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ABSTRACT

The creation of Bose-FEinstein condensates has revolutionised atomic physics.
Access to a source of coherent atomic clouds has made the experimental verifica-
tion of theoretical models has taken physics research to a new regime, where the-
oretical models may be implemented In this thesis, a number of new approaches
towards creation and manipulation of macroscopic quantum states is presented.
The research falls into two main areas:

The first research area explores the wave packets and localized states in an op-
tical lattice. Wave packets are created in the combination of a one-dimensional
optical lattice and a weak magnetic trap by amplitude modulation of the lattice. It
is shown the wave packets may be deexcited into a lattice state that stays localized
for hundreds of milliseconds. The deexcitation process resembles a beam splitter,
where the frequency, amplitude and duration of the modulation are experimental
parameters for controlling the splitting. After deexcitation, RF radiation allows for
manipulation of the localized states.

Within a second research area, spin-changing collisions in a Bose-Einstein con-
densate are investigated within an optical lattice. The collision process resem-
bles parametric amplification and produces correlated pairs in two different spin
states. In the optical lattice, one spatial dimension is effectively frozen out, lead-
ing to a two-dimensional configuration. It is shown that the combination of strong
axial compression and relatively weak radial confinement leads to a regime, where
atoms are scattered into many spatial modes. The spin-changing collisions may be
tuned through an applied magnetic field. Our investigations show that the spatial
structure is a superposition of energetically allowed modes, leading to the obser-
vation of ring structures.

The correlated pairs created in this process have potential as a source for EPR
states showing non-local entanglement. We demonstrate anti-correlation in mo-
mentum owing to the conservation of momentum in the collision process, and
show that only a subset of the allowed modes participate, indicating that a bosonic
stimulation of certain modes occurs.

The final part of this thesis describes progress towards atom number stabili-
sation using Faraday detection. Preliminary results show a stability of 1073 of a
thermal cloud close to the critical temperature of 8’Rb.



RESUME

Skabelsen af Bose-Einstein-kondensater har revolutioneret atomfysikken. Den
eksperimentalle adgang til kozerente skyer af atomer har gjort det simplere at be-
kreefte teoretiske modeller, der ellers sjeeldent lader sig realisere. I denne afhand-
ling beskrives nye tilgange til at skabe og manipulere makroskopiske, kvanteme-
kaniske tilstande. Forskningen kan inddeles i to hovedomrader:

I det forste omréde undersoges bolgepakker oglokaliserede tilstandei et optisk
gitter.Bolgepakkerne skabes i det samlede potential fra en svag magnetisk feelde og
et en-dimensionalt optisk gitter, der amplitudemoduleres. Imens atomerne oscil-
lerer i den magnetiske feelde, kan belgebakkerne deeksiteres til en tilstand i det
optiske gitter, hvor de forbliver lokaliserede i hundredvis af millisekunder. Deek-
sitationsprocessen efterligner en optisk beam splitter, hvor en del af belgepakken
overfores til gittertilstanden, mens resten propagerer videre. Delingsforholdet kan
kontrolleres med frekvensen, amplituden og varigheden af pulsen, og de lokalise-
rede tilstande kan yderligere manipuleres med RF-straling.

I det andet omrade beskrives spin-zndrende kollisioner i et spinor-kondensat
i et optisk gitter. Kollisionsprocessen er identisk med parametrisk forsterkning og
producerer korrelerede atompar i to forskellige spin-tilstande. I det optiske gitter
er en af de rumlige dimensioner frosset ud, sa kondensatet er i en to-dimensional
konfiguration, og kombinationen af en steerk aksial fortaetning og en forholdsvis
svag radial indespeerring placerer systemet i et multi-mode-regi.

Spinkonfigurationen efter en spin-andrende kollision har lavere energi end
for kollisionen. Den overskydende energi omdannes til rumlige eksitationer, og
da meangden af resterende energi kan justeres med et ydre magnetfelt, kan den
rumlige profil varieres gennem magnetfeltet. | multi-mode-regiet er den rumlige
struktur en superposition af tilgaengelige modes, hvilket forer til ringformede skyer
efter frit fald.

De korrelerede par, der dannes i denne proces, kan pé leengere sigt bruges som
en kilde til EPR-tilstande, der udviser ikke-lokal sammenfiltring. Vi demonstrerer
anti-korreleration af impuls pa grund af impulsbevarelse og viser, at kun en del-
maengde af de tilladte modes deltager i den den rumlige profil. Dette indikerer en
bosonisk stimulering af udvalgte modes i kollisionerne.

I sidste del af athandlingen bekrives igangveaerende eksperimenter, der leder
frem mod stabilisering af meengden af atomer ved hjeelp affeedback pa RF-frekven-
sen i lobet af fordampningskelingen. Forelgbige resultater for en termisk sky af
87RD taet pa den kritiske temperatur viser en stabilitet pa 1073,
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PREFACE

The work presented in this thesis was carried out in the “Lattice experiment” within
the Ultracold Quantum Gases Group at Aarhus University over four years. I started
my PhD in September 2010 together with Nils Winter on an experiment that had
been largely unused for the last year. Jan Arlt had taken over responsibility for
restoring this experiment together with Jacob Sherson and Sune Mai, and upon
my arrival, the laboratory was brought to a working state. With the graduation of
Sune Mai we were left in the unusual situation of working with a well-designed ex-
periment, but not knowing the details of it, since none of us had been involved in
its construction. Armed with the thesis of Henrik Kjeer Andersen, we developed a
deeper understanding of the experiment over the following year, expecially during
the move of the laboratory to its current location.

Through my PhD, my work has been divided between three projects: localized
wave packets in an optical lattice, spin dynamics in an optical lattice and non-
destructive Faraday detection of a BEC. The wave packet work was initiated by
Sung Jong Park and Sune Mai, and these investigations were continued and pub-
lished. However, during the first year it was decided that I should focus on spinor
physics, and this subject naturally takes up the largest part of this thesis. At the
same time, it was decided that Ph.D student Miroslav Gajdacz should focus on
Faraday detection and feedback.
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CHAPTER 1
INTRODUCTION

1.1 Bose-Einstein condensates and quantum technology

Since the beginning of the 20th century, quantum mechanics has been the lead-
ing theory for describing matter and its dynamics at the microscopic level. The
pioneering work of Niels Bohr, Erwin Schrédinger, Werner Heisenberg, Paul Dirac
and many others led to the formulation of quantum theory as we know it today.
Although its measurement postulates and lack of determinism makes this theory
seem absurd to our everyday world, it has been a major driving force in the devel-
opment of the technology of the 20th century, from semiconductors and comput-
ers, to lasers and atomic clocks.

Today, quantum mechanics still plays a prominent role in technical advances
in the 21st century through the exploitation of its non-intuituve features. The field
of quantum information relies heavily on the ability to prepare and manipulate
quantum states, and the physical realisation of quantum computation has been a
focus of research throughout the last decade. One of the milestones in the devel-
opment of quantum technology was the production of an almost ideal quantum
system — the Bose-Einstein condensate (BEC).

A BEC is a macroscopic ensemble of particles that occupy a single quantum
state. In classical physics, a macroscopic population of a given state is impossible
according to Maxwell-Boltzmann statistics, and thus a Bose-Einstein condensate
is a clear manifestation of quantum statistics. The fact that the particles occupy
the same quantum state means that they are described by the same wave function
and hence constitute a coherent ensemble. In this respect, the BEC is the atomic
counterpart of a laser, and compared to typical solid-state systems, it is extremely
pure, which makes it ideal for implementing quantum mechanical models.

The prediction of the Bose-Einstein condensate dates back to 1925, when Al-
bert Einstein discovered unusual behaviour in the statistical description of an en-
semble of atoms at low temperatures [1]. The formula governing the description of
photons had been proposed by Satyendra Nath Bose the year before [2], and Ein-
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stein succeeded in expanding the theory to particles of matter, although it was not
yet understood that this only was valid for bosons.

The fact that a macroscopic population of the ground state suddenly appeared
as a secondary phase in the system aroused Einstein’s scepticism, but the idea was
picked up by Fritz London a decade later in an attempt to explain the superfluid-
ity of helium-4 [3]. Although Einstein’s condensation was still only considered of
“purely imaginary existence”, it was now connected to the phenomenon of super-
fluidity.

Superfluidity is the vanishing viscosity of a liquid in the same manner as a su-
perconductor conducts current without resistance below a critical temperature.
Later, theoretical work indicated that the lack of viscosity was a quantum phe-
nomenon related to the appearance of a coherent condensate fraction [4]. Thus,
atomic BECs and liquid helium share many properties, but the density of liquid
helium made the direct observation of condensation impossible.

The first positive experimental verification of Bose-Einstein condensation was
achieved 70 years after its prediction by three independent groups [5-7]. Advances
inlaser cooling and evaporative cooling allowed for the direct observation of a BEC
in a dilute atomic vapour at the lowest temperatures yet achieved, and the achieve-
ment was awarded the 2001 Nobel Prize [8].

One of the remarkable properties of a BEC is that it constitutes a coherent
ensemble. This was demonstrated by interfering two independent BECs [9] and
through the creation of atom lasers [10]. Another fascinating consequence of the
coherence of BECs is the quantisation of rotation in vortices. Since the velocity
of the condensate is related to the gradient of the phase V, rotation requires a
phase change of 27t around the centre in order to be single-valued. At the rotation
centre, this is impossible to satisfy, and the result is a vortex with vanishing density
atits core[11, 12].

Since the initial wave of pioneering experiments, the field of ultracold atoms
has expanded at an incredible rate, and by now BECs are made on a daily basis
in numerous laboratories around the world. Condensation has been achieved in
many species, not only alkali atoms, but also electronically complex species like
chromium [13], and heavy atoms such as ytterbium [14].

1.2 Optical lattices and quantum simulation
With the first BEC loaded into an optical lattice [15], research in cold atoms en-

tered a new regime. An optical lattice is a standing light wave with a periodicity
given by half the wavelength of the light. For a one-dimensional optical lattice,
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FIGURE 1.1: Illustration of a one-dimensional optical lattice. Two counter-
propagating light beams interfere, resulting in a standing wave. The surface
marks 1/e of the maximal potential.

consisting of a single retro-reflected light beam, the resulting pattern is an array
of ellipsoids of high intensity as seen in figure 1.1. If the light is red-detuned to
an optical transition in an atom, it acts as an attractive potential through the AC
Stark shift, which makes it possible to confine atoms in the regions of high light
intensity. The combination of a BEC and an optical lattice thus realises a coherent
ensemble confined in a periodic potential, and thus this system is an ideal model
for solid state materials.

This line of research led to the observation of the transition between a super-
fluid phase and a Mott insulating phase [16, 17]. The Mott insulator originates
in solid state physics when the electrons in a lattice structure become “pinned”
to their sites due to strong interactions with neighbouring electrons, making the
system electrically insulating. The superfluid to Mott insulator transition is also
fascinating because it is the manifestation of a quantum phase transition, i.e. a
transition not driven by thermal energy, but solely by quantum fluctuations.

When an atom is captured in a single lattice beam, the confinement in the di-
rection of the lattice axis is very tight compared to the other directions. This ef-
fectively reduces the atomic motion to two dimensions for a sufficiently cold sam-
ple. This procedure may be extended to higher dimensions by intersecting two
lattice beams at right angles. Two beams thus create a potential that is shaped like
rods resulting in a collection of one-dimensional clouds, and three beams create
a zero-dimensional structure, analogous to a face-centered cubic lattice. Other
geometries of optical lattices include triangular [18] and hexagonal [19], and this
versatility makes it possible to realise many configurations known from solid state
physics.

From a theoretical point of view, a BEC in an optical lattice is particularly in-
teresting because the system realises the Bose-Hubbard model [16]. This simple
model describes particles confined to lattice sites in the tight-binding approxima-



4 Chapter 1. Introduction

tion and consists only of two terms: tunnelling to neighbouring sites and on-site
interactions. For an ideal potential, the Hamiltonian is thus given by

N A U o
H:—](i j)aia;+?Zni(ni—l), (].].)

where ] is the tunnelling constant, d; is the annihilation operator for a particle at
the site i, and U is the on-site interaction.

This surprisingly simple equation is able to account for both superfluid and
Mott insulator phases. Thus it is one of the major driving forces behind quantum
simulation. If a complex system can be modelled by a simple, ideal system, then
the implementation of this system allows for a simulation of the complex system.
This is closely related to the ideas about a universal quantum simulator, presented
by Feynmann in 1982 [20], and draws considerable attention to the field of quan-
tum gases [21].

The combination of a BEC and an optical lattice has also led to remarkable
advances within quantum information processing. By loading a two-dimensional
cloud into an optical lattice, it was possible to make a two-dimensional Mott in-
sulator and detect the atoms at each site of the lattice using a microscope with a
high numerical aperture [22]. Further experiments showed that the spin state of
an atom on a single site could be changed through the combination of a tightly fo-
cused beam and microwave radiation [23]. Such a system provides an important
step towards realising a quantum register with cold atoms. If a single atom can
be addressed with high fidelity, it is possible to manipulate and store information
in it, and if individual atoms are allowed to interact in a controlled way, quantum
computations may be performed in the system.

1.3 Spinor condensates and entangled states

The optical trapping of a BEC opened a new path of research because optical traps
can provide confinement that is independent of magnetic substate. Hence optical
trapping permitted a new type of experiments focusing on the magnetic properties
of a cloud.

Only few months after the first optical trapping was achieved [24], the anti-
ferromagnetic nature of the F = 1 manifold of sodium was demonstrated by the
group of Wolfgang Ketterle [25]. The mechanism responsible for the dynamics in
spinor condensates is spin-changing collisions, and the rate of these collisions is
typically several orders of magnitude lower than the spin-conserving collisions re-
sponsible for thermalisation during evaporative cooling [26].
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FIGURE 1.2: Spin-changing collision. Two non-rotating (my = 0) particles col-
lide, resulting in a pair of counter-rotating (my = %1) particles.

In the following years, the ground state properties of 8’Rb were investigated,
showing that the F = 1 manifold is ferromagnetic and that the F = 2 manifold is
polar (anti-ferromagnetic) with a marginally stable cyclic phase [27, 28]. The cyclic
phase is not present in the F = 1 manifold since it is caused by the additional spin-
singlet term in the F =2 Hamiltonian [29].

In later experiments, focus shifted towards the dynamical properties of spinor
condensates, and in two simultaneous experiments, the coherence of the spin-
changing collisions was demonstrated. In Mainz, a Mott insulator was prepared
with a filling of two atoms per site, leading to coherent spin oscillations [30]. In a
similar experiment in Georgia, a BEC was loaded into an optical trap and prepared
in a superposition of spin states, leading to coherent oscillations among the entire
population [31].

The Berkeley group observed the formation of spin domains in a cloud of #Rb
confined in a quasi-two-dimensional cloud [32]. The cloud was prepared in the
longitudinal polar state of F = 1 and then quenched by ramping the magnetic field
down to a value where the transverse polar state is the ground state. This caused
the spin to relax to the transverse direction and using phase-contrast imaging, the
precession of the spin revealed formation of domains.

A similar approach was employed by the group of Paul Lett, where a cloud was
illuminated with off-resonant light using the Faraday effect to measure the differ-
ential spinor population in a sodium cloud [33]. At different magnetic fields the
signature of the spin oscillations changes, revealing a quantum phase transition
as the system crosses the separatrix between oscillatory and running-phase dy-
namics.

The spin-changing collision where two my = 0 atoms collide to create a pair of
mp ==1 atoms

210) —|1)+|-1) (1.2)

is sketched in figure 1.2. This collision was central in a series of experiments per-
formed in the Hannover group, where an interesting coupling of the external struc-
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ture and the spin dynamics was observed [34]. By varying the magnetic field, it was
possible to select different eigenstates of the trapping potential, and the degener-
acy of two modes leads to spontaneous symmetry breaking [35, 36].

This collision also has the property that it a priori is unknown which particle
becomes spin up (|1)) and which becomes spin down (|—1)), leading to the entan-
glement of the two particles. Furthermore, number squeezing was observed in
the system for clouds with 8000 atoms, increasing the measurement precision by
1.6 dB below the shot noise limit [37, 38].

Such a type of entanglement was considered in the famous EPR paper by Ein-
stein, Podolsky and Rosen in 1935 [39]. They imagined two entangled particles
separated by a distance being subjected to a measurement. Following their defi-
nition of physical realism, they were led to the apparent paradox that measuring
one particle would influence the state of the other particle, violating the principle
of locality.

Spin dynamics in ultracold gases may provide a novel way to investigate entan-
glement and the non-intuitive features of quantum mechanics. Furthermore, the
entangled atomic pairs may provide useful as a resource in future quantum tech-
nologies. Thus the investigation of spin dynamics is a highly interesting research
area in the field of ultracold quantum gases.

1.4 Thesis outline

The work in this thesis is focused on wave packets and spin dynamics in optical
lattices. In parallel, non-destructive measurements and feedback were also inves-
tigated.

The theoretical framework will be presented in chapter 2 along with general
principles used for creating, manipulating and detecting BECs. The basic formal-
ism in dealing with multi-component condensates is also described. Chapter 3
describes the experimental apparatus and the additions that have been made dur-
ing the last four years. The description is not exhaustive, and the reader is referred
to previous theses from the building phase of the experiment [40, 41]. The exper-
iments on wave packets in optical lattices are described in chapter 4. Chapter 5
deals with spin dynamics in a system confined to a two-dimensional geometry in
an optical lattice, and the theory of multicomponent condensates is extended to
this system. The current progress on spinor work is presented in chapter 6, where
the experiments using a dipole trap are discussed. Chapter 7 presents preliminary
results on feedback using Faraday detection. Finally, chapter 8 summarises and
concludes this thesis.



CHAPTER 2
THEORETICAL BACKGROUND

2.1 Bose-Einstein condensation

The ideal Bose gas

Bose-Einstein condensation is a statistically driven phenomenon. It occurs for
bosons — particles with integer spin — that are described by the Bose-Einstein dis-

tribution

1
N, = 2.1)

exp(Be;—p)—1"

where N; is the mean occupation of th ith state, u is the chemical potential, kg is
the Boltzmann constant, T is the temperature, and ¢; is the energy of the ith state.
The total atom number of an ensemble may then be computed by summing N;
over all states.

Here it is important that u < € to keep the occupation number of the lowest
state positive. This implies that the occupation n; of the lowest state grows signif-
icantly as u — €. Therefore, one needs to pay special attention when dealing with
the lowest state.

The onset of condensation can be simply evaluated for non-interacting parti-
clesinabox. Here, €; = p?/2M, M is the atomic mass, and the occupation number
in excited states can be evaluated with an integral

=> | ap ! 2.2)
Nn Sexp ﬂ(pZ/ZM —w)-1 3 exp(B(p2/2M —p)—1"
where V is the volume of the box. The resulting integral belongs to the Bose func-
tions g,,(z) [42, 43] and the equation may be stated in terms of the fugacity z = e/
as

Ny 1
— =53 832(2), 2.3)
VoA

7
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FIGURE 2.1: (a) The Bose function g,(z) for n = 3/2 (blue) and n = 3 (red). (b)
Fugacity as a function of V /(N A3), numerically evaluated from equation (2.3).
The critical point is marked with a black, dotted line.

where At = ﬁ”TZZT is the thermal de Broglie wavelength. The function

2 (< 1
gs/z(Z)—ﬁfo P p— (2.4)

grows monotonically with z until z = 1 where it reaches its maximal value. Since
the value is finite, as seen in figure 2.1 (a), this indicates a critical point, where the
distribution function is unable to account for any more atoms.

This is seen more clearly by solving equation (2.3) numerically as a function of
V/(N )L%). The solution is shown in figure 2.1 (a), and shows that for large densities
and low temperature (small V /(N /I%)), the fugacity saturates at the value of one.
The critical pointis when z = 1, and the Bose function attains the value { (%), where
{ is Riemann’s zeta function.

However, it is possible to violate equation (2.3) beyond the critical point. If
an ensemble of N atoms contained in a volume V exactly at the critical point is
cooled further, then At increases, while g3/, is fixed at a value of one. Thus, equa-
tion (2.3) cannot accommodate all the atoms in thermal states, since the excited
states are statistically “blocked”. In this regime, a “two-component” description
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must be employed in order to account for all the atoms,

N, 1
“/Ot = A—3g3/2(z)+NO(T). (2.5)
T

This step is permissive since the lowest state is not accounted for when going from
a discrete sum to an integral.

Ifthe gasis further cooled, the occupation number of the lowest state increases,
and from the temperature dependence of At, the condensed component grows as

3/2
No(T)= ]\‘[t/m [1— (%) ], (free space) (2.6)
where T is the critical temperature. This temperature can now be determined as
the point where g3/, attains its maximum value: gs/,(1) = ¢ (%), where { is Rie-
mann’s zeta function. This is often described in terms of the phase-space density
@ =ni}:
o(Ty)= {(%) (free space) (2.7

These results are derived for free space, but obviously, any real experiment
must deal with a gas trapped in some external potential. This does not change
the qualitative results, but the density of states is different, which leads to differ-
ent scaling.

Consider a 3D harmonic trap defined by the potential

V(x,y,z)z %M(wix2+a)§y2+w§zz), (2.8)

where w,, w,, w, are the (angular) trap frequencies. Here, the relevant Bose func-
tion is g3 [42] which leads to a different form of the condensate fraction

T 3
Nozzvtm{l—(i) ] 2.9)

In a harmonic trap, the critical temperature can be found by equating the available
thermal states with the total number of atoms, which yields the critical tempera-
ture

N (N
o o) @10
where w = §/w, ®, @, is the geometric mean of the trap frequencies.

Equation (2.10) sets the temperature scale for condensing an atomic cloud,
and one can quickly estimate what temperature to aim for in a BEC experiment:
With a mean trap frequency of 27t x 100 Hz and 10° atoms, the critical temperature

will be around 200 nK.
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The interacting Bose gas

The inclusion of interactions in the description of a BEC changes the energy and
spatial profile of the condensate. For repulsive interactions, the radius of the cloud
grows compared to the non-interacting gas, but for attractive interactions, the
cloud will be unstable [44]. To include interactions in the description, we shall
briefly review basic scattering theory. This formalism will also be useful for de-
scribing multi-component condensates in section 2.2.

Consider a particle with wave number k, incident along z on the scattering
potential of another particle. The resulting wave function can generally be written
as an incoming plane wave and a scattered spherical wave

eikr

Y=e'*+f(0) @.11)

r )
where f is the scattering amplitude. To separate the variables, one writes the scat-
tered wave function in terms of an angular part given by Legendre polynomials,
Py(cos8), and a radial part, Ry;(7),

Y= D AP(cos 0) Ryy(r). 2.12)
1=0

Application of the atomic Hamiltonian
2

n 2

a

to the radial function yields a radial equation featuring a term —I(I + 1)/r? [45],
which is equivalent to a centrifugal barrier. This barrier grows rapidly in energyas [
increases, such that only a few terms will contribute to the scattering. For ultracold
atoms, one may safely neglect all except the s-wave scattering term (I =0).

In the asymptotic limit k — 0, all information about the scattering process is
contained a phase shift which takes the simple form 6, = ka, where a is a con-
stant with units of length, known as the scattering length. This is equivalent to
describing the particles as spheres of radius a, and for identical bosons, the total
scattering cross-section is

O =f |7 (6)[° =8ra?, 2.14)

whereas it is zero for identical fermions. For 87Rb, the scattering length is around
100ag, where ag is the Bohr radius.



2.1. Bose-Einstein condensation 11

If the interatomic separation is large compared to the scattering length, then
the scattering can be viewed as a contact interaction, which leads to the interaction
potential
_ anh’a

Uo(r) o(r). (2.15)

This effective interaction greatly reduces the complexity in the description of
a many-body system of interacting particles. In the Hartree approximation, the
interaction becomes local, which makes the energy functional simple [44]

(N

n? 2 2 —1) 4
E= NJ dr (W [Vor)|"+ V(r)|o(r)| + > U lp(r)]" |, (2.16)
where ¢(r)is the single-particle wave function, V(r) is the trap potential and N is
the particle number. To find the ground state, this functional is minimised using u
as a Lagrange multiplier to keep the particle number constant. In the limit where
N > 1, this yields the Gross-Pitaevskii equation

hZ
(—mvzw(rn V(r)+ U0|¢(r)|2)1/1(r):,u1p(r), (2.17)

where Y(r) = VN ¢(r), n(r) = |y(r)|?, and u is the chemical potential. The wave
function is the order parameter for the condensed phase, as it is zero in the non-
condensed phase, and finite in the condensed phased.

For an ultracold cloud, this equation may be further simplified by the Thomas-
Fermi approximation. At zero temperature, the kinetic term in equation (2.17) can
be neglected, which makes the solution for the atomic density very simple

n(r):‘u_—v(r), u—Vv(r)>o0. (2.18)
Uo
For a typical three-dimensional harmonic trap potential, this yields a cloud with
the shape of an inverted parabola

n(x,y,z)=n(0)(1 ————— —), pu—Vv(r)>o, (2.19)

where R; =4/2u/M w? are the Thomas-Fermi radii.
The chemical potential for the cloud is found by requiring normalisation of the
cloud, [ d*r n(r)= N, yielding

1/5

pu=3[(156Nay¥Mn'a’] (2.20)
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2.2 Multi-component condensates

For an ensemble of atoms, where the internal state is not restricted to a single
value, the order parameter of the condensed phase can no longer be described by
a scalar value. For a system of spin-1 particles, the order parameter is described
by the normalised vector y = ( X1 Yo )(_I)T, and such condensates are often called
spinor condensates.

This increased number of degrees of freedom allows for more complex dynam-
ics, since the scattering can couple different spin states. This requires a more gen-
eral formulation of scattering theory, which we will describe below. This will be
put into the context of two-dimensional condensates in chapter 5.

Scattering theory for multi-component condensates

The treatment here follows that of Stamper-Kurn and Ueda [46)].

We start by considering two particles described by a set of quantum numbers
Lpair, My pair fO1 the external angular momentum, F,qir, 75 pair fOr the internal an-
gular momentum and by a relative wave vector k. A scattering event connects an
initial state (subscript i) with a final state (subscript f), but to reduce the large
number of possible scattering channels, we shall make some simplifying assump-
tions:

1. Cold collisions. As for the scalar condensates, we assume that the incident
energy is low, such that only s-waves are considered (Lp,j,; =0).

2. Spinor-gas collisions. The interaction potential is assumed to be rotation-
ally invariant, meaning that the interaction is unaffected by external, non-
symmetric fields. Even though this is not strictly true, it is a good approx-
imation, and it guarantees that the total angular momentum, F plus L, is
conserved.

3. Weak-dipolar approximation. The spin-orbit coupling due to the effective
interaction is assumed to be weak, such that F and L are conserved individ-
ually: Fpair,i = Ipair,f = Fbair and Lpair,i = Lpair,f =0.

4. No F-mixing. The interaction does not mix the hyperfine manifolds, so a
relaxation from F =2 to F =1 is not allowed.

These approximations allow for a simple description in terms of spin-depen-
dent scattering lengths. The allowed values of F,,;; are limited by the parity of the
atomic state. Under the exchange of the two particles, the total wave function must
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change by a factor of (—1)>f'. On the other hand, the spin part of the wave function
must change by (—1)%«2F  and the orbital part must change by (—1)f»ir. For an
s-wave collision, this exchange must obey

(1) = (=1)fpar2h, (2.21)

leading to the conclusion that F,,;; must be even. Equation (2.15) thus takes the
form

. ATTH% Ag pair
V=33 5(r-ry) > T b (2.22)

i#j even Fgir

where app,q;; is the spin-dependent scattering length, M is atomic mass and PF,pair
is projector onto the F,,;; state. This expression may be simplified by using the two
identities

D Prpar=1 (2.23)

Fpair

ﬁl : ﬁZ = Z[%Fbair(ﬁ)air + 1)_ F(F + 1)]13F,pair' (2.24)
Fpair

For the F = 2 manifold, one may eliminate the P, and P, projectors, leading to an
interaction potential of the form

V(r)=> 38(ri—r;)(co+criF1-Fo+Ry), (2.25)
7]

where the constants are given by

Cop= %(482 +384)
c1=3(-g+8&) (2.26)
Cy= %(780 —10g, +3g4),

and gy = 4h?/M is the coupling strength for the F-channel.

It is worth noting the different effects of the three terms: The first, ¢y, does not
alter spin, so it is responsible for spin-preserving collisions; since all scattering
lengths are of the same magnitude, this term will dominate. The other two terms
depend on the spin configuration, and they lead to spin-changing collisions.
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Effective Hamiltonian in the linear regime

We shall now take the Hamiltonian to the experimentally relevant setup of a con-
densate prepared in the F = 2, mp = 0 state. For the experiments presented in
chapter 5, only the initial, linear regime is relevant, which effectively will turn the
F =2 manifold into an F =1 system.

In second quantised form, the single-particle Hamiltonian for the system is
given by!

2
A=Y J d3r¢;F(r)(—2’7—Mv2+ V(r)+Ez)r/3mF(r), @2:27)

where z/?mF is the annihilation operator for a particle in state mg, V(r) is the trap
potential, and Ey is the Zeeman energy. The Zeeman energy will be addressed
further in section 2.3, but for now, it is sufficient to write it as

E;=pmp+qm3, (2.28)

which is defined relative to the my = 0 state, and takes both the linear and quadratic
shift into account.
The interaction Hamiltonian in second quantisation has the form

o=} [ @ S0 O OV, @29

where each term in the sum describes the scattering of two particles in states m;
and m, into mg and my, which is described by the vector m = (m;, my,, ms, my)T.
The factor U,, is the coupling constant for the scattering channel, and it is given
by the Clebsch-Gordan coefficients

F
Um:z Z gr (my, my|F, M) (F, Mp|ms, my). (2.30)
F Mp=—F

Many of the possible channels in equation (2.29) are not allowed as discussed
in previous section, and the Hamiltonian may be decomposed into the same three
terms as equation (2.25). If we identify the projector P, with the spin-singlet oper-
ator A, = an:_z(—l)mlﬁmzﬁ_m/ /5, the interaction Hamiltonian is only given by

This section follows the treatment of Garu Gebreyesus [47].
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the bosonic field operators and the spin matrices F

1nt fds (r)l/;;(r)l[)m’(r)l/jm(r)
_f dg le T (l‘ mgmz'ﬁm4mll/3m2(r)lﬁml(r) (2.31)

&r Y (P DT, ()P () ().

This Hamiltonian may be taken to the linear regime, where the majority of the
atoms are in my = 0. We apply the Bogoliubov approximation [48]

Pa(r) Wo(r) 81hs(r)
g || gl || 8
Yo(r) [=| ¥olr) |+]| 04o(r) |, (2.32)
Y_4(r) Y_a(r) oY _4(r)
1/3—2(”) Yo(r) 5775—2(")

where the operator character of the fields is separated as a perturbation to a clas-
sical field. In the linear regime, we may approximate 1), as classical and ¢, as a
small perturbation that is quantum mechanical. The 1), are assumed not to be
populated, which leads to the state vector

1/22(”) 0 0

Pa(r) 01 (r)

Yo(r) |=|Yolr) |+ O . (2.33)
*@—1(” 0 oY _4(r)

Y_o(r) 0 0

This may then be inserted into the Hamiltonian, and, if we neglect spin-changing
collisions in the mp = *1 states, we only need to keep terms of 6¢,,, to sec-
ond order. It now remains to calculate the matrix elements and combining equa-
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tion (2.27) and (2.29) in the expression for the free energy

L n* U
H—usz d*r wg(—mv% V(r)+70 |1/J0|2—,u)1/)0

2
+ > f &réyt, (—%V2+ V(r)+(Up+ Ul){wo{z—wq)&ﬁw
m/=%x1

‘U f &r |yo (691597, +69159_4).

(2.34)
Here,
7g0 + 10g2 + 18g4
UO =cCy+ %CZ = 35
(2.35)
_ 1. —/8 —958+12g,
U1—3C1—§C2— 35 .

Equation (2.34) has a straightforward interpretation: The first line describes
the energy of the my = 0 state, the second line describes the energy of the my =
+1 states, and the third line describes the interconversion between my = 0 and
mpg = =1, i.e. spin-changing collisions.

The first line shows that the m g = 0 atoms only experience the potential from
the trap and the non-linear interaction with other m =0 atoms. The interaction
energy is U, so this constant may be associated with spin-preserving collisions.

The mp = £1 atoms see a slightly different potential, since the interaction with
mpg = 0 is set by Uy + U;. These atoms are also affected by the quadratic Zeeman
energy.

Furthermore, we can see that the spin-changing collisions are governed by Uj,
and the ratio of U, to U, gives the significance of spin-changing collisions. Using
the values from table 2.1, the ratio is seen to be 3.7%.

Finally, it is worth noting that, in the linear approximation, there is no deple-
tion of mg =0, so the dynamics of my = +1 will be decoupled from mg =0, and
only the second and third lines of equation (2.34) will be relevant for spin-changing
collisions.

2.3 Magnetic field interaction

The interaction of an atom with a static magnetic field gives rise to the well-known
Zeeman effect. For weak fields, the interaction causes a splitting of the hyperfine
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a, 87.685

a, 91.049
a, 99.197
Co 94.541
¢ 1.164
¢, 0.128
Uy 94.567
U, 3.467

TABLE 2.1: Scattering lengths and interaction energies for Rb. All quantities are
stated in Bohr radii, so ¢; and U; should be multiplied by 4#?as /M. Scattering
lengths are calculated by Prof. E. Tiemann, Leibniz Universitdt Hannover [49].

levels, but in the limit of strong fields, the hyperfine manifolds mix and split ac-
cording to the value of m;. The latter limit is known as the Paschen-Back regime.
The hyperfine interaction is given by Ay I - J, where I is the nuclear spin, J is
the total electronic angular momentum, and Ay is a constant that characterises
the interaction strength. In the presence of an external magnetic field, the Hamil-

tonian is
H=—(f,+fy) B+ ApI-J. (2.36)

For the ground state of 8’Rb, I = 3/2 and ] = 1/2, which causes the states to
separate into two manifolds of F =1 and F =2 when the field is small compared to
the hyperfine interaction energy. The two manifolds are separated by the energy
AEpg = (I + 3)Apgs = 6.834682 GHz.

By expanding equation (2.36) on the |J m; I m;) states, one obtains the Breit-
Rabi formula[50]

AEpy; AEy, dmp&
E]=1/2,I,mF=_2(T+Sl) +gugmpB + 2 2 1+21+1 +&2, 2.37)

where & = ug(g; — g7)B/AEnss, g and g; are Landé g-factors for the nuclear and
electronic angular momentum, respectively, and ug is the Bohr magneton. This
expression is valid for the ground state of 8’Rb, as shown in figure 2.2.

For low magnetic fields, the linear Zeeman formula is a good approximation
to the total shift, but there is a small correction that amounts to a quadratic shift.
Taking E, as the reference, the quadratic Zeeman energy is defined as

2q =|E, — Ep| —|E_, — Ey|, (2.38)
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FIGURE 2.2: The Zeeman effect in 8’Rb as given by the Breit-Rabi formula. (a)
The Zeeman shift from equation (2.37) showing the transition to the Paschen-
Back regime, F =1 (green), F =2 (blue). (b) The quadratic Zeeman energy for
F =1 (green) and F =2 (blue).

where subscripts refer to mp. In the limit of small magnetic fields, the term £2 may
be neglected, and when expanding the square root to second order, one obtains
the expression

q=3%(E +E_ | —2E)

(g7 —&r)* (ugB)?
(21+ 1)2 AEhfs
=+h x 71.59Hz/G?B?,

Il
H_

(2.39)

where the upper (lower) sign is for the F = 1 (F = 2) manifold. The quadratic
approximation is valid for B < 500 G, which makes it applicable for all purposes in
this thesis.

The fact that g is negative for F = 2 means that if one considers two non-
interacting particles, they will have lower energy in the my = £1 state than in the
mpg = 0 state. When increasing the magnetic field, there will be an increasing ex-
cess energy in the collision 2|0) — |+1) +|—1).
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2.4 Atom-light interaction

When a particle is exposed to light, the response is an induced dipole moment p
in the atom, which in general may be quantified by a polarisability o

p=aE, (2.40)

where E is the incident electric field. The classical response is given by the Lorentz
model, where the real part of a describes dispersion and the imaginary part de-
scribes absorption.

This model has a quantum mechanical counterpart which describes the fully
quantised interaction between atoms and photons in terms of a polarisability ten-
sor. Such a description is very useful for light that is far-detuned from all consid-
ered resonances, and where absorption is negligible. However, for resonant inter-
actions, a simpler description exists using the optical Bloch equations.

The optical Bloch equations are a convenient formulation of the Schrédinger
equation that includes phenomenological dephasing. These equations are often
combined with the Maxwell wave equation to describe the propagation of the light
through the atomic sample, known as the Maxwell-Bloch equations. For our pur-
poses, an explicit expression for the atoms is sufficient to describe resonant inter-
actions.

First, the optical Bloch equations are derived and subsequently applied to ab-
sorption imaging and microwave interactions. Afterwards, the polarisability ten-
sor is described, and applied to the regime where the Faraday effect dominates.
Finally, the dipole force is discussed using a perturbative approach.

The optical Bloch equations

To describe a resonant light-atom interaction, a two-level atomic system is suffi-
cient to explain the experiments in this thesis. A two-level atom can be described
by a 2 x 2 density matrix

A~ _|P11 P21
- , 2.41
P [Plz Pzz] ( )

where the matrix entries are written as p;;. The population in the ground and
excited state is given by the diagonal entries p;; and p,, respectively. Similarly,
the coherences are given by the off-diagonal entries p;, and p,;, and since the
population is conserved, the relation p;; + p»», =1 holds.
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Alternatively, the density matrix may be described by the identity matrix 1 and
the Pauli matrices 6, 5, and &3

1 0 . |01 . |0 —i . (1 0
O R R PO ] R

Combinations of these yield the following relations

1 . Lra  sa
pu=31+0s3), P21 =35(01+1i6),

. o 1 R (2.43)
P12=3(01—100,), pp=31-03).

For now, we shall use the Pauli matrices to represent an atomic state because of
their mathematical properties, and their physical significance will be described
later.

The atomic Hamiltonian may be described as a 2 x 2 matrix [51]

.  how
}%z_iﬁﬁ& (2.44)

where wy is the Bohr frequency. The interaction between an atom and an electric
field is given by Hy, =—d - E, where d is the dipole moment operator of the atom,
and E is an electric field. Although we assume the driving field to be electric, the
results are as valid with a magnetic field B and a magnetic moment . The dipole
moment is in general complex, so it can be split into two parts

A

I‘Iint:—dr'Eé'1+di'Eé'2, (245)

where d, is the real part of d and d; is the imaginary part. The commutator rela-
tions for the Pauli matrices [6 O j] = 2i€;;0 makes it easy to write the equa-
tions of motion using the Heisenberg expression

&1:—w062+%di‘E(§'3
6'2:@06'1+%dr'Eé'3 (2.46)
63=—%d,-E6,—2d;-EG,.

These equations may be taken into the semiclassical regime by replacing the (op-
erator) matrices 6; with their expectation value s; = (;). This is good approxima-
tion for the many-particle systems that we shall deal with.

We may also make a simplification in equations (2.46), by neglecting the imag-
inary part of d. This corresponds to only considering Amg = 0 transitions, and
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although we shall primarily be working with Am; = +1 transitions, this approxi-
mation is not problematic. The only effect of the approximation is that the field
is linearly polarised, which means that the field is polarised parallel to the quan-
tisation axis [51]. We may thus make the substitution d, - E = dE, and defining
Kk =2d /fi we obtain

§1=—wp$
5'2 =wyS + KE S3 (2.47)
33 = —KESZ.

There is one final approximation to be made, namely the rotating wave ap-
proximation. We assume a sinusoidal field E = E; cos wt, and we can transfer into
arotating frame by applying a rotation of wt around the s; axis. By neglecting the
terms varying with 2w ¢, we obtain the equations

u=Av
V=—Au+xkEyw (2.48)
w= —KEO V.

These variables are basically just the rotated Pauli matrices, and we may relate
them to the density matrix by substituting 61, 6, and 63 with u, v and w, respec-
tively, in equation (2.43).

The physical interpretation of these new variables is seen by subtracting p;
from p,,. One sees, that w describes the population inversion p,, —p11, and from
(2.48) it is clear that w is driven by v. In that sense, v describes the absorptive part
of the dipole moment, and u describes the remaining dispersive part.

These equations may also be expressed as a vector product between a torque
vector 2 = (k Ey, 0, A)T and the so-called Bloch vector p =(u, v, w)"

% =—0xp. (2.49)
This shows that the Bloch vector is constant in magnitude (which is sensible, since
we have no loss mechanisms in the equations), and rotates around the torque vec-
tor. The vector thus describes a rotation on a sphere — the Bloch sphere - that rep-
resents the state of the atom. The Bloch sphere is illustrated in figure 2.3

Since the Bloch vector rotates around the torque vector, it is only possible to
reach full population inversion (i.e. all population in the excited state), if 2 lies
in the u-v plane, which in turn requires that the detuning is zero. The rotation
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FIGURE 2.3: The Bloch sphere. The state of the atom is described by the Bloch
vector p which rotates on a sphere in the uv w-space.

frequency is given by the magnitude of the torque vector, and is also known as the
generalised Rabi frequency

Q=4/y2+A2 (2.50)

where y =k E, is the resonant Rabi frequency. Thus, the rotation frequency will be
lowest exactly on resonance, where the population oscillates between the ground
and excited state. When the detuning increases, so does the frequency; however,
for non-zero detuning, the population inversion is never complete, as illustrated
in figure 2.4.

These oscillations are also known as Rabi oscillations, and the explicit Rabi so-
lution of the optical Bloch equations is

2
P = % sinz(%), (2.51)
where the atom was assumed to start in the ground state at t = 0. From this ex-
pression, it is clear that the first population inversion occurs when ¢y = 7, and a
pulse of this duration is known as a 7t-pulse.

Another effect that can be seen in the Rabi solution, is power broadening. The
spectral width of the resonance is set by the envelope y2/Q2, and since 2 is the
vectorial sum of y and A, the envelope reaches the value 1/2 when A = y. When
the power is increased, so is y, since it depends on the electric field strength. This
leads to a wider spectrum, known as power broadening.
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FIGURE 2.4: Rabi oscillations in a two-level system. (a) Rabi oscillations for A =0
(blue, solid), A = y (black, dashed), A =2y (black, dotted), and A =5y (black,
dash-dotted). (b) Spectrum for a m-pulse (blue, solid) and for a dephased en-
semble (black, dotted).

Losses may be taken into account by adding a phenomenological decay rate
I' to w and a transverse decay rate y; to u and v. For natural broadening, the
transverse decay rate takes the value of y; =I'/2. With loss included, the equa-
tions (2.48) are known as the optical Blochs equations:

u=Av—3Tu
D:—Au+xw—%l"v (2.52)
w=—yv—T(w-—1).

The solution to these more complicated differential equations are known as Tor-
rey’s solutions, and the general form of these solutions is [51]

l(t)=Ae *" +|Bcos(Qrt)+ QE sin(Qrt)|e ?* +D, (2.53)
T
where { is u, v or w; a and b are decay rates; {1y is the modified oscillation fre-
quency, and A, B, C and D are constants determined by the variable represented
by ¢ and the initial conditions.

The parameters a, b and Qr depend only on physical quantities, and the gen-
eral solution is very complicated. Exactly on resonance, the description becomes
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simpler, and the three lowercase constants are

a=L =L oy (F)Z (2.54)
2 g TN G ) '

This shows that the oscillations occur at a slightly lower frequency similarly to a
damped oscillator, and that the oscillation amplitude decays with a rate of 3T'/4.
For w, the total solution assumes the form

QZ

H=—l+—"—
w(t) 02112/2

3r
[1 — e B/ (cos(Qr )+ — sin(Qr t))] . (2.55)
40r
When the oscillation is completely decayed, the system is said to be dephased,
since all coherence is lost. The spectral shape of such a pulse does not exhibit
the side peaks as the m-pulse did; instead its shape is that of a Lorentzian,

/2

L&A= G

(2.56)
where T is the full width at half maximum (FWHM). The line shape is plotted in
figure 2.4.

Resonant light: absorption imaging

Absorption imaging measures the cloud’s density profile by using the shadow the
cloud casts on a resonant laser beam. The principle is illustrated in figure 2.5: (a)
When atoms absorb light, they leave shadows on the profile of the light. (b) An-
other image is taken without the atoms. (c) The images are divided to account for
the structure of the beam profile, and the optical density is calculated. Although
the clouds at the edges of the picture are barely visible in the raw image (a), they
are clear in the optical density.

To obtain a clear shadow on the raw image, a large number of photons should
be scattered out of the beam. To this end, a closed transition (i.e. one where atoms
are not lost to optically dark states) is used, such that the atom may cycle on the
transition many times. We shall assume a two-level atom, even though the struc-
ture of 8’Rb includes many more levels.

The two primary transitions in 8’Rb are the D1 and D2 lines. Figure 2.6 shows
the energy level diagram of the D1 and D2 lines. We use the D2 transition because it
provides the best approximation to a two-level system: The excited state contains
four hyperfine manifolds, and for a closed transition, one may choose F =2 —
F’ =3, since the selection rules only allow decay back to F =2.
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FIGURE 2.5: Principle of absorption imaging. (a) Raw image. Resonant light il-
luminates the atomic cloud leading to areas of reduced light intensity. (b) Beam
image. An image of the beam is taken without atoms. (c) The two images are
divided, and the optical density is calculated.

The natural linewidth of the D2 transition is 6.1 MHz [50], which is narrow
compared to the spacing between the hyperfine manifolds of the excited state,
~ 100MHz. Thus, if the light is resonant with the F = 2 — F’ = 3 transition, we
can neglect other levels and approximate the system by a two-level atom.

To calculate the absorbed light, we use the optical Bloch equations. If T is the
decay rate of the excited state, an atom will scatter photons with the rate

Ry =Tp2,. (2.57)

Using the relations (2.43), we may express p,, as %(1 —w).
Since we assume a large number of cycles we go to the steady state limit where
the oscillation is fully decohered. We have the two equations

0=u—iv=—(3T—iAu—iv)+iyw (2.58)
O=w=-T(w—-1)—yv. (2.59)
Solution of these equations leads to the expression
1
w=—-, (2.60)
1+s
where s is the saturation parameter
2
x°/2
== 2.61
ST [A+ A2 (26D

Since y? is proportional to the light intensity, the saturation parameter may be
expressed as a saturation intensity I,; yielding

I/Isat
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FIGURE 2.6: The level structure of the D2 transition of Rb, 52S,, — 52P;,. The
D1 transition, 52S;, — 5°P;, is shown for reference. The linear Zeeman shift
is written in brackets; for the P, state, it is 0.93 MHz/G for all hyperfine states.
Data is taken from [50].
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Returning to the scattering rate, it is now possible to write the explicit expres-
sion
_TIs
S 2(1+s)
Since scattering reduces the light intensity, the intensity will decrease at a rate pro-
portional to the scattering rate. For now, we assume that the scattering depends
linearly on the atomic density 7, and that the energy scattered in a single scattering
eventis fiw. The intensity change after propagating a distance dz is —#iwRs.ndz,
leading to the differential equation

Ry =r%(1_ w)

(2.63)

dal
— =—hwRn. (2.64)
dz
If we substitute the expression for R, we obtain the equation
al hwln 1/]
“r_ / sat , (2.65)
dz 2 14+1/I,+(2A/T)2
For resonant light, this reduces to
al howln 1/1
_ / sat (2.66)

dz 2 1+1/Iy’

From basic atomic properties it is thus possible to calculate the saturation in-
tensity and thereby the light absorption from a given atomic cloud. This is a well-
established way of calculating the density of an atomic ensemble from an absorp-
tion image.

The validity of this method is, however, limited, since this model assumes that
scattered photons are not reabsorbed, which is not necessarily the case for dense
clouds. To include this effect and to model experimental complications such as
impure light polarisation and the multi-level atomic structure, it is possible to in-
troduce an effective saturation intensity I:aftf = a*I,; characterised by the dimen-
sionless constant a* [52].

Using the expression for the absorption cross-section oy = iwl'/21,, a new
differential equation is obtained

dl oy I

—=—n——, 2.67
dz ax 1+1/1EE (=67

sat

which is integrated over the length of the sample, yielding an expression for the
optical depth

I Iy—1
ODozaof ndz=—a*ln(—)+ L (2.68)

0 Isat
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This shows that the effect of a* reduces to a scaling between the optical density
and the ratio of intensity to saturation intensity.

Since the optical density only depends on cloud properties, it must be inde-
pendent of the imaging conditions. One can then find a* by imaging the same
cloud with differentlight intensities and afterwards evaluating the images with dif-
ferent values of a*. The value that keeps OD, constant must be the correct value.
We have performed such a calibration of our imaging systems, and it will be de-
scribed in section 3.5.

Microwave interaction

The other type of resonant interaction that needs to be discussed, is the interac-
tion with a field in the microwave region. Such a field may couple hyperfine states
within the same fine state, such as the F =1 — F/ =2 in the 5°S, ;, state of 8’Rb
which has a transition frequency of 6.834682 GHz (see figure 2.6). The fact that
the initial and final states have the same angular quantum number means that
the parity cannot change as required by electronic dipole selection rules. The mi-
crowave transition is thus a magnetic dipole transition, which connects states of
equal parity but otherwise obey the same selection rules [45].

Being a magnetic transition, the microwave interaction is much weaker than
an electric dipole transition and very narrow in frequency?. This means, that the
spectral width typically will be dominated by magnetic field noise through the Zee-
man effect, or by the Fourier width of the microwave pulse.

Another important aspect of microwave transitions is that they generally are
non-destructive as opposed to absorption imaging. This is easily seen by calculat-
ing the recoil velocity for the two transitions, v, = fik/m. For the D2 transition,
this amounts to 5.89 mm/s, whereas a microwave photon of 6.834 GHz only inflicts
104nm/s. Given the fact that the kinetic energy scales quadratically with velocity,
the heating caused by microwave radiation is negligible.

Although the microwave interaction is a magnetic interaction, all the theory
regarding the Bloch equations is applicable to this situation. In practice, however,
microwave transitions are driven with a Rabi frequency typically in the kHz regime
whereas optical transitions work in the MHz regime. So where absorption imag-
ing worked in the dephased limit, we shall deal with the coherent aspects of mi-
crowave interaction.

2The magnetic dipole transition comes from the 2nd term in the expansion e?*" = 1+ik-r+...,
where k is the wave vector of the light and r is the position of the electron. Thus, this transition will
be weaker by a factor of ka, where a is the radius of the electron orbit. This typically amounts to a
factor on the order of ~ 1073 [53, p. 405].
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The microwave source may be used for state preparation by producing a 7-
pulse. This is only possible on resonance, so it is important that the resonance
frequency is stable (through the Zeeman shift). Any change in magnetic field that
happens on a time-scale slower than the microwave pulse appears as a “shot-to-
shot” fluctuation, whereas changes on a time scale faster than the pulse amounts
to a broadening of the resonance profile.

One way of dealing with ambient noise is to make the pulse spectrally broader
through the Fourier width. The Fourier transform of a square pulse is the sinc func-
tion, and for a pulse of duration 7, the spectrum is

(2.69)

sin(ntT v) )2
TV

sinc?(mtv) =(

This function has characteristic wings of little side peaks that are spaced by 1/7,
and the central peak gets narrower with increasing 7 as can be seen by finding the
half-width at half maximum (HWHM):

D=

(Sin(ﬂ'f v))2
Ty
1—3(nTvfey

j

3/2
= ) (2.70)
T

where the Taylor expansion of sinc was applied. This means that a very short pulse
has a very broad spectrum and that it cannot resolve the shift of the resonance
due to magnetic noise. A short -pulse obviously requires a large Rabi frequency,
which in turn requires a large field amplitude; so to exploit the Fourier width, high
microwave power is needed.

Another approach to state preparation is rapid adiabatic passage. Here, the
frequency of the microwave is swept across a resonance, starting and ending in
the far-detuned regime. This approach is often used for RF interactions coupling
mp states in the same manifold [54], since it is easier to keep coherence at the
lower frequency. We have not used microwave sweeps for state preparation, since
the pulses are very stable, but sweeps are very efficient for localising the resonance
frequency of a microwave transition.

Polarisability tensor

To describe off-resonant interactions, and in particular the effect of atom-light in-
teractions on the light, we introduce a more general model. Here, the light is de-
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scribed in quantised fashion, and the multi-level structure of the atom is taken
into account.

First, we let the polarisation state of the light be described by the Stokes vector
S= (50, S, Sy, SZ)T [55]. This formalism is an extension of the simpler Jones vec-
tor, and it is superior in that it allows for partial polarisation of the light. In that
respect, it is very similar to the density matrix description of an atom.

After quantising the field, the components of § are operators of the electrical
field, given by

SAO = %(Nph,x + Nph,y);

Sx = %(Nph,y _Nph,x)» (2 71)
A 10 . '

Sy - i( ph,135° — ph,450),

AZ = %( AphyU*' _Nph,a—)»

where ]\Afphy ,, is the photon number operator for the polarisation A. Each of the
Stokes operators obeys the canonical commutation relation

A

[Si’ ﬁj]:ieijk*@k' (2.72)

This formalism allows for a full quantum description of both the atom and the
light, and also incorporates the polarisation state of the light. This is crucial for
the description of the Faraday effect which will be discussed later in this section.

Secondly, let the atom be described in the hyperfine basis |F, mp). We consider
a transition from the F to the F’ manifold, each with a state multiplicity of 2F +1
and 2F’ + 1. The light driving this transition is oscillating at an angular frequency
of w and it is incident along the z-axis.

For this fully quantised description, the interaction Hamiltonian takes a more
complicated form. The interaction is now described by a polarisability tensor a,,,
which takes into account transitions between different m states in the atom and
corresponding evolution in positive and negative rotating components of the elec-
tric field [56].

We shall be interested in the polarisability tensor for off-resonantlight, and this
allows us to neglect population in the excited states. These are then adiabatically
eliminated such that the interaction is only described in terms of the ground states
[57]. Without going into details, the interaction Hamiltonian can be decomposed
into the irreducible parts [58]

A

i = 38NNy + gaWS, B + AP, (2.73)
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where g = w/2¢,V, V is the volume of the illuminated sample, a® and a(!) are the
scalar and vector polarisabilities respectively, and F, is the z-component of the to-
tal angular momentum. H (2) is the tensor interaction, which will not be discussed
in this thesis.

The general form of any of the polarisability is a linear combination of cou-
plings between the different hyperfine states F and F’

: r App
(i) _ F FF
a =aq E e E—— (2.74)
7 A% g +12/4

where App, = w — wpp is the detuning from a resonance, ay = 3¢,Ail'A3/87? is
the classical polarisability, I is the decay rate, and afjl is coupling constant that
depends on the Wigner 6-j coefficients [56, 58].

Equation (2.74) is basically the classical polarisability scaled with a factor that
depends on the “geometry” of angular momentum. Still, this is a very general
model, and to make it more tractable, we shall make further approximations in
the following section.

Faraday effect: Vector polarisability

Going to a far detuned regime, we return to equation (2.73). In the region of large
detuning, the tensor term drops out [58]. In this context, large detuning is with
respect to the hyperfine states of the F’ manifold. For the D2 transition of 8Rb,
the hyperfine splitting of the excited state is around 200-300 MHz (see figure 2.6),
so with a detuning of ~ 1 GHz, we can safely neglect the tensor term.

It is worth noting that this effect is due to the symmetry of the Wigner 6-j co-
efficients [56, 58]. The single valence electron causes a balance in the coefficients,
and this cancellation is thus a common phenomenon in alkali atoms.

The two remaining terms in equation (2.73) have qualitatively different effects
on light interacting with an atomic ensemble. The scalar term depends on the total
number of photons, and it will only add a global phase to the light. The vector term,
however, depends on S, = %(Nph,w —Nph,gf) which gives a differential phase to the
two circular light states. It is therefore sufficient to focus on the vector term for the
rest of this section

A A

Hipe = ga(l)gz F, = %a(l)<

A

Z)(Nph,(7+ - Nph,o—)- (2.75)

Here, we have approximated the operator F, with its expectation value, which is a
good approximation for large ensembles. That this differential light shift is equiv-
alent to a rotation of the polarisation plane will become apparent when we apply
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FIGURE 2.7: The effective detuning (solid blue) and the approximated detuning
(dotted black). The transition F =2 — F’ = 3 is set to zero detuning, which is
the convention used in this thesis.

the Heisenberg equation of motion to the Stokes components. First, the explicit
expression for a needs to be found, and we focus on the experimentally relevant
case of the F =2 — F’ =3 transition on the D2 line of 8’Rb.

In the far detuned regime, Apr, > I'/2, the frequency dependence of each term
in the polarisability (2.74) simply reduces to 1/Agp/, and if the detuning is larger
than the excited state hyperfine splitting, then it is a good approximation to only

use the nearest resonance. This reduces the polarisability to [58]
1 (04!

=—_22 (2.76)
3A

for the F =2 manifold. For more accurate results, one may simply collect the dif-
ferent terms in an effective detuning A [59]

1_1(28 5 3) 2.77)
Aot 20\ Ags App Ay )’ '

oM

where Ay r/=wr—wy. See figure 2.7 for a plot of 1/A¢r and 1/A.
The interaction Hamiltonian now takes the form Hi,, = %(FZ)SZ, where c is
a constant given by equation (2.76). We now apply the Heisenberg equation of
motion to the Stokes operators
28 Ji 1 .. .
L= —[$), fin]. (2.78)
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Using the commutator relations for the Stokes operators, this yields the coupled
equations

(2.79a)

v S Es, (2.79b)

=0. (2.79¢)

This system of equations describes rotation of the x- and y-components around
the z-axis, which can be made explicit by taking the derivative of equation (2.79a)
and substituting it into equation (2.79b)

2§ 2
aafzx :—(;A (F)) 8, =—w?$, (2.80)

The Stokes vector will thus rotate with angular frequency w,, which means that
the electric field will rotate at half that frequency®. If we assume the cloud to con-
sist only of atoms in a single mp state, we may approximate the expectation value
of F, by N,, times the single-particle value fz). This leads to an expression for the
Faraday angle
TA2L{f,) n

S 16m A’

where 7 = L/c, and L is the length of the sample. This exhibits the 1/A depen-
dence that is typical for all dispersive imaging techniques, and a linear depen-
dence on the atomic density. In other words, the rotation angle provides a measure
for the number of atoms.

If the light is imaged on a camera, we may make take 6 as a function of x and
¥, which turns equation (2.81) into

BF:%C()ST— (2.81)

122(f,) [ n(r)d
167 A

Oc(x,y)= (2.82)

It is thus possible to extract the column density from the Faraday angle yielding an
image of the in-trap cloud.

The Faraday rotation in equation (2.82) may be used for non-destructive imag-
ing by sending linearly polarised light onto the atomic sample and then splitting

3This can qualitatively be seen through the fact that the Stokes vector only contains terms of
order Nph which classically corresponds to £2.
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FIGURE 2.8: Faraday imaging setup. Polarisations are indicated in italics. The
off-resonant light is combined with the absorption imaging light for the z axis
before the fibre. The imaging light is combined with the light from the optical
dipole trap on a polarising beam splitter before the chamber. The light is s po-
larised before the chamber, so without Faraday rotation, all light will be split off
in the large polarising beam splitter and sent to the photodiode.

the non-rotated light away on a polarising beam-splitting cube as illustrated in
figure 2.8. The non-ideal behaviour of the cube and the ellipticity of the polari-
sation is quantified by the cube suppression CS = 1(0)/1(m/2), and this yields the
transmitted light intensity

sin?(6g) + CS cos?(6g)

1(6r)=Io 1+CS

(2.83)
We have measured the cube suppression to be CS ~ 1.5 x 1073 from the intensity
after the cube. Since CS is small, we may neglect all terms of second order in CS.
This leads to an expression for the Faraday angle

sin?(0p) = (II(E?)F)) — 1) (%) (2.84)

where we have defined I,CS = I(0). The light leaking through the cube causes the
subtraction of 1, and this sets the detection limit for low light intensities. Our cube
suppression of 1.5 x 10~ amounts to a measurable reduction in signal-to-noise
ratio only for rotation angles smaller than 5° [59].

The destructiveness of the imaging method is quantified by the number of
photons scattered by the atoms. Absorption effects were neglected in the deriva-
tion of the Hamiltonian due to the adiabatic elimination of excited state popula-
tion. However, the scattering rate may be calculated in a non-rigorous way as in
the case of absorption imaging. This amounts to taking the imaginary part of the
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polarisability, and the resulting scattering rate is identical to (2.63)

I/Isat
I/ +1(2A/T)2°

r
Re=3 (2.85)

In the limit of far detuning, (2A/T)? > 1, (2A/T)? > 1/ I, the expression reduces

to
R - I
¢ 8L A2

(2.86)

This shows that the scattering rate scales as 1/A? whereas the signal, equation (2.81)
scales as 1/A. This makes it profitable to go to the far detuned regime, since the
destructive properties will be suppressed compared to the signal.

Optical dipole force: Scalar polarisability

We now focus on the further detuned regime. If the detuning of linearly polarised
light is large compared to the fine structure, then the symmetry of the Wigner
6-j symbols makes the vector term of the polarisability vanish [56]. This leaves
only the scalar term in the interaction Hamiltonian. For 8’Rb, this means that the
detuning must be large compared to the difference between the D1 and D2 line,
A > AEj. This energy difference is ~ 7 THz, whereas a laser of 914 nm is detuned
by ~50THz from the D1 line (see figure 2.6).

To evaluate the effect of the polarisability in this regime, we shall apply a slightly
different approach. If we are not interested in the polarisation states of the light,
we may use a semiclassical approach and calculate the perturbation caused by the
light. We assume the light to have the electric field polarised along z and to oscil-
late with the frequency w. In the dipole approximation, the perturbing Hamilto-
nian is

A =—d, & cos(wt)=—3d, & (e’ +e71") (2.87)

We evaluate the perturbation to 2nd order, and assume that at time ¢ =0, the
system is in an eigenstate |m) of the unperturbed Hamiltonian, when the interac-
tion is activated. If we designate the phase of the state |m) by ¢,,,, we may calculate
the time derivative of the phase to 2nd order as*

(eiwt_e—ia)nmt e—ia)t_eiwnmt

+
Wpm+ W Wym— W

. & X
h¢m:ﬁ2|(m|dz|n){zcos(a)t) ), (2.88)

n#m

4The calculation is detailed in [44], section 3.3.
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where w,,,, is the Bohr frequency between the states |n) and |m). To obtain the
energy shift of |m), we identify the time average of ¢, as the Bohr frequency. We

take AE,, = —h{¢), and if we write the cosine as complex exponentials, only a
single term has a finite contribution when averaging

&2 N 2 1 1
AE, =—-2 Z ((mld_|n)| ( + ) (2.89)
4n Fwred Oymt+w Wym—w

This result is very general, but it may be made slightly simpler through the ro-
tating wave approximation (RWA). If the light is only slightly detuned from the
atomic transitions, the term containing w,,,, + w will be much smaller than the
one containing w,,,, — . We may thus neglect the former term. Introducing the
light intensity I = 3 c€(62, we have

I N 2 1
AE,, = d _— 2.90
" theolgrll(m' 2I)] W—Wpm (2.90)

For a two-level system, this expression leads to an attractive potential for red
detunings (v < w,;,) and a repulsive potential for blue detunings (w > w,,;,),
which is the basic principle of optical trapping. For the excited state, the Bohr fre-
quency w,;,, in equation (2.89) changes sign, leading to an overall change of sign,
when performing the RWA. Thus, the effect on the excited state is just the opposite
of that for the ground state; when the ground state is lowered in energy, the excited
state is raised in energy and vice versa (see figure 2.9)

To take both of the D lines into account (see figure 2.6 on page 26), one uses the
Wigner-Eckart theorem to simplify the matrix element. The theorem states, that
a matrix element involving angular momentum states may be split into Clebsch-
Gordan coefficient that only depends on the coupling of angular momenta and a
reduced matrix element (m||d,||n) that is independent of the angular momenta
[60].

The result of this is to introduce a line strength that is given by the Clebsch-
Gordan coefficients, and when the matrix element is eliminated by the introduc-
tion of the natural linewidth T, ,,,, [50]

3
~ 2 @
rnm:|<m||dz||n>| 37'[6”;’;103’ (2.91)
0
we obtain the full expression

7'(.'02 2T2 Tl
Usi = + I(r), 2.92
dlp(r) 2 (ngz (,()?Al (r) ( )
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FIGURE 2.9: The effect of a light shift for (a) red detuning, (b) blue detuning. For
each case, the spatial effect on atoms in the ground state is sketched.

where A; = w — w; is the detuning from the D1 and D2 lines and I is the natural
linewidth of the transition. The factor of two for the D2 line is the line strength
of the transition, and originates from the fact that the excited state has twice the
number of F manifolds that the D1 line has.

In equation (2.91) linearly polarised light is assumed. Circularly polarised light
can also be taken into account by an extra term for the D1 and D2 lines. This yields
a differential light shift for the m states [61].

2.5 Optical traps

Trap properties

The optical dipole force that was discussed in section 2.4 on page 35 may be used to
generate a trapping potential called an optical dipole trap. Equation (2.92) shows
that the trap potential is proportional to the light intensity, and the simplest ex-
perimental realisation is to confine atoms in a single red-detuned beam. A typical
light beam will have a Gaussian shape [62]

I(r,2) = Iye 27" /=) (2.93)

for abeam propagating along z. Here, r is the transverse coordinate, [, is the peak
intensity, and w(z) is the e radius called the spot size. For a standard beam of
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FIGURE 2.10: Dipole trap potentials. (a) Typical dipole trap potential without
gravity. Notice the difference in scales along x and z which makes the Rayleigh
range envelope visible. (b) Same dipole potential, but with gravity added along
X.

power P and minimal spot size wy — called the beam waist — the peak intensity is
Iy=2P/m wg, and the spot size varies with z as

w(z)=wyy/ 1+22/23, (2.94)

where zp =7 wg /A is the Rayleigh length. It is clear that the transverse size is given
by the spot size whereas the longitudinal size is given by the Rayleigh length, which
makes the confinement much tighter transversely (figure 2.10). This has an effect
when gravity is taken into account, and if a dipole trap is too weak, gravity may
reduce the effective trap depth to the point, where it cannot hold any particles
(figure 2.10 (b)).

A more sophisticated trap can be created by retro-reflecting the light beam,
such that the light interferes with itself and creates a standing light wave. This
adds a longitudinal interference factor to equation (2.93)

8P
I(r,z)=———

5 g2t/ wa)’ cos?(kz), (2.95)
Tw(z)

where the additional factor of 4 comes from the interference of the electric fields,
and k is the wave number. Here, the transverse confinement is still given by the
spot size, but the longitudinal confinement is set by the wavelength, which is sev-
eral orders of magnitude smaller than typical Rayleigh ranges. This makes a verti-
cal lattice very effective for holding atoms against gravity.
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FIGURE 2.11: Optical lattice potential. The interference creates the longitudinal
structure, whereas the transverse structure is given by the Gaussian profile of the
laser beams. Notice the difference in scale along x and z.

The trap potential from an optical lattice may then be calculated by inserting
equation (2.95) into equation (2.92). The maximum potential — and hence the trap
depth - is then given by

Cw(z)? 2

8P %[ 2I, I}
— . (2.96)

+
ngZ CO?Al
Typically, one defines the s parameter in terms of the recoil energy E, = 1°k?/2M

Vo

—. 2.97
N E, (2.97)

This is a dimensionless parameter used to quantify the trap depth.

The tightness of the trap may be quantified by the trapping frequencies w;,
which comes from a quadratic expansion of the trap potential at the bottom of the
trap. For a single, cylindrically symmetric dipole beam, the potential is charac-
terised by two trap frequencies: a radial frequency w, and an axial frequency w,.
The expansion of equation (2.93) combined with equation (2.92) yields

U(r,z)ﬁ—%d‘p[I—Z(L)Z—(iﬂ, (2.98)

Wy <0

where VOGlip = Vp/4. Equating the quadratic terms with a single-particle harmonic
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oscillator produces the expressions for the trapping frequencies

dip

wdip — 4VO
' \ Muwg’

(2.99)

dip

dip _ 2VO
W _\ Yy

0

The radial frequency o)(rﬁp is typically on the order of 10-100 Hz, and since z, typ-
ically is several orders of magnitude larger that w, the axial trapping frequency
a)(zhp will be negligible.

For an optical lattice, the expansion has an additional term

2
U(r,z)z—VO[l—Z(L) —(iz+k2)z2], (2.100)
Wy ZO

where k is the wave number of the lattice. Here, the 1/z, term may safely be ne-
glected, which leads to the trapping frequencies

4V
w,

(2.101)

2V, hk?
wr=\ k=S4

It is clear that since k typically is much larger than wj?, the axial trapping fre-
quency will be very large for an optical lattice — usually in the kHz regime. For a
deep optical lattice, the trapping frequency is so large, that the particle will only
be in the ground state along this direction, and hence the motion is “frozen out”
along the lattice.

Band structure

Apart from the trapping properties, optical lattices are interesting, because they
set up a periodic potential. Such potentials are well-known in solid state physics,
and they lead to the formation of energy bands.

To describe an atom in an optical lattice, we use the Schrodinger equation in
one dimension

_hZ d2

EYYr (x)+ Vycos*(kx)yp(x) = Eyp(x), (2.102)
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where an infinite lattice is assumed. In practice, the structure will be modified by
the Gaussian profile of the laser beam, but we shall ignore this effect for now.
Bloch’s theorem states that the solution to equation (2.102) can be described
as a product state of a plane wave and a function u with the same periodicity as
the lattice [63]
pU(x)=e M ul(x), (2.103)

where 7 is the band index. Using equation (2.103) as ansatz and working in units
of E,, we obtain the differential equation

1|q° 1) 2iq duyg” N d’uy’
k2| p2d ho dx dx?
+scos?(kx) ug")(x):e(q") u;")(x), (2.104)

where e(qn) = EL(,") /E.. Rewriting s cos?(k x) in terms of exponentials yields

2iq duq n) . dzu;")
o dx dx?2

"x)+

_kzl 72 q

s Looikx | L —2ikx ) 0y oy (), ()
+E(1+§e +§e U, (x)—eq u, (x), (2.105)

(n)

and it is now obvious to also expand u, ' in exponentials

o0

(1) ) = (n) , i21kx

ul (x)_lz o2tk (2.106)
=—0Q0

The combination of equation (2.105) and (2.106) defines a matrix equation in terms
of exponentials of all orders. The matrix elements are seen to be

l+q/hkyP+s/2, I'=1
Hj ;=1 —s/4, I'=1+1 (2.107)
0 otherwise

The situation is then described by the equation

Z H, cf]fll) - e;")cc(,f?, (2.108)
1

and the problem reduces to diagonalising the matrix H. This is typically done by
truncating / symmetrically around 0, e.g.  =—L,—L+1,..., L. Such a matrix has
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FIGURE 2.12: Bloch bands of an optical lattice at different values of s. (a) s =0,
dispersion is identical to that of free space. (b) s =8, band gaps open. (c) s =16,
curvature of lowest band is negligible.

2L +1 eigenstates which are called Bloch bands, and they are normally identified
by the index n=0,1,...,2L +1, starting from the ground state.

The band structure is shown in figure 2.12 for different values of s. For vanish-
ing s, the dispersion approaches that of free-space, but as the lattice potential is
increased, the dispersion splits into bands and band gaps. The width of the bands
decreases with increasing potential, making the dispersion approximately flat for
the lowest states at large values of s.

The curvature of the bands also has an impact on the motion of the particles.
In general, the group velocity is given by dw/dk which can be written as [63]

_ 1 dE(k)
5 n dk
Thus, the velocity is given by the slope of the band, which indicates that particles
in the lowest band of a deep lattice will be static, as one would expect. On the other
hand, a particle in a nearly unbound band will be able to oscillate by following the

dispersion curve.
The states corresponding to the Bloch bands are called Bloch functions. They

are given by the eigenvectors of the Hamiltonian as

o= 1S e @10
1

(2.109)
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FIGURE 2.13: Wannier states in an optical lattice. (a) Wave function at s =4 (blue)
and at s = 16 (red). (b) Probability density for s =4 (blue) and at s =16 (red).

The periodic nature of the Bloch functions makes them completely delocalised
over the lattice. Therefore, they are less useful for describing systems where local-
isation is significant. For such a system, the Wannier functions are more useful
[64]
YWx—x)=C> e/ x), (2.111)
q

where C is a normalisation constant. This describes a particle that is localised at
the ith lattice site with position x;, and it is basically the Fourier transform of the
Bloch states. The localisation of the Wannier states is illustrated in figure 2.13 for
two different values of s. At low lattice potential, there is a significant overlap of
the wave function with the neighbouring site, but for a high lattice potential this
overlap decreases.

Atoms localised in a lattice structure are well described in the basis of Wannier
states as in the Bose-Hubbard model. The tunnelling rate J used in the model is
related to the width of the band as [65]

7= Hmae)-min(e). o2

Thus, the tunnelling rate may be determined from a band structure calculation.
Transitions between lattice bands can be induced by modulating the ampli-

tude of the lattice potential. A sinusoidal modulation can be thought of as a pho-

non in the lattice, and the atoms may absorb such a phonon to undergo a band
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(a) (b)

FIGURE 2.14: Lattice ramp-down methods. (a) Band mapping. The atoms in the
lowest band fill up the 1st Brillouin zone, which leads to the width of 2xik7t/m,
where 7 is the time-of-flight. (b) Projection. The lowest band is projected onto
the free-space momentum, and has a large population in multiples 0,+2 of the
lattice momentum

excitation. The optical potential may be described by
V=SErCOSZ(ky)[l—I—ECOS(Zﬂ'Vt)], (2.113)

where € is the relative amplitude and v is the frequency of the modulation.

The matrix element connecting two states in different bands is determined by
cos?(ky) which has even parity. This leads to the selection rule An = 2 to lowest
order. Thus the amplitude modulation can only excite atoms in the Oth band to the
2nd band, and the resonance criterion is ¥ =2 ¥, in accordance with parametric
excitation.

Loading techniques

When transferring a BEC to an optical lattice, the free-space momentum 7k is
transformed to the lattice basis of quasi-momenta #ig. To go from the free-space
ground state to the lattice ground state, one needs to perform the basis change
adiabatically with respect to the timescale set by the lattice.

There are, in general, two relevant time scales, corresponding to two differ-
ent energy scales. Violation of these time-constraints leads to two different non-
adiabatic phenomena:

* Thesingle-site energy. This energy is set by the band gap, and violation of this
will cause population of higher bands when loading the lattice. The criterion
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for adiabaticity is [66]

L
7

L ql=-10,4) < AE%(q,t)/n, (2.114)

where |1, g) is a Bloch state, and AE is the energy difference between the
ground state and the first excited state. For g ~ 0, this is easy to achieve,
since the band gap is constant in magnitude, even at low trap depths. From
the band structure it is clear that AE > 4E, for all trap depths, so a good
criterion for adiabaticity is

v,
d—to < 16E%/h. (2.115)

For a lattice laser at A =914 nm, the criterion reduces to

ds

< 16E,/fi ~ 2.8 x 10° Hz, (2.116)

which means that a loading rate of more than 1 ms will be adiabatic with
respect to the single-site energy scale.

* Multi-particle energy. When loading the atoms into the lattice, there willbe a
spatial redistribution due to the change in external potential. This will typ-
ically be a compression, and to keep the chemical potential constant, the
atoms will tunnel to new sites. The time scale is set by the change in trap
frequencies in three dimensions combined with the tunnelling rate, and it
is generally a much stricter requirement for adiabaticity. The group of Im-
manuel Bloch investigated this criterion closer and found a ramp time of
100 ms to be adiabatic [67].

The single-site time scale also allows for two ways of unloading the cloud from
the lattice. If the lattice potential is ramped down adiabatically, population is con-
served in the different energy bands, and the bands are mapped onto the free-
space momentum. This is called band mapping. When releasing such a cloud
from the trap, population in the lowest band fills up the first Brillouin zone, and
in time-of-flight, the width of the cloud will reflect this distribution in momentum
leading to a cloud of width 271k 7 /m, where 7 is the time-of-flight. This is shown in
figure 2.14 (a). Population in higher bands populate higher Brillouin zones, so they
will gain an extra 7 k and appear correspondingly further away from the centre of
the cloud.
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If the ramp is non-adiabatic, then the lattice momentum is projected directly
on the free-space momentum, and this is called a projection measurement. The
decomposition of a Bloch band in free-space momentum shows up as clouds trav-
elling with an integer number of 7 k;,; in time-of-flight, and the normalised popu-
lation in each cloud is equal to the decomposition coefficient. For the lowest band,
the coefficients are finite only for the orders 0 and £2, as is shown in figure 2.14 (b)
[66]. This is useful for detecting coherence (or lack thereof) in the cloud, since the
decomposition washes out for an incoherent ensemble.

A third way of applying an optical lattice is the so-called Kapitza-Dirac method.
Here, the lattice is ramped up instantly leading to a projection from free-space to
lattice momentum. After a short time, the lattice is instantly ramped down again,
such that the lattice momentum is projected back onto the free-space momen-
tum. While in the lattice, the cloud evolves under the lattice Hamiltonian which
introduces a complicated oscillation between the scattering orders. The oscilla-
tion pattern depends on lattice depth, and this provides a method for inferring s
[40]. This method is mentioned in section 3.3.



CHAPTER 3
EXPERIMENTAL APPARATUS

In this chapter, I shall describe the experimental apparatus used for the work pre-
sented in this thesis. The first section outlines the “core setup” used for the pro-
duction of Bose-Einstein condensates. This was built by Henrik Kjeer Andersen
and Jesper Fevre Bertelsen, and a detailed description of this setup may be found
in their Ph.D. theses [40, 41]. Instead, I shall highlight the changes to the setup in
the last few years. Several of the changes occurred after moving the experiment to
its current location in late 2010. The following sections describe the main changes
to the experiment: magnetic field control, optical traps, Faraday laser setup, ab-
sorption imaging setup, experimental control software and microwave setup.

3.1 BEC apparatus

Overview

The experiment produces Bose-Einstein condensates of 8’Rb, and the system is
sketched in figure 3.1. A typical experimental sequence for creating a BEC is di-
vided into five broad steps:

1. Magneto-optical trap (MOT). Atoms are loaded to the trap from a background
pressure of rubidium, which is maintained by running current through a dis-
penser. Magneto-optical trapping is a combined cooling and trapping rou-
tine where atoms are immersed in near-resonant light from all spatial direc-
tions. A magnetic quadrupole field is applied such that if an atom moves
away from the centre of the trap, it becomes resonant with the laser light
and is “kicked” back into the trap by absorbing a photon. In order for the
atom to distinguish between two counter-propagating laser beams, they are
given opposite circular polarisations, so the atom will only gain momentum
towards the centre of the trap instead of out of the trap [68]. Typically, ~ 10°
atoms are loaded.
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FIGURE 3.1: Overview of the vacuum system. The six cooling beams are shown
as red cylinders in the MOT region. At the Science chamber, the three axes are
shown as red arrows. Used with permission from [40].

2. Transport. Since the MOT chamber has a reasonably high background pres-

sure of 8Rb in order to load atoms into the trap, the lifetime is insufficient
for further cooling. Therefore, another chamber - the Science chamber — is
installed, and the two chambers are connected by a narrow tube, such that
the two chambers can be held at different pressures. The atoms are moved
to the cross through the differential pumping stage by a movable magnetic
trap, and from there, a second magnetic trap moves the atoms to the Science
chamber.

. Quadrupole Ioffe-Pritchard configuration trap (QUIC). The Science cham-

ber features two types of magnetic traps: The quadrupole trap (QP) and the
QUIC trap. Initially, the cloud is loaded into a quadrupole trap, leading to a
linear trap potential as shown in figure 3.2 (a). As the cloud is cooled down,
the atoms spend more time in the centre of the trap, where there is a zero-
crossing. This makes the atoms susceptible to Majorana spin flips, where the
spin does not follow the magnetic field adiabatically and are transferred to
another spin state. Spin flips to untrapped states causes losses, and to avoid
this, the trap is transformed to the QUIC type by adding a third coil, breaking
the symmetry and changing the potential to a harmonic shape as shown in
figure 3.2 (b).

. Forced evaporative cooling. The physical principle for cooling in the Science

chamber is evaporation. Here, RF radiation is applied to the atoms, which
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FIGURE 3.2: Magnetic potential of ¥Rb. my = 2 (dark blue), 1 (dark red), 0
(green), —1 (bright red), —2 (bright blue). (a) Potential in QP trap. (b) Poten-
tial in QUIC trap. The offset field from the Ioffe coil produces the finite potential
in the centre of the trap.

drives transitions between different m states in the F = 2 manifold. A tran-
sition occurs only when the frequency of the RF radiation matches the Zee-
man shift in the magnetic trap, which depends on the atom’s position in the
trap. Since the warmest atoms spend most of the time at positions furthest
away from the trap, they will be shifted towards higher transition frequen-
cies. Applying RF radiation with a large frequency and then slowly ramping
it down in frequency will thus address the warmest atoms and transfer them
to an untrapped state (figure 3.2 (a)) leading to an overall colder cloud [5].
The total time for evaporative cooling is around 45 s.

5. Absorption imaging. To probe the atomic cloud, the atoms are exposed res-
onant light, and the Shadow they cast on the light is imaged on a CCD cam-
era. Typically, the cloud is allowed to expand for 15-20 ms before imaging;
this time is called time-of-flight.

The vacuum system and the lasers are mounted on two separate optical tables
denoted the vacuum table and laser table respectively. This separation is chosen
to eliminate as many vibrations as possible to the lasers. The light is delivered to
the vacuum table through optical fibres.

The RF radiation is produced by a home-built synthesizer (10 kHz — 70 MHz)
which is controlled directly from the computer via direct digital synthesis. The



50 Chapter 3. Experimental apparatus

23 MHz

3 —— Y - — — _
f 2x 106 MHz
189MHZ 55 Mz
Yy _ ¥ __ v
. —— Sy — = —y— — -
J'=3/2 Izu&s MHz
T — ——  — B B _¥vy__ _
0 e—
o) ol a
ko, Joj e £ £ £
° 173 IS o S S
s £ & § § B
v = £ & &

J=1/2
1

FIGURE 3.3: Lasers and lock points relative to the structure of 8Rb. The lock
points are shown in blue, and the frequency after shifts in AOMs are shown in

green.

possibility also exists to connect the synthesizer to an FPGA, which supplies the
frequencies for the radiation. This option is crucial for the work presented in sec-

tion 7.1.

Laser table

The laser system is based on three home-built diode lasers that are running in Lit-
trow configuration [69], and they emit light around 780 nm which corresponds to
the D2 line of 8’Rb. The three lasers are called Master, Cooler and Repump and
each has a saturated absorption spectroscopy setup [70]. The lock points for the
three lasers and their frequencies after passing through acousto-optical modula-
tors (AOMs) are shown in figure 3.3.

The Cooler laser is amplified in a tapered amplifier (TA) which increases the
power to 320 mW. The light is then divided between 3 different fibres, guiding the
light to the vacuum table. Each fibre is split in two by 50/50 fibre splitters, such
that they constitute a counter-propagating beam pair for the MOT.

In combination, the Cooler and Repump laser create a closed cooling scheme.
The Cooler excites an atom to F’ = 3, and the only dipole-allowed relaxation is
to F =2. However, an atom will occasionally relax to the F = 1 state through off-
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resonant excitation to F/ =2, and here it is not available for further excitation from
the Cooler. Such an atom will be lost to the cooling cycle if the Repump laser is not
included. The Repump laser excites an atom from F =1 to F’ = 2, from where it
will predominantly relax to F = 2 reinserting it into the cooling cycle.

The Master laser serves a dual purpose: Optical pumping and imaging. To this
end, a half-wave plate is mounted on a mechanic flipper which makes it possible
to send the beam through one of two ports on a polarising beam splitter. For the
optical pumping, it is sent through a single-pass AOM where it is shifted 55 MHz
down in frequency (blue arrow, “Pump” in figure 3.3), and for the imaging, it is sent
through a double-pass AOM where it is shifted 2 x 106 MHz up in frequency (blue
arrow, “Imaging” in figure 3.3).

For both applications of the Master laser, it can be combined with a small
amount of the Repump laser. For the optical pumping, this is necessary for captur-
ing any atoms that relax to F = 1 during the pumping. When imaging, the Repump
can be used to see any atoms in F = 1.

The only change that has been made to the laser setup is the omission of a
compressed MOT (CMOT) phase. After the MOT, the atoms can be further cooled
by allowing the atoms to spend more time in the dark state, thus decreasing the
light pressure.

This method was used in the old laboratory, but after moving the experiment
to the new lab, the CMOT decreased the atom number after capturing them in the
MOT coils. This has not been fully explained, but we suspect that the background
magnetic field is the problem, as it is different in the new lab. Currently, we are not
able to compensate the background field in the MOT chamber, so we decided to
omit the CMOT stage. However, if more atoms are critical for later experiments,
new cancellation coils should be constructed for the CMOT to work again.

Vacuum table

The two parts of the vacuum chamber on the Vacuum table each have a separate
turbopump, ion-getter pump and titanium sublimation pump. The turbo pumps
are used for pumping the chamber down from atmospheric pressure, and the ion-
getter pumps are used afterwards to maintain the low pressure. The titanium sub-
limation pumps are fired once or twice per year if the pressure is too high.

The MOT chamber is kept at a pressure of 3 x 1071° Torr which makes the life-
time of atoms in this region relatively short. The pressure in the Science chamber
is much lower, ~ 5 x 10712 Torr [40], because there are no rubidium dispensers run-
ning. The lifetime in this chamber is around 80 s.
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FIGURE 3.4: Science chamber. The quadrupole part of the QUIC trap are the
epoxy-covered coils visible below and above the chamber. The Ioffe coil is partly
hidden behind a microwave cable. Above the QP coils, one of the y-shim coils
is visible. The x- and z-shim coils are covered in black tape, and on the side of
the z-shim coil pointing towards the chamber, one of the fast coils can be seen.

The Science chamber is designed to allow optical access along three perpen-
dicular axes. In figure 3.4, the Science chamber is pictured, and the axes defini-
tions that will be used in this thesis are shown. The Ioffe coil is aligned with the
z-axis, the vertical axis is the primary axis for the optical lattice and is called the
y-axis, and the last axis is the primary imaging axis and is called the x-axis.

Following the move of the experiment, three changes were made: The quadru-
pole coils for the QUIC trap were readjusted, the rubidium dispensers were ex-
changed and the moveable lens for imaging along the y -axis was fastened.

The miaslignment of the quadrupole coils was discovered, because it was dif-
ficult to obtain a BEC after the move. The trap bottom had apparently shifted
one MHz up in energy, which would correspond to more than a Gauss of back-
ground magnetic field.! This field was directed along the z-axis, and was for some
time compensated by the z-shim coils (see section 3.2), but at a later stage it was
discovered that the QP part of the QUIC coils were movable and not fully tight-

'The Zeeman shift of the F =2 manifold is 0.7 MHz/G, so a shift of 1 MHz would equal 1.4 G.
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FIGURE 3.5: New 8 Rb dispensers. (left) Dispensers are point-welded onto a
metal plate that is common ground. (middle) Dispensers mounted on flange.
(right) Connector diagram of the dispensers.

ened. The coils can be shifted along the z-axis which amounts to changing the
relative strength of the QP and QUIC coils. After realigning the coils, the trap bot-
tom shifted back to the old value.

In the autumn of 2011, the dispensers were exchanged because the MOT load-
ing time was increasing unreasonably, and there were no dispensers left to change
to. The experiment was previously run at a very high dispenser current so out of
the original four dispensers, only one was still working. It was decided to install
eight new (and larger) dispensers? to avoid breaking vacuum again in the near fu-
ture.

For the exchange of dispensers, the vent for the turbo pump was connected
and a supply of nitrogen gas was prepared to minimise oxidation of the inside of
the chamber. The nitrogen was supplied through the vent of the turbo pump, and
a large plastic bag was filled with nitrogen as a reservoir when the vacuum was
broken. Once the vacuum was broken, a steady flow of nitrogen was supplied to
the chamber to keep it above atmospheric pressure. Finally, the old dispensers
were removed and the new flange® with dispensers was inserted.

After inserting the new flange, the chamber was baked out for one week, and
during the last two days, the dispensers were degassed. During the degassing, the
pressure was monitored, and it rose dramatically when a dispenser was fired. The
procedure was to increase the current slowly from 1 A and in steps of 0.5 A. When
the dispenser had been running for a few minutes, it was turned off, and the pres-
sure was allowed to settle again.

The biggest problem in degassing the dispensers is that the dispenser suddenly

2SAES 5G013 with 25 mm length of active area.
3All parts were cleaned in ultrasonic bath before inserting them into the vacuum chamber.
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can release extreme amounts of rubidium which coats the interior of the glass
cell. To our knowledge, there is no “safe method” for degassing, but we found this
method useful. Initially, the dispensers were only degassed to 4 A, but since we
were not able to load enough atoms into the MOT, the dispensers were degassed
to 5 A. This caused the pressure to increase by several orders of magnitude, but
afterwards, the MOT was working much better.

So far, dispensers 1-3 and 6-8 have been degassed (figure 3.5). This is fine as
long as vacuum does not have to be broken, since exposure to air would deteriorate
the dispensers quickly. Therefore, two dispensers (4 & 5) have been left intact for
such a situation. During the last 2.5 years, we have only been using one dispenser,
so it seems that the current setup is very rubidium-efficient.

The final change in the setup was the fastening of the movable lens along the
vertical y-axis. This lens is mounted to a stage controlled by an automated mi-
crometre screw, and was intended to shift along with the time-of-flight to always
keep the condensate in focus when imaging along y. Due to concerns about re-
producibility and its influence on the optical lattice, it was decided to disconnect
the automated micrometre screw?.

3.2 Magnetic field control

The primary coils are the three quadrupole pairs MOT, Transport and QUIC coils
(see figure 3.1). The MOT and Transport coils are mounted on a rail to transport
atoms from the MOT chamber to the Science chamber, and the QUIC coils are
mounted on the Science chamber.

All three pairs of coils are designed for low inductance and high current, and
they are supplied by separate power supplies (Delta Elektronika SM15-300). The
coils have only ~ 40 windings and need up to 300 A to deliver the desired magnetic
fields, which necessitates significant cooling. Therefore, the coils are made of hol-
low wire such that cooling water can flow through them, and the coils are cast in
epoxy to avoid deformation as seen in figure 3.4.

The MOT and Transport coils are unregulated, but the QUIC coils have a regu-
lation system using several Danfysik Ultrastab current transducers to measure the
current. The circuit was designed with three IGBTs that would regulate the total
current (T1 & T2), the current bypassed the Ioffe coil (T2) and the current bypassed
the QP coils (T3). The T1 IGBT was disconnected as it gave better stability of the
system, so in the current setup, the Ioffe coil cannot be bypassed (see figure 3.6).

“The lens is shown in figure 3.10 after the Science chamber.
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QP

FIGURE 3.6: The QUIC coils circuit. T2 and T3 are IGBTs for controlling the cur-
rent in each of the branches of the trap. Both are controlled by a regulating cir-
cuit. T1 has been disconnected.

Iguic (A) I (A)  vaq (Hz) v (Hz) Trap bottom (kHz)

300 -0.144 370 17.9 560
150 2.8 60 12.4 -
75 2.8 32 8.6 -

TABLE 3.1: Magnetic trap parameters. I, is the current in the z-shim coils; neg-
ative currents correspond to fields opposite to the field from the Ioffe coil. Trap
frequencies are w = 27 v and “Trap bottom” designates the RF frequency, where
all atoms are evaporated away.

This means that the QP trap is produced by the transport coils, and when transfer-
ring the cloud to the QUIC trap, the current is ramped down in the transport coils
while the current is ramped up in the QUIC coils.

The magnetic trap set up by the QUIC coils is summarised in table 3.1. The
standard trap (300 A) gives a very high radial trap frequency, which is good for in-
creasing the thermalisation rate. This is used together with a field along z that
mostly cancels the background field.

The Transport coils also have the feature of switching between QP and Helm-
holtz configurations in order to generate large fields for e.g. Feshbach resonances.
We have used this feature a few times, but the noise of the unregulated power sup-
ply made it unsuitable for our experiments.

Apart from the three primary coils, there is an additional shim coil pair mount-
ed in Helmholtz configuration for each of the three axes on the Science chamber.
These coils are of the same size as the primary coils but are made of regular wire
and have more windings. They were originally designed to run a constant current
to cancel any background fields, but they have proved very convenient for chang-
ing the offset field of the system for modest magnetic field strengths.
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Axis Windings Calibration Inductance Resistance

x 190 324G/A  9.75mH 440
y 32 1.720 G/A 180uH 1.1Q
z 169 1.721G/A  6.55mH 2.40
Ztast 33 0.363G/A  230uH 0.60

TABLE 3.2: Specifications of shim coils. The windings is for each of the coils in the
pair. Calibration was made using microwave radiation and following the transi-
tion as the current is varied. Inductance and resistance are measured values.

Previously, only the z-shim coils was used to set the trap bottom and to decom-
press the trap. For this, the coils were powered by a Danfysik System 7000 bipolar
current supply prototype. Although very stable in current, the power supply had
a ramp time of ~ 10 ms which was too slow for the spinor experiments presented
in chapter 5. Therefore the power supply was replaced by a HighFinesse BCS 13/4
bipolar power supply which is both stable and fast, but has a limited current range
of 4 A. Furthermore, the original coils were replaced by a more symmetric coil
pair which has both a slow part with 169 windings and a fast part with 33 wind-
ings. Currently, only the slow coils are in use.

The parameters of the shim coils are shown in table 3.2, and from the combi-
nation of inductance and resistance, it is clear that the y axis has the shortest rise
time 7 = L/R. This makes the y-shim coils ideal for fast ramps, and to this end,
another HighFinesse power supply is used for these coils. The power supply has
different ramp settings, but the very fast settings causes the output to oscillate.

The in situ calibration of each of the coils was performed by driving the hyper-
fine |F =2, mp =2) — |F =1, mp = 1) transition for different shim currents. This
maps out the relation between the transition frequency and the current in the coils.
From the Zeeman shift, the frequency is

hv=E,,—E;=vy+(gup2B— g ugB), 3.1

where v, is the transition frequency without magnetic field. Since g,ug =—g g =
h x0.700MHz/G, this makes it easy to find the magnetic field
B= Y—17
~ 3x0.700MHz/G’

(3.2)

For each coil axis, the field is given by

2
B= \/ (i1 +B") + B, (3.3)

i
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FIGURE 3.7: Calibration of shim coils and nulling of background field. The slope
at large currents yields the calibration of the coils in table 3.2 and the minimum
point corresponds to the background field. (a) Calibration of y-shim coils. (b)
x-shim coils. (c) z-shim coils.

where A; is the calibration of the coil, I; is the current through the coils, B;Off) is
the offset field along the given axis and B, is the transverse offset field. So by map-
ping out B(I;), one obtains not only the calibration of the coils but also the offset
fields. This “field nulling” is crucial for being able to produce accurate magnetic
fields, since the offset has to be taken into account. The procedure is illustrated in
figure 3.7.

In practice, this requires an optical trap to keep the atoms in |[F =1, mp =1)
trapped. Since the microwave transition shifts significantly (3x0.700 MHz/G) com-
pared to the Fourier width of a typical pulse (~ 10kHz), it is advantageous to use
a microwave sweep to find the transition frequency roughly, and then locate it ac-
curately with pulses afterwards.

The HighFinesse power supplies are controlled by arbitrary waveform gener-
ators that are programmed from the computer (see section 3.6). This is because
there has been a problem with ground loops between the experiment control com-
puter and the power supplies. This problem is not present for the Kniirr-Heinzinger
PTN 32-10 power supply that drives the x-shim coils, but this power supply is run-
ning on another power group. The ground loops can most likely be avoided by
moving the optocoupled D/A-converters that generates the computer output to
the same power group as the power supplies.
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FIGURE 3.8: Regulation of y-shim coils when driven by a battery. The wire is
wound 10 times through the Ultrastab to exploit the 200 A range of the trans-
ducer. The resistor is only included for monitoring.

Finally, another method for generating large, uniform fields has been imple-
mented in the setup. Owing to the low resistance of the y-shim coils, a large cur-
rent can be driven with only moderate voltage. We used a 12V car battery as supply,
since it produces a very pure DC voltage, devoid of 50 Hz noise. For this, a regula-
tion circuit was built for the setup, where a MOSFET® regulated the current in the
circuit using a Danfysik Ultrastab for probing. The circuit is shown in figure 3.8,
where a 0.1002 resistor was include for monitoring the current.

The setup was able to produce ~ 10A, but since the coils are not cooled, the
current should only be pulsed for a short time. We have also tested the system
with two batteries in series which worked fine for ~ 15A, but only applied for 20
ms.

3.3 Optical traps

The optical traps are generated by diode lasers running at 914 nm. The lasers are
not locked, but single-mode behaviour is monitored on an optical cavity. A master
laser in Littrow configuration and a slave laser without external cavity together
seed the three TAs as shown in figure 3.9. The Master laser is used to seed the
y-TA for the vertical optical lattice, and the Slave laser seeds the x- and z-TAs that
are used for the optical dipole trap. Each of the three TAs is seeded with 30-35 mW
of light power.

Previously, the three TAs were all designed to generate optical lattices, but dur-
ing the last four years, only the y-lattice has been in use. Furthermore, the x-TA
was found to be damaged, and it was decided to completely redesign the x- and
z-TAs for a crossed dipole trap in the beginning of 2014.

SAPT10M-07-JVR, n-channel power MOSFET.



3.3. Optical traps 59

TAz

B\
T— DI Pl Y
BEEE,
%

Master

To cavity Sampler % % TA Yy
Slave D
Splitter ¢ @

U U

FIGURE 3.9: Laser setup for the optical traps. The Master laser (red beam) is a
free-running 914 nm diode laser, and the Slave laser (blue beam) is a 914 nm
external cavity laser diode with no external cavity. The Master laser is protected
from reflected light from the Slave laser by a 60 dB optical isolator whereas the
Slave only uses a 40 dB isolator.

To cavity

Optical lattice

The y-TA generates around 375 mW after the optical isolator, which is enough for
the lattice depths we are interested in. However, the TA is not saturated, so the
output can be increased by diverting more power from the Master to the TA. After
shaping the beam with a cylindrical lens, it is sent through an AOM before being
transmitted to the Vacuum table through an optical fibre (see figure 3.10).

The lattice power is regulated by a home-built circuit that adjusts the AOM
power from a signal obtained on the Vacuum table, and this allows the regulator to
adjust for any polarisation fluctuations in the fibre. The setting of the regulator is
controlled by an analog output from the computer which is added with the signal
from an arbitrary waveform generator in an analog adding circuit. The waveform
generator can also create a sinusoidal signal on the kHz scale which amplitude
modulates the optical lattice.

The lattice beam has a piezo mirror before and after the chamber to help align
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FIGURE 3.10: Sketch of beam path of y-lattice. The first telescope is used to
match the beam profile of the light to that of the fibre. The second telescope
is used to obtain the desired beam waist. Both the “piezo mirror” and the retro-
reflector are equipped with a piezo motor that is controlled from the computer.

the lattice with the QUIC trap. The mirror may be tilted horizontally or vertically
with a piezo controller which in turn is controlled from the experiment control
computer. However, the piezo motor shows a large degree of hysteresis when it
changes direction, and this can be a problem when aligning the lattice.

The lattice is typically aligned by pulsing the beam on for one or two millisec-
onds just as the cloud is released from the magnetic trap. The optical dipole force
causes the cloud to accelerate and the position of the cloud after time-of-flight is
mapped out as a function of the position of the light beam. The cloud position dis-
plays a dispersion-like profile, which is simply the gradient of the Gaussian profile
of the lattice beam. The procedure is first to centre the incoming beam by placing
the beam just at the zero-crossing of the “dispersion” (for this, the retro-reflector
is blocked), and afterwards the procedure is repeated with the reflected beam.

This method works very well for a single optical lattice beam, and the align-
ment can be quantified by measuring the lattice depth. We use two different meth-
ods: parametric loss spectroscopy and Kapitza-Dirac oscillations. Both methods
are discussed in greater detail in the thesis of Henrik Kjeer Andersen [40].

Parametric loss spectroscopy measures the loss of atoms as the lattice is ampli-
tude modulated. When the modulation frequency matches the energy difference
between Oth and 2nd band, the atoms absorb a phonon and are excited to the 2nd
band, see section 2.5. If this band is untrapped, the atoms will tunnel out of the
lattice and lost from the system. From this resonance, the lattice depth can be
calculated from a single-particle model as the band spectrum in figure 2.12.

However, this method is not precise, and it is limited to relatively low lattice
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FIGURE 3.11: Kapitza-Dirac lattice calibration. The oscillation of the momentum
orders n = 0 (blue, filled circles) and n = 1 (green, squares) is shown along with
the fits. The values for s is 18.29(21) for n =0 and s = 18.29(25) for n = 1.

depths, as the atoms must be lost from the trap. Alternatively, the population in
the 2nd band can be measured by performing a band mapping, but in general, we
have only used this method for rough estimates, since the Kapitza-Dirac method
seems more stable and precise.

The Kapitza-Dirac calibration uses the projection of a cloud onto the quasi-
momentum and back to observe oscillations between the different momentum
orders. When the lattice is switched on instantly, the free-space momentum is
projected onto the crystal momentum, and while in the lattice, the cloud evolves
according to the energy of the lattice bands. When the lattice is switched off again,
the crystal momentum is projected back onto the free-space momentum, and the
time evolution in the lattice amounts to an oscillation between the different mo-
mentum orders.

In general, these oscillations are complex functions of s. By numerically eval-
uating the time evolution of such a cloud, it is possible to construct a fit routine
that returns the best guess for s from the evolution of atoms in the different mo-
mentum orders [40]. The result from such a calibration is shown in figure 3.11,
and the oscillations in Oth and 1st order are clear. The robustness of the method
is also good, since the oscillation frequency is insensitive to poor measurement of
the population.

For the data shown in figure 3.11, the fit result is s = 18.29(21) for the 0th or-
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der and s = 18.29(25) for the 1st order. It is also possible to fit the 2nd order, but
since the population in this order is small at these lattice depths, the result is more
uncertain.

Finally, it should be mentioned, that the Kapitza-Dirac method requires a very
pure condensate, since any thermal atoms smear out the orders, yielding much
poorer fits.

Optical dipole traps

After finishing the spinor experiments that are the subject of chapter 5, it was de-
cided to rebuild the two horizontal lattice beams to a crossed dipole trap. Two
beams are necessary for good trapping of a BEC, since, for a single beam, the longi-
tudinal confinement is much smaller than the radial confinement as seen in equa-
tion (2.98).

The two horizontal lattice beams had not been working for at least four years,
and there were no plans for working with three-dimensional lattices in the near fu-
ture. Rather, an optical dipole trap would be advantageous for loading the BEC to
the lattice without the QUIC trap. Spinor physics depends crucially on the ability
to change the magnetic field independently of the trap, and for our experiments,
a uniform field was required. This meant that the QUIC trap had to be turned off,
leading to cloud oscillations in the lattice and heating of the cloud. In this context,
a dipole trap would be a useful stage after the QUIC trap, where a BEC could be
achieved before loading it into the lattice.

Since the TA chip for the x-axis was damaged, it was replaced by a new chip
from Eagleyard®. Both the x- and the z-TAs were placed in a new housing follow-
ing a design from the Institut fiir Quantenoptik (Leibniz Universitdt Hannover),
since the old design had thermal problems when increasing the current [40].

The new design features a smaller heat sink and an NTC resistor which is po-
sitioned further away from the chip (see figure 3.12). The chip is protected by
four diodes (1N-4148) in series to avoid over-voltage and a single reversed diode
(IN-5711) in parallel to avoid negative bias. The TA is cooled by a Peltier element
(Global Component Sourcing ETC-071-14-11-E), and the light is coupled into the
chip with a 4.51 mm aspheric lens and collimated with a 3.10 mm aspheric lens
and a 50 mm rotatable cylindrical lens. The two aspherical lenses are mounted
in a tube which allows them to be moved after they have been glued into the TA.
Further details on the TA design can be found in the progress report by Romain
Miiller [71].

SEYP-TPA-0915, DA-04870
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FIGURE 3.12: Tapered amplifier for dipole traps. The TA chip is mounted on a
copper block that is connected to the positive lead of the supply current. The
NTC resistor is mounted with heat-conducting glue in one of the corners of the
copper block. Light is injected using an aspherical lens in a tube, and a similar
lens is used for collimating the emitted light along the vertical axis. The final
beam profile is produced by the cylindrical lens outside the casing.

The optical layout of the dipole traps is equivalent to that of the optical lat-
tice. The beam path of the x-dipole trap is shown in figure 3.13, and the z axis
is designed similarly. The beam waist was measured by means of a uEye camera
that was working without filter; this was important for the very small spot sizes.
To avoid saturation of the camera, the dipole beam was reduced in intensity by a
OD4 reflective filter before the optical fibre.

The polarisation of the beam is cleaned on a polarising beam splitter after the
fibre, and the detector only gets signal from light leaking through a mirror. In or-
der to focus the dipole beam tightly, the beam is expanded in a Keplerian telescope
before the final 500 mm lens. With an expected power of ~ 300 mW at the cham-
ber, we designed the trap to a depth of 30uK which required a beam waist just
below 45um. The design of the beam path is flexible, since the final 500 mm lens
is mounted on a translation stage. This allows the beam waist at the position of
the atoms to be varied.

The propagation of the beam is shown in figure 3.14, and the measured beam
waists are 44 um horizontally and 39 um vertically indicating a small ellipticity of
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FIGURE 3.13: Sketch of beam path of the dipole trap along x. The first telescope is
Galilean and matches the beam profile of the light with that of the fibre, and the
second telescope is Keplerian and expands the beam in order to obtain a narrow
beam waist at the location of the atoms. The detector is positioned behind a
mirror and measures the transmitted light.
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FIGURE 3.14: Spot size of dipole beam along x. (a) Propagation of beam after fi-
bre outcoupler calculated with ABCD matrix. The dotted line marks the position
of the atoms. (b) Measured spot size of the beam after the 500 mm lens. Hori-
zontal data (blue dots) and vertical data (green squares) is plotted along with an
ABCD matrix calculation (red line).
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the beam profile. An ABCD matrix calculation matching the data points yields a
beam waist of 38.8um as shown in figure 3.14 (b). This is in very good agreement
with the value calculated for the entire setup in figure 3.14 (a): 38.9um.

For a crossed dipole trap it is important to avoid interference between the two
beams as it can create a moving lattice structure which heats the cloud. This is
avoided by choosing opposite orders for the AOM, such that one is shifted up in
frequency and the other is shifted down in frequency. Since the AOM is working
at 80 MHz, the beating between the two beams would be at 160 MHz which is too
fast for the atoms to follow. To further eliminate interference, the two beams have
opposite polarisation, which is achieved by inserting a half-wave plate in front of
the chamber on the z-axis. This wave plate affects the polarisation of the imaging
beam along z, but this has not been a problem so far.

When running the two dipole TAs” at 2.9 A, the z-TA delivers around 1 W of
power whereas the x-TA only delivers 700 mW. Both are specified for 1.5 W, but
none of the chips that have been used in this experiment have been able to output
this power. The x-chip is from a new batch of the 914 nm TAs that was bought in
early 2014, whereas the z-chip dates back to the first lattice setup that was built
around 2008. Whether the new batch delivers less power is still unknown, but the
amount of power is sufficient for the experiments that are planned in the near fu-
ture.

At the Science chamber there is around 275 mW left in both beams, which is
close to the expected 300 mW. Thus, the desired trap depth of ~ 30uK should be
achievable with the current beam waists. The first experiments using this optical
dipole trap are described in chapter 6.

3.4 Faraday laser system

The last laser in the setup is called the Faraday laser, since this laser is detuned to
aregime, where the Faraday effect discussed in section 2.4 is relevant. The laser is
built from the same design as the three “core lasers”, i.e. a diode laser in a Littrow
setup, and it is offset-locked to the Master laser. This makes it by default 212 MHz
red detuned to the F =2 — F’ = 3 transition, as the Master laser is locked to the
F =2 — F’=1/3 cross-over. The laser is further sent through a double-pass AOM
to control the intensity of the laser, and since this AOM is running at 200 MHz, the
laser has an overall blue detuning of 188 MHz. The setup is sketched in figure 3.15.

"They are specified for 3.0 A for maximum safe operation, but previously we have only run 2.5 A
through them for safety.
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FIGURE 3.15: Drawing of the Faraday setup. The beam from the Faraday laser
is shown in red, and the light from the Master laser used for the offset lock is
shown in blue. Reflected beams are dashed. The two lenses before and after the
AOM have the same focal length and serve to more efficiently couple light into
the AOM.

Depending on the lock point of the offset lock, the laser can be detuned in the
range —1.5GHz to 1.8 GHz, where positive detuning is blue. Typically, the laser is
operated in the blue regime, since the effect of molecular dynamics dominates in
the red region, as has also been observed in [72].

The laser is combined with the z-imaging light before the fibre, so it impinges
on the atoms along the Ioffe axis. The light is linearly polarised, and after the cham-
ber, the light is split on a polarising beam splitter. The polarisation is chosen such
that the intensity on the camera is minimised, and any rotation of the light owing
to interaction with the atoms is diverted to the camera (see figure 2.8).

The camera is an Andor DU-888 which features very high quantum efficiency
and an electron multiplying register (EM). It can also be cooled to —60°C without
any external cooling circuit, and this decreases the dark noise considerably [73].

The imaging properties of the Faraday laser has been characterised, and both
the scaling of the imaging signal as well as the destructiveness has been verified
according to 1/A and 1/A? respectively [59]. Furthermore, the imaging factor has
been referenced to standard absorption imaging, and it was found to be constant
over a large range of temperatures. The atom number obtained from Faraday does
not match the atom number from absorption imaging exactly; there is a constant
factor of ~ 75%, which is attributed to imperfections in the setup. This holds as
long as the temperature is above the critical temperature.
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Axis Camera Resolution Pixel size ym
x Andor DU-885 1004 x 1002 1.96

y Andor Luca 1004 x 1002 -

z Andor DU-888 1024 x 1024 2.68

TABLE 3.3: Cameras in the experiment and their current location. The pixel size
is the apparent pixel size as it looks after magnification.

3.5 Absorption imaging system

The original setup featured imaging along all three Cartesian axes. A DTA Chroma
camera was aligned with the z-axis, an Andor DU-885 was on the x-axis and an
Andor DU-888 camera was imaging along the y-axis. Of these, only the DU-885
has remained on the x-axis.

In the early phases of designing the Faraday experiments, it was clear that the
DU-888 would be the best choice, and since a large integrated density was needed
to get a good Faraday signal, the Andor was positioned on the z-axis. The DTA was
used for occasional imaging along the y-axis, but as it became necessary to image
the clouds along the vertical axis for the spinor experiments, the DTA camera was
giving too much trouble. Interfacing the camera became increasingly difficult, and
it was decided to abandon the DTA camera, and the Andor DU-888 was positioned
on the y-axis once again.

In the meantime, another camera, an Andor Luca, has been purchased and it
is planned that it will be installed on the y-axis once the spinor experiments are
resumed. This will leave the Andor DU-888 permanently on the z-axis for Faraday
experiments.

Apart from the primary cameras, the system was designed to flexibly incorpo-
rate a number of smaller, mobile cameras connected via FireWire. However, this
depends crucially on the program designed to control the cameras, the Camera
Control System, and since it was decided to abandon this program (see section 3.6),
this option has not been used to any significant extent.

The x-axis is the primary imaging axis, since it gives a good overview of both
the radial and axial directions of the QUIC trap. Therefore, it was decided to im-
plement circularly polarised light along this axis at the expense of not having an
optical lattice along this direction. The lattice requires a separation of imaging and
lattice light on a polarising beam splitter after the chamber to reflect the lattice
light. However, this beam splitter was removed to be able to use circular imaging
light.
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FIGURE 3.16: Calibration of effective saturation intensity. (a) The summed opti-
cal depth over each image evaluated with different values of a: 1.00 (dark blue),
1.25 (dark red), 1.50 (green), 1.75 (light red) and 2.00 (light blue). (b) The stan-
dard deviation of the summed optical depth taken over all images. The mini-
mum occurs at @ = 1.50 (dotted line).

We have also made a calibration of the imaging system following the method
of section 2.4 along this axis. The experimental procedure consists of imaging the
same cloud with different light intensities a number of times. Here, the tempera-
ture was 1.0puK to avoid saturation of large optical depth, and the duration of the
imaging pulse was adjusted inversely with the intensity to keep the signal on the
camera constant.

The images are then evaluated with different values of a according to equa-
tion (2.68) as is shown in figure 3.16 (a). Since the optical depth should be con-
stant for all light intensities, the optimal value of « is the one with least variation
over all images. From figure 3.16 (b) it is clear that the optimal value is 1.5. Perfect
single-particle imaging would imply an a of one, but the obtained value indicates
that non-ideal effects are not severe.

A similar calibration was performed for the Andor DU-888 when positioned on
the y-axis, and here the value of a was 1.82 and the pixel size was 2.86 pm.

Furthermore, the amount of blurring caused by the imaging system was quan-
tified by the point spread function, & [74]. This was measured by inserting an aper-
ture of 1 um into the imaging beam, and measuring the width of the light on the
camera. For the y-camera, & had a 1/e? waist of 5.72 um.
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In this setup, the DU-888 camera is exposed to vibrations, since it is mounted
on top of two breadboards. The vertical vibrations were measured with a piezo
element held down by a slab of steel, and the observed vibrations ranged from
75 to 300 Hz. These vibrations introduced fringes in the images, since the beam
moves between the raw and reference images. So to avoid this, it was decided to
increase the imaging speed by masking the camera and using it in fast-kinetics
mode.

In this way, the time between the images was reduced to less than one mil-
lisecond, clearing the image of all fringes. However, on this time scale, the atoms
do not have enough time to leave the field of view after the imaging pulse, and this
leads to large blurring effects. Therefore, the Faraday laser was tuned to resonance
(F =2 — F’ =3) and applied transversely to the imaging direction in order to re-
move the atoms by radiation pressure after the first image was taken. This method
allowed for only 800us delays between the two images, and virtually no fringes
were visible.

For the Faraday experiments, where the DU-888 was positioned on the x-axis,
the camera was also operated in fast-kinetics mode. Here, the field of view is very
small since imaging is performed in the QUIC trap, and therefore, the imaging rate
of the camera can be very fast. Sub-millisecond imaging rates have already been
achieved in this setup [59].

3.6 Experiment control

The whole experiment is controlled and kept synchronised by a single computer
program called Experimental Control System (ECS). The program is written from
scratch in Delphi 7 by Henrik Kjeer Andersen specifically for this experiment, and
it consists of more than 18.000 lines of code [40]. It features both digital and analog
(0-5V) channels as well as built-in DDS programming. The resolution for digital
channels is 1 us and 50 us for analog channels.

The system is designed to run in parallel with the Camera Control Systemwhich
was also written in Delphi, but runs on a separate computer. Communication be-
tween the two programs is maintained via a TCP/IP protocol, and one can in prin-
ciple keep all information about imaging in ECS and transmit it to CCS when a
sequence is initiated. However, due to technical issues after updating firmware on
the cameras, we have decided to abandon CCS and run all cameras with the Solis
script environment delivered by Andor.

For each experimental sequence, ECS calculates all control signals for hard-
ware, and outputs them via two DIO cards. Once the run is initiated, there is no
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control over the experiment from ECS, since all output is stored in the DIO cards.
This means that e.g. GPIB signals cannot be transmitted during the run, which is
problematic if a particular piece of hardware needs to be reprogrammed.

All GPIB commands are thus issued before the sequence is triggered by the
MOT signal, and currently GPIB is only used for programming the arbitrary wave-
form generators that control the HighFinesse power supplies. An interface for Ag-
ilent waveform generators is implemented in ECS, and this has been extended to
include the possibility of outputting a script that is directly transmitted via GPIB,
or to generate a ramp by specifying a series of points. The ramp mode is typi-
cally used, since it allows for more direct control of the magnetic field. ECS in-
terpolates the defined points into a ramp with the highest precision possible and
programs the ramp as an arbitrary waveform in the Agilent. The precision is not
perfect though, since the Agilent is designed for waveforms in relative values; not
ramps in absolute values. Therefore, it is necessary to set the same “amplitude” for
the waveform, which is achieved by adding a final point at e.g. 5V at the end of the
ramp. This point should be the largest value in the ramp, so the waveform will be
scaled by this value.

Currently, only the y-shim is controlled through ECS, but it should be possible
to extend ECS with another “Agilent control module”, but this has not been neces-
sary so far, since the z-shim current is rarely changed.

One particularly useful feature in ECS is that the information needed to gener-
ate all ramps and triggers for each experimental sequence is saved into a “run” file
that is identified by a unique run number for each day. In that way, one can always
load an old sequence and repeat the run. Furthermore, the file can also be used by
external software to extract information about any sequence, and since the file is
written when the sequence is triggered, the appearance of an run file is also used
as a trigger for other scripts.

3.7 Microwave generation

To address the hyperfine transition F = 2 — F = 1 in 8Rb, microwave radiation
of 6.834682 GHz is needed. This frequency is beyond the capability of most mi-
crowave synthesizers, so in order to generate this frequency, frequency doubling
is often employed.

The experiment was originally equipped with a Wiltron 6717B synthesizer con-
nected to an AM53 amplifier from Microwave Amplifiers Ltd. The Wiltron synthe-
sizer is able to produce 6.8 GHz directly, and the AM53 is able to amplify by 38
dB to 42 dBm. However, the Wiltron is slow in reprogramming the oscillator fre-
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FIGURE 3.17: Microwave signal chain. The Marconi synthesizer runs at 1.75 GHz
and serves as both the clock for the AD9914 board and the local oscillator for
the mixer. The two final amplifiers are protected by a circulator working as an
isolator, i.e. with a 502 terminator on the reflected port. Numbers in italic refer
to powers in dBm. All components in the chain except the AM53 are supplied by
Mini Circuits.

quency, and its sweeping capability was limited by the digitisation of the steps (20
ms). Therefore, it was decided to replace the synthesizer by a more flexible setup.

The new setup consists of a programmable DDS synthesizer (AD9914) which is
able to generate signals up to 700 MHz with a precision of 0.163 Hz [75]. The signal
is then mixed with a local oscillator from a Marconi 2024 synthesizer running at
1.75 GHzyielding a signal around 2.28 GHz. The signal is amplified in several steps,
tripled and filtered before reaching the AM53 amplifier. The signal chain is shown
in figure 3.17.

The mixing and the tripling reduces the power significantly, so a number of
pre-amplifiers has been applied in the signal chain. The signal is also switched by
two Mini Circuits ZFSWA2 switches in order to get a good suppression. The exact
choice of pre-amplifiers was based on availability.

This setup gives good suppression of other orders in the mixing procedure. The
only critical element in the chain was the location of the tripler. If the tripler was
placed after the switches, a lot of noise was apparently generated which lead to
poor condensates. Aslong as the tripler was separated from the ZVE-3W amplifier
by a switch, there were no problems.

The Marconi synthesizer is used both to mix with the AD9914 and to clock
it. The Marconi itself is clocked at 10 MHz by an external atomic reference. The
AD9914 can be controlled through a USB port using a C++ interface written by
bachelor student Theis Skalmstang. The desired frequencies are programmed into
ECS, and the contents are extracted by a LabVIEW script that is triggered when a
new file is written by ECS. The LabVIEW script extracts the frequencies and exe-
cutes the C++ interface which ultimately programs the AD9914.

The DDS chip is able to output 8 different frequencies in static mode, and this
isidentified by eight “profiles”. The profile is selected by applying a 3.3 VTTL signal
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FIGURE 3.18: Microwave spectrum. (a) Spectrum of a 10us pulse. The data is
fitted with a Gaussian with a HWHM of 36.3 kHz. (b) Spectrum of a 135us pulse
at lower power, displaying the structure of a sinc function.

on the three “profile select” inputs PS0-2 using binary counting [75].

The AD9914 can also perform sweeps between two predefined frequencies. A
sweep is triggered by a 3.3 V TTL signal to the “TRG” channel, and depending on
the slope of the trigger, the sweep will go from low to high or vice versa. We have
observed full transfer between the two hyperfine manifolds using the microwave
sweep, but in general, it is easier to use a short, intense pulse. However, microwave
sweeps are useful for localising a hyperfine transition, since it is easy to see a small
population in F = 1 when sweeping across the resonance — even with a sweep of
several MHz.

In pulsed mode, the high power of the AM53 yields 7-pulses of as little 10us,
which makes the Fourier width of the spectrum very broad compared to the mag-
netic noise. Such a spectrum is shown in figure 3.18 (a). The data has been fitted
with a Gaussian yielding a HWHM of 36.3 kHz, which is in reasonable agreement
with the 39.0 kHz expected from equation (2.70). A longer pulse of 135 us of lower
power was used for the spectrum in figure 3.18 (b), and the main peak is clearly
narrower. Also, the side peaks from the sinc function are visible in this spectrum.

When driving the transition with very long pulses, the oscillation slowly de-
phases as seen in figure 3.19 (a). A time constant of 1.5(4)ms is observed, but
around 2 ms, the oscillation is effectively damped out. The spectrum was mea-
sured with a pulse duration of 2 ms using full power, and the result is shown in
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FIGURE 3.19: Long microwave pulses. (a) Rabi oscillations at full power show-
ing a slow dephasing of 1.5(4)ms. (b) Spectrum of a 2 ms pulse at full power.
The Rabi oscillation is dephased, and the high power causes broadening of the
spectrum. The data is fitted with a Lorentzian with a HWHM of 46 kHz.

figure 3.19 (b). The width of the resonance is much wider here than what is seen
in figure 3.18 (b), although the Fourier width is much smaller. This is due to power
broadening, as discussed in section 2.4.

The previous remarks are important for using microwave transitions to mea-
sure the magnetic field stability. While high power and short pulses are good for
reliable state preparation, the opposite limit is useful for measuring the stability of
the magnetic field. Since the magnetic dipole transition is very weak, we attribute
the width of the transition spectrum to noise in the magnetic field.

To measure the width induced by the ambient magnetic field noise, a long
pulse with low power is needed, in order to resolve the width. We used a 600us
pulse at a very low power setting, and the Fourier width of such a pulse is 0.65 kHz
according to equation (2.70). While the microwave pulse was applied, the BEC was
held in the optical lattice, and a constant field of ~ 1 G was maintained along the
z axis.

At this time scale, the microwave pulses deliver a very fluctuating result due
to the noise; i.e. in one realisation there is high transfer, but in the next there is
no transfer. This indicates that the noise is slow compared to the pulse, since it
amounts to an unpredictable shift in the resonance frequency.

The results of this measurement are shown in figure 3.20. The data was fit-
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FIGURE 3.20: Microwave spectrum of the |2, 2) — |1, 1) transition with a 600us
pulse at very low power. The data was fitted with a Lorentizian yieldinga HWHM
of 1.0(2)kHz. The data is shown binned in widths of 0.5 kHz.

ted with a Lorentzian yielding a HWHM of 1.0(2) kHz, which is above the Fourier
width of the pulse. According to equation (3.1), this noise corresponds to 0.5(1) G
of noise.



CHAPTER 4

WAVE PACKETS AND LOCALISED
STATES IN AN OPTICAL LATTICE

Wave packets have been an essential concept in quantum mechanics since its for-
mulation in the 1920s. For example, the simplest way of describing a free particle
that is spatially localised is by a wave packet of plane waves, i.e. a coherent su-
perposition of momentum eigenstates. To this day, the concept remains useful in
many areas of physics research, an example of which is pump-probe experiments
in molecular physics. Here, a vibrational wave packet is excited with a pump light
pulse and later probed with a second pulse, yielding information about the struc-
ture and time evolution of the system [76].

In this chapter, I shall show how to create wave packets of ultracold atoms and
how to obtain information about lattice structure in direct analogy with pump-
probe spectroscopy. Here, the pump and probe are not laser pulses as in molec-
ular physics, but modulation pulses — or phonons — in an optical lattice. Similar
experiments have been carried out in the group of Klaus Sengstock using a degen-
erate Fermi gas instead of a BEC [77]. This system displayed behaviour analogous
to photoconductivity, where the phonon acted as the excitation mechanism, and
due to the Pauli principle, the system showed rephasing of the “holes” after wave
packet excitation.

In our experiments, a BEC is prepared in a QUIC trap and then transferred to
a vertical optical lattice while maintaining a weak magnetic trap potential. The
lattice is amplitude modulated, leading to wave packets in the combined potential,
as illustrated in figure 4.1. Such a system has been studied by Ott et al. [78], who
discovered that this system supports localised states. Here, localised means that
there is no spreading of these states over long time scales due to the suppression of
tunnelling between lattice sites. We observe similar localisation when coupling the
wave packets to distant lattice sites. This chapter is based on the work presented
in [79, 80].

At a lattice depth of s = 16, the 2nd band is partially trapped as is apparent

75
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FIGURE 4.1: Sketch of the setup for the experiments presented in this chapter. A
BEC isloaded into a one-dimensional lattice while keeping the magnetic poten-
tial from a decompressed QUIC trap. Thelattice beam is aligned to the symmetry
axis of the quadrupole coils.

in figure 4.2 (a). Furthermore, the QUIC trap is decompressed to an axial trapping
frequency of w,, =27 x12.2 Hz and aradial trapping frequency of w, = 2 x40.6 Hz.
This extremely decompressed system was simulated numerically by diagonalising
the single-particle Hamiltonian of both potentials in position space,
2 g2

Hoz—j—Mdd—yz+sErcosz(ky)+%Ma)fy2, (4.1)
where M is the mass of a single particle, k is the wave number of the lattice, and w,
is the radial trapping frequency of the QUIC trap. Any structure due to the Rayleigh
range of the beam is neglected, since it is a few centimetres, and the atoms are
distributed over ~ 100 um.

The resulting spectrum is shown in figure 4.2 (a) and shows a band structure
shaped by the harmonic potential. The high-energy region shows a state spacing
of ~30Hz, which is to be compared to the band separation, which is in the range of
tens of kilohertz. Hence, beyond the 2nd excited band, the system features a quasi-
continuum where atoms are only trapped in the magnetic trap. Furthermore, the
system displays a high degree of localisation around the edges, where the band
gap acts as a potential barrier that separates a state into several localised regions.

The experimental procedure was to create an almost pure BEC of ~ 10° atoms
in the QUIC trap. The trap was then decompressed by reducing the current in the
QUIC coils to 150 A while increasing the z-shim current by 4 A over 500 ms. This
cloud was loaded into an optical lattice over 100 ms. Afterwards, the lattice was
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FIGURE 4.2: Simulated spectrum of optical lattice and magnetic trap. (a) Spec-
trum of the combined potential in position space. The states have been binned
inregions of width h x664 Hz and dark blue corresponds to high density of states,
whereas white denotes a vanishing density of state. The boundary set by the
depth of the trap potential (coinciding with E = 0 in the centre) is marked by
a red dashed line. Excitation and deexcitation processes through modulation
of the lattice are shown as solid arrows, and motion of wave packets is shown
as dashed arrows. (b) Spectrum in momentum space at the centre of the trap.
Arrows are identical to (a).

amplitude modulated, with an amplitude € such that the total lattice potential was

Vlatt(y, t)z sEr[l+6cos(a)modt)]cosz(ky). 4.2)

Afterwards, the system was left to evolve for a short time, before imaging the cloud
in-trap.

The cloud was imaged along the x-axis using linearly polarised light at a bias
field of 11 G. This was accounted for by calibrating the imaging against the stan-
dard procedure involving circularly polarised light described in section 2.4. Al-
though the bias field was large, the trap was sufficiently decompressed for the
imaging to be independent of position.
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FIGURE 4.3: (a) Typical experimental pictures after excitation of a wave packet.
Vertical axis is the lattice axis and images are taken along the x-axis. (b) Atom
number in lower wave packet after 3 ms evolution when the modulation fre-
quency is varied. The data is fitted with a Gaussian function with a centre fre-
quency of V.4 = 30.8kHz, and a 1/e? width of 5.7kHz. (Inset) Atom number in
lower wave packet when varying the modulation time at amodulation frequency
of 33 kHz. The data is fitted with an exponential saturation function (4.3) with
time constant 7 = 130 us. Both data sets were taken with € = 0.165. Vertical axis
has the same units as (b).

4.1 Creation and motion of wave packets

When the optical lattice is modulated, it is possible to transfer atoms into the par-
tially trapped 2nd excited band. Here, a further excitation is possible, transferring
the atoms into the quasi-continuum (figure 4.2 (a), arrows 1). In nearly free space,
the atoms evolve as wave packets and move away from the main BEC. This two-
step excitation forms the basis for all the work in this chapter.

Following the procedure in previous section, we obtain images as shown in
figure 4.3 (a), featuring two distinct wave packets moving in the quasi-continuum.
The fact that two wave packets are produced is a consequence of the symmetry
of the system; thus the band structure in momentum space shows two identical
resonance points (figure 4.2 (b)).

Due to the two-step nature of the excitation process, it will be limited by the
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width of the 2nd excited band. This was verified by measuring the number of
atoms in the wave packets as a function of modulation frequency as shown in fig-
ure 4.3 (b). Here, wave packets were excited at a variable frequency and left to
evolve for 3 ms before imaging them. The wave packets appear only in a band of
width 5.7 kHz which is comparable to the 7 kHz resulting from the band structure
calculation.

The inset of figure 4.3 (b) shows the dependence of wave packet atom number
on the duration of the lattice modulation. The data was fitted with the function

f(6)=A[1—exp((t — ty)/7)]O(t — &), (4.3)

where A is the amplitude, 7 is the time constant, f; is the onset time, and © is a step
function. The atom number saturates with a time constant of 130p.s, and based on
this, we choose a pulse duration of 500us as the standard value. In the following,
a pulse duration of 500 us is used unless other is stated.

The slope of the bands in momentum space sets the group velocity (2.109), and
from figure 4.2 (b) it is clear that the wave packets will start moving. The harmonic
confinement induces an oscillatory motion at the (radial) trap frequency, but at
the potential barriers caused by the band gaps, the atoms either undergo Landau-
Zener transitions to another band or follow the avoided crossing into the next Bril-
louin zone. The latter option corresponds to Bragg reflection from the potential
barrier. We calculate the Landau-Zener transition probability to be ~ 1 x 1073 [81],
and hence, Bragg reflection is the dominant mechanism.

The sinusoidal motion is thus “cut” by a reflection on the band gap. The first
reflection happens at #,.f, and at 2., the wave packet traverses the main BEC and
is reflected again at the opposite band gap at 3t To refine the model, the re-
flection is assumed to have a duration of 7.; due to the finite width of the wave
packet.

This motivates the somewhat cumbersome expression for the wave packet po-
sition

Asin(w, t + @) 0< 1< tep— 5t
ASin(wr( Lref— Tref/z) + ¢0) Lret— % S <yt % 44)
ASin(wr t+¢o+ ¢ref) Iref + Téef St <3tef— Téef ’

where @ = T — 2w, et is the phase shift due to reflection. The first line of equa-
tion (4.4) describes the wave packet’s position before the first reflection, the second
line describes its position during reflection (which is stationary) and the third line
describes its position after the first reflection and before the second reflection.
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FIGURE 4.4: Motion of wave packets after excitation at 30 kHz. The initial upper
wave packet (open circles) and the initial lower wave packet (filled circles) are
plotted. Both sets of data are fitted with equation (4.4): Initial upper wave packet
(blue, solid) and initial lower wave packet (green, dashed).

A comparison of equation (4.4) to experimental data is shown in figure 4.4.
Here, the data was obtained by exciting a wave packet at 30 kHz and an image
was taken in-trap after a variable evolution time. For the fit, the trap frequency
was kept constant at the measured 40.6 Hz, and all other variables were varied
for fitting. The reflection duration 7, yields a fitted value of 0.9(1)ms which is
consistent with a quick estimate given by 20 /v, where o is the 1/e? width of the
wave packet, and v is the velocity. Assuming a velocity of 371k, /m at the band gap,
v=15mms}, and since o = 6.6 um, the estimated reflection duration is 0.88 ms
in good agreement with the fitted value.

The motion of the wave packets is also affected by the excitation frequency.
The motion up to the point where the wave packet crosses the BEC is shown in
figure 4.5 (a) for modulation frequencies 28, 32, and 36 kHz. Itis clear that the wave
packet moves further out at higher modulation frequencies as expected, owing to
the larger kinetic energy obtained by the excitation.

The effect of varying the modulation frequency may be estimated by noting
that the turning point follows the band gap between the 2nd and 3rd bands. This
band gap is quadratic in position due to the magnetic trap, but is offset by the
transition energy from Oth to 3rd excited band, & vy3. Energy balance thus requires
that at the reflection point, the potential energy matches the modulation energy
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FIGURE 4.5: Motion of the upper wave packet at different excitation frequen-
cies. (a) Traces of wave packet motion during the first half oscillation for
Ymod = 28kHz (blue, filled circles, solid), 32kHz (green, squares, dashed), and
36kHz (red, open circles, dot-dashed). (b) Maximal displacement for the wave
packet at different modulation frequencies. Error bars are extracted from fits.

2h Vmod
21 Vimod = hvp3 + 3 M w?y?. (4.5)
This may be solved for the position
4h 1
y= M—a)f (Vmod -3 Vos)- (4.6)

Since the trap frequency is well-known, the only variable in this expression is the
transition frequency vy3, which was used for fitting in figure 4.5 (b). The resulting
value of g3 is 42.6(6)kHz and 40.2(8)kHz for the upper and lower wave packet,
respectively. The fitted values agree with the value of 41.1 kHz obtained from the
band structure calculation.

4.2 Deexcitation of wave packets

Localised states

The process of creating wave packets may be reversed by applying lattice mod-
ulation to wave packets oscillating in the quasi-continuum. This deexcites the
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FIGURE 4.6: Deexcitation of wave packet versus evolution time. (a) Experimental
data using a modulation frequency of 32 kHz. (b) Simulated data using a mod-
ulation frequency of 28 kHz (see text).

wave packet into a lower lattice band in a process similar to stimulated emission.
The process is illustrated in figure 4.2 by arrows 2, and for a given modulation fre-
quency, the deexcitation is only possible in a narrow spatial region. Furthermore,
the deexcited states are localised, having a large density of states only in a region
given by the band width. The deexcited atoms would hence be trapped at this po-
sition, unable to interact with the main condensate.

To test this interpretation, wave packets were excited at 32 kHz and another
modulation pulse was applied after a variable evolution time. The atom number
in the localised state was normalised to the total atom number, and is shown in
figure 4.6 (a). The data shows a double peak structure centred at the wave packet
reflection time, corresponding to resonant deexcitation before and after Bragg re-
flection. The process repeats itself after the wave packets have traversed the main
peak.

The simulations shown in figure 4.6 (b) exhibit the same behaviour. The pro-
cess was simulated by a single-particle time-dependent Schrodinger approach,
starting from the spectrum of the time-independent Hamiltonian shown in fig-
ure 4.2. Using the ground state, g = 0 in the 0th band, as initial state, the atom
is coupled to the quasi-continuum via the 2nd excited band using the matrix ele-
ment (f]| cosz(k y) |i) in accordance with equation (2.113). The population in the
quasi-continuum is then evolved under the time-independent Hamiltonian for a
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variable time before coupling it back to the localised states. The data shown in
figure 4.6 (b) is the resulting population in the localised states versus time.

The simulations were performed at a lower modulation frequency than the ex-
periments in order to observe dynamics. At 32 kHz, no coupling to the continuum
was observed, so a frequency of 28 kHz was chosen. We attribute this discrepancy
to the fact that only g = 0 was chosen as the starting point for the simulations. For
areal BEC, the extent of the condensate allows excitation to occur at other values
of g as indicated by the arrows in figure 4.2 (b).

The simulations show qualitatively the same behaviour as the experiments,
but there are two key differences: Firstly, the timing of the localised population
does not match. This we attribute to the difference in modulation frequency be-
tween experiments and simulations. The simulations use a lower frequency;, so it
is expected that the Bragg reflection occurs earlier in the simulations than in the
experiments.

The second difference between experiment and simulation is the large discrep-
ancyin the deexcitation efficiency. For the experimental data, only a few percent of
the total population is deexcited to localised states whereas the simulations show a
factor of ten larger population. We attribute this discrepancy to interaction effects.

To control the deexcitation process, three parameters are available: The fre-
quency, amplitude and duration of the modulation pulse. Each of these may be
adjusted to tune the properties of the resulting localised states.

The effect of varying the deexcitation frequency was investigated by exciting
wave packets, letting them evolve for 2 ms and then applying a deexcitation pulse
with variable frequency. The results are shown in figure 4.7 as a deexcitation spec-
trum.

In the spectrum, three peaks are visible: 19.1(1),31.10(7) and 47.7(7)kHz. These
three peaks may be identified with transfer to the 2nd excited, 1st excited and 0th
band respectively. A comparison with figure 4.2 shows that the expected transition
energies are 6.3, 11.8 and 18.1E,, respectively; these correspond to 17.3, 32.4 and
49.7 kHz in good agreement with data.

The experimental method for obtaining the data in figure 4.7 was modified to
prevent atoms from tunnelling out of the partially trapped 2nd band. To this end,
the lattice was ramped to 22.5E; over 1 msright after the modulation pulse, in order
to keep atoms in the lattice. Following this, the magnetic trap was ramped down
over 5 ms, and the atoms were held for another 12 ms in the lattice to remove the
remaining wave packet before imaging.

Another complication was the possibility of transferring atoms to the 1st band
in a two-step process when addressing the 2nd band. We have verified that there
are no atoms in the 1st band when using the low modulation amplitude of € = 0.15.
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FIGURE 4.7: Deexcitation spectrum. Wave packets were deexcited with a lattice
modulation pulse of variable frequency. The data has been fitted with a triple
Gaussian function yielding resonance 19.1, 31.7, and 47.7 kHz. Representative
error bars are shown at 19.0, 31.5 and 48 kHz.

It should also be noted that the transfer of atoms from the 3rd to the 2nd band
in figure 4.7 does not violate the selection rule of An = 2. This rule only applies
strictly for parity eigenstates, but here the effect is to lower the transfer rate for
odd An.

In figure 4.8, the amplitude of the modulation pulse was varied for each of
the transitions shown in figure 4.7. The deexcitation efficiency increases approxi-
mately linearly with modulation amplitude, but beyond € = 0.2, the efficiency sat-
urates. This is attributed to non-linear effects such as reexcitation of atoms into
the wave packet. The 1st excited band can be populated with highest efficiency
owing to the fact that it is a An =2 transition. In contrast, the Oth and 2nd excited
band are limited at 15% and 50% respectively. Nonetheless, the data shows that
the amplitude of the lattice modulation may be used to split the wave packet into
a stationary and a moving part. The inset of figure 4.8 shows the effect of varying
the duration of the deexcitation pulse when using 32 kHz and € =0.17. A fit using
equation (4.3) yields a time constant of 7 = 132 us in agreement with the excitation
pulse. This result also validates the choice of 500 us pulses for deexcitation.



4.2. Deexcitation of wave packets 85

0.2} e

o
o
|
bO
o
|
|
)
I

— T

0 0.05 0.1 0.15 0.2
Relative modulation amplitude

Fraction of atoms in localised state

FIGURE 4.8: Deexcitation efficiency for different modulation amplitudes. Data is
shown for the fraction of atoms transferred to the 0th band (open circles, red) for
the 1st excited band (filled circles, blue) and for the 2nd excited band (squares,
green). Alinear fit has been applied to each of the data series, and only the linear
regime is shown. (Inset) Deexcitation efficiency versus modulation pulse dura-
tion. The vertical axis is the same for both figures. The data has been fitted with
an exponential saturation function yielding a time constant of 7 =132 us.

Position control of localised states

From figure 4.2 (a), it is clear that the deexcitation frequency changes with the po-
sition of the wave packet. Conversely, the position of the deexcited state may be
controlled by choosing the correct delay between excitation and deexcitation and
the corresponding modulation frequency.

Infigure 4.9, the potential of the trap has been mapped out by varying the mod-
ulation frequency. A pair of wave packets were excited by sweeping the modula-
tion frequency from 27.5 to 28.5 kHz. This makes the wave packets temporally
broad, which was advantageous for finding the optimal deexcitation frequency.
For delays between 0.1 and 2 ms, the deexcitation frequency was scanned, and the
cloud was held for another 10 ms only in the lattice to let the remainder of the wave
packet tunnel out. Afterwards, the optimal frequency was found from the maxi-
mal transfer, and the position of the localised states was found by fitting a Gaussian
profile to the cloud.

The trap potential shows a significant anharmonicity which can be quantified
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FIGURE 4.9: Spectroscopy of the trap potential by varying the deexcitation fre-
quency. Two fits have been applied to the data: a cubic equation (blue, solid)
and a quadratic equation (green, dashed).

by fitting a cubic polynomial
Ebg:ay3+by2+c, 4.7

where the linear term has been omitted in order to keep the centre of the trap fixed.
Comparing this to a normal quadratic equation E,g = b’ y? + ¢/, shows that the
quadratic fit yields a y? value that is 9.3 times larger than the one obtained from
the cubic fit, i.e. the cubic equation gives a better fit, and the trap is anharmonic.

The anharmonicity is caused by several factors such as gravity (since the wave
packets always travel along the vertical lattice) and misalignment of the optical
lattice with respect to the magnetic trap. Simulations of the magnetic trap show
that the anharmonicity caused by gravity is three orders of magnitude lower than
what is measured in the experiments, so the primary cause of the anharmonicity
must be due to misalignment of the optical lattice with respect to the magnetic
trap.

The timing between the excitation and deexcitation pulse may also be exploited
to create more complicated structures. If a first modulation pulse is applied at
a large frequency and using a short delay and low amplitude, a pair of localised
states will be created close to the main BEC and around 50% of the wave packet
will propagate onwards. A second modulation pulse may be applied later using a
lower frequency and high amplitude in order to deexcite all remaining atoms to a
localized state at the edge of the trap.
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FIGURE 4.10: Double peaks created by splitting a wave packet with lattice mod-
ulation. (a) Absorption image of the cloud. (b) Optical density summed along
the x axis, showing the relative size of the peaks.

This was realised by exciting wave packets at 33 kHz, and deexciting first at
36 kHz after 1.5 ms and then at 26 kHz after 2.0 ms. The result is the double-peak
structure shown is figure 4.10. This demonstrates the ability to store two sets of
atoms in a register, and the mechanism could be extended to more clouds by using
amore decompressed trap.

A final tool to manipulate the localised atoms is by applying RF radiation in
order to expel atoms from the trap. This is possible due to the large gravitational
sag in the decompressed trap,

Vsag = % =173 pm, (4.8)

I
where g is the gravitational acceleration. The atoms are hence dragged far away
from the centre of the magnetic trap, and they are located on a magnetic gradient
that balances gravity as shown in figure 4.11. Due to the magnetic gradient, the
atoms experience a unique magnetic potential which can be used for RF address-
ing.

Sweeping the frequency of RF radiation makes it possible to remove the atoms
in a given region of space. This is done experimentally by first applying a lattice
modulation at 30 kHz for 10 ms. This produces a large population in the 4th band
rather than the distinct wave packets, and as the atoms move into resonance with
deexcitation at 30 kHz, they are transferred to the 1st band, creating a large popu-
lation in the localised states.

Afterwards, a variable RF sweep was applied for 80 ms at the same power used
for evaporative cooling. The effect of different sweeps is shown in figure 4.11. In
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FIGURE 4.11: Localised states after RF sweep. (Left) Images have been turned
90° counter-clockwise, such that the upper wave packet is to the left. (a) No RF
sweep. Localised states were created with 10 ms lattice modulation at 30 kHz. (b)
RF sweep from 7650 to 7566 kHz. (c) RF sweep from 7700 to 7565 kHz. (Right)
Sketch of the position of the clouds in the magnetic potential; the black lines in-
dicate equipotential lines. The atoms are shifted away from the centre of the trap
due to the gravitational sag. The clouds are thus located on a magnetic gradient.

(a), no sweep was applied, in (b) a sweep from 7650 to 7566 kHz removes the main
BEC, and in (c) a sweep from 7700 to 7565 kHz removes both the lower wave packet
as well as the main BEC.

This demonstrates the ability to manipulate localised states, and in the context
of a quantum register, the RF cut can be thought of as a way of erasing an entry.
Even though the RF sweep is relatively long, there is no clear effect of broadening
or losses [78].

4.3 Multiply excited states

Another interesting aspect of the wave packets is the ability to create oscillating
states of large momentum by applying additional excitation pulses. Conservation
of momentum only allows further excitation in a small region of momentum space
as indicated in figure 4.2 (a) by the arrows marked 3.

When wave packets are created, they start in the 4th exited band, but quickly
move into the 3rd excited band. From there, another excitation transfers the atoms
to the 5th excited band by absorbing two phonons carrying 271k, of momentum.
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FIGURE 4.12: Multiply excited wave packets. (a) Position of lower wave packet
(filled circles, solid line) and upper wave packet (open circles, dashed line). Both
sets of data were fitted with equation (4.4). (b) In situ absorption image of the
system after 4.5 ms hold time.

The atoms are thus transferred to the 5th Brillouin zone and the process is drawn
as a “vertical transition” in the first Brillouin zone as shown in figure 4.2 (b).

This has been verified experimentally as shown in figure 4.12. Here, a wave
packet pair was created by modulating the lattice at 31 kHz, and after 2 ms evolu-
tion another lattice modulation pulse at 52 kHz was applied. The large oscillation
amplitude due to the absorption of two phonons is clear in the figure, and the path
has an almost triangular shape due to the large momentum.

The larger oscillation amplitude agrees with the position space picture in fig-
ure 4.2 (a), since the band gap is shifted further outwards at the higher energy. It
also agrees with the band pictures, since it will take the atoms longer time to reach
the band gap from the 5th excited band.

The fact that the resonance depends on the position of the wave packet has
been verified by repeating the excitation at different hold times. For each hold
time, the excitation frequency was varied in order to map out the resonance struc-
ture. The result is shown as a spectrum in figure 4.13, and there are two trends: The
resonance frequency decreases with increasing hold time, and the width increases
with increasing hold time.

The decreasing centre frequency is consistent with the band structure in fig-
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FIGURE 4.13: The excitation spectrum for multiply exciting a wave packet at dif-
ferent hold times. The initial wave packets were excited using 31 kHz, and for
each hold time the number of atoms in the excited wave packet was measured
for varying modulation frequencies. Data is shown for 0.6 ms (dark blue, open
circles), 2.0 ms (green, squares), 2.9 ms (red, diamonds), and 3.3 ms (bright blue,
filled circles). The data has been fitted with a Lorentzian to extract a centre fre-
quency and a width.

ure 4.2 (b). The transition is marked with the arrows “3”, and the upper band is
sloping more than the lower band, since the energy difference between the two
bands will decrease as the wave packet “rolls down” the band.

The effect is shown more clearly in figure 4.14, where the resonance frequency
is plotted against the delay between the two modulation pulses. The data may be
analysed by assuming that the wave packet is propagating freely in a harmonic
potential. For an atom in the g’th band, the momentum is g7 k;, and the modula-
tion pulse adds another 27 k, to the momentum. If the particle is free, the energy
difference in the excitation process is

E'—E
E;

=(q 427 —q* =4(1 4 Gmax cos[w,(1 — 1)]), 4.9)

where ¢nax is the maximal momentum of the particle oscillating in the harmonic
potential, and ¢ is a time offset to account for any delays in the excitation pro-
cesses. Using this analytic model for fitting the data in figure 4.14 yields a maximal
momentum of gp,,x = 4.16(1)k; and an offset of t, = 0.21(2)ms. The fit is shown in
red in figure 4.14 and matches the data well.
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FIGURE 4.14: Centre frequency for the second excitation of a wave packet as
function of time. Two fits are plotted: one using the analytical, free-space model,
equation (4.9) (red, dashed), and one using the calculated band structure (blue,
solid). (Inset) Zoom-in of the curve showing the kink in excitation frequency due
to the crossing from the 4th to the 3rd excited band.

Alternatively, the data may be fitted using a numerical expression based on the
calculated band structure of the system. Using the single-particle band structure
calculation, the energy is calculated numerically for every value of the momentum
Gmax €Os[w:(t — #p)]. The fit values are g, = 4.18(2)k; and 5 = 0.44(4) ms.

The expected value of g, is found by matching the 31 kHz of the excitation
pulse with the band structure in figure 4.2, and extracting the corresponding mo-
mentum. This is found to be 4.22k; in good agreement with both methods. The
time offset indicates that the further excitation of a wave packet takes a finite time,
and the difference in the value of t, suggests that the band structure has an influ-
ence on the duration.

The numerical fit exhibits a small kink in the dispersion (see inset of figure 4.14)
which originates from the small band gap between the 3rd and 4th excited bands.
This also shows that a transition from 4th to 6th band is driven for ¢ < 1.5ms, and
the transition is from 3rd to 5th band for ¢ > 1.5ms.

In summary, a method for creating and storing wave packets in an optical lat-
tice was presented. The experiments and the presented model show good agree-
ment, indicating a good understanding of the system and the ability to control the
excitation and deexcitation processes. The number of atoms localised after deex-
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citation can be controlled through the amplitude and duration of the modulation
pulse, and the band where the atoms are localised can be chosen through the fre-
quency of the pulse.

The system’s ability to store atoms in the lattice makes it a candidate for a quan-
tum register. It was shown that the number of localised states may be extended,
and that the localised atoms can be manipulated by applying an RF sweep to expel
atoms from the trap.

Finally, it was demonstrated that the opposite of the deexcitation — namely a
further excitation of the wave packets — is possible. This allows for access to high
momentum states in the magnetic trap, and the frequency of the modulation acts
as a tool for band structure spectroscopy.



CHAPTER 5

SPIN DYNAMICS IN A
TWO-DIMENSIONAL GEOMETRY

Spin-changing collisions lie at the heart of the field of spinor physics in degenerate
quantum gases. Following the demonstration of coherent spin collisions [30, 31],
the process has been studied under a wide variety of circumstances. The central
phenomenon for coherence studies has been the spin oscillation, where a non-
equilibrium spin state is prepared and allowed to evolve, showing oscillation be-
tween different spin states. The so-called single-mode approximation (SMA) is
crucial for spin oscillations since it prevents any decoherence caused by popula-
tion transferred to other spatial modes. The SMA is valid when the spin-healing
length & is larger than the extent of the condensate, [82]

3 _ 2 (6.1
S_\/2m|c|’ ‘

where c is the interaction energy associated with spin-changing collisions. The
healing length describes the length scale over which excitations occur, so when it
is larger than the condensate, no excitations are allowed [42, 44].

Using the SMA in the F = 1 manifold, the Chapman group observed spin oscil-
lations and were able to interpret them using the model of an anharmonic oscilla-
tor. As the applied magnetic field was increased, the oscillation period diverged in
analogy with the quasi-stable equilibrium of an inverted pendulum [31]. Further
increase of the magnetic field leads to oscillations of another kind, as was demon-
strated by the Lett group [33]. Using non-destructive imaging techniques they ob-
served the crossing of the separatrix between oscillating and running phase dy-
namics.

Another approach to varying the quadratic Zeeman energy is to use microwave
dressing of the hyperfine states [83]. This has the advantage of not being limited by
the sign of the quadratic Zeeman energy (refer to equation (2.39)) and both sides
of the g axis become experimentally accessible.

93
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Similar experiments have been carried out in the Hamburg group using a de-
generate fermi gas rather than a BEC. Using “°K, they were able to observe the same
kind of spin oscillations in a Mott insulating lattice as was observed by the Bloch
group [30, 84]. However, since they had a total of 10 magnetic states available, os-
cillations were also observed for high-spin systems. Another surprising result of
the fermionic spinor system was the observation of long-lived spin oscillations in
an ensemble loaded into an optical dipole trap [85]. Although one would expect
the oscillations to couple to the spatial structure leading to an immediate decoher-
ence, the opposite was observed. Due to the fast dynamics of the spatial degrees of
freedom, the spatially-dependent interactions averaged to zero, which effectively
put the system in a single-mode regime.

Regarding the question of spatial excitations in a spin-changing collision, the
Hannover group took a different approach using BECs. Here, spontaneous spin
dynamics appeared as instabilities of the |2, 0) state leading to populationin |2, £1)
[34-37, 86]. They were able to identify various spatial modes as the magnetic field
was varied including superpositions of nearly degenerate modes.

Our experiments are taken to an explicit multi-mode regime, where several
modes are needed to account for the spatial structure. This leads to clouds that
have a significantly different appearance than the eigenmodes observed in previ-
ous experiments. This chapter is based on the work presented in [87].

5.1 Theoretical description

In this section, we shall expand on the Hamiltonian that was derived in chapter 2
and apply it to a 2D setting. This leads to a spectrum of unstable modes and ex-
pressions for the time-evolution of the unstable modes. The content of this section
is based on work by Frank Deuretzbacher [49].

Spinor Hamiltonian in 2D

Starting from the expression (2.34) on page 16, we can describe a spin-2 system in
the linear regime. In this section, this Hamiltonian will be applied to a BEC in a
deep one-dimensional lattice.

In a single lattice site, the atoms will form an independent BEC decoupled
from the other sites. For such a site, the trapping frequencies are given by equa-
tion (2.101). For an optical lattice of 914 nm and a beam waist of 100 um, the ratio
w,/w, ~ 500, so for low energies, the atoms will be “frozen” along the lattice di-
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rection. We may write the fields as

Yolr)~ ¢,(2)yYo(p)

A ~ (5.2)
0P (r)~ ¢z(z)5¢ﬂ:1(p)»
where ¢, is the harmonic ground state
1
(7)== ———=e " /LT, (5.3)

Vrl,

and I, = 1/(s'/k) is the longitudinal harmonic oscillator length.
The explicit z-dependence allows for the integration along z in equation (2.34)

H—uN=fd2p ¥ (ﬁo+%nwz+%uofdz |¢z14|w0|2—u)w0

+ > fdzpc?%(ﬁw%ﬁwzﬂUwUl)fdz|¢z}4|¢o|2—u+q)6tﬁm (5.4)

m=%£1

+Uljdz |¢214J &p |yo|* (691691, +6¢,8¢-1),

3 2
where Hy = —J5; V2 + M w?p?. Performing the integration, we may reduce the
Hamiltonian to

A== [ v (o 0 ol =)
+ fdzp51/3fn(ﬁo+(00+01))¢o)2—ﬂ+q)5z/3m (5.5)
m==1

+Ulfdzp ol (89]891, +6¢n8¢1),

where the effective 2D parameters U, U; and i have been introduced

i . Uy

Uy=U, | dz = ,

0=Uo f o' = /=

o

0 = , (5.6)
! 1,v2r

_ o,

f=pu—
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As previously mentioned, the dynamics of |0) is decoupled from that of |+1),
which means that we can include the influence of |0) on |+1) without having to
consider the back-action of |+1) on |0). Taking the first line in equation (5.5) and
minimising the energy leads to a Gross-Pitaevskii type equation

n? ~ 2 _
(_mVZ+%M w?p%+ Uy || )wo = fiY)o. (5.7)

This equation may be taken to the Thomas-Fermi regime as in section 2.1,
which yields the radial structure of atoms in |0)

i 2

! P

nolp)=—= (1——), (5.8)
(e) O\ p§

where p is the Thomas-Fermi radius

20
5
Mcop

The effective chemical potential and Thomas-Fermi radius is given by the normal-
isation criterion

2
N = 3 =L~,
Jd p 1o(p) YA

8\'* [ Na
0="H — v (5.10)
K wp(ﬂ) I,

8\1/8 N 1/4
po=2(2) ()

where a,, is the scattering length associated with U, described by the linear com-
bination (2.35).

Turning our attention to |+1), we may write only the Hamiltonian for this part
of the system

o= Y f &p 5, (o + O+ Onolp) i +) 62
m==+1

(5.11)
L0, J & p o) (591591, + 59159_).

If expression (5.8) is inserted into equation (5.11), the term U,n, exactly cancels
the terms from the harmonic trap and the chemical potential for p < p,. This
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FIGURE 5.1: Effective potential in Thomas-Fermi approximation. (a) Potential
experienced by a |0) atom. The trap potential is the thin black line, the |0) con-
densate is the blue area, and the effective potential is the wide black line. (b)
Potential for |£1) in the hard-wall approximation. The repulsive term has been
exaggerated for clarity.

is illustrated in figure 5.1 (a). The remaining non-linear term adds an additional
repulsion of the same functional shape as n,, but scaled by U, /Uj. The decoupling
of the |0) and |+1) amounts to an effective potential as shown in figure 5.1 (b).

To gain more insight into the eigenstates of the Hamiltonian, we make the
hard-wall approximation, i.e. we approximate the harmonic trap potential by an
infinite potential as shown in figure 5.1 (b). This is reasonable since over the ener-
gies we are interested in, |g| < 500 Hz, the trap radius is approximately constant.

Thus, when restricted to p < py, we may write the Hamiltonian as

. n? ~ i
= 3 [ @000}, (g7 v+ Do) va )0,

m=%£1

(5.12)
+ (71 f dzp no(p)(&[ﬂi&ﬁil +5¢15¢_1)

The great advantage of the hard-wall approximation is that the eigenstates of the
effective potential are easily found. For the infinite cylindrical well, the eigenstates

are
1

P il
Pnlp,p)= ] (ﬁn —)e ¢ (5.13)
tpe) VpoJii(Bni) P g
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with the corresponding eigenenergies

nt (5.14)

€Enl =
" 2mp?

Here, J; is the Bessel function of the first kind of /’th order and f is the n’th zero
point of J;.

There are a few important remarks to be made about this class of functions.
Firstly, there is no boundary on #z given the choice of ! and vice versa; for all func-
tions, I = 0,£1,%2,... and n = 1,2,3,.... Secondly, there is degeneracy between
+1, since the two functions only differ in sign. Hence, the only difference between
+/ is in the phase factor, and one may identify / as the angular momentum. This is
also supported by the observation that only / = 0 has anon-zero value at p =0 con-
sistent with the appearance of vortices in a rotating condensate. Lastly, the phase
factor e’!? ensures orthogonality in I and the radial part of the Bessel functions
are orthogonal in n for a given /.

The field operator 8, can be expanded on the functions ¢,,;,

5lﬁmzz¢nldn1m’ (5.15)
nl

where d,,;,, is the annihilation operator for an atom in the spatial state ¢,,; and
spin state m. Insertion of this expansion into equation (5.13) is trivial for the ki-
netic energy term, since this yields the eigenenergy €,,;, and also for the g term,
since ¢ ,,; are orthonormal. The matrix element U, (¢,,;|1|¢ -1-) however, requires
closer inspection.

Itis clear, that since rg isreal, the phase factorin ¢,,; still ensures orthogonality.
We may thus write the matrix element in terms of a dimensionless integral I;,,,/;

~ U; _
Gy (@il ol @) = 8105 Bl (5.16)
0
where the integral is given by

Tt = f 6" (o) no(0) Bilp).

Po
2

=— Jdpp(l—p—j)]”(ﬂnlﬁ)]ﬂ(ﬂn’lﬂ)
Po]|l|+1(ﬁnl)f|z|+1(ﬁn/l)0 Py Po po/) (5.17)

1

f du u(1—u®)Jjy(Bur ) Jiy) (Bt ).

0

2
- Jure1(Bnt) Jpe1 (Bt
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FIGURE 5.2: Numerical evaluation of the overlap integral for increased difference
between n and n’ =n+m. (a) 1 =0. (b) I = 10. For both figures: n =1 (blue),

n =2 (green), n =20 (red). It is clear that the integral quickly converges towards
zero for increasing m.

A numerical evaluation of the integral shows that for n # n’, the integral as-
sumes a much smaller value than for n = n’ (figure 5.2). As the difference between
n and n’ is increased, I,,,,,; quickly converges to zero, which is illustrated for [ =0

in figure 5.2 (a) and for / =10 in figure 5.2 (b). It is therefore reasonable to approx-
imate the matrix element by

- U . U,
U (@ nilnol @) = 5ll’5nn’ﬁo.ulnn’ll’ = T

Al (5.18)
The physical content of this approximation is that the particles that undergo spin-
changing collisions always populate the same spatial mode. Each collisional event
will thus be spatially symmetric.

Applying this approximation yields the simplified Hamiltonian

Hy =Z(fnl + 01 (no) +Cl)(ﬁ:l“dnll +d:;l_1dnl—1)

nl

+ Ul Z (nO)nl (dllld;_l_l + aAnllﬁn—l—l) .

nl

(5.19)

From this equation it is clear that the dynamics of spin-changing collisions is gov-
erned by the matrix element (n,),; which basically is set by the overlap between
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FIGURE 5.3: Numerical evaluation of the diagonal integral I,,;. (a) Dependence
on n for [ =0 (blue), I =1 (green), and ! =5 (red). (b) Dependence on [ for n =1
(blue), n = 2 (green), n = 10 (red). The convergence towards 2/3 is clear in (a),
whereas (b) shows that convergence towards zero is slower with increasing 7.

an exited state ¢,,; and the |0) condensate. However, this is an overlap of densi-
ties, and therefore I,,; does not converge to zero for large r, as is the case for wave
functions in general.

This behaviour is illustrated in figure 5.3 (a), where the integral clear converges
towards 2/3 with increasing n. This limit changes slowly with [ as shown in fig-
ure 5.3 (b), so the overlap only vanishes in the limit of / approaching infinity.

Bogoliubov spectrum

So far, the spinor Hamiltonian of |+1) has been simplified by making a number of
approximations. The resulting Hamiltonian (5.19) can be simply diagonalised by
a Bogoliubov transformation’.

To do this, the Hamiltonian needs to be in a symmetric form. The current form
contains terms of both d,,;1, d,;_; and d,,_;_, so we start by rearranging the terms,
to make the symmetry apparent. First, we define the quantities

Dn,l =€t Ul (n0>nl +4q,

. (5.20)
Upn,1 = Ui (ng)y; -

'The details of the Bogoliubov transformation are covered in appendix A.
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This allows for the shorter expression

g Stoa St s St At 5
H= ZD,” (“nnanll + “nz—1anl—1) +Z Un,i (anllan_l_l + dnuﬂn—l—l)- (5.21)
n,l n,l
As mentioned earlier, the £/ modes are degenerate, so D,, _; = D,, ;, and the sums
may be taken only over positive [

&y AT A At A At A At ~
Hi, = Z Dn,l (anllanll +anl_1anl71 +an_11anfll +an_l_1an7171)
n,l>0

At At PN At At A A
+ Z Uni (@1 @y gy + @ninneia +d,y @Yy +dnondni) (5.22)
n,l>0

St St 4 Stoat A
+ § D (“nm“nm + anO—lan()—l) + E Un,o (an01an0—1 + “nOlan0—1)~
n n

These terms may be rearranged into the symmetric form

s 4 st At s s
+ D)y Gy Yy Gneia)+ U (@) @)y )] 6:23)

+ Uny
+ Z [Dn,O (dlmaAnOI + dlo-1dn071) + Un,O (d;rlOld:;O—l + anlanfl)] :
n

Each line of equation (5.23) is now self-contained, and each may undergo a Bo-
goliubov transformation. The double degeneracy of the system is also apparent
in this form — both £/ and m = 1 have the same energy. For simplicity, we only
consider the first line of equation (5.23) in the following.

The Bogoliubov transformation applies to an interacting system of two kinds
of particles and mix the particle operators into quasi-particle operators that do
not interact. The transformation is famous from liquid helium where the pairing
of particles with opposite momenta leads to superfluidity [44]. Equation (5.23) has
the same form as the superfluidity Hamiltonian.

The Bogoliubov quasi-particle operators are defined as

a=udy, +va

n—I-1’

R (5.24)

N At
Pp=udy,+vd,,,

where u and v are scalars that quantify the mixing of the constituent particles. Re-
quiring commutativity between ¢ and f leads to the convenient parametrisation

u =cosh(t),

5.25
v =sinh(?). ( )
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Using the definition of the quasi-particle operators, the inverse transformation
can be isolated and substituted back into the Hamiltonian, leading to the expres-
sion

H, =2v2Dn,l —2uvU, +[D,,yl(u2 + vz)—ZUnyl uv](d*d+/§*ﬂ) (5.26)
+[Un1(u? + v¥)—2uvD,, (@ BT +ap). ’

The cross-term may be eliminated through the freedom in choosing ¢. The result-
ing Hamiltonian may be put into the simple form

H,; = ,/D,f'l —UZ,— Dy + ,/D,fyl —-UZ, (a'a+pTB). (5.27)

From this expression it is clear, that the excitations are given by the number of
quasi-particles @'@ + 7 and the addition of each particle increases the energy

by /D7, —U?, which takes the form

E, 1= \/(6n1+Ul<no>nl+51)2—(01(”0>n1)2- (5.28)

Since the quadratic Zeeman energy ¢ is negative, the first term can be smaller than
the second term, and the energy becomes imaginary. This is interpreted as an in-
stability of the system, and in the linear regime, it manifests itself as en exponential
growth or decrease in the population of |+1).

The functional form of Im{E,, ;} is that of a semicircle. The energy becomes
imaginary when q + €,,; = 0, i.e. when the quadratic Zeeman energy is equal to
the energy of ¢,;, and it reaches its maximal value of U, (n,),; when g + €,; +
U, (ny),,; =0. The energy becomes real again when g + €,,; +2U, (ng),,; =0, so the
density ny sets the width of the resonances.

In an optical lattice, the density is typically very large due to the strong lon-
gitudinal confinement compared to the transversal direction. Thus, it is easy to
design a setup where the width of the resonances is larger than the mode spacing.
The resulting “instability spectrum” is shown in figure 5.4, for ~ 9 x 103 atoms con-
fined in a lattice of wy = 102um and s = 18. It is also clear that the stability rate
converges towards a fixed value. This is due to the convergence of I,,; as seen in
figure 5.3.
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FIGURE 5.4: Instability rates for |0) in a single lattice site. Atom number: ~
9x 103, wy, = 102pm and s = 18. (a) The modes n =0, [ = 0,1,...,10. (b) All
modes up to B ~ 2 G. The modes converge towards a finite value due to the
behaviour of I,,;.

Time evolution of unstable modes

To investigate the time evolution of the unstable modes, it is advantageous to se-
lect a different Bogoliubov transformation [49, 86]
il
2sin(260) ’
e~i0 (5.29)
2sin(26) ’
cos(20)=D,, ;/U, ;.

This choice of u and v fulfils the slightly altered commutation relation

2 =i, (5.30)

u?>—(v
but the energy of the quasi-particles remains the same, as can be checked by in-
serting the back-substitution into the Hamiltonian (5.23). In matrix form, one may
write the transformation as

a a

)=0) 2= sl )
gt =4 bt ~ J/2smeo)\e el )

(5.31)
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where we have defined d = d,,;; and b = d,,_;_, for simplicity. This choice of Bo-
goliubov coefficients leads to the commutator

[a, B]=[a', pT]=1, (5.32)

whereas all other commutator combinations are zero. This unorthodox commu-
tator yields to the simple Hamiltonian

) X iE
H, =—iE,, (a'B"+aa)+ —2

(5.33)

The commutator relations of the quasi-particle operator with the Hamiltonian are
then

A

[, @)= Epi@,  [Hyy @']=E,ud, (5.34)
[ﬁn,lr /3]:— n,lﬁr [Hn,l’ ﬁT]:_En,lﬁf’ '

and these are inserted in the Heisenberg equation of motion

da(t) i, oo 0
= —h[H, a(t)]= = En 1a(t). (5.35)

Since E,, ; is purely imaginary in this regime, the time evolution is not harmonic
but exponential
a(t)=a(0)e™Entt/m (5.36)

and similarly for &'(¢), whereas the time evolution for § and B is decreasing as
B1)=p(0)e M Entt/M, (5.37)

This shows that the Bogoliubov mode f§ shows squeezing at the expense of stretch-
ing of &@. This phenomenon is well-known from non-linear optics, where para-
metric down-conversion produces states where the quadratures are squeezed and
stretched in similar fashion.

In the Bessel mode basis, the states mix under the time evolution operator. To
see this, we use the Bogoliubov transformation (5.31), evolve the state in the quasi-
particle basis and apply the back-transformation

at) |\ _ a(0)
A0 <10 49)

(1) _ i(0 1(0
+ (t)) =A"! T(t)A(;L(( 0))) =M(t) (;T((o))) (5.39)

Sy S
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The matrix M represents the time evolution operator in the Bessel mode basis and
has the elements

_(0o(r) O
M(t)_(o*(t) O*(t)) (5.40)
that are defined by
O(t):—i(eImE"'l[/h uz_e—ImEnylt/h UZ)
1 . (ImE,;t . (5.41)
= h ' 20
isin(20)sm( o Tl )
and

O(t)=—i(emEntt/ _ gmtmEnit/h) g2
[ h( ImE, t) (5.42)
= in .
isin20)° 7

So under time-evolution, the modes a and b evolve as

act)=0(t)a0)+ o(t)b'(0), (5.43)
at(t)=o*r)a'(0)+ 0*(¢) b(0). (5.44)
We may now calculate the expected atom number in mode a evolving from a
vacuum state
N,(£)=(0l, (0l a(£)a(2)10),10),
= (0l (0l (0*(2) @' (0)+ O*(£) b(0)) (O(£) a(0) + O(t) b7(0))10), 1) -
=0
sinhz(ImEnylt/h) exp(ZImEn,lt/h)
sin®(20) - sin(20)

(5.45)

since the 4 terms contribute nothing when acting on vacuum. This shows that the
population rises exponentially on a time scale of 77/2Im E,, ;. Also, since the ini-
tial state is vacuum, the process can be understood as a parametric amplification
where the seed is vacuum fluctuations [35].

It now only remains to compute the distribution in a given mode after an evo-
lution time ¢. For this, we construct an eigenvalue equation from the vacuum state

10),10), =0. (5.46)
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This is true for all times, so application of the time evolution operator e—ifit/n
yields )
e M 410),10), =0. (5.47)
Inserting the identity eH!/Me=1H1/M eads to the equation
(e7 /M ae /M) (=111 0y, j0), ) =o0. (5.48)

The first parenthesis is actually the operator 4 evolved backwards in time, so this
can be written as
a(—t)=0(—1)a(0)+ O0(—t)b'(0). (5.49)

The second parenthesis is exactly the time evolved state that we are looking for.
Designating this state by |{(#)), we may expand it in two-mode Fock states, because
the Hamiltonian only contains terms that creates and annihilates particles in a

and b simultaneously,
o0

IC(t)>=ZCk(t)|k>a|k>b. (5.50)

k=0
Equation (5.48) then takes the form

> [0ty a+0(=1)b']1k), k), =0, (5.51)
k=0

The coefficients may be calculated by requiring that equation (5.51) is true for each
term,

[e) O(—t) k
[£(1))=C [— ] k) alk)p s (5.52)
kz D) b

where C, is a normalisation constant.

Equation (5.52) defines the decomposition on Fock states of the wave func-
tions of |+1) after time evolution. We may also interpret this as the probability
distribution for finding k atoms after time evolution

O(—t) 2k

_ —2
PIO=1GI |5

(5.53)

This is illustrated in figure 5.5, where the probability function is plotted for three
different times. For t = 0, the function reduces to a delta function at k = 0, but
as time progresses, the distribution flattens out towards larger k. At large ¢, the
probability is distributed over a large region in k, which reflects the random nature
of the process.
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FIGURE 5.5: Probability function for finding k atoms after time evolution,
ImE, ;t/f=0.5 (blue), 1.5 (green) and 2 (red).

This may also be interpreted in terms of the vacuum fluctuations. As a para-
metric amplification process, the starting time is determined by the seed, and
since the seed is fluctuations of vacuum, the onset of amplification is random.

5.2 [Experimental sequence

To experimentally realise the situation sketched in the previous section, we start by
making a BEC in the |2, 2) state in the QUIC trap. There is typically around 2 x 10°
atoms in the condensate and a negligible amount of atoms in the thermal fraction.
The atoms are transferred to the vertical optical lattice by simultaneously ramping
up the lattice potential and ramping down the QUIC potential over 110ms. The
transfer is not perfectly adiabatic with respect to the trapping frequency along z,
but any motion induced along z can be cancelled by adjusting the ratio of currents
in the QP and Ioffe coils.

The optical lattice potential follows an s-curve [67], whereas the QUIC poten-
tial follows a linear that has been smoothened with exponential start and end (fig-
ure 5.6 (a)).

The optical lattice is ramped to s = 18, which is in the isolating regime. The
atoms are then distributed between the different lattice sites, where they make up
individual condensates. To calculate the atom number in a given site, the distri-
bution of atoms is assumed to be static at s = 10, and the atom number in each
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FIGURE 5.6: Lattice loading. (a) Ramp of QUIC potential (blue) and lattice po-
tential (green). (b) Spatial distribution of atoms along the lattice. The one-
dimensional density (red, solid) and the lattice potential (black, dotted) are
sketched.

site is then simply the integral of the one-dimensional density over the lattice site.
In the Thomas-Fermi approximation, this is

Vi+A/4 9

2
N, = T Xg 29 f [1_(1) ] dy, (5.54)
2g Yo

yi—A/4

where y; is the centre of the i’th lattice site, g is the interaction strength, u is the
chemical potential in the magnetic trap at s = 10, and Xy, }y.2o are the Thomas-
Fermi radii at s = 10. Evaluation of equation (5.54) shows that only ~ 10 lattice
sites are occupied due to the strong radial confinement in the QUIC trap.

During the transfer to the optical lattice, a significant heating is observed. A
thermal fraction of 1.2(2) x 10° at a temperature of ~ 120nK appears, leaving on
average 4.2(7) x 10 in the condensed phase.

After ramping down the QUIC potential, the only magnetic field left is a bias
field along z of magnitude B, = 285mG. Choosing this direction as quantisa-
tion axis is advantageous for the subsequent microwave transitions, since the mi-
crowave antenna radiates primarily o-polarisation along this direction.
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FIGURE 5.7: Microwave preparation. (a) Transition pulses, |2, 2) — |1, 1) (blue),
[1,1) — |2, 0) (green) and optical transition [S, ,, F =2) — |P; 5, F =3) (red). (b)
Timing of pulses and magnetic fields, B, (black, dotted), B, (black, dashed) and
total field (black, solid). The end of the second microwave pulse marks the start
of spinor dynamics (¢ =0) and coincides with the start of the B, ramp.

The preparation of the |2, 0) state occurs 20 ms after turning off the QUIC trap.
The state is reached by two microwave pulses as shown in figure 5.7, and the two
mt-pulses are 12 s and 20ps long respectively. Between the two pulses, the imag-
ing laser is pulsed on for 60 us to remove any atoms that might be left in the |2, 2)
state. These atoms might have a seeding effect on the amplification process, so
they should be avoided.

After the 2nd microwave pulse, a magnetic field is applied along y. The field is
ramped to afinal value over 1 ms, and the y axis is chosen because the y-shim coils
have low inductance, so there is no significant induced current when ramping the
current quickly. The start of the B, ramp marks the start of the spinor evolution
time, which is varied between 2 and 20 ms. In this time interval, the |0) atoms
collide and produce atoms in |£1).

Just before releasing the atoms from the trap, a third microwave pulse is ap-
plied on the clock transition |2, 0) — |1, 0) to reduce the density of the remaining |0)
atoms. This is not a t-pulse, but closer to 71/10, and if the exact phase of the pulse
is known through calibration, one can calculate the original amount of atoms [88].

After the third microwave pulse, the cloud is released from the lattice by switch-
ing off the AOM controlling the lattice. This abrupt way of turning off the light
causes a lattice projection as described in section 2.5. During time-of-flight, a
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magnetic field gradient is applied along the z-axis for 5 ms using the Ioffe coil.
The gradient acts as a differential force on the individual spin components and
makes them separate in time-of-flight (Stern-Gerlach separation).

The different spin clouds are imaged after 20 ms along the lattice direction us-
ing absorption imaging. The light is linearly polarised to be compatible with the
lattice optics, and the imaging method is that described in section 3.5. The time
between the raw and reference images is only 800 us to avoid fringes in the imag-
ing beam to shift, and the Faraday laser is tuned to resonance and used to actively
remove the atoms before the reference image.

5.3 Results: Ring structure and visibility

Following the scheme described in the previous section, the populations in |+1)
show the expected exponential increase with time. To quantify the number of
atoms in |£1) we use the relative population

_ Ny +N,
TN+ N+ N,

where N; is the population of the i’th spin state.

The fraction of atoms in |+1) versus time at g = —67Hz is shown in figure 5.8,
and the data is fitted with an exponential function. The exponential model works
well for short times, but begins to deviate at ¢t ~ 10ms, which is interpreted as the
break-down of the linear regime. At this point, the depletion of the |0) condensate
cannot be neglected anymore.

The exponential fit yields a time scale of T = 3.0(2) ms, which is to be compared
to the theoretical value found in equation (5.45), 7 = h/4nImE, ;. Comparing
to figure 5.4 b, the instability rate is seen to be ~ 35Hz leading to a time scale of
T =2.7ms in good agreement with our data.

In order to investigate the effect of g in the spinor dynamics, the spinor evo-
lution time was fixed at 8 ms in order to stay in the linear regime. The vertical
magnetic field B, was varied from 216 mG to ~ 3 G leading to a range of [g| from
9.2Hz to ~ 650Hz. The resulting graph in figure 5.9, shows a rapid growth in the
population in |£1) around |q| ~ 25 Hz, peaking at |g| ~ 100 Hz. After this point, the
population slowly decreases.

The effect of varying g is also seen in the cloud structure, as shown in fig-
ure 5.10. At -48 Hz, the clouds are clearly peaked, but the structure gradually chan-
ges to ring structure around 200 Hz. Furthermore, there is a striking structure
along the circumference, which is similar to a modulation of the density at even
larger |q|.

P+1 (5.55)
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FIGURE 5.8: Time evolution of spinor dynamics at B, =0.902 G, g =—67Hz. An
exponential fit is shown (dark blue) along with error bars on the fit (light blue).
The collapse of the linear regime is clear around 10 ms. The fitted value of 7 was
3.0(2)ms.
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FIGURE 5.9: Mean population in |£1) after 8 ms evolution time. Data (black dots)
is shown with standard deviation as error bars and an interpolated line a guide
to the eye (blue).
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FIGURE 5.10: Cloud structure after 8 ms evolution time at different values of q.
(left) Experimental images of only the |+1) atoms. At g = —382Hz, arrows have
been added to show the anti-correlation of the ring structure. (right) Simula-
tions, these will be discussed in section 5.4.
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The appearance of ring structures is typically associated with angular momen-
tum, since the coherent nature of a BEC requires the pivot point to have zero den-
sity in the centre. A ring (or cylinder) is then the manifestation of a circulation
around the centre, and this structure is usually kept after time-of-flight as a result
of self-similar expansion. This is, however, not necessarily the case in two dimen-
sions, because a ring can result from ballistic expansion. If a cloud is given a mo-
mentum of well-defined magnitude but random direction, it will turn into aring in
time-of-flight, irrespectively of the spatial distribution in the trap. In three dimen-
sions, the corresponding system will produce a spherical shell after time-of-flight.

To test this interpretation, it is interesting to look at the transition from peak
structures to rings which may be quantified by the visibility of the ring. In this
setting, the visibility can be defined as

_ n(R)—n(0)

n(R) (5.56)

where n(R) is the density on the circumference of the ring and 7(0) is the density
at the centre of the ring. For a peaked structure, the radius of the ring will be ~ 0
leading to a visibility of zero, whereas the visibility for a ring with no density in the
centre will be one.

The actual evaluation of the visibility is more complicated, since both the cen-
tre and the radius of the ring need be known. To that end, the data has been fitted
with a two-dimensional ring, and the cloud is then transformed by interpolation
into a cylindrical frame. Here, it is simple to find the average density as a function
of radius n(r). However, the centre of the ring needs careful evaluation, since that
value in principle is determined by a single pixel. Therefore, the centre value was
extrapolated by a linear fit for the first few pixels.

In figure 5.11, the visibility is shown for a range of g values. For |g| lower than
~ 150 Hz, the visibility is constant at zero, indicating a peak structure. Beyond this
point, ¥ quickly rises and settles at a value of ~ 0.75 at g ~ —200Hz. This suggests
that the dominant mode is the first Bessel mode n =1, I =0 up to g ~ —150Hz,
since this is the only mode to show a peak-like structure.

However, a comparison with the mode spectrum in figure 5.12 (a) shows that
the (1, 0) mode vanishes already at g ~ —90Hz. This suggests that the ring struc-
tures are not the eigenstates of the effective potential, but probably a superposi-
tion that leads to a ring structure in time-of-flight.

As an indication of such superposition phenomena, the multi-mode character
of the system can be evaluated as 0 E/E, where § E is the energy separating dif-
ferent modes, and E is the mean energy of the modes. If §E/E < 1, the modes
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FIGURE 5.11: Visibility of the ring structure after 8 ms evolution time. Data is
shown in blue (dots) and simulations are shown in green (squares). A represen-
tative error bar is shown for the data.
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FIGURE 5.12: Instability spectrum. (a) Full spectrum of the instability rates.
Note the prominence of the n = 1, [ = 0 mode (red). (b) Unstable modes at
g = —400Hz. In order of decreasing instability, the modes are (n, I) = (7, 7),
(10, 0), (8, 5), (9, 2), (6, 9), (5, 12), (9, 3), (8, 4), (10, 1), (4, 15), (6, 10), (3, 18), (7, 6),
(2, 22), (4, 14), (5, 11), (5, 13), (1, 26).
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are effectively degenerate on the time scale of h/4nE, and they will grow with al-
most equal rate, placing the system in the multi-mode regime. Since the quantised
nature of the modes is vanishing in this limit, it is also called the free-space regime.

Figure 5.12 (b) shows all unstable modes at g = —400Hz, and here E ~ 25Hz
and 6 E ~ 1.5Hz, showing that the system is highly multi-mode. In order to see a
difference in the growth of the various modes, one needs to look on a time scale of
h/4mo E ~ 50ms which is far beyond the linear regime and therefore not of rele-
vance to the current experiments.

5.4 Simulations: Ring size and correlations

Given that the system is multi-mode, and the fact that the individual modes grow
identically in the linear regime, we may treat each mode separately. This, together
with the model presented in section 5.1, forms the basis of our simulations of the
spinor dynamics.

Starting from the transfer from the QUIC trap to the lattice, the number of
atoms in each lattice site can be calculated by equation (5.54). Taking each site as
an independent condensate, we apply the Thomas-Fermi approximation to each
site, and calculate the chemical potential from equation (2.20).

The system can then be taken to 2D using the definitions (5.6), which makes it
easy to calculate the instability spectrum for each lattice site. The Bessel mode en-
ergy spectrum is shown in figure 5.13 (a) for different lattice sites, and it is clear that
the central sites have almost the same spectrum, and the effect of the lower atom
number (and hence lower chemical potential) is to shift the states up in energy.

In order to find the relevant modes that contribute to the |£1) states, one just
needs to find the modes with a finite instability rate, create a superposition and
repeat this for each site to construct the total cloud. To this end, the expansion
of the state in the Fock basis, equation (5.53), is used to give the population in
each mode. The expansion coefficients may be seen as a probability distribution,
and by summing the terms up to a given atom number k, one can construct a
cumulative probability function (figure 5.13 (b)).

For each mode it is thus possible to simulate the experiment by drawing a uni-
form random number between zero and one, and from the cumulative probabil-
ity function, this is translated into an atom number for that particular mode. At
a given ¢, this is done for each unstable mode in a lattice site, and the modes are
given a random phase and added. Repeating this procedure for each lattice site,
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FIGURE 5.13: (a) The effect of additional lattice site. The lowest 10 Bessel modes
in different lattice sites. Zero is the central site. (b) Cumulative probability func-
tion for different evolution times, Im E,, ; t /7i =2 (blue), 3 (green) and 4 (red).

the spatial profiles from all sites are added coherently? to obtain the atomic distri-
bution when the lattice is turned off.

To find the cloud shape after time-of-flight, the total cloud is taken to momen-
tum space by a 2D Fourier transform. It is straightforward to evolve the cloud un-
der the free-space Hamiltonian in the momentum basis as

—ip2
Wlp.1)=ylp e 52t .57

and afterwards, the cloud is transformed back to position space by the inverse
Fourier transform.

The final step is to take the modulus squared of the distribution, and in order
to simulate the effect of the imaging system, the cloud structure is filtered with a
Gaussian filter with the width of the point spread function (section 3.5 on page 68).
This leads to the pictures shown along with the experimental images in figure 5.10
on page 112.

The simulations show the same qualitative features as the experiments. At low
|q|, the cloud is strongly peaked at the centre, whereas it shows a clear ring struc-

2Although the lattice sites are separated in space, the expansion after release from the trap is
much larger than the original size of the cloud, so the sites may be taken as overlapping.
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FIGURE 5.14: Cloud radius at different values of g. Data is shown in black (bul-
lets), simulations in red (squares), ballistic model in blue (solid). Representative
error bar is shown for data.

ture atlarge |g|. Furthermore, the simulations also feature peaks along the circum-
ference of the ring, although the angular structure is finer than what is observed
experimentally.

A more quantitative comparison is obtained by analysing the visibility in the
same fashion as for the experimental pictures (figure 5.11). There are two differ-
ences between experiments and simulations here: Firstly, the onset of rings occurs
earlier, around 80 Hz (as opposed to the 150 Hz for experiments), and secondly the
visibility goes to unity for large |g]|.

The appearance of rings in the simulated clouds coincides well with the van-
ishing instability of the lowest mode (figure 5.12), and this indicates that the pri-
mary contributor to the peak is the lowest Bessel state. There seems to be some
smearing or coarsening angularly, and if a similar phenomenon is present in the
radial direction, this would make it more difficult to resolve the ring structure and
hence shift the onset of rings to a larger value of |g]|.

Another comparison between experiments and simulations is obtained by in-
vestigating the size of the cloud which is given by the expectation value of the posi-
tion from the atomic distribution. To this end, the image is transformed to a cylin-
drical basis, the angular coordinate is integrated out, and finally, the first moment
of the distribution is calculated. For the simulated images, the second moment of
the spatial distribution was calculated, and the results are shown in figure 5.14.

The simulations show good agreement with data, especially in the region g =
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—100 to g = —200Hz. The deviation at both high and low |g| indicates that the
box model is not valid in this region. For high |g|, the hard-wall approximation
is inaccurate, since the finite slope of the potential boundaries produces larger
clouds in trap. For low |q|, the simulations underestimate the cloud size which we
interpret as caused by the repulsion from the |0) atoms, U, ny ~ 50 Hz.

Interestingly, the data also shows an increase in cloud size just below the point
|g| =100Hz, which coincides with the vanishing instability of the lowest Bessel
mode. This supports the hypothesis that the this mode is dominant in the forma-
tion of peaked clouds, and that the “ring regime” actually sets in when this mode
vanishes.

One interpretation is that there occurs a spontaneous symmetry breaking dur-
ing the spin-changing collisions in each site. This is to be understood as a bosonic
stimulation of the spin-changing collisions, such that a region of space where a
large population in |£1) is present will have an increased probability for undergo-
ing more spin-changing collisions. Such spatial inhomogeneity would arise due
to random fluctuations and would lead to the formation of a single (or few) wave
packet(s) in each site. Such an effect would explain that the structure observed
experimentally is coarser than what is predicted by simulations.

In the free-space regime, the effect of increasing |¢| amounts to increasing the
momentum of each wave packet by p,.,s = +/2M|q|. If one assumes a purely bal-
listic expansion, the radius after time-of-flight is

(p)= p§+(—prmst)2, (5.58)
M

where p is the in-trap radius, and ¢ is the time-of-flight. This expression does not

take the effect of the repulsion from |0) into account, so in order to improve the

model, the mean value of the repulsion is subtracted from g

(56.59)

(p)= {Po q < (Urny)

s +(%)2 q > (Uyny),

where p = v/2M|q — (U, ny)|. Equation (5.59) is plotted in figure 5.14 in blue and
shows good agreement with data except for extreme values of g. For low |q|, the
ballistic model strongly underestimates the size, but this is because it neglects any
mean field expansion and is “frozen” at the in-trap Thomas-Fermi radius.

If there really is only a single wave packet in each site, a strong spatial anti-
correlation between the two spin components |+1) is expected. This is clearly seen
in the spin-changing term in the Hamiltonian (5.19), where the field operators of
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FIGURE 5.15: Angular correlation of cloud. (a) Correlation of [+1). (b) Autocor-
relation of data (blue, solid) and of simulations (dashed, red).

|£1) only appear in pairs of [ = £1 in order to preserve angular momentum. The
same is true for linear momentum, so if a wave packet of momentum p is observed
in |[+1), a similar wave packet of momentum —p must be present in |—1).

This motivates the introduction of the correlation function

(71-1(0)7141(0 — ))
cla)= —
(A_1)(fi11)
where 7i;(0) is integrated radially, and brackets denote the angular mean. The cor-
relation is shown in figure 5.15 (a) for g = —297 Hz where the function is averaged
over 54 realisations. Clearly, the dominant correlation is at @ = 7 corresponding to
the expected anti-correlation.

Comparison with theory is difficult in this case, since only one of the spin com-
ponents is simulated. However, the autocorrelation gives an indication of whether
there is agreement in radial structure, and this is shown in figure 5.15 (b) for exper-
imental data and simulations. Here, it is clear that simulations show stronger and
narrower correlation than experiments in agreement with the observed difference
in angular structure. The fact that the experiments feature wider spikes indicates
that not all of the allowed modes contribute to the structure. Apparently, some of
the high-/ modes are not present.

Nonetheless, a large number of modes are included and interfere destructively
to create the flat structure away from a¢ = 0. This is consistent with the wave

) (5.60)
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packet interpretation, and indicates that a spontaneous symmetry breaking really
is present.

To summarise, a theoretical and experimental analysis of a spinor gas in a two-
dimensional setting was presented. The theoretical model predicts an exponential
amplification of the number of atoms in the |+1) states through the non-linear
interaction in the |0) state — even when starting from a vacuum state.

A large number of spatial modes in the trap are expected and due to the near
degeneracy of many of these modes, the system is in a multi-mode regime. A nu-
merical simulation of the system employing a random amplification of each mode
shows that the clouds are expected to increase in size after time-of-flight as the
magnetic field is increased. The structure of the clouds changes from a central
peak to a ring-like structure. Although the onset of rings does not match in simu-
lations and experiments, the increase in radius is well captured by the simulations.
Furthermore, owing to the almost free-space nature of the trap modes, a simple
ballistic model describes the expansion of the rings well.

An analysis of the angular structure also shows anti-correlation between the
two clouds in the |[+1) and |—1) state as expected from theory. Furthermore, the
angular autocorrelation reveals that only a subset of the allowed modes contribute
to the radial structure, and this indicates that the atoms bunch together to create
coarser structure.



CHAPTER 6

EVAPORATION AND SPIN
DYNAMICS IN A CROSSED
OPTICAL DIPOLE TRAP

In this chapter, the first results of using the crossed dipole trap for spinor experi-
ments will be presented. In the first section, I shall discuss the creation of a BEC in
the crossed dipole trap, and in the following section, I shall present applications
of the trap. These preliminary investigations display the prospects for using the
crossed dipole trap in spinor physics experiments.

6.1 Evaporation in dipole trap

Creation of condensates in an optical dipole trap is a standard method. The typ-
ical approach is to load a laser cooled cloud into a magnetic trap, and evapora-
tively cool it before transferring it to an optical dipole trap. Here, the light inten-
sity is slowly lowered to cool it to degeneracy. This approach requires careful over-
lap of the magnetic trap and the dipole trap to ensure good transfer efficiency. In
the dipole trap, gravity lowers the bottom edge of the potential as showed in fig-
ure 2.10, so evaporation will primarily occur along the vertical axis. An alternative
approach is known as the hybrid trap, where the gradient is provided by a magnetic
field, but since a uniform magnetic field is requires for the spinor experiments, we
have not chosen this method.

First, the crossed dipole trap has to be aligned with the QUIC trap. We use the
“kick” method as described in section 3.3 for a rough alignment of each of the two
beams. Afterwards, the position of the cloud is measured, when it was held in the
trap, and the beams were adjusted to overlap it with the position in the QUIC trap.
This was only possible, because a Semrock notch filter (780 nm) with an OD 5-6
protected each of the cameras.

For the evaporation, a cloud was cooled by standard RF evaporative cooling to
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FIGURE 6.1: Production of a BEC in a crossed dipole trap. (a) Absorption image
of the cloud taken along the x-axis after 15 ms time-of-flight. (b) The profile
integrated along the vertical axis. Data is shown in black and the bimodal fit in
blue. The constituting parts of the bimodal fit are plotted; the Thomas-Fermi
profile in green, and the Gaussian part in red.

a frequency roughly 100 kHz above the trap bottom, well before any sign of con-
densation appears. The cloud was then transferred to the crossed dipole trap by
ramping the QUIC current down and the dipole light intensity up over 100 ms,
similar to the procedure in section 5.2.

The two dipole beams deliver P, ~ P, ~ 130 mW when the cloud is loaded. This
is significantly less than the power available, but the atomic density appears to be
too large when loading the cloud at full power. For larger beam powers, there were
significant losses over ~200 ms, hence the given power was chosen.

After loading the dipole trap, the light power was decreased in two steps: A
short and deep cut to 33% of the initial power over 500 ms, and a slow cut to 20%
of the initial power over 1.75 s. This yielded a BEC of ~ 5 x 10* atoms in the BEC
and a temperature of 85 nK. An absorption image of the cloud taken along the x-
axis is shown in figure 6.1 (a) and the integrated signal is plotted in figure 6.1 (b)
along with a bimodal fit to the profile.

Following the production of a BEC in the crossed dipole trap, the trapping fre-
quencies were measured. For this purpose, the power of the two dipole beams was
set slightly above the BEC value (22% of the initial power), and the z-beam was
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FIGURE 6.2: Trapping frequencies in the crossed dipole trap. The subscript on
the coordinate indicates which camera was used for the data. Oscillations were
initiated by reducing the power of the z-dipole beam, which leads to stronger
oscillations along the vertical axis compared to the horizontal axes. (a) Oscil-
lations along z, imaged on the x-camera. Fitted oscillation frequency: w, =
27 x 125.6(5)Hz. (b) Oscillations along x, imaged on the z-camera. Fitted os-
cillation frequency: w, = 27 x 69.7(3)Hz. (c) Oscillations along y, imaged on
the x-camera. Fitted oscillation frequency: W, =27 X 138.6(4)Hz. (c) Oscil-

lations along y, imaged on the z-camera. Fitted oscillation frequency: w, =
271 x 138.6(4)Hz.

turned off' for 1 ms to allow gravity to displace the cloud slightly. The response of
the cloud was measured for 110 ms, which yielded a strong oscillation along the
vertical direction (y), but also a significant oscillation in the horizontal plane. For
each point in time, the cloud was imaged simultaneously along z and x, and the
resulting oscillation is shown in figure 6.2.

To obtain these curves, the images were turned by 8° for the x-images and
5° for the z-images to resolve the independent oscillations. This is due to small

n practice, the power was set to a small but finite value to avoid any spikes from the regulating
circuit: When the power is set to zero, the circuit goes out of regulation, and when it starts regulating
again, the response overshoots.
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imperfections in the dipole trap beam: alignment, astigmatism, ellipticity of the
beam profile, etc. These imperfections turn the primary axes of the trap, but the
effect can be minimised by optimising the beam path of the dipole light. Still, even
a change in the ratio of power in the dipole beams will cause the primary axis to
turn [89].

In the natural frame of oscillation, the trapping frequencies are w, = 27 x
69.7Hz, w, = 21 x 138.6Hz and w, = 27 x 125.6Hz. The vertical trapping fre-
quency is the same on the two cameras, but the z trapping frequency is consid-
erably larger than the x trapping frequency. Since the same power is used in the
two beams, the beam waists of the two dipole beams cannot be equal. Using a
quadratic fit of the potential from the two beams, a simple trial and error approach
shows that beam waists w, = 54pm and w, = 40pm yield trapping frequencies
that are very similar to the ones observed experimentally. So most likely, the spot
size along x is larger than expected, and a future optimisation of the dipole setup
will determine whether this is because the focus of the x-beam does not overlap
with the z-beam, or because the beam waist simply is larger than what was origi-
nally measured.

Furthermore, before using the dipole trap for spinor experiments, the beam
waist of both beams at the position of the atoms should be increased to exploit the
full intensity of the dipole beams. This can be easily done by adjusting the position
of the 500 mm lens or reducing the beam expansion in the telescopes.

6.2 Applications

After the production of our first BEC in the crossed dipole trap, a number of ex-
periments was performed to test the prospects of using this setup in spinor exper-
iments. The results in this section are preliminary and should only be regarded as
feasibility studies.

In the first set of experiments, a BEC in the crossed dipole trap was transferred
to the |2, 0) state and allowed to evolve in the same fashion as the experiments pre-
sented in chapter 5. In this way, the experiment recreates the general experimental
setup from the Hannover group [34-36].

These experiments were carried out as follows: A condensate was created in
the crossed dipole trap by ramping the power to 22% of the initial power at a back-
ground field of 0.53 G along the z direction. After the BEC was formed, two con-
secutive pulses transferred the condensate to the |2, 0) state; first a 11 us pulse at
6835.800 MHz and afterwards a pulse of 20 us duration at 6835.055 MHz. Directly
after the second microwave pulse, the magnetic field along the y-direction was
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FIGURE 6.3: Spin dynamics in a crossed dipole trap. (a) Absorption image of
|2, 0) cloud following 64 ms hold at ¢ = —26 Hz. (b) Time evolution of the relative
population in my = £1 at ¢ = —26Hz. The data was averaged in bins of width
8 ms.

ramped up over 1 ms to change the quadratic Zeeman energy. After a variable
hold time in the dipole trap, the cloud was released and the spin states separated
by a Stern-Gerlach gradient along z. The cloud was imaged by absorption imaging
along the x-axis after 15 ms time-of-flight.

For hold times around 20 ms, a population in |2, £1) appears, indicating that
spin-changing collisions occur in the dipole trap. A typical image is shown in fig-
ure 6.3 (a), taken at g =—26 Hz after 64 ms hold time in the dipole trap. The struc-
ture of the |2, £1) clouds indicates that the atoms are in an n = 1, [ = 1 mode,
since the superposition of / = 1 produces exactly such a cloud with a dark and
bright pattern [36].

The time dependence of the relative population in my = +1 as defined in equa-
tion (5.55) is shown in figure 6.3 (b). The data was taken in steps of 2 ms, but has
subsequently been binned in groups of 8 ms width to gain better statistics. The
graph clearly shows that the population in |2, 1) grows on a much longer time
scale compared to the lattice. This is due to the lower density in the dipole trap.

Figure 6.4 shows the result of experiments where the magnetic field was varied,
while keeping a hold time of 50 ms. The relative population is shown along with
images of the cloud profiles at each point illustrating some of the observed modes.
The investigation is by no means complete, but it appears that the majority of the
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FIGURE 6.4: Different modes after spin dynamics in an optical dipole trap at dif-
ferent magnetic fields. The relative population of the |2, £1) states is plotted
along with the mode profile of each point.

spin dynamics happens from g =—20 to —40 Hz.

A further series of experiments focused on loading a cloud from the crossed
dipole trap into an optical lattice. In this case, the polarisation of the lattice is im-
portant, since there is only one polarisation axis available where the lattice will
not interfere with the dipole trap. Furthermore, the lattice beam is also using an
80 MHz AOM, so detuning from both beams is not possible. In order to compen-
sate, the lattice AOM frequency was increased to 90 MHz and coupling was opti-
mised for this setting.

When loading the BEC into the lattice, the lattice potential was ramped to s =9
over 100 ms. The dipole trap remained at a constant value until the lattice had
assumed half its final value, and then the dipole potential was ramped linearly to
zero coinciding with the end of the lattice ramp. The cloud was held for another
10 ms before being released from the lattice in a projection-like manner to test for
superfluidity.

After release from the lattice, the cloud displayed projection peaks as shown
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FIGURE 6.5: Loading the vertical optical lattice from the crossed dipole trap. The
cloud was held for 10 ms in the optical lattice only, s =9. Projection peaks indi-
cate a coherent BEC.

in figure 6.5, indicating that a coherent BEC was transferred to the lattice. How-
ever, at lower lattice depths, faint or no projection peaks were visible, showing that
the transfer is not yet ideal. Once the dipole trap is put into a final shape, lattice
loading from the crossed dipole trap will be explored further.

A final set of experiments investigated the application of Faraday imaging in
the dipole trap. Such a tool would be very powerful for measuring trapping fre-
quencies, as only a single experimental run is enough to sample the entire oscilla-
tion. We have already made such an experiment in the QUIC trap, where the cloud
was imaged 2000 times during a decompression of the trap [59].

However, the atomic density in the dipole trap is still too low to see any Fara-
day signal. This might be solved by optimising transfer to and evaporation in the
dipole trap, since the interaction with more atoms would cause more rotation of
the light. Of course, itis also possible to decrease the detuning of the Faraday laser,
but this comes at the cost of destructiveness, so this path seems less fruitful. An-
other approach is just to increase the integrated atom number as seen from the
camera by changing the aspect ratio of the dipole trap. This has been done to an
extreme degree in the group of Morgan Mitchell, such that the cloud approaches
one-dimensional behaviour [90].






CHAPTER 7

TOWARDS ATOM NUMBER
STABILISATION USING FARADAY
FEEDBACK

In this chapter, I shall discuss ongoing experiments into atom number stabilisa-
tion by feedback using Faraday imaging. The Faraday measurements have pri-
marily been carried out by Miroslav Gajdacz, since he has performed the techni-
cal task of creating a combined imaging acquisition and real-time feedback loop
on an FPGA. This project has been underway for some time, and a publication is
expected within the next six months.

7.1 Non-destructive Faraday imaging

The use of non-destructive imaging allows for multiple imaging of the same atomic
cloud. In the early experiments of Bose-Einstein condensation, dispersive imaging
techniques were applied to gain in situinformation about dense clouds [91]. How-
ever, the technique has also proved particularly useful for time-resolved imaging
of single clouds [32].

Another interesting prospective application of non-destructive imaging is the
possibility to apply feedback to an atomic ensemble. Feedback has previously
been applied to trapped atoms in an optical lattice in order to cancel oscillations
[92], but here the error signal was acquired by measuring the scattered light from
the optical lattice.

Faraday measurements have previously been used to generate an error signal
for feedback as a means of teleporting a light state onto an atomic state [93]. This
was performed on room temperature samples held in vapour cells on the collective
spin state of the ensemble. Later uses of feedback from Faraday signals include the
controversial spin squeezing experiments performed in the Mabuchi group [94].
Here, the Faraday effect was exploited to gain information about the orientation of
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the spin of a system, but the observation of spin squeezing following the feedback
was later retracted.

In our experiments, Faraday imaging is used to measure the spatial distribu-
tion of a cold atomic cloud, as discussed in section 3.4. In this chapter, our recent
experiments towards stabilisation of the atom number of an atomic ensemble are
discussed. Stabilisation of the atom number has great experimental prospects,
as the smaller fluctuation in atom number improves shot-to-shot reproducibility,
which can often be the dominant source of uncertainty in experimental data. Fur-
thermore, the production of ultracold ensembles is the product of several stochas-
tic processes, from laser cooling, evaporative cooling and density-dependent loss
mechanisms. While these processes each lead to different uncertainties in the pre-
pared atom number, Poissonian noise is typically taken as a benchmark leading to
VN fluctuations in the prepared atom number. Using feedback, it is possible to
generate a ensemble with a precision surpassing the +'N noise.

In the present, we focus on preparing ultracold, thermal clouds. Typical pa-
rameters include an atom number of N ~ 2 x 10° and a temperature of T ~ 2uK.
In future work, we shall extend the feedback to ensembles at the critical tempera-
ture in order to create condensates with high stability in atom number.

The working principle of the feedback scheme is to generate an error signal us-
ing Faraday imaging and then to apply a correction to the RF sweep during evapo-
rative cooling. The system was originally designed for multi-step feedback, where
the cloud is imaged repeatedly and feedback is applied as a response to each im-
age, but so far only a single feedback step has been applied. This approach works
very well, indicating that the primary problem in stabilising the atom number in a
cold cloud the variation of atoms initially loaded into the trap.

Single-step feedback relies heavily on finding the correct feedback gain and
is only useful in the so-called unity-gain regime. This amounts to matching the
feedback to the “natural response” of the system, which allows the correction to
be applied in a single step. Another regime is the low-gain regime, where the feed-
back deliberately undercompensates, but instead applies many repeated correc-
tions to slowly reach the desired value. This regime is less likely to “overcompen-
sate”, which could cause problems in a system like ours, where atoms can only be
removed by the RF knife but not added, since the default evaporation sequence is
optimised for maximum atom number.

The multi-step feedbackis a good strategy if the quantity to be stabilised slowly
drifts. In such a system — e.g. a diode laser that is heated from the environment — a
continuous correction is required. On the other hand, if only an offset error needs
to be corrected, a single-step feedback could be more efficient. The disadvantage
of single-step feedback is that the gain needs to be known with high accuracy.
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Computer

FIGURE 7.1: Experimental setup of feedback. Imaging is controlled from the
FPGA that triggers the AOM. The image is transferred to the computer, but the
FPGA reads the image in parallel, analyses it and generates a feedback signal to
the RF synthesizer, which changes the evaporation ramp.

Feedback

Feedback to a cold atomic cloud requires fast imaging and data processing to work
on the time scale of the atoms. To this end, a field-programmable gate array (FPGA)
is employed to control imaging and RF radiation. The FPGA is a National Instru-
ments PCle-7852R runningat a clock frequency of 40 MHz, and its setup is sketched
in figure 7.1. The FPGA triggers the AOM and the camera, and when the image is
transmitted to the computer, the FPGA reads the image in parallel. The image is
not stored, but only processed to generate an error signal, so the FPGA only needs
to access a minimal number of FIFOs. The error signal is passed on to the RF syn-
thesizer, through the amplifier and to the RF coils used for evaporation.

The FPGA is controlled through a LabVIEW program that contains all settings
for the Faraday laser and the camera. The program is executed when an ECS file
appears on the hard drive as was done for the microwave setup. The FPGA then
programs the camera by writing a file with the relevant camera settings to be read
by a camera control script running in the Andor Solis environment.

In order to adjust the RF frequency for feedback, the FPGA must be able to
control the RF synthesizer and generate the normal evaporation ramps. To this
end, the RF ramp frequencies and durations are extracted from the current ECS
file, and the FPGA calculates the ramps in a similar fashion as ECS does. To keep
synchronisation with the DIO boards, each ramp of the RF is triggered by a TTL
signal from the DIO boards. If the FPGA is faster than the DIO boards, it will keep
the end frequency until receiving the next trigger.

For each of the sweeps defined in ECS, the FPGA is able to take a number of
pictures. The number of pictures splits the sweep into the same number of sub-
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FIGURE 7.2: Application of RF cuts. A cut is triggered from the FPGA and is di-
vided into a number of pulses of a given duration, and between each pulse is a
delay set by the cycle duration. Both pulse duration and cycle duration is quan-
tised in units of 8.4 us. The cut always goes to a specified fraction of the effective
trap depth.

sweeps, and in each sub-sweep, it is possible to apply feedback using settings that
are defined for each sweep. It is also possible to vary the duration of the imaging
pulse in each sweep, which is useful since more light is required to image hotter
clouds at the beginning of the evaporation.

Although the FPGA operates at a clock frequency of 40 MHz, the RF synthe-
sizers works at a lower clock rate, so it forces changes in the RF frequency to a
quantisation of 8.4 us. So far, this does not pose a problem, since the evaporation
happens on a time scale set by the collision rate, which is around three orders of
magnitude slower.

Adjustments in the RF frequency to effect the feedback are applied as “cuts” of
a given duration and frequency. The frequency is determined as a fraction of the
effective trap depth, Veyap — Vhor, Where e,y is the current evaporation frequency
and v, =540kHz is the trap bottom. This is to keep the effect of an RF cut ap-
proximately constant. The number of atoms lost in a single cut can be adjusted by
varying the depth of the cut.

The effect of an RF cut is to transfer atoms to an untrapped state while not
maintaining thermal equilibrium. Since the final state is lost from the trap, the
effect of the RF cut is an exponential decrease in the atom number,

N'=Ne /7, (7.1)
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FIGURE 7.3: Imaging regions for Faraday detection. The atoms region is the in-
ner square, the reference region excludes anything inside the void radius. The
baseline region is shaded in dark grey.

where N is the initial atom number, N’ is the final atom number, ¢ is the duration
of the RF pulse, and 7 is the time constant for the loss. Following the principle be-
hind evaporative cooling, only a small fraction will be resonant with the RF radia-
tion, due to their Maxwell-Boltzmann distribution in the trap. Thus, the number
of atoms lost with a deep cut is much larger than for a small cut due to the density
of states, and the value of 7 depends on the cut frequency.

When applying RF radiation to the ensemble, only a small spatial interval is
addressed. By applying along cut, it is easy to “saturate” the transition and remove
all the atoms in a region. To avoid this, the cuts are divided into shorter pulses
(see figure 7.2). The pulses are arranged in a cycle, and during the delay between
pulses, atoms may repopulate the resonant region. Typically, a pulse is 1 x 8.4us
and the cycle duration is 20 x 8.4 s, such that the atoms have 160 us to repopulate
the spatial interval, where the cut is applied. The feedback quantity is thus the
number of applied loss pulses.

For the actual imaging we use pulses of linearly polarised light that is 1 GHz
blue detuned from the F =2 — F’ = 3 transition. The incident light is shown in
red in figure 7.1, and the interaction proceeds as described in section 3.4. After
interacting with the atoms, some light is rotated to the perpendicular axis (blue in
figure 7.1) due to the vectorial Faraday term in the Hamiltonian (2.75). The two
polarisations are separated on a polarising beam splitter, and the rotated light is
imaged on the CCD camera.
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For the atom number analysis described in section 2.4 on page 31, two quan-
tities are necessary: The intensity due to Faraday rotation 7(6) and the incident
light intensity I,. We may relate these to the experimental quantities as

10)=1'(0)—1, (7.2)
1 /
=5 (I,— 1), (7.3)

where 1'(0) is the signal from the camera, I, is the baseline intensity, and I is the
signal on the camera due to light leaking through the cube. These quantities may
be extracted from an image, because the camera is masked. Three regions may be
defined in an image, as shown in figure 7.3:

* Atoms region: A small region, where the atoms are present. This yields the
intensity 1'(8).

* Reference region: This is taken further away from the cloud such that no
atoms are present, and only the light leaking through the cube is detected,
I/

o

* Baseline region: This area is masked, so no light is present. The signal here
defines the base level associated with camera noise, I,.

7.2 Atom number estimation

In this section, the working principle behind calculating the atom number and
finding the error function for feedback is discussed. More details are found in the
progress report by Miroslav Gajdacz [95]

Image analysis

Using the leaking light in the reference region, the Faraday rotation angles may be
calculated. However, it is faster for the FPGA only to work with the dimensionless,
normalised signal defined as

S(@)=——. (7.4)
As was shown in equation (2.81), the relevant quantity for studying the atom num-

ber is the rotation angle, so a conversion from signal to rotation angle is needed.
This is given in equation (2.83).
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Since the imaging light is incident along the Ioffe axis, the expected density
profile is a symmetric Gaussian for a thermal cloud. For such a profile, the inte-
grated rotation angle is [95]

PP :f rdg dr 0(r)=2100max (7.5)

where 0,,, is the peak rotation angle. Similarly, it may be shown that the inte-
grated signal X is related to Xy by

s =29 (0max), (7.6)
where f is defined as
]
1 (do’sin*6’
o= | —. 7.7
pO)= f - (7.7)

0
All conversion information is thus contained in . To make the FPGA faster, § is
evaluated numerically as a polynomial, and it is used to fifth order
0 63 6° 07

ﬂ(@):E—E+E—m+... (7.8)

However, it is easier to work in normalised error functions in order to deter-
mine the error function, which indicates how far the current atom number is from
the reference. The error in atom number is given by

AN

where AN is the deviation from the desired atom number. This may be related to
the relative error in the signal
AYg ON Y ON

—— =F—=—, 7.10
N dxy °N oz (7.10)

N =
where Eg = AX.g/Yg is the relative error in the signal. From equation (2.81) and
equation (7.5) it is clear that

N o< 0,03 270% = 0,05 T, (7.11)

where T is the temperature. Since the temperature is set by the RF evaporation, it
will be constant for any image taken at a given point along the evaporation. Using
this in equation (7.10) yields

Ey = Eg—> 20, (7.12)
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This relation shows that the relative error in atom number for a thermal cloud may
be calculated by the relative error in signal translated by the proportionality factor
a defined as

1 X5 00ha
a Qmax 325 '

(7.13)

This is only a function of the peak rotation angle 8,,,., so it may be computed from
parameters that are extracted from the image.
To find the relation between a and 8, we combine equations (7.6) and (7.11)

ZS x ﬁ(emax) (7.14)

As the proportionality constants vanish when inserted in ¢, we obtain

10
B(Bmax) 0Omax

This expression may be evaluated numerically yielding

a [B(Omax) Omax - (7.15)

2 4
a=2— Iga"‘+%+.... (7.16)

This shows that for small rotation angles, the conversion from error in signal to
error in atom number just amounts to a division by 2.

Noise model

For the evaluation of the noise when measuring the atom number with this method,
we derive a simple noise model. If we describe the number of electrons generated
on a single CCD pixel as

Net =1 Nph,05(0), (7.17)

where 1) is the detection efficiency and N, o is the number photons incident on a
single pixel. All loss process are taken into account by 7, including the quantum
efficiency of the camera. From equation (7.17), one finds the expression S(8) =
Ne1/1Nph,o, and by propagation of error, the variance in S is

az—(ds )202 N N, = S(9) (7.18)
S \dNg) ~ Mt (nNypp)? o NNphyo' .

where Poissonian statistics were assumed for N,.
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To translate this into an uncertainty in atom number, we calculate the rotation
angle 0, since, by equation (2.81), the angle is proportional to the atom number.
If we assume that the angle is just

0 =arcsin(vS), (7.19)

we may apply the propagation of error again. This yields

ao 1 S
Op=|—"|0c¢c=
?71as|7 T 2/T=9)8 \| 7Npno
1
= ) (7.20)
2 (1 - S)anh,O
Since the number of photons is linear in the pulse duration ©
Nph,o = PoT, (7.21)

where @, is the photon flux.

This shows that the noise in atom number scales as 7~'/2, which is the equiv-
alent of shot noise. Although the dependence of pulse duration is removed when
calculating the signal, the shot noise caused by the pulse duration does not van-
ish. The effect of read-out noise may also be included in the model by adding
a constant term to equation (7.17). This would appear as an additional term in
equation (7.20) that is proportional to 7. This is generally not relevant for our
experiments, since we use EM gain, meaning that the number of photo-electrons
is much larger than the read-out noise — even for very short pulses.

1

7.3 Experimental characterisation

Characterisation of imaging

The imaging setup was characterised following a sequence of two series of images
separated by 9 s of evaporation. The first series of images was taken after 33 s of
evaporation in the QUIC trap, and a total of 10 images was taken with a cycle time
of 50 ms while keeping the evaporation frequency constant. The second series of
images were taken after another 9 s of evaporation and consisted of 40 images also
taken with a cycle time of 50 ms (see figure 7.4). This procedure was used to mimic
a feedback sequence: First taking images to evaluate the error, applying feedback
and afterwards evaluating the resulting atom number.
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FIGURE 7.4: Sketch of the imaging procedure, where the grey areas mark the
imaging series. When the evaporation frequency reaches 1.9 MHz, 10 images
are taken (F1), while the RF frequency is kept constant. Afterwards, the evapo-
ration continues, and at 1.1 MHz, another 40 images are taken.

The procedure was repeated for different imaging pulse durations and match-
ing EM gains in order to exploit the full dynamic range of the camera, and for each
setting, 15 repetitions were made. For every pulse duration, the first series (F1)
used three times longer pulses than the second series (F2). In the following, i de-
notes the image number in the sequence, and j denotes different realisations of
the same experimental sequence.

The destructiveness is defined as the relative decrease in atom number per im-
age,

r= 1 dN 99

=N (7.22)
To characterise this slope, the atom number is calculated as the Faraday rotation
angle summed of the image, ~4. For each set of images, >4 is fitted with a linear
function, where the slope yields the loss of atoms, and the offset is the initial atom
number. The destructiveness is then simply the slope normalised with the offset.

The summed Faraday angle for a F2 (F1) pulse duration of 500us (1500us) is
shown in figure 7.5 (a). The fits show a small deviation from linearity, especially for
the F2 pulses, which is attributed to the exponential character of the heating from
the imaging pulses. The destructiveness is plotted against the pulse duration in
figure 7.5 (b). The graph shows good linearity, and both the F1 (blue) and F2 (green)
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FIGURE 7.5: Evaluation of the destructiveness of the Faraday measurement tech-
nique. (a) The Atom number (represented by the summed Faraday angle) for a
series of imaging pulses of duration 1500 us (F1, blue dots) and 500 s (F2, green
dots). (b) Destructiveness versus imaging pulse duration for F1 (blue dots) and
F2 (green dots) images. The data is fitted with a linear function yielding a slope
0f 8.6 x 10~ image~'ps™! for F1 and 7.8 x 102 image'us™! for F2.

pulses have a similar slope of ~ 8 x 1073 image'us™!. The small offset on the data
for F2 pulses is attributed to a decrease in signal due to evaporative cooling.

The fact that the increase of destructiveness with pulse duration is similar for
F1 and F2 is somewhat surprising, since the imaging sequences occur at an effec-
tive trap depth of 1.9MHz and 1.1 MHz respectively. The mechanism behind the
destructiveness of the Faraday imaging is absorption of a photon, so each scat-
tered photon should correspond to the absorption of one recoil energy hzksh /2m,
where k), is the wave number of the photon. The delivered energy should thus
remove more atoms from the trap for F2 than for F1, since the effective trap depth
is smaller for F2.

In order to evaluate the precision of the imaging, the signal error was calculated
relative to the mean over j

Eg i=———. (7.23)
This normalises the mean atom loss approximately because the destructiveness

due to the imaging is common to all repetitions of a single image i. For each repeti-
tion, the scatter may now be attributed to the measurement precision (MP), which
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FIGURE 7.6: Measurement precision of Faraday imaging as defined by equa-
tion (7.25), but scaled by a to get the precision in atom number. The data is
identical to that used for the destructiveness, i.e. 10 images for F1 and 40 images
for F2, where each F1 pulse has three times the duration of each F2 pulse. Data
is plotted double-logarithmically for F1 (black, filled circles) and for F2 (black,
open circles). The straight-line fits correspond to a power function, yielding a
slope of —0.45(4) for F1 (blue, solid) and —0.39(1) for F2 (green, solid).

we characterise by the two-sample deviation of the error [96]. We first calculate the
two-sample variance of the error in signal

1
2 2
O = (Es,iv1—Es,i)7); (7.24)

ES szg < 1+ 1 >l
where N, is the number of images taken. The error in signal is related to the error
in atom number by the « factor, equation (7.16), which leads to the measurement

precision
O'ES
MP = ) (7.25)
a
The resulting measurement precision derived from the same data as for the
destructiveness is plotted against the pulse duration in figure 7.6 using a double-
logarithmic plot. The slope of the fitted line gives the power law dependence on
pulse duration, and for F1 it is —0.45(4) in good agreement with the —1/2 expected
from equation (7.20). The precision reaches a value of 10~3 around 30us for F1
and roughly half this value for F2. This is expected, since F2 contains four times as
many images.
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Characterisation of RF cuts

The effect of making an RF cut into the cloud was also investigated. Experimen-
tally, the cloud was imaged during all of the evaporation using 1 GHz blue detuning
and EM gain of 80. After 18 s of evaporation, the imaging frequency was 2 images
per second, and the pulse duration was 15us. After 30 images, a cut in the RF
frequency was applied for variable duration and frequency. In order to keep se-
quences with different cut length comparable, the evaporation was “paused” for
50 ms at Veyap = 1.9MHz during the cut. The cut was delivered in pulses of 8.4 us
using a pulse cycle of 168 us.

From the data, the atom number N was calculated by division by . The error
was the found relative to an average atom number N, from 30 reference runs,

where no cut was applied,
N
Ey=——1. (7.26)
]Vref

The effect of the RF cut was quantified by the fraction of atoms left after the cut,

NO_N@  EP-EY
R C (7.27)
N Ey'+1

where the superscript 1 refers to before the cut and 2 refers to after the cut. In
practice, these two values were found by averaging Ey over the 21 pictures before
the cut and 30 pictures after the cut, respectively.

The data from two cuts, at 0.2 and 0.6 of the trap depth, is shown in figure 7.7 (a).
The data has been fitted with an exponential decay, and the difference in time scale
between the two cases is clear. The cut at 0.6 is exponential whereas the cut at 0.2
is so severe that the exponential model no longer fits the data. This is probably due
to another loss mechanism, since the system is far away from equilibrium when
cutting away atoms close to the mean energy.

In figure 7.7 (b), the loss rate (1/7) is plotted versus the cut frequency. The
loss rate is proportional to the number of atoms resonant with the RF radiation,
and therefore it reflects the Maxwell-Boltzmann distribution of atoms in the trap.
The distribution peaks close to 0.1 of the trap depth, indicating that the density of
states peaks at this value.

An important outcome of the calibration is the gain for the feedback. The loss
rate sets the required duration for cutting away a given fraction of the atoms. If a
fraction 6 needs to be cut, the effect of an RF cut should be

r

1-6=e /"n1——. (7.28)
T
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FIGURE 7.7: Calibration of the RF cut. (a) Effect of varying the duration of an RF
cutfor acutto 0.60 (blue) and 0.20 (green) of the effective trap depth respectively.
Here, the pulse duration was 8.4 us and the cycle duration was 168 us. Each set of
data was fitted with an exponential decay. (b) The loss rate (1/7) for different cut
depths. The curve shows, as expected, that a cut a low frequency is much more
severe than a cut at a low frequency due to the distribution of atoms in the trap.
Therefore, the shape of the curve reflects the Maxwell-Boltzmann distribution.

if the fraction is small,
t=16. (7.29)

This is of course an approximation, and in reality, experimental imperfections re-
quire an optimisation of the gain, as will be discussed in the following section.

7.4 Atom number stabilisation

The experimental approach for stabilising the atom number is to first evaporate
for 33 seconds using the standard evaporation ramps. At this point, the evapora-
tion frequency is 1.9 MHz, and the cloud is imaged to establish the atom number.
During the imaging, the evaporation frequency is kept constant at 1.9 MHz (see
figure 7.4).

The Faraday laser is locked at 1 GHz blue detuning, and 10 images are taken
with a typical duration of 40us and an EM gain of 15. The imaging rate is 20 Hz,
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and the signal results from the 10 images are averaged to get an estimate of the
atom number. It is advantageous to split the imaging into many pulses, since it
avoids saturation of the camera, allowing a high integrated light level. The many
pulses also provide statistics for each imaging series.

Following the imaging, the evaporation is resumed while applying the feed-
back pulses. After 9 s of evaporation, the evaporation frequency reaches 1.1 MHz,
and another series of Faraday images is taken to measure the effect of the cor-
rection while keeping the evaporation constant. These images are taken with the
same conditions, but a total of 40 images were taken, in order to achieve the high-
est possible imaging precision.

Alternatively, one could use standard absorption imaging to measure the ef-
fect of the feedback, but a comparison between absorption and Faraday imaging
showed, that absorption imaging was less precise than Faraday imaging. This is
caused by the fact that the integrated light level in non-destructive imaging can
be much higher than for absorption imaging, since the effective well-depth of the
camera is proportional to the number of images.

In order to evaluate the error signal, a reference atom number is needed. In
practice, this number is calculated from 30 reference runs, where no feedback is
applied, but using identical imaging conditions. The reference signal S, is then
evaluated by averaging the signal over all 30 runs for each point in time. This ap-
proach makes the error signal insensitive to any systematic changes in signal dur-
ing a run, since the trend is “divided” out of the signal. The reference runs are
shown in figure 7.8 (a) and show the natural variation of the atom number.

Since the RF cuts are only able to remove atoms, it is important to set a “goal”
that is lower than the fluctuating atom number. From the reference atom number,
a desired fraction' x is chosen beforehand, and this is the set point from which the

error signal is calculated

S
Eg=——x. (7.30)
Sref

From the error, the duration of the RF cut is calculated from a gain expression.
Empirically, it was found that a quadratic expression yielded good results

t = gEs(1+qE;), (7.31)

where g and g are parameters to be determined experimentally. The appearance
of a quadratic term is attributed to experimental imperfections.

This fraction is set in signal — not atom number — so it is not identical to the resulting atom
number fraction.



144 Chapter 7. Towards atom number stabilisation using Faraday feedback

(@ 12 . . (b) 1.2

1.1

= =
= =
09| —/—————T 0.9
08f - 0.8
05 0 9 95 10 105 11 -05 0 9 95 10 105 11
Time (s) Time (s)

FIGURE 7.8: Atom number with and without feedback correction. Time zero in-
dicates the point where feedback is applied. (a) Reference runs, no feedback is
applied. (b) Feedback is applied to reach the goal x = 0.675 using a cut depth of
0.90 and a gain of g =3776 x 8.4ps and g =—0.215.

The effect of activating the feedback is shown in figure 7.8 (b), where a gain of
g =3776 x 8.4us and g =—0.215 was used along with a goal of x = 0.675. The RF
cut was applied at 0.9 of the effective trap depth, and a typical cut duration was
~ 13 ms.

Before applying the feedback, the images show the same spread in atom num-
ber as in figure 7.8 (a), where no feedback is applied. After the RF cut, however, the
spread in atom number reduces drastically. Only the sequences, where the atom
number was below the desired 86% of the reference atom number, show devia-
tion from the small spread, but these may easily be rejected a posteriori, since the
output from the FPGA shows that no feedback was applied.

In order to find the optimal gain, it is useful to determine the correlation be-
tween the measurement before the feedback and after the feedback. Such a plot
is shown in figure 7.9 (a), and the slope of the points show how close the gain is to
the optimal value. If the slope is positive, the FPGA does not apply enough feed-
back for large atom numbers, and the gain is too low. On the contrary, if the slope
is negative, the FPGA overcompensates the large atom numbers, and the gain is
too large. Only for a flat line is the atom number correctly compensated leaving
no correlation between the two measurements.

A closeup of the resulting correlation is plotted in figure 7.9 (b) showing that
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FIGURE 7.9: Correlation of the two measurements. (a) Correlation of the initial
(F1) and final (F2) atom number for three different settings of the gain. Data is
shown without feedback (blue), with an over-compensated gain setting (green),
and with an optimal gain setting (red). For each data point, the atom number
was evaluated by averaging the atom number over 10 images before the RF cut
and over 40 images after applying the RF cut. (b)Closeup of the data shown in (a)
for optimal gain settings. The measurement precision is shown as dotted lines
and the standard deviation of the is shown as dashed lines.

the stability is 8 x 10~ (black line, dashed). The stability before feedback is 7.7%,
so the feedback improves the stability by a factor of 80. This shows, that single-step
feedback is a fruitful approach to stabilizing the atom number.

The limiting factor at the moment seems to be the measurement precision of
F1. The expected noise in F2 is 6.4 x 10~ (red line, dotted), and consist of a two
contributions: One from the measurement precision of F2, and one from the mea-
surement precision of F1 used for the feedback. The latter is found from propaga-
tion of error
dEs;

Os1» (7.32)

UF1=’

where 0, is the measurement precision for F1. The derivative dEs,/dEg; is just
the correlation between the two measurements, and this is not 1 due to the non-
linearity of the « factor.

When adding the terms in quadrature and converting the result to atom num-
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ber instead of signal?, we obtain the aforementioned 6.5 x 107*. The measurement
precision for F2 is just 2.9 x 107*, indicating that the limiting factor at present is the
measurement precision for F1.

Another interesting aspect of the noise after feedback is that the measured un-
certainty is so close to the expected uncertainty due to feedback. This means that
the noise from other sources, o, is limited, as such a contribution should be
added in quadrature

Ot =/ 0% +0%,+ 02, (7.33)

With the measured noise, the residual noise is oy, = 5.0 x 1074, but the uncer-
tainty of this number is high, since subtraction of two similar numbers squared
varies dramatically with the exact numbers.

However, this still indicates that any noise due to the evaporation is small,
which is promising for the effort of creating a BEC with the same stability as the
current thermal cloud. Since the evaporation is a stochastic process, it should add
some noise, as should the stochasticity of the number of atoms lost in the RF cut.
Both noise sources are subjects for future investigations.

Another subject of interest is the effect of trap bottom drifts. Small variations in
the coil - typically from temperature changes in the cooling water — cause a similar
change in the magnetic field and shift the bottom of the trap slightly. This effect is
normally on the order of kHz and should not pose a problem for the current exper-
iments that work at least 500 kHz above the trap bottom. However, for the creation
of a BEC, such changes are of high importance since the end frequency typically
is only tens of kHz above the trap bottom. It would therefore be highly relevant
to consider ways of correcting for the trap bottom drifts through feedback. One
way would be to apply two-step feedback: One at an early stage in the evaporation
where the trap bottom drift is negligible, and one near the end of the evaporation,
where the drift is important. The trap bottom could then be adjusted through an
offset field, which should lead to a very reliable production of a condensate.

To summarise, our current experiments employs a single-step feedback algo-
rithm as a first approach to atom number stabilisation. The preliminary results
show a stability of 8 x 10~* with an atom number of 1.8 x 10, and this brings us
very close to the Poissonian noise of 7.5 x 10~*. Future experiments will explore
the origin of the measured noise, and investigate the prospects of using two-step
feedback.

2For this purpose, the conversion was made by calibrating the Es against the error in atom num-
ber measured by absorption imaging. This is equivalent to calculating the a factor from the average
peak angle.



CHAPTER 8
OUTLOOK AND CONCLUSION

In this thesis, new tools for manipulating coherent ensembles of ultracold atoms
in optical lattices were presented. The creation and localisation of wave packets
through amplitude modulation of the lattice offers new means of quantum state
engineering. The investigation of spinor condensates in two dimensions reveals
correlations in both spin and momentum. Also, ongoing investigations using feed-
back with Faraday detection shows promising results in stabilising the atom num-
ber below one permille.

The work on wave packets in optical lattices allowed for the creation of a pair
of wave packets propagating in the 4th excited band which is unbound by the lat-
tice. Subsequent modulation pulses deexcites the wave packets into the 1st excited
band where the atoms stay localised for hundreds of milliseconds.

The deexcitation pulse works as a beam splitter for a matter wave, splitting a
fraction into the localised state. By varying the modulation frequency, amplitude
and duration allows one to tune the splitting fraction and deexcitation band, and
for deexcitation to the 1st excited band, an efficiency approaching unity can be
realised. The localised states can also be addressed by RF radiation, sweeping the
frequency to expel atoms from the trap.

Thus, the localised states work as a quantum register, where atoms may be
stored in different sites or different lattice band. In particular, a superposition of
atoms in two different bands would imitate a qubit, and coupling the two bands,
using e.g. phase modulation of the lattice, would resemble a quantum gate.

In the field of spin dynamics, the production of correlated clouds of |2, +1)
atoms in a one-dimensional optical lattice extended previous work on spinor gases
[34-36] to a multi-mode regime. Here, the spatial eigenmodes of the trap are not
resolved, but superpositions appear leading to distinct ring structures in time-of-
flight. Furthermore, it was shown that the |£1) clouds exhibit spatial anti-correla-
tion. Future experiments will focus on investigating a single lattice site in which
the spinor dynamics would not suffer from interference from other sites. Such an
experiment might shed light on the effect of bosonic stimulation during the spin-
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changing collisions.

To aid future experiments on spin dynamics, a crossed dipole trap was built.
The successful creation of a BEC in this trap was demonstrated, and prospective
applications were illustrated. Spin dynamics also occurs in the dipole trap, and
loading an optical lattice from the dipole was also achieved. The dipole trap could
also be used with cylindrical lenses to create a two-dimensional cloud. This would
open up interesting ways to continue the spinor experiments, since the dipole trap
would only feature a single two-dimensional site yielding easier identification of
ring structures and possible wave packets.

Finally, preliminary results towards atom number stabilisation using Faraday
feedback were presented. Using non-destructive Faraday detection, the atom num
ber was measured and subsequently corrected using cuts in the RF evaporation
frequency. This method has so far led to atom number stability below one per-
mille, and further investigation will explore the possibility of reaching the Poisso-
nian limit of v/N uncertainty.

The prospective application of atom number stabilisation has great potential
for improving the statistics of other experiments such as the spinor dynamics. The
inherent uncertainty due to the stochastic nature of the parametric amplification
would be isolated, leading to improved statistics of atom number measurements.
Finally, all experiments that measure small losses, such as current efforts towards
observing Efimov states [97], would benefit from high stability of the initial atom
number.



APPENDIX A

THE BOGOLIUBOV
TRANSFORMATION

Starting from a Hamiltonian on the form of equation (5.23), we omit the indices
and work only with the two operators 4 and b yielding the Hamiltonian

A=D(a'a+b'D)+U(a"b"+ab). (A.1)
The two Bogoliubov operators are then defined as

ad=ud+vb' (A2)
B=ub+va', .

where the coefficients u# and v can be any complex number in general. However,
as a starting point, it is convenient to choose u and v to be real, as the phase of
the operators does not contain any physical meaning in itself. For the particle de-
scribed by @ and f to be a boson, it should fulfill the Bose commutator relations

[a. &']=[p, p']=1 (A3)
[a, B]=[a', BT]=[a, BT]=[a', B]=0. (A.4)
Given that 4 and b fulfill these relations, insertion of equation (A.2) yields

1=(ua+vb"ua'+vh)—(ua'+vb)ud+vbh
=u’(aa'—a'a)+v*(bb"—b'h)
S
which is conveniently parametrized by hyperbolic functions
u =cosh(t) (A.5)
v =sinh(z). (A.6)
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The inverse transformation is simply

D>
I
D

ua—vp’ (A7)

up—va', (A.8)

S
1

which is used to describe the Hamiltonian in terms of @ and j

A=D[(ua"-vB)ua—vp"+up'—va) up—vah)] (A.9)
+U[(ua"—vB)uB'—va)+wp—vatua—vph). (A.10)

When the parentheses are removed, terms of the kind dd' appear, which may be
removed by use of the commutator 44" =1+ a'd. The Hamiltonian now reads

A=20’D+Dw?+v?a'a+p'p)—2uvD@ pt+ap)
+ U+ v?) @t BT +ap)—2Uuv@a+pTh+1).
=20°D —2uvU +[D(u? + v¥)—2U0uv] (@' a+p'p)
+[U(u?+v*)—2Duv]@'B’+ap).

The last expression is diagonal in @ and 3, if the term U(u? + v?)—2Duv can
be set to zero. Luckily, there is still a degree of freedom left in the parametrization,
namely the choice of ¢. This choice of ¢ leads to a parametrization

0= U (cosh? t +sinh? t)—2D cosh ¢ sinh ¢,
which using the square formulas is equal to
=Ucosh2t—2D cosh¢sinht.
The double angle formula gives
=U cosh2t —Dsinh2t¢,
and the parametrization is thus
tanh2t =U/D. (A.11)

From the definition of the inverse hyperbolic tangent, the value of t may be

isolated as
1 x+1
t=-In s (A.12)
4 1—x




151

where x = U/D. This, in turn, leads to the explicit expressions for u and v given
the choice of ¢. From the definition of u, (A.5), we have

1 1+U/D 1-U/D
u=1le'+et)=1 /D /
2\ \1-u/D 1+U/D
_1vD+U+vD—U
) YDZ—U2 ’
where the identity (a + b)(a—b) = a®>— b? was applied. Squaring the entire expres-

sion leads to
, 12D+2/D2=0U2
u-=- ,
4 VD2=U?

(A.13)

which motivates the definition
e=vD2-U2, (A.14)

The coefficient u is then

, 1(D
u'=—(—+1|, (A.15)
2\ €

and following a similar calculation, we find

=3l
v =——-—1]. (A.16)
2\ €

Returning to the Hamiltonian,
H=2v*D—2uvU +[D(u*+v*)—2Uuv](@'a+B'p), (A.17)

the product uv needs to be calculated, which is simply uv = %U /€. Insertion of
all expression leads to
D?—U?

A=Y _py
€

=e—D+e(a'a+pp). (A.19)

D%2-U?
€

](&Tmﬁ*ﬁ) (A.18)

This expression shows that the ground state energy of the system is € —D and that
any excitation is a quasi-particle with energy €.
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