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ABSTRACT
Quasiparticles are an important concept in physics since they can reduce
the complexity of many quantum systems. The polaron is a prominent
example of such a quasiparticle and describes the scenario of an impurity
interacting with a surrounding medium. While polarons are significant
for the understanding of novel technologies, they are also difficult to
study in solid-state materials. In contrast, ultracold gases provide an
excellent platform for investigating the behavior of impurities, since
these quantum gases are marked by a high degree of purity, low densities
and furthermore allow complete tunability of interactions between the
atoms.

In this thesis, the dynamics of impurities in ultracold atomic gases
is studied experimentally. In particular, a Bose-Einstein condensate of
39K is used as a medium and impurity physics is explored using another
quantum state of the potassium atoms. These investigations include
interferometric measurements of initial two-body dynamics and the sub-
sequent formation of the polaronic quasiparticle. Interestingly, three
distinct regimes of dynamical behavior are identified and the transition
times between the regimes are extracted in agreement with theoretical
predictions. Moreover, interferometric and spectroscopic polaron results
are analyzed and compared, thus providing a complete characterization
of the Bose polaron in both time-domain and frequency-domain. Finally,
interactions between polarons leading to the emergence of bipolarons
are observed using a spectroscopic approach. These measurements re-
veal the dynamical formation of bipolarons and allow their ground state
energies to be obtained, which are successfully compared with predicted
values.

The results presented in this thesis thus consolidate and expand
the current understanding of polarons and bipolarons in Bose-Einstein
condensates. This, in turn, paves the way for new exciting research of
quantum impurities and their interactions.
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RESUMÉ
DANISH ABSTRACT

Kvasipartikler er et vigtigt koncept inden for fysik, da de kan reducere
kompleksiteten af mange kvantesystemer. Polaronen er et prominent ek-
sempel på sådan en kvasipartikel og beskriver scenariet, hvor en urenhed
vekselvirker med et omgivende medium. Selvom polaroner er signifikan-
te for forståelsen af nye teknologier, er de også svære at studere i faststof
materialer. Ultrakolde gasser er derimod et fortræffeligt system for at
undersøge opførslen af urenheder, da disse kvantegasser i særdeleshed
er rene, har lave densiteter og derudover kan have fuldstændig justerbare
interaktioner imellem atomerne.

I denne afhandling undersøges dynamikken af urenheder i ultrakolde
atomare gasser eksperimentelt. Til dette bruges et Bose-Einstein konden-
sat af 39K som medium, og urenhedsfysik udforskes så ved at benytte
en anden kvantetilstand af kalium atomerne. Disse undersøgelser inklu-
derer interferometriske målinger, som viser både tolegeme dynamik og
senere dannelse af den polaroniske kvasipartikel. Tre forskellige regimer
af dynamisk opførsel identificeres og tiderne for overgangene imellem
disse ekstraheres i overensstemmelse med teoretiske værdier. Derudover
analyseres og sammenlignes interferometriske og spektroskopiske pola-
ron resultater, hvilket danner grundlag for en komplet karakterisering af
Bose polaronen i både tidsdomæne og frekvensdomæne. Afslutningsvis
undersøges interaktionen imellem polaroner, som leder til dannelsen
af bipolaroner, ved brug af en spektroskopisk metode. Disse målinger
afslører den dynamiske fremkomst af bipolaroner og tillader, at deres
grundtilstandsenergier kan bestemmes og sammenlignes med teoretiske
værdier.

Resultaterne, som præsenteres i denne afhandling, sørger dermed
både for at cementere og udvide den nuværende forståelse af polaroner
og bipolaroner i Bose-Einstein kondensater. Dette baner til gengæld vejen
for ny, spændende forskning af kvanteurenheder og deres vekselvirknin-
ger.

iii





PREFACE

This thesis presents the highlights of the scientific research I have con-
ducted during my Ph.D. studies. Here, I have been a part of the Ultracold
Quantum Gases Group at the Department of Physics and Astronomy at
Aarhus University, and the experimental work has been carried out at the
Multi Species Quantum Gases Experiment.

The journey towards this thesis began in August 2016, when I joined
the group and started my Ph.D. studies. During the next two and a half
years, I learned how to operate the laboratory, acquired the first data
and eventually obtained my Master’s degree in 2019. In the last two
years, I have focussed on publishing joint results while also beginning
new experimental investigations. This work lays the foundation for the
research described in the thesis.

The main subject of this thesis is the experimental investigation of
impurity dynamics in Bose-Einstein condensates. However, as the list of
publications suggests, I have also been involved in other research topics
during my Ph.D. studies. These include investigations of Efimov physics
in 39K, time-of-flight expansion of binary mixtures and the observation
of a Lee-Huang-Fluid. Nonetheless, I have chosen to focus the thesis on
impurity dynamics, since this has been the central part of my research.

This thesis would not have been possible without the help of many
people. First, a big thanks to my supervisor Jan Arlt for welcoming warmly
in your group and for always having time for deep discussions. You have
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taught me how to be a proper scientist with a curios mind, who always
strives to understand the world that surrounds us a little better.

A special thanks to Lars Wacker, Kristoffer Theis Skalmstang and Nils
Byg Jørgensen, who mentored me when I first joined the experimental
team. Because of you, the true spirit of MIX lab endured during my time
as a Ph.D. student, and it will always have a special place in my heart.

I would also like to thank Thomas Guldager Skov, with whom I have
spent countless hours in the lab. I am certain that our many discussions
have broadened our knowledge of both quantum physics and musical
genres.

In the last year of my Ph.d. studies, our experimental team grew with
Anders Ploug Hansen and Andreas Madsen Morgen, who I would like to
thank for our time together. I am sure they will both go on to accomplish
great results in the future!

Furthermore, I would like to thank the Lattice and HighRes teams for
valuable support, numerous fun events and unforgettable moments. I
would also like to thank my other scientific collaborators, both at Aarhus
University and abroad, for many fruitful discussions along the way.

A big thanks to my family and friends as well. Your persistent encour-
agement have been crucial for me, and I will always be grateful for the
support I have received.

Lastly, I would like to give a special thanks to Benedicte Ravn, Andreas
Madsen Morgen, Thomas Guldager Skov, Mick Kristensen and Jan Arlt for
proofreading the thesis.

I hope you will all enjoy reading my thesis!

To my dad, who was there for some of the road but never got to see the
end result.

Magnus Graf Skou



LIST OF PUBLICATIONS

L. J. Wacker, N. B. Jørgensen, K. T. Skalmstang, M. G. Skou, A. G. Volosniev,
and J. J. Arlt, Temperature dependence of an Efimov resonance in 39K,
Phys. Rev. A 98, 052706 (2018).

K. L. Lee, N. B. Jørgensen, L. J. Wacker, M. G. Skou, K. T. Skalmstang,
J. J. Arlt, and N. P. Proukakis, Time-of-flight expansion of binary
Bose–Einstein condensates at finite temperature, New J. Phys. 20,
053004 (2018).

T. G. Skov, M. G. Skou, N. B. Jørgensen, and J. J. Arlt, Observation of a
Lee-Huang-Yang Fluid, arXiv:2011.02745 (2020).

M. G. Skou, T. G. Skov, N. B. Jørgensen, K. K. Nielsen, A. Camacho-
Guardian, T. Pohl, G. M. Bruun, and J. J. Arlt, Non-equilibrium
quantum dynamics and formation of the Bose polaron, Nat. Phys.
(2021).

M. G. Skou, T. G. Skov, N. B. Jørgensen, and J. J. Arlt, Initial dynamics
of quantum impurities in a Bose–Einstein condensate, Atoms 9, 22
(2021).

M. G. Skou, T. G. Skov, N. B. Jørgensen, K. K. Nielsen, A. Camacho-
Guardian, T. Pohl, G. M. Bruun, and J. J. Arlt, Life and death of the
Bose polaron, in preparation.

vii

http://dx.doi.org/10.1103/PhysRevA.98.052706
http://dx.doi.org/10.1088/1367-2630/aaba39
http://dx.doi.org/10.1088/1367-2630/aaba39




CONTENTS

Abstract i

Resumé iii

Preface v

List of publications vii

Contents ix

1 Introduction 1
1.1 Ultracold quantum gases . . . . . . . . . . . . . . . . . . . . 2
1.2 Impurities and polarons . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Polarons in quantum gases 7
2.1 Properties of Bose-Einstein condensates . . . . . . . . . . . 8

2.1.1 Condensation of bosons . . . . . . . . . . . . . . . . 8
2.1.2 Interactions between ultracold atoms . . . . . . . . 9
2.1.3 The Gross-Pitaevskii equation . . . . . . . . . . . . 12

2.2 Theoretical descriptions of polarons . . . . . . . . . . . . . 14
2.2.1 History of the polaron . . . . . . . . . . . . . . . . . 15
2.2.2 Models of polarons in ultracold gases . . . . . . . . 16

ix



x CONTENTS

2.2.3 Energy and quasiparticle residue of the polaron . . 18
2.3 Experimental investigations of the Fermi polaron . . . . . 22

2.3.1 Spectroscopic observations . . . . . . . . . . . . . . 23
2.3.2 Interferometric observations . . . . . . . . . . . . . 23

2.4 Experimental investigations of the Bose polaron . . . . . . 24

3 Impurity dynamics and polaron formation 27
3.1 Impurity coherence . . . . . . . . . . . . . . . . . . . . . . . 28
3.2 Production of BECs . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Interferometric sequence . . . . . . . . . . . . . . . . . . . . 31
3.4 Theoretical description of impurity dynamics . . . . . . . . 36
3.5 Non-equilibrium quantum dynamics and formation of the

Bose polaron . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.5.3 Publication . . . . . . . . . . . . . . . . . . . . . . . 40

3.6 Initial dynamics of quantum impurities in a Bose-Einstein
condensate . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.6.3 Publication . . . . . . . . . . . . . . . . . . . . . . . 66

4 Energy and timescales of the polaron 77
4.1 Experimental approaches to study the polaron . . . . . . . 78
4.2 Impurity dynamics at repulsive interaction strengths . . . 79
4.3 Instantaneous energy of the impurity . . . . . . . . . . . . . 81
4.4 Polaron timescales . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Life and death of the Bose polaron . . . . . . . . . . . . . . 84

4.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.5.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5.3 Publication . . . . . . . . . . . . . . . . . . . . . . . 86



CONTENTS xi

5 Observation of bipolarons 97
5.1 Effective interactions between polarons . . . . . . . . . . . 98
5.2 Experimental procedure . . . . . . . . . . . . . . . . . . . . 99
5.3 Modelling the spectral function . . . . . . . . . . . . . . . . 103

5.3.1 Injection spectrum . . . . . . . . . . . . . . . . . . . 103
5.3.2 Ejection spectrum . . . . . . . . . . . . . . . . . . . 106

5.4 Formation of bipolarons . . . . . . . . . . . . . . . . . . . . 110
5.4.1 Bipolaronic spectral response . . . . . . . . . . . . 110
5.4.2 Dynamical formation . . . . . . . . . . . . . . . . . 112
5.4.3 Effects of the impurity fraction . . . . . . . . . . . . 115

5.5 Bipolaron energy at strong attractive interactions . . . . . 117
5.6 Quasiparticle residue . . . . . . . . . . . . . . . . . . . . . . 119
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6 Conclusion and outlook 125
6.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

Bibliography 129





C
H

A
P

T
E

R

1
INTRODUCTION

Quantum mechanics is founded on the paradigmatic idea that essential
properties of nature, such as energy and momentum, are quantized. This
theory has led to many profound insights into the universe we live in and
has been fundamental for the development of many technologies that
we use in our everyday life.

Modern quantum mechanics began at the dawn of the previous cen-
tury, when Max Planck introduced discrete states of energy as a math-
ematical tool to explain the spectrum of black-body radiation [1]. The
physical implications were subsequently widely considered by his con-
temporary colleagues, and eventually led Niels Bohr to propose a quant-
ized model of the hydrogen atom [2]. In the following decades, the field
of quantum mechanics was further developed by the great minds of Al-
bert Einstein, Louis de Broglie, Erwin Schrödinger, Paul Dirac, Werner
Heisenberg and Richard Feynman just to mention a few.
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1. INTRODUCTION

Nowadays, quantum mechanics is extensively used in many areas
of physics and has even branched out into quantum chemistry [3] and
quantum biology [4]. It has provided the foundation for the ground-
breaking inventions of the laser [5] and the transistor [6] that have shaped
the society of today. Currently, the frontier is pushed further as novel tech-
nologies are explored by simulating their quantum properties in laborat-
ories [7]. These investigations, known as quantum simulations, imitate
the interactions of complicated quantum systems in well-controlled en-
vironments. This complete control of complex quantum systems is one of
the hallmarks of the so-called second quantum revolution [8], and in this
thesis, quantum simulation of impurity dynamics in ultracold quantum
gases is investigated.

1.1 Ultracold quantum gases

Ultracold gases are an excellent test bed for quantum simulation. They
are characterized by exceedingly low temperatures, down to only a bil-
lionth of a degree above absolute zero, which provides an unprecedented
control of their quantum behavior. This is especially true for particles
known as bosons, since they accumulate in the quantum mechanical
ground state of the system when cooled below a critical temperature. In
this extreme regime of temperatures, the system constitutes a special
state of matter called a Bose-Einstein condensate (BEC), which was pre-
dicted by Satyendra Nath Bose and Albert Einstein in the early days of
quantum mechanics [9, 10].

Cooling atoms to such low temperatures is exceptionally challenging
and it took nearly a century, before it was experimentally feasible to real-
ize and measure BECs. In 1995, three groups reported the observation of a
condensate [11–13] and subsequently a fermionic cloud of atoms, known
as a Fermi gas, was cooled to quantum degeneracy four years later [14].
Initially, alkali metals were used for these measurements, however, the
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1.2. Impurities and polarons

list of possible candidates has expanded rapidly and now, among others,
includes helium [15], alkaline earth metals [16] and rare earth metals [17,
18].

Today, many groups routinely make BECs around the world and even
in space [19]. The numerous atomic species with suitable isotopes for
cooling to quantum degeneracy allow for many interesting research direc-
tions to be pursued. Important experimental techniques include tuning
of interactions between atoms, confinement using external trapping
potentials and single-atom resolution [20]. This versatile toolbox per-
mits engineering of quantum systems with remarkable precision, which
makes ultracold atomic gases an excellent platform for quantum simula-
tion. Using these tools, recent investigations have for instance observed
dipolar supersolids [21–23] and studied analogous black-hole radiation
in a flowing Bose-Einstein condensate [24]

1.2 Impurities and polarons

Impurities and their interactions with a surrounding medium are a wide-
spread scenario in nature. This ubiquitous concept is e.g. responsible for
cloud formation by water condensation on dust particles, and mineral
crystals derive their unique colors from their specific impurity composi-
tion.

In a quantum mechanical setting, impurities and their interactions
can be described as quasiparticles. This idea was originally developed
by Lev Landau and Solomon Pekar [25] to describe electrons moving
through a crystal lattice. Here, the electrons couple with the vibrations of
the lattice and form so-called polarons. Moreover, it is possible for these
polarons to interact with each other and form bound states known as
bipolarons. Both polarons and bipolarons have important technological
aspects [26, 27].

Dilute quantum gases have recently been used extensively to study
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1. INTRODUCTION

impurity physics. The ultracold clouds act as an exceedingly pure me-
dium, and their low densities allow the correspondingly slow dynamical
evolution to be resolved. Furthermore, interactions between impurities
and the medium can be controlled precisely using so-called Feshbach
resonances [28] by applying a magnetic field to the atoms. This allows
complete tunability from weak interactions to the unitary regime, where
the interactions are as strong as permitted by the density.

The first studies of polarons in ultracold atomic clouds were conduc-
ted in a quantum degenerate Fermi gas. Here, spectroscopy was used to
measure the energy of the attractive polaron in 2009 [29] and additional
investigations soon followed, revealing the spectral response of both the
attractive and the repulsive polaron branch [30–34]. Subsequently, stud-
ies also observed the initial dynamics of the impurity in a Fermi gas and
the eventual formation of the polaron [35, 36]. Due to the challenging
nature of Bose-Einstein condensates, the impurity in a BEC, called the
Bose polaron, was not experimentally realized until 2016 [37, 38], and so
far its dynamical evolution has remained elusive to observation. However,
investigations of the Bose polaron are particular important for expanding
the current knowledge of the generic solid-state polaron, since interac-
tions of the impurity with the bosonic nature of the medium more closely
resemble the scenario of electrons coupling to phononic vibrations in a
crystal lattice.

1.3 Thesis outline

This thesis investigates impurity dynamics in Bose-Einstein condensates
and is structured as follows.
Chapter 2: Polarons in quantum gases
The key concepts of polarons are introduced in the context of ultracold
quantum gases. Theoretical approaches are presented and recent experi-
mental results are discussed.

4



1.3. Thesis outline

Chapter 3: Impurity dynamics and polaron formation
The experimental procedure and interferometric sequence for measuring
impurity dynamics in a BEC are introduced. Subsequently, two pub-
lications are presented, which observe initial dynamics and eventual
formation of the Bose polaron.
Chapter 4: Energy and timescales of the polaron
Spectroscopic and interferometric approaches to investigate the Bose
polaron are introduced and compared. Furthermore, impurity dynamics
at repulsive interaction strengths, the polaronic energy and the timescales
of the polaron are discussed. A publication is presented, which analyzes
these concepts in greater detail.
Chapter 5: Observation of bipolarons
Effective interactions between polarons forming the bipolaron are intro-
duced, and an experimental procedure to investigate this is discussed.
A physically motivated model is then constructed and compared with
experimental data yielding experimental evidence of bipolarons in a BEC.
The dynamical formation is resolved and the bipolaron energy is observed
for a range of attractive interaction strengths. Finally, the quasiparticle
residue of the polaron is measured.
Chapter 6: Conclusion and outlook
The thesis concludes by summarizing key results and providing an out-
look for future work.
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2
POLARONS IN QUANTUM GASES

The concept of impurities interacting with a surrounding medium is
widely studied in many areas of physics. The impurity and its excitations
of the medium can be described as a quasiparticle known as a Fermi or
a Bose polaron depending on the quantum statistics of the medium. In
this chapter models of such polarons are examined before experimental
results are discussed.

The chapter is structured as follows. First, key properties of bosonic
quantum gases are introduced in Sec. 2.1 and interactions between ul-
tracold atoms are considered. In Sec. 2.2 the history of the polaron as a
theoretical concept is presented from initial idea by Landau and Pekar to
recent theoretical models of polarons in ultracold gases. This is followed
by a discussion of experimental studies of the Fermi polaron in Sec. 2.3
and, finally, of the Bose polaron in Sec. 2.4. This constitutes a compre-
hensive background for the dynamical investigations of the Bose polaron
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2. POLARONS IN QUANTUM GASES

in the following chapters.

2.1 Properties of Bose-Einstein condensates

The special phenomenon of Bose-Einstein condensation describes a
macroscopic population accumulating in the ground state of a quantum
system. This is possible for particles known as bosons, whereas fermions
can never occupy the same quantum state. The behavior of bosons was
first considered in 1924 when Bose published a derivation of Planck’s ra-
diation law using massless, indistinguishable particles [9]. This was later
extended to particles of mass by Einstein, and he realised that bosons
condense into a single quantum state below a critical temperature [10].
In this section, the physics of BECs are briefly reviewed and interactions
between ultracold atoms are examined following the theoretical intro-
duction in Ref. [39].

2.1.1 Condensation of bosons

Generally, a gas of thermal atoms can be described classically by the
Maxwell-Boltzmann distribution of states. However, when cooling the
atoms their wave functions expand revealing their inherent quantum
nature. In the regime of ultralow temperatures, it is therefore important
to use the correct distribution function. For non-interacting bosons, the
average number of particles in a quantum state ν is thus given by the
Bose distribution

f (εν) = 1

e(εν−µ)/kBT −1
, (2.1)

where kB is the Boltzmann constant, εν is the energy of state ν, µ is the
chemical potential and T is the temperature of the gas. This function
describes how the bosons are distributed across the possible quantum
states of the system.

8



2.1. Properties of Bose-Einstein condensates

If the bosonic gas is cooled even further, a critical temperature TC is
reached. This temperature describes a transition into a system, where
a macroscopic fraction of the bosons is condensed in a single quantum
state being the lowest energy state of the system. For atoms in a three-
dimensional harmonic oscillator potential characterized by the trapping
frequencies ωx , ωy and ωz , the critical temperature is given as

kBTC = ~ω̄N 1/3

[ζ(3)]1/3
≈ 0.94~ω̄N 1/3, (2.2)

where ~ is Planck’s reduced constant, N is the number of particles, ζ is
the Riemann zeta function and ω̄= (ωxωyωz)1/3 is the geometric mean
of the trapping frequencies. Remarkably, Eq. (2.2) predicts a macroscopic
ground state population at temperatures T ∼ TC, where the correspond-
ing energy is still higher than the energy spacing of the harmonic oscil-
lator kBTC ≈ 0.94~ω̄N 1/3 À ~ω̄.

Below the critical temperature, a large fraction of the atoms accumu-
lates in the ground state. The fraction of condensed bosons N0 relative to
the total number N is determined by

N0

N
= 1−

( T

TC

)3
. (2.3)

This simple relation derived for an ideal Bose gas is useful to predict
the expected condensate fraction at a given temperature. For precise
calculations, small corrections are required, which include effects due to
finite particle number and interactions between the atoms [40]. However,
for most applications Eq. (2.3) provides a good estimate of the population
in the ground state.

2.1.2 Interactions between ultracold atoms

Interactions between atoms are in general complicated to describe espe-
cially for intricate many-body systems. However, in dilute ultracold gases
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2. POLARONS IN QUANTUM GASES

the low densities n allow using simplified models. Since the atoms are far
apart, the interparticle distance is often much larger than length scales
associated with atom-atom interactions. In this regime, it is therefore
sufficient to use two-body models and neglect higher-order interactions
when describing the atomic interactions .

A central concept for two-body interactions is the scattering length a.
Using the formalism of partial wave theory, this parameter expresses the
effects of s-wave scattering events which, for low temperatures, dominate
the interactions. The physical implications of a can be motivated by
considering the cross section σ of two distinguishable particles with a
spherical symmetric interaction. For elastic scattering with wave number
k, the low-energy limit of σ is then given as

lim
k→0

σ= 4πa2. (2.4)

The scattering cross section at low temperatures is thus fully described
by a single parameter a, which may in some sense be interpreted as the
length at which the two particles see each other.

Interactions between atoms also lead to losses in a trapped ultracold
cloud. In particular, it is possible for three atoms to be lost in a so-called
three-body recombination event. Here, a deeply bound dimer is created
and the excess energy is distributed between the dimer and the remaining
atom, which allows all three atoms to escape the trap. Furthermore,
depending on the exact states of the atoms, two-body inelastic losses are
possible. These occur if two atoms in a spin-exchange process can decay
into other spin states and gain energy thus enabling them to leave the
trap.

The ability to control both the magnitude and the sign of the scat-
tering length, between the constituents of an ultracold gas, is essential
for many investigations. This is possible due to Feshbach resonances,
which can be used to tune the interaction between two atoms. Specific-
ally, the effects of elastic scattering in a certain open channel may be
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2.1. Properties of Bose-Einstein condensates

dramatically altered, if a bound state of a closed channel is energetically
close by [28]. For an ultracold gas, the states involved in such processes
are often atomic hyperfine states exhibiting different magnetic moments.
Due to the Zeeman effect, it is therefore possible to apply a magnetic
field B , which then controls the energetic difference between the states
and thus the scattering length of the interaction. Close to a Feshbach
resonance the scattering length may be expressed as

a(B) = abg

(
1− ∆B

B −B0

)
, (2.5)

where ∆B is the width of the resonance and B0 is the position of the
resonance center. This simple relation shows that it is possible to tune the
magnitude of the scattering length a through the applied magnetic field
B . Furthermore, Eq. (2.5) reveals the accessibility of both negative and
positive scattering length resulting in attractive and repulsive interactions,
respectively.

For the atomic species of 39K investigated in this thesis, many hyper-
fine intrastate and interstate Feshbach resonances have been predicted
theoretically [41]. However in this thesis, the focus will be on scattering
lengths characterizing internal scattering in the |F = 1,mF = −1〉 state
and scattering with the |F = 1,mF = 0〉 state, which are denoted aB and
a, respectively. The scattering lengths of these states and their Feshbach
resonances have also recently been studied experimentally [42]. Both
scattering lengths are shown in Fig. 2.1 and clearly display resonant be-
havior at certain magnetic fields. Importantly, there exists an interval
where aB is positive and constant while a resonance is present in a. This
allows experiments in this region to be conducted with tunable interstate
interactions and with an unchanged scattering length for interactions
between atoms in the |F = 1,mF =−1〉 state.
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2. POLARONS IN QUANTUM GASES

Figure 2.1: Scattering lengths and Feshbach resonances for two states
in 39K [41]. The scattering length of internal interactions in the |F =
1,mF =−1〉 state is shown as a solid orange line and the scattering length
for interactions with the |F = 1,mF = 0〉 state is shown as a dashed blue
line. The shaded grey region indicates the region of magnetic fields
investigated in this thesis.

2.1.3 The Gross-Pitaevskii equation

It is important to consider the influence of interatomic interactions on
the physics of a BEC. Qualitatively, repulsive interactions between bosons
are expected to increase the size of the condensate relative to the size
of a non-interacting BEC. Correspondingly, a condensate with attractive
interactions is expected to be smaller or even unstable to collapse. Indeed
such a collapse, known as a bosenova, has been observed experiment-
ally [43].

To describe a BEC containing interactions, a Schrödinger-like equa-
tion is presented and discussed in the following. This is known as the
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2.1. Properties of Bose-Einstein condensates

Gross-Pitaevskii equation and is valid for weak interactions in the con-
densate. The criterion can be characterized using the gas parameter
na3 that must fulfil na3 ¿ 1 corresponding to the interparticle spacing
n−1/3 being much larger than the scattering length. In this regime, the
interactions are well-described by two-body interactions as previously
discussed. The scattering between two atoms of equal mass m and at
positions r and r’ is therefore modelled by a contact potential U0δ(r− r’).
Here, the coupling constant U0 = 4π~2a/m and δ denotes the Dirac delta
potential.

For a BEC held in an external trapping potential V (r) at temperature
T = 0, all the atoms are condensed in the same single-particle quantum
state φ(r). A condensate wave function is therefore defined as ψ(r) =
N 1/2φ(r). It is then possible to write the following wave equation

− ~2

2m
∇2ψ(r)+V (r)ψ(r)+U0|ψ(r)|2ψ(r) =µψ(r). (2.6)

This is the Gross-Pitaevskii equation, which has the same overall form
as the familiar Schrödinger equation. However, it differs by containing a
non-linear term U0|ψ(r)|2 and moreover by having the chemical potential
µ as the eigenvalue of the equation.

For sufficiently large condensates at repulsive interactions, the contri-
bution from the kinetic energy is negligible. This is known as the Thomas-
Fermi approximation and is often realized experimentally. Rearranging
the terms of Eq. (2.6), it is then possible to determine the density as

n(r) = |ψ(r)|2 = µ−V (r)

U0
. (2.7)

At the boundaries of the cloud, where the density approaches zero, one
obtains V (r) = µ. This can be used to calculate the spatial extension
of the cloud. For a harmonic potential characterized by the trapping
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2. POLARONS IN QUANTUM GASES

frequencies ωi where i = x, y, z, the three semi-axes are thus given as

R2
i = 2µ

mω2
i

. (2.8)

This parameter is also known as the Thomas-Fermi radius. It can further-
more be used to calculate the density profile as n(r) ∝∑3

i=1(1−r 2
i /R2

i ) for
0 ≤ r ≤ R , which results in a distinctive parabolic shape of the condensate.

This concludes the brief review of condensates and interacting atoms.
Importantly, at ultralow temperatures bosons may condense into the
lowest energy state of a system thus forming a BEC. The interactions
between the atoms can be characterized by the scattering length a, and
a Schrödinger-like wave equation was introduced to describe a weakly
interacting condensate. This section was primarily concerned with bo-
sons and BECs. For fermions, a similar condensation of particles into a
single quantum state is not possible due to the Pauli exclusion principle.
However, it is possible to cool a Fermi gas to quantum degeneracy cor-
responding to a macroscopic occupation of quantum states below the
Fermi energy. Implications of this are further elaborated in Sec. 2.3.

2.2 Theoretical descriptions of polarons

Interacting impurities and the notion of polarons have been the center
of substantial theoretical efforts. The explored models have applications
for many physical systems and have recently been realized in the context
of ultracold quantum gases. In this section, the history of the polaron
from initial conception to recent theoretical methods is outlined. It is
not the aim to develop a complete framework but merely to motivate the
physical implications of polarons following the works of Refs. [44, 45].
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2.2. Theoretical descriptions of polarons

2.2.1 History of the polaron

The polaron was originally studied by Landau and Pekar in the middle of
the previous century, when they considered the motion of electrons in
a crystal [25]. The negatively charged electrons couple to the vibrations
of the positively charged ions, and a central concept is therefore the
electron-phonon interaction (EPI). For a continuous polarizable medium,
this results in a polaron with a large wave function propagating through a
solid similarly to a free electron but with an increased effective mass.

In 1954, Fröhlich expanded the previous work by applying second
quantization to the EPI [46]. The model was developed in the weak
coupling regime of interactions between electrons and phonons. This
criterion may be quantified using the dimensionless coupling constant
α = (e2/κ)

p
m/2ω0, given by the elementary charge e, electron mass

m, phonon frequency ω0 and the high-frequency and static dielectric
constants, ε and ε0, through κ= (ε−1 −ε−1

0 )−1. The weak coupling regime
is then characterized by α< 1. For a medium of volume V , the relevant
term of the Hamiltonian can in this regime be written as [44]

HEPI =
∑

q

M

q
p

V
ρ(q)(aq +a†

−q), (2.9)

where ρ(q) is the electron density operator and a†
q (aq) is the creation (an-

nihilation) operator of a phonon with momentum q. The matrix element
M can be attributed to dielectric screening effects due to phonons and is
given as M 2 = 2πe2~ω0κ

−1.
Several interesting properties can be calculated using perturbation

theory to solve this weak coupling model. For a slow electron of mo-
mentum k, the second-order energy Ẽk is given as

Ẽk =−αω0 + k2

2m∗ , (2.10)
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2. POLARONS IN QUANTUM GASES

where the first term is the polaron binding energy αω0 and the second
term contains the effective mass m∗ ∼ m(1+α/6). This increase in mass
is the result of virtual phonons being dragged along with the electron.
For the polaron at rest, the number of virtual phonons can be found to
be Nph = α/2, which reveals the physical implications of the coupling
constant α [45].

These results of the Fröhlich model thus predict that a stronger coup-
ling constantα leads to a larger binding energy and an enhanced effective
mass of the polaron. In the following, polarons in quantum gases are
discussed. Here, the polaronic shift in energy is found to increase in size
for stronger interactions between the impurity and the medium similarly
to the behavior of the energy in the Fröhlich model. Furthermore, the
quasiparticle residue is introduced, which quantifies how much interac-
tions change the impurity comparable to the effective mass considered
here.

2.2.2 Models of polarons in ultracold gases

In recent decades, both theoretical and experimental studies have been
conducted in the settings of ultracold quantum gases. Generally, these
permit quantum engineering of systems with precise control over such
parameters as geometry and interactions. Ultracold gases are therefore
an ideal candidate for quantum simulations [20].

The notion of quantum simulation refers to an adaptable and con-
trollable physical environment mimicking a complicated system. For the
scenario of a polaron, this includes imitating the interactions between
the impurity and the medium. This can be achieved by placing an im-
purity in a BEC, which then closely resemble the solid-state polaron as
the medium in both cases is bosonic. This parallel is shown in Fig. 2.2
displaying a polaron being formed by an electron coupling to the lattice
phonons (Fig. 2.2(a)) and an impurity dressing a surrounding quantum
degenerate Bose gas (Fig. 2.2(b)).
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2.2. Theoretical descriptions of polarons

(a) (b)

Figure 2.2: Illustration of the polaron in a crystal lattice and in a bosonic
quantum gas. (a) The electron in a crystal distorts the medium and
couples to the lattice phonons. (b) The impurity in a BEC interacts with
the atomic cloud and dresses the surrounding medium bosons.

Numerous theoretical models have been developed to study polarons
in quantum gases. Recently, investigations have expanded the Fröhlich
model to include important interaction terms [47–49]. The part of the
Hamiltonian responsible for interactions between the impurity and the
medium is here written as

HI = 1

V

∑
k,k’,q

VI(q)c†
k+qa†

k’−qak’ck, (2.11)

where c†
k and a†

k respectively creates an impurity and a boson with mo-
mentum k and V is the system volume. The interaction potential VI(q)
between the impurity and the medium is assumed to be short-ranged.
It can be expressed using the impurity-medium scattering length a as
VI(q) = 2π~2a/mr, where mr = mIm/(mI +m) is the reduced mass of the
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2. POLARONS IN QUANTUM GASES

system consisting of impurity atoms with mass mI and medium atoms
with mass m.

Different theoretical approaches have been used to solve the Hamilto-
nian of the system. These models include a perturbative analysis [49],
variational calculations [48, 50, 51] and quantum Monte Carlo simula-
tions [52, 53] to name a few. For the investigations of the polaron in
this thesis, a diagrammatic description is often employed. This model
uses a ladder approximation in order to describe the interactions. After
being developed for the Bose polaron [47], it has subsequently been com-
pared with experimental observations obtaining good agreement [54].
Furthermore, the model has been used to investigate a temperature de-
pendence of the polaron [55], to calculate effective interactions between
polarons [56] and to predict the existence of Bose bipolarons [57].

2.2.3 Energy and quasiparticle residue of the polaron

Generally, interactions between the impurity and the medium lead to the
formation of a polaron containing a ground state and a continuum of
scattering states. For the spectral response of the impurity, this corres-
ponds to a polaron peak and a tail of excited states. In the following, two
fundamental parameters of this polaron peak are discussed.

To characterize the ground state of the polaron, it is imperative to
calculate the energetic location of the polaron peak EP and the spectral
weight of the peak ZP called the quasiparticle residue. The former de-
scribes the energy shift of the polaron branch due to impurity-medium
interactions, and the latter qualitatively describes how similar a polaron
and a non-interacting impurity are. It can be calculated as the squared
overlap ZP = |〈ψ0|ψpol〉|2 between the polaron state |ψpol〉 and the non-
interacting impurity state |ψ0〉. The residue ZP therefore ranges from
0 to 1, where the latter reflects zero interactions. The polaron energy
and residue are frequently shown as a function of the inverse interac-
tion strength 1/kn a. Here, the characteristic wave number of the system
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Figure 2.3: Energy of the Bose polaron. A diagrammatic prediction [54]
is shown as a solid green line and the mean-field energy at attractive
interaction strengths is shown as a dashed purple line. The molecular
energy is shown as a dotted red line.

kn = (6π2nB)1/3 is given by the density of the medium nB. Furthermore,
the energy spectrum is often scaled by the interaction independent en-
ergy of the system En = ~2k2

n/2m.
Figure 2.3 shows the diagrammatically predicted polaron energy as

a function of the inverse interaction strength [54]. This reveals an at-
tractive polaron branch at negative interaction strengths and a repulsive
polaron branch at positive interaction strengths. The energy shift of both
branches generally increases as the resonance is approached. For the at-
tractive branch this follows the expectation that an increase in interaction
strength leads to deeper bound polarons.

The attractive mean-field energy is also shown in Fig. 2.3. This is given
as 2π~2nBa/mr and is one of the simplest ways of including interactions
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2. POLARONS IN QUANTUM GASES

in a model through an average potential felt by the impurities. At weak in-
teraction strengths, the mean-field energy agrees with the diagrammatic
predicted energy. However, the mean-field energy increasingly diverges
as the resonance is approached indicating that the simple model is here
insufficient for describing the system. Figure. 2.3 additionally shows the
molecular energy ~2/2mra2. Remarkably, the attractive polaron branch
crosses the resonance and approaches this energy. This behavior can
qualitatively be understood by regarding the molecule as the extreme
case of an impurity interacting attractively with the medium thereby
forming a bound state of the impurity and a medium atom.

The diagrammatic predicted quasiparticle residue is shown in Fig. 2.4
for the attractive polaron branch. At weak interaction strengths, the
residue is close to 1 but decreases as the resonance is approached. Besides
the polaron peak with amplitude ZP, the spectral response of the polaron
also contains a continuum of excited states. The decrease of ZP therefore
reflects how spectral weight is increasingly distributed from the polaron
peak to the continuum. This redistribution is analogous to the enhanced
effective mass of the polaron at stronger couplings as predicted by the
Fröhlich model.

The behavior of the residue can be motivated by considering how
much interactions affect the system. To quantify this, the relative size
of the scattering length compared to the interparticle spacing n−1/3

B can
be examined. However, the scattering length diverges close to the res-
onance and no longer sufficiently characterizes the interactions in this
regime. The effective scattering length is therefore defined as 1/|aeff| =
1/|a|+1/n−1/3

B [54]. At weak interaction strengths, |aeff| is equal to the
absolute value of the scattering length, whereas it yields the interparticle
separation in the density-limited regime of unitary interactions [58]. Us-
ing the effective scattering length, the fraction |aeff|/n−1/3

B is thus ex-
amined, which gives a dimensionless interaction parameter |aeff|/n−1/3

B =
|a|/(|a|+n−1/3

B ). This yields the value ∼ 0 at weak interactions and 1 at
unitary interactions. The fraction |aeff|/n−1/3

B therefore qualitatively rep-
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Figure 2.4: Residue of the Bose polaron. A diagrammatic prediction for
the attractive polaron branch [55] is shown as a solid orange line and a
simple model (see text) is shown as a dashed blue line.

resents how much interactions perturb the system. In a simple picture,
this can naively be used to characterize the increased spectral weight
of the continuum of excited states. Since the total spectral function is
normalized to one, the parameter 1−|aeff|/n−1/3

B is consequently used
to describe the amplitude of the polaron peak and its corresponding de-
crease of spectral weight. Thus, the quasiparticle residue is expressed as
ZP ∼ 1−|a|/(|a|+n−1/3

B ), where a value of 1 describes a non-interacting
impurity.

This simple model is also shown in Fig. 2.4 and displays a slow de-
crease of ZP at weak interaction strengths in qualitative agreement with
the diagrammatic description. However, close to the resonance the es-
timated residue diverges and approaches 0 too fast, which indicates its
limited applicability. Nonetheless, the simple model has showed how
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an increase in interaction strength corresponds to a redistribution of
spectral weight from the polaron peak to the continuum of excited states.

The polaron energy and its residue have thus been discussed through
the results of a diagrammatic model. This description predicts an at-
tractive and a repulsive polaron branch exhibiting an increasing energy
shift with increasing interaction strengths. Furthermore, the attractive
polaron branch reveals a decreasing quasiparticle residue when nearing
the resonance.

2.3 Experimental investigations of the Fermi
polaron

Ultracold gases have proven to be a great experimental setting for study-
ing polarons due to their high degree of purity, tunable interactions and
flexibility of trapping geometries. Significant experimental efforts led to
the first study of a polaron in an ultracold gas in 2009, where a 6Li Fermi
gas was used as the medium [29], and subsequently followed numerous
investigations elucidating the properties of the Fermi polaron. In this sec-
tion, the Fermi polaron, selected experimental studies and their results
are briefly reviewed.

Generally, an impurity immersed in a Fermi gas differs from the bo-
sonic scenario due to the quantum statistics of the medium. A Fermi gas
obeys the counting statistic of a Fermi-Dirac distribution, and at T = 0
this results in a unity filling of each quantum state below the Fermi energy
EF. The Fermi polaron therefore realizes a different setting than the ca-
nonical example of an electron moving through a crystal and coupling to
a bosonic medium of lattice phonons. Instead, it is an excellent platform
for investigating Landau’s theory of Fermi liquids [59] and the Kondo
effect [60].
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2.3.1 Spectroscopic observations

The first observation of the Fermi polaron was realized using radio-
frequency (rf) spectroscopy to measure the spectral response of the
Fermi polaron at attractive interaction strengths [29]. These results were
later complemented by similar rf investigations of both the attractive
and repulsive polaron in two-dimensional and three-dimensional Fermi
gases [30–34].

Common for these studies is the use of two impurities states, where
one is interacting with the surrounding medium and the other is not. Due
to the presence of the medium, the energy of the interacting impurity
state is therefore shifted with a certain detuning as compared to the
atomic state. This detuning can be extracted as a function of interaction
strength by measuring the transition frequency between the interacting
and non-interacting impurity state. This approach exactly corresponds
to mapping the polaron energy across the resonance, which was used to
measure and identify the attractive and repulsive polaron branch.

Radio-frequency spectroscopy has also been employed to measure
the quasiparticle residue ZP of the Fermi polaron. In Ref. [29] the residue
was obtained from the amplitude of the polaron peak and displayed a de-
crease as the interaction strength was increased from weakly attractive to-
wards the unitary regime. In Refs. [30, 32, 34] the residue was extracted by
driving Rabi oscillations between the polaron state and a non-interacting
impurity state. The measured residue revealed similarly decreasing beha-
vior for increasing interaction strength and was furthermore compared
with theoretical predictions obtaining good agreement.

2.3.2 Interferometric observations

An excellent tool for measuring dynamical properties of the polaron is
interferometric investigations. These permit observing the evolution of
the impurity on the timescale given by the Fermi energy as tF = ~/EF.
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Similarly to rf spectroscopic approaches, a non-interacting and an in-
teracting impurity state is used. Furthermore, these experiments typic-
ally employ a two-pulse Ramsey scheme with a variable evolution time
in between. This allows measuring a complex-valued Ramsey signal
S(t ) = |S(t )|e−iϕ(t ), where the contrast |S(t )| describes decoherence due
to scattering events and the phase ϕ(t ) is governed by the polaron energy
in the limit of long evolution times. The interferometric sequence thus
permits observations of both initial impurity dynamics and subsequent
formation of the polaron. The technical details of such Ramsey schemes
are further elaborated in Sec. 3.3.

While an initial dynamical study of the Fermi polaron investigated
breathing modes of an impurity component [61], it was using interfer-
ometric techniques that polaron formation in real time was first ob-
served [35, 36]. At weak interaction strengths, a transient parabolic
behavior of the contrast revealed initial two-body impurity dynamics.
For longer times, an exponential decay of the contrast and a linear phase
evolution instead reflected the quasiparticle properties of the polaron. At
resonant interactions, the observed Ramsey signal was distinctively differ-
ent and |S(t )| displayed oscillatory behavior. This indicated the presence
of two polaron states resulting in the Ramsey signal exhibiting a quantum
beat. At all interaction strengths, the observed dynamics was further-
more in agreement with theoretical predictions, thus consolidating the
understanding of the Fermi polaron.

2.4 Experimental investigations of the Bose
polaron

The Bose polaron closely resembles the solid-state polaron pioneered
by Landau and Pekar. In both scenarios, the medium is composed of
bosons with similar dispersion relations. Furthermore, Bose polarons
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are important for understanding central effects in novel technologies
such as electronic transport in organic transistors [26] and even high-
temperature superconductivity [27]. However, due to the possibility of
three-body collisions in BECs, the lifetime of the Bose polaron is shorter
than the corresponding lifetime of the Fermi polaron. This inherently
complicates the experimental realization of polarons in a BEC.

Following the first observation of the Fermi polaron in 2009, several
investigations were conducted with impurities in Bose gases. These in-
clude single impurities in an uncondensed Bose gas [62], impurities in
a one-dimensional Bose gas [63], charged impurities in a BEC [64–66]
and impurities confined by a species-selective potential immersed in a
BEC [67, 68]. However, it was not until 2016 that two independent stud-
ies realized the generic, mobile impurity in a BEC [37, 38], which most
closely resemble the canonical polaron. Subsequently, the Rydberg po-
laron in a BEC has also been observed [69]. This features the novel ability
of multiple medium atoms forming molecular bonds with the polaron.

The first two investigations of the mobile Bose polaron were con-
ducted using rf spectroscopy [37, 38] similarly to the observations of
the Fermi polaron [29–31]. Using a non-interacting and an interacting
impurity state, the two studies measured the rf response of transferring
impurities into the polaron state. This is known as injection spectroscopy,
and the energy spectrum clearly revealed an attractive and a repulsive
polaron branch. In a following paper, the polaron energy was extracted
by fitting a physically motivated line shape function to the data [54]. The
polaron energy was furthermore compared with quantum Monte Carlo
simulations and a diagrammatic calculation, and excellent agreement
was obtained with both models.

Recently, the Bose polaron was investigated using ejection spectro-
scopy [70]. This measures the spectral response of transferring impurities
from the interacting impurity state to a non-interacting state. Using this
method, it is possible to prepare equilibrated polarons before probing
them. The study revealed an intriguing polaronic temperature depend-
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ence and furthermore measured the short-range correlations of the po-
laron.

These spectroscopic studies have provided clear experimental evid-
ence of the Bose polaron at both attractive and repulsive interaction
strengths. However, important aspects of the polaron still remain unre-
solved. Similarly to the Fermi polaron, the impurity dynamics is expected
to occur on the timescale tn = ~/En set by the system energy En . However,
the formation of the Bose polaron has not yet been observed. Further-
more, it is of interest to measure the quasiparticle residue as well as in-
duced polaron-polaron interactions that may expand the understanding
of the Bose polaron. The experimental investigations of these properties
are the focus of the remainder of this thesis.
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3
IMPURITY DYNAMICS AND

POLARON FORMATION

Impurities interacting with a surrounding medium form quasiparticles
known as polarons. The formation dynamics of polarons is highly non-
trivial and connects initial few-body scattering with later many-body
correlations. Such dynamical evolution has previously been measured in
a Fermi gas, as discussed in Sec. 2.3, but has so far remained experiment-
ally elusive for the Bose polaron.

In this chapter, experimental observations of impurity dynamics in
Bose-Einstein condensates are presented and compared with theoret-
ical predictions. The chapter is structured as follows. First, the central
concept of impurity coherence is introduced in Sec. 3.1. Then, the experi-
mental procedure for realizing BECs in the laboratory is briefly presented
in Sec. 3.2. This is in Sec. 3.3 followed by a discussion of the employed
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interferometric sequence and some of the experimental challenges. In
Sec. 3.4, theoretical descriptions of the impurity evolution are introduced.
Finally, in Sec. 3.5 and Sec. 3.6 the results and perspectives of two public-
ations, constituting the first observations of impurity dynamics in a BEC,
are discussed and my contributions clarified, before each publication is
presented.

3.1 Impurity coherence

The study of out-of-equilibrium systems is intriguing, albeit inherently
challenging in many solid-state materials due to fast evolution times.
However, the low densities of ultracold quantum gases allow such non-
equilibrium dynamics to be experimentally investigated [71]. For an
interacting impurity that is suddenly immersed in a medium, the sub-
sequent dynamics eventually leads to polaron formation. It is therefore
important to explore this evolution to better understand the equilibration
processes of the polaron.

To investigate the dynamical evolution of the impurity state, a para-
meter linking predictions and observations is needed. The coherence
function is a reasonable choice of such a parameter, since it can be de-
scribed theoretically and is experimentally accessible. The coherence C (t )
is here defined as the dynamical overlap C (t ) = 〈ψ(0)|ψ(t )〉 between the
initial state |ψ(0)〉 and the time evolved impurity state |ψ(t )〉. The coher-
ence therefore entails how the system decoheres through scattering pro-
cesses between the impurity state and the medium state. In Sec. 3.3, the
experimental extraction of the coherence using a Ramsey-like sequence
is explained, and in Sec. 3.4 two theoretical methods for predicting the
coherence are discussed.
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3.2 Production of BECs

In the following section, the initial procedure leading to the production of
BECs is discussed. Generally, the experiment is capable of working with
mixtures of 87Rb and 39K or 41K [72]. However, the work presented in this
thesis only investigates impurity dynamics in 39K BECs. The apparatus
and techniques have previously been explained in great detail [73–75]
and only central parts of the experimental sequence are reviewed here.

Initially, rubidium and potassium atoms are captured from a back-
ground vapor and cooled in a dual magneto-optical trap (dual MOT).
Here, detuned cooling light and repumper light are for both species
applied to the |F = 2〉 → |F ′ = 3〉 and |F = 1〉 → |F ′ = 2〉 transitions, re-
spectively, where the prime denotes excited states. To reduce destructive
light-assisted collisions between rubidium and potassium atoms in the
cooling cycle, a dark spontaneous optical force trap (dark-SPOT) is em-
ployed [76, 77]. This is achieved by placing a small opaque disk in the
center of the Rb repumper laser beam. A dark-SPOT thus permits accu-
mulation of cold rubidium atoms in the dark |F = 1〉 state in the center of
the trap, where the repumper light is consequently blocked. To enhance
population in this state, additional depumper light is applied resonantly
with the |F = 2〉→ |F ′ = 2〉 transition for Rb, which allows decay into the
dark state.

The MOT is typically employed for 25s. The magnetic field is then
turned off and an optical molasses scheme is applied to cool the atoms
below the Doppler limit [78, 79]. Subsequently, the MOT coils are turned
on again and the atoms are optically pumped to the |F = 2,mF = 2〉 state.
This is obtained using σ+ polarized light resonant with the |F = 2〉 →
|F ′ = 2〉 transition. Thus, the atoms can be trapped by the magnetic field
produced by the current in the coils.

At this stage, the atoms are transferred to a vacuum chamber with a
lower background pressure. This is achieved by moving the MOT coils,
which are located on a transport sleigh. Once the atoms are in this va-
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cuum chamber, they are loaded into a new magnetic quadrupole trap
by increasing the current through a stationary set of coils, while the cur-
rent in the MOT coils is decreased. Subsequently, forced evaporative
cooling is performed on the rubidium atoms by applying microwave ra-
diation transferring the hottest atoms to the untrapped |F = 1,mF = 1〉
state. This process also cools the potassium atoms sympathetically due
to the spatial overlap of the two clouds. For decreasing temperatures,
Majorana spin-flips become increasingly destructive, since the density
near the magnetic field zero-point grows. Therefore, a third coil is turned
on transforming the quadrupole trapping potential into a quadrupole
Ioffe-Pritchard configuration (QUIC) trap [80]. Importantly, a QUIC trap
features a magnetic field raised slightly above zero at the trap center. The
evaporation is then continued until all Rb atoms have been removed.

The background scattering length of 39K is negative, which prohibits
the realization of condensates in a magnetic trap. It is therefore neces-
sary to transfer the atoms to an optical dipole trap (ODT) by turning
on two intersecting 1064nm laser beams. By gradually increasing the
power in the ODT, the potassium atoms are captured due to the dipole
force [81], while the magnetic trap is slowly turned off. Subsequently, the
configuration of the coils is changed and a homogeneous magnetic field
is applied to the atoms. This allows the use of Feshbach resonances to
tune the scattering length between the atoms via the magnetic field [28].
Two rapid adiabatic passages are employed to transfer the atoms to the
|F = 1,mF =−1〉 state. The final evaporative cooling is then performed
in the vicinity of an intrastate Feshbach resonance located at 34G [41]
by decreasing the intensity of the laser beams. After a sufficient number
of atoms have condensed, the magnetic field is ramped to a target value
around 115G. At this point, typically 5×104 BEC atoms are ready for the
subsequent Ramsey scheme, which is discussed in the following section.

After the interferometric sequence, the atoms are released from the
trap. In a following time-of-flight, they expand for 28ms, before they are
measured using absorption imaging. An example of a typical 39K BEC is
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100µm

Figure 3.1: An example image of a 39K BEC obtained using absorption ima-
ging after 28ms time-of-flight. Typically, 5×104 BEC atoms are realised
in the optical dipole trap before the interferometric sequence.

shown in Fig. 3.1, where the number of BEC atoms can be extracted using
bimodal fits.

3.3 Interferometric sequence

Ramsey interferometry is a useful tool to manipulate and investigate
quantum states of a system. The original experimental design by Norman
Ramsey used the interference signal of two internal states to measure
their transition frequency with high precision [82]. This technique has
later on been extended to include translational states and is now fre-
quently used in atom interferometry [83]. In this section, the principles
behind Ramsey sequences are outlined and their role in recent investig-
ations is considered. Moreover, the modified Ramsey sequence that is
employed in the interferometric measurements presented in the follow-
ing two publications [84, 85] is discussed.
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Generally, a Ramsey sequence uses two pulses to probe a two-level
system. The scheme is most conveniently described using a Bloch sphere
as illustrated in Fig. 3.2(a-c). Here, the two states are represented by
either of the two poles and the Bloch vector pointing anywhere else on
the sphere represents a superposition of the two states. Since the sys-
tem starts in a single quantum state, the Bloch vector is initially oriented
towards one of the two poles. The first pulse typically creates an equal
superposition of the first and second state, and it thus rotates the Bloch
vector to the equatorial plane as shown in Fig. 3.2(a). Such a pulse is re-
ferred to as a π/2-pulse. The system then evolves for a variable evolution
time. This is shown in Fig. 3.2(b), where the Bloch vector precesses if the
frequency of the first pulse is not resonant with the transition frequency
between the two states. A second π/2 pulse with a variable phase then
rotates the vector again as shown in Fig. 3.2(c). Finally, the population
in each state is measured. By repeating this measurement with different
phases of the second pulse, a sinusoidal signal of the spin-population is
obtained. This signal is characterized by an amplitude, often referred to
as the contrast, and a phase which, in turn, may be used to describe the
orientation of the Bloch vector after the variable evolution time.

Recently, this procedure was employed to investigate impurity dy-
namics in a Fermi gas [35, 36] and the evolution of a unitary thermal Bose
gas [86]. In particular, the interferometric sequence was used to observe
the evolution of a quantum state driven by interactions with other states
in the atomic cloud. This was achieved by applying the sequence to an
atomic two-level system with an interacting state and a non-interacting
reference state, thus allowing the Ramsey scheme to precisely measure
the relative evolution of the two states. Since the probing pulses were
chosen to be resonant with the atomic transition frequency, the preces-
sion of the Bloch vector in the variable evolution time was only driven by
the interactions, which also caused a decay of the contrast. By extracting
the evolution of the contrast and the phase, the two studies were able to
infer important properties of their respective systems.
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(a) (b) (c)
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Figure 3.2: A Ramsey sequence illustrated using the Bloch sphere. The
north and south pole represents the |1〉 state and the |2〉 state, respectively.
(a) An initial pulse rotates the Bloch vector away from the |1〉 state to the
equatorial plane and creates an equal superposition of the two states.
(b) In a variable evolution time, the Bloch precesses with a phase ϕC

due to a detuning of the initial pulse. (c) A second pulse with a variable
phase ϕ rotates the Bloch vector again, whereafter the spin-population is
measured. A similar figure was published in Ref. [84].

The interferometric sequence employed in the following publica-
tions [84, 85] follows a similar procedure to investigate impurity dynam-
ics in a 39K BEC. Initially, the system is in the |F = 1,mF = −1〉 ≡ |1〉
state and a resonant rf pulse is then used to drive a transition to the
|F = 1,mF = 0〉 ≡ |2〉 state. However, since the |1〉 state is used as the
medium state and the |2〉 state as the impurity state, a π/2-pulse cannot
be employed. This would create an equal mixture of the two states. In-
stead, the Bloch vector is retained close to the initial state with a short
π/7-pulse as shown in Fig. 3.3(a). This creates an imbalanced mixture
corresponding to a small impurity population of ∼ 5% in the |2〉 state. In
the subsequent variable hold time t , the evolution of the system is driven
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(a) (b) (c)

φ
φC
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Figure 3.3: The interferometric sequence used in Ref. [84, 85] illus-
trated using the Bloch sphere. The north and south pole represents
the |F = 1,mF =−1〉 ≡ |1〉 state and the |F = 1,mF = 0〉 ≡ |2〉 state in 39K,
respectively. (a) First, a short radio-frequency pulse rotates the Bloch
vector slightly away from the initial state thus creating a population-
imbalanced superposition of the two states. (b) Subsequently, the Bloch
vector shrinks and precesses with phase ϕC in a variable evolution time
due to interactions between the two states. (c) Finally, a second pulse with
a variable phase ϕ rotates the Bloch vector again. The spin-population is
then extracted using absorption imaging. A similar figure was published
in Ref. [84].

by interactions between the |1〉 state and the |2〉 state. As illustrated in
Fig. 3.3(b), this may initially be envisioned as a precession and a shrink-
ing of the Bloch vector. A second π/7-pulse with a variable phase ϕ then
rotates the vector again, as shown in Fig. 3.3(c), which marks the end of
the interferometric sequence.

The interference signal is normally obtained through a measurement
of the population in both states after the second pulse. Unfortunately, fast
three-body losses in the system at hand prohibit a direct measurement
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3.3. Interferometric sequence

of the final population in the impurity state. Instead, the atoms are held
in the ODT for an additionally 2ms, where two medium atoms are lost
for each impurity. Finally, the atoms are released from the trap, and the
remaining number of atoms in the medium state is measured after time-
of-flight using absorption imaging. This atom number N (ϕ) constitutes
the interference signal and varies sinusoidally with the phase ϕ of the
second rf pulse. The function N (ϕ) = N0 −A cos(ϕ−ϕC ) is therefore
fitted to the measured population in the medium state, where the offset
N0 and the sinusoidal amplitude A and phase ϕC are free parameters.
Thus, the coherence amplitude is extracted as |C (t )| = |A (t )/A (0)| and
the phase as ϕC (t ) both as a function of the evolution time t .

Using the interferometric sequence, the evolution of the impurity
coherence can be measured and consequently compared to theoretical
predictions. However, to accurately model the observed impurity dynam-
ics, it is important to identify and incorporate the effects of additional
experimental decoherence sources in these predictions. Thus, three de-
coherence sources are investigated, which include dephasing due to the
inhomogeneous density distribution, loss of the impurity during the
evolution time and shot-to-shot fluctuations of the magnetic field. To
incorporate the effects due to dephasing, the predicted coherence is in-
tegrated over the condensate density distribution. The lifetime of the
impurity is measured independently and included by multiplying the co-
herence with an exponential decay. Similarly, the average magnetic field
noise is also measured independently at very weak interaction strengths.
It is then incorporated by integrating the distribution of phases caused
by the fluctuating magnetic field and multiplying the resulting function
with the coherence.

An interferometric sequence has thus been introduced and the effects
of additional decoherence sources have been considered. This procedure
allows the impurity coherence to be experimentally determined, and in
the following section two theoretical approaches used to model impurity
dynamics are introduced.
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3. IMPURITY DYNAMICS AND POLARON FORMATION

3.4 Theoretical description of impurity
dynamics

The Bose polaron is generally an intricate quasiparticle consisting of com-
plex many-body correlations between the impurity and the medium. It
is often characterized by its quasiparticle residue ZP and ground state
energy EP as discussed in Sec. 2.2. However, these parameters only de-
scribes the polaron peak and its many-body nature. To gain a complete
understanding of the quasiparticle it is furthermore necessary to invest-
igate the initial few-body dynamics and the gradual formation of the
polaron. In this section, theoretical models of the dynamical evolution is
therefore discussed.

The coherence function can be obtained from the spectral function
A(ω) of the impurity. This generally contains a polaron peak and a con-
tinuum of excited states and has previously been experimentally investig-
ated using spectroscopic methods [37, 38, 70]. By Fourier transforming
the spectral function, the coherence is obtained as

C (t ) = 1

2π

∫ +∞

−∞
A(ω)e−iωt dω. (3.1)

Thus, the characterization of the impurity in the frequency-domain can
be used to describe its dynamical behavior. However, there is no ex-
act solution for the spectral function at arbitrary interaction strength
between the impurity and medium. Therefore, the two theoretical pre-
dictions used in the following publications [84, 85] either capture only a
part of it or rely on approximations to describe the full spectral function.

The initial dynamics is governed by high-frequency two-body scat-
tering between the impurity and the medium. Importantly, the high-
frequency tail of the spectral function can be described by an exact solu-
tion [87]. An example of this model is shown in Fig. 3.4 as a function of
energy. Close to zero the description diverges and yields unphysically
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3.4. Theoretical description of impurity dynamics

values of the spectral function, however, at higher energies it reveals a
slow decrease as expected. By Fourier transforming this solution, an
expression for the coherence is obtained, which represents the initial
two-body dynamics at all attractive interaction strengths. Furthermore,
two regimes can be inferred from this expression of the coherence by
calculating its limits. These regimes display distinct dynamical behavior
with a smooth transition between them, and in the presented papers [84,
85] the two regimes are further elaborated.

Following the initial regimes of two-body dynamics, the evolution is
expected to transition into a regime governed by higher-order interac-
tions. Therefore, impurity dynamics at these longer evolution times is
now considered. To predict this dynamical behavior, it is necessary to
include both the continuum of scattering states and the polaron peak in
a model of the spectral function. This can be achieved using a diagram-
matic approach to estimate the scattering between the impurity and the
medium [47]. Moreover, this method can be employed at both attractive
and repulsive interaction strengths. An example of a diagrammatic pre-
dicted spectral function is also shown in Fig. 3.4 and clearly displays a
polaron peak and a tail of excited states. Importantly, the model recovers
the exact solution for high frequencies. In Fig. 3.4, this is reflected by the
diagrammatic predicted tail of excited states agreeing with the rigorous
two-body description at high energies. The Fourier transform of the dia-
grammatic model then describes not only the initial dynamics but also
a many-body regime at longer evolution times. This regime is further
elaborated in the following publication [84] as well.

The investigated theoretical models thus include an exact two-body
calculation valid for short-time impurity dynamics and a diagrammatic
description capable of prediction the dynamical evolution for longer
times. Though only approximate, diagrammatic predictions for the Bose
polaron energy have previously been compared to both quantum Monte
Carlo and spectroscopic results obtaining excellent agreement [54]. Both
models are therefore expected to capture essential parts of the observed

37



3. IMPURITY DYNAMICS AND POLARON FORMATION

-2 -1 0 1 2 3 4 5
0

0.5

1

1.5

2

2 3 4 5
0

0.01

0.02

0.03

Figure 3.4: Theoretically predicted spectral functions of the polaron at
an intermediate interaction strength. An exact solution for the tail of
the spectral function due to two-body scattering is shown as a dashed
black line [87]. A numerically calculated diagrammatic prediction, which
includes the many-body peak of the attractive polaron, is shown as a solid
orange line [47, 84]. (Inset) A close up of the tail of the spectral function
is shown to highlight the agreement of the two predictions. Both models
are used in the following publication [84].

impurity dynamics in the regimes, where they are valid.

3.5 Non-equilibrium quantum dynamics and
formation of the Bose polaron

The following paper [84] investigates how a superposition of an impurity
state and medium state decoheres leading to the eventual formation of
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polarons in the system. In the previous sections, the experimental and
theoretical methods have been outlined and here, the main results are
briefly introduced and discussed before the publication is presented.

3.5.1 Results

The experiment is centered around an interferometric sequence, which
employs a two-pulse Ramsey-like scheme to obtain an interference signal.
From this signal, the impurity coherence is extracted and in the presen-
ted publication [84], the coherence amplitude and phase are shown at
three interaction strengths. They are furthermore compared to an exact
short-time prediction and a diagrammatic description obtaining excel-
lent agreement with both theories in their respective regime of validity.

The agreement between theory and experimental data highlights
how the observed dynamical evolution can be divided into three distinct
regimes. First, two-body universal dynamics governs the impurity evol-
ution which, importantly, occurs not only at unitarity. This is followed
by two-body weak coupling dynamics, whereafter many-body dynamics
dominates the evolution at later times.

Moreover, the transition times between these regimes are extracted
from the data. These times are shown in Fig. 1 in the main manuscript
together with theoretical predictions. Again, good agreement is obtained
between the experimentally extracted transition times and the predicted
values. Finally, the instantaneous energy of the impurity at unitarity is ob-
tained from the measured phase evolution, which reveals an equilibration
process of the impurity towards the Bose polaron energy.

3.5.2 Outlook

The Bose polaron has previously been investigated using rf spectro-
scopy [37, 38, 54, 70]. These studies measured the energy spectrum
of the polaron, which allowed the polaron branches to be identified.
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3. IMPURITY DYNAMICS AND POLARON FORMATION

Good agreement was obtained with theoretical descriptions including
variational, diagrammatic and quantum Monte Carlo models. It is there-
fore important to compare the spectroscopic polaron results with the
observations presented in the following publication [84]. Such a detailed
analysis is beyond the scope of this section and is instead the main topic
of Chap. 4. However, Fig. 4 in the main manuscript does show how the
instantaneous energy of the impurity equilibrates towards the previously
measured polaron energy [54]. This indicates that the spectroscopic
and interferometric approaches are connected in investigating the same
quasiparticle.

While this publication [84] constitutes the first observation of impur-
ity dynamics in a BEC, previous experiments have studied the evolution
of an impurity in a Fermi gas [35, 36]. These investigations were also
conducted using an interferometric sequence and similarly to the results
presented in this thesis, they observed distinct dynamical behavior of the
impurity evolution and the eventual formation of the polaron. This qual-
itative agreement between the experimental results of Bose and Fermi
polaron studies highlights, how the Ramsey scheme in both scenarios is
a successful approach to explore different regimes of impurity dynamics.
However, the observed evolutions are not expected to be identical, since
the two mediums obey different quantum statistics and exhibit different
dispersion relations.

3.5.3 Publication

For the following paper [84], I was part of designing and conducting
the experiment. In the main manuscript, I performed all data analysis,
created all figures and wrote first drafts of the parts regarding the experi-
mental sequence, the data analysis, the comparison between data and
theory, and the corresponding discussion of the results. In the supple-
mentary information, I performed the data analysis and wrote first drafts
of the subsections regarding decoherence from the harmonic trap and
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magnetic field fluctuations, and the sections regarding impurity fraction
and experimental data analysis.

The paper was first published in Nature Physics (2021) by Springer
Nature and is reproduced with permission from Springer Nature.
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Advancing our understanding of non-equilibrium phenomena 
in quantum many-body systems remains one of the greatest 
challenges in physics. Here we report on the experimental 
observation of a paradigmatic many-body problem, namely the 
non-equilibrium dynamics of a quantum impurity immersed in 
a bosonic environment1,2. We use an interferometric technique 
to prepare coherent superposition states of atoms in a Bose–
Einstein condensate with a small impurity-state component, 
and monitor the evolution of such quantum superpositions 
into polaronic quasiparticles. These results offer a systematic 
picture of polaron formation3–7 from weak to strong impurity 
interactions. They reveal three distinct regimes of evolu-
tion with dynamical transitions that provide a link between 
few-body processes and many-body dynamics. Our measure-
ments reveal universal dynamical behaviour in interacting 
many-body systems and demonstrate new pathways to study 
non-equilibrium quantum phenomena.

Landau’s quasiparticle theory1 is one of the most powerful con-
cepts with which to understand many-body phenomena. Originally, 
the theory was developed to describe the interaction of an electron 
with phonons in a solid, leading to the formation of a quasiparticle2. 
Nowadays it is widely used in many areas of physics and forms the 
basis for understanding fundamental phenomena such as trans-
port processes, colossal magnetoresistance8 and superconductivity9.  
Yet, the dynamical processes leading to the formation of quasipar-
ticles has remained elusive in condensed-matter systems because 
of their high densities and, consequently, fast evolution times. 
Ultracold quantum gases offer a unique quantum simulation plat-
form10 to address this problem, as they permit the controlled gen-
eration of impurity atoms inside a fermionic11–19 or bosonic20–23 
quantum gas, where they perturb the surrounding medium to 
form quasiparticles called polarons. The study of Bose polarons is 
particularly important because the linear sound dispersion of the 
Bose–Einstein condensate (BEC) is analogous to that of phonons 
in crystals, prompting recent theoretical efforts to describe their 
non-equilibrium evolution3–7.

In this Letter, we make use of this capability to induce and trace 
the non-equilibrium dynamics of a quantum impurity from its ini-
tial creation to the eventual formation of the Bose polaron. We drive 
an atomic transition to coherently create a small population of an 
impurity state in a BEC. Its interaction with the surrounding BEC 
induces fast quantum evolution, which we probe by monitoring 
interferometrically the coherence between the initial state 1j i

I
 of the 

atoms and the impurity state 2j i
I

. This, in turn, yields a direct mea-
surement of the time-dependent Green’s function of the impurity 
and thereby allows us to observe the non-equilibrium dynamics of 

the impurity that leads to the eventual formation of Bose polarons 
in a BEC.

Our measurements reveal distinct regimes of impurity evolu-
tion and thus yield a complete map of its dynamical behaviour, as 
shown in Fig. 1a. At short times, we observe a universal ~t3/2 decay 
of the impurity coherence24 that does not depend on the coupling to 
the bosonic environment. This behaviour originates in high-energy 
two-body scattering with the surrounding condensate and governs 
the initial relaxation. It thus provides a clear experimental signa-
ture for such unitarity-limited processes. For weak interactions, 
an intermediate dynamical regime subsequently emerges. Here, 
low-energy collisions dominate the dynamical evolution, giving rise 
to a distinct ~t1/2 decay of the impurity coherence. At longer times, 
we eventually observe pronounced deviations from such power-law 
behaviour, reflecting the emergence of many-body correlations that 
usher in the formation of the Bose polaron. The transitions between 
these dynamical regimes are shown in Fig. 1a. We observe remark-
able agreement between theory and experiment for all impurity 
interaction strengths and evolution times, providing a quantitative 
understanding of the non-equilibrium dynamics of this quantum 
many-body system.

The experiment was performed with Bose–Einstein conden-
sates of 39K atoms in the F ¼ 1;mF ¼ �1j i  1j i

I
 hyperfine ground 

state25, where F and mF are the total angular momentum quan-
tum number and its projection, respectively. The average con-
densate density nB sets the interaction independent energy scale  
En ¼ _2ð6π2nBÞ2=3=2m
I

 of the system and the corresponding tim-
escale tn = _/En = 4.8 μs. Here m is the mass of 39K and the subscript 
n indicates that the parameter is only density dependent in our 
experiments. For the controlled population of the impurity state 
we use a radiofrequency (RF) pulse to drive the transition to the 
F ¼ 1;mF ¼ 0j i  2j i
I

 state20. The strength of the interaction is 
characterized by the dimensionless parameter 1/kna, where a is the 
scattering length for collisions between the impurity and the con-
densate state, and kn ¼ ð6π2nBÞ1=3

I
 is the characteristic wavenum-

ber. We tune the scattering length a by applying a homogeneous 
magnetic field in the vicinity of a Feshbach resonance at 114 G  
(refs. 20,26,27), which does not affect the scattering length aB for colli-
sions between the condensate atoms.

The interferometric sequence to populate the impurity state and 
probe its dynamics is illustrated in Fig. 1, showing the evolution of 
the collective spin on the Bloch sphere15,28,29. In this Ramsey-type 
scheme, we retain the orientation of the Bloch vector close to the 
initial one, corresponding to a low population of the impurity state. 
This allows the use of short RF pulses, which can resolve the evolu-
tion at times much shorter than tn.

Non-equilibrium quantum dynamics and 
formation of the Bose polaron
Magnus G. Skou   1 ✉, Thomas G. Skov   1, Nils B. Jørgensen   1, Kristian K. Nielsen   1, 
Arturo Camacho-Guardian   1, Thomas Pohl1, Georg M. Bruun1,2 and Jan J. Arlt   1
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The measurement is initiated by applying a RF pulse tuned to 
the atomic resonance with a duration of 0.5 μs, well below the typi-
cal timescales of the subsequent impurity dynamics. As illustrated 
in Fig. 1b, this coherently generates an admixture of the impu-
rity state with a small population of ~5%. Subsequently, this state 
evolves for a chosen time t driven by the interaction between the 
impurity state and the surrounding condensate. Initially, this can be 
visualized as a rotation and shrinking of the Bloch vector as shown 
in Fig. 1c. The corresponding dynamics of the impurity state is 
monitored by closing the interferometric sequence with a second 
RF pulse with variable phase φ. As shown in Fig. 1d, this second 
pulse implements a rotation of the Bloch vector around an axis 
defined by φ. The final spin population is obtained by measuring 
three-body recombination losses after a 2 ms relaxation time with 
absorption imaging. This interferometric sequence results in a sinu-
soidal dependence of the final atom number N on the probe phase 
φ, as shown in Fig. 2a for various evolution times. We perform a fit 
NðφÞ ¼ N0 �A cosðφ� φCÞ
I

 for each evolution time t. Generally, 

amplitudes can be extracted for longer evolution times even at small 
signal-to-noise ratio, where the phase determination fails.

Based on these fits, we obtain the normalized coherence func-
tion CðtÞ ¼ jAðtÞ=Að0ÞjeiφCðtÞ

I
 (Supplementary Information). This, 

in turn, is directly proportional to the impurity Green’s function 
GðtÞ ¼ �iCðtÞ ¼ �i ψBECh ĵcðtÞ̂cyð0Þ ψBECj i
I

, where ψBECj i
I

 describes 
the state of the BEC before the first RF pulse and ĉy

I
 is the opera-

tor that creates an impurity in the condensate. Consequently, C(t) 
is directly related to the spectral function of the impurity, which we 
compute using both a two-body and a many-body description to 
obtain C(t) throughout the impurity dynamics.

The initial dynamics can be calculated exactly for high energies, 
where it is determined by two-body physics30. A Fourier transform 
gives the corresponding exact short time dynamics, which has the 
limiting forms (Supplementary Information)

CðtÞ ¼
1� ð1� iÞ 16

9π3=2
t
tn

 3=2
t  ta

1þ 2
3π ðknjajÞ

3 � iEmf t=_� ð1þ iÞ t
tw

 1=2
t  ta

8
><
>:

ð1Þ

where Emf = 4π_2nBa/m is the mean field energy due to impurity 
state interactions with the BEC and ta = ma2/_. For times t ≪ ta, 
equation (1) describes universal dynamics where the coherence 
of the impurity state decays with a power-law exponent of 3/2 on 
a timescale tn independent of the (non-zero) interaction strength  
(Fig. 1a, blue area). This universal short time relaxation directly 
reflects the unitarity-limited scattering cross-section for short-range 
interactions, which does not depend on a for collision ener-
gies greater than _2/ma2. Hence, the time ta marks the crossover 
(Fig. 1a, blue to green transition) to a regime where the dynam-
ics is governed by the mean field phase evolution Emft/_, and the 
coherence decays with a power-law exponent 1/2 on an interaction 
strength-dependent timescale tw ¼ m=32π_n2Ba4

I
 (Fig. 1a, green 

area). This behaviour arises from weak two-body collisions with a 
constant cross-section ~a2 (ref. 5).

An intuitive understanding of the power laws in equation 
(1) can be gained from the cross-section σ(k) = 4πa2/(1 + (ka)2) 
assuming that the rate of decoherence is given by the collision  
rate _CðtÞ  �nBσv

I
. At a time t after initializing the system, deco-

herence is caused by coupling to states with E ≈ _/t setting the 
wavenumber k �

ffiffiffiffiffiffiffiffiffiffiffi
m=_t

p

I
 and the collisional velocity v �

ffiffiffiffiffiffiffiffiffiffiffi
_=mt

p

I
.  

For t ≪ ta the cross-section is unitarity-limited, σ ≈ 1/k2 ≈ _t/m 
and integrating the decoherence rate yields the universal limit 
CðtÞ  ðt=tnÞ3=2
I

. At longer times t ≫ ta the cross-section is deter-
mined by low-energy collisions σ ~ a2 and integrating gives 
CðtÞ  ðt=twÞ1=2
I

 in accordance with the weak coupling limit 
(Supplementary Information).

At later times, interactions between multiple particles lead to 
pronounced deviations from the two-body prediction given by 
equation (1) and the system enters a regime of many-body dynam-
ics (Fig. 1a, orange area). We describe this many-body dynamics 
using a diagrammatic theory (Supplementary Information), which 
has previously been applied to the equilibrium physics of Bose 
polarons23,31. Because our many-body theory contains the dominant 
two-body processes, it moreover recovers the two-body prediction 
of equation (1) for short times. For weak interactions, deviations 
from two-body weak coupling t1/2 dynamics occur at times ~_/Emf 
and signal the onset of many-body physics (Fig. 1a, green to orange 
transition). However, for large interaction strengths where Emf > _
2/ma2 and consequently ∣1/kna∣ < (2/3π)1/3, the many-body dynam-
ics emerges directly from the initial universal regime at times ~1.4tn 
(Fig. 1, blue to orange transition). We emphasize that these changes 
in dynamical behaviour correspond to smooth temporal crossovers, 
as indicated by the blurred boundaries in Fig. 1a.
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Fig. 1 | Dynamical regimes of impurity evolution and the experimental 
method. a, Characteristic dynamical regimes of impurity evolution as a 
function of the inverse interaction strength 1/kna and evolution time t/tn. 
The measurements (circles) and theoretical analysis (coloured areas) 
show three distinct dynamical regimes that extend from ultrafast two-body 
processes to the many-body regime of polaron formation. The blurring 
indicates smooth temporal transitions and the error bars correspond to the 
1σ confidence intervals of the fitted values (blue) and the data resolution 
(red and white) (Supplementary Information). b–d, Interferometric 
sequence to probe the dynamics illustrated using the collective spin of the 
atoms on the Bloch sphere. The north pole represents the initial state 1j i

I
 of 

the Bose–Einstein condensate and the south pole represents the impurity 
state 2j i

I
. A short RF pulse prepares the system in a population-imbalanced 

collective superposition state (b). The subsequent evolution due to the 
interaction between the impurity state and its bosonic environment gives 
rise to a phase evolution φC and a contraction of the Bloch sphere (c).  
A second pulse with variable phase φ rotates the Bloch vector again (d), 
whereafter the atomic spin population is obtained using an absorptive 
imaging technique.
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Figure 2b,c shows the measured coherence amplitude and phase 
in the regime of weak interactions. Both measured quantities agree 
well with the t1/2 evolution given by equation (1) for t ≲ _/Emf. The 
transition between the universal and weak coupling two-body 
dynamics at short times is extracted by simultaneously fitting the 
coherence amplitude and phase with the general two-body descrip-
tion (Supplementary Information) using the transition time as a 
free parameter. These times are shown in Fig. 1a as blue data points. 
Moreover, the subsequent transition to the many-body regime is 
identified with the time when the observed coherence amplitude 
deviates more than two standard deviations from the prediction of 
equation (1), also shown in Fig. 1a (red data points). Finally, we com-
pare the observations to the diagrammatic prediction, which cap-
tures the dynamics on all timescales. In particular, the many-body 
behaviour is clearly visible for the amplitude at long evolution times. 
In principle, theory predicts that ∣C(t)∣ decays towards the quasipar-
ticle residue4,5. However, experimentally this is not observed due to 
additional decoherence processes (Methods). The excellent agree-
ment between theory and experiment nonetheless provides a bench-
mark for our measurement approach and theoretical understanding.

For intermediate interaction strengths, the initial coherence 
amplitude and phase display universal t3/2 dynamics extending for 
longer evolution times as illustrated in Fig. 3. There is no regime 
exhibiting t1/2 dynamics because t ≫ ta is not reached before the 
smooth transition to many-body dynamics. Furthermore, a mea-
surement of the transition to the many-body regime is prohibited by 
the inhomogeneous density of our condensate, which obscures the 
observation of a clear deviation from equation (1). Nonetheless, we 
obtain excellent agreement with the diagrammatic prediction for all 
evolution times, which includes these experimental effects.

At unitarity, the crossover time ta diverges, such that the univer-
sal t3/2 dynamics dominates the entire two-body scattering regime. 
Indeed, the initial amplitude and phase evolution shown in Fig. 4 
agree very well with the dynamics predicted by equation (1), con-
firming both the characteristic decay exponent and the associated 
time constant tn. This agreement highlights the importance of 
two-body dynamics over a substantial timespan of initial relaxation, 
even in the unitary limit.

For longer evolution times, we observe pronounced deviations 
from equation (1), signalling the onset of many-body correla-
tions due to the strong interaction between the impurity state and  
the condensate. This behaviour is captured by the diagrammatic pre-
diction, which yields an excellent description of the non-equilibrium 

dynamics of impurities in the regime of strong interactions and 
thus demonstrates the many-body nature of the long-time impurity 
evolution in our experiments. In particular, the data reveal a clear 
crossover between the initial two-body t3/2 dynamics and a slower 
many-body decay at a transition time, as indicated as a white data 
point in Fig. 1a.
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Fig. 2 | impurity dynamics at weak interaction strength. a, The interference signal recorded at different evolution times as a function of the probe pulse 
phase φ for an interaction strength 1/kna = −2. Sinusoidal fits are shown as solid lines and the obtained amplitude and phase are indicated using grey 
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Moreover, the measured phase evolution allows us to track the 
instantaneous energy of the impurity. Because the phase evolution 
φC(t) → −Ept/_ for long times is governed by the polaron energy 
Ep, we obtain the instantaneous energy from E(t) = −_dφC/dt. As 
shown in Fig. 4b, the observed impurity energy approaches the 
expected equilibrium polaron energy. Therefore, our measurements 
directly display the dynamical emergence of the Bose polaron in the 
regime of strong interactions.

Our experiment covers all relevant timescales of quasiparticle for-
mation and thus opens up new pathways to study non-equilibrium 
phenomena in strongly interacting quantum many-body systems. 
The demonstrated technique will enable investigations of bosonic 
analogues of Anderson’s orthogonality catastrophe32 and transport 
processes33,34 via time-domain measurements. Similar measure-
ments at repulsive impurity interactions will be able to explore the 
predicted formation of multi-phonon bound states4. Experiments 
with higher impurity concentrations will permit the investiga-
tion of effective polaron interactions35. Such mediated interac-
tions are believed to play a vital role for transport properties of 
condensed-matter systems36. Ultimately, this may enable the obser-
vation of strongly bound bosonic bipolarons37 and their formation 

in a time-resolved manner. Elucidating the dynamics of induced 
quasiparticle interactions could prove essential, as strong retarda-
tion and relaxation effects5,35 may render such bipolarons inacces-
sible to common spectroscopic methods20,21.
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Methods
Experimental preparation. To study the impurity dynamics, a Bose–Einstein 
condensate of 39K atoms in the F ¼ 1;mF ¼ �1j i

I
 state was prepared in an optical 

dipole potential25. The evaporation was performed near a Feshbach resonance at 
33.6 G before ramping the magnetic field to a desired valued close to the interstate 
Feshbach resonance at 113.8 G. The cloud temperature was kept constant at 50 nK 
throughout the measurements and the mean geometrical trap frequency was 
2π × 65 Hz, ensuring an average condensate density of nB = 0.7 × 1014 cm−3.

Decoherence. Three additional experimental decoherence processes are included 
in the theoretical description of the coherence. To account for processes due to trap 
inhomogeneity, the coherence amplitude and phase were integrated over the cloud 
density. The effects of finite lifetime were included by multiplying the theoretical 
coherence amplitude with an exponential function based on an independently 
measured loss rate Γloss. The magnetic field noise was included similarly by 
multiplying the theoretical coherence amplitude with a decay due to shot-to-shot 
fluctuations, which was measured independently (Supplementary Information).
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SI. RAMSEY INTERFEROMETRY

The customized Ramsey method employed in the experiment maps the impurity coherence to

the final number of atoms in the sample. We first analyze the homogeneous case and then perform

a local density approximation (LDA) to analyze the experimentally relevant inhomogeneous gas.

To generate impurities, a radio frequency (rf) field

Hrf(ϕ) = h̄Ω∑
k

[
e+iϕc†

kbk + e−iϕb†
kck

]
(S1)

drives transitions between two magnetic states, transferring atoms from the medium |b〉 state to

the impurity |c〉 state. The operators b†
k,c

†
k create an atom in the medium and impurity states with

momentum k, respectively, and Hrf is given in the rotating frame with the Rabi frequency Ω and

phase ϕ . The system Hamiltonian for resonant transfer – in the rotating frame – is given by

H =∑
k

εk

(
c†

kck +b†
kbk

)
+

TB

2V ∑
k,q,p

b†
k+pb†

q−pbqbk +
T

V ∑
k,q,p

b†
k+pc†

q−pcqbk, (S2)

with εk = h̄2k2/2m, system volume V , and T = 4π h̄2a/m,TB = 4π h̄2aB/m the zero energy scat-

tering matrices for the impurity-boson and boson-boson interactions respectively. Here we assume

that only a single impurity is present, neglecting any impurity-impurity interactions. The Ramsey

sequence consists of two short rf-pulses as described in the main text. Since the duration of these

pulses is much shorter than the impurity dynamics investigated, we can safely split the time evolu-

tion operator into three separate parts Utot(t) =Urf(ϕ,δ t)U Urf(0,δ t). Here Urf(ϕ, t) = e−iHrf(ϕ)t



2

and U = e−iHt . In the first pulse we drive at zero phase, in the second at some variable probe

phase, ϕ . To stay in the single impurity limit we require Ωδ t � 1, which in turn means that we

can expand the rf evolution operator

Urf(ϕ,δ t)' 1− iHrf(ϕ)δ t− (Hrf(ϕ)δ t)2

2
, (S3)

to second order in Ωδ t. The initial state of the system is the ground state |BEC〉 of H with no

impurities present. Using the time evolution operator Utot(t) together with the expansion (S3), we

obtain the mean number of atoms in the impurity state after the two rf-pulses

Nc(t) = 〈BEC|U †
tot(t)∑

k
c†

kckUtot(t) |BEC〉= NB ·2(Ωδ t)2Re
[
1+ e−iϕ · iGbc(t)

]
, (S4)

which is exact to second order in Ωδ t. Here NB is the initial total number of atoms in the |b〉
state, and

Gbc(t) =−
i

NB
∑
k,q
〈BEC|b†

k(t)ck(t)c†
q(0)bq(0) |BEC〉

is an impurity-boson Green’s function with ck(t) = U †(t)ck(0)U (t) the time evolved annihila-

tion operator for the impurity – likewise for bk(t). Since the medium atoms are condensed in

the zero momentum mode, the dominant contribution to Gbc comes from k = q = 0. Additional

contributions are suppressed by at least a factor of 1/
√

NB.

We therefore find

Gbc(t)'−
i

NB
〈BEC|b†

0(t)c0(t)c
†
0(0)b0(0) |BEC〉 ' −i〈BEC|c0(t)c

†
0(0) |BEC〉= G0(t), (S5)

using b0 |BEC〉 ' √NB |BEC〉. We also use 〈BEC|b†
0(t) ' 〈BEC|b†

0(0) '
√

NB · 〈BEC|. This

assumes that the impurity dynamics has little effect on the condensate reservoir. This is well

justified for a small fraction of impurities, where corrections are again expected to scale as 1/
√

NB.

Finally, using that iG0(t) =C(t)/C(0) [1], we obtain a mapping between the impurity density and

coherence C(t)

nc(t) = nB ·2(Ωδ t)2Re
[
1+ e−iϕ ·C(t)

]
, (S6)

by dividing out the system volume, V , setting C(0) = 1, and defining the initial atom density

nB = NB/V .
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In the experiment, the atomic gas is held in a harmonic trap V (r) = m(ω2
x x2+ω2

y y2+ω2
z z2)/2.

As a result the atomic density is spatially dependent and we adjust the analysis above by using

LDA. In a standard Thomas-Fermi approximation this leads to the density nB(r)= (µ−V (r))/TB,

where µ is the chemical potential of the condensate. In the local density approximation, Eq. (S6)

is replaced by the local equation nc(r, t) = nB(r) · 2(Ωδ t)2Re[1+ e−iϕ ·C(r, t)], where C(r, t) is

the local coherence. The number of impurities after the two rf-pulses is then

Nc(t) =
∫

d3r nc(r, t) = NB ·2(Ωδ t)2Re
[
1+ eiϕ ·C(t)

]
,

defining the trap averaged coherence C(t) =
∫

d3r n(r)C(r, t)/NB. Subsequent to the second rf-

pulse the atoms are held in the trap, allowing three body recombination to take place, eventually

resulting in the loss of two medium atoms for every impurity. The final remaining number of

atoms in the system is thus

N = NB−3Nc = NB
(
1−6(Ωδ t)2Re

[
1+ e−iϕ ·C(t)

])

= N0−6NB(Ωδ t)2|C(t)|cos(ϕ−ϕC(t)), (S7)

with N0 = NB(1−6(Ωδ t)2) the average number of atoms measured as a function of the probe

phase ϕ for every evolution time t. To enable the experimental analysis the coherence is ex-

pressed in terms of its amplitude and phase: C(t) = |C(t)|eiϕC(t). By performing a fit N(ϕ) =

N0−A cos(ϕ−ϕC) to the measured data, we thus extract the phase and the normalized coherence

amplitude |C(t)|= |A (t)/A (0)| simultaneously.

SII. THEORETICAL DESCRIPTION OF IMPURITY DYNAMICS

The impurity coherence is in general equal to the Fourier transform of the impurity spectral

function A(ω) at zero momentum

C(t) =
∫ +∞

−∞

dω
2π

e−iωtA(ω). (S8)

Our approach to predict impurity dynamics is to calculate the spectral function A(ω) and then

determine the dynamics of the coherence. In this section, we present the theoretical descrip-

tion of different regimes of impurity dynamics, from universal short-time behaviour to the non-

perturbative treatment of a polaron formation.
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A. Initial two-body dynamics

We start by analysing the short-time behaviour of the coherence. The integral in Eq. (S8) is

split as follows

C(t) =
∫ ∞

−∞

dω
2π

(1− iωt)A(ω)+
∫ ∞

−∞

dω
2π
(
e−iωt− (1− iωt)

)
A(ω). (S9)

It is then apparent that we can use the so-called sum rules [2]

∫ ∞

−∞

dω
2π

A(ω) = 1,
∫ ∞

−∞

dω
2π

ωA(ω) =
a−1

B −a−1

4πm
h̄C2

NB
, (S10)

here appropriately rewritten in terms of the spectral function, to calculate the first term in Eq. (S9).

The two-body contact of the BEC, C2 = 8πma2
B/h̄2 · dEBEC/daB = NB · 16π2nBa2

B, is obtained

using Bogoliubov theory appropriate for weak interactions in the condensate, nBaB
3 � 1. The

second term in Eq. (S9) can be evaluated at short times, since the factor e−iωt− (1− iωt) removes

the low energy sector up to order (ωt)2. Therefore, at sufficiently short times, one can use the

asymptotic behavior of the spectral function at large frequencies calculated in [2]

lim
ω→∞

A(ω) =
1

2π
C2

NB

√
h̄
m

(a/aB−1)2

1+ma2 ω/h̄
· 1

ω3/2 =
K

1+ωta
· 1

ω3/2 , (S11)

with K = 4/3π · (1−aB/a)2(kn|a|)3/
√

ta, kn = (6π2nB)
1/3 and ta = ma2/h̄. The ω < 0 part of the

second term in Eq. (S9) is negligible for negative impurity-boson scattering lengths and close to

unitarity. Essentially, the only important contribution in this region is due to the impurity-boson

molecular state, which is absent for a < 0 and has an energy E =−h̄2/ma2 which goes to zero as

we approach unitarity a→ ∞. We can thus write

C(t)'
∫ ∞

−∞

dω
2π

(1− iωt)A(ω)+
∫ ∞

0

dω
2π
(
e−iωt− (1− iωt)

)
A(ω)

' 1− it · nBTB

h̄

(
1− aB

a

)
+K

∫ ∞

0

dω
2π

e−iωt− (1− iωt)
1+ωta

· 1
ω3/2︸ ︷︷ ︸

I

, (S12)

using h̄C2/NB · (a−1
B − a−1)/4πm = nBTB(1− aB/a)/h̄. The integral I is evaluated using the

dimensionless variables ω̃ = ωta and t̃ = t/ta

I =
√

ta
2

[
1+ i

t
ta
− 2√

π
eit/taΓ

(
3
2
, i

t
ta

)]
,

where Γ is the incomplete gamma function. Reinserting I into Eq. (S12) we obtain the short-time

behavior of the impurity coherence for general interaction strengths
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C(t)'1− i
Emft

h̄
+

2
3π

(kn|a|)3
[

1− 2√
π

eit/taΓ
(

3
2
, i

t
ta

)]
, (S13)

defining the mean field energy Emf = nBT and neglecting aB/a corrections. At very short

times, t� ta = ma2/h̄, the coherence dynamics has the universal behaviour

C(t) = 1− (1− i)
16

9π3/2

(
t
tn

)3/2

. (S14)

Since it is independent of the impurity-boson scattering length, a, this defines a unitarity limited

dynamical regime.

For weak interactions, the impurity dynamics changes from this two-body unitary dynamics to

two-body weak-coupling dynamics governed by

C(t) = 1− iEmft/h̄− (1+ i)
(

t
tw

)1/2

, (S15)

for h̄/Emf� t� ma2/h̄, valid to second order in the impurity-boson scattering length. The third-

order correction in the impurity-boson scattering length from Eq. (S13) leads to the following

dynamics

C(t) = 1− iEmft/h̄− (1+ i)
(

t
tw

)1/2

+
2

3π
(kn|a|)3, (S16)

where the fourth term becomes relevant for 1/kn|a| ≈ (2/3π)1/3 ≈ 0.59 which determines the

transition from weak to strong interactions.

B. Origin of the two-body power-laws

The exponent of the power-laws in Eq. (S14) and Eq. (S15) can be traced back to the cross

section σ(k) = 4πa2/[1+(ka)2] for s-wave scattering between the impurity and a boson from the

condensate with relative momentum k. At time t, the characteristic collision energy giving rise to

decoherence is E ∼ h̄/t so that k ∼
√

m/h̄t and the typical velocity of the colliding particles is

v∼
√

h̄/mt.

At short times t � ma2/h̄ these collisional energies are correspondingly high E � h̄2/ma2

such that ka� 1 and the cross section is unitarity-limited σ(k) ' 4π/k2 ∼ h̄t/m. Using that the
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decoherence rate is related to the collision rate Ċ(t)∼−nBσv, we obtain Ċ(t)∼−nB(h̄/m)3/2√t

and integrating while setting C(0) = 1 yields precisely the (t/tn)3/2 power-law given in Eq. (S14).

On the other hand, for longer times t � ma2/h̄ decoherence involves low energy collisions for

which the cross section is σ(k) ' 4πa2. The same line of reasoning then gives the
√

t/tw power

law in Eq. (S15).

C. Many-body dynamics

To determine the impurity dynamics at arbitrary times, we employ a non-perturbative approach

based on the so-called ladder approximation, which includes Feshbach physics via the scattering

of one boson out of the condensate by the impurity [3]. For knaB ≈ 0.01, the relevant physics can

be explained by assuming an ideal BEC, where the impurity self-energy is Σ(ω) = nBT (ω), with

the scattering matrix T (ω) in the ladder approximation and the density nB of the BEC. This yields

the spectral function

A(ω) = ZP2πδ (ω−ωP)+8π
h̄3/2nB

m3/2ω5/2 ·
Θ(ω)

1+ h̄
ma2ω

(
1− 4π h̄nBa

mω

)2 (S17)

for zero temperature. Here δ (x) is the Dirac delta function, Θ(ω) is the Heaviside step func-

tion, h̄ωP is the polaron energy and ZP is the polaron residue determined from ωP = Σ(ωP) and

Z−1
P = 1−∂ωΣ(ω)|ωP . Equation (S17) recovers the exact result for large ω in Eq. (S11). In addi-

tion, it yields a prediction for the low-energy behaviour governed by many-body physics. Specif-

ically, many-body corrections are given by the continuum of high-momentum impurity states and

Bogoliubov excitations together with the polaron delta-function peak. The onset of the continuum

of states described by the second term in Eq. (S17) starts above the polaron peak instead of at

ω = 0, since one can make states with arbitrarily small excitation energy, consisting of a moving

polaron and a Bogoliubov mode with a total momentum of zero. In our predictions, we therefore

employ a step in a self-consistent calculation which moves the continuum to start just above the

polaron peak. In addition, we add a small imaginary width iη = 0.05En. Moreover, the theory

is averaged over the trap to model the experiment. Finally, by Fourier transforming the result we

obtain the prediction for the coherence which is shown in Fig. 2, 3 and 4 of the main manuscript.
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FIG. S1. Regimes of impurity dynamics as a function of inverse interaction strength 1/kna and evolution

time t/tn. The lines show the transition times separating the different dynamical regimes: The universal to

weak-coupling transition is shown in blue, the weak-coupling to many-body transition is shown in orange,

and the universal to many-body transition is shown in green. The points show the experimentally observed

transition times and the error bars correspond to the 1σ confidence intervals of the fitted values (blue) and

the data resolution (red and white) as described in Sec. SV C. We emphasize that although the transitions

are shown as lines, they are in reality smooth as indicated in Fig. 1a in the main manuscript.

D. Dynamical regimes of impurity evolution

We can now identify various regimes of the impurity dynamics by comparing the relative mag-

nitude of the terms in the denominator of Eq. (S17). The result is shown in Fig. S1 where the

transitions between different regimes are smooth and should not be understood as sharp bound-

aries. For high energies, corresponding to short times, the spectral function scales as ω−5/2 giving

the universal t3/2 dynamics described by Eq. (S14). For weak interactions (Emf� h̄2/ma2), there

is a transition to the t1/2 dynamics also described by Eq. (S15) for t & ta = ma2/h̄ and eventually

many-body physics sets in at t & h̄/Emf. Since ma2/h̄ establishes the crossover between the dif-

ferent regimes of two-body impurity dynamics, the transition to Eq. (S15) is restricted to values

of the interaction strengths such that ma2/h̄ remains the shortest time-scale of the system. Us-

ing the condition ta = h̄/Emf this holds true for weak and intermediate interactions strength until

1/(kn|a|) = (2/3π)1/3, in agreement with Eq. (S16). For strong interactions (Emf ≥ h̄2/ma2),
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FIG. S2. Loss of coherence due to the harmonic trap potential. The coherence amplitude for (a) 1/kna=−2,

(b) 1/kna = −0.77 and (c) 1/kna = 0.01 are shown for the general two-body description Eq. (S13) as a

dashed purple line and the diagrammatic prediction with and without trap dephasing as a solid orange and

dash-dotted red line, respectively. No other technical decoherence sources are included for this comparison.

this is no longer the case and the crossover to the t1/2 dynamics in Eq. (S15) is prevented. Here,

the coherence transitions directly from the universal t3/2 dynamics to the many-body dynamics at

t & (16π2)−1/3mn−2/3
B /h̄ = (3π/2)2/3/2 · tn ' 1.4 tn, as shown in Fig. S1.

SIII. DECOHERENCE EFFECTS

To accurately describe the evolution of the coherence, every prominent technical source of

decoherence must be considered. This section accounts for three decoherence mechanisms which

are included in our theoretical description of the data.

A. Decoherence from harmonic trap

The harmonic potential provided by the optical dipole trap results in an inhomogeneous density

distribution of the atoms. Since the impurity population is created evenly across the condensate,

the density dependent interaction strength results in dephasing of the system. We therefore have to

integrate over the spatially dependent terms of the coherence weighted by the density distribution.

For the short-time two-body theoretical predictions in Sec. SII A, this simply corresponds to re-

placing the density distribution with its average value, since all terms are linear in density. For the

dynamics occurring at longer times, the density dependence becomes non-linear and the averag-

ing induces a more subtle decoherence process of the impurity dynamics. For weak interactions,

the trap-averaged dynamics and the homogeneous dynamics both signal the onset of many-body
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physics as they deviate from the two-body prediction at similar times, as shown in Fig. S2a. For

intermediate interaction strengths, dephasing suppresses the trap-averaged prediction and it devi-

ates faster from the homogeneous dynamics than from the two-body theory. Subsequently, the

trap-averaged many-body and the two-body theory agree for longer times than the transition time

predicted by the homogeneous dynamics, as illustrated in Fig. S2b. For strong interactions, the

dephasing only affects impurity dynamics at times larger than the transition time from universal to

many-body dynamics, and therefore, it is possible to extract the transition from the trap-averaged

data, as shown in Fig. S2c.

B. Decoherence from finite impurity lifetime

Strongly interacting Bose gases are typically subject to rapid loss from inelastic three-body de-

cay. In Ramsey interferometry, such decay processes result in a loss of contrast and must therefore

be taken into account. In our experimental system the impurity lifetime is typically shorter than

the time of flight and all impurity population is lost before it can be observed using absorption

imaging after expansion.

We therefore employ a more sophisticated strategy to measure the impurity loss rate: A BEC

is prepared in the |F = 1,mF =−1〉 state under conditions similar to those presented in the main

text. To initialize a loss measurement, a rf-pulse transfers approximately 10% of the population

to the impurity state |F = 1,mF = 0〉. The sample is then held for a variable time during which

three-body recombination processes take place. Subsequently, any remaining population in the

impurity state is transferred to the |F = 1,mF = 1〉 state by a π-pulse. The population in this state

undergoes two-body spin-changing collisions with the population in the |F = 1,mF =−1〉 state

and is rapidly lost. Thus, the transferred fraction is always lost, but through different processes

depending on the state in which the loss takes place. Finally, the remaining number of BEC atoms

is recorded by absorption imaging after expansion.

Examples of the recorded normalized atom number are shown in the inset of Fig. S3 for selected

interaction strengths 1/kna. For each interaction, we perform an exponential fit ∼ exp(−Γlosst),

with Γloss being the loss rate of the impurity state. The obtained loss rates are shown in Fig. S3,

and as expected, the loss rate increases with the interaction strength.

These observations are relevant in relation to recent Bose polaron observations [4, 5]. Impor-

tantly, the observed loss rate h̄Γloss is smaller than the Bose polaron energies observed in the same
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FIG. S3. Loss rate of the impurity state as a function of inverse interaction strength. The inset shows

selected data and fits for 1/kna =−4.7 (blue),−2.1 (green), and−0.48 (purple). The data have been scaled

with the initial and final atom numbers. The main panel shows the obtained loss rates and an empirical

fit. The horizontal error bars are due to statistical uncertainty of the atom number and fitting errors from

trap frequency measurements. The vertical error bars additionally contain propagated fitting errors from

impurity lifetime measurements.

system [4, 6]. At unitarity, the loss rate is comparable to loss rates observed for Bose polarons

in a 40K87Rb mixture. However, at intermediate interactions, it is interesting to note that the rate

is significantly larger in the 39K system. This difference in loss rates in the two different atomic

systems is also found when comparing three-body loss rates of thermal KRb mixtures [7, 8] to

single-component thermal 39K [9–11]. We therefore conclude that this difference is primarily a

consequence of the three-body loss rates of the individual atomic systems.

To model the influence of the observed loss rate on the impurity coherence, we perform an

empirical fit β1 +β2 exp(β3/kna), with fitting parameters βi, which is shown in Fig. S3. The fit

follows the experimental data well, and we therefore employ this function to calculate Γloss for ar-

bitrary interactions. To compare with experimental results this loss is included in the theoretically

calculated coherence as C(t)→C(t)exp(−Γlosst).
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C. Decoherence from magnetic field fluctuations

Experimentally shot-to-shot fluctuations of the magnetic field lead to a further decoherence

mechanism. The effect only provides significant decoherence at long times compared to tn and is

therefore mainly relevant for data acquired at weak interactions.

The central part of the experimental procedure is the Ramsey interferometry sequence which is

repeated multiple times for each set of experimental parameters. For each repetition, however, the

interferometry pulse has a different detuning ∆ compared to the bare transition, due to shot-to-shot

fluctuations of the magnetic field. This detuning thus provides an additional phase shift 2π∆ · t,
and when the Ramsey interferometry sequence is repeated several times, these varying phase shifts

lead to additional decay of the coherence function.

To quantify this effect, we assume that ∆ follows a normal distribution, which results in a phase

distribution given by 1/
√

2πσ2
noise(t)exp[−φ 2/2σ2

noise(t)], where σnoise(t) = 2π∆noiset and φ is

the additional phase. The effect of magnetic field fluctuations on the coherence is then obtained

by integrating the phase distribution

C(t)→ C(t)√
2πσ2

noise(t)

∫ ∞

−∞
exp(−iφ)exp[−φ 2/2σ2

noise(t)]dφ . (S18)

To obtain the magnitude of ∆noise, we have performed Ramsey interferometry measurements at

weak interactions 1/kna =−5. Here, decoherence from higher-order impurity dynamics is negli-

gible, and the loss of coherence is thus determined by the inhomogeneous density distribution in

the trap, finite impurity lifetime, and decoherence due to magnetic field fluctuations. The observed

coherence amplitude is shown in Fig. S4. We perform a fit according to Eq. (S18) with ∆noise as a

fitting parameter and obtain ∆noise = 1.8(1)kHz. This effects is included in the theoretical results

at all interaction strengths.

SIV. IMPURITY FRACTION

The experiment is based on interferometric measurements using a Ramsey-type sequence. To

obtain a low population of the impurity state we retain the Bloch vector close to the north pole.

The impurity fraction is calibrated through initial Rabi measurements using thermal atoms. A π/7

pulse is chosen, corresponding to∼ 5% population in the impurity state. Even though this fraction

is low the finite amount of impurities may give rise to interactions between them. It is therefore
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FIG. S4. Coherence amplitude at inverse interaction strength 1/kna =−5. The dashed blue line shows the

expected amplitude due to the inhomogeneous density distribution and the effect of finite impurity lifetime.

The green line is a fit including shot-to-shot fluctuations in the magnetic field yielding ∆noise = 1.8(1)kHz.

The error bars are 1σ confidence intervals of the fitted values.

important to examine if such impurity-impurity interactions influence the experiment.

To investigate this, additional measurements of the coherence were performed at 1/kna = −1

for 5%, 15% and 20% impurity fraction of the total atom number. However, no significant change

in coherence amplitude or phase was observed and therefore a fraction of 5% was chosen for the

experiments presented in the main manuscript. A similar investigation of the impurity fraction for

the spectral response of the Bose polaron was previously performed in this system [4]. In that

case, no significant effect was observed up to 25% impurity fraction and 10% were chosen for

those spectroscopic measurements.

SV. EXPERIMENTAL DATA ANALYSIS

In this section the main elements of the data analysis are presented. They consist of the normal-

ization of the coherence amplitude, a discussion of the coherence amplitude and phase evolution,

the extraction of the boundaries between the dynamical regimes of impurity dynamics, and the

calculation of the instantaneous energy.
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A. Experimental normalization of coherence amplitude

At weak interactions, we observe that the atom number loss from the BEC is consistent with

three-body recombination between one impurity atom and two medium atoms. However, towards

stronger interactions, we observe an increased loss, which is likely due to higher-order losses

under these conditions. This hinders a simple conversion between the amplitude of the BEC atom

number oscillations and the coherence amplitude, since a new proportionality factor is required at

each interactions strength.

Instead, we employ the general short-time model of Eq. (S13). For each data set, we fit the

measured coherence amplitude with Eq. (S13) within ∼ 10µs and obtain the initial amplitude

A (0), which is used to scale the measured coherence amplitude. Note that this normalization

procedure does not influence the coherence phase ϕC or relative amplitudes |C(t ′)/C(t)|.

B. Coherence amplitude and phase evolution

The three data sets presented in the main manuscript exhibit vastly different dynamical be-

havior. Here, we elaborate these differences and present the data side by side for a more direct

comparison.

In Fig. S5 the coherence amplitude (top row) and phase evolution (bottom row) for the three

interaction strengths discussed in the main manuscript are shown on logarithmic axes. For weak

interactions (a-b) the transition from two-body universal to weak coupling dynamics occurs at

very short times causing the data to exhibit weak coupling dynamics for a long interval of evo-

lution times until the transition to many-body dynamics. Beyond this transition the coherence

continues agreeing with the diagrammatic description, exhibiting many-body behavior which is

most pronounced for the coherence amplitude. At intermediate interactions (c-d) the data initially

displays clear signs of universal dynamics. Subsequently, the evolution slows down and the data

connects with the weak coupling dynamics. However, this behavior coincides with the transition

to the many-body regime, indicating that the smooth transitions between regimes cannot be distin-

guished when they occur at similar evolution times. Finally, the data at unitarity (e-f) shows clear

agreement with the universal prediction before the transition to the regime of many-body dynam-

ics. Subsequently, it continues to follow the diagrammatic description, showing clear many-body

behavior which is again most visible for the coherence amplitude.
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FIG. S5. Coherence amplitude and phase evolution at various interaction strengths. Dynamical evolution

at (a-b) 1/kna = −2, (c-d) 1/kna = −0.77, and (e-f) 1/kna = 0.01 . The theoretical prediction for two-

body universal and two-body weak coupling dynamics are shown as a dashed blue and dash-dotted green

line, respectively, and the diagrammatic description is given as a solid orange line. A dotted black line

indicates the transition between the two-body regimes and a dashed black line indicates the transition to the

many-body regime. The error bars are 1σ confidence intervals of the fitted values.

Generally, the amplitudes can be extracted more reliably even at small signal-to-noise ratio

when the phase determination fails.

C. Experimental determination of the dynamical transitions

In Fig. 1 (main manuscript) three distinct regions of dynamical impurity behavior are identi-

fied and the boundaries between these regions are shown to agree with the experiment. Here we

describe how the displayed data points are obtained experimentally.

The two-body universal and weak-coupling regions can be described by the general two-body

short-time equation (S13), while the third region is dominated by many-body physics. For the

data at |1/kna| ≥ 1.5 the general two-body expression Eq. (S13) fails to agree with the data for

times t ≥ 4tn, which indicates that many-body physics starts to dominate the evolution of the

coherence. This motivates the following criterion, which is applied to the data sets with |1/kna| ≥
1.5: The data point at the shortest time which is more than 2 standard errors away from the result

of Eq. (S13) is identified. The onset of many-body physics then corresponds to the time between
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this and the previous data point as shown in Fig. S1 (orange points). Due to this procedure, the

onset and its uncertainty is limited by the experimental resolution.

At unitarity, we investigate when the general two-body expression fails to reproduce the data in

a similar manner. We apply the same criterion to the data shown in Fig. 4 of the main manuscript

and obtain the data point shown in Fig. S1 (white point).

Finally, we analyse the crossover from two-body universal to two-body weak coupling behavior

for all data sets with |1/kna| > 0.5. To this end, Eq. (S13) is fitted to the measured coherence

amplitude and phase evolution for the initial dynamics with the transition time t̃a as the only free

parameter. The fitted values and their errors are also shown in Fig. S1 (blue points). Note that

some of the data sets do not include data points below the extracted value t̃a. The term dependent

on ta in Eq. (S13), however, modifies the shape of the curve for times far beyond the time ta itself,

allowing an extraction of this time.

D. Instantaneous energy

Based on the measured phase of the coherence function, the instantaneous energy of the im-

purity can be calculated as E(t) = −h̄dϕC/dt. In the mean-field regime, the system equilibrates

fast, causing the observed phase evolution to be linear, thus reproducing the constant mean-field

energy. For strong interactions, however, the equilibration of the system can be resolved while

the impurity state evolves dynamically. The slope of the phase evolution is extracted by piecewise

linear fitting to the data in overlapping bins of 4 points, which yields the instantaneous energy and

its error. This is shown in Fig. 4b (main manuscript) for the data set obtained at unitarity in good

agreement with the time derivative of the ladder approximation theory. Furthermore, the expected

polaron energy is plotted based on previously reported experimental results [6].
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3. IMPURITY DYNAMICS AND POLARON FORMATION

3.6 Initial dynamics of quantum impurities in
a Bose-Einstein condensate

In the previous section, a publication was presented entailing the first
experimental evidence of impurity dynamics in a Bose-Einstein condens-
ate [84]. Intriguingly, the dynamical evolution was observed to exhibit
three distinct regimes depending on the evolution time and the inter-
action strength between the impurity state and the medium state. The
following paper [85] expands this work with additional analyses of the
initial two-body dynamics using the same data sets. Due to an improved
calibration of the imaging system, slight differences appear between the
data shown in Ref. [84] and Ref. [85].

3.6.1 Results

The initial dynamics of the impurity evolution is governed by two-body
scattering between the impurity state and the medium state. Though
no exact solution exists for all evolution times, the short-time dynamical
behavior can be described analytically with a single equation. This is
possible using the Fourier transform of the high-frequency tail of the
spectral function, as discussed in Sec. 3.4. In the following paper [85],
this general two-body model is compared with initial observations at
weak and unitary interaction strengths. Excellent agreement is obtained
between theory and experimental data, which provides a benchmark
of the theoretical model. Furthermore, the clear agreement consolid-
ates using the two limits of the general two-body prediction to identify
the regimes of universal and weak coupling dynamics in the observed
evolution of the impurity state.

The transition from the two-body universal to the two-body weak
coupling regime is moreover investigated. The transition time is obtained
using a model-dependent fit in good agreement with the predicted value.
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condensate

Importantly, this fit is shown to be capable of extracting a value and an
error, even when they are small compared to the relevant dynamical
timescale tn .

Finally, the functional behavior of the two regimes is investigated by
fitting a power law to the observed coherence amplitude which allows
extracting a characteristic exponent and timescale. At weak interaction
strengths, these agree with predicted values of weak coupling dynamics.
For increasing interaction strength, the fitted exponent and timescale
gradually transform and eventually connect with the values of universal
dynamics at unitarity.

3.6.2 Outlook

The following publication [85] uses an exact description of the high-
frequency part of the impurity spectral function to predict short-time
dynamics. This model is an effective tool for characterizing the con-
tinuum of excited states, which has recently been employed in similar
theoretical and experimental investigations in ultracold gases.

The analytic description of the high-frequency tail was first presented
in the context of rf spectroscopy in a Fermi gas [87]. Here, it was used
to link the rf response to a quantity known as the two-body contact [88],
which qualitatively characterizes the probability of fermions with dif-
ferent spins to be very close together. Subsequently, two experimental
studies measured this two-body contact in a Fermi gas [89, 90].

The two-body contact was modelled for bosonic gases in Ref. [91],
which additionally predicted the existence of a three-body contact for
bosons. The bosonic two-body contact has been measured using rf spec-
troscopy in a Bose-Einstein condensate [92] and interferometrically in a
thermal Bose gas [86], which also observed the dynamical evolution of the
three-body contact. Recently, the two-body contact of the Bose polaron
was measured using rf spectroscopy [70]. An interferometric study of the
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polaronic contact therefore constitutes an exciting investigation and may
even allow the dynamical evolution of the contact to be resolved [93].

3.6.3 Publication

The data sets analyzed in the following publication [85] are the same
sets reported in the previous paper [84]. Here, I was part of designing
the experiment and acquiring the data. For the results presented in this
publication, I furthermore performed the data analysis, created all figures
and wrote first drafts of the manuscript.

66



atoms

Article

Initial Dynamics of Quantum Impurities in a
Bose–Einstein Condensate

Magnus G. Skou * , Thomas G. Skov , Nils B. Jørgensen and Jan J. Arlt

����������
�������

Citation: Skou, M.G.; Skov. T.G.;

Jørgensen, N.B.; Arlt, J.J. Initial

Dynamics of Quantum Impurities in

a Bose–Einstein Condensate. Atoms

2021, 9, 22. https://doi.org/10.3390/

atoms9020022

Academic Editors: Mistakidis Simeon

and Artem Volosniev

Received: 26 February 2021

Accepted: 23 March 2021

Published: 27 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Center for Complex Quantum Systems, Department of Physics and Astronomy, Aarhus University,
Ny Munkegade 120, DK-8000 Aarhus, Denmark; tg.skov@phys.au.dk (T.G.S.); nilsbyg@hotmail.com (N.B.J.);
arlt@phys.au.dk (J.J.A.)
* Correspondence: magnus.skou@phys.au.dk

Abstract: An impurity immersed in a medium constitutes a canonical scenario applicable in a wide
range of fields in physics. Though our understanding has advanced significantly in the past decades,
quantum impurities in a bosonic environment are still of considerable theoretical and experimental
interest. Here, we discuss the initial dynamics of such impurities, which was recently observed
in interferometric experiments. Experimental observations from weak to unitary interactions are
presented and compared to a theoretical description. In particular, the transition between two initial
dynamical regimes dominated by two-body interactions is analyzed, yielding transition times in clear
agreement with the theoretical prediction. Additionally, the distinct time dependence of the coherence
amplitude in these regimes is obtained by extracting its power-law exponents. This benchmarks our
understanding and suggests new ways of probing dynamical properties of quantum impurities.

Keywords: Bose–Einstein condensates; impurity dynamics; ramsey interferometry; polarons

1. Introduction

The behavior of interacting quantum impurities is a problem of significant scientific
and technological importance. Initial theoretical studies by Landau and Pekar [1] showed
that a crystal lattice dresses electrons to form quasiparticles coined polarons. This intuitive
model is highly successful and now serves as a basis for understanding complex condensed
matter systems [2]. The concept of polarons is thus central for important technologies such
as organic semiconductors [3] and high-temperature superconductors [4].

The initial dynamics of an impurity is especially intriguing. It sheds light on the
intrinsic link between two-body and many-body correlations, and is key to understanding
the eventual formation of a polaron. Due to the fast evolution times in most materials,
this evolution has eluded observation until recently. With the advent of quantum gases,
this is no longer the case since their low densities allow for long interrogation times in
pure and controllable environments. Based on these systems, the spectral response and
dynamical evolution of an impurity in a Fermi gas have been explored in great theoretical
and experimental detail [5–13]. The mobile Bose polaron, which resembles the solid-state
problem closely, has been studied spectroscopically [14–17] and its behavior has been
investigated in a one-dimensional Bose gas [18,19]. However, the formation dynamics of
the Bose polaron in a three-dimensional gas has remained unclear.

Here we present recent experiments, which succeed in investigating the dynamics
of impurities in a Bose–Einstein condensate (BEC). This evolution of the impurities can
be resolved using an interferometric sequence. The first pulse in this sequence creates
an imbalanced superposition state, which evolves under the influence of interactions
in the system. The second pulse then allows a measurement of the coherence between
the initial state and the evolved impurity state [20]. The dynamics of the impurity can
be separated into three regimes, as illustrated in Figure 1, depending on the interaction
strength and the evolution time. The initial dynamics at all interaction strengths is governed
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by two-body scattering between the impurity and the condensate. For short times, the
two-body scattering is unitarity-limited causing the coherence to evolve universally [21].
For weak interactions, this is followed by a regime of two-body weak coupling dynamics
which depends on the scattering length between the impurity state and medium state.
For longer times, the dynamical behavior transitions into a regime where many-body
correlations govern the evolution. For strong interactions, this regime is entered directly
from universal dynamics.

Figure 1. Regimes of impurity dynamics. Characteristic regimes of impurity dynamics as a function
of the inverse interaction strength 1/kna (see text) and the evolution time t/tn (see text). Solid lines
indicate predicted transitions between the dynamical regimes. Red data points are experimentally
extracted transition times and errors correspond to fit uncertainties. A similar figure was presented
in Ref. [20].

This dynamical evolution was initially investigated in Ref. [20] where all three regimes
were observed. Furthermore, the transition times between the regimes were obtained
showing clear agreement with theoretical predictions. In this paper, we extend the analysis
of the experimental observations to provide a deeper understanding of the two regimes of
universal and weak coupling dynamics illustrated in Figure 1. Specifically, we discuss the
transition time between them and consider the functional behavior of the coherence in the
two regimes.

The paper is structured as follows. In Section 2, the experiment is briefly presented
including the interferometric sequence. This is followed by the discussion of a theoretical
model in Section 3. In Section 4, this model is compared with experimental observations of
the coherence amplitude and phase evolution for weak and unitary interactions. The transi-
tion between the two regimes is discussed in Section 5. Finally, in Section 6 the dependence
of the dynamical evolution on interaction strength is presented.

2. Experimental Details

The experiment was performed using a quantum gas of 39K. The production of
39K BECs has been presented in detail in Refs. [14,22] and only the relevant steps for
investigating impurity dynamics are outlined here.

The experiments are based on a 39K BEC in the hyperfine state |F = 1, mF = −1〉 held
in an optical dipole potential with an average condensate density of nB = 0.9× 1014 cm−3.
This determines the system energy scale En = h̄2k2

n/2m through the wave number kn =
(6π2nB)

1/3 and importantly sets the relevant timescale tn = h̄/En = 4 µs. We employ a
second hyperfine state |F = 1, mF = 0〉 as the impurity state. The interaction strength
between the two states is characterized by the dimensionless parameter 1/kna, where a
is the interstate scattering length. This scattering length can be tuned by the magnetic
field via a Feshbach resonance located at 113.8 G [23,24]. The medium scattering length
is aB ≈ 9a0, where a0 is the Bohr radius, and is approximately constant for the applied
magnetic fields

An interferometric sequence consisting of two radio-frequency (rf) pulses is employed,
which allows us to populate an impurity state and probe the subsequent dynamics. Similar
interferometric investigations have previously explored impurity dynamics in a Fermi
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gas [8,9] and motional coherence of fixed impurities in a BEC [25,26]. The rf pulses are
resonant with the atomic transition and their short duration of 0.5 µs allows the dynamics
to be well resolved. The first rf pulse quenches the system into a superposition of the
impurity state and the medium state corresponding to a ∼5% population in the former,
which ensures vanishing interaction between the impurites [20]. The system then evolves
for a variable time t, in which the phase of the coherence advances and the coherence
amplitude decays due to interactions between the two states. Finally, a second rf pulse
probes the system with a variable phase ϕ. Subsequently, the atoms are held in the dipole
trap for an additional 2 ms where three-body losses remove two medium atoms for each
impurity. Thus, only medium atoms remain whose number is inversely proportional to the
number of impurity atoms after the second rf pulse. After free expansion the remaining
number of the medium state atoms is measured through absorption imaging.

This resulting atom number depends sinusoidally on the probe phase and for each
evolution time t we perform a fit N(ϕ) = N0 −A cos(ϕ− ϕC). Here, the amplitude A
corresponds to the extent to which the coherence is preserved and ϕC corresponds to
the phase acquired during the evolution time t. Thus, we obtain the amplitude |C(t)| =
|A(t)/A(0)| and the phase ϕC of the coherence for each chosen interaction strength and
evolution time. Example measurements of the coherence amplitude and phase are shown
in Figure 2 for weak and unitary interactions (Slight differences in the data with respect to
Ref. [20] arise due to an improved calibration of the imaging system.). These measurements
clearly display how the coherence of the system evolves as time progresses between the
two rf pulses.

Figure 2. Two-body dynamics at weak and unitary interaction strengths. The coherence amplitude (top row) and phase
evolution (bottom row) at 1/kna = −1.8 (a,b) and 1/kna = 0.01 (c,d). The corresponding data were previously presented in
Ref. [20]. Equation (1) is shown as a solid red line and the two limits in Equation (2) are shown as a dashed blue line and a
dash-dotted green line for the universal and the weak coupling dynamics, respectively. Note that the universal description
coincides with the general two-body model in panel (d). The errors correspond to fit uncertainties.

3. Two-Body Regimes of Dynamical Evolution

In the following section we briefly outline the theoretical description of the dynam-
ical regimes which we compare with our experimental results. A short-time theoretical
prediction can be obtained from the spectral function of the impurity. This describes the
impurity in the frequency-domain and generally contains a polaron ground state and a
continuum of excited states. Though the exact spectral function at arbitrary interaction
strength has no general solution, the tail of excited states at high frequencies has previously
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been investigated in detail [27]. Due to the intrinsic link between frequency-domain and
time-domain behavior, the Fourier transform of this high-frequency solution yields the
coherence for the initial two-body dynamics. For low medium-medium scattering length,
it can be expressed as [20]

C(t) '1− i
Emft

h̄
+

2
3π

(kn|a|)3
[

1− 2√
π

eit/ta Γ
(

3
2

, i
t
ta

)]
, (1)

where Γ is the incomplete gamma function, Emf = 4πh̄2nBa/m is the mean-field energy
and ta = ma2/h̄ is the timescale set by the medium-impurity scattering length a. The co-
herence amplitude and phase can be examined using the coherence in the small-angle
approximation. Thus, to the lowest order, the experimentally measured amplitude and
phase correspond to the real and imaginary part of Equation (1).

Remarkably, this two-body prediction is exact for any interaction strength from weak
to strong interactions [20]. Furthermore, it is possible to simplify Equation (1) in the
following limits

C(t) =





1− (1− i) 16
9π3/2

(
t

tn

)3/2
t� ta

1− iEmft/h̄− (1 + i)
(

t
tw

)1/2
t� ta

(2)

where tw = m/32πh̄n2
Ba4. The long-time limit of the equation is valid to second order in

the impurity-medium scattering length a, and it can be extended to include a third-order
correction [20]. Furthermore, it clearly demonstrates two distinct regimes. At short times
t� ta the high-frequency scattering is limited by the density and the coherence evolves
with an interaction independent timescale tn and an exponent of 3/2. For longer times
t � ta, this transitions into weak coupling dynamics marked by the appearance of the
mean-field energy, the interaction dependent timescale tw, and the exponent 1/2.

These power laws reflect the behavior of the scattering cross section σ(k) = 4πa2/[1 +
(ka)2] in the two regimes [20]. In a simple picture, it governs the collision rate, which
we assume to equal the rate of decoherence Ċ(t) ∼ −nBσv. At a given time t during the
evolution after the first rf pulse, the characteristic energy associated with decoherence is
E ∼ h̄/t, which sets the wave number k ∼

√
m/h̄t and collisional velocity v ∼

√
h̄/mt.

For short times t� ta, the cross section is unitary-limited σ ∼ 1/k2 ∼ h̄t/m. By integrating
the corresponding rate of decoherence we obtain C(t) ∼ (t/tn)3/2, which precisely reflects
the universal limit of Equation (2). In contrast, for longer times t� ta the cross section is
dominated by the scattering length as σ ∼ a2. Integrating the decoherence rate here yields
the weak coupling limit C(t) ∼ (t/tw)1/2. The timescale ta is therefore key in describing
which regime governs the dynamical evolution of the system.

4. Coherence Amplitude and Phase Evolution

Based on the experiment described in Section 2, it is possible to observe the evolution
of an impurity state by monitoring the coherence amplitude |C| and phase ϕC. Here we
compare such measurements with the theoretical prediction from Section 3. Examples of
measured coherence amplitude and phase are shown in Figure 2 for weak and resonant
interactions with the general two-body description (Equation (1)) for all panels and with
its limits (Equation (2)) for the phase.

For both data sets, the coherence amplitude decreases as function of evolution time,
driven by the dynamical scattering events. This shows that the impurity state evolves and
loses coherence with the initial state (To compare the experimental observations with this
prediction, the coherence amplitude is normalized by fitting Equation (1) with an overall
amplitude within tn.) at a rate which increases for large interaction strengths as expected.



Atoms 2021, 9, 22 5 of 9

Figure 3. Transition from universal to weak coupling dynamics. (a) The coherence amplitude and (b)
phase evolution at 1/kna = −1.3 (circles) with Equation (1) as a dash-dotted line for its fitted value
ta = 0.2tn (red) and as dashed lines using two additional values 0.05tn (purple) and 0.5tn (blue).
The errors correspond to fit uncertainties.

The coherence amplitude in the upper panels of Figure 2 is affected by additional
decoherence processes which all contribute to its gradual decay. To accurately model
the experiment, we therefore include effects stemming from the inhomogeneous density
distribution, the lifetime of the impurity and shot-to-shot magnetic field fluctuations in our
theoretical description. The dephasing due to the inhomogeneous density distribution is
accounted for by integration of the coherence over the density distribution of the BEC. This
is modeled in the Thomas–Fermi limit using a parabolic density profile. The lifetime of the
impurity due to recombination was measured independently and included by multiplying
the coherence with an exponential decay. The lifetime ranges from ∼7tn at unitarity to
∼42tn at weak interaction strengths. The shot-to-shot magnetic field fluctuations were also
measured independently and incorporated in the theoretical description of the coherence.
This was achieved by multiplying the coherence with the integrated distribution of phases
caused by the slight differences in the magnetic field at each experimental repetition.
Since the temperature of the cloud was ∼50 nK, the corresponding thermal timescale
h̄/kBT ∼ 38tn is beyond the accessible regime of impurity dynamics and thus thermal
effects are negligible. The resulting two-body prediction is illustrated in Figure 2 and
clearly agrees with the data for short times. Since no fitting parameters are employed,
the excellent agreement of the prediction and observations highlights that the theory
captures the dynamical behavior of the system exceedingly well.

The lower panels of Figure 2 show the evolution of the coherence phase as a func-
tion of time, where a faster evolution is observed for larger interaction strengths. Since
the experimental decoherence mechanisms primarily influence the coherence amplitude,
the phase is better suited to observe the power-law behavior of the coherence evolution. It
is therefore plotted in a double logarithmic fashion (Note that the coherence phase cannot
be reliably extracted for long evolution times due to the vanishing coherence amplitude.).
The imaginary part of Equation (1) is also shown in the lower panels of Figure 2 in good
agreement with the observations. To gain further insight, we show the limits of Equation (2)
as well. For weak interactions (Figure 2b) the transition from two-body universal dynamics
to weak coupling dynamics occurs almost immediately and the ∼t1/2 limit of Equation (2)
captures the entire observed phase evolution. At unitarity, the universal dynamics extends
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to much longer evolution times and thus the ∼t3/2 limit of Equation (2) coincides with
Equation (1) and agrees with the experimental observations.

In general, it is remarkable how well the measured coherence amplitude and phase
at short times agree with Equation (1) considering the wide span of interaction strengths
from weak to unitary. Moreover, our result shows that the limits of Equation (2) are valid
and allow a clear distinction of the two regimes. This consolidates our understanding of
the initial two-body dynamics and validates the theoretical prediction.

5. Transition from Universal to Weak Coupling Dynamics

Equation (2) shows that the transition between the universal and the weak coupling
regime is given by ta, which sets an important timescale of the dynamics and motivates
its experimental investigation. In the following we show that the transition time can be
extracted from the observations with a model-dependent fit and discuss the fitted results
as function of interaction strength.

The transition time ta appears in the general short-time prediction Equation (1) as
an interaction dependent timescale. We therefore fit Equation (1) simultaneously to the
coherence amplitude and phase evolution with ta as the only free parameter to extract the
transition between the two regimes. Importantly, we only fit the initial data of each set since
Equation (1) is only valid in the limit of short times. The fitted timescales at four interaction
strengths are shown in Figure 1a together with the predicted transition times between
the dynamical regimes. The extracted transition time increases for stronger interactions
indicating an extended evolution time of universal dynamics. Moreover, the timescale is in
clear agreement with the predicted value of ta.

Remarkably, the fitted value and its error are small compared with the dynamical
timescale tn. Since the duration of the probing pulses is 0.5 µs ∼ 0.1tn, it is not immediately
clear that such small timescales can be extracted experimentally. To illustrate the feasibility,
a fit at 1/kna = −1.3 is shown in Figure 3, which yields an extracted transition time of
0.2(2)tn in agreement with the predicted value of ta = 0.3tn. Additionally, two lines are
shown where ta = 0.05tn and 0.5tn. This figure thus clarifies that ta affects the functional
shape of the coherence at times much larger than its own value. Therefore, even small dif-
ferences in ta cause large discrepancies when compared with the experimental observation,
which is most pronounced for the coherence amplitude Figure 3a.

We thus demonstrate that a transition time can be extracted experimentally in agree-
ment with theoretical predictions. For sufficiently large interaction strengths |1/kna| . 0.5,
a transition to weak coupling dynamics is not observable, since the many-body regime is
entered directly.

6. Two-Body Exponent and Time Constant

The limits given by Equation (2) show that the universal and weak coupling regime
display distinctively different functional behavior corresponding to power-law exponents
3/2 and 1/2, respectively. We now turn our attention to the investigation of this functional
difference by fitting such a power law to the coherence amplitude and observing its
dependence on the interaction strength.

The two limits of the two-body prediction in Equation (2) are especially simple for
the coherence amplitude and follow the form 1− (t/tc)β. For weak coupling dynamics
β = 1/2 and tc is interaction dependent whereas for universal dynamics β = 3/2 and
tc is constant. By fitting a power law to the coherence amplitude within the regimes of
two-body dynamics, the fitted values of β and tc can indicate the functional behavior at the
chosen interaction strength.

The fitted exponents and time constants are shown in Figure 4 together with the weak
coupling and universal values. For low interaction strengths β agrees with the prediction
of weak coupling dynamics. At stronger interactions it slowly increases and reaches 3/2 at
unitarity in agreement with the universal prediction. The fitted time constant tc initially
decreases for increasing interaction strength and qualitatively follows the behavior of
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the predicted timescale tw of weak coupling dynamics. However, for strong interaction
strengths, where tw diverges, tc remains finite and connects with the universal value
of ∼2.1tn. The error bars correspond to symmetric fit uncertainties and the apparent
asymmetry is due to the logarithmic scale.

Figure 4. Characteristic exponent and time constant. By fitting a power law 1 − (t/tc)β to the
coherence amplitude, we obtain the characteristic exponent (a) and time constant (b) at various
interaction strengths. The theoretically predicted exponent and time constants for universal and
weak coupling dynamics are shown as a dashed blue line and a dash-dotted green line, respectively.
The errors correspond to fit uncertainties.

The experimental observations in the transition region between weak and unitary in-
teractions are influenced by the behavior of both two-body regimes. Therefore, the specific
values of β and tc bear no physical meaning and are a consequence of fitting a single time
dependence to the data when both weak coupling and universal dynamics are present.
Nonetheless, at weak and unitary interactions the fitted power law is dominated by either
one of the two-body regimes and we observe a smooth connection between the two in the
transition region.

7. Conclusions

The results presented here provide a detailed investigation of the initial two-body
dynamics of a quantum impurity in a BEC. The impurity dynamics has previously been
studied [20], and here we have extended the analysis of the initial universal and subsequent
weak coupling dynamics and the transition between them.

An interferometric sequence was used to measure the coherence of the system quenched
into a superposition of an impurity state and a medium state. The evolution of the coher-
ence was predicted by a rigorous short-time model, which showed a universal and a weak
coupling regime with distinct exponents and timescales. A direct comparison between the
experimental observations and the two-body theoretical prediction confirmed the validity
of the model.

The transition between the two regimes was analyzed at four interaction strengths
yielding transition times in clear agreement with the theoretical prediction as shown
in Figure 1. Additionally, the transition was investigated by fitting a power law to the
coherence amplitude, revealing how the exponent and time constant change from weak
coupling to universal dynamics for increasing interaction strength.
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These investigations improve our understanding of the fundamental properties of
quasiparticles. By comparing interferometic observations at long evolution times to ear-
lier spectroscopic results [14–17] a complete model for the Bose polaron in both time
and frequency-domain can be obtained. Furthermore, the experimental methods may
be expanded to help elucidate exotic phenomena such as transport processes [28,29] or
dynamical formation of bipolarons [30].
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4
ENERGY AND TIMESCALES OF THE

POLARON

Important properties of the polaron include its energy and dynamical
timescales. The shift in the energy of the impurity is caused by inter-
actions with the medium and can be measured both spectroscopically
and interferometrically. Interestingly, the interactions lead to the pres-
ence of two polaron branches with distinct energies at repulsive interac-
tion strengths. Furthermore, the polaron is marked by the timescales of
formation and lifetime of the impurity which, ideally, should be clearly
separated to permit investigations of the polaron. To examine the ener-
gies and timescales involved in polaron physics, this chapter analyzes
interferometric and spectroscopic observations of the Bose polaron.

The chapter is structured as follows. First, the spectroscopic and in-
terferometric experimental approaches are introduced in Sec. 4.1. This is
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4. ENERGY AND TIMESCALES OF THE POLARON

followed by a brief consideration of how impurity dynamics at repulsive
interaction strengths is expected to behave in Sec. 4.2. The instantaneous
energy of the impurity is then examined in Sec. 4.3, which may be used
when comparing interferometrically and spectroscopically measured po-
laron results. In Sec. 4.4, the timescales of the polaron are introduced
and their implications are discussed. Finally, in Sec. 4.2 a publication [94]
is presented, which includes the first measurement of impurity dynam-
ics at strong repulsive interactions, a comparison of observed impurity
energies from recent investigations and an analysis of the dynamical
timescales of the polaron.

4.1 Experimental approaches to study the
polaron

The polaron may be investigated in both time- and frequency-domain.
Where interferometric measurements reveal the dynamical formation of
the polaron [35, 36, 84], spectroscopic observations extract its spectral
response [30–33, 37, 38, 70]. Properties that influence the results of both
approaches include the polaron energy, the quasiparticle residue [95, 96]
and furthermore the timescales of polaron formation and loss. It is thus
imperative to understand the experimental methods and how they differ
in investigating polaronic physics.

The mobile polaron in a BEC was first observed using rf spectro-
scopy [37, 38]. As discussed in Sec. 2.4, these investigations measured
how the resonance frequency between a non-interacting and an inter-
acting impurity state changed as a function of the interaction strength
between the impurity and the medium. Spectroscopic methods generally
excel by using long pulses with a narrow frequency width to probe the
spectral response of the impurity. Since the energy spectrum of the Bose
polaron scales with En , previous investigations chose rf pulse lengths
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which yielded an experimental resolution of ∼ 0.1En [37, 38, 70]. Thus,
the spectral response of the impurity was well-resolved, and an attractive
and repulsive polaron branch were identified.

Measurements of impurity dynamics using an interferometric pro-
cedure were presented in Chap. 3. In these investigations, a Ramsey-like
sequence was employed, consisting of two rf pulses with a variable evolu-
tion time in between. Compared to the relevant timescale tn , the applied
rf pulses had a short ∼ 0.1tn duration and was thereby capable of resolv-
ing the evolution of the impurity state well. This allowed observations
of a transition from initial two-body dynamics to a regime governed by
many-body correlations wherein the polaron is formed.

The loss of the impurity through three-body collisions is also im-
portant to consider, since these losses may limit the equilibration of the
polaron. To investigate this, lifetime measurements were conducted in
Refs. [38, 84] by observing the population in the interacting impurity state
either directly or indirectly as a function of time. The decay rate of the
impurity was extracted from these measurement, which revealed fast
losses in the unitary regime and lifetimes on the order of 10tn . These
observations therefore permit a quantitative analysis of the timescales of
polaron dynamics.

4.2 Impurity dynamics at repulsive interaction
strengths

The Bose polaron has so far only been dynamically investigated at attract-
ive interaction strengths. Here, the spectral function is composed of a
peak marking the attractive polaron and a continuum of excited states.
When crossing the resonance into repulsive interaction strengths, the
spectral function becomes slightly more complicated, since a repulsive
polaron peak emerges from the continuum. The two polaron branches
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have been observed spectroscopically [37, 38], but their influence on
repulsive impurity dynamics in an ultracold Bose gas has until now re-
mained elusive.

To understand how two polaron branches affect the dynamics, the
scenario is now examined using a simple model. Naively, the spectral
function at repulsive interaction strengths may be expressed as two well-
defined narrow states at energies Ea and Er for the attractive and repulsive
polaron, respectively. By Fourier transforming this spectral function, the
ensuing dynamics is expected to exhibit oscillations with a characteristic
timescale ∼ h/|Er −Ea|, where h is Planck’s constant, due to a quantum
beat between the two states [97]. This is illustrated in Fig. 4.1 and close
to unitarity, where the energies are ∼ En , the beating correspondingly
occurs on the timescale ∼ tn . This behavior is distinctively different than
the power-law evolution of the initial impurity dynamics, which also
occurs on the timescale ∼ tn at large attractive interaction strength, as
discussed in Chap. 3. The presence of two polaron branches at repulsive
interaction strengths is therefore expected to be reflected by oscillations
in the observed dynamics.

For the impurity in a Fermi gas such a quantum beat was observed
in Ref. [36] at large interaction strengths. Furthermore, the Fourier trans-
form of the Ramsey signal revealed a double-hump structure indicating
two broadened polaron states in the spectral function. This result high-
lights the importance of including both branches when modelling the
impurity dynamics.

In the following publication [94], a diagrammatic model [47, 56] is
employed to analyze the data. The theoretical description includes both
polaron branches in the spectral function and is thus capable of describ-
ing dynamics at both attractive and repulsive interaction strengths. First,
the model is benchmarked to a measurement of impurity dynamics at
large attractive interaction strengths. Subsequently, it is compared to a
measurement at large repulsive interaction strengths to investigate how
influential the emergence of the repulsive polaron branch is.
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Figure 4.1: Illustration of a quantum beat. (a) Two polaron states are
involved with energies Ea and Er for the attractive and repulsive polaron
branch, respectively. (b) The resulting dynamics exhibits a quantum beat
between the two states. For the coherence amplitude this manifests as
oscillations with a characteristic timescale t ∼ h/|Er −Ea| [97].

4.3 Instantaneous energy of the impurity

The energy shift of the polaron is a signature property caused by interac-
tions between the impurity and the medium. For the attractive polaron
branch, the interactions lower the energy compared to that of a non-
interacting impurity state, whereas interactions increase the energy for
the repulsive branch, as discussed in Sec. 2.2. This energy shift was ori-
ginally used to identify the Bose polaron using rf spectroscopy [37, 38].
However, it is also important for interferometric observations, since the
polaron energy is expected to govern the phase evolution in the long-time
limit.

The phase evolution ϕC of the impurity can be measured using the
interferometric sequence discussed in Sec. 3.3. To investigate how the im-
purity equilibrates towards the polaron energy, the instantaneous energy
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is then defined as the slope of the phase evolution E(t) =−~dϕC/d t . A
reliable method for extracting this slope is therefore required. In Ref. [84]
this was achieved by fitting a linear function to the phase evolution in
overlapping bins of 4 data points. Thus, the fits indicate the slope of
the phase evolution in the center of each bin. However, to extract the
instantaneous energy at any given time in the interval of the observed
phase evolution, it is necessary to fit the data with a single function that
captures the behavior of the data well.

Such a fitting function can be found by considering the initial im-
purity dynamics. As discussed in the previous chapter, this dynamical
behavior may be described using power laws. Inspired by this, power-law
functions can be used as a simple ansatz for fitting to the entire, observed
phase evolution. In the following publication [94], a power-law fit Atβ is
therefore applied to the phase evolution of the impurity, with A and β as
free parameters. Though this function does not necessarily reproduce
the linear phase evolution that is expected for a well-defined polaron,
it is a simple way of capturing the measured phase in a single, intuitive
equation and investigating its slope. Thus, the instantaneous energy is
extracted as E(t) =−~Aβtβ−1. Using the data sets reported in Ref. [84],
the interferometrically measured energy of the impurity is then obtained.
These energies can be compared with previous spectroscopic results [54]
to investigate the link between the two experimental methods.

4.4 Polaron timescales

Generally, the life span of the polaron can be characterized by its initial
formation and the eventual loss of the impurity. These two timescales
need to be separated if the polaron as a well-defined quasiparticle is
to be studied. Furthermore, the timescales involved in the measuring
procedures require consideration. In this section, the ordering of these
timescales for clear investigations of the Bose polaron is briefly discussed.
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Figure 4.2: Illustration of the ideal ordering of timescales for investig-
ation the polaron. The shortest timescale is that of an interferometric
pulse length used to resolve impurity dynamics. This is followed by the
timescale of polaron formation and subsequently the spectroscopic pulse
length used to probe the equilibrium properties of the polaron in injec-
tion spectroscopy. Finally, the loss of the impurity through three-body
collisions should occur on the longest timescale.

Interacting ultracold Bose gases inherently suffer from fast losses
due to the possibility of three-body collisions. When investigating the
polaron it is important to consider how influential such losses are. If the
timescales of polaron formation and lifetime of the impurity are similar
in size, it is not possible for a well-defined quasiparticle to be formed.
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However, if formation time is shorter than the lifetime, the polaron may
equilibrate before it is lost.

The ideal ordering of the dynamical and experimental timescales is
illustrated in Fig. 4.2. To resolve the fast impurity evolution, interfero-
metric pulses shorter than polaron formation are necessary, whereas
spectroscopic pulses longer than formation but shorter than the lifetime
are required in injection spectroscopy to probe the equilibrium prop-
erties of the polaron. Previous investigations [37, 84] have discussed
how the formation and the lifetime influence their observations. How-
ever, a complete map of all timescales and their behavior for increasing
interaction strengths have not yet been examined.

The paper presented in this chapter [94] contains a quantitative com-
parison of the timescales involved in polaron physics. It uses the trans-
ition time to the regime of many-body dynamics, investigated in Sec. 3.5,
as a measure of initial polaron formation. Moreover, the lifetime is quan-
tified using previously presented measurements [84]. The experimental
timescales of spectroscopic and interferometric pulse lengths are chosen
to be the values used in previous polaron studies in the same system [37,
84]. This comparison thus constitutes a transparent investigation of the
relevant polaronic timescales and elucidate whether the experimental
approaches are capable of probing the polaron before it is lost.

4.5 Life and death of the Bose polaron

The following paper [94] investigates repulsive impurity dynamics, the
energy of the polaron and its timescales. The publication uses spectro-
scopic and interferometric measurements, which probe the polaron in
the frequency- and time-domain, respectively. Thus, a systematic picture
of the quasiparticle is developed. In the previous sections, the theoretical
concepts and analytical tools have been outlined, and in this sections the
main results are introduced and discussed.
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4.5.1 Results

In the following paper [94] an analysis of the interferometrically meas-
ured impurity coherence is presented. For the coherence amplitude, this
includes the first observation of impurity dynamics at strong repulsive in-
teractions. These measurements display a coherence amplitude evolving
faster than unitary dynamics and good agreement is obtained with a
diagrammatic prediction. This reveals the emergence of the repulsive
branch as the resonance is crossed into positive interaction strengths. A
very small revival is visible in the data indicating a quantum beat between
the two polaron branches. However, this feature is heavily suppressed by
additional experimental decoherence sources.

For the analysis of the coherence phase, a fitting routine extracts a
characteristic exponent for the dynamical behavior. This shows how uni-
versal effects increasingly influence the dynamics as the resonance is
approached. Furthermore, the slope of the fit is used to extract the in-
stantaneous energy. This is evaluated at the time of the last reliable phase
data and compared with the diagrammatic predicted polaron energy
and spectroscopic results. The high degree of agreement provides clear
evidence that the two experimental approaches succeeded in creating
and investigating different aspects of the same polaron.

Finally, the timescales of the polaron are investigated. This analysis
reveals clear separation of initial polaron formation time and the lifetime
of the impurity at all interaction strengths. The interferometric pulse
length is always an order of magnitude below all other timescales, which
indicates that it is well suited to investigate the polaron. The spectro-
scopic pulse length is in between polaron formation and its lifetime at
weak interaction strengths. However, the analysis indicates that an adapt-
ive pulse length could improve spectroscopic investigations at large and
unitary interaction strengths.
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4.5.2 Outlook

A related investigation using both rf spectroscopy and interferometric
sequences was performed for the Fermi polaron in Ref. [36]. Here, a care-
ful measurement of the spectral function was compared to the Fourier
transform of the Ramsey signal at three interaction strengths. The clear
agreement of the two experimental methods benchmarked the validity of
the interferometric sequence. This analysis is similar to the one presented
in the following paper [94]. However, here the focus is on the energetic
location of the attractive polaron peak and not the full spectral function.

Furthermore, recent studies have investigated the effects of having a
condensate with a finite temperature. Theoretically, the temperature has
been predicted to influence the energy of the Bose polaron [55, 98] and a
temperature dependence of the energy has also been measured experi-
mentally [70]. However, no indications of such a dependence have been
observed for the interferometric and spectroscopic studies discussed
here. In particular, both results agree with a T = 0 diagrammatic cal-
culation. For the interferometric observations, this can be explained
by the thermal timescale τ∼ ~/kBT associated with decoherence. The
temperature was T ∼ 50nK in these experiments and correspondingly
the thermal timescale was τ ∼ 38tn , which was beyond the accessible
regime of impurity dynamics. In the spectroscopic investigations, the
polaron energy was extracted from the center of the cloud. Here, the local
condensate fraction is almost unity and thus the effective temperature
is very close to zero [54]. Therefore, thermal effects are not expected to
influence neither the interferometric nor the spectroscopic observations
used in the following publication [94].

4.5.3 Publication

The investigation presented in Ref. [94] primarily reanalyzes data sets
already reported in Refs. [37, 54, 84]. However, the measurement of
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impurity dynamics at repulsive interaction strengths constitute a new
data set. These observations were acquired together with the data sets
presented in Ref. [84], where I was a part of designing and performing
the experiment. For this publication [94], I furthermore performed the
data analysis, created all figures and wrote first drafts of the manuscript.
The publication is currently in the stage of preparation before eventual
submission.
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Probing a system spectroscopically or interferometrically complements each other in extracting its fundamen-
tal properties. While spectroscopy may provide precise measurements of equilibrated energies, interferometry
can elucidate the dynamical evolution of the system. For an impurity immersed in a bosonic medium, both
are equally important for understanding its inherent many-body nature. Here, we investigate and compare two
recent experimental approaches in observing the Bose polaron [1, 2]. First, we show that an interferometric
measurement of impurity dynamics at strong repulsive interactions indicates the emergence of the repulsive po-
laron branch. Secondly, an analysis of the interferometric measurements allows for an independent extraction
of the impurity energy in good agreement with previous spectroscopic results. Finally, the dynamical timescales
of formation and loss of the polaron are discussed, revealing a well-defined quasiparticle at all interaction
strengths. This provides a complete picture of the many-body physics governing the polaron and thus validates
the quasiparticle framework for further studies.

I. INTRODUCTION

The concept of quasiparticles is widely used in many areas
of physics. It simplifies otherwise complex scenarios where
interactions in a system can be described as emerging prop-
erties of quasiparticles instead. A canonical example is the
polaron pioneered by Landau and Pekar [3]. Here, electrons
are coupled to lattice vibrations giving rise to a quasiparticle
they coined the polaron. However, these polarons have been
difficult to observe in many materials due to high densities and
fast evolution times or similar experimental challenges.

Quasiparticles have recently been experimentally realized
using quantum gases. These serve as a powerful platform
for simulating otherwise inaccessible regimes with high pre-
cision and have continuously advanced our understanding in
the field [4]. The polaron in an ultracold quantum gas consists
of an impurity and its excitations of the medium. This was ini-
tially studied in a Fermi gas using spectroscopic methods [5–
10], which investigated the polaron energy and its quasipar-
ticle residue. Subsequently, investigations of the dynami-
cal evolution of the Fermi polaron were conducted [11, 12],
which additionally provided evidence of a quantum beat be-
tween the two polaron branches. The challenging many-body
nature of impurities in Bose gases inherently complicates ex-
perimental realizations. It is nonetheless essential for a com-
parison of the electron moving through a crystal lattice with
bosonic excitations. Furthermore, it shows great potential
for understanding some aspects of high-temperature super-
conductivity and colossal magnetoresistance [13]. The mo-
bile Bose polaron was first observed spectroscopically [1, 14–
16] where the attractive and repulsive polaron branches were
identified. This provided a benchmark for our theoretical un-
derstanding of the polaron. Recently, a paper conducted the
first investigation of the dynamical properties of the Bose po-
laron [2]. Here, different regimes of dynamical behavior were

FIG. 1. Illustration of the polaron energy spectrum and experimen-
tal methods. A medium state |1〉 is shown as a solid orange line and
an impurity state |2〉 as solid blue lines. The impurity state is shifted
in energy due to interactions with the medium and features an at-
tractive and a repulsive polaron branch. Spectroscopic methods use
a single radio-frequency (rf) pulse, indicated with a single-headed
purple arrow, to investigate the spectral response of the impurity by
transferring a few atoms into the impurity state whereby polarons are
formed. Interferometric sequences use two rf pulses, indicated with
a double-headed green arrow, to measure the dynamical evolution
of a superposition of the medium state and the impurity state. The
dotted red line shows the molecular state at the repulsive side of the
Feshbach resonance.

observed from initial two-body universal dynamics through
two-body weak coupling and finally dynamics governed by
many-body correlations.

In this paper, we present a comparison of interferometric
and spectroscopic observations of the Bose polaron. Both
methods use the same two quantum states as medium and im-
purity, and their respective energy dependence are illustrated
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in Fig. 1. The spectroscopic approach investigates the spectral
response of the polaron through a three-body loss signal, and
the interferometric method employs a Ramsey-like sequence
to extract the dynamics of an impurity state as it equilibrates.
A measurement of impurity dynamics at strong repulsive in-
teractions is presented, which infers the existence of both an
attractive and a repulsive polaron state. Furthermore, a de-
tailed analysis of the phase evolution allows us to extract the
energy from weak attractive interactions to unitarity. This is
compared with previous spectroscopic results obtaining good
agreement. Finally, the dynamical timescales of the polaron
are investigated. These timescales include the polaron forma-
tion time, the lifetime of the impurity and experimental pulse
lengths, and comparing these reveals in which regime the in-
terferometric and spectroscopic approaches are most ideally
suited to study the polaron.

The paper is structured as follows. First, experimental de-
tails of the spectroscopic and interferometric observations and
loss measurement of the polaron are discussed in Sec. II.
Then, an analysis of the coherence amplitude based on the
interferometric measurements is presented in Sec. III. This
includes an observation of the impurity at large repulsive
interaction strengths. Sec. IV provides an analysis of the
phase evolution using a new fitting procedure. This allows
the interferometrically measured impurity energy to be ex-
tracted from weak to strong attractive interactions and com-
pared with previous spectroscopic results. Finally, the experi-
mental timescales are discussed in Sec. V with a focus on the
formation of the Bose polaron and the eventual loss of it.

II. EXPERIMENTAL DETAILS

The energy spectrum of the Bose polaron has previously
been investigated spectroscopically [1], and interferometric
observations of the polaron have measured its dynamical evo-
lution [2]. Both approaches are equally important in charac-
terizing the properties of the polaron and it is therefore im-
portant to discuss the similarities and differences of the two
experimental procedures. In this section, we review the exper-
imental details of these two approaches. Moreover, we discuss
recent dynamical loss measurements of the polaron.

Both the spectroscopic and interferometric experiments
were performed in the same system using 39K BECs. These
were produced in an optical dipole trap [17] in the |F =
1,mF = −1〉 ≡ |1〉 hyperfine state. A second hyperfine state
|F = 1,mF = 0〉 ≡ |2〉 served as the impurity state. The in-
teraction between the two states is characterized by the di-
mensionless parameter 1/kna, where the wave number kn =

(6π2nB)
1/3 is set by the average condensate density nB and a

is the scattering length between the two states. Importantly,
a can be controlled by magnetic fields through a Feshbach
resonance located at 113.8G [18, 19]. The scattering length
between medium atoms is constant aB ≈ 9a0 for the applied
magnetic fields, where a0 is the Bohr radius. Furthermore,
the impurity-impurity scattering length is ≈−15a0 and is not
relevant due to low impurity concentrations.

In a radio-frequency (rf) spectroscopic experiment, two

states are coupled with a rf field. For the system at hand,
these are the impurity and medium state with an approximate
atomic transition frequency of 76MHz. Interactions between
the two states lead to an energy shift of the resonance fre-
quency, which is measured by varying the frequency of the
rf pulse. The experiment is then repeated for many values
of 1/kna thus mapping out the complete spectral response
of the impurity. Spectroscopic measurements generally re-
quire a long probe pulse of low power to resolve the spec-
trum. The spectrum scales with the relevant system energy
En = h̄2(6π2nB)

2/3/2m and a square pulse of 100µs duration
was used in Ref. [1], achieving an experimental resolution of
0.15En. If the frequency of the rf pulse matches the transi-
tion frequency from the medium state to the impurity state,
atoms are transferred into this state and polarons are formed in
the medium. The transition frequency is generally broadened
due to the continuum of excited states and the inhomogeneous
density of the medium. Following the formation of polarons,
they are quickly lost through three-body recombination with
two medium atoms. It is therefore not possible to obtain a
direct measurement of the polarons. However, the loss mech-
anism can be utilized as the experimental signal. By vary-
ing the frequency of the rf pulse while measuring the number
of medium atoms using absorption imaging, the spectral re-
sponse of the polaron is thus extracted. This procedure is an
example of injection spectroscopy and probes both the ground
state of the polaron and the continuum of excited states. For
the specific measurements in Ref. [1], the pulse power was
chosen to transfer 10% into the impurity state.

To investigate the formation of the Bose polaron, a differ-
ent technique is required to resolve the dynamical evolution.
This can be achieved with an interferometric sequence, which
produces a coherent superposition with a first rf pulse and
probes the system with a second rf pulse following a vari-
able evolution time. This scheme corresponds to a Ramsey
sequence [11, 12, 20, 21]. However, instead of equal superpo-
sitions, a small initial rotation is employed. This allows the |1〉
state and the |2〉 state to be assigned as medium and impurity
state, respectively. In the experimental system outlined above,
this procedure can be realised with very short pulses of 0.5µs
duration resonant with the atomic transition. These pulses are
well below the characteristic timescale tn = h̄/En ∼ 4.8µs and
thus ideally suited to resolve the dynamics. Specifically, the
pulses correspond to π/7 pulses and the first pulse creates a
superposition of the |1〉 state and the |2〉 state with a ∼ 5%
population of the the latter. After the initial pulse, the sys-
tem evolves toward the polaron state. Interactions cause the
system to decohere characterized by |C(t)| and to evolve with
a certain phase ϕC(t). A second pulse is then used to probe
the system. This pulse is applied with a variable phase be-
tween [0,2π]. Depending on the phase of the second pulse,
additional atoms are transferred to the impurity state or im-
purity atoms are transferred back to the medium state. This
corresponds to a sinusoidal Ramsey signal. Following the in-
terferometric sequence, absorption imaging is used to extract
the spin population and by fitting to the measured Ramsey sig-
nal, the amplitude |C(t)| and phase ϕC(t) are obtained. This
provides the coherence C(t) = |C(t)|eiϕC(t) between the initial
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state and the time evolved impurity state.
Finally, the lifetime of the impurity state sets an important

limit for both experiments. We refer to this as the death of the
polaron. The lifetime of the impurity should ideally be longer
than the dynamical evolution towards the polaron state. Such
a separation of timescales leads to a well-defined polaron and
enables its investigation. The lifetime of the impurity state
is therefore investigated experimentally by using a third state
as follows [2]. At a chosen interaction strength, a BEC is pre-
pared in the |1〉 state. An initial rf pulse of 0.8µs duration then
creates a superposition of the |1〉 and |2〉 states corresponding
to a 10% population in the latter. In a following evolution
time t, some of these impurities are lost predominantly due to
three-body collisions, where two medium atoms are lost for
each impurity atom. Subsequently, a second rf pulse of ∼ 9µs
duration transfers the remaining impurity atoms to the hyper-
fine state |F = 1,mF = +1〉 ≡ |3〉. The impurities in the |3〉
state can perform spin-flip collisions with the medium atoms
in the |1〉 state, where both atoms obtain sufficient kinetic en-
ergy to leave the trap. This fast two-body mechanism removes
a single medium atom for each impurity practically instanta-
neously. Since the two processes lead to a difference in the
number of lost medium atoms, this sequence allows us to ob-
tain the loss rate of impurities in the |2〉 state by measuring
the number of medium atoms in the |1〉 state as a function of
the evolution time t at different interaction strengths.

III. NEAR-UNITARY IMPURITY DYNAMICS

In this section, we analyze the interferometrically measured
coherence amplitude |C(t)| for two data sets at near-unitary
interaction strengths. In Refs. [2, 22], the dynamics of the co-
herence was shown to exhibit three regimes depending on the
interaction strength and the evolution time. Initially, two-body
universal dynamics governs the evolution which is followed
by a two-body weak coupling regime with an interaction de-
pendent timescale. Finally, at long evolution times the impu-
rity dynamics eventually transitions into a regime of many-
body correlations.

At large interaction strengths, the scattering between the
impurity state and the medium state is limited by the con-
densate density. Thus, the initial two-body universal dynam-
ics transitions directly into a many-body regime in agreement
with a diagrammatic prediction [2]. We therefore compare
the observed amplitude with the universal description and this
many-body prediction.

A. Strong attractive interactions

We begin by analyzing the interferometric results at large
attractive interaction strengths 1/kna =−0.26. Generally, the
dynamics can be described as the Fourier transform of the
spectral function [2, 22]. Thus, the initial behavior of the co-
herence can be obtained by Fourier transforming the tail of the
spectral function for high frequencies [23]. For the coherence
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FIG. 2. Impurity dynamics at strong interactions. The coherence
amplitude (a) at 1/kna = −0.26 and (b) at 1/kna = +0.3 is shown
as grey circles. A two-body density-limited universal prediction is
shown as a dashed blue line and a many-body prediction as a solid
orange line.

amplitude this yields the following universal behavior

|C(t)|= 1− 16
9π3/2

(
t
tn

)3/2

(1)

for t � ma2/h̄. This expression is a direct consequence of
the high-frequency interaction independent scattering the im-
purity state undergoes for short times [24]. This was previ-
ously shown to capture the initial dynamics exceedingly well
directly at unitarity [2].

For large interaction strengths |1/kna| . (2/3π)1/3 [2],
the universal behavior is followed by many-body dynam-
ics. There exists no exact solution for the dynamical evo-
lution at these strong interactions. Instead, theoretical ap-
proaches to obtain approximate solutions have included dia-
grammatic [25–27], variational [24, 28] and quantum Monte
Carlo calculations [29, 30]. Here, we employ the former
which uses a ladder approximation valid for all interaction
strengths to derive a spectral function containing a polaron
ground state and a continuum of excited states. It models the
impurity dynamics by Fourier transforming this spectral func-
tion thus obtaining the impurity coherence function [2].

Figure 2(a) shows the coherence amplitude for 1/kna =
−0.26 together with the two-body universal and the diagram-
matic description. The observed amplitude reveals a fast early
decrease followed by a slower evolution for longer times. The
initial dynamics is in clear agreement with both theoretical



4

descriptions until the dynamics enters the many-body regime
at ∼ 1.4tn [2]. Here, the slower evolution of the observations
is captured well by the diagrammatic description. This out-
standing agreement of the experimental observations and the
ladder approximation solidify our understanding of the many-
body correlations.

B. Strong repulsive interactions

We now analyze the first interferometric measurement
of the Bose polaron at large repulsive interaction strengths
1/kna =+0.3. Generally, at strong repulsive interactions two
polaron branches are present as shown in Fig. 1. The attractive
branch crosses the resonance approaching the molecular state
and at higher energies a repulsive state emerges but is damped
due to the possibility of decay into lower lying states. We
therefore expect both branches to affect the ensuing impurity
dynamics.

Directly at unitarity the scattering length diverges and the
dynamics is set by the universal timescale tn. One would in-
tuitively presume this to be the fastest evolving decoherence
for any interactions, since the only limiting factor is the den-
sity. However, when crossing the resonance into strongly re-
pulsive interactions, we observe an even faster evolving sys-
tem. This is shown in Fig. 2(b) for the coherence amplitude
at 1/kna =+0.3 in comparison with the universal prediction.
Here, the observed amplitude quickly decays and vanishes for
the first time at 3tn. The amplitude clearly evolves faster than
the two-body universal prediction which captured the initial
dynamics at unitarity [2]. This discrepancy is attributed to the
presence of two polaron branches at these repulsive interac-
tion strengths, which is not included in the universal descrip-
tion.

A better model of the repulsive impurity dynamics is given
by the ladder approximation since it contains both branches
and is valid for attractive as well as repulsive interaction
strengths. Importantly, it predicts a coherence amplitude
evolving faster than universal dynamics. Moreover, it captures
the initial behavior of the observations well, thus showing the
necessity of including both polaron branches.

A special feature of impurity dynamics at repulsive inter-
action strengths is a quantum beat between the two polaron
branches [12]. In the experimental realization such a revival is
suppressed due to three-body losses. However, the data does
display a minima followed by a small revival, which may in-
dicate such a quantum beat. For the diagrammatic description
the revival is more clearly seen.

These observations constitute the first measurement of im-
purity dynamics at repulsive interaction strengths in a BEC
and indicate a complex situation with multiple states respon-
sible for the effective dynamics. However, the high degree of
consensus for both strongly attractive and repulsive interac-
tion strengths consolidates the diagrammatic description as a
good model for the system.
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FIG. 3. Phase evolution and fitted exponent. The observed phase
evolution and applied fit is shown for (a) 1/kna=−2 and (b) 1/kna=
0.01. (c) Characteristic exponent obtained by fitting a power law to
the phase evolution. The dash-dotted green line indicates the mean-
field exponent and the dashed blue line shows the two-body universal
exponent.

IV. IMPURITY ENERGY

The phase evolution is generally a rich source for obtaining
information of a given system. This has previously been used
to measure the relative phase of a two-component BEC [31]
and to obtain the two- and three-body contact in a unitary Bose
gas [32]. In this section, we extract the energy of the impurity
from the measured phase evolution. This permits a compari-
son between the interferometrically measured polaron energy
and previous spectroscopic results.

A. Interferometric phase analysis

Similarly to the coherence amplitude, the phase evolution is
also governed by different dynamical regimes [2, 22]. These
include the two-body universal, the two-body weak coupling
and the many-body regime as discussed in Sec. III. In the fol-
lowing, the transition between the universal and the weak cou-
pling regime is investigated by applying a power-law fit to the
observed phase evolution. This provides the exponent, which
signals the functional behavior of the two regimes.

Generally, the initial two-body behavior of the phase evo-
lution can be obtained by Fourier transforming the high-
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frequency tail of the spectral function similarly to the coher-
ence amplitude [23]. Its behavior depends on both the medium
density nB and the scattering length a between impurity state
and medium state. The corresponding phase evolution can be
reduced to the following limits [2]

ϕC(t) =





16
9π3/2

(
t
tn

)3/2
t� ta

−Emft/h̄−
(

t
tw

)1/2
t� ta.

(2)

Here ta = ma2/h̄ is the transition time between initial
universal and subsequent weak coupling dynamics, Emf =
4π h̄2nBa/m is the mean-field energy and tw = m/32π h̄n2

Ba4

is the interaction dependent timescale for weak coupling dy-
namics.

At strong and unitary interactions, ta approaches infinity
and the initial phase evolution is solely determined by the two-
body universal regime, where the exponent is β = 3/2. This
was the case treated in Sec. III. For weak interaction strengths,
ta is typically smaller than the experimental resolution and the
dynamics quickly transitions into the two-body weak coupling
regime. Here, the phase evolution is characterized by both a
linear and a square-root time dependent term. However, the
linear mean-field term with β = 1 dominates and governs the
evolution when t � 2ma2/π h̄ ∼ 0.64ta which is always ful-
filled in this regime. At longer evolution times, the dynamics
enters the regime of many-body correlations where no single
power-law behavior is expected.

Inspired by this, we fit a power law to the observed phase
evolution ϕC(t) = Atβ to investigate how the exponent be-
haves for increasing interaction strength. Selected phase evo-
lutions and applied fits are shown in Fig. 3(a-b). For a weak
interaction strength, the phase evolves linearly, however, for a
unitary interaction strength, the phase evolution is both faster
and slightly non-linear. The power law fits the observations
well indicating that the behavior of the data is clearly cap-
tured. A similar analysis has previously been employed for
the coherence amplitude [22], where a power law was fitted
to the data to characterize the same transition. However, since
the phase is not directly affected by the same experimental
decoherence processes, the analysis here is greatly simplified.

The fitted exponent is shown in Fig. 3(c) together with
the mean-field and universal values. At weak interaction
strengths, the fitted exponent clearly signals dynamics gov-
erned by mean-field effects and agrees with β = 1. For larger
interaction strengths, it slowly increases before agreeing with
the universal prediction β = 3/2 at unitarity. This indicates
how beyond mean-field effects become increasingly impor-
tant with increasing interaction strength as the observed phase
evolution clearly separates from linearity for 1/kna & −0.5.
Since the phase evolution at all interaction strengths is subject
to more than one regime of impurity dynamics, the exponent
is the result of the fit trying to accommodate different time
dependencies in a single value. However, the fitted exponent
does indicate which regime is dominant within the interval of
reliable experimental data.
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FIG. 4. Instantaneous energy at strong interactions. The instanta-
neous energy, obtained from fitting a power law to the phase evolu-
tion at 1/kna =−0.26, is shown as a solid purple line and the dash-
dotted purple lines reflect the propagated error from the 1σ confi-
dence interval of the fitted values. A diagrammatic prediction of the
polaron energy is shown as a solid green line. (inset) The phase evo-
lution and the power-law fit at 1/kna =−0.26 are shown.

B. Instantaneous energy

The fitting procedure discussed above allow us to inves-
tigate the instantaneous energy of the impurity from weak
to large attractive interaction strengths. We furthermore use
this for a direct comparison with previously reported spectro-
scopic results, which provides a clear benchmark of the two
experimental approaches.

The phase evolution of the polaron state is for long times
governed by its energy. For weak interaction strengths, the
impurity exhibits a mean-field shift in energy and correspond-
ingly the phase evolution is linear as shown in Fig. 3(a).
However, this changes with increasing interaction strength as
shown in Fig. 3(b). We therefore define the instantaneous en-
ergy as the slope of the phase evolution at any given time
E(t) = −h̄dϕC/dt. With the fitted power-laws Atβ this cor-
responds to E(t) =−h̄Aβ tβ−1.

An example is shown in Fig. 4. Here the instantaneous
energy at 1/kna = −0.26 displays a fast initial decrease fol-
lowed by a slower evolution as the impurity reaches its steady
state. The inset of Fig. 4 consolidates the validity of the ap-
plied power-law fit. A theoretical description of the Bose po-
laron energy [15] is also included. The instantaneous energy
reaches this value at∼ 1.5tn showing that the impurity quickly
evolves to a state with similar energy as the Bose polaron.

To compare the interferometrically measured energies with
the spectroscopic result, we now extract the instantaneous en-
ergy evaluated at the time of the last reliable phase data. This
represents the energy of the impurity state at the longest ob-
servable evolution time and its behavior for increasing inter-
action strength can thereby be investigated. Figure 5 shows
the extracted energies together with previous experimental
observations, a diagrammatic prediction and the mean-field
energy [15]. The interferometrically measured energies de-
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FIG. 5. Impurity energy at attractive interaction strengths. The im-
purity energies at the longest observable phase evolution are shown
as grey circles together with the spectroscopically measured polaron
energies as light blue diamonds and a diagrammatic prediction as a
solid green line [15]. The mean-field energy is shown as a dash-
dotted green line

creases with increasing interaction strength. For weak inter-
action strengths, they are in clear agreement with the dia-
grammatic predicted energy, whereas they only qualitatively
agree with the spectroscopic result. However for large in-
teraction strengths, excellent agreement is obtained between
the interferometric and spectroscopic observed energies. This
provides clear evidence that the interferometric and spectro-
scopic method inherently create and probe similar systems,
though they differ in their experimental approach with pulse
lengths separated by orders of magnitude.

V. IMPURITY TIMESCALES

To investigate the Bose polaron, it is crucial that experi-
mental timescales and dynamical timescales of the polaron are
clearly separated, which is investigated in this section. The
inherent timescales of the polaron are associated with its for-
mation and with its lifetime, which both depend on the in-
teraction strength. Experimentally, we need a probing pulse
for spectroscopic investigations that is long enough to allow
formation but shorter than the lifetime of the impurity. For in-
terferometric observations, we need pulses shorter than both
formation time and lifetime in order to resolve the polaron
dynamics.

Previous spectroscopic measurements [1] have shown that
losses occur on a separate timescale compared to polaron dy-
namics, since the width of the spectrum agreed with theoreti-
cal predictions without the inclusion of three-body losses. Re-
cently, interferometric observations were conducted [2] which
resolved the initial impurity dynamics. Based on these exper-
iments it is possible to investigate and resolve the timescales
of the polaron.
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FIG. 6. Many-body transition and energetic polaron formation. The
times at which the instantaneous energy equals the diagrammatic pre-
dicted polaron energy can be obtained for 1/kna&−0.5. These ener-
getic polaron formation times are shown as grey circles. The many-
body transition is shown as a solid orange line for the theoretical pre-
diction and as orange circles for the experimental observations [2].

A. Polaron formation

The polaron generally consists of intricate many-body in-
teractions between the impurity and the surrounding medium.
When an impurity state is introduced in a medium, these inter-
actions gradually lead to correlations forming over time. The-
oretically, the formation timescale can be defined as the time
when the impurity coherence amplitude is equilibrated at the
quasiparticle residue [33, 34]. In experimental realizations,
this equilibration is often masked by decoherence mechanisms
such as dephasing from inhomogeneous density distributions,
finite impurity lifetime and magnetic field fluctuations, pro-
hibiting a direct observation of this equilibration timescale.

To quantify the time of initial polaron formation, an exper-
imental accessible parameter is required, since the theoreti-
cally predicted formation time is not observable. However, the
evolution of the impurity towards the polaron possesses a clear
transition from initial two-body to many-body dynamics [2].
Since the polaron is embodied by these many-body correla-
tions, we assign this transition to the early onset of polaron
formation. Furthermore, it is possible to extract a timescale
for the energetic polaron formation from the instantaneous en-
ergy. In the following, we therefore compare the many-body
transition and the timescale of energetic formation to obtain a
measure of initial polaron formation.

The timescale of energetic formation describes the evolu-
tion time required for the impurity to reach the Bose polaron
energy. This time is obtained by comparing the instantaneous
energy of Sec. IV with the diagrammatic predicted polaron en-
ergy. The time of energetic formation is then identified as the
time when these two energies are equal. An example of this
is shown in Fig. 4 where the energetic formation timescale is
1.4tn.

Figure 6 shows the timescales of energetic formation and
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FIG. 7. Experimental and dynamical timescales of the Bose polaron.
The dash-dotted black line shows the interferometric pulse length
and the solid orange line shows the many-body transition time as
a measure of initial polaron formation. The dash-dotted blue line
shows the spectroscopy pulse length and the red circles are impurity
lifetime measurements with a fit shown as a dashed red line [2].

the many-body transition. The three data points of ener-
getic formation all indicate that the polaron energy is reached
within 2tn. Furthermore, they agree well with the transition
to the many-body regime at large interaction strengths. This
method is only applicable when the exponent β > 1 which
from Fig. 3(c) corresponds to 1/kna & −0.5. Nonetheless,
this comparison consolidates that the many-body transition is
a good indicator of initial polaron formation.

B. Experimental timescales

Based on the previous discussion of initial polaron for-
mation, we may now compare the four relevant dynamical
timescales. These include the interferometric pulse length, the
initial formation time, the spectroscopic pulse length and, im-
portantly, the lifetime of the polaron as discussed in Sec. II.
Ideally, the timescales should be well separated and arranged
in particular with the lifetime of the impurity longer than
polaron formation to allow for the quasiparticle to be well-
defined. Furthermore, the spectroscopic pulse length should
be between the timescales of formation and lifetime, and the
interferometric pulse length below all others in order to re-
solve the dynamics well.

Figure 7 shows these timescales as a function of the inverse
interaction strength where all timescales have been scaled by
tn = 4.8µs. This reveals that initial polaron formation always
precedes the loss of the impurity. Importantly, this permits in-
vestigations of the polaron. The free experimental parameters
are then the length of the spectroscopic and interferometric
pulses.

To investigate the polaron spectroscopically, ideally a pulse
length longer than initial formation but shorter than the life-
time is required. However, a single pulse length may not nec-
essarily fulfil this requirement at all interaction strengths and

in Fig. 7 a compromise is therefore seen. For more precise
measurements, an adaptive pulse length could be employed.
Specifically, longer pulses are optimal for investigations at
weak interaction strengths, whereas shorter pulses are well
suited for measurements at strong interactions.

For all interaction strengths, the interferometric pulse is an
order of magnitude below the other timescales. This supports
that interferometric measurements clearly resolve the dynam-
ics of the impurity even at the resonance, where the dynamics
occur at the unitarity-limited timescale tn.

VI. CONCLUSION

To summarize, we have here provided a detailed investi-
gation of interferometric and spectroscopic measurements of
the Bose polaron. The results include an observation of im-
purity dynamics at repulsive interaction strengths, an extrac-
tion of the instantaneous energy of the polaron in agreement
with previous results, and a thorough analysis of the dynami-
cal timescales of the polaron.

An interferometric measurement of the coherence ampli-
tude at strong interactions revealed faster decoherence pro-
cesses at large repulsive interaction strengths than at unitarity.
Importantly, this indicates the presence of both an attractive
and a repulsive polaron branch. Furthermore, the observations
were in agreement with a many-body theoretical prediction
which included both branches. This prompts the necessity for
further investigations of impurity dynamics at repulsive inter-
action strengths.

Secondly, we obtained the instantaneous energy of the im-
purity from interferometric measurements. This impurity en-
ergy was compared with previous spectroscopic results from
weak to strong attractive interactions obtaining clear agree-
ment.

Finally, the timescales of the interferometric pulse length,
the initial polaron formation time, the spectroscopic pulse
length and the lifetime of the impurity were investigated.
This showed a clear separation of formation time and life-
time at all interaction strengths. Furthermore, the compari-
son highlighted the capability of the interferometric approach
to clearly resolve polaron dynamics and suggested new routes
for spectroscopic measurements.

Based on this thorough discussion of the two experimental
approaches employed so far, the stage is set for further inves-
tigation of the Bose polaron. While the size of the smallest
Efimov trimer is much larger than the interparticle spacing,
it has nonetheless been proposed to influence the energy of
a resonantly interacting polaron [35]. Expanding investiga-
tions of the polaron energy at unitarity, by varying the density,
may enable studying such a universal dependence on the Efi-
mov three-body parameter. Another interesting aspect is the
dynamics at higher impurity fractions, which may show me-
diated polaron interactions [26]. Such effective interactions
are predicted to enable deeply bound states of bosonic bipo-
larons [36], which have so far been elusive to experimental
observation. However, employing ejection spectroscopy [16]
may enable measuring these exotic states.
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5
OBSERVATION OF BIPOLARONS

A polaron is composed of an impurity and its interactions with a sur-
rounding medium. Interestingly, polarons are also capable of interacting
with each other through the density of the medium. A recent theoretical
study predicted that such induced interactions between two polarons
in a Bose-Einstein condensate can lead to a bound state [57]. This state
is known as a Bose bipolaron, and in this chapter the first experimental
observations of such bipolarons are presented.

The chapter is structured as follows. First, the effective interactions
between polarons and the formation of bipolarons are introduced in
Sec. 5.1. Subsequently, in Sec. 5.2 the experimental procedure and the
challenges in observing bipolarons are discussed. In Sec. 5.3, a line shape
function used to model the spectral response of the system is introduced,
and in Sec. 5.4 the first experimental evidence of dynamically forming
bipolarons is presented and the effects of a finite impurity fraction are dis-
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cussed. The observed bipolaron energy at strong attractive interactions
is then shown in Sec. 5.5 and the experimental limitations are considered.
This is followed by a presentation of the measured polaronic quasiparticle
residue in Sec. 5.6 and a discussion of a similar measurement for the bi-
polaron. Finally, the results of this chapter are summarized in Sec. 5.7.

5.1 Effective interactions between polarons

Bipolarons are important examples of the scenario where induced inter-
actions lead to the formation of bound states [57, 99]. Investigations of
such intricate interactions between complex many-body quasiparticles
are inherently challenging but exceedingly interesting, since they are
significant for the comprehension of many fascinating materials. In par-
ticular, bipolarons have been used for a simplified model of quantum
dots [100] and have also been proposed as a mechanism for organic
magnetoresistance [101].

The induced interactions between polarons are not caused by direct
impurity-impurity scattering. Instead, they are mediated by the exchange
of Bogoliubov sound modes in the condensate. This can be modelled
using the Landau effective interaction, which has successfully been em-
ployed to impurities interacting with a Bose-Einstein condensate. Im-
portantly, the effective interaction is more pronounced for Bose polarons
than Fermi polarons, since a BEC is more compressible than a Fermi gas.
Besides the formation of bipolarons, the interaction has been predicted
to cause a shift in the polaron energy [56].

The formation of a bipolaron is illustrated in Fig. 5.1 for two polarons
in a homogeneous medium. For low interaction strengths between the
impurity and the medium, the polarons have little interactions with each
other. Larger impurity-medium interaction strengths increase the effect-
ive interaction between the polarons through the density fluctuations of
the medium. At sufficiently large interaction strengths, the two polarons
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interaction strength

Figure 5.1: Illustration of induced interactions between two polarons at
three impurity-medium interaction strengths. For increasing interaction
strength, the interactions between the polarons mediated by the medium
density become stronger as well. A bound state constituting the bipolaron
is formed beyond a critical interaction strength.

form a bound state constituting the bipolaron.
This bound state will be the focus of the following sections. The energy

of the bipolaron was calculated in Ref. [57] as a function of interaction
strength using a diagrammatic approach. This revealed a significant shift
away from the polaron energy for strong attractive interactions. The
predicted bipolaron energy was moreover compared to quantum Monte
Carlo simulations obtaining excellent agreement, thus benchmarking the
diagrammatic description.

5.2 Experimental procedure

Injection and ejection spectroscopy are two effective ways of studying im-
purities, and they have both been employed to observe the Bose polaron.
The first measurements of the Bose polaron indeed used rf injection
spectroscopy to investigate the energy spectrum by injecting impurities
into an interacting state using a pulse with a narrow frequency width,
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thus resolving the spectral response of the impurity [37, 38]. Recently, rf
ejection spectroscopy was employed for a more precise measurement
of the Bose polaron [70], where the spectrum was obtained by ejecting
the impurities from the polaronic interacting state into a non-interacting
state. The link between the two approaches has also been studied theor-
etically [102] and here, both methods are used to investigate the spectral
response of polarons and bipolarons. This section therefore outlines
experimental procedures for using injection and ejection spectroscopy.

Initially, a 39K BEC in the hyperfine state |F = 1,mF = −1〉 ≡ |1〉 is
held in an ODT. The experimental production of such a BEC is discussed
in Sec. 3.2. For the following investigations, the mean geometric trap
frequency was 2π×70Hz and the temperature was 70nK. The resulting
average density of the condensate was nB = 0.6×1014cm−3, which sets
the interaction independent energy scale En = ~2k2

n/2m through the
characteristic wavenumber kn = (6π2nB)1/3. Furthermore, the relevant
dynamical timescale was tn = ~/En ∼ 5.5µs for these experiments.

To initiate the experiment, the magnetic field is ramped to a target
value near an interstate Feshbach resonance between the |1〉 state and
the |F = 1,mF = 0〉 ≡ |2〉 state, where the latter is used as an interacting
impurity state. The interaction strength between the two states is charac-
terized by the dimensionless parameter 1/kn a. Here a is the interstate
scattering length, which is tuned via a Feshbach resonance by the applied
magnetic field. The employed resonance is located at 113.8G and has
previously been described in great detail both theoretically [41] and ex-
perimentally [42]. Importantly, the scattering length between medium
atoms is approximately constant across the applied magnetic fields at
aB ≈ 9a0, where a0 is the Bohr radius.

Generally, interactions between the medium atoms and the impurity
atoms result in an energy shift of the impurity state |2〉. In injection spec-
troscopy, this detuning is obtained by measuring the resonance frequency
between the |1〉 state and the |2〉 state. This is illustrated in Fig. 5.2(a),
where a long rf pulse is used to transfer a small fraction of the atoms to
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(a) (b)
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Figure 5.2: Overview of the employed injection and ejection spectroscopy
methods. (a) In injection spectroscopy, the impurity is investigated by
measuring the spectral response of transferring a few atoms from the
medium state |1〉 to the interacting impurity state |2〉. (b) In ejection
spectroscopy, an initial short pulse resonant with the atomic transition
transfers a small fraction of the atoms into the interacting state |2〉. After
a variable evolution time, the spectral response of transferring these
impurities to a weakly-interacting state |3〉 is measured. The polaron and
bipolaron energies are marked with a dotted green and dashed blue line,
respectively, and the scan range is indicated by the thin vertical line.

the |2〉 state. In Ref. [37], the employed pulse length was 100µs, which
resolved the spectrum well. In the following, a pulse length of 20µs ∼ 4tn

is used and the power of the pulse is chosen to produce a superposition
corresponding to a ∼ 16% population in the |2〉 state. During the extent
of the pulse, the system quickly decoheres and polarons are formed. The
minority population in the |2〉 state thus acts as an impurity interacting
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with the medium atoms in the |1〉 state. These impurities are eventually
lost through three-body collisions, where each impurity removes two me-
dium atoms. Consequently, a low final number of atoms in the medium
state reflects a large number of impurities transferred into the |2〉 state.
Experimentally, a shift in the transition frequency revealing the polaron
energy is thus indicated by an increased loss of medium atoms.

The employed ejection spectroscopy uses a two-pulse scheme to
measure the impurity spectral response as illustrated in Fig. 5.2(b). The
first rf pulse creates a superposition of the |1〉 state and the |2〉 state cor-
responding to a ∼ 20% population in the latter. The pulse length is short
1.2µs ∼ 0.2tn and the pulse is therefore spectrally broad. In a following
variable evolution time t , both polarons and bipolarons are formed. Then,
a second rf pulse measures the spectral response of the impurities by
ejecting them from the |2〉 state into the |F = 1,mF =+1〉 ≡ |3〉 state. This
rf pulse needs to be short compared to the dynamical formation of bi-
polarons but long enough to resolve the spectrum well. Consequently, the
pulse length was experimentally optimized to a duration of 20µs ∼ 4tn ,
and the power of the rf pulse was chosen to yield π-pulses for thermal
atoms. The interstate scattering length between the |1〉 state and the |3〉
state is moderate ∼−147a0, and the |3〉 state therefore acts as a weakly-
interacting impurity state.

Importantly, transferred impurities in the |3〉 state perform fast spin-
flip collisions with the medium atoms in the |1〉 state. This only removes
a single medium atom for each impurity, whereas two medium atoms
are lost for each impurity that remains in the |2〉 state. The impurity
atoms are thus always lost and the experimental signal corresponds to an
increase in medium atoms when the second rf pulse resonantly transfers
impurities into the |3〉 state. When showing the spectral response of the
system in the following, the number of atoms in the medium state is
furthermore normalized to an area of one.

It is noteworthy that the ejection spectroscopy sequence allows for a
variable evolution time. This enables ejection spectroscopy to investigate
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the timescales of bipolaron formation, however, a two-pulse scheme
also inherently complicates the experiment. The first rf pulse in the
ejection spectroscopy sequence populates not only the polaron ground
state but also a continuum of excited states. Besides probing the polaron
peak, the second rf pulse may thus transfer impurities from this tail of
excited states into the |3〉 state at higher frequencies compared to the
polaron peak. Furthermore, this second rf pulse also populates a tail of
scattering states above the |3〉 state, which was previously used to extract
the contact of the Bose polaron [70]. These excited states are populated
for lower frequencies of the second rf pulse. For the ejection spectroscopy
scheme, a polaron peak with a tail stretching towards both lower and
higher frequencies is therefore expected to be observed. A peak at lower
frequencies on top of this tail then constitutes a telltale sign of bipolarons.

5.3 Modelling the spectral function

Generally, the spectral function of the impurity A(ω) can be written as
A(ω) = AP(ω)+ Acont(ω) and contains both a polaron peak AP(ω) and a
continuum of excited states Acont(ω). In this section, a recent diagram-
matic description of the spectral function in the investigated system [84]
is used to construct a physically motivated line shape function that mod-
els the rf response. This line shape function is then compared to observed
injection and ejection spectra.

5.3.1 Injection spectrum

A diagrammatic approach can be used to investigate the spectral function
of the impurity at arbitrary interaction strength, as discussed in Sec. 3.4.
For injection spectroscopy, the spectral function depends on the relat-
ive angular frequency ω = 2π( f0 − f ), where f0 is the atomic transition
frequency between the |1〉 state and the |2〉 state and f is the applied fre-

103



5. OBSERVATION OF BIPOLARONS

quency of the probe pulse. Furthermore, the model assumes the medium
to be an ideal BEC and approximates the interactions between the impur-
ity and the medium using a T-matrix approach [47]. For a homogeneous
medium, this results in the following spectral function

A(ω) = ZP2πδ(ω−ωP)+8π
~3/2nB

m3/2ω5/2

Θ(ω)

1+ ~
ma2ω

(
1− 4π~nBa

mω

)2 , (5.1)

where ZP is the quasiparticle residue, δ(x) is the Dirac delta function,
~ωP is the polaron energy andΘ(ω) is the Heaviside step function. Equa-
tion (5.1) describes a polaron peak at ωP with a continuum of excited
states for ω> 0. In the following, the variable is changed and instead the
energy E = ~ω is used. Furthermore, since it is possible to excite states of
a moving polaron and a Bogoliubov mode with arbitrarily small energies,
the continuum is moved to start just above the polaron peak. Thus in the
second term of Eq. (5.1), ω→ (E −EP)/~ is replaced and one obtains

A(E) = ZP2πδ((E −EP)/~)

+8π
~3/2nB

m3/2((E −EP)/~)5/2

Θ((E −EP)/~)

1+ ~
ma2((E−EP)/~)

(
1− 4π~nBa

m((E−EP)/~)

)2 . (5.2)

For simplicity, the factors of each term in Eq. (5.2) are grouped together
and the equation is rewriting as

A(E) = AP(E −EP)+ Acont(E −EP), (5.3)

where the polaron peak is given by

AP(E −EP) = ZP2πδ((E −EP)/~) (5.4)

and the continuum of scattering state is given by

Acont(E −EP) = 8π
~3/2nB

m3/2((E −EP)/~)5/2

Θ((E −EP)/~)

1+ ~
ma2((E−EP)/~)

(
1− 4π~nBa

m((E−EP)/~)

)2 .

(5.5)
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To model the injection spectrum, Eq. (5.3) is employed as a line shape
function for the spectral response. The function is furthermore integ-
rated over the density weighted by the BEC density distribution to ac-
count for the effect of the harmonic trapping potential. Here, the distri-
bution of the density fn(nB) is modelled in the Thomas-Fermi limit as
fn(nB) ∼ nB/nB, max

√
1−nB/nB, max, where nB, max is the medium density

in the center of the atomic cloud. It is assumed that nB/nB, max = E/EP, max,
where EP, max is equivalently the energy of the polaron at maximum dens-
ity. A similar assumption was made in Ref. [54] to obtain an empirical
expression for the line shape of the polaron. Thus, the term corres-
ponding to the integrated polaron peak follows a similar distribution
∼ E/EP, max

√
1−E/EP, max. The term corresponding to the integrated con-

tinuum cannot as easily be solved and is therefore integrated numerically.
Additionally, the spectral function is convoluted with a sinc function
due to the square probe pulse of 20µs duration. Finally, to compare
Eq. (5.3) with data, values are required for the polaron energy at highest
density and the quasiparticle residue. These parameters are obtained
from previous reported spectroscopic results [54] for EP, max and from a
diagrammatic calculation [55] for ZP.

The line shape function at 1/kn a = −0.17 is shown in Fig. 5.3 as a
function of the impurity energy. The model reveals a polaron peak and a
small scattering tail at higher energies. A series of minor peaks are visible
in the line shape function, which is a result of convolving with the sinc
function of the probing pulse.

Figure 5.3 also shows a measured injection spectrum. The data indic-
ates a polaron peak just below zero and a tail stretching towards higher
energies similarly to the modelled spectrum. No signs of the bipolaron
are present in the injection spectrum. This is possibly due to a very small
overlap between the initial state and the bipolaron state. In addition, the
data contains more spectral weight both below the theoretically predicted
polaron peak and in the continuum of excited states. Such broadening
effects have also previously been observed in this system for impurity
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Figure 5.3: Injection spectrum at 1/kn a =−0.17. The measured normal-
ized spectral response is shown as circles. The line shape function of
Eq. (5.3), including experimental broadening from the density distribu-
tion and the Fourier width of the probing pulse, is shown as a dashed
line.

fractions larger than 15% [37]. Nonetheless, the qualitative agreement
between the data and the line shape function, where no free parameters
have been included, does indicate that the model captures essential parts
of the spectral response.

5.3.2 Ejection spectrum

The ejection spectroscopy sequence probes the rf response of the im-
purity by ejecting it into a weakly-interacting state using a second pulse.
As discussed in Sec. 5.2, this complicates modelling the spectrum as
an additional tail of excited states is expected to appear for lower ener-
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gies. Moreover, a line shape function for the predicted bipolaron peak is
required as well.

To model the full ejection spectrum of the polaron, one could ideally
convolve the response of the first pulse with the response of the second
pulse. However, the main concern is modelling the spectral response for
negative energies, where the bipolaron peak is expected to be observed.
At these energies, the two dominant contributions to the polaron spec-
trum are the polaron peak and the tail towards lower energies. For simpli-
city, the spectral function is therefore approximated with just the sum of
these two. Specifically, the spectral function AP(E −EP)+ Acont(−[E −EP])
is used like that of Eq. (5.3), assuming that the scattering tail has a sim-
ilar functional form but with a reversed direction. Here, the energy
E = h( f̃ − f̃0) is calculated using the frequency of the second pulse f̃
and the atomic transition frequency f̃0 between the |2〉 state and the |3〉
state.

Finally, additional effects, such as a large impurity fraction, are con-
sidered. A simple solution to account for these is to include two free
parameters in the form of amplitudes of the polaron peak AP and the
continuum Acont as

A(E) =AP AP(E −EP)+Acont Acont(−[E −EP]). (5.6)

The distortion is thus modelled by a relative shift in spectral weight
between the polaron peak and the excited states. Subsequently, the
spectral line shape function is normalized to yield an integrated area of
one.

To investigate this model, experimental observations are required
for the fitting procedure. An ejection spectrum at 1/kn a = −0.17 with
evolution time 1µs ∼ 0.2tn is therefore shown in Fig. 5.4. The data dis-
plays a polaron peak and a tail of excited states towards lower energies.
Observing a prominent polaron peak at so short evolution times indicates
that polaron formation likely continues during the extent of the second rf
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Figure 5.4: Ejection spectrum at 1/kn a =−0.17 with evolution time 1µs ∼
0.2tn . The measured normalized spectral response is shown as circles.
The line shape function function of Eq. (5.6) is fitted to the data and shown
as a solid green line. The same function with no free parameters is shown
as a dashed black line. Both models include experimental broadening
from the density distribution and the Fourier width of the probing pulse.

pulse. However, no bipolaron peak is observed in the ejection spectrum,
which permits using it to benchmark the polaronic spectral response.

Figure 5.4 also shows the line shape function of Eq. (5.6) without
free parameters and fitted to the data for energies < 0. The model also
includes experimental broadening effects due to the density distribution
and the finite pulse length. A qualitative agreement is obtained between
the plotted line shape function and the data, however, it is apparent that
this model does not reproduce the observed spectral function completely.
For the fitted line shape function, excellent agreement with the data is
obtained even at positive energies. This benchmarks the fitted model,
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and the extracted amplitudes AP and Acont are subsequently fixed when
analyzing ejection spectra at longer evolution times.

Finally, the spectral response of bipolarons is considered. This is
expected to correspond to a small peak on top of the scattering tail of the
polaron. Therefore, the bipolaronic rf response is simply modelled as a
peak at its ground state energy [57] in the form of a Dirac delta function
and the bipolaronic excitation spectrum is neglected. The line shape
function is thus written as

ABP(E −EBP) = 2πδ((E −EBP)/~), (5.7)

where EBP is the bipolaron energy. To obtain the spectral response at finite
evolution time, Eq. (5.7) is added to Eq. (5.6) and relative amplitudes are
included, since the spectral weight of the bipolaron peak is unknown. For
a single density, this results in the following spectral function for energies
E < 0

A(E) =α(
AP AP(E −EP)+Acont Acont(−[E −EP])

)+βABP(E −EBP). (5.8)

Here α and β are free parameters which characterize the amplitude of
the impurity and bipolaronic spectral response, respectively.

To accurately model the experiment, Eq. (5.8) is integrated over the
density weighted by the density distribution of the condensate. For
the integrated bipolaronic term, this yields a distribution of energies
∼ E/EBP, max

√
1−E/EBP, max similarly to that of the polaron peak, where

EBP, max is the bipolaron energy in the center of the atomic cloud. Fur-
thermore, the model is convoluted with a sinc function due to the finite
pulse length and normalized to an area of one. Importantly, the spectral
response of bipolarons is thus described by only two parameters being
its amplitude β and the energy of the deepest bound bipolaron EBP, max.

With Eq. (5.8), a physically motivated line shape function, containing
a polaron peak, a continuum of excited states and a bipolaron peak, has
now been constructed. The spectral contributions from the polaron and
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the scattering tail have been compared with an injection spectrum and
an ejection spectrum at short evolution time. Clear agreement between
a fit and the data was obtained when amplitudes for the polaron peak
AP and the continuum Acont were included. In the following sections,
these two amplitudes are fixed at their extracted values as the dynamical
formation of the bipolaron is investigated at longer evolution times.

5.4 Formation of bipolarons

Bipolarons are formed when polarons interact through the density of
the medium. An experimental approach to investigate bipolarons using
ejection spectroscopy was discussed in Sec. 5.2, and in Sec. 5.3 a physic-
ally motived line shape function was introduced. In this section, the first
experimental observations of bipolarons are presented and the formation
time is obtained. Furthermore, the effects of the impurity fraction are
discussed.

5.4.1 Bipolaronic spectral response

The formation of polarons has been shown to occur at times ∼ tn = ~/En

at large interaction strengths, as discussed in Chap. 4. For bipolarons to
form dynamically, it is thus expected that evolution times longer than
tn are required. A spectrum at t > tn is therefore investigated in order to
observe a spectral signature of bipolarons.

An ejection spectrum is shown in Fig. 5.5 at interaction strength
1/kn a =−0.17 with evolution time 33µs ∼ 6tn . Here, the measured spec-
tral response displays a polaron peak and a continuum of scattering states
similarly to the ejection spectrum with short evolution time shown in
Fig. 5.4. However, the spectrum in Fig. 5.5 furthermore contains a peak
at negative energies. This peak is attributed to the spectral response of
bipolarons, which are expected to have a larger binding energy than po-
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Figure 5.5: Ejection spectrum at 1/kn a = −0.17 with evolution time
33µs ∼ 6tn . The measured normalized spectral response is shown as
circles. The line shape function function of Eq. (5.8), with additional
broadening from the inhomogeneous density and the finite pulse length,
is fitted to the data and shown as a solid purple line. The contribution
from the polaron peak and continuum is indicated with a dashed green
line and the contribution from the bipolaron is indicated with a dashed
blue line.

larons. The peak is broad since the energies span from the deepest bound
bipolarons at highest density to the very loosely bound bipolarons close
to the edge of the atomic cloud.

The line shape model of Eq. (5.8) is fitted to the data for energies < 0.
This fit is also shown in Fig. 5.5 and captures the behavior of the data
well, especially for lower energies where the bipolaron peak is present.
The fit only contains the two amplitudes α and β as free parameters,
whereas the energies of the polarons and bipolarons are fixed. Thus,
the agreement highlights how well the previous spectroscopic result de-
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scribes the energy of the deepest bound polaron and, importantly, how
well the diagrammatic model describes the energy of the deepest bound
bipolaron.

5.4.2 Dynamical formation

To investigate the timescale of bipolaron formation, ejection spectra
at various evolution times are acquired and each data set is fitted with
Eq. (5.8). The only free parameters are the amplitudesα andβ. By extract-
ing the relative amplitude of the bipolaron as β̃=β/α at each evolution
time, a reliable measure of the amount of bipolarons formed up to this
specific time is then obtained.

The extracted relative amplitude β̃ of the bipolaron peak is shown
in Fig. 5.6 as a function of evolution time. The data sets are obtained
at interaction strength 1/kn a = −0.17 and with an impurity fraction of
17% relative to the total amount of atoms. The relative amplitude reveals
a gradual increase with increasing evolution time, until it settles after
∼ 6tn . The second data point at t/tn = 0.5 deviates from this trend, which
could be due to the quality of that data set or the fit to it. Nonetheless, the
behavior of the data provides an indication of bipolarons dynamically
forming as polarons gradually begin interacting with each other through
the medium.

To analyze the formation of bipolarons, a simple model is now con-
structed and fitted to the data. The aim is not to gain a complete under-
standing, but merely to provide some insight in the timescale of bipolaron
formation. For capturing the behavior of the bipolaronic relative amp-
litude, an exponential function saturating at a given offset, representing
the equilibrated amount of bipolarons in the system, is a reasonable
choice of a simple fitting function. Naively, this model is therefore used
for the formation of bipolarons to obtain an estimate of the formation
time. Thus, the fitting function contains a characteristic timescale tform
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Figure 5.6: Relative amplitude of the bipolaron peak. The data is obtained
at interaction strength 1/kn a =−0.17 and with a fraction of 17% impurit-
ies relative to the total number of atoms. The extracted relative amplitude
is shown as blue diamonds. To analyze the observed behavior, Eq. (5.9)
is fitted to the data. A fit using all data points is shown as a solid blue
line and a fit excluding the second data point at t/tn = 0.5 is shown as a
dash-dotted blue line. The equilibrated relative amplitude β̃0 is indicated
as a dashed black line.

as a free parameter and is written as

β̃(t ) = (1−e−t/tform )β̃0, (5.9)

where β̃0 is a fixed parameter describing the equilibrated relative amp-
litude. This parameter is extracted from the average of the last two data
points.

A fit of Eq. (5.9) to the extracted relative amplitude is shown in Fig. 5.6.
The fit displays an initial increase in β̃, before it slowly approaches β̃0.
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From the fit, a formation time of tform = 3(3)tn is extracted. This is ap-
proximately twice as long as the previously observed transition time to
the many-body regime ∼ 1.4tn for polarons [84, 94], indicating fast sub-
sequent formation of bipolarons. The general good agreement between
the data and the fit, with only a single free parameter, reveals that the
simple model captures some of the underlying processes in bipolaron
formation.

To investigate how much the second data point at t/tn = 0.5 influ-
ences the fit quality, another fit is applied to the observations excluding
this data point. This fit is also shown in Fig. 5.6 in good agreement with
the data. It is apparent that the included data points are closer to this
fitted line and more evenly spread around it as compared to the previous
fit, which indicates a lower systematic error. Furthermore, the fit yields
an extracted formation time of tform = 4(1)tn , where the smaller fitting
error again suggest that the fit more consistently captures the behavior of
the data.

The formation timescale is now estimated by considering the time
required for two impurities to encounter each other. At large interac-
tion strengths close to the resonance, the density-limited timescale tn

governs decoherence processes of impurities in the two-body universal
regime [84]. Therefore, tn is used as the time associated with collisions
between an impurity and another atom in the following. For an impurity
fraction of 17%, the probability that the encountered atom is an impurity
as well is 0.17/(1−0.17) ∼ 0.21. To ensure unity probability of two im-
purity atoms interacting with each other, a total number of 1/0.21 ∼ 4.8
collisions are required. Thus, the formation timescale of bipolarons at an
impurity fraction of 17% is estimated to be tform,calc ∼ 4.8tn . This value is
slightly higher than the two extracted formation times. However, tform, calc

is within error bars of both fitted values, which indicates that this estim-
ate elucidates some parts of the mechanism and timescale of bipolaron
formation.
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5.4.3 Effects of the impurity fraction

The effects of the impurity concentration in the system are important
to consider. Evidently, one of the most prominent consequences have
already been observed, namely the bound state of a bipolaron formed
through the induced interactions between two polarons. To observe
how the impurity fraction influences the formation of bipolarons, a data
set similar to the one shown in Fig. 5.6 is obtained, but using a slightly
longer initial rf pulse yielding a larger impurity fraction of 27%. Again, the
spectrum obtained at an evolution time of 0.2tn is fitted with Eq. (5.6),
and AP, Acont are extracted for this impurity fraction. Subsequently they
are fixed, when fitting the data at various evolution times with Eq. (5.8).

The extracted relative amplitude β̃ for an impurity fraction of 27% at
1/kn a =−0.16 is shown in Fig. 5.7. This displays an initial increase with in-
creasing evolution time, whereafter it settles at times ∼ 3tn . The behavior
thus indicates faster formation of bipolarons at this higher concentration
of impurities, as compared to Fig. 5.6. This difference qualitatively agrees
with the expectation, that the likelihood of two polarons encountering
and binding with each other increases, when the amount of impurities in
the system is larger.

A fit of the data with Eq. (5.9) is also shown in Fig. 5.7 and display
initial increase and subsequent equilibration. The fit yields an extracted
formation time of tform = 2(2)tn . This value may be compared to the
estimated formation time, which is tform,calc ∼ 2.7tn calculated using an
impurity fraction of 27%. The estimated time is thus again within error
bars of the fitted formation time.

The fitted formation time of Fig. 5.7 can also be compared to the
fitted times of Fig. 5.6. This comparison reveals that they are all within
error bars of each other. Therefore, no substantial difference is observed
in the fitted formation times of the two data sets at different impurity
fractions. Nonetheless, the simplicity of these fits suggests that the model
may be used preliminary for further investigations of the bipolaronic
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Figure 5.7: Relative amplitude of the bipolaron peak. The data is obtained
at interaction strength 1/kn a =−0.16 and impurity fraction 27% relative
to the total number of atoms, and the measured relative amplitude is
shown as red diamonds. Equation (5.9) is fitted to the data and shown as
a solid red line, and the equilibrated relative amplitude β̃0 is indicated as
a dashed black line.

formation time. These investigations should be conducted at smaller or
larger concentration of impurities to possibly observe a dependence of
the formation time on the impurity fraction.

Related studies of effects due to the impurity fraction have been car-
ried out in the same system. For previous spectroscopic investigations,
larger impurity fractions were observed to distort the rf spectrum [37]
similarly to the broadening effects discussed in Sec. 5.3. For interferomet-
ric measurements, no effect was reported for the behavior of impurity
dynamics at 1/kn a = −1 for varying impurity fractions [84]. However,
since the bipolaron is predicted to exist only at sufficiently large interac-
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tion strengths [57], this may explain the lack of observed effects at the
interferometrically investigated interaction strength. Thus, the measure-
ments presented in this section do not conflict with previously reported
results.

5.5 Bipolaron energy at strong attractive
interactions

The bipolaron investigated in Ref. [57] is predicted to exhibit a signific-
ant shift in energy with increasing interaction strength. Whereas the
polaron energy is only ∼ En at unitarity [37, 38, 54], the bipolaron en-
ergy is expected to approach several En . To investigate this behavior, the
spectral response of bipolarons at various attractive interaction strengths
is measured. The explored interval of interaction strengths is limited
by the bipolaron peak being indistinguishable from the polaron peak
(especially the tail of excited states) for intermediate interaction strengths
|1/kn a| > 0.25. The obtained data sets are fitted with Eq. (5.8), where the
amplitudes α, β and the bipolaron energy at maximum density EBP, max

are free parameters. Thus, the bipolaron energy across attractive interac-
tion strengths is traced.

The fitted bipolaron energies are shown in Fig. 5.8 as a function of the
inverse interaction strength. All measurements are performed using a
first pulse of 0.2tn duration. Furthermore, an evolution time of ∼ 5tn is
employed to allow for sufficient interaction time. The extracted bipolaron
energy shows a decrease for increasing interaction strength and ranges
from −4En at 1/kn a =−0.21 to ∼−8En at 1/kn a =−0.09, where only the
data point closest to the resonance at 1/kn a =−0.05 diverges from this
trend with an observed bipolaron energy of ∼−6En .

It is important to realize that the decay rate of the impurity atoms
are considerable at these large interaction strengths [84, 94], which is
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Figure 5.8: Energy of the bipolaron at large attractive interaction strengths.
The extracted bipolaron energy at maximum density is shown as blue
circles for an impurity fraction of ∼ 20%. Horizontal error bars stem from
the uncertainty of the density and the scattering length. Vertical error
bars are 1σ confidence intervals of the fitted value, which for some data
points are smaller than the marker. The predicted bipolaron energy [57] is
shown as a solid blue line and the previously observed polaron energy [54]
as a solid green line.

especially true in the center of the atomic cloud where fast losses may
consequently occur during the evolution time. This effectively decreases
the observed energy and may contribute to obscure the observations
at the largest interaction strengths. Nonetheless, the clear shift in the
energy of the bipolarons is in qualitative agreement with the expectation
of deeper bound bipolarons with increasing interaction strength.

Figure 5.8 also shows the previously measured polaron energy [54]
and the diagrammatic predicted bipolaron energy [57]. The polaron en-
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ergy is relatively small for this interval of interaction strengths, whereas
the predicted bipolaron energy extends from−3En to−11En . Importantly,
excellent agreement is obtained between the data and the diagrammatic
description besides the discrepancy very close to unitarity. This provides
clear evidence that the observed peak behaves like a bipolaron and con-
solidates the theoretical understanding.

The dynamical formation of bipolarons and their energy dependence
at large attractive interaction strengths have thus been explored using
ejection spectroscopy. The observations have revealed a clear signature
of bipolarons in the system, and in the following section the quasiparticle
residue of both polarons and bipolarons is investigated using a similar
experimental approach.

5.6 Quasiparticle residue

The quasiparticle residue of the polaron describes the spectral weight
of the polaron peak and can be calculated as the overlap between the
non-interacting and the interacting impurity state. In Ref. [29] it was
observed for the Fermi polaron using rf spectroscopy, and subsequently
it has been determined from Rabi oscillations between the interacting
and non-interacting impurity state [30, 32]. For the Bose polaron it has
been studied both perturbatively [49], variationally [50] and diagrammat-
ically [47, 55], however, so far it has not been observed experimentally.

To investigate the residue of the polaron and bipolaron, Rabi oscilla-
tions between the |2〉 state and |3〉 state are realized using an experimental
method similar to that of ejection spectroscopy discussed in Sec. 5.2. The
experimental sequence is as follows. An initial short rf pulse with length
0.2tn transfers population into the |2〉 state whereafter the system evolves
for a duration of ∼ 2tn . This time is chosen to allow significant formation
of both polarons and bipolarons but reduce the effect of losses during
the evolution. Subsequently, a second rf pulse couples the |2〉 and the
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|3〉 state. Previously, the chosen pulse length was 20µs ∼ 4tn , the power
of the pulse was adjusted to yield π-pulses for thermal atoms, and the
frequency was varied to obtain the spectral response of the impurity.
However, a pulse at full power is now applied and the pulse duration
is varied. This drives Rabi oscillations between the impurity state and
the |3〉 state. The atomic response can be observed as a corresponding
oscillation in the number of atoms in the medium state. By extracting this
oscillation frequencyΩ relative to the Rabi frequency of thermal atoms
Ω0, it is then possible to determine the parameter (Ω/Ω0)2.

The observed number of medium atoms as a function of the pulse
length is shown in Fig. 5.9 at 1/kn a = −0.4. The data sets are obtained
using a pulse resonant with the average polaron energy [54], shown in
Fig. 5.9(a), and with the experimentally observed average bipolaron en-
ergy, shown in Fig. 5.9(b). Both panels clearly display an oscillating atom
number as a signature of cyclic behavior of the impurities between two
states. The oscillation amplitudes are damped for longer pulse durations
as coherence is lost in the system. The oscillations appear to be faster
in Fig. 5.9(b). This initially seems counter-intuitive, since bipolarons
are expected to exhibit a lower residue compared to polarons and thus
a lower Rabi frequency and slower oscillations. However, the cyclic be-
havior in Fig. 5.9(b) can also be attributed to polarons oscillating due
to a rf field with a detuning ∆, which results in a higher general Rabi
frequency Ω̃=

p
Ω2 +∆2. This distinction will be further investigated in

the following.
To analyze the oscillations, the atom numbers of Fig. 5.9 are fitted

with a damped, sinusoidal function of the form

N (t ) = ARe−t/τR sin
(
Ω(t − tR,0)

)+NR,0, (5.10)

where the amplitude AR, damping time τR, angular frequencyΩ, phase
tR,0 and offset NR,0 are free parameters. The resulting fits according to
Eq. (5.10) are also shown in Fig. 5.9. Generally, the fits capture both the os-
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Figure 5.9: Rabi oscillations of impurities at interaction strength 1/kn a =
−0.4. A pulse of duration t/tn drives oscillations between the impurity
state and the weakly-interacting |3〉 state. The observed number of me-
dium atoms are shown as circles for a pulse resonant with the average
polaron energy (a) and bipolaron energy (b). A damped sinusoidal fit is
shown as a dashed orange line.

cillatory behavior and the damping well. This underlines the applicability
of the Rabi model.

The fit shown in Fig. 5.9(a) yields an extracted Rabi frequency of
Ω= 2π×1.88(9)En/~. Using this value and the independently measured
Rabi frequency of thermal atoms Ω0 = 2π×1.936(4)En/~, the squared
fraction is determined to be (Ω/Ω0)2 = 0.94(9).
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If this parameter is affiliated with the quasiparticle residue of the
polaron ZP, it is possible to compare it with expectations. The value is
below one as expected but is slightly higher than a predicted value of
0.784(3) from a recent diagrammatic study [55], where the error stems
from experimental uncertainties of the density and scattering length.
The predicted value is the residue for a polaron at average energy in a
homogeneous medium. However experimentally, the inhomogeneous
density causes many polaron states at different energies to be involved
in the oscillations. Since the frequency of the second rf pulse is chosen
to be resonant with the average polaron energy, a large number of these
polaron states experience the pulse as having a slight detuning leading to
faster oscillations. The apparent discrepancy between the predicted and
the extracted values may therefore be attributed to this effect.

The oscillations shown in Fig. 5.9(b) are now investigated. Here, the
fitted Rabi frequency is Ω = 2π× 2.6(1)En/~, which is higher than the
frequency of the oscillations in Fig. 5.9(a). If the quasiparticle residue of
the bipolaron is naively estimated using this value, an unphysical value
of ZBP = 1.8(2) is obtained. To analyze if the oscillations in Fig. 5.9(b)
are instead primarily caused by polarons experiencing a detuned rf field,
the general Rabi frequency is calculated using the already extracted Rabi
frequency for resonant polaron oscillations. The detuning is given by
the difference between the average polaron energy and the energy of
the pulse, which for the data set shown in Fig. 5.9(b) corresponds to
∆ = 2π×1.4En/~. Thus, the general Rabi frequency is calculated to be
Ω̃calc = 2π×2.37(7)En/~, which is slightly lower than the fitted frequency
of 2π×2.6(1)En/~. However, the two values almost agree within error
bars indicating that the fast oscillations observed in Fig. 5.9(b) may in
fact also be caused by polarons. It is therefore difficult to draw any clear
conclusions based on these oscillations, since many processes may be
involved in the behavior of the data.

The observations presented in Fig. 5.9 represent the first measure-
ments of Rabi oscillations with Bose polarons, and though no exact
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agreement is obtained between the extracted and predicted quasiparticle
residue, the estimated value is below one as expected. An interesting
continuation of this investigation is to measure the Rabi frequency across
various attractive interaction strengths. This could possibly display the
behavior of the residue, which is predicted to decrease with increasing
interaction strength. Furthermore, better agreement with theoretical
descriptions is expected if the observations are restricted to the Rabi
response of polarons with similar energies. Such investigations are pos-
sible using a BEC trapped in a uniform potential with a homogeneous
medium density [103, 104] or using spatial resolution similarly to recent
spectroscopic measurements of the Bose polaron [70].

5.7 Summary

In summary, this chapter has presented the first experimental evidence
of bipolarons in a Bose-Einstein condensate. A physically motivated
spectral line shape function was constructed and compared with an injec-
tion spectrum and an ejection spectrum for short evolution time, clearly
showing a polaron peak and a tail of excited states. For longer evolution
times, a bipolaron peak was observed to emerge at the predicted energy.
This allowed measuring the dynamical formation of bipolarons, which
was investigated at two impurity fractions. Moreover, the energy of the
bipolaron at maximum density was extracted at various attractive interac-
tion strengths in excellent agreement with theoretical predictions. Finally,
the quasiparticle residue of the polaron was measured using a similar
experimental scheme.

These investigations have been conducted using a higher impurity
fraction than previous polaron studies [37, 38, 70, 84]. However, these
were primarily concerned with the properties of single impurities and
effective interactions between polarons were unwanted, since they could
distort the experimental signal. To allow formation and observation of
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5. OBSERVATION OF BIPOLARONS

bipolarons, it is inherently necessary to use a larger impurity fraction.
Increasing the fraction further to the limit of quantum mixtures and
observing how the properties of the system change, constitutes an in-
teresting extension of the experimental research. This could elucidate a
possible breakdown of the impurity quasiparticle framework.
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6
CONCLUSION AND OUTLOOK

In this thesis, impurity dynamics in ultracold gases was investigated.
Experiments were performed with interacting impurities immersed in
Bose-Einstein condensates and their dynamical evolution was observed.
In particular, these investigations permitted measuring the dynamical
formation of both polarons and bipolarons in Bose-Einstein condens-
ates, and the observations were successfully compared with theoretical
models.

In Chap. 2, ultracold quantum gases and polarons were reviewed. Im-
portant concepts such as condensation of bosons, interactions between
ultracold atoms and quasiparticle models were considered. Furthermore,
recent experimental studies of both Fermi and Bose polarons were dis-
cussed.

Chapter 3 introduced and presented two publications reporting the
first observations of formation dynamics of the Bose polaron at attract-
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ive interaction strengths [84, 85]. These experiments were conducted
in 39K BECs using a Ramsey-like interferometric sequence. In the first
publication, three regimes of impurity dynamics, depending on both the
interaction strength between medium and impurity and the evolution
time, were observed experimentally. Excellent agreement between theory
and experimental data was obtained at all interaction strengths. The
second publication expanded this work with a thorough investigation of
the two initial regimes. This included analyzing the extracted transition
times and obtaining the functional behavior of the dynamics in the two
regimes.

Chapter 4 analyzed and compared interferometric and spectroscopic
polaron results. In particular, the notion of repulsive impurity dynamics,
the instantaneous energy of the impurity and the timescales of the Bose
polaron were introduced. Furthermore, a publication [94] was presen-
ted which investigated these concepts in greater detail. This included
a measurement of impurity dynamics at repulsive interaction strengths
indicating the presence of two polaron branches. Moreover, it showed
the interferometrically extracted instantaneous energy of the impurity
and compared it with previous spectroscopic polaron results yielding
good agreement. Finally, the publication presented an analysis of the po-
laronic timescales revealing a well-defined quasiparticle at all interaction
strengths.

In Chap. 5, the effective interactions between polarons and the emer-
gence of bipolarons were examined. A physically motivated line shape
function was constructed and compared with experimental data yielding
clear evidence of bipolarons. The formation time was then extracted
and subsequently the bipolaron energies at large attractive interaction
strengths were obtained in excellent agreement with predicted values.
Finally, an estimate of the quasiparticle residue of the polaron was ex-
tracted, while a similar measurement did not provide the residue of the
bipolaron.
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6.1 Outlook

Based on these observations of impurity dynamics in a BEC, the stage
is set for further investigations. These include the extension of current
studies by improving the experimental apparatus and the exploration of
new aspects of impurity physics.

One large obstacle for the current investigations of the Bose polaron,
is the harmonic trapping potential, which results in an inhomogeneous
density of the medium. This leads to a distribution of polaron ener-
gies from the deepest bound polaron in the center of the trap to the
weakly interacting polaron in the edges of the cloud at vanishing density.
This problem can be circumvented by using analytic tools to extract the
properties of the polaron at maximum density [54] or using spatial resol-
ution [70]. However, employing a uniform trapping potential to produce
a homogeneous density of the medium would greatly simplify the experi-
ments. Moreover, such a box trap [103, 104] may reduce dephasing effects
for interferometric measurements and enable investigations further into
the many-body regime or at repulsive interaction strengths. Additionally,
this trap may provide better experimental settings for measuring the qua-
siparticle reside of the polaron and allow a more precise comparison with
theoretical predictions.

Investigations of the Bose polaron in the unitary regime are especially
intriguing, since the scattering length diverges and the interactions are
limited by the density. A recent study investigated how the Efimov trimer
influences the energy at these unitary interactions [51]. Observing such
a dependence constitutes an exciting experiment, which is possible by
measuring the polaron energy at unitarity with various densities of the
condensate.

Impurity physics in lower dimensions also represents an interesting re-
search avenue. In lower dimensions quantum fluctuations are enhanced,
however, long-range order of the medium also suffers from going to lower
dimensions where it is not necessarily possible to obtain a Bose-Einstein
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condensate. Nonetheless, it is possible to achieve quasi-long range order
in two-dimensional Bose gases [105], which therefore pose as an ideal
platform for studying lower dimensionality polaron physics. While the
Fermi polaron has been studied in two dimensions [31], the Bose po-
laron has only been investigated in one dimension [63]. It is therefore
intriguing to experimentally realize the two-dimensional Bose polaron
and compare observations with recent theoretical predictions [106–108].

To summarize, the results presented in this thesis have improved
and consolidated the current understanding of both Bose polarons and
bipolarons. The presented experimental platform moreover suggests new
ways of investigating quantum impurities with prospects of observing
novel physics with exciting results.

128



BIBLIOGRAPHY

[1] M. K. E. L. Planck, Zur Theorie des Gesetzes der Energieverteilung
im Normalspectrum, Verhandl. Dtsc. Phys. Ges. 2, 237 (1900).

[2] N. Bohr, On the constitution of atoms and molecules, The London,
Edinburgh, and Dublin Philosophical Magazine and Journal of
Science 26, 1–25 (1913).

[3] M. Head-Gordon, Quantum chemistry and molecular processes,
The Journal of Physical Chemistry 100, 13213–13225 (1996).

[4] J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U. Kleinekathöfer,
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