosonic medium [I55], but
no study of the generic polaron in a Bose-Einstein condensate.

The Bose polaron has several remarkable features, compared to the
Fermi polaron. The bosonic medium allows the impurity to interact with
several medium particles simultaneously, thus introducing three- and
higher-body interactions. Intriguingly, the three-body interactions grant
Efimov physics to influence the properties of the Bose polaron [0, 144,
48, 156-160]. However, the involvement of three-body interactions rep-
resent an obstacle since strongly interacting impurities are expected to
be lost rapidly to three-body recombination.

Similarly to the Efimov physics discussed in Sec. (Z5), the Efimov ef-
fect is most prominent for polarons when considering a light impurity
interacting with two heavy medium particles [148, 158, 159]. However,
a very recent theoretical study showed that even for particles of equal
mass, the three-body parameter a_ can affect the behavior of the po-
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laron, even at densities where no well-defined Efimov states exist. It is
furthermore argued that the polaron energy at unitarity is a universal
function of |a_|n'/3 [160].

In general the possibility to interact with multiple medium particles
simultaneously makes for a stronger parallel with solid-state physics.
Like the phonons in a solid, the medium for the Bose polaron is bosonic.
Furthermore, the dispersion properties of the media are similar. For low
energies, the dispersion relation of Bogoliubov modes in a Bose-Einstein
condensate is linear [41], similar to the dispersion relation of phonons in
most solids. This establishes an impurity in a Bose-Einstein condensate
as a capable quantum simulator of solid-state systems.

Very recent theoretical studies have also revealed an intriguing non-
monotonic energy dependence on temperature. The origin is the Bose-
Einstein condensate phase transition at T, which dramatically changes
the density of states of the medium particles, affecting the scattering of
the impurity [161, 162].

2.6.3 Theoretical Descriptions of the Bose Polaron

The Bose polaron has been studied through several different theoret-
ical approaches, some of which will be outlined in this section. Typi-
cally, a single impurity in a weakly interacting Bose-Einstein condensate
is considered. The condensate is weakly interacting in the sense that
na% <« 1, where ag is the scattering length amongst the bosons of the
Bose-Einstein condensate.

To obtain a correct description it is necessary to take into account
the quantum nature of excitations in the Bose medium. It is thus useful
to describe the system by second-quantized notation. The full Hamilto-

nian of this system is
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ot R
+ﬁ Z Vs(q) p+qbp qb /by
pp'.q

d b, bye
+ Vp;qv,(q) pralh_qDp G- (2.50)

Here Bp (lAalT,) and ¢, (C‘;;) annihilate (create) a boson and an impurity,
respectively, with kinetic energies e, = #°p?/2mg and Q, = #°p*/2my,
p and q being momenta, and V is the volume of the system. The first
row of the equation is the kinetic energy of the impurity with mass m
and bosons with mass mg, the second row is the interaction energy of
the bosons, and the third row is the impurity-boson interaction energy.
Both interaction potentials are expressed in terms of the Fourier trans-
form of the two-body potentials V3(q) and Vi(q). As discussed previ-
ously, these can be assumed to be short-ranged and can be written as
VB(qQ) = g8 = Anh?ag/mg and VilQ = g1 = 2nh?al my, where mg is the
mass of medium bosons.

One approach to evaluate the Hamiltonian is to employ perturbation
theory as in reference [[[47]. Here perturbation theory to third-order of
Vi(q) is applied to obtain analytical expressions for energy, residue, and
effective mass. The resulting energy of the polaron forp=0and T =0is

E a a? a’
E_o = E + A(mI/mB)gt +B(m1/mB) 3 In(a*/¢), (2.51)

where ¢ = 1/y/8nnag is the condensate healing length, Eq = 2nné/ my,
a* = max(a, ag), and A and B are functions of the mass ratio. For equal
masses A(1) = 8v/2/3m and B(1) = 2/3—+/3/x. Similarly, the quasiparticle
residue can be expressed as

2 3

a
Z1 =1+ C(my/mg)— + D(my/ mp)—,
1/ ms ant 1/ ms ani?

where C(1) = 2v/2/3m and D(1) = 0.64.

(2.52)
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The first term of Eq. (ZXa1) corresponds to the first order mean-field
energy, whereas the next terms are from second and third order dia-
grams. The pertubation theory works well for weak interactions and out-
lines well initial deviations from mean-field energies as stronger inter-
actions are approached. Additionally, it is useful as a benchmark for nu-
merical theories, which can be utilized to describe the strongly interact-
ing regime.

One numerical approach to describe polarons at stronger interac-
tions is variational theories [145, 148, 160, 163]. Here a trial wave func-
tion is introduced, which is expressed in terms of variational parameters
of the form

Wq) ~ | rg? AHZYE,‘” ¢t B} |IBEC), (2.53)

where y(q) and )/(q) are variational parameters, ,BI, creates a Bogoliubov
excitation, and |BEC) is the ground state of the Bose-Einstein conden-
sate. The expression above includes processes with one excitation, but
can be expanded to include more [148, 160, 1T64].

The procedure to determine the wave function and the energy is to
numerically vary the variational parameters to fulfill the equation

(0| (H-E)|¥) =0, (2.54)

where the derivative is with respect to the variational parameters. By
minimizing the energy E at each momentum q the dispersion relation
of the Bose polaron is obtained. This additionally provides an effective
mass through the relation

Eq=Eq=o+ 5 —+ oqh, (2.55)

eff

where m.g is the effective mass. This variational approach was originally
developed for Fermi polarons [163], but was since expanded to Bose po-
larons [145].

Another numerical approach is quantum Monte-Carlo simulations.
Here, a system of a finite number of particles is fully simulated including
all interactions and correlations. The method is thus numerically exact,
but computationally demanding [46, T57].
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In Chapter B both pertubation theory, quantum Monte-Carlo sim-
ulations, and a numerical method based on variational theory is em-
ployed to interpret the experimental findings.
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CHAPTER

EXPERIMENTAL PROCEDURE AND
APPARATUS

In this chapter, the apparatus used for the experimental studies of ul-
tracold atoms within this dissertation is introduced. Since the apparatus
has previously been presented in great detail [24, 165, 166] the intention
in this chapter is merely to provide a concise overview of the key ele-
ments.

The first iteration of the apparatus was designed and constructed in
Hannover [167, 168]. The intention was to perform experiments with
multiple atomic species. Initial studies were however only performed
with 87Rb, which lead to the realization of a gravity compensated atom
laser [169] and the observation of spin self-rephasing on the clock tran-
sition of 8’Rb [T71], resulting in an extended coherence time of 21s. In
2011 the apparatus was disassembled and moved to Aarhus where it was
rebuilt with focus on producing ultracold degenerate mixtures of 39K
and 8’Rb. The first major result was the realization of dual-species Bose-
Einstein condensates of 3°K and ®’Rb with tunable interactions in 2014
(published 2015) [74].
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Dual-species Bose-Einstein condensates have previously been stud-
ied in a number of different systems (7577, I71-174], including the *'K-
87Rb system [I75, I76]. As mentioned in Sec. [T, 39K is not usually a
good candidate for a constituent in dual-species condensates, since it
has a negative background scattering length. However, the remakable
Feshbach resonance structure shown in Fig. [T allows the production of
dual-species condensates with tunable interactions.

The remainder of this chapter is structured as follows. First, a brief
overview of the apparatus is given in Sec. B71. In Sec. B2, the initial laser
trapping and cooling is described, followed by magnetic trapping and
cooling in Sec. B3, while the optical trapping and state preparation is
summarized in Sec. B4. Finally, the precision and accuracy of the mag-
netic field is evaluated and discussed in Sec. BA.

3.1 Apparatus Overview

The apparatus presented in this chapter is capable of producing Bose-
Einstein condensates of K and 8’Rb atoms. The atoms can be prepared
in any desired hyperfine state, with precise control of the magnetic field
which is used to tune various interactions. For most experimental stud-
ies, the isotope 39K is used, but the apparatus can be reconfigured in a
matter of hours to capture and cool *!K instead.

A vacuum chamber is required to capture and control neutral atoms.
By usage of magnetic fields and lasers, atoms inside the chamber can be
addressed. In this experimental setup most of the laser light is prepared
on one optical table, and sent via optical fibers to another optical table
where the vacuum chamber is placed. Conveniently, the D, lines used
for cooling and trapping of K and Rb have similar wavelengths, so the
same optical elements can in general be used for both species.

The vacuum chamber is divided into two separate glass cells. The
first is a custom made magneto-optical trap (MOT) glass cell, where both
species are captured and cooled from a background vapor. Evaporative
cooling and subsequent experiments are performed in the second cell,
denoted the science cell. The two are separated by a differential pump-
ing stage, which ensures a lower pressure in the science cell. Atoms are
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transported from the first to the second cell using a translational mag-
netic quadropole trap.

Generally, K is not particularly well-suited for laser cooling, due to
its relatively small excited state hyperfine splitting [177-179]. Therefore
relatively few atoms are captured in the MOT phase. To compensate,
K is cooled sympathetically, by selectively removing 8’ Rb atoms during
evaporation in a magnetic trap. Before degeneracy is reached, the atoms
are loaded into an optical dipole trap, that allows a homogeneous mag-
netic field to be used for tuning interactions via Feshbach resonances.
The atoms are prepared in a desired hyperfine state and any further
evaporative cooling is performed by lowering the dipole trap power. The
atoms can be cooled to a final temperature, including temperatures be-
low the critical temperature of Bose-Einstein condensation. From this
point, the atoms are available for conducting experiments as those pre-
sented in Chapters @, B, and B.

The period of a full experimental cycle is approximately 80s. The
main contributions to the cycle time is MOT loading at 25s, evapora-
tive cooling in the magnetic trap at approximately 33 s, and evaporative
cooling in the dipole trap at about 9s.

3.2 Magneto-Optical Trapping and Cooling of
87Rb and 3°K

The dual MOT for K and 8’Rb is shown in Fig. 81. Both K and 8’Rb atoms
are released into the cell from commercial dispenser sources (SAES get-
ters). Atoms stuck on the glass surfaces are detached by using ultraviolet
diodes for light-induced atom desorption [180], which significantly in-
creases the number of captured atoms.

A general problem in dual-species MOTs is light-assisted collisions
amongst the species [181]. The relatively small K samples suffer from
collisions with 8’Rb, which results in similar losses for both species [182].
To avoid this, a dark spontaneous optical force trap (dark-SPOT) has
been implemented for 8’Rb. The aim of this trap is to accumulate atoms
in the dark ground state |F = 1), which hinders light assisted collisions
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Figure 3.1: Overview of the MOT loading region. Left: Schematic overview of the
MOT cell and relevant laser beams. The trapping light consists of K repumping
and cooling light, as well as 8"Rb cooling light. Two additional trapping beams
perpendicular to the figure plane is not shown. A similar figure was published
in [24]. Right: Artistic photograph of the MOT loading region. The photograph
is from [T89].

between the two species. Previously, the dark-SPOT technique has pri-
marily been used to increase the phase-space density of a single atomic
species [I83-186], but it has also been studied in context of light-assisted
collisions in dual-species mixtures [I87, T88].

Generally, operating a MOT requires cooling light and repumping
light, which is the case for both K and 8’Rb. However, a K MOT requires
relatively large amounts of repumping light, because of the small ex-
cited state hyperfine splitting. For 39K, we use 240 mW of light detuned
24 MHz below the |F =2) to |F = 3') transition and 160 mW of light de-
tuned 32 MHz below the |1) to |2’) transition, which is referred to as
cooling and repumping light, respectively, even though their roles are
not well separated. The light is delivered in a single fiber and sent to the
MOT cell in six intersecting beams with a 1/e? diameter of 34 mm.
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The 8’Rb dark-SPOT additionally requires depumping light, besides
the usual cooling and repumping light. Here, 300 mW of cooling light de-
tuned 24 MHz below the |2) to |3') transition is used and delivered by the
same fiber and optics as the K cooling and repumping light. A separate
fiber delivers 5 mW of repumping light, which is magnified to a 22 mm
diameter in a telescope. Within this telescope, a small opaque disc of
6 mm is placed to realize a dark region of no repumping light by recy-
cling the beam as shown in Fig. 8. The width of the dark region can be
varied by translating the disk, and the beam propagates without consid-
erable diffraction.

The setup minimizes the amount of repumping light in the center,
and any atom in the ground state |1) will remain there until it has tra-
versed the trap center and enters a region with repumping light. How-
ever, for 8’Rb, the cooling cycle |2) to |3') is sufficiently robust that atoms
rarely enter the ground state. To accelerate the process, approximately
1 mW of depumping light resonant with the |2) to |2’) transition is sent
to the trap center. As a result, 2’ Rb atoms in the dark-SPOT are mainly in
the dark state |1) instead of in the bright cooling cycle.

The impact of the dark-SPOT configuration for 3K and 8Rb atom
numbers is shown in Fig. B2. The number of 3’Rb atoms was measured
by observing the fluorescence when switching off the depumping light
and delivering additional repumping light to the trap center by a sepa-
rate fiber. The fluorescence of the 39K MOT is weak under normal cir-
cumstances, so the number of 3K atoms is determined by quickly tun-
ing the cooling light on resonance and measuring the fluorescence.

When both species are captured simultaneously, a bright 8Rb MOT
has a negative effect on the number of 3K atoms. However, when 8’Rb
is loaded in a dark-SPOT, light-assisted collisions are avoided and 3K is
loaded almost as if no 8’Rb were present.

The diameter of the dark region was optimized by translating the
opaque disc and detecting the number of atoms after 25s of loading.
When the dark region is large, fewer 8’Rb atoms are captured and 3K
is unaffected by 8’ Rb. When the dark region is small, the 8 Rb MOT be-
comes brighter, which lowers the number of 39K atoms. Here, the num-
ber of 8’Rb atoms also decrease. The 8’Rb dark-SPOT generally becomes
brighter with diameter size of the dark region. Thus the configuration

45



3. EXPERIMENTAL PROCEDURE AND APPARATUS

8 3
o8 (@ o (b) =
S g3 8|5, 39 0| 2
56 8 g 25 8
: : :
2 4 3 ¢ g or z
= o ¢ g
= | @ e | g IR ER-
w2 ®S5T ©
| @ * =
0 4 1.5
0 10 20 30 5 10 15 20
loading time (s) dark region diameter (mm)

Figure 3.2: Performance of dual species MOT and dark-SPOT. (a) Atom number
of 39K at different loading times when loading without 87Rb (purple triangles),
with 8Rb MOT (green diamonds) and with 8’Rb dark-SPOT (blue circles). (b)
Atom numbers of both species versus diameter of the dark region. This figure is
based on data from [?4].

gradually turns into a bright MOT, but with a depumping beam which
has a negative effect on atom numbers. A spot diameter of 12 mm was
chosen.

Previous studies of a single-species dark-SPOT have observed a de-
crease in atom number, but an increase in phase-space density, when
compared to a bright MOT [I8(]. However, the number of 87Rb atoms
observed in the dark-SPOT is similar to what was obtained in a bright
MOT, which is attributed to the relatively large MOT beams. The phase-
space density of the atoms in the MOT cell has not been directly mea-
sured, but at the end of a full experimental cycle, including evaporative
cooling, the dark-SPOT configuration provides a greater number of 8’Rb
atoms, indicating an increase in the initial phase-space density.

In the experimental procedure, the relative MOT loading time of the
two species is adjusted, depending on what type of experiment is con-
ducted. Typically, 8'Rb atoms are loaded for 25 s, whereas the 39K MOT
is only loaded in the last 3-10s of this duration.

After loading, the atoms are cooled below the Doppler limit by apply-
ing an optical molasses. For 8’Rb, the excited state hyperfine splitting is
much larger than the natural linewidth I', and the molasses is realized by
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tuning the cooling laser 7T’ below the cooling transition |2) to |3). How-
ever, the situation is different for 3K where the excited state hyperfine
splitting is on the order of the linewidth. Therefore, a more advanced
scheme has to be employed for sub-Doppler cooling [178, T90]. When
the molasses phase begins, the repumping light is tuned on resonance
and the power is lowered to 5 %. The trapping light is tuned 0.5T" below
resonance, and in the duration of the molasses, the detuning is linearly
increased to 2.3T. After 8 ms, the molasses is switched off and the 8’Rb
and 3°K atoms have temperatures of 35 uK and 117 pK, respectively.
After the molasses, a pumping phase is initiated to prepare the atoms
in the |F =2, mp = 2) state, which allows the atoms to be captured in a
magnetic trap. A homogeneous magnetic field of 15 G is applied and o +
polarized light close to the |2) to |2) transition is applied in addition with
repumping light for both atomic species, in a duration of 3ms.

3.3 Magnetic Trapping and Evaporation

When the optical trapping, cooling and pumping is completed, the coils
which supplied the magnetic field for the MOT captures the atoms in a
magnetic quadropole trap. These coils are mounted on a translational
stage that mechanically moves the atoms 60 cm through a differential
pumping stage in 1.2s to the science cell shown in Fig. B3. Here, the
atoms are loaded into a stationary quadropole trap centered to the cell,
moving the atoms a distance of 4.5 cm. This chamber provides a sig-
nificantly lower background pressure than the MOT cell, where a back-
ground vapor of atoms is required. As a result, the lifetime of the atoms
is on the order of several minutes.

In the quadropole trap, 8’Rb atoms are evaporatively cooled selec-
tively, while K atoms are cooled sympathetically as shown in Fig. B4. The
initial cooling takes place in this quadropole trap, since it has a high ther-
malization rate [T91]. However, in a quadropole trap, atoms are subject
to losses from mpg-changing Majorana spin flips at sufficiently low tem-
peratures. To address this, the trap is configured into a quadropole Ioffe-
Pritchard configuration (QUIC) trap. This is implemented by adding cur-
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Figure 3.3: A photograph of the science cell. Pairs of coils are mounted in a
copper frame around the cell. After transport from the MOT cell, the atoms
are transferred through the circular entryway visible in the center of the photo-
graph.
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Figure 3.4: The phase-space density and atom number of both species during
evaporative and sympathetic cooling. Open blue symbols are 3K and solid red
symbols are 87Rb in quadropole (diamonds), QUIC (circles) and crossed dipole
trap (squares). This figure is based on data from [?4].

rent through an additional coil, creating a trap center with a non-zero
magnetic field [T65, 166].

To selectively evaporate 8’Rb atoms, radio frequency (RF) transitions
to untrapped magnetic substates cannot be used, since K and 8’Rb have
the same linear Zeeman splitting. Instead, microwave radiation close to
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Figure 3.5: Evaporative cooling of 8’Rb in a quadropole trap (a) and in a QUIC
trap (b) using microwave radiation. Microwave radiation removes energetic
atoms in the |F = 2, mp = 2) state (blue arrow), but as atoms leave the trap in
the |1, 1) state, the same radiation becomes resonant with the transition to the
|2,1) state (green arrow). To remove atoms in this state, additional microwave
radiation is added in the QUIC trap, which transfer the atoms back to the |1, 1)

6.8 GHz, resonant with the |2,2) to |1,1) transition of 8Rb is employed.
The evaporation scheme is shown in Fig. B1, which also highlights a
problem of using this method. When atoms are transferred to the |1,1)
state and subsequently move out of the trap, the microwave radiation
becomes resonant with the |1,1) to |2,1) transition. As a result, ener-
getic atoms pile up in the |2,1) state, leading to losses and heating of
K atoms [I75, 192, 193].

This problem is addressed after the trap is transformed to the QUIC
trap configuration. The magnetic substates are no longer degenerate in
the trap center and it is thus possible to add additional microwave radi-
ation resonant with the |2,1) to |1,1) transition of ’Rb, which removes
atoms in the undesired substate, as shown in Fig. B3(b).

If *'K is used, which has a positive background scattering length, it is
possible to evaporate all the way to condensation of both species in the
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3. EXPERIMENTAL PROCEDURE AND APPARATUS

magnetic trap. However, the negative scattering length of 3°K, prohibist
the creation of large stable condensates, as also explained in Sec PZ4.
Therefore, 3°K atoms need to be prepared in a magnetic substate which
allows a Feshbach resonance to be employed. It is thus necessary to load
the atoms into a dipole trap. If an experiment requires both K and 8Rb,
the evaporation in the magnetic trap is stopped shortly before conden-
sation, but if only K is needed, all the 8’Rb is evaporated.

3.4 State Preparation and Evaporation in the
Optical Dipole Trap

An optical dipole trap allows the tunable interactions of our system to
be utilized. We use a far-detuned crossed-beam trap at a wavelength of
1064 nm. The beams have similar waists and are perpendicular to grav-
ity. Selective cooling of 8/Rb is still desirable at this stage and thermal
contact of the two species is thus required all the way to condensation of
both species. These criteria add constraints to the trap geometry, which
is discussed in the following.

The two species have similar optical transitions, so the force applied
from a far red-detuned dipole trap is similar for both. However, the grav-
itation, proportional to mass, pulls ’Rb downwards with greater force.
This allows for selective cooling of 87Rb, but the thermal contact be-
tween the different species is reduced as the trap power is lowered. Thus
the relative gravitational sag of the two species needs to be small com-
pared to the spacial size of the two clouds.

If trapping beams of narrow waists are chosen, the relative sag is
small. The atoms will have an increased tendency to escape the trap by
moving out into one of the beams of the dipole trap, instead of leav-
ing the trap in the vertical direction due to gravity. As such, the selec-
tive cooling of 8’Rb is lost. If, however, beams of large waists are chosen,
selective cooling of 8’Rb is recovered, but the relative sag between the
species is too large for simultaneous condensation of both species.

Remarkably, having both selective cooling and rethermalization can
only be met with a narrow range of beam waists. In Fig. B the respective
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Figure 3.6: The trap depths as a function of the optical dipole trap power. The
red line is the depth for 87Rb, the blue dashed line is for 39K, the green dash-
dotted line is the immersion of the two species, and the grey dotted line indicate
the critical temperature of 3°K. This figure is based on calculations from [74].

trap depths of the two species are shown versus the power of two beams
with waists of 100 um. Additionally, the immersion [ (nx (1) gy (1)) /2 dr,
which describes the relative overlap of the clouds, is shown. Here, n;
refers to the density of the species, which is calculated assuming Gaus-
sian distributions using temperatures at a fraction 1/7 of the trap depth
of 8’Rb. It is thus assumed that 8’Rb cools evaporatively to a tempera-
ture set by the trap depth, and that 39K is thermalized sympathetically.
In the calculation shown, 7 is conservatively set to 3. Each of the two
trap depth curves displays a kink. Above these points the trap depth is
lower in the horizontal direction, and below the trap depth is lower in
the vertical direction. With the chosen waists, selective cooling of 8’Rb is
achieved below 1.1 W where the two trap depths intersect. Furthermore,
the critical temperature of 39K is calculated, assuming 2 x 10° atoms. Us-
ing the temperature set by 7 the critical temperature is met, while the
immersion is still large. As such, trap waists of 100 um meet the crite-
ria outlined above. If trap waists are chosen 10-20 um larger or smaller,
either rethermalization or selective cooling is lost.

The atoms are loaded into the trap by decreasing the magnetic field
and increasing the power of both beams simultaneously, usually to pow-
ers of approximately 1 W. Before further evaporation and any potential
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experiments can be carried out, state preparation is required. The atoms
are initially in the |2,2) state, and typically the |1,—1) state is the tar-
get. When using both species, we prepare the atoms in three steps. Since
both species have the similar Zeeman splittings at low magnetic fields it
is possible to transfer them simultaneously to the |2, —2) state, by using a
rapid adiabatic sweep across all the substates. This is achieved by sweep-
ing radio frequency radiation in 2 ms at a homogeneous magnetic field
of 10 G. Next, the two species are sent to the |1,—1) state one at a time
by using a 7 pulse for 8Rb and an additional rapid adiabatic passage for
39K. The order in which the two species are transferred to the |1, —1) state
is crucial. Ifa 39K atom in the |1, —1) state collides with a 8’ Rb atom in the
|2,—-2), they can undergo a hyperfine changing collision, interchanging
their states, which releases energy corresponding to 0.3 K [I'/6]. This re-
sults in rapid atom loss, reducing the lifetime of the 39K atoms to about
20 us. If, however, the 87Rb atoms are transferred first, no rapid losses are
observed.

After the state preparation, the final evaporative cooling can be car-
ried out. To assure rethermalization between the species, it is beneficial
to carry out evaporation near the interspecies Feshbach resonance. The
magnetic field is adjusted to a desired value, and the evaporation is com-
menced by lowering the power of the beams. If evaporation is continued
to sufficiently low trap powers, condensation of 3K is observed first, fol-
lowed by condensation of 8’Rb. Typically condensates consist of about
10* 39K atoms and 3 x 10* 8’Rb atoms.

It is possible to condense 39K alone by evaporating all ’Rb atoms in
the magnetic trap. If so, the evaporative cooling of 3K in the dipole trap
is carried out near the Feshbach resonance at 34 G and condensates of
about 5 x 10* 39K atoms are obtained. This larger number of condensed
atoms is attributed to a more efficient rethermalization during the final
steps of evaporation.

The atoms are detected by absorption imaging after time-of-flight
expansion. The dipole trap is abruptly turned off, and the atoms are al-
lowed to expand freely. If the magnetic field is turned off during the ini-
tial expansion, the finite decay time of the field results in losses as one or
multiple Feshbach resonances are crossed. Therefore, the magnetic field
is kept at a definite value until the atomic clouds have diluted enough
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Figure 3.7: Typical images of dual condensates after 15ms and 17 ms TOF for
39K and Rb respectively. These images have also been shown in [24].

to make effects of interactions insignificant. The field is then turned off
and the atoms are imaged when the magnetic field has decayed. Both
species are imaged using light resonant with the |2) to |3') transition and
repumping light is applied shortly prior to and during the imaging, de-
livered by an independent fiber. The readout time of the camera limits
the minimal time between the images of the two species to 1-2 ms. Typ-
ical images of dual condensates are shown in Fig. B72.

3.5 Accuracy and Precision of the Magnetic
Field

Many types of experiments with ultracold atoms require precise and ac-
curate control of the magnetic fields. Regarding the work in this thesis,
this is important to perform spectroscopy and to address specific inter-
action strengths near Feshbach resonances.

In order to minimize the error that is introduced by the magnetic
field, several precautions have been implemented. To create the mag-
netic field for the atoms in the science chamber, a high stability power
supply (UCS 65A/25V from High Finesse) is used to deliver current for
the coils. For segments of the experimental procedure which are espe-
cially sensitive to the magnetic field, it is possible to switch the current
source from this power supply to a home-built power supply based on a
set of car batteries. Consequently, the current supply is decoupled from
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the 50 Hz AC frequency of the electrical grid, as well as higher harmon-
ics, which are sources of error.

The background magnetic field at the science cell, originating from
the surrounding equipment, other laboratories, and the Earth, is sub-
ject to drifts over time. Any changes in the background magnetic field
are actively canceled as explained in the following. A magnetometer is
placed near the cell to measure the background field. It delivers a sig-
nal to a proportional-integral-derivative controller programmed onto a
field-programmable gate array. The controller regulates a power supply,
which supplies current to a large pair of coils surrounding the science
cell as well as the magnetometer. This system cancels large long term
drifts of the background magnetic field and is sufficiently fast to also
cancel some of the 50 Hz noise from the surroundings.

A final technical procedure has been introduced to eliminate any
50 Hz noise from the surroundings. An electrical circuit monitors the
50 Hz signal from the grid directly from a power socket. If desired, it
is possible to pause the experimental procedure until the 50 Hz signal
reaches a certain phase in its period, and subsequently continue the pro-
cedure. It is thus possible to always execute a crucial part of the experi-
mental procedure at the same point in the 50 Hz period. This is mainly
important for experimental segments which are much shorter than the
20 ms period of the 50 Hz signal, e. g. spectrocopies.

3.5.1 Spectroscopy of **K at Large Magnetic Fields

The study of polarons presented in Chapter B is based on RF spectro-
scopy of ultracold atoms. Here, a characterization of the RF spectroscopy
capabilities of the apparatus is presented, which also displays the preci-
sion and accuracy of the magnetic field.

First, relevant error contributions are discussed. If a single atom is
considered, the obtainable precision is determined by the natural line-
width, the properties of the RF pulse, and from perturbations to the rele-
vant transition from external fields. Since the transition is dipole forbid-
den, the natural linewidth of the transition is extremely narrow, and is
thus negligible when compared to other contributions.
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The constraint added by the pulse is determined by its length and
shape. A pulse of length 7 has a frequency width of ~ 1/7. It is possible
to use sophisticated pulse shapes to narrow the precision slightly, but in
general it is not possible to obtain a resolution better than the approxi-
mate inverse pulse length.

Regarding contributions to the width from external fields, the Zee-
man effect is of primary relevance. The spectroscopy in Chapter Bis per-
formed between two hyperfine states of 3°K at a magnetic field of 109—
122 G. The transition is sensitive to the magnetic field, which adds a lim-
itation to the accuracy and precision of the spectroscopy. The relative
Zeeman splitting of the magnetic substates in the linear regime is ap-
proximately 0.70 MHz/G. However, given the relatively small hyperfine
splitting between the hyperfine states of 3°K, the Zeeman splitting is al-
ready far into the nonlinear regime at the relevant magnetic fields. The
energies of the substates can here be described by the Breit-Rabi formula
which is used to calculate the relative Zeeman splitting at the relevant
fields to be 0.5 MHz/G.

To characterize the spectroscopic capabilities and the magnetic field
stability of the apparatus, spectroscopies of the |1,—1) to the |1,0) tran-
sition of 3K is performed at a field of 118.6 G, as shown in Fig. B8. A RF
pulse is applied to a thermal cloud of 39K, the atoms are released from
the trap, a gradient magnetic field separates the two components, and
the number of atoms in each component is recorded. The relative frac-
tion of transferred atoms provides the spectroscopy signal.

For the RF spectroscopy, Gaussian envelope pulses are used with a
power proportional to exp(—t*/20?), where ¢ is time and o, determines
the duration of the pulse. The envelope is truncated at +20;. The line-
shape in frequency space is determined by the Fourier transform of the
pulse, which is exp(— 2/ 20?), where 0 = 1/210. A number of differ-
ent pulse lengths are used, which changes the spectroscopic lineshape
accordingly. For each pulse length, a Gaussian fit is performed to deter-
mine the width and position of the signal.

The widths of the spectroscopy signals are shown in Fig. B8(b), to-
gether with a theoretical line o f = 1/270 ;. The expected behavior is fol-
lowed well until a lower limit is reached. The fitted positions from the
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Figure 3.8: Characterization of RF spectroscopy and magnetic field stability.
(a) The obtained spectroscopy signal using Gaussian pulses of various dura-
tions. The duration of the pulses is set by o;, which is shown for the differ-
ent spectroscopies in the legend. (b) The fitted frequency width of the different
spectroscopies. The line is the expected width from theory o = 1/270. (c) The
fitted positions of the spectroscopies, which indicate that the magnetic field is
subject to long term drifts on the order of 1 mG. The weighted average of these
frequencies is calculated by using the inverse errors as weights, and the result
is shown as a line. The gray shaded areas in both (b) and (c) correspond to the
standard deviation of the spectroscopy positions.
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spectroscopies are shown in Fig. B8(c). The data points from the indi-
vidual spectroscopies are spread over a region of frequencies which is
significantly broader than the error bars. Furthermore, the data points
are organized in groups, according to the order in which they were ac-
quired (from left to right). This behavior indicates that the background
magnetic field has changed between the spectroscopies. This adds a fun-
damental limit to our precision and accuracy. The standard deviation of
the center frequencies is 0.5 kHz, corresponding to 1 mG.
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CHAPTER

TUNABLE DUAL-SPECIES
BOSE-EINSTEIN CONDENSATES

Ultracold gases provide an excellent setting for exploring the proper-
ties of interacting quantum fluids. In this chapter, dual-species Bose-
Einstein condensates with tunable interactions are studied. The main
interest is to investigate the miscibility and phase separation of the two
components, as introduced in Sec. Z-4. The results presented here, have
been published in references [24-28].

The studies revolve around using the interspecies Feshbach reso-
nance of 3K and 8Rb in the |F = 1, mp = —1) state [33], introduced in
Chapter I and shown again in Fig. B1i(a), to tune the scattering length
agrp between dual-species Bose-Einstein condensates. As discussed in
Sec. 4, the two components can coexist, collapse, or phase separate,
depending on the value of the miscibility parameter Agp = 811822/ glz2 -
1, where 1 and 2 refer to the two components. In Fig. ETI(b), Agap, for 3K
and 8"Rb near the Feshbach resonance is shown, which exhibits a phase
transition. Additionally, examples of absorption images after expansion
at different interactions are shown in Fig. &T(c-f).
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Figure 4.1: Interaction properties of 3°K and 8’Rb dual-condensates in the
|F=1,mp=-1) state. (a) Scattering lengths of 87Rb (red dash-dotted), 3°K
(blue), and between the species (purple dashed). Miscibility parameter of the
dual-condensates, indicating a phase transition at ~ 128G. The two vertical
dotted lines in (a-b) refer to respectively strong and weak repulsive interac-
tions. In (c-f), example absorption images after expansion at these interactions
are shown. Here, (c-d) is 39K and (e-f) is 8’Rb, while (c) and (e) are strongly
interacting and (d) and (f) are weakly interacting. At strong interactions, both
the column densities and mass centers of the components are modified signif-
icantly. A similar figure was presented in reference [?6].

In order to acquire precise knowledge on the properties of the Fesh-
bach resonance, it was characterized through three measurements to
obtain its position By, width Af, and background scattering length ap,g,
which are presented in in Sec. 1. The background scattering length is
obtained by locating the miscible to immiscible transition point which
depends on the interspecies interaction strength and thus ap,.

Based on the research of the transition, a collaboration was initi-
ated, with the aim to understand dynamics and phase separation of two-
component Bose-Einstein condensates in more detail. The collaborators
have developed a theoretical model to simulate the behavior of two in-
teracting condensates [Z1, 1T94]. The collaboration yielded a theoretical
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study of the in-trap phase separation of 39K and ®’Rb [5], as well as a de-
tailed analysis of the expansion behaviour of the two components [26].

The results from the theoretical in-trap study are reviewed in Sec. B2
and the study of the expansion behavior of two-component condensates
is presented in Sec. E3.

4.1 Characterization of the Interspecies
Feshbach Resonance

The center of the interspecies Feshbach resonance is determined by loss
spectroscopy. A sample of ultracold 3K and 8Rb atoms is prepared in an
optical dipole trap in the |1,-1) state, following the experimental pro-
cedure outlined in Chapter B. The final evaporation is performed at a
magnetic field of 119.6 G, near the Feshbach resonance at 117.6 G, and
is stopped slightly before condensation. After the evaporation the trap
depth of the dipole trap is increased slightly, and the magnetic field is
adjusted to a desired target value. At a given magnetic field, the atoms
are held for a variable amount of time, and the number of atoms are
recorded.

In Fig. @A(a), the three-body recombination rate LXRPEP of one 39K
atom performing recombination with two 8’Rb atoms is shown. To ob-
tain LgRbRb from the decaying atom numbers, a numerical fitting proce-
dure was used, which is described in more detail in Chapter B. On both
sides of the resonance, exponential fits are performed to extract the po-
sition By = 117.56(2) G. In absence of a detailed model of the loss rate
at the resonance center, this region has been excluded in these fits and
provides the uncertainty.

The width of a Feshbach resonance determines the position where
the scattering length crosses zero as a(B = By + Ag) = 0. To obtain this
position for the interspecies resonance, the rethermalization rate be-
tween the two species is measured in a range of magnetic fields. The
two species are prepared in the dipole trap as usual, but directly after
the state preparation, the magnetic field is set to a target value where the
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Figure 4.2: Characterization of the interspecies Feshbach resonance. (a) An in-
crease of the three-body recombination coefficient on either side of the res-
onance determines the resonance position. On both sides, an exponential fit
is performed, excluding the center area shaded gray. (b) The temperature of
39K after sympathetic cooling with 8"Rb. A fit is performed to locate the zero
crossing of the scattering length an thus determine the width of the Feshbach
resonance. This figure is based on data from [74].

evaporation is carried out. Since mainly 8’Rb is cooled evaporatively, the
temperature of 39K will depend strongly on the rethermalization rate.

In Fig. B2(b), the temperature of 39K after evaporation is shown ver-
sus the magnetic field. To determine the point of least rethermalization,
a fitis performed, using the expression

Tx(B) = A, + A exp ((Aslagrp (B)]?). 4.1)

where A;, A, and Aj are fitting parameters which contain information
about temperatures and rethemalization rates. [IZ6, T95]. This expres-
sion uses the basic expression for the scattering length aggy,(B) near a
Feshbach resonance, Eq. (Z331)), and assumes that the difference in tem-
perature between 3K and 8’Rb decreases exponentially with time, with
a rate proportional to the collisional cross section o = 4wa?, given by
Eq. (ZZ38). The fit provides a zero crossing of 116.35(3) G, which deter-
mines the the width to be A =1.21(5) G.
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The last parameter of the Feshbach resonance ayg is determined by
analyzing the miscible to immiscible transition below.

4.1.1 Center-of-Mass after Time-of-Flight Expansion

The tunable interactions of the two species allow the transition from a
miscible to an immiscible mixture to be studied. Prior to this study, the
transition has been observed in both Bose mixtures [75, 196, 197] and in
Bose-Fermi mixtures [195, T98]. In Bose mixtures, the miscibility of the
system can be determined by Agap.

To study the transition, dual condensates were created in the vicinity
of the interspecies Feshbach resonance. Subsequently, the dipole trap
power was increased to decrease the relative gravitational sag slightly,
resulting in trap frequencies of (wp,w;)/2m = (136,189) Hz for 39K and
(96.9,129) Hz for 8'Rb, at a temperature of 200 nK and a relative gravita-
tional sag of 6.9(5) um. The magnetic field was then ramped to a target
field in 300 ms, and after additional 10 ms of hold time, the 3°K and 8’Rb
were released from the trap and imaged after 15ms and 17 ms, respec-
tively. The produced condensates contained approximately 1.2 x 10% 39K
and 2 x 10* 8’Rb atoms.

The center-of-mass positions after time-of-flight expansion for both
condensates was determined, relative to the condensate positions with-
out the other species present, which is shown in Fig. E3(a) versus the
magnetic field. It is clearly seen that stronger repulsive interactions re-
sult in a larger separation. At weak interactions above 130 G, the change
in center-of-mass position is vanishing.

Previously, it has been observed that the growth in center-of-mass
separation begins at the phase transition point Agp = 0 [(Z5]. By assum-
ing this behavior, the measured separation can be used to determine the
background scattering length empirically. To do so, the center-of-mass
separation is evaluated versus Ay for various trial values of ayg. The
scattering length between 3K atoms is caclulated using the Feshbach
parameters provided in reference [97]. At each trial value of Ag,p, a fit is
performed, assuming a constant separation for Ag,p > 0 and a linearly
growing separation for Ay < 0, as shown in Fig. B3 (b). For very strong
interactions, a non-linear increase in separation is observed, and data at
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Figure 4.3: The relative positions of dual-species condensates after expansion.
(a) The center-of-mass position shift of 3°K (blue circles) and 8’Rb (red dia-
monds) condensates after time-of-flight, which shows a clear effect from in-
teractions. The origin of the vertical axis is the position of a freely expanding
condensate in absence of the other species. (b) The separation of the conden-
sates versus Agp, as well as linear fits, where data in the gray area have been
excluded from the fit. (c) The fitting error for different values of (pg. The value
of apg in (b) is 28.5ay. This figure is based on data from [24].

Astap < —0.5 is excluded in the fit. The fitting error for a number of ay,g
trial values is shown in Fig. £3(c), where a parabola has been fitted to
provide an estimate of apg. This method yields ay,g = 28.5(8) ap, compa-
rable to theoretical predictions of the background scattering length in
other mpg states [33].

Calculations of the in-situ distributions of the two condensates re-
veal that the Thomas-Fermi radii of the components hardly overlap, due
to the gravitational sag. The observed separation is thus attributed to
interactions during the initial time-of-flight after the components have
been released.
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4.2 Theory of in-Trap Phase Separation and
Dynamics

In this section, theoretical results regarding the in-trap phase separa-
tion and dynamics are presented [25]. The theoretical model is an exten-
sion of the Zaremba-Nikuni-Griffin kinetic model which includes inter-
actions between condensate and non-condensate atoms [[/1, 194, T9Y].
Consequently, finite temperature effects are captured.

Several previous studies of two-component Bose-Einstein conden-
sates have examined the density distributions of the condensates while
varying a single parameter like interspecies interaction [64, T96] or atom
number [61, 7/6]. Here, a more complete volume of the relevant param-
eter space is explored, by varying interaction strengths g11/g12, 812/ 822,
atom numbers, and temperature.

4.2.1 Simulation Parameters

In the simulations, dual-species condensates of 39K and 87Rb are con-
sidered, under conditions related to the experimental setup presented
in this thesis. The theoretical results are, however, generally applicable
to many multi-species experiments.

The harmonic potential V;(r) = m;/ 2((1)?1.;()2 + wivizz) confines the
atoms, where i = 1,2 refers to the species. In the remainder of this sec-
tion, 1 refers to 8’Rb and 2 refers to 39K. The radial and axial trap frequen-
cies for %Rb (*K) are respectively w, /2w = 119Hz (178 Hz) and w, /27 =
166 Hz (248 Hz), which fulfill mlwi L= mgw?,z, where j refers to the axis.

Simulations are performed for various atom numbers and temper-
atures. Regarding atomic interactions, both arbitrary values of g1, g22
and g, and values specific to 39K and 8’Rb in the |1,—1) state are con-
sidered.

The expression for the trapping potential indicates that the case of
a negligible gravitational sag is considered. This can be achieved exper-
imentally by employing an optical dipole trap with a carefully selected
wavelength [200]. The gravitational sag is g/w?, where g is the accelera-
tion due to gravity, and w, /27 is the trapping frequency in the direction
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of gravity. One method to eliminate the relative sag between two species
is using a dipole trap which provides identical trap frequencies to the
two species. Alternatively, an additional optical potential introducing an
upward force proportional to mass can be employed.

Both these approaches require an optical potential of the same wave-
length. In the simplified case of a two-level atom, the dipole force is pro-
portional to I'/vyd, where I is the linewidth, v is the atomic transition
frequency and ¢ is the detuning of the optical field [201]. The same trap
frequencies for atoms of species 1 and 2 can be obtained by imposing

my T2vg 61

— =, (4.2)

ns Fl vV 0,25 2
where the relative detunings §;/6, determines the wavelength neces-
sary for canceling the gravitational sag. A full calculation for a mixture of
39K and ®"Rb including all relevant transitions provides a wavelength of
approximately 806 nm [25].

4.2.2 Ground-State Phase Diagram in a Harmonic Trap

In Fig. B4, a series of ground state phase diagrams of the mixture is pre-
sented for different interactions and for varying atom numbers. The in-
trap density distributions are quantified by a new parameter

Nc, 1 (0) Nc, 2 (0)

ARnorm = - » (4.3)
max ng, 1(r) max ng, 2(r)

which describes to which degree the density maxima of the two conden-
sates are expelled from the center of the trap. If two components over-
lap, with both having density maxima in the trap center as in Fig. E4i(g),
then Anporm = 0. If one component is fully repelled from the trap center,
Anporm = *1 as in Fig. B4(f) and (i). If the distributions are asymmetric
as in Fig. 4(e), then Anporm does not provide a meaningful description,
indicated by white coloring.

The phase diagrams of Fig. E4(a-d) are divided into four quadrants
by the lines g12/g22 = g11/812 = 1. These quadrants provide a rough indi-
cation of the density distributions. Upper left is asymmetrical immisci-
ble, lower right is miscible, and the last two are symmetrical immiscible
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Figure 4.4: Ground state phase diagrams for density distributions of dual con-
densates of 39K and ®'Rb. (a-d) The phase diagrams paramitrized by Annorm
(see text) for different interactions, where species 1 is ®Rb and species 2 is 3°K.
The white dashed lines show Ay, = 0. Atom numbers are indicated in the sub-
figures and white circles in (a) show interactions relevant for the mixture in the
|F =1, mp = —1) state. (e-i) Examples of density profiles at different regions of
the phase diagrams, where the red line is ' Rb and the blue is 3°K. The value of
the miscibility parameter Ag,yp, is shown in the subfigures. This figure is based
on data from [Z5].

distributions. However, the position and width of the boundary between
these distributions depend on atom numbers.

This dependence on atom number can be understood by consider-
ing the limiting case of N; > N,. Here, the effect of interactions from
species 2 on 1 is negligible. If g12/g2»> < 1 the trapping potential V is
stronger than the interspecies repulsion experienced by species 2 and
effectively a harmonic trap is felt. If however g12/g2» > 1, the repulsion
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becomes stronger than the trap, and species 2 will form a shell structure
around species 1.

These results demonstrate that the actual density distribution de-
pends on many details of the system and is thus poorly described by
the miscibility parameter. Even phase separation is not captured well.
An alternative parameter to describe the distribution is Anperm, but it
require numerical simulations to calculate. However, it is also possible
to acquire information about Anperm, and thus the miscibility and in-
trap distribution, through observations of dipole oscillation frequencies,
which is presented in the following section.

Finite temperature effects were studied in context of the ground state
and phase separation. By adjusting the atom number such that the num-
ber of condensed atoms are similar for different temperatures, varying
the temperature had little to no effect on condensate density distribu-
tions [7H].

4.2.3 Two-Component Dipole Oscillations

Now, the dynamical properties of dual-species condensates are studied.
The interactions relevant to 3K and ®'Rb in the vicinity of the inter-
species Feshbach resonance are considered with the same atom num-
bers as in Fig. B4(a), where these interactions are shown in the phase
diagram.

To initiate the oscillations, the trap centers for the two components
are increased linearly to 0.2um in 5ms and afterwards back to Opm in
1ms. This initiates dipole oscillations with amplitudes small compared
to the Thomas-Fermi radii of the condensates. Simulations are carried
out for different interactions and temperatures.

Properties of the resulting dipole oscillations are shown in Fig. B3
for different interactions and temperatures. For a given interaction, the
two condensates oscillate with the same frequency wg;p, but with oppo-
site phase. For reference, the density distribution quantified by Anporm
is shown in Fig. EH(a), which once again highlights that the transition
from miscible to immiscible does not happen at Agap, = 0, but gradually
in the region Agp, = 0.2-1.
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Figure 4.5: Dynamical properties of the dual condensates at different temper-
atures and interactions. Blue circles are simulations at T = 0, orange diamonds
are at T = 100nK and green squares are at T' = 150nK. In (a), Anporm is shown,
the dipole oscillation frequency is shown in (b) and the corresponding damp-
ing rate is shown in (c). (d-e) Same data as (b-c), but plotted versus Anporm of
(a). This figure is based on data from [25].

Across the range of interactions, both frequency and damping rate of
the oscillations are changed with interaction. The oscillation frequency
is similar for different temperatures, but damping rate changes since
collisions with thermal atoms introduce damping. In Fig. &5(d), the os-
cillation frequency is shown versus Anporm, which demonstrates a cor-
relation between wgip and A7nporm. This correlation was tested and re-
produced for various atom numbers [25].

4.2.4 Discussion

To summarize, the miscibility parameter Ay, provides an incomplete
description of the density distributions of two-component condensates.
The distributions depend in a more complicated manner on the rela-
tive interactions and atom numbers. An alternative parameter Anporm
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was suggested to describe the density distributions, and by simulations
it was shown that information about this parameter can be obtained by
measuring the dipole oscillation frequency of the two components.

The simulations were performed for components with identical trap
centers. For trap center separations on the order of the Thomas-Fermi
radii it is likely that the transition from miscible to immiscible is more
apparent. Additionally, the phase diagrams depend on the relative trap
frequencies of the two components, which were kept constant in the
simulations presented here.

Additional details, discussions and results are available in the publi-
cation [25].

4.3 Expansion of Finite Temperature
Dual-Species Condensates

In this section, the expansion dynamics of dual-species Bose-Einstein
condensates are studied, through a detailed comparison between exper-
imental observations and numerical simulations [7H].

The miscibility of dual-species condensates is often studied by per-
forming observations after time-of-flight expansion (24, [/5-77, 202], be-
cause in-situ observations are technically challenging.

Here, a full simulation of the dynamical expansion is presented. The
aim is to study how the interspecies interactions manifest in the atomic
density distributions after time-of-flight. This is especially interesting,
since the role of miscibillity in trapped systems is not fully resolved, as
shown in the previous section. The validity of the simulations are con-
firmed by qualitative comparison with experimental observations.

4.3.1 Simulation and Experimental Parameters

The same theoretical framework as in Sec. B2 is used, where finite tem-
perature effects are taken into account [[Z1, 194, 1T99]. The simulation
parameters are based on the measurements presented in Sec. E1-1 and
shown in Fig. &3.
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Experimental data was acquired under similar conditions. The ex-
pansion time was chosen to be longer, which allowed spacial features
to be resolved better. In the measurements, the trap frequencies were
(wp,wz) /21 = (132,186) Hz for 39K and (93, 124) Hz for 8Rb, and the rela-
tive gravitational sag was 7.1(7) um. The condensates contained approx-
imately 8 x 103 39K and 5 x 10* 8’Rb atoms, at temperatures 150-200nK.
Finally, absorption images are acquired after 23 ms for 3°K and 24.7ms
for 8Rb [26].

4.3.2 Center-of-Mass Positions after Expansion

First, a comparison between numerical simulations and the data pre-
sented in Sec. E11 and shown in Fig. B3 is performed. In Fig. E8(a), the
experimentally obtained center-of-mass positions are compared to po-
sitions obtained from simulations versus the miscibility parameter Ag,p.
The experimental and theoretical results agree qualitatively, but in gen-
eral, the experimentally obtained positions are further separated from
the unperturbed condensate mass centers.

Several sources potentially contribute to this systematic error. This
includes an inaccurate evaluation of the center-of-mass condensate po-
sition, an inaccurate model for the scattering lengths in the systems, and
a lack of knowledge about the relative gravitational sag.

To evaluate whether the transition point Ag,p = 0 can be obtained
from the center-of-mass positions, the derivative of the numerically de-
termined 39K condensate position is calculated and shown in Fig. E8(b).
Due to conservation of momentum, calculating the derivative from ei-
ther mass center is equivalent. If a well-defined transition point exists, a
similarly well-defined sharp change of the derivative should exist. How-
ever, no such sharp increase is observed. The derivative was calculated
for simulations with other values for the relative gravitational sag, but
the results are similar [26].

4.3.3 Density Distributions after Expansion

Now, the spatial density distributions are examined. From here on, the
simulations are compared to the experimental data with long expansion
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Figure 4.6: (a) Center-of-mass positions (z) of dual-species Bose-Einstein con-
densates 15ms and 17 ms of expansion for 3°K and 8’Rb. The blue circles and
red diamonds are center-of-mass positions for 3°K and 8Rb, respectively. The
experimental data is compared to numerically calculated mass centers, shown
as a dashed blue curve for 3K and a red solid curve for 8'Rb. The origin of
the vertical axis is the position of a freely expanding condensate in absence of
the other species. (b) The derivative of the 39K condensate mass center, which
does not show a well-defined transition. The experimental data is also shown
in Fig. B3. This figure is based on data from [?8].

times. Consequently, the experimentally obtained density distributions
are approximately twice as large as the simulated distributions, but this
has no influence on main arguments and conclusions.

The simulated density distributions before and after expansion for
mixtures in the miscible and immiscible limits are shown, compared
to experimental images, as column-integrated distributions in Fig. E7
and as doubly-integrated distributions in Fig. B-8. Before expansion, the
miscible and immiscible distributions are similar, since the gravitational
sag is on the order of the sum of the Thomas-Fermi radii. After expan-
sion, the experimental and the simulated data yield similar results. The
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Figure 4.7: Column-integrated density distributions of 3K and 8’Rb atoms.
Top rows are immiscible interactions Agg,p, = —0.93 (experiment: Agap = —0.98),
while bottom rows are miscible interactions Ag,p = 1.2. The left column is sim-
ulated in-situ distributions, the center column is simulated distributions after
14 ms of expansion, and the right column is experimentally obtained distribu-
tions after 23 ms and 24.7 ms of expansion. The center of the coordinate system
for the simulated results corresponds to a freely falling frame centered between
the two trap centers, while the coordinate system for the experimental results is
centered to the position of the freely expanding condensate without the pres-
ence of the other species. In each panel, the signal is normalized to the peak
optical density. This figure is based on data from [26].

miscible and immiscible interactions clearly result in different distribu-
tions, with the immiscible interactions providing the greatest modifica-
tion. However, even in the miscible case, a faint interface has developed
between the two components.
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Figure 4.8: Doubly-integrated density distributions of 39K and 8’Rb conden-
sate atoms. Blue solid curves are 3K and red dashed curves are 8'Rb. Bright
colors are T = 0 simulations, while dark colors are at finite temperature. Top
row is immiscible interactions Agiap, = —0.93 (experiment: Agia, = —0.98), while
bottom row is miscible interactions Ag,p = 1.2. The left column is simulated
in-situ distributions, the center column is simulated distributions after 14 ms
of expansion, and the right column is experimentally obtained distributions af-
ter 23 ms and 24.7 ms of expansion. The center of the coordinate system for the
simulated results corresponds to a freely falling frame centered between the
two trap centers, while the coordinate system for the experimental results is
centered to the position of the freely expanding condensate without the pres-
ence the other species. This figure is based on data from [8].

The strong immiscble interactions give rise to interesting features
in the density distributions. A sharp interface has developed between
the two components, and the 39K condensate has been heavily com-
pressed. Furthermore, in the doubly-integrated profiles of Fig. &S, the
87Rb condensate has a steep shoulder structure, located opposite to the
39K condensate, and the 3K condensate exhibits a secondary peak lo-
cated opposite the 8’Rb condensate. These features are caused by the
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Figure 4.9: Center-of-mass position of 39K condensate atoms after 14 ms of ex-
pansion time for different initial relative gravitational sags. Purple circles indi-
cate immiscible interactions Ag,p, = —0.93, and green diamonds are for misci-
ble interactions Ag,p = 1.2. The origin of the vertical axis is the center position

of a freely falling 39K condensate without the presence of 8’Rb. This figure is
based on data from [76].

initial strong mutual repulsion of the condensates, which forms disper-
sive shock waves [203, 204].

The full simulations are also compared to simulations based on the
Gross-Pitaevskii equation, which neglects finite temperature effects. The
presence of thermal clouds suppresses the discussed features slightly,
but they remain visible. Note that the experimental observations were
carried out under slightly different conditions, but the same features still
show, indicating that the effects causing them are not restricted to a nar-
row region of the parameter space.

4.3.4 Effect of the Gravitational Sag

The effect of varying the relative gravitational sag is now explored theo-
retically. In Fig. &9, the center-of-mass position of the 3K condensate is
shown for different sags at miscible and immiscible interactions. It is not
surprising that the center-of-mass position approaches zero with an in-
creasing sag. The maximum position shift is obtained at 1-2 um, where
the relative sag is considerably smaller than the Thomas-Fermi radii. At
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very small relative sags, the position shift becomes small again. If the two
condensates have similar trap centers, the system is symmetric, and the
condensates do not repel each other in a preferred spatial direction.

4.3.5 Discussion

Full simulations of expanding dual-species Bose-Einstein condensates
at finite temperatures was presented. The results agreed well with exper-
imental observations. The simulations predicted a center-of-mass sep-
aration of the two components, as observed in several experiments [?4,
/577, 202]. An analysis however showed that the separation does not
necessarily provide a distinct point of the miscible to immiscible tran-
sition of two-component Bose-Einstein condensates. This disputes the
measurement of the background scattering length performed in Sec. BT,
which assumed that the mass centers provided a clear transition point.

The density distributions of the condensates before and after expan-
sion were also studied, which revealed interesting spatial features. Both
for miscible and immiscible interactions, the repulsive interspecies in-
teraction forms an interface, which is most distinct for immiscible inter-
actions. Additionally, the strong repulsion in this limit generated disper-
sive shock waves.

In the manuscript [26], additional results, details and discussions are
available. This includes an analysis of the miscibility between thermal
clouds and condensates.
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CHAPTER

THREE-BODY PHYSICS IN 3K AND
MIXTURES OF KRB

This chapter covers the experimental studies of Efimov physics which
were carried out as a part of this dissertation. Efimov physics addresses
the properties of three interacting particles. The short-range two-body
interactions lead to the formation of an intricate spectrum of three-body
states denoted Efimov states. A more detailed introduction of Efimov
physics is given in Sec. PZ5.

The studies of Efimov physics presented in this chapter are divided
into two works [27, ?8]. In the first, a study of the three-body physics
of ultracold KRb mixtures was conducted [27]. The first observations
heteronuclear Efimov resonances were made in a mixture of 'K and
87Rb [II17], but have later been subject to controversy due to inconsis-
tencies with theory and other experimental results. This motivated the
study of three-body physics in both 39K8’Rb and *'K®’Rb mixtures pre-
sented in this chapter. In the second work, the properties of a homonu-
clear Efimov resonance in 39K is studied in detail, and a remarkable de-
pendence on temperature is observed [28].
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The chapter is structured as follows. First, in Sec. b, methods for
evaluating losses in both ensembles of one and two components are
presented, which is central in studying Efimov physics. Then, the con-
troversy of Efimov physics in KRb mixtures is revised in Sec. B2. Next,
the experimental results for three-body physics in KRb mixtures are pre-
sented and discussed in Sec. B3. Finally, studies of the temperature de-
pendence of an Efimov resonance in 3K are presented in Sec. 54.

5.1 Evaluation of Three-Body Losses

The presence of an Efimov state manifests itself in an increase of the
three-body recombination rate at a specific interaction strength a_. It is
therefore important to properly obtain this rate from the time evolution
of atom numbers and temperature. In this section, methods for evaluat-
ing three-body losses are presented. The case of a homonuclear ensem-
ble is considered first, which applies to the measurements presented in
Sec.B3. Next, the framework is extended to the case of bosonic mixtures,
which applies to studies of three-body physics in KRb mixtures.

The losses and heating can be described through coupled differen-
tial equations. These can be solved analytically in the homonuclear case,
whereas numerical methods are used for mixtures. By performing fits to
the experimental data, the three-body recombination coefficient Lj is
obtained as a fitting parameter.

A single species ensemble undergoing three-body recombination is
now considered [49]. The rate at which an atom undergoes three-body
recombination at a certain density 7 is L3n?. When atoms are confined
in a harmonic potential, the inhomogeneous density distribution has to
be taken into account by integration, weighted with density

dN 5 N3 1 (ma?)°
= —L d = — L - = — y 5.1
dt 3fn(r) r="Plsgg P \/27(2nk3) o1

where the integral is solved assuming a Gaussian thermal distribution.
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Atoms are primarily lost from the high density center of the trap,
where the average energy of atoms is lower. Consequently, the average
energy per remaining atom increases, which is equivalent to heating.
The mean potential energy of lost atoms is

[n@*VEdr  kgT
[n@3dr 2

) (5.2)

where V (r) is the potential energy from the trap. As the average potential
energy of all atoms is (3/2)kg T, a recombination event leaves an excess
energy of 1kg T in the remaining ensemble. By comparison with the av-
erage energy 3kg T, a factor 1/3 is obtained. This factor relates the rela-
tive heating rate (dT/dt)/ T with the relative loss rate (dN/dt)/ N, which
provides

dT T dN _ BLg N?

g = . 5.3
dt 3N dt 3 T2 (5-:3)

The two coupled differential equations describing the loss and heating
rates have analytical solutions

5 -1/3
N(1) = Ny (1+3ﬁT—gL3t) : (5.4)
0

5 1/9

NO

T =T, (1 +3p—s Ly t) : (5.5)
0

These expressions can thus be used to obtain L3 from the temperature
and atom number evolution of a system undergoing three-body recom-
bination processes [BY, 97].

This framework for analyzing losses and heating due to three-body
recombination is now extended to mixtures. For a Bose mixture, many
different loss channels can be significant, which complicates the differ-
ential equations. In a bosonic mixture of particles a and b, four different
three-body recombination channels are present; a-a-a, a-a-b, a-b-b,
and b-b-b, each with their own recombination coefficient Ls. The re-
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sulting differential equation for one component a is

dN, 2 1
- :——Lg‘lbfnflnbd‘%r—ngbbfnanid‘o’r

ds 3
1
—Lg‘f““fn‘zdgr—; fnadgr. (5.6)
a

Here, an additional term accounting for background losses was added,
which contains the background lifetime 7, of species a.

To evaluate heating, the two components are assumed to be rether-
malized. First, one loss channel a-a-b is considered. Here, the mean
potential energy a,,, of atoms undergoing three-body recombination
has contributions from both components a 4,5, = %aza + %ab where a4 =
S nanyVad®r/ [nZn,d®r and ap = [nniVyd®r/ [ ngnd’r. This leads
to an excess energy per lost atom %kBT — @ 4qp- To obtain the heating
from the loss channel to the sample of N, + N}, atoms, this is compared
the the average energy 3kg T, which yields

[d_T _ pgan 25T~ Gaan [ gy dPr (5.7)
dt | gap > 3kg Ng+Np '
The total heating is the sum of heating rates from all channels
dr [dT N dT N dT N dT 5.8
dr dr aaa dr aab dr abb dr bbb .

The heating and losses of a bosonic mixture is thus described by three
differential equations for N,, Nj, and T, given by Eq. (8) and Eq. (&8).
The integrals in these equations can all be solved analytically, incorpo-
rating a gravitational sag, by assuming Gaussian thermal distributions.
To obtain the three-body recombination coefficients in mixtures, the dif-
ferential equations can be solved numerically and fitted to experimental
data.
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In a bosonic mixture, four different recombination coefficients thus
have to be determined to properly analyze the losses. In the context of
the relevant KRb mixtures, the coefficients for the single species chan-
nels have been determined in independent measurements [BY, "7, 205].
Regarding the two remaining loss channels, the K-Rb-Rb channel is ex-
pected to be significantly stronger, since one light and two heavy atoms
are stronger bound, compared to one heavy and two light [BT, 16, 2Z0§].
To further favor this loss channel, the experiments were performed at
approximately twice the number of Rb atoms compared to the number
of K atoms. Consequently, the K-K-Rb channel is insignificant and can
be neglected in the evaluation. Thus, the three-body recombination co-
efficient LX®PRP for two Rb atoms and one K atom remains the only fit-
ting parameter, besides initial temperature and atom numbers.

5.2 Controversy of Efimov Resonances in KRb
Mixtures

The first experimental study of heteronuclear Efimov resonances claims
the observation of three different features, detected through loss spec-
troscopy [I[17]. The first is from an Efimov state of two 8’Rb atoms and
one *'K atom, detected at an interspecies scattering length of —246ay.
The next is a feature from another Efimov state of one 8’Rb atom and
two 4K atoms, which is observed at —22 x 103 a,. Finally, a loss feature is
observed at 667 ay, which is claimed to originate from the presence of an
atom-dimer resonance.

These observations turned out to be controversial for a multitude of
reasons. The experiments were performed at a temperature of 300 nk,
which determines the upper limit of interactions to be |a| ~ 3200a, [88].
Therefore, the observation of an Efimov resonance at —22 x 103 a, should
not be possible. Furthermore, the reported position of the Efimov res-
onances disagreed with later theoretical predictions of the three-body
coefficient [[[16]. Moreover, the position of the atom-dimer resonance
at 667ap had an unexpected scaling with the position of the resonance
at —246ay [127]. Additionally, the reported value of the three-body re-
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combination coefficient differed significantly from theoretical calcula-
tions [277].

After the original observation, several studies were performed in a
of a KRbRb Efimov trimer with a different isotope should only introduce
minor changes to its properties. However, no Efimov resonance was ob-
served [IZ21]. An atom-dimer resonance was observed, but only by as-
sociating “°K®’Rb dimers before decay measurements, and its position
differed significantly from the observed feature at 667a, [121, 207]. By
employing universal scaling to the position of the observed atom-dimer
resonance, a possible position of an Efimov resonance was predicted,
but this position was also inconsistent with the initial observation [T21].

A number of experimental studies was later conducted in °Li-133Cs
mixtures [B5]. In general, these results were in agreement with theory, in
contrast to the results from the *'K-87Rb mixture.

These many disputes were a major motivation for our investigation
of three-body physics in 39K Rb and *!K®’Rb mixtures. The experimen-
tal apparatus presented in this thesis allows multiple isotopic combina-
tions to be examined, which as an ideal prospect for studying Efimov
physics.

5.3 Loss Spectroscopy of KRb Mixtures

The experimental procedure to prepare ultracold mixtures is presented
in ChapterB. For 3K 8"Rb, the atoms are preparedin the |F = 1, mp = —1)
state, and the Feshbach resonance at 117.56 G is utilized to tune the scat-
tering length. To measure the atom number and temperature evolution,
the atoms are held in the optical dipole trap with trapping frequencies
w,/2m =118Hz (84Hz) and w,/2m = 164Hz (111 Hz) for 3K (*'Rb).

The mixtures of ' K8’Rb are prepared similarly, but with both species
in the |1, 1) state, where two Feshbach resonances are used. A broad res-
onance at 38 G is mainly used, but since it does not grant interactions in
the range 0-640ay, an additional resonance at 79 G is utilized to address
these interactions [Z08].
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Figure 5.1: Measurement of atom number and temperature evolution of a mix-
ture of 3K and 8’Rb with an interspecies interaction of approximately —880a,.
(a) Atom number of 8'Rb (red squares) and 39K (blue circles). (b) Temperature
of the sample. The curves are fits of numerically evaluated coupled differen-
tial equations used to extract LKR°RP which are presented in text. The figure is
based on data also presented in [27].

In a typical measurement to obtain the three-body recombination
coefficient, 1.5 x 10° Rb and 0.5 x 10° K atoms are prepared at approx-
imately 350 nK at weak interactions. The magnetic field is then rapidly
changed to obtain a desired interaction strength, and the atoms are held
in the trap at this interaction for a variable time. The atoms are then re-
leased from the trap, and atom numbers and temperatures are obtained
by absorption imaging after 14 and 16 ms time-of-flight for K and Rb, re-
spectively. To match the varying time scale of the decay rate across all
interactions, the hold time at each scattering length is adjusted accord-
ingly. During decay, the atoms are held in a trap of frequencies w,/27m =
124Hz (89Hz) and w, /27 = 170Hz (119Hz) for 'K (8’Rb).

In Fig. B, a typical measurement series for 3K and 8'Rb is shown.
The atoms are held at a field corresponding to approximately —880ay,
which results in rapid decay of atom numbers and heating. The three
data sets are fitted simultaneously by a global fit using Eq. (6) and (68),
which determines the three-body recombination coefficient LXRPRP_ The
fits describe the atom losses well, but do not fully capture the heating.
One possible additional source of heating is the kinetic energy gained
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Figure 5.2: Three-body recombination coefficient for a mixture of 3°K and
87Rb at different interaction strengths. The solid blue line at negative scatter-
ing lengths is from the optical model presented in text, assuming no Efimov
resonance. At positive scattering lengths, the blue curve is a a* fit, which is
used to produce theory curves with trial recombination minima at 2800a, and
5100ayp, shown in dashed orange and dash-dotted green, respectively. The fig-
ure is based on data from [7].

by the atoms undergoing recombination, which can be partially redis-
tributed to the remaining ensemble before they leave the trap.

5.3.1 Three-Body Losses in *K ®’Rb

Decay measurements are performed in a broad range of both positive
and negative interspecies interactions for a mixture of %K and ®’Rb. The
evaluated three-body recombination coefficients are shown in Fig. B2.
The scattering length at the different magnetic fields is modeled from
RF molecule association spectroscopy which determines the scattering
length through the binding energy Ey, = i%/2m.a?, in combination with
the characterization performed in Sec. E-1.

On both sides of the Feshbach resonance, the three-body recombi-
nation coefficient increases as LXRPRP ~ g%, At strong interactions, this
scaling is limited at +£2000a, by the temperature of the sample, whereas
the scaling at weak interactions is limited by the finite range of the two-
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Figure 5.3: Three-body recombination coefficient for a mixture of 'K and
87Rb at different interaction strengths. The open circles are from measure-
ments performed at the Feshbach resonance at 79 G, while the remaining data
is from measurements at the Feshbach resonance at 38 G. At negative scatter-
ing lengths, theory curves produced by the optical model introduced in text is
shown assuming no Efimov resonance in solid blue, a resonance at —2464, in
dashed red, and a resonance at —500q, in dash-dotted purple. At positive scat-
tering lengths, the blue curve is a a* fit, which is used to produce theory curves
with trial recombination minima at 2800ay and 51004y, shown in dashed or-
ange and dash-dotted green, respectively. The figure is based on data from [27].

body potential determined by the van der Waals radius Ryqw introduced
in Sec. 2.

Besides the a*-scaling, no significantly enhanced losses which can
be interpreted as an Efimov resonance are observed. Furthermore, no
suppression of losses due to a recombination minimum at positive in-
teractions are observed.

5.3.2 Three-Body Losses in *'K®’Rb

In a mixture of *'K and 87Rb, similar decay measurements are performed
in a similarly broad range of interactions, with the resulting three-body
recombination coefficients shown in Fig. B3. The scattering length is
here obtained from a model for the full molecular potential [209].

As for the 39K 8’Rb mixture, the recombination scales with approx-
imately a* on both sides of the Feshbach resonance. In this isotopic
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Figure 5.4: Loss spectroscopy of a p-wave Feshbach resonance. The total atom
number after a short hold time show a double peak structure. The curve is
a fit of two Gaussians and a linear background. This figure is based on data
from [77].

mixture, we additionally observe a loss feature at approximately —500a.
To better resolve this feature, additional collisional spectroscopy is per-
formed, which resolves a double peak structure as shown in Fig. b4. This
is characteristic of a p-wave Feshbach resonance, and, indeed, theoret-
ical calculations predict such a resonance at this position [208]. Besides
this, no additional features are observed which can be identified as ei-
ther an Efimov resonance or a recombination minimum.

5.3.3 Discussion

To evaluate the results, the measurements of LXR°RP are compared to
theoretical models. At negative scattering lengths, we employ a frame-
work based on an optical model approach, which has an imaginary po-
tential at short distances [206]. To account for the finite temperature,
recombination at all energies are considered, and the results are con-
voluted with a Boltzmann distribution corresponding to the tempera-
ture. The model is both used to predict the three-body recombination
coefficient with and without assuming the presence of an Efimov reso-
nance. In Fig. B2, no Efimov resonance is assumed, and in Fig. b3, the-
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oretical results are shown, both without a resonance, with a resonance
at —500ay, and with a resonance at —246a,. These values correspond to
the approximate position of the p-wave resonance, and to the position
of the originally claimed observation of a KRbRb resonance [I17].

For both isotopic combinations, the optical model matches the ex-
perimental data well, when assuming no Efimov resonances. At lower
interactions, the agreement lessens, since the model does not take the
details of the interatomic potential into account. When assuming the
presence of an Efimov resonance, the model is clearly unable to account
for the experimental observations.

At positive scattering lengths, a simple a* fit is performed for both
isotopes. Based on this fit, trial theory curves are plotted, assuming pre-
dicted recombination minima at 28004, [I'16] and 5100qa [121], using
Eq. (ZZ29) with 4 = 0.02. This indicates that recombination minima at
large interaction strengths are indeed possible, but an unambiguous ob-
servation requires significantly lower temperatures.

In two other studies, atom-dimer resonances were observed at 230ay
for °K®7Rb [121] and at 3604, for *'K8Rb [122]. By employing universal
scaling, these observations can be used to predict possible positions of
Efimov resonances. The observed atom-dimer resonances thus provide
positions of —55 x 103ay and —91 x 1034y, which is beyond the range of
interactions studied here. The more deeply bound Efimov states are sim-
ilarly predicted to have resonances at —450 x 103ay and —690x 103 ay. Our
data does not show any features near these interactions.

The main uncertainties in this experiment are systematic errors in
atom number and scattering length. An uncertainty in atom number
propagates into LX®PRP. These types of errors do however only slightly
shift the spectrum in Fig. 52 and b3, and cannot change the outcome
that no spectroscopic features of Efimov resonances are observed at in-
termediate scattering lengths.

To summarize, the three-body recombination coefficient was deter-
mined over a range of 4 orders of magnitude for positive and negative
interactions in mixtures of 3K 8’Rb and *'K8”Rb. For negative scattering
lengths, the observations are in agreement with a theoretical model, and
do not indicate the presence of any Efimov resonances. This resolves a
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debate regarding three-body physics in ultracold gases and contribute
to the understanding of mass-imbalanced few-body systems.

5.4 Temperature Dependence of an Efimov
Resonance in *°K

In this section, a study of the temperature dependence of an Efimov
resonance in 39K is presented [28]. The results are preliminary, the evalu-
ation is work in progress, and the experimental observations are not yet
fully understood.

Efimov resonances have been observed in 3K several times [8Y, 97].
Motivated by the realization that the observation of the second Efimov
resonance was, in theory, within the capability of the experimental ap-
paratus, a series of measurements was initiated. However, when per-
forming measurements at different temperatures, an unexpected behav-
ior of the first Efimov resonance was observed. Since the temperature
dependence of an Efimov resonance has only been examined experi-
mentally once [I14], and given a remarkable behavior, further measure-
ments and evaluations were conducted, which are presented here.

5.4.1 Experimental Procedure

The Efimov resonance is characterized by performing a series of decay
measurements, covering a range of interactions, at different initial tem-
peratures. An inherent technical problem when performing experiments
at specific interaction strengths near a Feshbach resonance, is the finite
speed at which the magnetic field can be changed. Losses and other dy-
namical processes can initiate while the magnetic field is approaching
its target value. To circumvent this issue, a new preparation procedure
was used in this experimental study.

The starting point for a measurement is an ultracold sample of 39K
atoms in the |1, —1) state held in the optical dipole trap, prepared as out-
lined in Chapter B. The final preparation at the desired temperature and
interaction strength is shown schematically in Fig. BH(a). The evapora-
tion to a final temperature is performed at positive interactions, near
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Figure 5.5: (a) Schematic procedure for preparing 'K atoms at a specific tem-
perature and interaction strength. The blue curves describe the interaction
strength in the |F = 1, mg = —1) state, while the dash-dotted orange curve is the
interaction strength in the |1,0) state. (b) The resulting initial temperature for
the different data series. The labels (1)-(6) in the legend refer to the informa-
tion provided in Tab. Bl and data shown in Fig. B8. The initial temperatures
at the different interactions are obtained through a fit. The solid lines are the
initial temperature T, averaged across all interactions, and shown in Tab. BI.
This data is also presented in [28].

the Feshbach resonance at 33.6 G. The Efimov resonance is located near
the Feshbach resonance at negative interactions. Subsequent to evapo-
ration, the atoms are transferred to the |1, 0) state, and the magnetic field
is ramped to a target value. To ensure that the field is fully stabilized be-
fore initiating a measurement, the atoms are held at 0.5s at this target
field. A decay measurement is then started by transferring the atoms
back to the |1,-1) state. The procedure ensures that the atoms are not
subjected to strong interactions prior to the measurement, and thus en-
sures a low initial temperature independent of the interaction strength
of the target magnetic field.

A decay measurement is performed by holding the sample for a vari-
able amount of time and recording the temperature and atom number
evolution through absorption imaging after 20 ms expansion. When the
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Table 5.1: Information of the different data series used to characterize the 39K
Efimov resonance. The labels (1)-(6) refer to the data shown in Fig. BH(b) and
Fig. 68. The different columns in the table show: average initial temperature T
obtained from decay fits, the trap frequencies w; (i = x, y, z) during the decay
measurements, average initial atom number No obtained from decay fits, av-
erage initial densities 779 obtained from decay fits, and the preparation method
for entering the |1, —1) state. This data is also presented in [28].

TomK) w;/2m (Hz) No/10° T7y/10'2 (cm™®) preparation

(1)  304(9) 83,109, 83 34(5) 0.77(12) ramp
(2) 192(9) 86, 114, 86 20(3) 1.00(17) sweep
(3) 178(11) 83,109, 83 23(2) 1.16(11) sweep
(4) 71.7(1.3) 90.5,28,79 70(2) 3.71(12) pulse
(3) 60(3) 89, 25,75 48(7) 2.78(4) pulse
(6) 44(3) 87,21,70 26(2) 1.77(13) pulse

atoms are released from the trap, the magnetic field is simultaneously
turned off.

Each decay measurement is analyzed by synchronously fitting atom
number and temperature evolution to Eq. (64) and Eq. (63). This pro-
vides the three-body recombination coefficient X as well as the initial
atom number and temperatures shown in Fig. BA(b) and Tab. 6. The
experimental procedure ensures an initial temperature which is approx-
imately constant across the relevant range of interactions. To obtain the
different initial temperatures, traps of different geometries are neces-
sary, and the resulting initial atom numbers and densities vary across
the different data sets. To test the influence of the preparation scheme,
both 7-pulses and rapid adiabatic passages are tried, and for one of the
data sets, the magnetic field is ramped directly to its target value while
the atoms are in the |1, —1) state. All the relevant information about the
individual data series is provided in Tab. B1.
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Figure 5.6: Three-body recombination coefficients at different temperatures
and interactions. The labels (1)-(6) and symbols shown in the different pan-
els refer to the data shown in Fig. BH(b) and in Tab. . The gray solid lines are
fits to Eq. (B9) and the black dashed lines are fits to Eq. (510). This data is also
presented in [28].

5.4.2 Temperature Dependence of the Efimov Resonance

The obtained three-body recombination coefficients Lg at different in-
teractions are shown in Fig. b8 for all the data series. The scattering
lengths are obtained through the Feshbach parameters provided in ref-
erence [97]. Independent of temperature, the data sets yield approxi-
mately the same recombination coefficient at low values of |al, and, as
expected, it increases as |a| increases. For high temperatures, a peak
structure in the recombination coefficient is observed at approximately
a_ = 800ay, which is a clear signature of an Efimov resonance. This data
also agrees well with a previous observation of an Efimov resonance at
this Feshbach resonance [97]. However, for the data acquired at low tem-
peratures, the appearance of the resonance changes, and it clearly be-
comes less pronounced.
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Figure 5.7: Efimovresonance parameters for different temperatures. (a) The de-
cay parameter which describes the Efimov resonance width. (b) The resonance
position. (c-d) Parameters obtained from empirical fit. Gray diamonds are from
fits to Eq. (9) and black circles are from fits to Eq. (10), while the gray squares
are from reference [97]. This data is also presented in [Z8].

The shape of the Efimov resonance and its dependence on tempera-
ture is quantified by implementing a fit using Eq. (Z249) and Eq. (Z229)

hat sinh(2n-)
m  sin?[syIn (a/a_)] +sinh?n_"

K 3
L3 (a) =4590 (5.9)
The fit is applied for high temperatures and captures the position of the
Efimov resonance, but it fails for low temperatures. The fit also fails to
describe the three-body recombination coefficient at low |al, which is a
trend that has also been observed previously [27, 90, 97].

Therefore, an empirical fit is introduced, based on Eq. (Z49) and
Eq. (Z29), but with additional empirical fitting parameters d,qj and n,q;
which infer a more flexible fit

LX(a) = 4590

4
Shaadj( a )nadi sinh(2n_) (5,10

Aadj sin? [soIn (a/a_)] +sinh?®n_

This fit is applied to all the data sets and describes the obtained recom-
bination coefficients well at all interactions.

Through the two different fits, the appearance of the Efimov reso-
nance is quantified through the obtained parameters a_ and n_ which
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are shown in Fig. B4(a-b). The decay parameter 7_, which describes the
lifetime of the trimer and the width of the resonance, increases with de-
creasing temperature. The position of the resonance a_ also changes
with temperature. For low temperatures, the observed positions tend
to agree well with the universal prediction a_ = —9.73Ryqw [98, 9], for
Ryqw = 64.49q, [97]. The result from a previous observation on this res-
onance [97] is also shown in b7(a-b), and is in agreement with the new
observations presented.

In Fig. B74(c-d), the obtained empirical fitting parameters a,q; and
N,gj are shown. To fit the recombination coefficients at low | al, the expo-
nent n,q; tends to deviate from the simple universal a* scaling.

The temperature dependence of an Efimov resonance in Cs has pre-
viously been studied [IT4]. Here, a decrease of the apparent position of
|a_| was observed as well, although the analysis was slightly more com-
prehensive. However, the Efimov resonance becomes more pronounced
at low temperatures, which is a behavior opposite to the observations
presented in Fig. b and b7

This disappearance of the resonance at low temperatures is highly
surprising and the physical origin is unknown. The results presented
here are preliminary and fully understanding them is work in progress.
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CHAPTER

OBSERVATION OF POLARONSIN A
BOSE-EINSTEIN CONDENSATE

A polaron is a quasiparticle, formed by an impurity and its interaction
with a surrounding medium. It is an important example of an impurity
particle interacting with its environment, which is a scenario found in
many areas of physics. It is therefore interesting to study the polaron in
the versatile setting offered by ultracold quantum gases. The topic is in-
troduced in more detail in Sec. 8.

In this chapter, the first experimental observation of polarons in a
Bose-Einstein condensate is presented. The results were published in

This chapter is structured as follows. In Sec. 61, the approach used in
this experimental study of the Bose polaron is introduced. A characteri-
zation of the relevant Feshbach resonance is presented in Sec. B2 and
the detailed experimental procedure for detecting the polaron is out-
lined in B33. The observed polaron spectrum is shown and discussed in
Sec. B4, and in Sec. B35, the effect of varying the polaron fraction is ex-
amined.
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For the repulsive polaron branch, a discrepancy between experimen-
tal observations and theoretical calculations is found. This discrepancy
is accounted for in Sec. B8, where various effects not included in the
theory and in the experimental evaluation are discussed [18]. A cooling
effect observed in the polaron spectrum is presented and explained in
Sec. B, and finally, the results of this chapter are summarized in Sec. 8.

6.1 Experimental Approach

The ideal generic study of the polaron requires a system of one or few
impurities immersed in a homogeneous medium, a setting which is dif-
ficult to realize in an ultracold quantum gas. Typically, the experimental
atom trap is harmonic, resulting in an inhomogeneous density distri-
bution. The ultracold gas then has to consist of two components; a mi-
nority component where the individual particles can be considered as
impurities, and a majority component which operates as an interacting
medium for the impurities. The two components can be either different
species or different spin states of the same species.

In mixtures of ultracold Fermi gases, the Pauli pressure ensures that
a minority component can reside entirely within the central region of
a majority component and thereby exist in a region of the medium of
approximately homogeneous density. This is not the case for the typical
condensed bosonic mixtures. As discussed in Chapter @, the Thomas-
Fermi radii of two Bose-Einstein condensates of different species can be
on the order of the relative gravitational sag. Even if two condensates
have similar trap centers, the shapes of their density profiles are not triv-
ial, as shown in Fig. &4,

One approach to study Bose polarons with the experimental setup
presented in this thesis would be to use 3°K and 8"Rb as the two com-
ponents. But due to the inherent problems of Bose mixtures presented
above, another approach was developed. The starting point is a single
Bose-Einstein condensate in a state |1). Then, a weak RF pulse transfers
a small fraction of atoms into another state |2), which interacts with the
condensate in state |1) through a Feshbach resonance. A spectroscopy
thus simultaneously creates and probes the impurities. The overlap be-
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tween the two components is simple to model through the Thomas-
Fermi distribution, and the impurities are prepared with zero momen-
tum, which provides a more straightforward comparison with theory.

The two states |1) and |2) can be depicted by a Bloch sphere, where
the RF pulse performs a minor rotation. However, once the rotation is
performed, the interaction strengths between |1) and |2) atoms rapidly
decohere the system, and the actual spectral function which is probed is
equivalent to that of the polaron [I'7]. Strictly speaking, the Bloch sphere
picture is only correct if the two states are non-interacting.

The approach presented here constitutes a new method of studying
polarons. In fact, this approach is not even possible in a fermionic sys-
tem. In a Fermi gas subject to a RF pulse in a similar manner, the Pauli
principle suppresses interactions [2110].

Arequirement is a Feshbach resonance between two different states.
Only very narrow single-species Feshbach resonances are available for
87Rb [37]. The same is the case for 'K [32]. Fortunately, a theoretically
predicted Feshbach resonance was identified for 39K, which allowed the
scattering length between atoms in the states |F = 1,mr = —1) and |1,0)
to be tuned [36]. As shown in Fig. T(b), the resonance is located in a
region where the scattering length between atoms in the |1, —1) state is
approximately constant. This allows the initial Bose-Einstein conden-
sate to be produced in this state. Furthermore, the magnetic field can be
chosen arbitrarily in the relevant range of interactions, without affecting
the internal interactions of the condensate significantly.

The expected energy spectrum of the polaron is shown in Fig. B
The atoms are initially in the hyperfine state |1) = |1,—1). A RF pulse
transfers a small fraction of atoms into the state |2) = |1,0), and the tran-
sition frequency is altered by the interaction with the condensate atoms
in the initial state. This results in repulsive and attractive polaron states
with energies E; and E,, respectively. Additionally, a molecular state is
present with energy Ep,. Towards strong interactions, a many-body con-
tinuum appears at higher energies, corresponding to excited polaron
states. Furthermore, the repulsive polaron branch is broadened and will
eventually become damped, since it can decay to lower-lying states.
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Figure 6.1: Sketch of the expected spectrum of an impurity in a Bose-Einstein
condensate and the spectroscopic approach to experimentally obtain this. A RF
pulse transfers atoms from the |1) to the |2) state, corresponding to a small ro-
tation on a Bloch sphere. The energies of the attractive and repulsive polaron
branches are shown as lines labeled E, and E;, respectively. The dashed line la-
beled En, is the molecular state. The grey shading denote a broadening of the
spectrum due to the many-body continuum and the finite lifetime of the re-
pulsive polaron. More details are given in text. A similar figure was published
in [17].

The interaction scale 1/k,a is determined by the impurity-boson
scattering length a and the Fermi wave number

k= (67°1)"3, (6.1)

where 7 is the density of the medium. The corresponding energy scale is
h2k2

n=— ) (6.2)
2m

where m is the boson mass, which for this study is the same as the im-
purity mass.

In the parallel study from JILA a different approach was used. A mix-
ture of bosonic 8’Rb and fermionic *°K was utilized, where the fermions
were used as impurities. The Pauli pressure of the fermions provided
both a low density and a large size of the cloud, which ensured spatial
overlap with the Bose-Einstein condensate of 8’Rb.
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6.2. Charactarization of the Feshbach resonance

6.2 Charactarization of the Feshbach
resonance

In this section, measurements to characterize the Feshbach resonance
for the study of Bose polarons are presented. The zero-crossing of the
Feshbach resonance is determined through rethermalization measure-
ments of the two magnetic substates. To determine the position and the
background scattering length, a molecular spectroscopy is performed.

6.2.1 Detection of Zero-Crossing

A measurement of a scattering length zero-crossing created by a Fesh-
bach resonance was presented in Sec. BT, where 8’Rb was cooled selec-
tively, and 39K sympathetically. Due to the gravitational sag, 8'Rb is pref-
erentially evaporatively cooled when lowering the power of the optical
dipole trap.

The same method is not immediately applicable to determine the
rethermalization of two spin components of 39K, since they are evap-
orated similarly when lowering the trap power. As a solution, the Ioffe
coil, which is used to form the QUIC trap, is utilized to apply a magnetic
field gradient, which the two components react differently to. It is thus
possible to selectively cool one component.

The starting point for the measurement is a thermal cloud of 3K in
the optical dipole trap in the |1,—1) state. The sample is held in a ho-
mogeneous magnetic field in the vicinity of the expected position of the
zero crossing. The mixture is prepared by applying a RF pulse, transfer-
ring a majority of the atoms to the |1,0) state. Subsequently, a current is
sent through the Ioffe coil to create the magnetic field gradient. The cur-
rent is linearly increased over the duration of some seconds. The gradual
increase of the magnetic field gradient results in evaporative cooling of
atoms in the |1, —0) state. Naively, one could expect atoms in the |1,—-1)
state to be primarily removed, since it is the only component sensitive to
the linear Zeeman effect. However, the experiment is performed at rela-
tively large magnetic fields, in the regime of the nonlinear Zeeman effect.
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Figure 6.2: Rethermalization of a mixture near zero-crossing of a Feshbach res-
onance. The temperature difference after 5sand 10s is shown as red diamonds
and blue squares, respectively. This data was also presented in [211].

Here, the |1,0) atoms react more strongly to the magnetic field gradient
and are thus primarily removed from the trap.

After the selective evaporation, the current through the Ioffe coil is
ramped down to remove the magnetic field gradient, and the homoge-
neous magnetic field is adjusted to a desired value, where the two com-
ponents are held for a set amount of time. Finally, the two components
are released from the trap, separated in time-of-flight by a magnetic field
gradient, and imaged.

The obtained temperature difference of the two components for two
different hold times is shown in Fig. 2. For long hold times, the rether-
malization signal narrows since the two samples rethermalize more. The
rethermalization rate in this specific measurement is however low due
to small atom numbers. To determine the position of the zero cross-
ing, Eq. (E) is used to fit the two data sets, which yields a position of
97.9(2) G.
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Figure 6.3: Molecular spectroscopy near a Feshbach resonance. (a) Number of
remaining atoms in initial state after a RF pulse was applied at a magnetic field
of 113.06 G. The left feature is the bare transition, and the right feature is the
transition to the molecular state. (b) The obtained binding energy at different
magnetic fields and the fit which determines the scattering length. Similar data
was also presented in [211].

6.2.2 Molecular Spectroscopy

The scattering length near a Feshbach resonance is determined by the
energy of the bound molecular state. A spectroscopy of this state is thus
a useful method to determine the scattering length.

To perform the molecular spectroscopy, a thermal sample of 39K is
prepared in the optical dipole trap in the |1, —1) state, at a magnetic field
near the position of the Feshbach resonance. Then, a RF pulse is radiated
for up to several ms, close to the transition from |1,—1) to |1,0). Subse-
quently, the atoms are released from the trap and the number of atoms
remaining in the |1, —1) state is recorded.

An example of a molecule spectroscopy is shown in Fig. 63(a), where
the number of atoms in the initial state |1, —1) is shown. The signal dis-
plays two spectroscopic features. The first is the bare transition to the
|1,0) state, whereas the second is the molecular state associated with
the Feshbach resonance. The first peak can be used to determine the
magnetic field, and the separation between the two peaks corresponds
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to the binding energy Ey, of the molecule. The positions of the peaks are
obtained by performing a fit with two Gaussians.

The binding energy at different fields is shown in Fig. E3(b). This en-
ergy is related to the scattering length provided by the Feshbach reso-
nance through

2
Ey,

= (VITaR Ta- 1), 6.3)
where R* is associated with the strength of the resonance [8, Z]. This
parameter is estimated to be 60a, based on reference [36].

To obtain an expression for the scattering length, the typical rela-
tion a(B) = apg[1 — Ag/(B — By)] is assumed, and a fit using the expres-
sion for the binding energy above is performed, while fixing the zero
crossing to be 97.9 G. The resulting fit is shown in Fig. E3(b), and yields
Bo =113.78G, Ap = —15.88G, and ang = —45.34ay.

6.3 Polaron Spectrocopy Procedure

For a polaron spectroscopy, atoms of 3°K are prepared in the optical
dipole trap in the |1, —1) state, as outlined in Chapter B. The state prepa-
ration path from |2,2) to |2,-2) to |1,—1) ensures that no atoms are ini-
tially in the impurity state |1,0). The atoms are cooled evaporatively to
degeneracy by lowering the power of the dipole trap. To enhance the
rethermalization during evaporation, the magnetic field is kept in the
vicinity of the Feshbach resonance at 33.6 G.

When the evaporative cooling is complete, the magnetic field is ad-
justed towards a desired value in the vicinity of the Feshbach resonance
at 113.78 G. The magnetic field determines the interaction strength of
the polarons created later in the procedure. The magnetic field produced
by the apparatus takes a finite amount of time to settle. To assure that
the magnetic field has stabilized when a spectroscopy is performed, the
atoms are held for 0.5s at the target field. During this waiting time, the
power of the dipole trap is ramped up, which increases the density of the
condensate. The reasoning behind increasing the density is explained in
the following.
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Prior to the observation of the Bose polaron, it was an open question
whether it would even be well-defined, since three-body recombination
with medium atoms was expected to severely limit its lifetime. One crite-
rionin deciding if a polaron state is well-defined is to determine whether
the energy of the state is larger than its broadening from its finite life-
time. The decay rate from three-body recombination of a Bose gas of
intermediate interactions is proportional to n?a*, while the mean-field
energy of a polaron is na. A certain polaron mean-field energy can be
obtained either by increasing n or by increasing a, but increasing a has
much greater impact on the decay rate. However, the density cannot be
arbitrarily chosen like the scattering length, so it is still necessary to tune
interactions via the Feshbach resonance. Note that perturbation theory
predicts that n and a are not equivalent, as seen from Eq. (Z221]). Based
on these arguments, a condensate of high density was chosen for all in-
teraction strengths.

Before the spectroscopy, the Bose-Einstein condensate consists of
2 x 10* atoms in the [1) state, at a temperature of approximately 160nK
corresponding to T/T. = 0.6 in a trap of frequencies (wy, wy,w;)/27w =
(158,167,228) Hz. The scattering length between the atoms of the con-
densateis ag = 9ap [97], resulting in an average density of 2.3 x 10 cm3,
a condensate interaction strength k,ag = 0.01, and an energy scale for
the polaron of E; / h = 73kHz.

To create the polarons and perform the spectroscopy, a square RF
pulse of frequency wrr with a duration of 100ps is applied. Compared to
the characterization described in Sec. B35, this corresponds to a Gaussian
pulse of o; = 50us. This pulse does not provide the best possible resolu-
tion that the apparatus can currently provide. However, when the mea-
surements presented in this chapter were performed, the magnetic field
had not been stabilized to the same level of precision. The 100us pulse
corresponds to the precision provided by the apparatus at the time. The
relevant spectral width of the pulse at half maximum is 0.15E,.

After the pulse has been applied, the sample is held in the trap for a
variable amount of time before the atoms are released to expand. Dur-
ing the initial expansion, the magnetic field is held at a constant value to
avoid crossing a Feshbach resonance while the condensate has not yet
diluted. After 5 ms, a magnetic field gradient is applied to spatially sep-
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arate the two states for imaging. Finally, the magnetic field is turned off,
and after a total expansion time of 23 ms, the atoms are imaged through
absorption imaging.

No atoms are observed in the |2) state, except at weak interactions
and short hold times, and the hold time was therefore set to 0 for most of
the measurements. The interpretation is that the atoms undergo three-
body recombination involving one |2) and two |1) atoms during the ini-
tial expansion, due to strong interactions. A bimodal fit is performed to
atoms in the [1) state to obtain the number of remaining atoms in the
Bose-Einstein condensate.

For an interaction strength k; a, polaron spectroscopy is performed
by measuring the number of condensate atoms remaining in the |1) state
versus the detuning of the RF pulse A = wy — wgr, where wy is the un-
perturbed transition frequency. The power of the RF pulse is adjusted to
yield a condensate atom loss which does not exceed approximately 30 %.
Given that every impurity atom recombines with two medium atoms,
this corresponds to an impurity fraction of 10 %. The bare transition wg
is recorded by performing spectroscopy of thermal clouds in the same
range of magnetic fields as the polaron spectroscopy. Furthermore, the
number of thermal atoms recorded from the polaron spectroscopy pro-
vides a signal which reproduces the measured position of wy.

An example of a polaron spectroscopy, and the corresponding refer-
ence spectroscopy of a thermal sample, is shown in Fig. E4. The signal
in the polaron spectroscopy is clearly shifted and broadened compared
to the bare transition.

The theoretically expected lineshape of the polaron spectroscopy is
unique at every interaction strength and the theory does therefore not
provide a general fitting function for the experimental data. Hence, a
Gaussian fit is applied, which captures the lineshape well throughout
the spectrum. This fit is used to obtain the number of atoms in the con-
densate before the pulse, the maximum loss, the width of the spectrum,
and the average energy of the spectrum.
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Figure 6.4: Polaron spectroscopy at 1/k,a = —1.6. (a) Reference spectroscopy
with thermal atoms. (b) Polaron spectroscopy with a Bose-Einstein conden-
sate, clearly displaying a shift in signal position. This figure is based on data
presented in [IZ].

6.4 Spectrum of the Bose Polaron

The obtained polaron spectroscopy signal is shown in Fig. E5(a) which
displays the normalized number of lost condensate atoms, and a theo-
retically obtained spectrum is shown in Fig. EH(b) for comparison. The
theory is briefly outlined in the following, and subsequently the results
are discussed in detail.

The theoretical spectrum is obtained from a numerical method that
calculates the spectral function for a zero-momentum impurity, includ-
ing three-body correlations. The relevant Hilbert space in the system
consists of the wave function of the impurity and of the Bose-Einstein
condensate perturbed by the impurity. The theoretical method applied
here restricts this space to wave functions containing the impurity, the
unperturbed Bose-Einstein condensate, and two Bogoliubov excitations
of the condensate. This truncated basis method is similar to a variational
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Figure 6.5: Spectrum of impurities in a Bose-Einstein condensate for different
detunings and interactions. (a) Experimental signal, which is the normalized
fraction of lost condensate atoms. White data points are independent measure-
ments of the molecule energy, also shown in Fig. B3, compared to the energy
used in the theory, shown as a white dashed line. (b) Theoretical spectrum ob-
tained from the truncated basis method introduced in text, normalized to have
the same frequency integrated weight as the experimental spectrum. (c-g) Sig-
nals at specific values of 1/ k, a, indicated in each panel. The experimental data
is shown as blue points, theoretical spectra including one excitation are shown
as red dotted lines, and two excitations are shown as blue lines. This figure is
based on data presented in [I4].
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theory including two Bogoliubov excitations [T48], but it furthermore
calculates a spectrum of excited states located above the ground state
energy of the polaron [15, 72, 212]. These states are referred to as the
many-body continuum and corresponds to polaron states with higher
excitations of the medium. The truncated basis method thus calculates
the entire spectral function of the impurity. Additionally, the theoretical
spectrum in Fig. ER(b) includes the broadening from the RF pulse and
the inhomogeneous density distribution of the Bose-Einstein conden-
sate by using a local density approximation.

Since the truncated basis method includes three-body correlations,
itincludes any influence from the Efimov effect [148]. However, since the
system is mass balanced, the size of the first Efimov trimer state is esti-
mated to be approximately 100 times larger than the interparticle spac-
ing, and does thus not affect the system [I7, 18].

The experimental and theoretical spectrum compares remarkably
well. For both attractive and repulsive interactions, a clear shift of spec-
tral weight is observed, indicating the presence of attractive and repul-
sive polaron branches. As the interaction strength is increased, the shift
becomes greater, and for the attractive branch, the signal clearly extends
across unitarity 1/k,a =0.

In Fig. BH(c-g), a detailed comparison between theoretical and ex-
perimental spectra at specific interactions are shown. This highlights the
excellent agreement across most interactions, except at strong attrac-
tive interactions, where the agreement is only qualitative. A similar the-
oretical calculation only including one Bogoliubov excitation is shown
as well, which clearly highlights the importance of including two exci-
tations for strong attractive interactions in Fig. BH(d-e). At unitarity, the
theory exhibits a double peak structure, not reproduced by experimental
data. This structure is possibly an artifact arising from the limited num-
ber medium excitations [[4, T64].

6.4.1 Average Energy and Width of the Spectrum

To perform a more quantitative comparison, the average width and en-
ergy of the experimental and theoretical spectra are shown in Fig. 8.
Here, a prediction from pertubation theory as shown as well. To allow a
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Figure 6.6: Average energy (a) and width (b) of the polaron spectrum. Blue cir-
cles and diamonds are experimental data, the blue solid and red dotted lines
are theoretically obtained from the truncated basis method including respec-
tively one and two excitations, and the green dashed lines are obtained from
perturbation theory. This figure is based on data presented in [I7].

proper comparison with experimental results, a Gaussian fit is applied
to the various theoretical spectra, which provides the average energy E
and width o. This approach fails at strong interactions for the truncated
basis method only including one excitation, and the theory is therefore
excluded in this interaction regime.

For weak attractive interactions, the experimentally obtained energy
agrees well with theory. As strong interactions are approached, the per-

108



6.4. Spectrum of the Bose Polaron

turbation theory diverges, which is expected since it is only valid for
weak interactions. The theory from the truncated basis method agrees
with experimental energies until unitarity is reached, both when includ-
ing one and two excitations. In the region of unitary interactions, the
spectrum is composed of polaron branches, a molecular branch, and a
significant many-body continuum. Consequently, the average energy of
the spectrum is shifted towards positive energies. Even in this non-trivial
regime the theory and experiment agrees remarkably well.

For weak repulsive interactions, the experimental energy agrees with
theory as well. However, when approaching stronger interactions, the
experimental results deviate significantly from all the theoretical predic-
tions. This suggests that there are important aspects in either the theory
or the experiment which have not been taken into account. This is dis-
cussed in more detail in Sec. E8.

The experimentally and theoretically obtained widths are shown in
Fig. BB(b). For weak interactions, the width of the spectrum originates
mainly from the finite length of the RF pulse. As intermediate interac-
tions are approached, the inhomogeneous density becomes important.
Finally, at strong interactions, the many-body continuum becomes the
main contribution to the width, as seen by the clear difference between
the theories including one and two excitations.

The theoretically calculated width agrees well with the one experi-
mentally obtained, across all interactions. A minor deviation is observed
for strong repulsive interactions, but as discussed, the theory is not able
to account for the observed energy in this regime either.

Prior to these observations, it was an open question whether a well-
defined Bose polaron exists, due to the presence of rapid three-body re-
combination. A short lifetime would manifest as a strong broadening of
the spectrum. The theoretical spectrum does not include such broad-
ening effects, yet it is able to account for the width of the experimen-
tally obtained spectrum. Crucially, this demonstrates that losses occur
on a time scale significantly longer than those associated with polaron
physics.

To summarize, a spectroscopy which creates impurities in a Bose-
Einstein condensate has revealed the existence of two polaron branches,
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accounted for by theoretical calculations. The decay rate was shown to
be insignificant, affirming the existence of a well-defined quasiparticle.

6.5 Transferred Fraction

It is possible that the fraction of transferred polarons has an effect on
the observed spectrum. For instance, the interaction between polarons
can change their energy. Furthermore, when using the spectroscopy ap-
proach presented in this study, the medium is depleted of atoms as po-
larons are created. Therefore, it is important to investigate how the trans-
ferred fraction of atoms affect the spectrum.

Polaron spectroscopies are performed at 1/k,a=—-0.84 and 1/ k,a =
1.6 for various RF powers. The number of remaining condensate atoms
are shown in Fig. EZ(a-b). With increasing power the number of remain-
ing atoms clearly decrease. In accordance with the previous evaluation,
Gaussian curves are fitted to the obtained spectroscopy signals. The ob-
tained average energies and widths are shown in Fig. 64(c-d) versus the
transferred fraction of atoms. This fraction is obtained from the ampli-
tude of the fitted Gaussian curves, divided by 3, based on the assumption
that impurities undergo three-body recombination.

The average energy obtained from the spectra is approximately con-
stant with an increasing fraction of transferred atoms, while the width
increases slightly. Additionally, a distortion of the lineshape is observed
when applying high powers, especially for 1/k,a = 1.6.

These results should not be interpreted as a direct measurement of
the properties of polarons at various concentrations. The formation of
polarons is a dynamical process happening throughout the duration of
the RF pulse. As an increasing number of polarons are created, the sur-
rounding medium is depleted of particles at a similar rate. The last im-
purities created thus see a significantly lower density than the first. The
full loss signal therefore contains contributions from impurities created
at densities ranging from the initial density of the condensate to a final
lower density. Furthermore, at strong powers the spectrum can be sub-
ject to power broadening and a non-linear response of the many-body
continuum [[I/].
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Figure 6.7: Polaron signal at various fractions of transferred atoms. Columns (a)
and (b) show polaron spectroscopies of increasing RF power at 1/k,a = —0.84
and 1/ k,a = 1.6, respectively. Panels (c) and (d) respectively show the evaluated
average energy and width of the spectrum, where the blue circles are for attrac-
tive interactions and green diamonds for repulsive interactions. This figure is
based on data presented in [T7].

The observations presented in Fig. 674 nevertheless show that the
observed average energy does not depend crucially on the RF power or
the transferred fraction of atoms, which confirms that the observations
presented in Sec. 64 are a valid characterization of the polaron. A slight
broadening with increasing power is observed in Fig. B7(d). A better es-
timate of the true width of the polaron spectrum would be obtained by
extrapolating the evaluated spectrum width to a transferred fraction of
0. The experimental spectrum thus overestimates the width of the spec-
trum, which is consistent with the observations presented in Fig. B8,
where the experimental width is systematically slightly greater than the
theoretical.
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6.6 The Repulsive Branch Discrepancy

In this section, the discrepancy between experiment and theory of the
repulsive polaron branch is evaluated further. Several different aspects
are discussed.

First, an alternative theoretical approach is used to calculate the po-
laron energy. Monte-Carlo techniques are employed, which are in prin-
ciple exact [146, 157]. This reveals that the truncated basis method is
insufficient at fully describing strong repulsive interactions [18].

Next, a simple classical model for impurity dynamics in a repulsive
Bose-Einstein condensate is introduced. Such an impurity has a prob-
ability of leaving the condensate before undergoing three-body recom-
bination. This probability depends on the density at which the impurity
is created. As the experimentally obtained signal depends on losses, the
obtained spectrum is affected by this variable probability [18].

Finally, the validity of the local density approximation is tested by in-
troducing a simple quantum-mechanical model which treats the proba-
bility for a particle of the condensate to enter various target states in an
effective potential of a repulsive condensate combined with a trap. This
test finds that the local density approximation is valid, and it does thus
not contribute to the observed discrepancy.

6.6.1 Quantum Monte-Carlo Simulations

The experimental and theoretical data shown previously is now com-
pared to results from quantum Monte-Carlo simulations. In Fig. E8, the
average experimental polaron energy also presented in Fig. B8 is shown,
along with the theoretical prediction from the truncated basis method.
Additionally, results from variational theory calculations including two-
and three-body correlations, but without the many-body continuum,
are shown. Finally, energies obtained from Monte-Carlo calculations are
shown. For the variational theories and the Monte-Carlo calculations,
the average condensate density is used, and not the distribution of den-
sities as previously.

This comparison between several different theories and the experi-
mental data reveals interesting aspects. The variational calculations, in-
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Figure 6.8: Average energy of the polaron spectrum and comparison of differ-
ent theories. As in Fig. B8, the experimentally obtained energy is shown as blue
circles, and the blue solid dotted line is theoretically obtained from the trun-
cated basis method including two excitations. The dashed magenta and the
dotted purple curves are obtained from variational theories including one and
two excitations, respectively. The orange diamonds are theoretical predictions
obtained through quantum Monte-Carlo simulations. This figure is based on
data presented in [I8].

cluding two- and three-body correlation, and the Monte-Carlo data, in-
cluding all correlations, show the impact of including additional terms
in the calculations.

At weak attractive interactions the theories predict the same polaron
energy. When approaching strong interactions, the two variational theo-
ries start to deviate from each other because three-body correlations be-
come important. Similarly, at unitarity, the variational theory with three-
body correlations predicts a slightly different energy than the Monte-
Carlo calculation, and thus higher-body correlations have an influence
in this regime. These predictions are however far from the experimental
data. To reproduce the average energy of the experimental spectrum, it
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is crucial to include the many-body continuum which has a large spec-
tral weight due to a small quasiparticle residue. This can be seen from
Eq. (Z52) which shows that the residue is smaller for small values of ag.

At weak repulsive interactions, the different theories predict similar
polaron energies again. As strong repulsive interactions are approached,
the variational theories and the Monte-Carlo calculations deviate from
each other since higher-body terms become important, similar to the at-
tractive case. However, for repulsive interactions, the higher-body terms
become important already at 1/k,a ~ 1.5, where the Monte-Carlo cal-
culations deviate significantly from the variational theories. The Monte-
Carlo predictions do still not reproduce the experimental energies, but
the truncated basis method has demonstrated the importance of the
many body continuum for both attractive and repulsive interactions.

A correct prediction for the energy of the repulsive polaron branch
thus needs to include both the many-body continuum and terms higher
than three-body correlations, which is not done by any theory. This par-
tially explains the discrepancy between theoretical predictions and ex-
perimental observations.

6.6.2 Simple Model for Dynamics and Decay of
Impurities

In the evaluation of the experimental spectrum, it was assumed that
every impurity particle undergoes three-body recombination. However,
strong repulsive interactions with the condensate will accelerate an im-
purity outwards as sketched in Fig. B9(a). Generally, impurities created
near the center have a large probability of undergoing three-body re-
combination before leaving the condensate, whereas impurities created
near the boundary of the condensate, has a large probability of escap-
ing without recombination. In practice, the repulsive polaron signal ob-
tained from the number of lost atoms will be distorted, with the spectral
weight being shifted towards higher energies.

To evaluate this effect more quantitatively, a simple model treating
a classical particle interacting with the mean-field potential of a repul-
sive Bose-Einstein condensate is considered. For simplicity, a spherically
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Figure 6.9: Simple mean-field model of impurity dynamics and decay, which
predicts a shift in the experimentally obtained repulsive polaron signal based
on atom loss. (a) Sketch showing the principle of the model. Impurities cre-
ated near the center of the condensate undergo three-body recombination of-
ten, compared to impurities created close to the boundary of the condensate.
(b) The black dashed curve is the expected loss distribution across different
mean-field energies, assuming that all impurities undergo recombination. The
predictions from the model are shown as colored curves for different interac-
tion strengths a (1/ k, a). From bottom to top, the red curve is for 1704y (4.6), the
purple curve is for 3004y (2.6), the blue curve is for 5004, (1.6), the green curve
is for 800ay (1.0), and the orange curve is for 1800ag (0.4). (c) Curves of (b) con-
voluted with a Gaussian and normalized to the same amplitude. (d) Signal shift
predictions of the model at different interaction strengths, relative to the signal
position when assuming that all particles undergo three-body recombination.
The diamonds correspond to interaction strengths from the predictions shown
in (b) and (c). These results are also presented in [T8].
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symmetric trap is assumed, of frequency w = (W w,w Y3 =27 x182Hz
and mean density 2.3 x 10'*cm™3, similar to the conditions of the ex-
periment. The impurity interacts with the condensate by a mean-field
potential

h%a

2
Ente(a, n(r) = n(r), n(r):nmax(l r), (6.4)

R

where R is the Thomas-Fermi radius, nnax is the peak density, and r is
the radial coordinate. The resulting acceleration of the particle is deter-
mined by the gradient of the potential, which provides a classical equa-
tion of motion d?r(¢)/dt? = Ar(t)/m, where A = 8nh?anmax/ mR?. This
is the equation of a harmonic oscillator, but with an opposite sign. For
starting conditions dr/d¢ = 0 and r(0) = ry, this equation has the solu-

tion
[ A
r(t) = rocosh —t. (6.5)
m

By setting r = R, a direct expression for the time it takes for a particle to
escape the condensate is obtained #y,¢ = vV m/ Acosh™ (R/1y).

The probability of an impurity undergoing three-body recombina-
tion is obtained by investigating the recombination rate in the duration
it takes the impurity to leave the condensate. The local three-body re-
combination rate for the impurity is calculated using L3 (a)n?(r), where
Ls(a) is the three-body recombination coefficient. This can be calcu-
lated from Eq. (ZZ29), but in this model it is assumed that no Efimov res-
onances exists in the relevant range of interactions by setting the sin?-
terms to 1. The recombination rate integrated in time provides a quan-
tity which is the average number of decay events the impurity will un-
dergo before leaving the condensate. This can be converted to a proba-
bility by an exponential function

Tout
—f Ly(a)n?(r)de|, (6.6)
0

P3pr = exp
which can be calculated for any given a and ry.
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6.6. The Repulsive Branch Discrepancy

This model for impurity dynamics and decay only includes mean-
field effects, which is certainly incorrect at strong interactions. A simple
way of refining the model is to replace the interaction strength a with an
effective interaction agfl = a~ ! + n'/3, which reflects the transition to the
unitary interaction regime 1/a = 0, where the interparticle spacing n~!/3
is the relevant length scale of interactions [213, 214]. This complicates
solving the equation of motion analytically, but a numerical approach is
straightforward.

The effect that the variable impurity loss has on the obtained po-
laron spectrum is now evaluated. The initial assumption was that every
particle undergoes three-body recombination. In the mean-field limit,
the fraction of transferred atoms is homogeneous across all densities.
The atom loss resulting from impurities created at a certain mean-field
energy is thus given by the density distribution of atoms. In Fig. E9(b),
the corresponding loss distribution across different energies is shown,
assuming all impurities undergo recombination. A recombination event
yields a threefold atom loss in comparison with the impurity leaving the
condensate. The modification to the atom loss at a given energy and
scattering length is thus (1 + 2Psgg)/3. This modification is calculated
across all condensate densities for different scattering lengths using the
effective interaction strength aeg, and the resulting signal is shown in
Fig. B9(b). The lineshape is clearly modified due to impurities leaving
before recombination.

To provide a comparison with the experimental signal, the curves in
Fig. B9(b) are convoluted with a Gaussian of width o = Eyp(nimax)/15
and normalized to an amplitude of 1, which is shown in Fig. B9(c). Fi-
nally, the signal shift is evaluated by fitting a Gaussian to the curves in
Fig.E9(c). The obtained signal position is shown in Fig. 69(d), relative to
the position when assuming that all impurities undergo three-body re-
combination. The signal position is clearly shifted towards higher ener-
gies at strong interactions and the relative deviation is remarkably sim-
ilar to the discrepancy shown in Fig. 68(a) and Fig. E8. It is also worth
noting that the apparent lack of polaron signal in Fig. E5(a) in the region
of 1/k, a between 1 and 3 and A close to 0, can be explained by impuri-
ties leaving the condensate.
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6. OBSERVATION OF POLARONS IN A BOSE-EINSTEIN CONDENSATE

The results presented above are based on very simple expressions for
energy, dynamics, and recombination, and a more correct calculation
requires complicated models. Nevertheless, the results clearly display
the impact that impurity dynamics have to the polaron signal, which was
obtained through loss observations, and the model provides an estimate
of the magnitude of the effect.

Similar calculations were performed with different values of L3, with-
out the refinement using the effective interaction a.g, with different con-
volution widths o, and with a signal evaluation based on the first mo-
ment of the distribution instead of a Gaussian fit. All these variations
provide qualitatively similar results as the curve in Fig. 9, with minor
shifts to the amplitude and peak position of the curve.

To obtain the experimental polaron spectrum, the power of the RF
pulse was adjusted to provide a loss of approximately 30 %, which was
based on the assumption that all impurities undergo recombination.
However, for weak repulsive interactions very few impurities undergo re-
combination, as shown in Fig. E9(b). To obtain a loss of 30 %, the transfer
fraction in this interaction regime was possibly significantly larger than
intended. As shown in Sec. B3, this has a vanishing effect on the average
energy of the obtained spectrum, but increases the spectrum width.

It is clear that the impurity dynamics result in a distortion of the
detected spectrum for repulsive interactions, since impurities leave the
condensate region. For attractive interactions, the impurities do not ac-
celerate outwards away from the condensate, and will thus always re-
combine. The effect presented here does thus not influence the attrac-
tive branch.

6.6.3 Wave Function Overlap of Initial and Final States

For the truncated basis method calculation, a local density approxima-
tion was used to take the density distribution of the Bose-Einstein con-
densate into account. In other words, when a condensate atom is trans-
ferred into the impurity state, its polaron energy is calculated based on
the density at the position where it is created. The full spectrum at a
given value of 1/kya is then calculated by using the entire density dis-
tribution of the condensate and weighting with the relative number of
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Figure 6.10: Effective potentials felt by impurities and corresponding eigen-
states for (a) attractive and (b) repulsive interactions, for interaction strengths
a = +540qy corresponding to 1/k,a = +1.5. In each panel, exemplary eigen-
states are shown, compared to the condensate wave function (BEC).

atoms located at different densities. However, in a quantum system, the
weighting is not determined by the local density but by the overlap be-
tween wave functions of initial and final states.

Here, one-dimensional calculations of wave function overlaps are
presented and discussed. The impurity state |2) experiences a mean-
field potential from the condensate and a trapping potential. The re-
sulting potential U for the impurity is shown in Fig. B10 for strong at-
tractive and strong repulsive interactions with the Bose-Einstein con-
densate. Again, the parameters are chosen similarly to the experimen-
tal conditions with trap frequnecy w = (W w,0,)'"? = 27 x 182Hz and
mean density 2.3 x 10'*cm™3. In Fig. B11, the interaction strengths are
a = +540ay corresponding to 1/ k,a = +1.5.

The Schrodinger equation of the effective potential U is solved for a
given value of the interaction strength a using the numerical finite dif-
ference method. Here, the spatial axis is discretized into a finite number
of points, and the potential and kinetic energy terms are written as di-

119



6. OBSERVATION OF POLARONS IN A BOSE-EINSTEIN CONDENSATE

0.4 0.06
N (a)* (b)
/g) 0.04 .
=% 0.02 | i
o 0 ) e o o .. o o . o o . . ..'— o0t ) - - - - e
200  -150 -100 -50 0 0 50 100 150 200
En/hw En/hw
4 () 1 4
A ;
—
g2
.80
wn
(e)
a
™ Vi
—— ‘ == \
< |
gt 1 7
@ %
A7
0 1 1 1 1 1 = 0 c L 1 1 1 1
-1 -08 -06 -04 -02 0 0 02 04 06 038 1
Eng/ Evip (Nmax) Eng/ Evie(Nmax)

Figure 6.11: Wave function overlaps and corresponding polaron signal in dif-
ferent dimensions. The overlaps | (i, |wggc) |* calculated using the potentials
of Fig. B0 are shown for (a) attractive and (b) repulsive interactions. The re-
sulting signal is shown for calculations in one dimension (c-d) and in three di-
mensions (e-f), for attractive (c, e) and repulsive (d, f) interactions, at different
interaction strengths a (1/kya). The orange dotted curves are for +45ay (+18),
the magenta dash-dotted curves are for +153ay (£5.2), and the green curves
are for £540ay (+£1.5). For comparison, black dashed curves based on the local
density approximation are shown.

agonal matrices. The Laplacian of the kinetic energy is locally approx-
imated by Taylor polynomials. The Hamiltonian is then solved, yield-
ing the eigenstates ¥, and corresponding energies Ej,. A few exemplary
wave functions are shown in Fig. 610 at a height corresponding to their
energy and compared to the wave function of the Bose-Einstein conden-
sate YBgc.
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The overlap between eigenstates and the condensate wave function
| (wnlwegc) 12 is calculated and shown in Fig. EITl(a-b) for the potentials
shown in Fig. B10. For attractive interactions, with increasing princi-
pal quantum number 7, the overlap alternates between a finite value
and zero, because the eigenstates alternate between being even and odd
functions. Moreover, the overlap of the eigenstates decrease as zero en-
ergy is approached. For repulsive interactions, the alternating behavior
is only present for large energies. At low energies, the eigenstates alter-
nate between being located on either side of the repulsive condensate
potential as shown in Fig. BEI0(b), and these eigenfunctions all have a
finite overlap with the condensate wave function. At a sufficiently large
energy, the eigenstates are located on both sides of the condensate po-
tential simultaneously. At this point, the alternating overlap behavior
starts and continues until the overlap vanishes at large energies.

The two distributions in Fig. ETT(a-b) are similar in shape, with op-
posite energies. The magnitude of the individual overlaps are generally
larger for attractive potentials, but the density of states is smaller.

The calculated overlaps are now compared to the local density ap-
proximation, which is shown in Fig. BT1(c-d). The overlap distributions
are first normalized in energy to the amplitude of the effective poten-
tial of the condensate Eyr(7max). Then, a convolution with a Gaussian
is performed and the resulting signal is normalized to the same inte-
grated energy. This procedure is performed for three different values of
+a. The results are compared to a curve obtained by a similar proce-
dure, but using the local density approximation. Without convolution,
this curve thus reflects the number of atoms located at various densi-
ties ~ (n/nmax)/v'1 — n/nmax, as opposed to an overlap between initial
and final states. Note that the distribution of atoms at different densities
in one dimension is significantly different to that found in three dimen-
sions.

For large values of | a|, the distribution of overlaps agrees remarkably
well with the local density approximation, for both attractive and repul-
sive interactions. For weak attractive interactions, the individual eigen-
states are clearly visible in the signal, but these disappear as |a| is in-
creased. For weak repulsive interactions, the individual eigenstates are
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6. OBSERVATION OF POLARONS IN A BOSE-EINSTEIN CONDENSATE

not visible in the spectrum, but they do alter the signal slightly, com-
pared to that obtained by the local density approximation.

A primitive comparison with the relevant case of three dimensions
is now performed. The three-dimensional distribution of atoms is pro-
portional to (n/nmax)v'1—n/nmax and can be obtained from the one-
dimensional one by multiplication of (1 —-7/nmax), ignoring front factors.
To convert the overlap distribution from one to three dimensions, it is
naively assumed that the density of states undergo a conversion similar
to the density distribution when changing dimensions. The conversion
from one to three dimensions is therefore performed by multiplying the
overlap magnitudes with (1 — E,,/ Emp(fimax))- The resulting signals are
shown in Fig. BT(e-f). For strong interactions, the obtained curves are
again similar to those obtained from the local density approximation.
The deviation for weak interactions is however larger. This is possibly
a result of the naive conversion from one to three dimensions. Yet, no
significant shift of signal weight is observed, except for very weak inter-
actions.

It is astounding that the complicated overlaps of eigenstates shown
in Fig. B0 exactly reproduce the local density approximation. An expla-
nation is given in the following. For attractive interactions, the integra-
tion of the oscillating part of the eigenfunctions average out and provide
a vanishing overlap with the condensate wave function. Mainly the out-
ermost peaks of the eigenstates provide a significant contribution to the
overlap integral. The contribution these peaks add is largely determined
by the amplitude of condensate wave function exactly at the positions
of the peaks. The eigenstates thus probe the local density of the conden-
sate at the classical turning points of the potential, which reproduce the
local density approximation. A similar argument can be made for repul-
sive interactions.

This result can also be interpreted as an example of Bohr’s corre-
spondence principle which states that the behavior of quantum systems
reproduce classical physics in the limit of large quantum numbers.
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Figure 6.12: Temperature of the ensemble after the polaron spectroscopy.
Throughout most of the spectrum the temperature is approximately constant,
but near the bare transition A = 0, a remarkable decrease in temperature is ob-
served. The interaction strengths for the data shown hereis 1/k,a=-2.3 in (a)
and 1/k,a=1.9in (b).

6.7 Cooling Near Interstate Feshbach
Resonance

In this section, a cooling effect which was observed while acquiring the
polaron data is discussed. To acquire polaron data, a Bose-Einstein con-
densate is prepared at a finite temperature and imaged using absorption
spectroscopy after expansion. Both information of the condensate and
thermal fraction is obtained.

In Fig. 512, the temperature obtained from a Gaussian fit to the ther-
mal component of the expanded cloud is shown for two values of 1/ k, a.
For the majority of detunings, the evaluated temperature of the ther-
mal cloud is approximately 160 nK. However, near the bare transition
a lower temperature is observed. Similarly, a lower number of thermal
atoms is observed (not shown). The effect is observed throughout most
of the spectrum shown in Fig. EA. This remarkable decrease of temper-
ature is explained by a selective depletion of thermal atoms leading to a
lower average energy of the ensemble, which is discussed in detail in the
following.
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6. OBSERVATION OF POLARONS IN A BOSE-EINSTEIN CONDENSATE

In the evaluation of the polaron signal, the condensate and thermal
fraction were assumed to be independent components, where the large
dilute thermal cloud has an insignificant contribution to the density rel-
evant for the polaron energy. Within this assumption, a RF pulse near
the bare transition will mainly perform a transfer of thermal atoms. Any
three-body recombination with these transferred atoms will also mainly
involve thermal atoms. Atoms removed from the |1) state will no longer
contribute to determine the critical temperature for Bose-Einstein con-
densation. The critical temperature will decrease, and the condensate
fraction will increase. Since Eq. (Z13) is not fulfilled, the ensemble is
out of thermodynamic equilibrium and atoms will redistribute from the
condensate to the thermal cloud. Every atom moving from the conden-
sate to the thermal cloud will lower the average energy of thermal atoms
due to energy preservation. Consequently, the temperature is lower after
rethermalization.

A simple model is introduced to analyze this phenomenon quanti-
tatively, which is shown schematically in Fig. ET3. The condensate and
thermal cloud are treated as separate components and the process is di-
vided into three stages: (1) initial equilibrium, (2) thermal atoms have
been removed and the two components are out of equilibrium, and (3)
new equilibrium after rethermalization.

Initially, the two components are in equilibrium, fulfilling Eq. (ZZ13)
at temperature T /T and with a fraction of atoms in the condensate
Nél)/N(l), with total atom number NV = Nt(l) + Nél), where Nt(l) is the
number of thermal atoms. Then, a certain fraction of the thermal atoms
is removed, resulting in NT(Z) = ntNt(U, where 0 < ¢ < 1. Consequently,
the condensate fraction is changed and the critical temperature is in-
creased to T.?.

It is assumed that thermal atoms are removed homogeneously from
the sample and consequently the average energy of the thermal atoms is
unchanged T? = TW Tt is not strictly correct to assign a temperature at
this point, since the ensemble is not in thermal equilibrium. Therefore,
T describes the average energy of the thermal component, and not the
actual temperature of the full ensemble.
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Figure 6.13: Scheme for cooling at an interstate Feshbach resonance. The blue
curve is Eq. @I3). (1) Initially, a finite temperature ensemble composed of
a thermal cloud and a Bose-Einstein condensate is in thermal equilibrium.
(2) Thermal atoms are selectively removed, which decreases the critical tem-
perature and increases the fraction of condensate atoms, but the system is
out of equilibrium (solid curves). (3) The ensemble reaches thermal equilib-
rium again (dotted curves). Initial temperatures of TW) Tél) =0.75 (red curves),
TO /1Y = 0.6 (green curves), and TV / TV = 0.45 (orange curves) are shown,
and the fraction of remaining thermal atoms is 7 = 0.6. Note that the conden-
sate fraction decreases for T®/ TV = 0.75, while it increases for the two other
initial temperatures shown.

By using Eq. ZZ11], the new critical temperature can be expressed in
terms of the initial critical temperature as

Tc(l) _(,
T

3 -3

(1- m)) , (6.7)

and the out-of-equilibrium condensate fraction is
N(g) T(D 3 -1
=l | =5 | -1
T

NO ~ (6.8)
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Next, the ensemble will rethermalize until Eq. (Z13) is fulfilled by means
of condensate atoms becoming thermal. The average energy of the Nt(z)
thermal atoms before rethermalization is 3kg7?). The energy of con-
densate atoms is negligible compared to that of thermal atoms. After
rethermalization, N*’ atoms have the average energy 3k T®®, and due
to the conservation of energy the total energies are equal, which yields
7@ Nt(z) =T7® Nt(s). From this expression, the condensate fraction after
equilibrium can be calculated

N©® i

0

N® -1

) (6.9)

, N\ 1@
N@ | 7@

from which the final temperature can be expressed through Eq. (Z13),
or related to the initial temperature as

(SN

@)
Ny

T(3) B TC(3) 1- W
)

ND

(6.10)

The final condensate fraction and temperature for different values of 7,
are shown in Fig. BT4. The model clearly predicts a decrease in temper-
ature as thermal atoms are selectively removed, and does thus explain
the temperature behavior of the data shown in Fig. BT2.

It is relevant to consider what happens when condensate atoms are
selectively removed, which is the case for the majority of the data in
Fig. BT2. If atoms are selectively removed from a condensate of Nél)
atoms such that Néz) = ncNéD (0 = n¢ < 1) atoms remain, the conden-
sate fraction will decrease and the critical temperature of the ensemble
will increase, similarly to when thermal atoms are removed. It turns out
that the increase in critical temperature exactly corresponds to the de-
crease in condensate fraction, such that Eq. (Z13) stays fulfilled for any
7n¢- Selective removal of condensate atoms does thus not affect the tem-
perature. This is consistent with the results shown in Fig. 12, where the
temperature is approximately constant for all detunings but 0. The data
does however indicate a minor decrease in temperature at ZA/E, = 0.5
for1/k,a=1.9.
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Figure 6.14: Increase in condensate fraction (a) and decrease in temperature
(b) after rethermalization for T}/ Tc(l) = 0.75 (solid red lines), TW/ TC(D =0.6
(dashed green lines), and T/ TY = 0.45 (dotted orange lines).

Two relevant effects have been neglected in this simple model. First,
a RF pulse of finite length is not able to selectively remove only thermal
atoms. Some condensate atoms from low-density regions of the conden-
sate will typically be removed as well, which makes the cooling less effi-
cient. Second, a RF pulse might not remove atoms fully homogeneously
from the thermal component. Any thermal atoms which spatially over-
lap with the condensate will not be transferred, since interactions per-
turb the bare transition. Consequently, thermal atoms will mainly be
transferred from outer regions of the trap. As these atoms are more en-
ergetic, the process corresponds to evaporative cooling, and thus the
cooling is more efficient. To predict the magnitude of these effects re-
quires more comprehensive calculations. They do however counteract
each other, and the presented model qualitatively explains the data in
Fig. 12 well.

The cooling effect is similar to the cooling obtained through RF evap-
oration. In regular evaporative cooling, energetic atoms are selectively
removed due to their interaction with a magnetic field. Here, atoms are
selectively removed due to a strong interaction with other atoms.
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6.8 Summary

To summarize this chapter, a repulsive and an attractive polaron branch
was observed by applying RF spectroscopy to a Bose-Einstein conden-
sate of 39K atoms. The experimental observations were compared to a
theoretical spectrum obtained from comprehensive numerical calcula-
tions. The two spectra agreed remarkably well across most interaction
strengths, except for strong repulsive interactions. Based on the compar-
ison, the existence of a long-lived well-defined Bose polaron was con-
firmed.

The repulsive branch discrepancy between theory and experiment
was accounted for. It was demonstrated that the theoretical model is in-
sufficient at strong repulsive interactions, and a model for the dynam-
ics and the decay of impurities in a repulsive mean-field potential was
introduced to show that the experimental evaluation misjudges the po-
laron signal.

Other interesting effects were also considered. The overlap of wave
functions, relevant for the transfer of atoms into the impurity state, was
calculated, which verified that the local density approximation was ad-
equate. Finally, a peculiar cooling effect observed in the polaron spec-
trum was discussed and explained by a simple model.
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CHAPTER

THESIS CONCLUSIONS

Within this thesis, a series of studies were presented, based on the tun-
able interactions offered by quantum gases. This allowed a broad range
of physical phenomena to be studied, ranging from few- to many-body
physics, and from balanced mixtures to impurity physics.

In Chapter 8, the properties of dual-species Bose-Einstein conden-
sates with tunable interactions were studied. The main aim was to clar-
ify the role of the miscibility in the system. By a combined theoretical
and experimental effort it was shown that the miscibility parameter Agap
does not always provide a clear description of neither the in-trap density
distributions or center-of-mass condensate positions after expansion.

These investigations shed new light on multi-component systems
in general and will serve to guide future studies of dual-species Bose-
Einstein condensates. The results show that the use of the miscibility
parameter Ay, does typically not provide a meaningful description of
these systems. This encourages future research on the properties and
dynamics of dual-species Bose-Einstein condensates.

In Chapter B, the three-body physics of KRb mixtures and of single-
component 39K ensembles was explored. The search for Efimov reso-
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nances in KRb mixtures concluded a long-standing debate regarding ob-
servations of Efimov physics in heteronuclear mixtures.

Additionally, preliminary observations on the temperature depen-
dence of an Efimov resonance in 39K was presented, displaying a re-
markable behavior. These intriguing results show that there are still open
questions in the field of few-body physics.

In Chapter B, the primary result of this thesis was presented, which
was the observation of the polaron quasiparticle in a Bose-Einstein con-
densate. The experimental results were successfully compared with a
detailed theory, which showed that indeed a well-defined quasiparticle
was created and detected.

A discrepancy was observed for repulsive interactions. This was ac-
counted for by comparison with a more complete theory, and by consid-
ering the dynamics and recombination of the impurities.

7.1 Outlook

The creation and observation of polarons in a Bose-Einstein condensate
opens up many interesting research opportunities. The scenario of an
impurity interacting with its surroundings continues to be studied ex-
perimentally [16, 2T5-217] and theoretically [T58-162, 164, 2T8-225] in
quantum gases. The strong interest of polarons in ultracold gases has
even inspired studies of impurities in solid-state physics [226].

A current interest is the question of how the properties of the polaron
changes when the condensate melts. Recently, an intriguing behavior at
finite temperatures was predicted. In the limit of weak interactions, the
energy of the polaron is predicted to increase dramatically with temper-
ature [161]. This is due to the Bose-Einstein condensate phase transition
at T, which changes the density of states for the medium particles signif-
icantly, changing the scattering of the impurity. For strong interactions,
the formation of multiple polaron states at finite temperatures was re-
cently predicted, which has parallels with the quark-gluon plasma [I62,
o).
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Another intriguing topic is the universality of the Bose polaron. Uni-
versal behavior is often found in systems with unitary interactions. How-
ever, for the Bose polaron, the characteristic length scale associated with
Efimov trimers can influence the properties of the polaron, and the sys-
tem is non-universal. Nevertheless, a recent theoretical study suggests
that the Bose polaron energy is a universal function of the Efimov three-
body parameter [160]. This hypothesis does not only establish universal
properties for the polaron, but it also forms a connection with Efimov
physics.

Within the scope of this dissertation, other research projects were
initiated, but not completed. A great interest is quantum fluctuations
in Bose mixtures. The impact of quantum fluctuations is captured by
the Lee-Huang-Yang correction to the mean field energy [228] (similar
to the second term of Eq. (Z=1). It was recently pointed out that quan-
tum fluctuations can stabilize a bosonic mixture, which would other-
wise collapse due to mean-field attraction [224]. This was recently ob-
served, using two-component %K condensates in the |F = 1, mp = 0) and
|1,0) hyperfine states near the Feshbach resonances at 60 G shown in
Fig. [T [230-237]. Additionally, the same principle has been used to ex-
plain a recent series of experiments with dipolar condensates [233-236].
Common for all of these systems is that attractive mean-field contribu-
tions dominate the Lee-Huang-Yang correction to achieve stabilization.

A current research project considers a bosonic mixture where mean-
field interactions are canceled entirely. Consequently, the Lee-Huang-
Yang correction remains as the only relevant interaction, which allows
the system to be treated analytically. This system thus provides an excel-
lent setting for studying quantum fluctuations.

To summarize, the results presented within this thesis open up for
intriguing opportunities to study quantum physics and quantum impu-
rities in regimes never realized before.
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APPENDIX

ADDITIONAL PUBLICATIONS

This appendix presents two studies not included in the main text. The
research of the thesis primarily concerns ultracold mixtures with tun-
able interactions, whereas the two studies shown here does not. They
are, however, still relevant for the field of quatum gases.

The first study is theoretical. Single atoms are simulated in superim-
posed optical lattice potentials, used to implement one- and two-qubit
quantum gates [30]. This study was initiated in a bachelor’s thesis [237],
but the results were later extended and reported in a paper which was
finished and published within the time frame of this dissertation.

The second study is technical and presents a simple approach to sta-
bilize the frequency of a laser by utilizing a field-programmable gate ar-

The published manuscripts are found in the following sections of
this appendix, along with brief introductions.

Both manuscripts are reprinted with permission.
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A. ADDITIONAL PUBLICATIONS

A.1 One- and Two-Qubit Quantum Gates Using
Superimposed Optical Lattice Potentials

Atoms isolated in the single sites of a optical lattice are viable candidates
of qubits in a quantum computer. In this theoretical study, a superim-
posed optical lattice potential is utilized to create both one- and two-
qubit quantum gates. The one-qubit gate exploits the differential hyper-
fine shift, which allows single atoms to be addressed. The two-qubit gate
is implemented by merging two otherwise isolated sites, which allows
the two atoms to collide. Both gate types are found to be robust with
small error probabilities and gate times of a few hundred microseconds.
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Single- and two-qubit quantum gates using superimposed optical lattice potentials

Nils B. Jgrgensen, Mark G. Bason, and Jacob F. Sherson*
Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
(Dated: February 10, 2014)

Steps towards implementing a collision based two-qubit gate in optical lattices have previously been realized
by the parallel merging all pairs of atoms in a periodicity two superlattice. In contrast, we propose an architecture
which allows for the merger of a selected qubit pair in a novel long-periodicity superlattice structure consisting
of two optical lattices with close-lying periodicity. We numerically optimize the gate time and fidelity, including
the effects on neighboring atoms, and in the presence of experimental sources of error. Furthermore, the super-
lattice architecture induces a differential hyperfine shift, allowing for single-qubit gates. The fastest possible
single-qubit gate times, given a maximal tolerable rotation error on the remaining atoms at various values of
the lattice wavelengths, are identified. We find that robust single- and two-qubit gates with gate times of a few

100 s and with error probabilities ~ 10~ are possible.

PACS numbers: 03.67.1.x,37.10.Jk,67.85.-d

I. INTRODUCTION

The ability to prepare and manipulate ultracold atoms in op-
tical lattices has led to many breakthroughs in the last decade.
From demonstrating the superfluid to Mott-insulator transi-
tion [1], to strongly interacting Fermi gases [2, 3], the pu-
rity and controllability of ultracold atoms has greatly bene-
fited many-body physics [4]. Due to the inherent, repeating
pattern of an optical lattice and the long-coherence times of
neutral atoms arranged in such systems, they are also viable
candidates for quantum computing [5, 6]. Ultracold atoms
in optical lattices are scalable and offer parallelism due to
their geometry [7]. Implementing the two-qubit gates nec-
essary for quantum computation is a long-standing problem
using this approach. In optical lattices, two-qubit gates have
been proposed [8] and conducted on many pairs of atoms in
parallel [9, 10], by making use of ground state collisions [6].
Alternatively, one may make use of dipole-dipole interactions
between Rydberg states [11-13], as indicated by recent exper-
iments on pairs of atoms in dipole traps [14, 15], or by means
of hybrid atom-molecule schemes in optical lattices [16].

The challenge of implementing a two-qubit gate on a se-
lected pair of atoms in a large array has yet to be fulfilled
largely due to the experimental difficulty in obtaining an imag-
ing resolution comparable to the lattice spacing. Initially
this lead to proposals to achieve single site addressing using
sub-diffraction optical techniques [17-19] and an experimen-
tal demonstration using magnetic gradients [20]. Recently,
however, single site imaging [21, 22] and single site ad-
dressing using a strongly focussed optical tweezer [23] were
achieved. This paves the way for the realization of the two-
qubit gates proposed for controllable micropotentials [24—
30], triple-wells [31, 32], and in optical lattices [33-35]. As
demonstrated in Ref. [35], a high fidelity realization of gates
using an optical tweezer imposes rather strict demands on
the pointing stability of the addressing laser. One solution
to the problem may involve the use of superlattices involv-
ing two optical lattices of separate optical frequencies. Such
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Single-qubit gate Two-qubit gate

FIG. 1. (Color online) Overview of the superlattice and the single-
and two-qubit spin-state gates. (a) Two optical lattice potentials are
superimposed to to create a long-period superlattice. (b) The varying
well depth throughout the superlattice results in a varying spin transi-
tion frequency for each atom. A microwave tuned to the transition of
one atom (red), only partially switches another atom (green). If the
partially switched population is kept sufficiently low, a single-qubit
gate is realized. (c) When a lattice potential of longer wavelength
is added to a lattice potential of shorter wavelength, two wells, each
holding an atom, can be merged. Through control of phase and well
depth, atoms are sent into the vibrational ground and first excited
state, where they interact for an arbitrary amount of time, before re-
versing the process. The interaction causes a spin state exchange
resulting in a two-qubit gate.

an arrangement has already been used to investigate double-
well dynamics [9, 36] and demonstrate patterned loading [37]
in a triple-well superlattice. Recently, an additional long-



period addressing lattice, superimposed on a conventional
short-period lattice with an atomic filling of roughly one per-
cent, has allowed the demonstration of unitary single-qubit
gates with a fidelity of around 96% [38]. Similar techniques
have also been used in optical cavities with multiple wave-
length lattices [39, 40].

‘We propose a superlattice architecture in which both single-
and two-qubit gates can be performed. The large period nature
of our superimposed potentials allows selective addressing of
individual lattice sites periodically spaced throughout the lat-
tice as seen in Fig. 1(b) in analogy with the architecture pre-
sented in Ref. [38]. Here we present detailed calculations of
the achievable gate speed versus lattice frequency and in par-
ticular focus on the optimum trade-off between speed and the
detrimental effect of spontaneous emission. Two-qubit gates
are facilitated by the merger and interaction of two initially
separated atoms via spin-exchange as seen in Fig. 1(c). For
both single- and two-qubit gates we demonstrate errors below
1073 including experimental sources of error.

This paper is organized along the following lines. The com-
bination of two optical lattice potentials to form a superlattice
is introduced in section II. The ability to perform single-qubit
gates by exploiting the differential ac-Stark shift is discussed
in section III. The two-qubit gate using local collisional inter-
actions is the subject of section IV, where numerical optimiza-
tion is applied to determine minimum gate time and maximal
fidelity. Section V summarises the paper’s conclusions and
highlights perspectives for the future.

II. LONG PERIOD SUPERLATTICE POTENTIAL

The dipole potential experienced by a ground-state alkali
atom in an optical field with wavelength A is [41],

U(I(r), A P)
_7Tc2F (2+PgFmF 1773gFmF> 1) (1)
o 2&)8 AQ’F()\) Al,F()\) '

Here the optical polarization P = 0, +1 for linearly and cir-
cularly o polarized light respectively, g is the Landé factor
and mp the magnetic quantum number. A; () is the laser
detuning given by A; () = wWiaser(A) — w;, p Where i = 1,2
refers to the D; and D5 lines. This equation is valid for large
detunings such that A; #(\) > Apps, the excited-state hyper-
fine splitting. In the case of two counter-propagating fields an
optical lattice with a lattice spacing aj,, = /2 is formed.

Adding two optical lattice potentials of similar wavelength
light creates a 1D long-period superlattice with potential wells
of varying depth, as seen in Fig. 1(a). The length of one su-
perlattice period (SLP) is asip = (A3 — AT1)~1/2, three
SLPs are seen in Fig. 1(a). In this work, we consider a SLP
in which the longer period lattice passes through one less
cycle than the shorter period lattice, leading to the relation
A1/A2 = (n—1)/n, where n is the number of cycles in a SLP
with Ay < Aq.

III. SINGLE-QUBIT GATE

Throughout this work, we treat an array of single 3"Rb
atoms confined to lattice sites as our starting point. Such
a situation is readily realized through use of the superfluid
to Mott-insulator transistion [1]. The different spin states
0) = |F = 1,1) and |1) = |F = 2,2) experience dif-
ferent potentials when using o+ polarized light, as shown in
Eq. (1). The varying intensity of each well in a SLP, causes
the hyperfine transition AU; = U;(|1)) — U;(|0)) to differ
for different atoms in lattice sites ¢. If a microwave m—pulse
tuned to switch a target atom j is applied throughout the su-
perlattice, the population P; of all the atoms will oscillate

2
P =1 (5—1) [1 — cos?(Q;t)], where ; is the Rabi fre-

2
quency, the generalized Rabi frequency €2; = (Xf + AQZ) 172

and Ay = (AU; — AU;)/h is the detuning of the transition
of atom ¢ compared to the transition of target atom j. Atoms
in the selected wells are switched through a m—pulse, while
each of the other atoms of the SLP are kept beneath a thresh-
old population P, = (x/S%)? where k denotes the site with
minimal detuning. The detuning can be expressed through the
threshold population |A¥| = x,[(1 — R)/P]*2 ~ ;P /2,
with the approximation being valid for P, < 1. For a given
threshold population, the 7—pulse duration used to address the
target atom can then be calculated ¢, = 7/v/B|AY |. Finding
the fastest possible gate time thus reduces to calculating the
detunings A} for all atoms i # j in a SLP. We note that this
is of course a conservative approach: with the detailed know-
ledge of all detunings in a SLP one may also engineer pulse
durations that produce less residual excitation than P,.

The one dimensional potential for atoms in the field of the
two standing waves comes through Eq. (1) . The primary
laser potential depth is one unit of recoil energy E(\) =
h2/2mA2, while the wavelength and relative intensity of the
secondary laser is varied through a scaling parameter A. The
total potential is thus given by

UsL(,n, A, X2, P1, Pa)
Er()\l)

2
U(A2,P2) @

=— 2(k A2 T2)
n |cos®(kix) + T0n,P1)

cos® (ko) | ,

where k1 o are the wave numbers of the two lattice beams and
7 is an additional scaling factor. The minus sign arises from
the fact that only red detuned light is taken into consideration.

The potential in a SLP is calculated for both hyperfine lev-
els, and the difference —|AU ()| is plotted in Fig. 2(a). This
difference is similar in form to the SLP itself. To calculate
the site dependent detunings, the potential minima of all wells
within a SLP are found, as in Fig. 2(b). For all atoms, AU; can
then be found and the detuning hAY /nE; is given as the dif-
ference in hyperfine splitting as seen in Fig. 2(c). The small-
est of all A sets the threshold, and thus only that detuning is
considered. Note that the potential minima of the superlattice
do not exactly match the corresponding minima of —|AU (z)|,
which tends to increase the detunings. Additionally, the min-
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FIG. 2. (Color online) A schematic overview of the mechanism of
the single-qubit gate and how the detuning |A{| is calculated. (a)
A plot of an entire SLP, with both hyperfine levels as the blue line
and the light blue line (left axis) and an enlargement of the hyperfine
splitting as the dashed black line (right axis). The section marked by
the thin black dashed line is enlarged in (b) and (c). The values used
to plot are A = 0.28, A\; = 1064 nm, Ao = 4/5\; = 851.2nm and
P1 = P2 = 1. (b) When exposed to precisely controlled microwave
radiation the target atom is switched while keeping the switched pop-
ulation of neighbouring atoms under a threshold F;. The positions of
the atoms are calculated by taking the potential minima. (c) The po-
sitions of the atoms are used to calculate the hyperfine splitting of
both atoms, and the detuning is the difference in this splitting, which
in this example is 1| Ay |/nE: = 0.016.

ima of the different hyperfine levels do not match either, al-
though, for the red detunings considered here, this position
shift is typically several orders of magnitude smaller than the
laser wavelengths. Since there is no position shift for the deep-
est well any neighboring well shifts only serve to restrict the
transition of non—target atoms even further.

The detuning for a range of secondary lattice wavelengths
and lattice depths is seen in Fig. 3(a). Using E;/h = 2kHz
the largest shifts of Fig. 3 (a) result in gate time ~ 100ms/7.
Since lattices of 100-1000E; can be realized routinely using
high power lasers, gate times 0.1 — 1 ms should be feasible.
The largest detunings are seen close to the D line and are gen-
erally larger when the lattice depths are similar. This seems to
suggest that the single qubit gate should be performed at the
lowest possible detuning. This conclusion changes when the
probability of scattering a photon ps. = exp(—scta), during
a gate operation is included. The scattering rate is calculated
using [41]:

212
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and rewriting the expression similarly to Eq. (2) into 7/ Er,
including A and 7. In calculating the scattering rate, three
fixed retro-reflected lasers with equal intensities and wave-
lengths, one for each dimension, are included plus the sec-
ondary laser in a single dimension. When calculating p,. only
the target atom is taken into consideration. As both the detun-
ing AY and scattering rate scale linearly with lattice depth, the
gate—time scattering probability is independent of the depth
and the scaling factor 7).

(a)
0998
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FIG. 3. (Color online) Results for single-qubit gate calculations.
(a) The absolute detuning h|AY | /nE calculated for an array of dif-
ferent wavelengths and secondary lattice depths. The contour lines
represent logarithmic scaling. The addressing time can be calculated
through the detuning via t. = m//P|AY| with Ex/h ~ 2kHz.
(b) The corresponding probabilities of an operation without scatter-
ing the target atom. There is a maximum of high probability 0.9995
and the thick and thin contour lines represent steps of 0.001 and
0.0002. The black area represent probabilities beneath 0.99. Cal-
culated with A\; = 1064nm and P; = P = 1.

The probabilities of a successful operation 1 — py. are
mapped in Fig. 3(b) for the detunings calculated in Fig. 3(a).
At the optimum the maximum-—probability of 1—py. = 0.9995
is reached. Increasing the primary wavelength increases the
probability slightly, however, we have chosen to represent the
results corresponding to A\; = 1064nm due to the high avail-
ability of such a laser system. Other polarizations have been
tested, and the detunings Ay were examined for j not being
the atom in the deepest well; both yielding similar or worse re-
sults than those presented above. When scaling up to a longer
period SL a naive estimate of the total probability of not scat-
tering an atom for N atoms is the N power of the probabil-
ity of not scattering the target atom. The result would scale
poorly with hundreds of atoms as 0.9995'% ~ 0.95. As can
be seen in Fig. 2(a), however, the intensity will decrease away
from the maximum one resulting in a reduced error probabil-
ity at larger distances.

IV. TWO-QUBIT GATE

Having initialized an array of atoms in specific lattice sites,
a two-qubit gate on a selected pair of neighboring atoms can
be performed by exploiting the spin-exchange interaction. To
achieve such a gate in this architecture requires the merging
of two atoms in the same lattice site such that their wave func-
tions overlap, as sketched in Fig. 1(c). The optimization of
this non-trivial merger process is the subject of section IV B.
In this section, we describe the gate mechanism and identify
the requirements of performing such a gate in an optical su-
perlattice. To minimize the gate time, we also numerically
optimize the lattice depth and phase throughout the merging
process and consider the detrimental effects of experimental
preparation errors.



A. Gate description

The mechanism driving the two-qubit gate is the mutual in-
teraction between two overlapping atoms which leads to spin
exchange [9, 35, 42]. Two initially separated qubits are com-
bined in the same well in the ground and first excited vibra-
tional levels of the well

all), +B0), = all), +5]0),,

- - 4

all)g + 310)g = @|1), + 50),, @
where |1) and |0) denote the spin based qubit states, «, 3, &
and § are the amplitudes, |-}, and |-), denote the wave func-
tions of the atoms in the left and right well, and |-), and |-),
denote the wave functions of the atoms in the ground and ex-
cited vibrational levels of the merged well.

The two atoms in the merged well are identical bosons, so
the two-particle wave function is symmetric under particle ex-
change. The new eigenenergy basis of the system is formed
by the singlet and triplet states

1
5= 5 (10100, =100, 1)
t_1) = |0), 0),,
-2 =010 5
to) = =5 (1), 10}, + 103 1))

‘t+1> = ‘1>g |1>e .

The two-qubit state of the atoms can now be expressed via the
basis of singlet/triplet states as [1), [0), = ([to) + |s))/v2

and [0), [1), = (lto) — |s))/ V2.

The singlet spin state |s) is antisymmetric, and hence its
spatial wave function must be antisymmetric as well. In this
wave function there is no density overlap between the two
particles. The ultracold atoms primarily interact by contact,
which means that there is negligible interaction in the state
|s). However, the wave function of the symmetric spin state
|to) must be symmetric, which leads to an interaction between
the atoms and hence a change in energy U, when compared
to the state |s).

As the two-qubit state ¥ evolve in time, the energy shift
between the two states |s) and |¢o) will induce a phase shift

vi) = %(6”‘”/’1 Ito) + 1)), ©)

which will induce periodic oscillations between [1), |0), and
\O)g [1),. Attime Tswap = 7h/Uin the spin states are swapped
and at time T 555 = wh/2Uy, the entangling /SWAP gate
is implemented, which is universal for quantum computation.
The qubits can subsequently be separated by reversing the
merging operation.

The gate time is set by the interaction between two 8"Rb

atoms and can be modelled by an effective 1D contact poten-
tial [43, 44]
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FIG. 4. (Color online) An example of the operation required to real-
ize a two-qubit gate. (a) The time—evolution of the potential leading
to two atoms being sent in to one well. (b)-(c) Optimal control pulses
for the amplitude and phase of the primary lattice leading to the po-
tential deformation seen in (a). Density profiles of the two atoms as
a function of time illustrating the mapping of one atom into the ex-
cited state of a neighboring well (e), while the other atom ends in the
ground state (d).

where z; and zo are the coordinates of the two atoms, ¢ is
the Dirac delta function and g;p is the effective 1D coupling
strength. This strength is given by gip = 2ah, /v, v, where
as is the scattering length of the atoms, & is the Planck con-
stant and v, and v, are the trap frequencies in the y— and z—
directions. For 87Rb, the scattering length a; = 110ag, where
ag is the Bohr radius [45].

B. Lattice site merging

In this section we will show how, by controlling the phase
and depth of an optical superlattice, one can merge pairs of
interacting atoms into a single lattice site in which they can
perform the SWAP gate described above. An illustration of
the superlattice potential during the merging process is seen
in Fig. 4(a) with the corresponding values of amplitude and
phase of the added lattice seen in (b) and (c). The potential
minimum of the right well is shifted towards the —x direction
so that both atoms move into the well at x = —0.5a,. This
is shown in Fig. 4(d) and (e) where the density profiles of the
two atoms are seen as a function of time. After being initially
separate, one atom is promoted to the first excited vibrational
state while the other remains in the ground state. Starting from
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FIG. 5. (Color online) Fidelity, F' for the simulations of the superlattice two-qubit gate. (a) Different fidelities obtained at different operation
times with n = 5, with two results of interest highlighted as I and II. The optimized merging scheme at II corresponds to the example shown
in Fig. 4. (b) The change in fidelity for II as a function of error also illustrating how Feror is calculated, i.e. by including all fidelities within the
dashed lines and assuming the worst. The contour lines represent steps of 10~%. (c) Results for the lattice configuration n = 10 with one more
point of interest highlighted as III. The lattice beam wavelength, Az is fixed at 1064 nm. Further results for I, I and III are seen in Table I.

the total optical lattice potential:

= —A; cos? (kyx + ¢) — Aa cos? (ko +7/2), (8)

we search for the optimum values of phase and depth that
merges atoms with the highest fidelity. This is achieved by
using the split-step method to simulate the time-evolution of
the atoms and optimizing using a simplex algorithm. During
an operation, the primary laser phase, ¢ and depth A; are var-
ied while the secondary laser phase and depth are fixed at 7/2
and 1 E;(A2). A primary phase of ¢ = 0 merges the wells at
z =~ 0. Note that when combining atoms into a single well,
merging is more easily achieved when a longer wavelength
lattice is added to an initially populated short-wavelength lat-
tice.

Precise experimental control of the lattice phases can be
achieved in a retro-reflected optical lattice geometry by vary-
ing the primary beam frequency, Av to give a phase change
A¢ = 2ndAv/c, where d is the distance to the retro—reflector
mirror. To achieve A¢ = 7 with A = 1064nm and d = 1 m,
a change in frequency Av = 150 MHz is required. The fact
that the dynamics is controlled using the laser frequency - one
of the most well controlled quantities in physics - illustrates
one of the appealing features of our proposal.

We choose to independently optimize the merger for three
different fidelity classifications. The first, Fiaget atoms = Py Pe,
is the population of the two target atoms in the ground and
excited states. To reflect the effects of the merger sequence on
non-target atoms, we optimize a second fidelity, Fyaoms =
P,P. ], P, where i are the atoms in each SLP which are
not involved in the gate. For each simulation, experimental
sources of errors are added to the time dependent amplitude
and phase of the added lattice corresponding to error in in-
tensity and frequency. The sources of noise are assumed to
be of a sufficiently low frequency to be considered constant
during the operation and are therefore incorporated by adding
a global shift to the obtained control pulses. Based on this,
a third fidelity, Fyor, is optimized which takes the worst ob-
tained fidelity within the array of errors used, also including

all atoms in the SLP.

The existence of several local maxima in the optimizational
landscape neccessitated optimization starting from long times
moving towards shorter times and vice-versa. At each point
in time, the highest fidelity was selected.

Two secondary lattices wavelengths A\, = 851.2nm and
957.6 nm and a primary lattice wavelength of A; = 1064 nm
are studied. These wavelengths correspond to n = 5 and
n = 10 superlattices. The error boundaries used to optimize
Ferror are set to 0.1% for amplitude and a phase offset of 0.2%,
as shown by the box in Fig. 5(b). As can be seen, with appro-
priate control of the phase (i.e. the relative frequency differ-
ence) one can tolerate power fluctuations of the order of 1%,
while still remaining below 10~ infidelity.

The total gate times for the SWAP and /SWAP gates are set
by calculating the interaction during the merging operation.
For the SWAP (1/SWAP) gate, the interaction induced phase
shift is required to be n;7 (”5”), where n; is an integer. The
total phase shift picked up during the merging operation will
also be picked up when reversing the merging operation to
split up the atoms into separate wells again. When requiring
a certain phase shift, a total gate time is then given by twice
the operation time 7 plus a time given by the stationary inter-
action. From the total gate times, the probabilities of scatter-
ing an atom in the SLP during a gate is calculated including
spatially varying intensity and 1064 nm lattice in the y- and
z-dimension with a depth of 32E;.

The resulting fidelities at different operation times 7 are
seen in Fig. 5(a) and (c). Three points of interest are I, II
and III, and total gate times and scattering rates for these op-
erations are shown in Table I.

Merging sequence 11 is also depicted in Fig. 4. In this case
the operation is plotted without errors included. The change in
fidelity when including various errors for Il is seen in Fig. 5(b)
where the area marked by the dashed line represent the er-
rors included to optimize Fiyor. This high fidelity result is
achieved at a modest operation time of less than 300 us. Even
choosing a larger SLP corresponding to n = 10, the oper-
ation time is comparable at a slightly reduced fidelity. This




TABLE L. Further results for the three highlighted merging processes
L, Il and III from Fig. 5. The total gate times Tswap and T /g7 are
calculated by requiring the total interaction to cause a fixed phase
shift. From the the merging process, the probabilities Pic, swap and
Py /swar Of scattering an atom within the SLP during a gate are also
calculated.

T(HS) Ferror T SWAP(HS) T‘SWAF(HS) }Dsc, SWAP Pec, swar
I | 141 0.9960 460 366 4.0x10°T32x10° 7%
II | 289 0.9994 634 728  5.5x107% 6.3 x 107*
II| 305 0.9964 769 638 83x107* 7.0x107*

illustrates that larger qubit registers are feasible.

V. CONCLUSION

‘We have presented a novel architecture for quantum com-
puting using the spatially dependent potential of neutral atoms
in long periodicity optical superlattices implemented by su-
perposing two optical lattices with close-lying periodicity. We
have identified the fastest possible single-qubit gate times
given a maximum tolerable rotation error on the remaining
atoms at various different values of the lattice wavelengths.
Including the detrimental effect of spontaneous emission, we
show that gates in the sub-millisecond regime can be realized

with less than 10~3 total error probability. The proposed two-
qubit gate takes advantage of the fact that at the node of the
superlattice period there is an isolated double well system in
which merger can be realized by controlling the relative in-
tensity and frequency of the two lattices. Controlling the rela-
tive phase of the two lattices the node can be positioned at an
arbitrary pair of wells. We numerically optimize the merger
to implement an entangling /SWAP two-qubit gate. Includ-
ing realistic sources of error and the accumulated errors of
atoms not participating in the merger we still obtain total gate
error probabilities of the order of 10~2 with periodicities up
to n = 10. Future work will focus on extending the merg-
ing scheme to fractional n superlattices to achieve selectivity
across even larger qubit registers and the optimization of cus-
tom pulse protocols [38] to increase the single qubit gate ro-
bustness. Finally, we would like to point out that although this
work has focussed on the manipulation of individual atoms
the method could also be used to select a single plane in a one
dimensional lattices as an alternative to current techniques re-
lying on magnetic field addressing [20, 22].
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A. ADDITIONAL PUBLICATIONS

A.2 A Simple Laser Locking System Based on a
Field-Programmable Gate Array

It is highly necessary to have laser sources with stable frequencies to
perform experimental physics with ultracold gases. Here, a simple laser
locking system based on a field-programmable gate array is presented.
Technological advances allows analog electronics to be replaced by a
digital field-programmable gate array, which permits rapid reconfigura-
tion. The system is able to stabilize a laser sufficiently for atom trapping
and cooling applications.

142



A simple laser locking system based on a field-programmable gate array

N. B. Jgrgensen,! D. Birkmose,! K. Trelborg,® L. Wacker,! N. Winter,® A. J. Hilliard,! M. G. Bason,*? and
J. ) Artt

1)Dt':partment of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C,

Denmark

2 School of Physics € Astronomy, University of Nottingham, Nottingham NG7 2RD,

United Kingdom

(Dated: 11 July 2016)

Frequency stabilization of laser light is crucial in both scientific and industrial applications. Technological
developments now allow analog laser stabilization systems to be replaced with digital electronics such as
field-programmable gate arrays, which have recently been utilized to develop such locking systems. We
have developed a frequency stabilization system based on a field-programmable gate array, with emphasis on
hardware simplicity, which offers a user-friendly alternative to commercial and previous home-built solutions.
Frequency modulation, lock-in detection and a proportional-integral-derivative controller are programmed
on the field-programmable gate array and only minimal additional components are required to frequency
stabilize a laser. The locking system is administered from a host-computer which provides comprehensive,
long-distance control through a versatile interface. Various measurements were performed to characterize the
system. The linewidth of the locked laser was measured to be 0.7 & 0.1 MHz with a settling time of 10 ms.
The system can thus fully match laser systems currently in use for atom trapping and cooling applications.

I. INTRODUCTION

Lasers are an essential technology in industry and sci-
entific research. The frequency of the emitted light is usu-
ally determined by the laser gain profile and the length
of the resonator cavity. Due to external perturbations
such as temperature drifts or acoustic noise, the laser
frequency drifts. For many applications, these drifts are
not critical, but scientific and some advanced industrial
applications often require precise frequency stabilization.
Feedback circuits that stabilize the laser frequency have
therefore been in use for decades. These circuits typically
compare the laser frequency to a stable reference, e.g. by
performing spectroscopy, and use a proportional-integral-
derivative (PID) controller to provide a correction signal
to control elements in the laser.

The field of atomic and molecular physics sets par-
ticularly strict demands on the laser frequency stabil-
ity. To cool and trap atoms, lasers are typically fre-
quency stabilized using an atomic transition or a high
finesse cavity. Several different strategies have been de-
veloped to obtain a locking signal from a spectroscopic
measurement’ . Often, the technique of saturated ab-
sorption spectroscopy combined with lock-in detection is
used to produce a locking signal which is insensitive to
non-frequency fluctuations of the laser®™”".

Laser cooling and trapping experiments have become
widespread in modern research laboratories and commer-
cial products for the implementation of the required laser
systems are available. The necessary components for
such a system can, however, also be constructed in-house.
Such an approach can be used to build low-cost setups to
generate cold and ultracold atomic samples in undergrad-
uate level laboratories”™ 2. A significant hurdle in such
a setup is the construction of a laser frequency stabi-
lization system which typically requires extensive analog

electronics.

In this article, we present a laser locking system for fre-
quency stabilization based on a field-programmable gate
array (FPGA), which has several advantages compared
to both analog electronics and commercial systems. It
offers rapid reconfigurability, a user-friendly interface, it
is low-cost and easy to contruct.

Several FPGA-based devices have been developed in
the field of atomic and molecular physics'®~!®, including
various laser locking systems!®~ '8, The first demonstra-
tion of a FPGA-based laser lock realized a side of fringe
lock to a cavity'®. Later, a dedicated stand-alone system
including parallel slow and fast feedback was contructed
which achieved a linewidth in the kHz regime!”. The
most recent dedicated FPGA-based lock system was em-
ployed to stabilize a fibre laser to the precision required
in an atomic clock'®. Alternatively, a FPGA-based loop
to optically phase-lock two lasers have been developed!.

As an alternative to previous FPGA-based locks, we
present a simple and versatile solution which is easy to
implement. The system is fully applicable for challeng-
ing scientific applications such as cooling and trapping
neutral atoms, but requires minimal additional electron-
ics. It is based on a single off-the-shelf board which in-
cludes a FPGA, a microprocessor, analog-to-digital and
digital-to-analog converters. Furthermore, this is the first
FPGA-based lock programmed in LabVIEW, which sig-
nificantly simplifies the task of understanding and repro-
gramming the software. This additionally allows for a
versatile graphical user interface and long distance con-
trol.

The paper is structured as follows. In Sec. II, the pro-
cedure to obtain a locking signal is reviewed, followed by
a description of the FPGA implementation in Sec. III.
Optimization and characterization of the locking system
is presented in Sec. IV and conclusions are drawn in
Sec. V.
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FIG. 1. Overview of the feedback system with the main elec-
tronic signals (black lines) and light signals (red lines) dis-
played. The current and piezo drivers that supply the ECDL
recieve their inputs from the FPGA. Laser light is sent to a
saturated absorption spectroscopy setup, which produces the
spectroscopy signal fed back to the FPGA.

Il. PEAK LOCK FOR ATOMIC PHYSICS

The laser locking system was developed for laser cool-
ing and trapping of neutral atoms, where linewidths well
below the typical atomic transition linewidths of approx-
imately 5 MHz are required. This is achieved by stabiliz-
ing the laser frequency to a spectroscopy signal obtained
in an atomic vapor cell. Since the Doppler-broadened
signal provides insufficient frequency precision, Doppler-
free saturation absorption spectroscopy is used®.

The design schematic of the feedback system is shown
in Fig. 1. The FPGA controls an External Cavity Diode
Laser (ECDL)' by providing input to its current driver
and to the piezo driver that controls the position of the
frequency selective grating inside the laser. The signal
obtained from saturated absorption spectroscopy, is an-
alyzed within the FPGA which then performs feedback
accordingly.

To perform feedback, an error signal is required, which
is proportional to the difference between a desired set-
point and the actual laser frequency. A PID controller
attempts to minimize this error signal according to a pro-
portional, an integral and a derivative term which respec-
tively account for present, past and possible future val-
ues of the error signal. Each of the three terms contain a
tunable coefficient, referred to a P, I and D parameters,
which allow the strength of the terms to be adjusted.

The derivative of a spectroscopic signal provides a
steep, linear zero crossing at an atomic resonance posi-
tion and is thus well suited as an error signal. To obtain
this derivative, heterodyne spectroscopy is employed?’.
In this technique, the laser frequency is modulated with
a frequency wy,, which produces two weak sidebands at
+wp,. After passing through the vapor cell, the laser in-
tensity I is measured on a photodiode. In the limit of
small modulation amplitude M, the detected light inten-

sity is given by
I(t) = I [1 + M6 cos(wmt) + M@ sin(wmt)],

where Ij is the intensity of the laser without modulation,
0 is proportional to the difference in loss experienced by
the two sidebands and ¢ is proportional to the differ-
ence between the phase shift experienced by the laser
frequency and the average of the phase shifts experienced
by the sidebands®. If wy, is small compared to the width
of the spectral feature, 0 corresponds to the derivative of
the spectroscopy signal and ¢ to the second derivative of
the dispersion.

The demodulation of the signal is implemented
through multiplication. An additional sinusoidal signal
with frequency wy, and phase 6 is introduced and multi-
plied with the spectroscopy signal

IoM

I(t) cos(wmt + 0) = 0 cos(8) — ¢sin(0)

2
+M cos(wmt + 0) + § cos(2wmt + 0) + ¢ sin(2wmt + 6)|.
The resulting signal contains three terms which depend
on wp; in practice these are eliminated by a low-pass
filter. Finally, by adjusting # to zero, ¢ is eliminated and
the derivative J is obtained and available for feedback.

Il. FPGA IMPLEMENTATION

Our laser frequency stabilization system is based on
a National Intruments myRIO-1900 device, which is a
hardware platform containing a programmable FPGA,
a microprocessor, analog-to-digital and digital-to-analog
converters?'. The device can easily be accessed and pro-
grammed using LabVIEW software. No custom FPGA
functions have been used in our implementation, making
the software highly transferable to other LabVIEW based
FPGA systems. The source code of the software used in
this work is available online along with future versions?2.

The FPGA delivers the input to the current and piezo
drivers, receives a signal from the spectroscopy setup and
performs the feedback. The frequency modulation is real-
ized by modulating the diode current, and the feedback
is performed by adjusting the piezo voltage. The data
flow within the FPGA is outlined in Fig. 2 and discussed
in the following paragraphs.

The laser used in the setup is a home-built ECDL.
It delivers light at 780 nm and the spectroscopy and sta-
bilization is performed using a rubidium vapour cell con-
taining the two isotopes 3"Rb and ®Rb in their natu-
ral abundances. In the following, the laser is locked to
the crossover peak between the FF = 2 — F’ = 2 and
F =2 — F’ = 3 transitions of the 8"Rb-D2 line??, but
any other spectroscopic feature could equally well be cho-
sen.

The locking system is controlled from a host computer
using an interface which displays all relevant data as
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FIG. 2. Dataflow within the FPGA. Before the signal enters
the FPGA, it is digitized to a 12 bit signal, which is further
upconverted to 16 bit within the FPGA. Finally, all signals
are converted to 12 bit before digital-to-analog conversion.
The signal paths are further explained in the text.
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shown in Fig. 3. The modulation of the laser current
to produce sidebands is generated by a digital sine wave
generator and sent to the analog output AO2. The spec-
troscopy signal is scaled to match the voltage range of
the analog-to-digital converter (see Fig. 1), then it is dig-
itized, and sent to the FPGA via the input channel Al
It is then multiplied with the phase-shifted modulation
signal and by applying a filter, the error signal has been
obtained. The low-pass filter used is a 4th order But-
terworth filter implemented with a cut-off frequency of
500 Hz, removing the modulation signal of several kHz.
Subsequently, the error signal enters the PID controller,
which then produces a feedback signal accordingly.

It is often necessary to scan the laser over a range of
frequencies to locate and resolve the spectroscopic fea-
tures for locking. Thus, two different modes of operation
are required: a locked mode and a scan mode. In scan
mode, a broad range of frequencies is scanned and in
lock mode, the feedback stabilizes the laser frequency to
a given feature.

When the system is in scan mode, a piezo voltage scan
signal is generated by a second digital sine wave genera-
tor and sent to the output channel AO1 which supplies
the input signal to the piezo driver. In locked mode, the
piezo signal is supplied by the PID controller. A key
property of the feedback system is its response to a sud-
den disturbance. A switch has been implemented which
can add an offset to the piezo signal, allowing a straight-
forward test of the step response of the system.

In order to display the obtained data and control the
system, the spectroscopy signal, the error signal and the
piezo signal is transferred from the FPGA to the host
computer. Since the myRIO only has two built-in DC-

coupled analog outputs, the AC coupled stereo audio
output channel is utilized to allow independent external
monitoring of the error signal.

IV. LOCK PERFORMANCE

In this section, the optimization and characterization
of the locking system is described. This includes a mea-
surement of the system response as a function of the
modulation frequency and the implementation of a step
response technique, which allows for an optimization of
the settling time. Furthermore, the locking performance
is determined by measuring the power spectral density of
the frequency fluctuations and the linewidth of the laser
through beat measurements.

The primary goal of the laser lock is to obtain fast
recoveries from disturbances. This is dependent on the
steepness of the error signal slope which in turn depends
on the modulation frequency. Since the modulation fre-
quency sets the upper limit for the bandwidth of the
locking circuit, a low modulation frequency is undesir-
able. Additionally, the absorption difference experienced
by the sidebands is lower for small modulation frequen-
cies. At high frequencies, technical limitations such as
the bandwidth of the system originating from the speed
of the FPGA are relevant.

To optimize the slope of the locking signal, it was mea-
sured for a range of modulation frequencies with constant
modulation amplitude as shown in Fig. 4. Each measure-
ment was repeated five times and the slope was found
using a linear fit. The highest locking signal derivative is
obtained at 4-5kHz.

The error signal slope was also measured as a function
of the modulation signal amplitude, which displayed a
linear dependence for small and moderate amplitudes.
A large slope is preferable for the system to react to
disturbances, but the linewidth grows at large modula-
tion amplitudes. Hence, depending on the purpose of
the laser, the modulation amplitude should be adjusted
accordingly.

In the first experiments with the locked laser, the PID
parameters were optimized using the step response tech-
nique. The Nichols-Ziegler method?* served as a starting
point. Subsequently, the parameters were adjusted to
minimise the step response time. A disturbance to the
locked laser was introduced through the step switch pro-
grammed into the FPGA (see Fig. 2). The step response
time was defined as the time it took from the beginning
of the disturbance until the spectroscopy signal returned
to its locked value £1o of the noise level.

Part of this optimization is shown in Fig. 5, where the
step response time was recorded for different values of
the P parameter for constant I and D parameters. Each
data point shows the average of five measurements. It
is evident that the response time decreases with increas-
ing values of P, until substantial oscillations set in. The
response for the optimum value is displayed in the inset
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FIG. 3. User interface in locked mode. The interface is divided into four panels. The upper left panel shows the spectroscopic
signal (green) and the error signal (red) versus the piezo scan value. In locked mode, the latest scan image is frozen and the
PID loop is active. In this case, the spectroscopic signal and error signal are displayed on top of the frozen image. The central
peak displayed is the crossover peak between the F =2 — F’ =2 and F = 2 — F’ = 3 transitions of the 8"Rb-D2 line, which
the laser is locked to. The upper right panel displays the spectroscopic and error signal for a timespan of 160 ms, which is
convenient to track the lock situation. The locking controls are located in the lower left panel where current modulation, piezo
scan and PID parameters can be chosen and the status can be switched between lock and scan mode. The lower right panel
displays the internal FPGA signals and additional gains can be adjusted. In the far right corner, there is a panel to export
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FIG. 4. Slope of the error signal versus modulation frequency.
The shaded area is the standard error of the mean for five
measurements.

figure, where the spectroscopy signal settles in 10 ms.
To determine the performance of the laser locking sys-
tem, the power spectral density of frequency fluctuations
was measured in unlocked and locked mode. The mea-
surement was performed by recording a 5s trace of the

error signal digitally within the FPGA at a sample rate
of 125kHz. In both cases the frequency of the laser was
tuned to the crossover peak of 3"Rb.

The results are displayed in Fig. 6 where the Fourier
transformation of the signal has been taken. In frequency
space, each data point is averaged with its 50 nearest
neighbours to give a good estimate of the true mean
value in each segment. A clear damping of the noise is
observed at lower frequencies when locked, demonstrat-
ing the ability to correct for frequency drifts. A noise
increase is seen at ~ 300 Hz, corresponding to the band-
width of the feedback system. The narrow peak at 100 Hz
is electronic noise and the current modulation of 4 kHz is
also visible in the spectrum. It is likely that the 800 Hz
peak orignates from the myRIO device which contains an
accelerometer that operates at that sample rate.

The observed frequency noise can be compared with
the step response signal shown in the inset of Fig. 5.
The bandwidth of some 100 Hz matches the step response
time of 10 ms and the high frequency noise of the spec-
troscopy signal originates from the 4 kHz modulation.

The oscillations observed after 10 ms are damped fur-
ther on longer time scales and correspond to the band-
width of the feedback. Depending on the choice of PID
parameters, a faint oscillation remains due to a slight
overcompensation of the feedback. Usually, the oscilla-
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FIG. 6. Power spectral density of frequency fluctuations of the
laser when unlocked (light green line) and when locked (dark
green line). The inset shows one of the beat measurements
(light green), which is used to determine the linewidth of the
laser by applying a Gaussian fit (dark green line).

tions are not visible in the spectroscopic signal, but only
in the error signal as can be observed in the right panel
of Fig. 3.

The long-term stability of the system was tested by
leaving it untouched, and in this case the laser remained
locked for up to one day. The main limitation to this
stability is the mechanical construction of the ECDL.

Finally, the linewidth of the laser was determined. A
series of beat measurements was performed with two

(23

other lasers of similar design and wavelength. Those
lasers are currently in use for the production of 8"Rb
Bose-Einstein condensates®® and locked using home-built
analog PID controllers acting on a locking signal derived
from a 10 MHz modulation of the laser current. For these
measurements, all lasers were locked to the crossover
peak of 8"Rb and acousto-optical modulators were used
to shift each pair of lasers to be separated in frequency
by ~ 30 MHz. For each measurement, the beams of two
lasers were coupled into a single-mode polarization main-
taining fiber to ensure good spatial mode overlap. The
fiber output was then directed onto a photodiode and
the beat signal was obtained using a spectrum analyzer
which recorded spectra at sweeptimes of 500 ms.

An example of such a beat measurement is shown in
the inset of Fig. 6. The beat spectrum is composed of
a Lorentzian profile due to high frequency noise of the
laser and a Gaussian profile due to the drift of the laser
within an individual measurement. The signal to noise
ratio of our specific setup only allowed the Gaussian com-
ponent to be resolved. This is fully sufficient, since the
Gaussian component determines the effective linewidth
in these types of laser systems.

The linewidth of the FPGA-based laser system was
found to be 0.7 = 0.1 MHz using low modulation ampli-
tudes. The other two lasers tested were found to have
linewidths of 0.4 £0.1 MHz and 0.6 + 0.1 MHz. No signi-
ficant alterations of the linewidths were observed for the
range of sweeptimes 100-500ms. Thus, our new laser
locking system performs similarly to laser systems cur-
rently in use for experiments with ultracold atoms.

V. CONCLUSION

‘We have developed a simple FPGA-based laser locking
system for frequency stabilization. It was optimized and
characterized in a series of measurements, which demon-
strates the flexibility of the system. The measured laser
linewidth was 0.7 £ 0.1 MHz, similar to linewidths of
lasers which are currently in use for laser cooling and
trapping experiments.

Compared to initial results from FPGA-based locks,
this is an improvement by more than a factor of two®®.
On the other hand, our laser-lock does not achieve
linewidths comparable to dedicated locks for high pre-
cision experiments!'”18.

In contrast, our objective was to develop a simple laser
locking solution based on low-cost off-the-shelf hardware,
which requires minimal effort to implement in any set-
ting, yet still acheives a performance sufficient for com-
plex tasks such as cooling and trapping of neutral atoms.
It was programmed using LabVIEW which is a standard
experimental control language and thus the system is
easy to understand, construct and configure and is ap-
plicable in both state of the art laboratories, teaching
environments and remote sensing applications.



VI. ACKNOWLEDGMENTS

We thank the Danish Council for Independent Re-
search, the Lundbeck Foundation, the Templeton Foun-
dation, and a Marie Curie IEF in FP7 for support.

1C. Wieman and T. W. Hénsch, Physical Review Letters 36, 1170
(1976).

2J. H. Shirley, Optics Letters 7, 537 (1982).

3K. Overstreet, J. Franklin, and J. Shaffer, Review of scientific
instruments 75, 4749 (2004).

4G. Jundt, G. Purves, C. Adams, and I. Hughes, Eur. Phys. J. D
27, 273 (2003).

5W. Demtroder, Laser Spectroscopy: Basic Concepts and Instru-
mentation, 3rd ed. (Springer, Berlin, 2003).

6G. Bjorklund, M. Levenson, W. Lenth, and C. Ortiz, Applied
Physics B 32, 145 (1983).

7K. B. MacAdam, A. Steinbach, and C. Wieman, Am. J. Phys.
60, 1098 (1992).

8C. Wieman, G. Flowers, and S. Gilbert, Am. J. Phys. 63, 317
(1995).

9A. Arnold, J. Wilson, and M. Boshier, Rev. Sci. Instrum. 69,
1236 (1998).

10A. S. Mellish and A. C. Wilson, Am. J. Phys. 70, 965 (2002).

K. Singer, S. Jochim, M. Mudrich, A. Mosk, and M. Wei-
demiiller, Rev. Sci. Instrum. 73, 4402 (2002).

12D, L. Whitaker, A. Sharma, and J. M. Brown, Rev. Sci. Instrum.
77, 126101 (2006).

13A. Restelli, R. Abbiati, and A. Geraci, Rev. Sci. Instrum. 76,
093112 (2005).

143, N. Nikoli¢, V. Bati¢, B. Pani¢, and B. M. Jelenkovié, Rev.
Sci. Instrum. 84 (2013), 10.1063/1.4811147.

15A. Schwettmann, J. Sedlacek, and J. P. Shaffer, Rev. Sci. In-
strum. 82, 103103 (2011).

167. Xu, X. Zhang, K. Huang, and X. Lu, Rev. Sci. Instrum. 83,
093104 (2012).

17G. Yang, J. F. Barry, E. S. Shuman, M. H. Steinecker, and
D. DeMille, Journal of Instrumentation 7, P10026 (2012).

18D. Leibrandt and J. Heidecker, Rev. Sci. Instrum. 86, 123115
(2015).

191,. Ricci, M. Weidemiiller, T. Esslinger, A. Hemmerich, C. Zim-
mermann, V. Vuletic, W. Konig, and T. W. Hénsch, Optics
Communications 117, 541 (1995).

20R. Drever, J. L. Hall, F. Kowalski, J. Hough, G. Ford, A. Munley,
and H. Ward, Applied Physics B 31, 97 (1983).

21The datasheet of the myRIO device is available online at
http://www.ni.com/pdf/manuals/376047a.pdf.

22Updated source code is available online at http://phys.au.dk/
forskning/forskningsomraader/uqgg0/downloads/.

23 A crossover peak is located between two regular transitions and is
a consequence of a specific non-zero velocity class of atoms being
simultaneously resonant with the counterpropagating pump and
probe beams.

24]. G. Ziegler and N. B. Nichols, trans. ASME 64 (1942).

25pP, L. Pedersen, M. Gajdacz, F. Deuretzbacher, L. Santos,
C. Klempt, J. F. Sherson, A. J. Hilliard, and J. J. Arlt, Phys.
Rev. A 89, 051603 (2014).



[1]

(2]

3]

[4]

[5]

(6]

[7]

(8]

(9]

(10]

BIBLIOGRAPHY

N. Bohr, On the constitution of atoms and molecules, Philos.
Mag. 26, 476-502 (1913).

M. H. Anderson, J. R. Ensher, M. R. Matthews, C. E. Wieman, and
E. A. Cornell, Observation of Bose-Einstein condensation in a di-
lute atomic vapor, Science 269, 198-201 (1995).

K. B. Davis, M.-O. Mewes, M. R. Andrews, N. J. van Druten, D. S.
Durfee, D. M. Kurn, and W. Ketterle, Bose-Einstein condensation
in a gas of sodium atoms, Phys. Rev. Lett. 75, 3969-3973 (1995).

J. P. Dowling and G. J. Milburn, Quantum technology: the second
quantum revolution, Philos. Trans. R. Soc. London A 361, 1655—
1674 (2003).

R. P Feynman, Simulating physics with computers, Int. J. Theor.
Phys. 21, 467-488 (1982).

I. Bloch, J. Dalibard, and S. Nascimbene, Quantum simulations
with ultracold quantum gases, Nat. Phys. 8, 267-276 (2012).

L. Bloch, J. Dalibard, and W. Zwerger, Many-body physics with ul-
tracold gases, Rev. Mod. Phys. 80, 885-964 (2008).

C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach reso-
nances in ultracold gases, Rev. Mod. Phys. 82, 1225-1286 (2010).

P. Massignan, M. Zaccanti, and G. M. Bruun, Polarons, dressed
molecules and itinerant ferromagnetism in ultracold Fermi
gases, Rep. Prog. Phys. 77, 034401 (2014).

P. Naidon and S. Endo, Efimov physics: a review, Rep. Prog. Phys.
80, 056001 (2017).

149


http://dx.doi.org/10.1103/PhysRevLett.75.3969
http://dx.doi.org/10.1103/RevModPhys.80.885
http://dx.doi.org/10.1103/RevModPhys.82.1225

BIBLIOGRAPHY

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

150

A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein, Obser-
vation of Fermi polarons in a tunable Fermi liquid of ultracold
atoms, Phys. Rev. Lett. 102, 230402 (2009).

N. Navon, S. Nascimbene, E Chevy, and C. Salomon, The equa-
tion of state of a low-temperature Fermi gas with tunable inter-
actions, Science 328, 729-732 (2010).

C. Kohstall, M. Zaccanti, M. Jag, A. Trenkwalder, P. Massignan,
G. M. Bruun, E Schreck, and R. Grimm, Metastability and coher-
ence of repulsive polarons in a strongly interacting Fermi mix-
ture, Nature 485, 615-618 (2012).

M. Koschorreck, D. Pertot, E. Vogt, B. Frohlich, M. Feld, and M.
Kohl, Attractive and repulsive Fermi polarons in two dimensions,
Nature 485, 619-622 (2012).

M. Cetina, M. Jag, R. S. Lous, I. Fritsche, J. T. Walraven, R. Grimm,
]J. Levinsen, M. M. Parish, R. Schmidt, M. Knap, and E. Demler,
Ultrafast many-body interferometry of impurities coupled to a
Fermi sea, Science 354, 96-99 (2016).

E Scazza, G. Valtolina, P Massignan, A. Recati, A. Amico, A.
Burchianti, C. Fort, M. Inguscio, M. Zaccanti, and G. Roati, Repul-
sive Fermi polarons in a resonant mixture of ultracold °Li atoms,
Phys. Rev. Lett. 118, 083602 (2017).

N. B. Jorgensen, L. Wacker, K. T. Skalmstang, M. M. Parish, J.
Levinsen, R. S. Christensen, G. M. Bruun, and J. J. Arlt, Observa-
tion of attractive and repulsive polarons in a Bose-Einstein con-
densate, Phys. Rev. Lett. 117, 055302 (2016).

L. A. P Ardila, N. B. Jorgensen, K. T. Skalmstang, J. J. Arlt, S.
Giorgini, G. M. Bruun, and T. Pohl, Analysis of Bose polaron ob-
servations, in preparation.

L. Landau and S. Pekar, Effective mass of a polaron, J. Exp. Theor.
Phys 18, 419-423 (1948).

G. D. Mahan, Many-particle physics (Springer Science & Business
Media, 2013).


http://dx.doi.org/10.1103/PhysRevLett.102.230402
http://dx.doi.org/10.1103/PhysRevLett.118.083602
http://dx.doi.org/10.1103/PhysRevLett.117.055302

Bibliography

(21]

(22]

(23]

(24]

(25]

(26]

(27]

(28]

(29]

(30]

N. Mannella, W. L. Yang, X. J. Zhou, H. Zheng, J. E Mitchell, J. Za-
anen, T. P Devereaux, N. Nagaosa, Z. Hussain, and Z.-X. Shen,
Nodal quasiparticle in pseudogapped colossal magnetoresistive
manganites, Nature 438, 474-478 (2005).

P A. Lee, N. Nagaosa, and X.-G. Wen, Doping a Mott insulator:
physics of high-temperature superconductivity, Rev. Mod. Phys.
78, 17-85 (20006).

M. E. Gershenson, V. Podzorov, and A. E Morpurgo, Colloquium:
electronic transport in single-crystal organic transistors, Rev!
Mod. Phys. 78, 973-989 (20006).

L. Wacker, N. B. Jorgensen, D. Birkmose, R. Horchani, W. Ert-
mer, C. Klempt, N. Winter, J. Sherson, and J. J. Arlt, Tunable dual-
species Bose-Einstein condensates of 39K and 8"Rb, Phys. Rev. A
92, 053602 (2015).

K. L. Lee, N. B. Jorgensen, 1.-K. Liu, L. Wacker, J. J. Arlt, and N. P.
Proukakis, Phase separation and dynamics of two-component
Bose-Einstein condensates, Phys. Rev. A 94, 013602 (2016).

K. L. Lee, N. B. Jorgensen, L. Wacker, M. G. Skou, K. T. Skalm-
stang, J. J. Arlt, and N. P. Proukakis, Time-of-flight expan-
sion of binary Bose-Einstein condensates at finite temperature,
arXiv:1712.07481 (2017).

L. J. Wacker, N. B. Jorgensen, D. Birkmose, N. Winter, M.
Mikkelsen, J. Sherson, N. Zinner, and J. J. Arlt, Universal three-
body physics in ultracold KRb mixtures, Phys. Rev. Lett. 117,
163201 (2016).

L. Wacker, N. B. Jargensen, K. T. Skalmstang, M. G. Skou, A. G.
Volosniev, and J. J. Arlt, Temperature dependence of an Efimov
resonance in 3°K, in preparation.

V. Efimov, Energy levels arising from resonant two-body forces in
a three-body system, Phys. Lett. B 33, 563-564 (1970).

N. B. Jorgensen, M. G. Bason, and J. E Sherson, One- and two-
qubit quantum gates using superimposed optical-lattice poten-
tials, Phys. Rev. A 89, 032306 (2014).

151


http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.17
http://dx.doi.org/10.1103/RevModPhys.78.973
http://dx.doi.org/10.1103/RevModPhys.78.973
http://dx.doi.org/10.1103/PhysRevA.92.053602
http://dx.doi.org/10.1103/PhysRevA.92.053602
http://dx.doi.org/10.1103/PhysRevA.94.013602
http://dx.doi.org/10.1103/PhysRevLett.117.163201
http://dx.doi.org/10.1103/PhysRevLett.117.163201
http://dx.doi.org/10.1103/PhysRevA.89.032306

BIBLIOGRAPHY

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

152

N. B. Jorgensen, D. Birkmose, K. Trelborg, L. Wacker, N. Winter,
A.J. Hilliard, M. G. Bason, and J. J. Arlt, A simple laser locking sys-
tem based on a field-programmable gate array, Rev. Sci. Instrum.
87,073106 (2016).

C. D’Errico, M. Zaccanti, M. Fattori, G. Roati, M. Inguscio, G.
Modugno, and A. Simoni, Feshbach resonances in ultracold 3°K,
New J. Phys. 9, 223 (2007).

A. Simoni, M. Zaccanti, C. D’Errico, M. Fattori, G. Roati, M. In-
guscio, and G. Modugno, Near-threshold model for ultracold KRb
dimers from interisotope Feshbach spectroscopy, Phys. Rev. A 77,
052705 (2008).

E Dalfovo, S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of
Bose-Einstein condensation in trapped gases, Rev. Mod. Phys. 71,
463-512 (1999).

J. L. Roberts, N. R. Claussen, S. L. Cornish, E. A. Donley, E. A. Cor-
nell, and C. E. Wieman, Controlled collapse of a Bose-Einstein
condensate, Phys. Rev. Lett. 86, 4211-4214 (2001).

M. Lysebo and L. Veseth, Feshbach resonances and transition
rates for cold homonuclear collisions between 3K and *!K atoms,
Phys. Rev. A 81, 032702 (2010).

A. Marte, T. Volz, J. Schuster, S. Diirr, G. Rempe, E. G. M. van
Kempen, and B. J. Verhaar, Feshbach resonances in rubidium 87:
precision measurement and analysis, Phys. Rev. Lett. 89, 283202
(2002).

S. N. Bose, Plancks gesetz und lichtquantenhypothese, Z. Phys.
26, 178-181 (1924).

A. Einstein, Quantentheorie des einatomigen idealen Gases,
Sitzungsber. Kgl. Preuss. Akad. Wiss., 261 (1924).

A. Einstein, Quantentheorie des einatomigen idealen Gases,
zweite Abhandlung, Sitzungsber. Kgl. Preuss. Akad. Wiss., 3
(1925).

C.J. Pethick and H. Smith, Bose-Einstein condensation in dilute
gases, Second Edition (Cambridge University Press, 2002).


http://dx.doi.org/10.1103/PhysRevA.77.052705
http://dx.doi.org/10.1103/PhysRevA.77.052705
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/RevModPhys.71.463
http://dx.doi.org/10.1103/PhysRevLett.86.4211
http://dx.doi.org/10.1103/PhysRevA.81.032702
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1103/PhysRevLett.89.283202

Bibliography

(42]

(43]

(44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

T. Nikuni, M. Oshikawa, A. Oosawa, and H. Tanaka, Bose-Einstein
condensation of dilute magnons in TICuCls, Phys. Rev. Lett. 84,
9868-5871 (2000).

M. Kubouchi, K. Yoshioka, R. Shimano, A. Mysyrowicz, and M.
Kuwata-Gonokami, Study of orthoexciton-to-paraexciton con-
version in Cu, O by excitonic Lyman spectroscopy, Phys. Rev. Lett.
94, 016403 (2005).

J. Kasprzak, M. Richard, S. Kundermann, A. Baas, P. Jeambrun,
J. Keeling, E Marchetti, M. Szymanska, R. Andre, J. Staehli, V.
Savona, P. Littlewood, B. Deveaud, and L. S. Dang, Bose-Einstein
condensation of exciton polaritons, Nature 443, 409 (2006).

J. Klaers, J. Schmitt, E Vewinger, and M. Weitz, Bose-Einstein con-
densation of photons in an optical microcavity, Nature 468, 545—
548 (2010).

B. H. Bransden and C. ]. Joachain, Physics of atoms and
molecules, Second Edition (Pearson Education, 2003).

E. G. M. van Kempen, S. J. J. M. E Kokkelmans, D. J. Heinzen, and
B. J. Verhaar, Interisotope determination of ultracold rubidium
interactions from three high-precision experiments, Phys. Rev.
Lett. 88, 093201 (2002).

S. Falke, H. Knockel, J. Friebe, M. Riedmann, E. Tiemann, and C.
Lisdat, Potassium ground-state scattering parameters and Born-
Oppenheimer potentials from molecular spectroscopy, Phys. Rev!
A 78, 012503 (2008).

T. Weber, J. Herbig, M. Mark, H.-C. Négerl, and R. Grimm, Three-
body recombination at large scattering lengths in an ultracold
atomic gas, Phys. Rev. Lett. 91, 123201 (2003).

S.Inouye, M. Andrews, J. Stenger, H.-J. Miesner, D. Stamper-Kurn,
and W. Ketterle, Observation of Feshbach resonances in a Bose—
Einstein condensate, Nature 392, 151-154 (1998).

C. A. Regal, M. Greiner, and D. S. Jin, Observation of resonance
condensation of fermionic atom pairs, Phys. Rev. Lett. 92, 040403
(2004).

153


http://dx.doi.org/10.1103/PhysRevLett.84.5868
http://dx.doi.org/10.1103/PhysRevLett.84.5868
http://dx.doi.org/10.1103/PhysRevLett.94.016403
http://dx.doi.org/10.1103/PhysRevLett.94.016403
http://dx.doi.org/10.1103/PhysRevLett.88.093201
http://dx.doi.org/10.1103/PhysRevLett.88.093201
http://dx.doi.org/10.1103/PhysRevA.78.012503
http://dx.doi.org/10.1103/PhysRevA.78.012503
http://dx.doi.org/10.1103/PhysRevLett.91.123201
http://dx.doi.org/10.1103/PhysRevLett.92.040403
http://dx.doi.org/10.1103/PhysRevLett.92.040403

BIBLIOGRAPHY

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

(62]

154

R. J. Fletcher, A. L. Gaunt, N. Navon, R. P. Smith, and Z. Hadz-
ibabic, Stability of a unitary Bose gas, Phys. Rev. Lett. 111, 125303
(2013).

J. M. Gerton, D. Strekalov, I. Prodan, and R. G. Hulet, Direct ob-
servation of growth and collapse of a Bose-Einstein condensate
with attractive interactions, Nature 408, 692-695 (2000).

E. A. Donley, N. R. Claussen, S. L. Cornish, J. L. Roberts, E. A. Cor-
nell, and C. E. Wieman, Dynamics of collapsing and exploding
Bose-Einstein condensates, Nature 412, 295-299 (2001).

T. Lahaye, J. Metz, B. Frohlich, T. Koch, M. Meister, A. Griesmaier,
T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda, d-wave collapse and
explosion of a dipolar Bose-Einstein condensate, Phys. Rev. Lett!
101, 080401 (2008).

P A. Altin, G. R. Dennis, G. D. McDonald, D. Déring, J. E. Debs,
J. D. Close, C. M. Savage, and N. P. Robins, Collapse and three-
body loss in a Rb Bose-Einstein condensate, Phys. Rev. A 84,
033632 (2011).

C. Eigen, A. L. Gaunt, A. Suleymanzade, N. Navon, Z. Hadzibabic,
and R. P. Smith, Observation of weak collapse in a Bose-Einstein
condensate, Phys. Rev. X 6, 041058 (2016).

E Riboli and M. Modugno, Topology of the ground state of two
interacting Bose-Einstein condensates, Phys. Rev. A 65, 063614
(2002).
D. M. Jezek and P. Capuzzi, Interaction-driven effects on two-
component Bose-Einstein condensates, Phys. Rev. A 66, 015602
(2002).

T.-L. Ho and V. B. Shenoy, Binary mixtures of Bose condensates of
alkali atoms, Phys. Rev. Lett. 77, 3276-3279 (1996).

H. Pu and N. P. Bigelow, Properties of two-species Bose conden-
sates, Phys. Rev. Lett. 80, 1130-1133 (1998).

P. Ao and S. T. Chui, Binary Bose-Einstein condensate mixtures
in weakly and strongly segregated phases, Phys. Rev. A 58, 4836-
4840 (1998).


http://dx.doi.org/10.1103/PhysRevLett.111.125303
http://dx.doi.org/10.1103/PhysRevLett.111.125303
http://dx.doi.org/10.1103/PhysRevLett.101.080401
http://dx.doi.org/10.1103/PhysRevLett.101.080401
http://dx.doi.org/10.1103/PhysRevA.84.033632
http://dx.doi.org/10.1103/PhysRevA.84.033632
http://dx.doi.org/10.1103/PhysRevX.6.041058
http://dx.doi.org/10.1103/PhysRevA.65.063614
http://dx.doi.org/10.1103/PhysRevA.65.063614
http://dx.doi.org/10.1103/PhysRevA.66.015602
http://dx.doi.org/10.1103/PhysRevA.66.015602
http://dx.doi.org/10.1103/PhysRevLett.77.3276
http://dx.doi.org/10.1103/PhysRevLett.80.1130
http://dx.doi.org/10.1103/PhysRevA.58.4836
http://dx.doi.org/10.1103/PhysRevA.58.4836

Bibliography

(63]

(64]

(65]

[66]

[67]

(68]

(69]

[70]

(71]

[72]

E. Timmermans, Phase separation of Bose-Einstein condensates,
Phys. Rev. Lett. 81, 5718-5721 (1998).

P. Ohberg, Stability properties of the two-component Bose-
Einstein condensate, Phys. Rev. A 59, 634-638 (1999).

M. Trippenbach, K. Goral, K. Rzazewski, B. Malomed, and Y.
Band, Structure of binary Bose-Einstein condensates, J. Phys. B
At. Mol. Opt. Phys. 33, 4017 (2000).

K. Kasamatsu and M. Tsubota, Multiple domain formation
induced by modulation instability in two-component Bose-
Einstein condensates, Phys. Rev. Lett. 93, 100402 (2004).

H. Takeuchi, S. Ishino, and M. Tsubota, Binary quantum
turbulence arising from countersuperflow instability in two-
component Bose-Einstein condensates, Phys. Rev. Lett. 105,
205301 (2010).

L. Wen, W. M. Liu, Y. Cai, J. M. Zhang, and J. Hu, Controlling
phase separation of a two-component Bose-Einstein condensate
by confinement, Phys. Rev. A 85, 043602 (2012).

R. W. Pattinson, T. P. Billam, S. A. Gardiner, D. J. McCarron, H. W.
Cho, S. L. Cornish, N. G. Parker, and N. P. Proukakis, Equilibrium
solutions for immiscible two-species Bose-Einstein condensates
in perturbed harmonic traps, Phys. Rev. A 87, 013625 (2013).

J. Hofmann, S. S. Natu, and S. Das Sarma, Coarsening dynamics
of binary Bose condensates, Phys. Rev. Lett. 113, 095702 (2014).

M. J. Edmonds, K. L. Lee, and N. P. Proukakis, Kinetic model of
trapped finite-temperature binary condensates, Phys. Rev. A 91
011602 (2015).

J. Polo, V. Ahufinger, P. Mason, S. Sridhar, T. P. Billam, and S. A.
Gardiner, Analysis beyond the Thomas-Fermi approximation of
the density profiles of a miscible two-component Bose-Einstein
condensate, Phys. Rev. A 91, 053626 (2015).

155


http://dx.doi.org/10.1103/PhysRevLett.81.5718
http://dx.doi.org/10.1103/PhysRevA.59.634
http://dx.doi.org/10.1103/PhysRevLett.93.100402
http://dx.doi.org/10.1103/PhysRevLett.105.205301
http://dx.doi.org/10.1103/PhysRevLett.105.205301
http://dx.doi.org/10.1103/PhysRevA.85.043602
http://dx.doi.org/10.1103/PhysRevA.87.013625
http://dx.doi.org/10.1103/PhysRevLett.113.095702
http://dx.doi.org/10.1103/PhysRevA.91.011602
http://dx.doi.org/10.1103/PhysRevA.91.011602
http://dx.doi.org/10.1103/PhysRevA.91.053626

BIBLIOGRAPHY

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

156

L.-K. Liu, R. W. Pattinson, T. P. Billam, S. A. Gardiner, S. L. Cor-
nish, T.-M. Huang, W.-W. Lin, S.-C. Gou, N. G. Parker, and N. P.
Proukakis, Stochastic growth dynamics and composite defects
in quenched immiscible binary condensates, Phys. Rev. A 93,
023628 (2016).

A. White, T. Hennessy, and T. Busch, Emergence of classical ro-
tation in superfluid Bose-Einstein condensates, Phys. Rev. A 93,
033601 (2016).

S. B. Papp, J. M. Pino, and C. E. Wieman, Tunable miscibility in
a dual-species Bose-Einstein condensate, Phys. Rev. Lett. 101,
040402 (2008).

D. J. McCarron, H. W. Cho, D. L. Jenkin, M. P. Képpinger, and
S. L. Cornish, Dual-species Bose-Einstein condensate of 87Rb and
133Cs, Phys. Rev. A 84, 011603 (2011).

E Wang, X. Li, D. Xiong, and D. Wang, A double species ?*Na and
87Rb Bose-Einstein condensate with tunable miscibility via an in-
terspecies Feshbach resonance, J. Phys. B At. Mol. Opt. Phys. 49,
015302 (2015).

Y. Eto, M. Takahashi, M. Kunimi, H. Saito, and T. Hirano,
Nonequilibrium dynamics induced by miscible-immiscible tran-
sition in binary Bose-Einstein condensates, New J. Phys. 18,
073029 (2016).

A. S. Jensen, K. Riisager, D. V. Fedorov, and E. Garrido, Structure
and reactions of quantum halos, Rev. Mod. Phys. 76, 215-261
(2004).

T. Kraemer, M. Mark, P. Waldburger, J. Danzl, C. Chin, B. Engeser,
A. Lange, K. Pilch, A. Jaakkola, H. Nédgerl, and R. Grimm, Evidence
for Efimov quantum states in an ultracold gas of caesium atoms,
Nature 440, 315-318 (2006).

E. Braaten and H.-W. Hammer, Universality in few-body systems
with large scattering length, Phys. Rep. 428, 259-390 (2006).

E. Braaten and H.-W. Hammer, Efimov physics in cold atoms,
Ann. Phys. (N.Y.) 322, 120-163 (2007).


http://dx.doi.org/10.1103/PhysRevA.93.023628
http://dx.doi.org/10.1103/PhysRevA.93.023628
http://dx.doi.org/10.1103/PhysRevA.93.033601
http://dx.doi.org/10.1103/PhysRevA.93.033601
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevLett.101.040402
http://dx.doi.org/10.1103/PhysRevA.84.011603
http://dx.doi.org/10.1103/RevModPhys.76.215
http://dx.doi.org/10.1103/RevModPhys.76.215

Bibliography

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

(91]

(92]

(93]

E Ferlaino and R. Grimm, Trend: forty years of Efimov physics:
how a bizarre prediction turned into a hot topic, Physics 3, 9
(2010).

E Ferlaino, A. Zenesini, M. Berninger, B. Huang, H.-C. Négerl, and
R. Grimm, Efimov resonances in ultracold quantum gases, Few-
Body Syst. 51, 113 (2011).

J. Ulmanis, S. Hifner, E. D. Kuhnle, and M. Weidemiiller, Het-
eronuclear Efimov resonances in ultracold quantum gases, Natl.
Sci. Rev. 3, 174-188 (2016).

E. Nielsen and J. H. Macek, Low-energy recombination of iden-
tical bosons by three-body collisions, Phys. Rev. Lett. 83, 1566-
1569 (1999).

B. D. Esry, C. H. Greene, and J. P. Burke, Recombination of three
atoms in the ultracold limit, Phys. Rev. Lett. 83, 1751-1754 (1999).

J. P. D’Incao, H. Suno, and B. D. Esry, Limits on universality in
ultracold three-boson recombination, Phys. Rev. Lett. 93, 123201
(2004).

M. Zaccanti, B. Deissler, C. DErrico, M. Fattori, M. Jona-Lasinio,
S. Miiller, G. Roati, M. Inguscio, and G. Modugno, Observation of
an Efimov spectrum in an atomic system, Nat. Phys. 5 (2009).

S. E. Pollack, D. Dries, and R. G. Hulet, Universality in three- and
four-body bound states of ultracold atoms, Science 326, 1683—
1685 (2009).

N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Obser-
vation of universality in ultracold “Li three-body recombination,
Phys. Rev. Lett. 103, 163202 (2009).

R.J. Wild, P. Makotyn, J. M. Pino, E. A. Cornell, and D. S. Jin, Mea-
surements of Tan’s contact in an atomic Bose-Einstein conden-
sate, Phys. Rev. Lett. 108, 145305 (2012).

T. B. Ottenstein, T. Lompe, M. Kohnen, A. N. Wenz, and S. Jochim,
Collisional stability of a three-component degenerate Fermi gas,
Phys. Rev. Lett. 101, 203202 (2008).

157


http://dx.doi.org/10.1103/PhysRevLett.83.1566
http://dx.doi.org/10.1103/PhysRevLett.83.1566
http://dx.doi.org/10.1103/PhysRevLett.83.1751
http://dx.doi.org/10.1103/PhysRevLett.93.123201
http://dx.doi.org/10.1103/PhysRevLett.93.123201
http://dx.doi.org/10.1103/PhysRevLett.103.163202
http://dx.doi.org/10.1103/PhysRevLett.108.145305
http://dx.doi.org/10.1103/PhysRevLett.101.203202

BIBLIOGRAPHY

[94]

[95]

[96]

[97]

(98]

[99]

[100]

[101]

[(102]

(103]

158

J. H. Huckans, J. R. Williams, E. L. Hazlett, R. W. Stites, and K. M.
O’Hara, Three-body recombination in a three-state Fermi gas
with widely tunable interactions, Phys. Rev. Lett. 102, 165302
(2009).

N. Gross, Z. Shotan, S. Kokkelmans, and L. Khaykovich, Nuclear-
spin-independent short-range three-body physics in ultracold
atoms, Phys. Rev. Lett. 105, 103203 (2010).

M. Berninger, A. Zenesini, B. Huang, W. Harm, H.-C. Négerl, E
Ferlaino, R. Grimm, P. S. Julienne, and J. M. Hutson, Universal-
ity of the three-body parameter for Efimov states in ultracold ce-
sium, Phys. Rev. Lett. 107, 120401 (2011).

S. Roy, M. Landini, A. Trenkwalder, G. Semeghini, G. Spagnolli, A.
Simoni, M. Fattori, M. Inguscio, and G. Modugno, Test of the uni-
versality of the three-body Efimov parameter at narrow Feshbach
resonances, Phys. Rev. Lett. 111, 053202 (2013).

J.Johansen, B. DeSalvo, K. Patel, and C. Chin, Testing universality
of Efimov physics across broad and narrow Feshbach resonances,
Nat. Phys. (2017).

J. Wang, J. P. D’Incao, B. D. Esry, and C. H. Greene, Origin of the
three-body parameter universality in Efimov physics, Phys. Rev.
Lett. 108, 263001 (2012).

C. Chin, Universal scaling of Efimov resonance positions in cold
atom systems, arXiv:1111.1484v2 (2011).

P. Naidon, S. Endo, and M. Ueda, Physical origin of the universal
three-body parameter in atomic Efimov physics, Phys. Rev. A 90,
022106 (2014).

Y. Wang and P. S. Julienne, Universal van der Waals physics for
three cold atoms near Feshbach resonances, Nat. Phys. 10, 768—
773 (2014).

B. Huang, L. A. Sidorenkov, R. Grimm, and J. M. Hutson, Observa-
tion of the second triatomic resonance in Efimov’s scenario, Phys.
Rev. Lett. 112, 190401 (2014).


http://dx.doi.org/10.1103/PhysRevLett.102.165302
http://dx.doi.org/10.1103/PhysRevLett.102.165302
http://dx.doi.org/10.1103/PhysRevLett.105.103203
http://dx.doi.org/10.1103/PhysRevLett.107.120401
http://dx.doi.org/10.1103/PhysRevLett.111.053202
http://dx.doi.org/10.1103/PhysRevLett.108.263001
http://dx.doi.org/10.1103/PhysRevLett.108.263001
http://dx.doi.org/10.1103/PhysRevA.90.022106
http://dx.doi.org/10.1103/PhysRevA.90.022106
http://dx.doi.org/10.1103/PhysRevLett.112.190401
http://dx.doi.org/10.1103/PhysRevLett.112.190401

Bibliography

[104]

[105]

[106]

[107]

(108]

[109]

[110]

[111]

[112]

J. R. Williams, E. L. Hazlett, J. H. Huckans, R. W. Stites, Y. Zhang,
and K. M. O’Hara, Evidence for an excited-state Efimov trimer in
a three-component Fermi gas, Phys. Rev. Lett. 103, 130404 (2009).

S. Knoop, E Ferlaino, M. Mark, M. Berninger, H. Schébel, H.-C.
Négerl, and R. Grimm, Observation of an Efimov-like trimer res-
onance in ultracold atom-dimer scattering, Nat. Phys. 5, 227-230
(2009).

S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, and M.
Ueda, Nonuniversal Efimov atom-dimer resonances in a three-
component mixture of °Li, Phys. Rev. Lett. 105, 023201 (2010).

T. Lompe, T. B. Ottenstein, E Serwane, K. Viering, A. N. Wenz,
G. Zirn, and S. Jochim, Atom-dimer scattering in a three-
component Fermi gas, Phys. Rev. Lett. 105, 103201 (2010).

T. Lompe, T. B. Ottenstein, E Serwane, A. N. Wenz, G. Ziirn, and S.
Jochim, Radio-frequency association of Efimov trimers, Science
330, 940-944 (2010).

S. Nakajima, M. Horikoshi, T. Mukaiyama, P. Naidon, and M.
Ueda, Measurement of an Efimov trimer binding energy in a
three-component mixture of 614, Phys. Rev. Lett. 106, 143201
(2011).

O. Machtey, Z. Shotan, N. Gross, and L. Khaykovich, Association
of Efimov trimers from a three-atom continuum, Phys. Rev. Lett.
108, 210400 (2012).

C. E. Klauss, X. Xie, C. Lopez-Abadia, J. P. D’Incao, Z. Hadzibabic,
D. S. Jin, and E. A. Cornell, Observation of Efimov molecules cre-
ated from a resonantly interacting Bose gas, Phys. Rev. Lett. 119,
143401 (2017).

E Ferlaino, S. Knoop, M. Berninger, W. Harm, J. P. D’Incao, H.-C.
Négerl, and R. Grimm, Evidence for universal four-body states
tied to an Efimov trimer, Phys. Rev. Lett. 102, 140401 (2009).

159


http://dx.doi.org/10.1103/PhysRevLett.103.130404
http://dx.doi.org/10.1103/PhysRevLett.105.023201
http://dx.doi.org/10.1103/PhysRevLett.105.103201
http://dx.doi.org/10.1103/PhysRevLett.106.143201
http://dx.doi.org/10.1103/PhysRevLett.106.143201
http://dx.doi.org/10.1103/PhysRevLett.108.210406
http://dx.doi.org/10.1103/PhysRevLett.108.210406
http://dx.doi.org/10.1103/PhysRevLett.119.143401
http://dx.doi.org/10.1103/PhysRevLett.119.143401
http://dx.doi.org/10.1103/PhysRevLett.102.140401

BIBLIOGRAPHY

(113]

(114]

[115]

[116]

(117]

[118]

(119]

(120]

[121]

[122]

160

A. Zenesini, B. Huang, M. Berninger, S. Besler, H.-C. Néagerl, E
Ferlaino, R. Grimm, C. H. Greene, and J. von Stecher, Resonant
five-body recombination in an ultracold gas of bosonic atoms,
New J. Phys. 15, 043040 (2013).

B. Huang, L. A. Sidorenkov, and R. Grimm, Finite-temperature ef-
fects on a triatomic Efimov resonance in ultracold cesium, Phys!
Rev. A 91, 063622 (2015).

M. Kunitski, S. Zeller, J. Voigtsberger, A. Kalinin, L. P. H. Schmidt,
M. Schoffler, A. Czasch, W. Schollkopf, R. E. Grisenti, T. Jahnke,
D. Blume, and R. Dérnerl, Observation of the Efimov state of the
helium trimer, Science 348, 551-555 (2015).

Y. Wang, J. Wang, J. P. D'Incao, and C. H. Greene, Universal three-
body parameter in heteronuclear atomic systems, Phys. Rev. Lett!
109, 243201 (2012).

G. Barontini, C. Weber, E Rabatti, J. Catani, G. Thalhammer, M.
Inguscio, and E Minardi, Observation of heteronuclear atomic
Efimov resonances, Phys. Rev. Lett. 103, 043201 (2009).

R. Pires, J. Ulmanis, S. Hafner, M. Repp, A. Arias, E. D. Kuhnle, and
M. Weidemiiller, Observation of Efimov resonances in a mixture
with extreme mass imbalance, Phys. Rev. Lett. 112, 250404 (2014).

S.-K. Tung, K. Jiménez-Garca, J. Johansen, C. V. Parker, and C.
Chin, Geometric scaling of Efimov states in a 61i-133Cs mixture,
PhyS. Rev. Lett. 113, 240402 (2014).

R. A. W. Maier, M. Eisele, E. Tiemann, and C. Zimmermann, Efi-
mov resonance and three-body parameter in a lithium-rubidium
mixture, Phys. Rev. Lett. 115, 043201 (2015).

R.S. Bloom, M.-G. Hu, T. D. Cumby, and D. S. Jin, Tests of univer-
sal three-body physics in an ultracold Bose-Fermi mixture, Phys!
Rev. Lett. 111, 105301 (2013).

K. Kato, Y. Wang, J. Kobayashi, P. S. Julienne, and S. Inouye, Iso-
topic shift of atom-dimer Efimov resonances in K-Rb mixtures:
critical effect of multichannel Feshbach physics, Phys. Rev. Lett!
118, 163401 (2017).


http://dx.doi.org/10.1103/PhysRevA.91.063622
http://dx.doi.org/10.1103/PhysRevA.91.063622
http://dx.doi.org/10.1103/PhysRevLett.109.243201
http://dx.doi.org/10.1103/PhysRevLett.109.243201
http://dx.doi.org/10.1103/PhysRevLett.103.043201
http://dx.doi.org/10.1103/PhysRevLett.112.250404
http://dx.doi.org/10.1103/PhysRevLett.113.240402
http://dx.doi.org/10.1103/PhysRevLett.115.043201
http://dx.doi.org/10.1103/PhysRevLett.111.105301
http://dx.doi.org/10.1103/PhysRevLett.111.105301
http://dx.doi.org/10.1103/PhysRevLett.118.163401
http://dx.doi.org/10.1103/PhysRevLett.118.163401

Bibliography

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

J. Ulmanis, S. Héfner, R. Pires, E. D. Kuhnle, Y. Wang, C. H. Greene,
and M. Weidemiiller, Heteronuclear Efimov scenario with pos-
itive intraspecies scattering length, Phys. Rev. Lett. 117, 153201
(2016).

S. Hifner, J. Ulmanis, E. D. Kuhnle, Y. Wang, C. H. Greene, and M.
Weidemiiller, Role of the intraspecies scattering length in the Efi-
mov scenario with large mass difference, Phys. Rev. A 95, 062708
(2017).

J. Ulmanis, S. Hafner, R. Pires, E. Kuhnle, M. Weidemdiller, and
E. Tiemann, Universality of weakly bound dimers and Efimov
trimers close to Li-Cs feshbach resonances, New ]. Phys. 17,
055009 (2015).

J. Ulmanis, S. Hafner, R. Pires, E Werner, D. S. Petrov, E. D. Kuhnle,
and M. Weidemiiller, Universal three-body recombination and
Efimov resonances in an ultracold Li-Cs mixture, Phys. Rev. A 93,
022707 (2010).

K. Helfrich, H.-W. Hammer, and D. S. Petrov, Three-body problem
in heteronuclear mixtures with resonant interspecies interaction,
Phys. Rev. A 81, 042715 (2010).

G. Baym and C. Pethick, Landau Fermi-liquid theory: concepts
and applications (John Wiley & Sons, 2008).

R. Bishop, On the ground state of an impurity in a dilute fermi
gas, Ann. Phys. (N.Y.) 78, 391-420 (1973).

E. Dagotto, Correlated electrons in high-temperature supercon-
ductors, Rev. Mod. Phys. 66, 763—-840 (1994).

M. Schirber, Focus: Nobel prize—why particles have mass,
Physics 6, 111 (2013).

E Chevy, Bose polarons that strongly interact, Physics 9, 86
(2016).

M.-G. Hu, M. J. Van de Graaff, D. Kedar, J. P. Corson, E. A. Cornell,
and D. S. Jin, Bose polarons in the strongly interacting regime,
Phys. Rev. Lett. 117, 055301 (2016).

161


http://dx.doi.org/10.1103/PhysRevLett.117.153201
http://dx.doi.org/10.1103/PhysRevLett.117.153201
http://dx.doi.org/10.1103/PhysRevA.95.062708
http://dx.doi.org/10.1103/PhysRevA.95.062708
http://dx.doi.org/10.1103/PhysRevA.93.022707
http://dx.doi.org/10.1103/PhysRevA.93.022707
http://dx.doi.org/10.1103/PhysRevA.81.042715
http://dx.doi.org/10.1103/RevModPhys.66.763
http://dx.doi.org/10.1103/PhysRevLett.117.055301

BIBLIOGRAPHY

[134]

[135]

[136]

[137]

(138]

[139]

(140]

(141]

[142]

(143]

162

P. Massignan, G. M. Bruun, and H. T. C. Stoof, Spin polarons and
molecules in strongly interacting atomic Fermi gases, Phys. Rev.
A 78, 031602 (2008).

N. V. Prokof’ev and B. V. Svistunov, Bold diagrammatic Monte
Carlo: a generic sign-problem tolerant technique for polaron
models and possibly interacting many-body problems, Phys. Rev.
B'77,125101 (2008).

N. Prokof’ev and B. Svistunov, Fermi-polaron problem: diagram-
matic Monte Carlo method for divergent sign-alternating series,
Phys. Rev. B 77, 020408 (2008).

S. Pilati, G. Bertaina, S. Giorgini, and M. Troyer, Itinerant ferro-
magnetism of a repulsive atomic Fermi gas: a quantum Monte
Carlo study, Phys. Rev. Lett. 105, 030405 (2010).

X. Cui and H. Zhai, Stability of a fully magnetized ferromagnetic
state in repulsively interacting ultracold Fermi gases, Phys. Rev. A
81, 041602 (2010).

P. Massignan and G. Bruun, Repulsive polarons and itinerant fer-
romagnetism in strongly polarized Fermi gases, Eur. Phys. J. D 65,
83-89 (2011).

R. Schmidt and T. Enss, Excitation spectra and rf response near
the polaron-to-molecule transition from the functional renor-
malization group, Phys. Rev. A 83, 063620 (2011).

M. Cetina, M. Jag, R. S. Lous, J. T. M. Walraven, R. Grimm, R. S.
Christensen, and G. M. Bruun, Decoherence of impurities in a
Fermi sea of ultracold atoms, Phys. Rev. Lett. 115, 135302 (2015).

S. Nascimbeéne, N. Navon, K. J. Jiang, L. Tarruell, M. Teichmann,
J. McKeever, E Chevy, and C. Salomon, Collective oscillations of
an imbalanced Fermi gas: axial compression modes and polaron
effective mass, Phys. Rev. Lett. 103, 170402 (2009).

J. Tempere, W. Casteels, M. K. Oberthaler, S. Knoop, E. Timmer-
mans, and J. T. Devreese, Feynman path-integral treatment of the
BEC-impurity polaron, Phys. Rev. B 80, 184504 (2009).


http://dx.doi.org/10.1103/PhysRevA.78.031602
http://dx.doi.org/10.1103/PhysRevA.78.031602
http://dx.doi.org/10.1103/PhysRevB.77.125101
http://dx.doi.org/10.1103/PhysRevB.77.125101
http://dx.doi.org/10.1103/PhysRevB.77.020408
http://dx.doi.org/10.1103/PhysRevLett.105.030405
http://dx.doi.org/10.1103/PhysRevA.81.041602
http://dx.doi.org/10.1103/PhysRevA.81.041602
http://dx.doi.org/10.1103/PhysRevA.83.063620
http://dx.doi.org/10.1103/PhysRevLett.115.135302
http://dx.doi.org/10.1103/PhysRevLett.103.170402
http://dx.doi.org/10.1103/PhysRevB.80.184504

Bibliography

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

S. P Rath and R. Schmidt, Field-theoretical study of the Bose po-
laron, Phys. Rev. A 88, 053632 (2013).

W. Li and S. Das Sarma, Variational study of polarons in Bose-
Einstein condensates, Phys. Rev. A 90, 013618 (2014).

L.A. P Ardila and S. Giorgini, Impurity in a Bose-Einstein conden-
sate: study of the attractive and repulsive branch using quantum
Monte Carlo methods, Phys. Rev. A 92, 033612 (2015).

R. S. Christensen, J. Levinsen, and G. M. Bruun, Quasiparticle
properties of a mobile impurity in a Bose-Einstein condensate,
Phys. Rev. Lett. 115, 160401 (2015).

J. Levinsen, M. M. Parish, and G. M. Bruun, Impurity in a Bose-
Einstein condensate and the Efimov effect, Phys. Rev. Lett. 115,
125302 (2015).

E Grusdt, Y. E. Shchadilova, A. N. Rubtsov, and E. Demler, Renor-
malization group approach to the Frohlich polaron model: appli-
cation to impurity-BEC problem, Sci. Rep. 5 (2015).

C. Zipkes, S. Palzer, C. Sias, and M. Kohl, A trapped single ion in-
side a Bose-Finstein condensate, Nature 464, 388-391 (2010).

S. Schmid, A. Harter, and J. H. Denschlag, Dynamics of a cold
trapped ion in a Bose-Einstein condensate, Phys. Rev. Lett. 105,
133202 (2010).

J. B. Balewski, A. T. Krupp, A. Gaj, D. Peter, H. P. Biichler, R. Low,
S. Hofferberth, and T. Pfau, Coupling a single electron to a Bose-
Einstein condensate, Nature 502, 664-667 (2013).

S. Ospelkaus, C. Ospelkaus, O. Wille, M. Succo, P. Ernst, K. Seng-
stock, and K. Bongs, Localization of bosonic atoms by fermionic
impurities in a three-dimensional optical lattice, Phys. Rev. Lett!
96, 180403 (20006).

R. Scelle, T. Rentrop, A. Trautmann, T. Schuster, and M. K.
Oberthaler, Motional coherence of fermions immersed in a Bose
gas, Phys. Rev. Lett. 111, 070401 (2013).

163


http://dx.doi.org/10.1103/PhysRevA.88.053632
http://dx.doi.org/10.1103/PhysRevA.90.013618
http://dx.doi.org/10.1103/PhysRevA.92.033612
http://dx.doi.org/10.1103/PhysRevLett.115.160401
http://dx.doi.org/10.1103/PhysRevLett.115.125302
http://dx.doi.org/10.1103/PhysRevLett.115.125302
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1103/PhysRevLett.105.133202
http://dx.doi.org/10.1103/PhysRevLett.96.180403
http://dx.doi.org/10.1103/PhysRevLett.96.180403
http://dx.doi.org/10.1103/PhysRevLett.111.070401

BIBLIOGRAPHY

[155]

[156]

[157]

[158]

[159]

[160]

[161]

(162]

[163]

[164]

[165]

[166]

164

N. Spethmann, E Kindermann, S. John, C. Weber, D. Meschede,
and A. Widera, Dynamics of single neutral impurity atoms im-
mersed in an ultracold gas, Phys. Rev. Lett. 109, 235301 (2012).

P. Naidon, Two impurities in a Bose-Einstein condensate: from
Yukawa to Efimov attracted polarons, arXiv:1607.04507 (2016).

L. A. P Ardila and S. Giorgini, Bose polaron problem: effect
of mass imbalance on binding energy, Phys. Rev. A 94, 063640
(2016).

M. Sun, H. Zhai, and X. Cui, Visualizing the Efimov correlation in
Bose polarons, Phys. Rev. Lett. 119, 013401 (2017).

M. Sun and X. Cui, Enhancing the Efimov correlation in Bose po-
larons with large mass imbalance, Phys. Rev. A 96, 022707 (2017).

S. M. Yoshida, S. Endo, J. Levinsen, and M. M. Parish, Universality
of an impurity in a Bose-Einstein condensate, arXiv:1710.02968
(2017).

J. Levinsen, M. M. Parish, R. S. Christensen, J. J. Arlt, and G. M.
Bruun, Finite-temperature behavior of the Bose polaron, Phys!
Rev. A 96, 063622 (2017).
N.-E. Guenther, P Massignan, M. Lewenstein, and G. M.
Bruun, Bose polarons at finite temperature and strong coupling,
arXiv:1708.08861 (2017).

E Chevy, Universal phase diagram of a strongly interacting Fermi
gas with unbalanced spin populations, Phys. Rev. A 74, 063628
(2000).

Y. E. Shchadilova, R. Schmidt, E Grusdt, and E. Demler, Quantum
dynamics of ultracold Bose polarons, Phys. Rev. Lett. 117, 113002
(2010).

N. Winter, Creation of 39K Bose-Einstein condensates with tun-
able interaction, PhD thesis (Aarhus University, 2013).

L. Wacker, Few-body physics with ultracold potassium rubidium
mixtures, PhD thesis (Aarhus University, 2015).


http://dx.doi.org/10.1103/PhysRevLett.109.235301
http://dx.doi.org/10.1103/PhysRevA.94.063640
http://dx.doi.org/10.1103/PhysRevA.94.063640
http://dx.doi.org/10.1103/PhysRevLett.119.013401
http://dx.doi.org/10.1103/PhysRevA.96.022707
http://dx.doi.org/10.1103/PhysRevA.96.063622
http://dx.doi.org/10.1103/PhysRevA.96.063622
http://dx.doi.org/10.1103/PhysRevA.74.063628
http://dx.doi.org/10.1103/PhysRevA.74.063628
http://dx.doi.org/10.1103/PhysRevLett.117.113002
http://dx.doi.org/10.1103/PhysRevLett.117.113002

Bibliography

[167]

[168]

[169]

[170]

[171]

[172]

[173]

[174]

[175]

[176]

[177]

G. Kleine-Biining, Lange Kohédrenzzeit optisch gefangener En-
sembles, PhD thesis (University of Hannover, 2011).

J. Will, Symmetrieabhéngige Frequenzverschiebungen in Atom-
uhren, PhD thesis (University of Hannover, 2012).

G. Kleine Biining, J. Will, W. Ertmer, C. Klempt, and J. Arlt, A
slow gravity compensated atom laser, Appl. Phys. B 100, 117-123
(2010).

G. Kleine Biining, J. Will, W. Ertmer, E. Rasel, J. Arlt, C. Klempt, E
Ramirez-Martinez, E Piéchon, and P. Rosenbusch, Extended co-
herence time on the clock transition of optically trapped rubid-
ium, Phys. Rev. Lett. 106, 240801 (2011).

A. Lercher, T. Takekoshi, M. Debatin, B. Schuster, R. Rameshan,
E Ferlaino, R. Grimm, and H.-C. Négerl, Production of a dual-
species Bose-Einstein condensate of Rb and Cs atoms, Eur. Phys.
J. D 65,3-9 (2011).

S. Sugawa, R. Yamazaki, S. Taie, and Y. Takahashi, Bose-Einstein
condensate in gases of rare atomic species, Phys. Rev. A 84,
011610 (2011).

S. Stellmer, R. Grimm, and E Schreck, Production of quantum-
degenerate strontium gases, Phys. Rev. A 87, 013611 (2013).

B. Pasquiou, A. Bayerle, S. M. Tzanova, S. Stellmer, J. Szczep-
kowski, M. Parigger, R. Grimm, and E Schreck, Quantum degen-
erate mixtures of strontium and rubidium atoms, Phys. Rev. A 88,
023601 (2013).

G. Modugno, M. Modugno, E Riboli, G. Roati, and M. Inguscio,
Two atomic species superfluid, Phys. Rev. Lett. 89, 190404 (2002).

G. Thalhammer, G. Barontini, L. De Sarlo, J. Catani, E Minardi,
and M. Inguscio, Double species Bose-Einstein condensate with
tunable interspecies interactions, Phys. Rev. Lett. 100, 210402
(2008).

T. Kishimoto, J. Kobayashi, K. Noda, K. Aikawa, M. Ueda, and S.
Inouye, Direct evaporative cooling of 'K into a Bose-Einstein
condensate, Phys. Rev. A 79, 031602 (2009).

165


http://dx.doi.org/10.1103/PhysRevLett.106.240801
http://dx.doi.org/10.1103/PhysRevA.84.011610
http://dx.doi.org/10.1103/PhysRevA.84.011610
http://dx.doi.org/10.1103/PhysRevA.87.013611
http://dx.doi.org/10.1103/PhysRevA.88.023601
http://dx.doi.org/10.1103/PhysRevA.88.023601
http://dx.doi.org/10.1103/PhysRevLett.89.190404
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevLett.100.210402
http://dx.doi.org/10.1103/PhysRevA.79.031602

BIBLIOGRAPHY

(178]

(179]

(180]

(181]

[182]

(183]

[184]

(185]

(186]

166

V. Gokhroo, G. Rajalakshmi, R. K. Easwaran, and C. Unnikrish-
nan, Sub-Doppler deep-cooled bosonic and fermionic isotopes
of potassium in a compact 2D*-3D MOT set-up, J. Phys. B At.
Mol. Opt. Phys. 44, 115307 (2011).

M. Landini, S. Roy, G. Roati, A. Simoni, M. Inguscio, G. Modugno,
and M. Fattori, Direct evaporative cooling of 3K atoms to Bose-
Einstein condensation, Phys. Rev. A 86, 033421 (2012).

C. Klempt, T. van Zoest, T. Henninger, O. Topic, E. Rasel, W. Ert-
mer, and J. Arlt, Ultraviolet light-induced atom desorption for
large rubidium and potassium magneto-optical traps, Phys. Rev
A73,013410 (20006).

U. Schldder, H. Engler, U. Schiinemann, R. Grimm, and M. Wei-
demiiller, Cold inelastic collisions between lithium and cesium
in a two-species magneto-optical trap, Eur. Phys. J. D 7, 331-340
(1999).

L. G. Marcassa, G. D. Telles, S. R. Muniz, and V. S. Bagnato, Col-
lisional losses in a K-Rb cold mixture, Phys. Rev. A 63, 013413
(2000).

W. Ketterle, K. B. Davis, M. A. Joffe, A. Martin, and D. E. Pritchard,
High densities of cold atoms in a dark spontaneous-force optical
trap, Phys. Rev. Lett. 70, 2253-2256 (1993).

M. H. Anderson, W. Petrich, J. R. Ensher, and E. A. Cornell, Re-
duction of light-assisted collisional loss rate from a low-pressure
vapor-cell trap, Phys. Rev. A 50, R3597-R3600 (1994).

C. G. Townsend, N. H. Edwards, K. P. Zetie, C. J. Cooper, J. Rink,
and C. J. Foot, High-density trapping of cesium atoms in a dark
magneto-optical trap, Phys. Rev. A 53, 1702-1714 (1996).

N. Radwell, G. Walker, and S. Franke-Arnold, Cold-atom densi-
ties of more than 102 cm™ in a holographically shaped dark
spontaneous-force optical trap, Phys. Rev. A 88, 043409 (2013).


http://dx.doi.org/10.1103/PhysRevA.86.033421
http://dx.doi.org/10.1103/PhysRevA.73.013410
http://dx.doi.org/10.1103/PhysRevA.73.013410
http://dx.doi.org/10.1103/PhysRevA.63.013413
http://dx.doi.org/10.1103/PhysRevA.63.013413
http://dx.doi.org/10.1103/PhysRevLett.70.2253
http://dx.doi.org/10.1103/PhysRevA.50.R3597
http://dx.doi.org/10.1103/PhysRevA.53.1702
http://dx.doi.org/10.1103/PhysRevA.88.043409

Bibliography

(187]

(188]

[189]

[190]

[191]

[192]

[193]

[194]

[195]

[196]

[197]

N. Nemitz, E Baumer, E Miinchow, S. Tassy, and A. Gorlitz, Pro-
duction of heteronuclear molecules in an electronically excited
state by photoassociation in a mixture of ultracold Yb and Rb,
Phys. Rev. A79, 061403 (2009).

S. Dutta, A. Altaf, J. Lorenz, D. Elliott, and Y. P. Chen, Interspecies
collision-induced losses in a dual species ‘Li-®°Rb magneto-
optical trap, J. Phys. B At. Mol. Opt. Phys. 47, 105301 (2014).

Aarhus University’s Strategy 2013-2020, http://www.au.dk/en/
about/profile/strategy/, 2013.

M. Landini, S. Roy, L. Carcagn, D. Trypogeorgos, M. Fattori, M. In-
guscio, and G. Modugno, Sub-doppler laser cooling of potassium
atoms, Phys. Rev. A 84, 043432 (2011).

W. Ketterle and N. Van Druten, Evaporative cooling of trapped
atoms, Adv. At. Mol. Opt. Phys. 37, 181-236 (1996).

G. Modugno, G. Ferrari, G. Roati, R. ]J. Brecha, A. Simoni, and
M. Inguscio, Bose-Einstein condensation of potassium atoms by
sympathetic cooling, Science 294, 1320-1322 (2001).

G. Ferrari, M. Inguscio, W. Jastrzebski, G. Modugno, G. Roati,
and A. Simoni, Collisional properties of ultracold K-Rb mixtures,
Phys. Rev. Lett. 89, 053202 (2002).

M. J. Edmonds, K. L. Lee, and N. P. Proukakis, Nonequilibrium
kinetic theory for trapped binary condensates, Phys. Rev. A 92,
063607 (2015).

M. Zaccanti, C. D’Errico, E Ferlaino, G. Roati, M. Inguscio, and

G. Modugno, Control of the interaction in a Fermi-Bose mixture,
Phys. Rev. A 74, 041605 (2006).

S. Tojo, Y. Taguchi, Y. Masuyama, T. Hayashi, H. Saito, and T. Hi-
rano, Controlling phase separation of binary Bose-Einstein con-
densates via mixed-spin-channel Feshbach resonance, Phys. Rev.
A 82, 033609 (2010).

E. Nicklas, H. Strobel, T. Zibold, C. Gross, B. A. Malomed, P. G.
Kevrekidis, and M. K. Oberthaler, Rabi flopping induces spatial
demixing dynamics, Phys. Rev. Lett. 107, 193001 (2011).

167


http://dx.doi.org/10.1103/PhysRevA.79.061403
http://dx.doi.org/10.1103/PhysRevA.84.043432
http://dx.doi.org/10.1103/PhysRevLett.89.053202
http://dx.doi.org/10.1103/PhysRevA.92.063607
http://dx.doi.org/10.1103/PhysRevA.92.063607
http://dx.doi.org/10.1103/PhysRevA.74.041605
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevA.82.033609
http://dx.doi.org/10.1103/PhysRevLett.107.193001

BIBLIOGRAPHY

(198]

[199]

[200]

(201]

(202]

(203]

[204]

[205]

[206]

(207]

168

S. Ospelkaus, C. Ospelkaus, L. Humbert, K. Sengstock, and K.
Bongs, Tuning of heteronuclear interactions in a degenerate
Fermi-Bose mixture, Phys. Rev. Lett. 97, 120403 (2006).

E. Zaremba, T. Nikuni, and A. Griffin, Dynamics of trapped Bose
gases at finite temperatures, J. Low. Temp. Phys. 116, 277-345
(1999).

C. Ospelkaus and S. Ospelkaus, Heteronuclear quantum gas mix-
tures, J. Phys. B At. Mol. Opt. Phys. 41, 203001 (2008).

R. Grimm, M. Weidemiiller, and Y. B. Ovchinnikov, Optical dipole
traps for neutral atoms, Adv. At. Mol. Opt. Phys. 42, 95-170 (2000).

D. S. Hall, M. R. Matthews, J. R. Ensher, C. E. Wieman, and E. A.
Cornell, Dynamics of component separation in a binary mix-
ture of Bose-Einstein condensates, Phys. Rev. Lett. 81, 1539-1542
(1998).

J. J. Chang, P. Engels, and M. A. Hoefer, Formation of disper-
sive shock waves by merging and splitting Bose-Einstein conden-
sates, Phys. Rev. Lett. 101, 170404 (2008).

S. Ivanov and A. Kamchatnov, Expansion dynamics of a two-
component quasi-one-dimensional Bose-Einstein condensate:
phase diagram, self-similar solutions, and dispersive shock
waves, J. Exp. Theor. Phys 124, 546-563 (2017).

A. Marte, T. Volz, J. Schuster, S. Diirr, G. Rempe, E. G. M. van
Kempen, and B. J. Verhaar, Feshbach resonances in rubidium 87:
precision measurement and analysis, Phys. Rev. Lett. 89, 283202
(2002).

M. Mikkelsen, A. Jensen, D. Fedorov, and N. T. Zinner, Three-
body recombination of two-component cold atomic gases into
deep dimers in an optical model, J. Phys. B At. Mol. Opt. Phys. 48,
085301 (2015).

M.-G. Hu, R. S. Bloom, D. S. Jin, and J. M. Goldwin, Avalanche-
mechanism loss at an atom-molecule Efimov resonance, Phys.
Rev. A 90, 013019 (2014).


http://dx.doi.org/10.1103/PhysRevLett.97.120403
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.81.1539
http://dx.doi.org/10.1103/PhysRevLett.101.170404
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1103/PhysRevLett.89.283202
http://dx.doi.org/10.1103/PhysRevA.90.013619
http://dx.doi.org/10.1103/PhysRevA.90.013619

Bibliography

[208]

[209]
(210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

G. Thalhammer, G. Barontini, J. Catani, E Rabatti, C. Weber, A.
Simoni, E Minardi, and M. Inguscio, Collisional and molecular
spectroscopy in an ultracold Bose-Bose mixture, New J. Phys. 11,
055044 (2009).

E. Tiemann, Private communication.

M. W. Zwierlein, Z. Hadzibabic, S. Gupta, and W. Ketterle, Spec-
troscopic insensitivity to cold collisions in a two-state mixture of
Fermions, Phys. Rev. Lett. 91, 250404 (2003).

N. B. Jorgensen, Few-body physics in ultracold mixtures of potas-
sium and rubidium, part-A dissertation, Aarhus University, 2015.

M. M. Parish and J. Levinsen, Quantum dynamics of impurities
coupled to a Fermi sea, Phys. Rev. B 94, 184303 (2016).

P. Makotyn, C. E. Klauss, D. L. Goldberger, E. Cornell, and D. S. Jin,
Universal dynamics of a degenerate unitary Bose gas, Nat. Phys.
10,116-119 (2014).

C. Eigen, J. A. P. Glidden, R. Lopes, N. Navon, Z. Hadzibabic, and
R. P. Smith, Universal scaling laws in the dynamics of a homoge-
neous unitary Bose gas, Phys. Rev. Lett. 119, 250404 (2017).

T. Rentrop, A. Trautmann, E A. Olivares, E Jendrzejewski, A. Kom-
nik, and M. K. Oberthaler, Observation of the phononic Lamb
shift with a synthetic vacuum, Phys. Rev. X 6, 041041 (2016).

M. Hohmann, E Kindermann, T. Lausch, D. Mayer, E Schmidt, E.
Lutz, and A. Widera, Individual tracer atoms in an ultracold dilute
gas, Phys. Rev. Lett. 118, 263401 (2017).

E Camargo, R. Schmidt, J. Whalen, R. Ding, G. Woehl Jr, S.
Yoshida, J. Burgdorfer, E Dunning, H. Sadeghpour, E. Dem-
ler, and T. Killian, Creation of Rydberg polarons in a Bose gas,
arXiv:1706.03717v3 (2017).

B. Midya, M. Tomza, R. Schmidt, and M. Lemeshko, Rotation of
cold molecular ions inside a Bose-Einstein condensate, Phys. Rev!
A 94, 041601 (2016).

N. J. S. Loft, Z. Wu, and G. M. Bruun, Mixed-dimensional Bose
polaron, Phys. Rev. A 96, 033625 (2017).

169


http://dx.doi.org/10.1103/PhysRevLett.91.250404
http://dx.doi.org/10.1103/PhysRevB.94.184303
http://dx.doi.org/10.1103/PhysRevLett.119.250404
http://dx.doi.org/10.1103/PhysRevX.6.041041
http://dx.doi.org/10.1103/PhysRevLett.118.263401
http://dx.doi.org/10.1103/PhysRevA.94.041601
http://dx.doi.org/10.1103/PhysRevA.94.041601
http://dx.doi.org/10.1103/PhysRevA.96.033625

BIBLIOGRAPHY

(220]

[221]

[222]

[223]

[224]

[225]

(226]

[227]
(228]

[229]

(230]

170

L. Parisi and S. Giorgini, Quantum Monte Carlo study of the Bose-
polaron problem in a one-dimensional gas with contact interac-
tions, Phys. Rev. A 95, 023619 (2017).

Y. Ashida, R. Schmidt, L. Tarruell, and E. Demler, Many-body in-
terferometry of magnetic polaron dynamics, arXiv:1701.01454v2
(2017).

E Grusdt, K. Seetharam, Y. Shchadilova, and E. Demler, Strong
coupling Bose polarons out of equilibrium: dynamical RG ap-
proach, arXiv:1711.03478v2 (2017).

T. Lausch, A. Widera, and M. Fleischhauer, Prethermalization in
the cooling dynamics of an impurity in a BEC, arXiv:1708.09242
(2017).

T. Lausch, A. Widera, and M. Fleischhauer, Role of thermal two-
phonon scattering for impurity dynamics in a low-dimensional
BEC, arXiv:1712.07912 (2017).

R. Schmidt, M. Knap, D. A. Ivanov, J.-S. You, M. Cetina, and E.
Demler, Universal many-body response of heavy impurities cou-
pled to a Fermi sea, arXiv:1702.08587 (2017).

M. Sidler, P. Back, O. Cotlet, A. Srivastava, T. Fink, M. Kroner, E.
Demler, and A. Imamoglu, Fermi polaron-polaritons in charge-
tunable atomically thin semiconductors, Nat. Phys. 13, 255-261
(2017).

G. M. Bruun, Private communication.

T. D. Lee, K. Huang, and C. N. Yang, Eigenvalues and eigenfunc-
tions of a Bose system of hard spheres and its low-temperature
properties, Phys. Rev. 106, 1135-1145 (1957).

D. S. Petrov, Quantum mechanical stabilization of a collapsing
Bose-Bose mixture, Phys. Rev. Lett. 115, 155302 (2015).

C. Cabrera, L. Tanzi, J. Sanz, B. Naylor, P. Thomas, P. Cheiney, and
L. Tarruell, Quantum liquid droplets in a mixture of Bose-Einstein
condensates, Science, published online (eaa05686) (2017).


http://dx.doi.org/10.1103/PhysRevA.95.023619
http://dx.doi.org/10.1103/PhysRev.106.1135
http://dx.doi.org/10.1103/PhysRevLett.115.155302

Bibliography 171

[231]

[232]

[233]

(234]

[235]

[236]

[237]

[238]

P. Cheiney, C. Cabrera, J. Sanz, B. Naylor, L. Tanzi, and L. Tarruell,
Bright soliton to quantum droplet transition in a mixture of Bose-
Einstein condensates, arXiv:1710.11079 (2017).

G. Semeghini, G. Ferioli, L. Masi, C. Mazzinghi, L. Wol-
swijk, E Minardi, M. Modugno, G. Modugno, M. Inguscio, and
M. Fattori, Self-bound quantum droplets in atomic mixtures,
arXiv:1710.10890 (2017).

H. Kadau, M. Schmitt, M. Wenzel, C. Wink, T. Maier, I. Ferrier-
Barbut, and T. Pfau, Observing the Rosensweig instability of a
quantum ferrofluid, Nature 530, 194-197 (2016).

L. Chomaz, S. Baier, D. Petter, M. J. Mark, E Wachtler, L. San-
tos, and E Ferlaino, Quantum-fluctuation-driven crossover from
a dilute Bose-Einstein condensate to a macrodroplet in a dipolar
quantum fluid, Phys. Rev. X 6, 041039 (2016).

I. Ferrier-Barbut, H. Kadau, M. Schmitt, M. Wenzel, and T. Pfau,
Observation of quantum droplets in a strongly dipolar Bose gas,
Phys. Rev. Lett. 116, 215301 (2016).

M. Schmitt, M. Wenzel, E Bottcher, I. Ferrier-Barbut, and T. Pfau,
Self-bound droplets of a dilute magnetic quantum liquid, Nature
539, 259-262 (2016).

N. B. Jorgensen, Single- and two-qubit quantum gates using su-
perimposed optical lattice potentials, bachelor’s thesis (Aarhus
University, 2012).

D. Birkmose, Investigation of dual species Bose-Einstein conden-
sates, MA thesis (Aarhus University, 2015).


http://dx.doi.org/10.1103/PhysRevX.6.041039
http://dx.doi.org/10.1103/PhysRevLett.116.215301

	Abstract
	Resumé
	Preface
	List of publications
	Contents
	Introduction
	Ultracold mixtures of Kand 87Rb
	Thesis outline

	Properties and Interactions of Ultracold Mixtures
	Condensation of Non-Interacting Bosons
	Interactions Between Ultracold Atoms
	Interatomic Potentials and the van der Waals Radius
	Basic Scattering Theory
	Three-Body Recombination

	Feshbach Resonances
	Interactions in the Condensed State
	The Gross-Pitaevskii Equation
	Two-Component Bose-Einstein Condensates

	Efimov Physics in Ultracold Gases
	Studies of Homonuclear Efimov Physics
	Heteronuclear Efimov Physics

	Polarons in Ultracold Gases
	Studies of Polaron Physics in Ultracold Gases
	The Bose Polaron
	Theoretical Descriptions of the Bose Polaron


	Experimental Procedure and Apparatus
	Apparatus Overview
	Magneto-Optical Trapping and Cooling of 87Rb and K
	Magnetic Trapping and Evaporation
	State Preparation and Evaporation in the Optical Dipole Trap
	Accuracy and Precision of the Magnetic Field
	Spectroscopy of Kat Large Magnetic Fields


	Tunable Dual-Species Bose-Einstein Condensates
	Characterization of the Interspecies Feshbach Resonance
	Center-of-Mass after Time-of-Flight Expansion

	Theory of in-Trap Phase Separation and Dynamics
	Simulation Parameters
	Ground-State Phase Diagram in a Harmonic Trap
	Two-Component Dipole Oscillations
	Discussion

	Expansion of Finite Temperature Dual-Species Condensates
	Simulation and Experimental Parameters
	Center-of-Mass Positions after Expansion
	Density Distributions after Expansion
	Effect of the Gravitational Sag
	Discussion


	Three-Body Physics in Kand Mixtures of KRb
	Evaluation of Three-Body Losses
	Controversy of Efimov Resonances in KRb Mixtures
	Loss Spectroscopy of KRb Mixtures
	Three-Body Losses in K87Rb
	Three-Body Losses in 41K87Rb
	Discussion

	Temperature Dependence of an Efimov Resonance in K
	Experimental Procedure
	Temperature Dependence of the Efimov Resonance


	Observation of Polarons in a Bose-Einstein Condensate
	Experimental Approach
	Charactarization of the Feshbach resonance
	Detection of Zero-Crossing
	Molecular Spectroscopy

	Polaron Spectrocopy Procedure
	Spectrum of the Bose Polaron
	Average Energy and Width of the Spectrum

	Transferred Fraction
	The Repulsive Branch Discrepancy
	Quantum Monte-Carlo Simulations
	Simple Model for Dynamics and Decay of Impurities
	Wave Function Overlap of Initial and Final States

	Cooling Near Interstate Feshbach Resonance
	Summary

	Thesis Conclusions
	Outlook

	Additional publications
	One- and Two-Qubit Quantum Gates Using Superimposed Optical Lattice Potentials
	A Simple Laser Locking System Based on a Field-Programmable Gate Array

	Bibliography

