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Abstract

In the year 1995, Bose-Einstein Condensates were for the first time directly observed.

This observation have since spurned other laboratories and today, countless Bose-

Einstein condensates have been made and many interesting ideas have since been

investigated in Bose-Einstein Condensates.

However there still seems to be discrepancies between theory and experimental

realisations and the aim of this thesis is to be able to explain and correct for some

of these discrepancies. The work of this thesis was mainly done in the Lattice

Laboratory, which is a part of the Ultracold Quantum Gases Group at Aarhus

University. The experiments happening in this laboratory are extra useful in this

regard, due to the greater precision in measurements that is possible, due to the

atom stabilisation we are utilising.

In this thesis I have worked on three different schemes in order to improve the

ability to measure accurately. First, I have constructed a program to evaluate our

atomic clouds, with a greater accuracy than before. Second, I worked together with

the group in our investigation of the α-calibration, which previously have been done,

but only took into account the effects from not being in an ideal two-level case and

impure polarisation of the laser beam. With our investigation we have improved on

this idea to include effects both from Doppler detuning and atomic densities, bringing

us closer to a theory consistent with our measurements. Third, we investigated the

possibility of another calibration parameter, this time we wish to make a correction

to the scattering rate, which arises from collisions. This work was unfortunately not

completed, as it proved harder to realise in our trap, than first anticipated.
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Chapter 1

Introduction

The beginning of the 20th century is marked by many great scientific milestones

that broadened our understanding of the universe and everything considerably. One

of the most important of these milestones is Quantum Mechanics both in terms

of theoretical knowledge, but also in the form of technology, where many of our

core technologies today, like the laser and transistor, would not be possible without

Quantum Mechanics [1].

One part of Quantum Mechanics is the theory of Bose-Einstein Condensates,

which began in the year 1924, when S.N. Bose wrote an article called Planck’s

Law and the Hypothesis of Light Quanta [2] and a letter to Einstein, asking him to

translate it to German. Einstein agreed and was then inspired expand on this work,

making the article named Quantum theory of the monoatomic ideal gas [3], which

was the first article to ever touch the subject of Bose-Einstein condensation [4].

The work stood still for some years, until it was observed that 4He showed new

characteristics below ∼ 2.17K, where a sudden absence of boiling, infinite thermal

conductivity, zero viscosity in small channels, etc, was observed. [4]. In 1938, F.

London coupled the superfluidity of 4He together with the paper written by Einstein

and hypothesised that the superfluidity of helium was due to a possible manifestation

of BECs [5].

However direct evidence of Bose-Einstein condensation was not yet found. For

many years further research was conduted, many great insights into ultracold quantum

gases was acheived, like the contribution from N.N. Bogoliubov which really changed

the understanding of interactions in Bose-Einstein Condensates [4]. However, it

wasn’t until 1995 where three groups independently found evidence of BECs in dilute

atomic gases [6–8]. The reason for this long time from the first theoretical steps to

the first experimental observation, is due to the required low temperatures, which

1



2 CHAPTER 1. INTRODUCTION

required laser-based techniques, such as laser cooling and magneto-optical trapping,

which was first developed in the 1980s [5].

With an experimental observation, it became possible to actually see an almost

macroscopic wave function, through optical methods [5]. As Bose-Einstein condensa-

tion is a quantum mechanical phenomenon it could also be used in a wide range of

applications in the so called second quantum revolution [1].

As is generally the case for scientific studies, accuracy and precision are important,

and this is no exception with Bose-Einstein condensates. As it will be shown in

Chapter 2, there are a few approximations and assumptions made, that still separates

theory from reality. Therefore the work in this thesis will focus on improving the

accuracy of the measurements of Bose-Einstein Condensates in the Lattice laboratory

at Aarhus University, by using methods that might be beneficial for the whole

field. By trying to find a way to go from the theoretically approximated picture via

calibrations, in order to achieve a higher resemblance with reality.

1.1 Thesis outline

The work in this thesis is focused on developing tools to improve our accuracy

when doing evaluations of Bose-Einstein condensate absorption images. This work

includes a few different investigations, which are somewhat independent of each other

and therefore presented in different chapters. But they each is build on the same

theoretical framework, therefore a dedicated chapter to theory have been written.

• In Chapter 1 is the introduction you are reading right now.

• In Chapter 2 is a chapter dedicated to theory, with a few assumption based on

our specific experimental set-up, where Bose-Einstein condensates are explained

together with the interaction between atoms and light in a two-level system.

• In chapter 3 there is an overview of the experimental sequence done in order

to produce Bose-Einstein condensates, together with all the small experiments

done in order to optimise said sequence.

• In chapter 4 describes the Matlab program I wrote in order to improve the

groups standard evaluation of the images taken of the atoms.

• In chapter 5 outlines the work we did in order to improve the α-calibration

already done in the laboratory.
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• In chapter 6 describes the work in regard to finding the β-parameter, in order

to make corrections to the scattering rate.

• In chapter 7 shows my conclusions and outlook of the work of the above

three chapters.
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Chapter 2

Understanding BEC

measurements

2.1 Bose-Einstein condensates

The atomic clouds produced in the laboratory can be in two different phases, they can

either be in a thermal cloud, which is a gas cloud following semi-classic thermodynamic

laws. The other phase is a phase that happens when classic thermodynamics breaks

down and quantum mechanics takes over, and the cloud becomes an atomic quantum

gas. Depending on whether the is cloud made of bosons or fermions, the cloud can

then be described by either Bose-Einstein statistics or Fermi-Dirac statistics. In

this thesis work, only the bosonic case is relevant. This means for non-interacting

indistinguishable particles, the occupancy of the state i with energy εi can be

described by the distribution function,

f 0
i (εi) =

1

e(εi−µ)/kbT − 1
, (2.1)

where µ is the chemical potential, kb is Boltzmann’s constant and T is the temperature.

While being confined in a 3D harmonic potential, which can be described as (for

more detail see Section 3.2),

U(x, y, z) =
1

2
m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2), (2.2)

where ωj is what is called the trap frequency in the j’th direction.

All states in Eq. (2.13) where i > 0 are excited states and we denote the atoms

in these states, as thermal atoms. To find the amount of thermal atoms, we can sum

up all states with i > 0, this can then be an integral by introducing the density of

5



6 CHAPTER 2. UNDERSTANDING BEC MEASUREMENTS

states, g(ε) [9],

Nth =
∑
i 6=0

1

e(εi−µ)/kbT − 1
⇒
∫ ∞

0

dε
g(ε)

e(εi−µ)/kbT − 1
, (2.3)

where the density of states is given as,

g(ε) =
ε2

2~3ωxωyωz
. (2.4)

Eq. (2.3) can be solved and gives,

Nth =
ζ(3)(kbT )3

~3ωxωyωz
, (2.5)

where ζ(x) is the Riemann zeta function. The phase change to the quantum me-

chanical regime, happens when the temperature of the atomic cloud approach the

absolute zero temperature, this stems from Louis de Broglie’s postulate of the wave

like behaviour of matter, where the wavelength can be described as,

λdB =
h

p
=

√
2π~2

mkbT
, (2.6)

where p and, m is the momentum and mass of the atom, respectively. This number

is small for thermal atoms, but when T becomes even smaller, the wavelength gets

larger and at some point close to absolute zero, the wavelength becomes comparable

to the average distance between the atoms. For the bosonic case, this will mean the

waves of the atoms will begin to overlap and this is where a Bose-Einstein condensate

is formed. When this happens all of the atoms share the same quantum state and

coherently the same macroscopic wave function, due to their bosonic nature [10].

One way to set up the requirement for a cloud to be a BEC is as[10],

ρPS(T ) = nλ3
dB(T ) = n

(
2π~2

mkbT

)3/2

≈ 2.612 (2.7)

where ρPS is what is called phase space density and n is the density. With this

definition we can find the temperature where the phase change happens,

Tc ≈
( n

2.612

)2/3 2π~2

mkb
. (2.8)

We can also denote the critical temperature, as the temperature where all atoms are

in excited states,

N = Nth =
ζ(3)(kbTc)

3

~3ωxωyωz
⇒ kbTc =

~(ωxωyωz)
1/3

ζ(3)1/3
N1/3. (2.9)

The amount of BEC atoms at all temperatures is then NBEC = N − Nth. Which

means we can describe the fraction of BECs as;

NBEC

N
=
N −Nth

N
= 1−

(
T

Tc

)3

. (2.10)
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This the condensate fraction for an ideal non-interacting gas.

If we wish to find the density distribution of the thermal atoms, we can use the

semi-classical approximation, where the discrete energies are replaced by continuous

energy of a particle in an external potential,

εi → εp(r) =
p2

2m
+ U(r), (2.11)

where U is the external potential. This approximation is valid when the thermal

energy is much larger than the level spacing of the potential [11]. To get the spatial

density distribution the distribution function f 0(r,p) is integrated over momentum,

as f 0(r,p)drdp is the number of particles in a phase space volume element. This

leads to a spatial density distribution,

nth(r) =

∫
dp

(2π~)3

1

e(p2/2m+U(r)−µ)/kbT − 1
, (2.12)

where the solution to this is,

nth(r) =
1

λ3
dB

g3/2

(
e(µ−U(r))/kbT

)
, (2.13)

where g3/2 is the Bose function (also called the polylogarithm function)

gj(χ) =
∞∑
i=1

χi

ij
. (2.14)

This means Eq. (2.13) can be rewritten as,

nth(r) =
N

(2π)3/2σxσyσzg3(z̃)
g3/2

(
z̃e−

∑
i=x,y,z r

2
i /2σ

2
i

)
, (2.15)

where the fugacity, z̃ = eµ/kbT and the cloud width, σi =
√
kbT/mω2

i .

In the limit of high temperature (i.e. T � Tc), then z̃ � 1, which leads to

only the first term in the Bose function (Eq. (2.14)) contributes and the density

distribution becomes,

nMB
th (r) =

N

(2π)3/2σxσyσz
e
∑

i r
2
i /2σ

2
i , (2.16)

which is a classical Maxwell-Boltzmann distribution. Even if the thermal atoms

are calculated in the non-interacting case, Eq. (2.15) is valid when the describing

thermal atoms in trap.

2.1.1 Interacting BECs

To find the density distribution of the BEC atoms another route is needed. The

approximation of non-interacting atoms, is no longer really viable, if we want an
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answer close to reality. The many-body Hamiltonian describing N interacting bosons

confined in an external potential U is in second quantisation given as [5],

Ĥ =

∫
drΨ̂†(r)

[
− ~2

2m
∇2 + U

]
Ψ̂(r)

+
1

2

∫
drdr′Ψ̂†(r)Ψ̂†(r′)Us(r− r′)Ψ̂(r′)Ψ̂(r), (2.17)

where Ψ̂†(r) and Ψ̂(r) are the annihilation and creation field operators for particles

at position r. The first integral describes a single particle moving in an external field,

while the second describes the interaction between particles, though the two-body

inter-atomic scattering potential Us(r− r′). As this is used to describe BECs, we

can safely assume they are ultracold, which means the collisions are completely

dominated by s-wave scattering events, which is parametrised by the scattering

length, a [5].

If the inter-atomic separation is large compared to this scattering length, then

the potential can be viewed as a contact interaction, which means the inter-atomic

scattering potential can be rewritten as [5],

Us = U0δ(r− r′), (2.18)

where U0 = 4π~2/m. Then the field operator is split up into two terms [11],

Ψ̂(r, t) = Φ(r, t) + Ψ̂′(r, t), (2.19)

where Φ(r, t) is defined as the expectation value of the field operator Φ(r, t) ≡
〈Ψ̂(r, t)〉, this leads to n0(r, t) = |Φ(r, t)|2 and Ψ̂′(r, t) represents the fluctuations of

the excitations. Using Heisenberg’s equation it follows,

i~
∂

∂t
Φ(r, t) =

[
−~2∇2

2m
+ U(r) + U0|Φ(r, t)|2

]
Φ(r, t), (2.20)

this is the famous time-dependat Gross-Pitaevskii equation, which we can further

simplify by separating time from space, Φ(r, t) = ψ(r) exp(−iµt/~) leading to,

µψ(r) =

[
−~2∇2

2m
+ U(r) + U0n0(r)

]
ψ(r), (2.21)

yielding the stationary Gross-Pitaevskii equation. This can be simplified further by

utilising the Thomas-Fermi approximation, which states that for zero temperature

the kinetic term can be neglected,

µψ(r) = [U(r) + U0n0(r)]ψ(r). (2.22)

This means it is possible to isolate the density distribution,

n0(r) =
µ− U(r)

U0

, µ− U(r) > 0 (2.23)
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for the anisotropic three-dimensional harmonic trap potential seen in Eq. (2.2), the

cloud can be described as,

n0(x, y, z) = n(0)

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
, µ− U(r) > 0, (2.24)

where x = y = z = 0 is the center of the cloud and Ri is the Thomas-Fermi radii,

given as,

Ri =

√
2µ

mωi
. (2.25)

Requiring normalisation of Φ(r, t) (
∫
|Φ(r, t)|2dr = N), the chemical potential, µ,

can easily be found,

µ =
1

2
[(15N0a)2m~4(ωxωyωz)

2]1/5. (2.26)

Which tells us, the atom number and the size of the BEC to be coupled together

through the chemical potential.

Returning to the condensate fraction, these interactions will change (2.10). The

number of thermal atoms are given as,

Nth =

∫
drdp

(2π~)3

1

exp[p2/2m+ U(r)− µ)/kbT ]− 1
. (2.27)

Explicit integration, using the Thomas-Fermi approximation for the effective mean-

field potential, U − µ = |Uext(r)− µ| leads to [5],

NBEC

N
= 1−

(
T

Tc

)3

− ζ(2)

ζ(3)
η

(
T

Tc

)2
(

1−
(
T

Tc

)3
)2/5

, (2.28)

where η = µ/kbTc. This is still not an exact solution and is only valid to the lowest

order of η and should only be used to get a qualitative understanding on the role of

interaction [11].

2.1.2 Expansion

With a description of how the atoms behave in an harmonic trap, we take it one step

further, which is to describe how the atoms behave in free fall. As is described in

more detail in Chapter 3, the trap is at some point turned off and the atoms are

then no longer confined in any trap and the behaviour of both the thermal and BEC

atoms under these conditions become relevant.

Thermal cloud

We have the trapping potential defined in Eq. (2.2), this trap is turned off at t = 0,

where t denotes the time the atoms have been in flight, often called time of flight
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(ToF). If we neglect gravity and collisions, the position of each atom during time of

flight can be described as,

r = r0 +
p

m
t, (2.29)

where r0 is the initial position of the atom and p and m is the atoms momentum

and mass. This means we can rewrite the distribution function, f 0(r,p), to,

f 0(r− pt

m
,p) =

1

e(p2/2m+U(r−pt/m)−µ)/kbT − 1
. (2.30)

Then by modifying Eq. (2.12) with the new distribution function,

nth(r, t) =

∫
dp

(2π~)3

1

e(p2/2m+U(r−pt/m)−µ)/kbT − 1
. (2.31)

In the case of a harmonic potential, we can solve this by a change of coordinates that

separates spatial coordinates and momentum [11], leading to a solution of the form,

nth(r, t) =
N

(2π~)3/2wxwywzg3(z̃)
g3/2

(
z̃e−

∑
i r

2
i /2w

2
i

)
, (2.32)

where the width of the cloud at a given Time of Flight, t, is,

wi(t) =

√
kbT

mω2
i

(
1

ω2
i

+ t2
)

= σi

√
1

ω2
i

+ t2. (2.33)

Bose-Einstein condensates

To describe the quantum mechanical phenomenon of BEC expansion, some classical

Newtonian observations can be made. For any time, be it in trap or in free expansion,

the force each atom experiences can be written as [12],

F(r, t) = −∇(U(r, t) + U0no(r, t)), (2.34)

where t = 0 is when the trap is turned off, which means F(r, 0) = 0, as we assume

the cloud is in equilibrium. A rather straightforward parametrisation can also be

made in regard to the radius of the BEC at any time,

Ri(t) = λi(t)Ri(0) (i = x, y, z), (2.35)

where λi(t) is called the scaling parameter that starts out as λ(0) = 1. From this

ansatz the evolution of the spatial density evolution can be found,

n0(r, t) =
n0(rx/λx(t), ry/λy(t), rz/λz(t), 0)

λx(t)λy(t)λz(t)
(2.36)

By utilising Newton’s 2nd law, mR̈i(t) = Fi[R(t), t], on the trajectory and that

using F(r, 0) = 0,⇒ ∇U0n0(t = 0) = −∇U(t = 0), we arrive at,

mλ̈i(t)Ri(0) = −∂iU(R(t), t) +
∂iU(R(0), 0)

λiλxλyλz
. (2.37)
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Given the harmonic potential described in Eq. (2.2), both sides of the equation is

proportional to Rj(0), which is interesting, as this means the scaling is independent

of the in-trap size of the BEC and thus validating Eq. (2.35) as long as λi(t) satisfies,

λ̈i =
ω2
i (0)

λiλ1λ2λ3

− ωi(t)λi. (2.38)

Doing the same tricks as for the in-trap BEC calculations previously, we then arrive

at a spatial density distribution of [12],

n0(r, t) =
µ− U(r, 0)

U0λx(t)λy(t)λz(t)
=
µ−

∑
i

1
2
mω2

i r
2
i /λi(t)

U0λx(t)λy(t)λz(t)
(2.39)

Leading again, to the reverse parabola,

n0(x, y, z, t) =
15N0

8πRx(t)Ry(t)Rz(t)

(
1− x2

R2
x(t)
− y2

R2
y(t)
− z2

R2
z(t)

)
for µ > U(r, 0),

(2.40)

where the radius is now defined as,

Ri(t) =

√
2µ

mωj
λi(t) =

(
15~2aω̄3NBEC

ωj

)2/5
λi(t)

m2/5
. (2.41)

As will be further elaborated in Sec. 3.2, there are actually only two trap

frequencies in the QUIC-trap utilised, which are the axial (ωa) and radial (ωr) trap

frequencies. The aspect ratio between these two, can at any time be described as,

wr(t)

wa(t)
=
λr(t)

√
2µ/mω2

r

λa(t)
√

2µ/mω2
a

= ε
λr(t)

λa(t)
(2.42)

where ε = ωa/ωr, which in this case is ε� 1, telling us that in-trap, the BEC takes

the form of a cigar. What form these λ take, can be solved numerically by using Eq.

(2.38). To get an idea of the expansion of the BEC, we can consider the simplest

case, where the trap is instantaneously turned off at t = 0. If the trap is turned

off instantaneously, the second term becomes zero as the atoms no longer feel any

confinement from the trap for all t > 0, this leads to Eq. (2.38) can be simplified to,

d2λr
dτ 2

=
1

λ3
rλz

,

d2λa
dτ 2

=
ε2

λ2
rλ

2
z

, (2.43)

where τ is a dimensionless time variable τ = ωr(0)t. This can be solved by doing an

expansion in powers of ε [12]. To zeroth order in ε, λa = 1 and the radial scaling

parameter becomes,

λr(τ) =
√

1 + τ 2. (2.44)
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To second order in ε, the axial scaling parameter becomes,

λa(τ) = 1 + ε(τ arctan τ − ln
√

1 + τ). (2.45)

Given that ε� 1 it is easily seen that the radial expansion grows much faster than

the axial expansion, leading our cigar shaped cloud to become a pancake at high

time of flight, with its two major axes being the those that initially was the minor

axes. This is quite remarkable, as it means the atoms accelerate much faster in two

of the three directions than the last, even though there are no external forces acting

upon them.

2.2 Atom-light Interactions

In the experiment we use atoms and light in order to gain information about the

atoms and their properties, therefore it might be useful to explore the theory behind

this interaction. To achieve this the Optical Bloch equations can be utilised, as

these can describe a two-level atom interacting with an electromagnetic field. In the

experiment we are working with 87Rb and we assume we have a pure polarisation of

the light, to a good approximation, we can treat it like a two-level system.

A wavefunction of a pure two-level atom can be written as,

Ψ(r, t) = cg(t) |g〉+ ce(t) |e〉 e−iω0t, (2.46)

where |ci|2 is the probability to be in the i’th state and ω0 is the resonance frequency

between the two states. The evolution of the system can be described by the

time-dependant Schrödinger equation,

i~
dΨ(r, t)

dt
= HΨ(r, t). (2.47)

The Hamiltonian can be split into two parts, H = H0 +HI(t), where H0 describes

the energy of the unperturbed system and HI(t) describes the interaction with the

oscillating electric field. Then we assume that it is only the interaction between the

electric part of the radiation and the electric dipole moment with a single electron

that drives the transition, known as the electric dipole approximation [13]. Under the

further assumption that the radiation can be treated as a plane wave, the interaction

Hamiltonian can be written as,

HI(t) = d · E(t) = er · E0 cos(ωLt), (2.48)

where d is the electric dipole moment of the atom, E is the electric field and ωL is

the frequency of the laser radiation, used to drive the transition. Then by using Eqs.
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(2.46) and (2.47),

i~
dcg(t)

dt
= ce 〈g|d · E |e〉 e−iω0t = ceΩ

∗~
(
ei(ωL−ω0)t + e−i(ωL+ω0)t

2

)
(2.49)

i~
dce(t)

dt
= cg 〈e|d · E |g〉 e+iω0t = cgΩ~

(
ei(ωL+ω0)t + e−i(ωL−ω0)t

2

)
, (2.50)

where one of the key parameters for atom-light interaction appears, the Rabi frequency,

Ω, which is given as,

Ω =
〈e|d · E |g〉

~
=
eE0

~
〈e| r · Ê |g〉 . (2.51)

Another approximation that can be made is the Rotating Wave Approximation

(RWA), where we assume terms of ei(ωL+ω0)t oscillates much faster than terms of

ei(ωL−ω0)t. Because the plus terms oscillate that much faster we can see them as being

averaged out over a period of the minus terms. This is a very good approximation in

the case where the frequency of the radiation is close to the atomic frequency and we

are in the optical regime where the frequency is on the order of 1014Hz. This leads

to Eqs. (2.49) and (2.50) can be simplified as [20],

ic̈g(t) = ceΩ
∗ e

i∆t

2
and ic̈e(t) = cgΩ

∗ e
−i∆t

2
, (2.52)

where ∆ = ωL − ω0, which is called the detuning.

By using the density operator, ρ = |Ψ〉 〈Ψ| on the wavefunction, the density

matrix is made,

ρ =

cec∗e cec
∗
g

cgc
∗
e cgc

∗
g

. (2.53)

the time evolution of the density matrix can then be found, as an example the time

evolution of ρgg is then,

dρgg
dt

=
dcg
dt
c∗g + cg

dc∗g
dt

= −iΩ
∗

2
ρ̃eg + i

Ω

2
ρ̃ge, (2.54)

where ρ̃ge = ρgee
i∆t. In order to describe a real atomic system one key parameter is

still missing, and that is the spontaneous decay of the excited state, which we can

write as [20],

dρee
dt

∣∣∣∣
spon

= − dρgg
dt

∣∣∣∣
spon

= −Γρee, (2.55)

where Γ is the lifetime of the excited state. This motivates a complete set of equations
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of the density matrix,

dρgg
dt

= Γρee +
i

2
(Ωρ̃ge − Ω∗ρ̃eg)

dρee
dt

= −Γρee +
i

2
(Ωρ̃eg − Ω∗ρ̃ge)

dρ̃ge
dt

= −
(

Γ

2
+ i∆

)
ρ̃ge +

i

2
(Ω∗(ρgg − ρee)

dρ̃eg
dt

= −
(

Γ

2
− i∆

)
ρ̃eg +

i

2
(Ω(ρee − ρgg).

(2.56)

These set of equations are what is called the Optical Bloch Equations [13]. To

describe a closed two-level system it is required that for all times ρgg +ρee = 1, which

also means ρ̇gg = −ρ̇ee and thus reducing the amount of free variables by one. Then

we can introduce the population difference, w,

w = ρee − ρgg. (2.57)

To obtain an expression for the absorption of light, we find the steady state solution

to Eq. 2.56, this is simplified by using, ρeg = ρ∗ge, which gives us two equations,

dρ̃eg
dt

= −
(

Γ

2
− i∆

)
ρ̃eg +

iΩ

2
w (2.58)

and
dw

dt
= −Γw + i(Ω∗ρ̃eg − Ωρ∗eg)− Γ. (2.59)

By requiring steady state, makes dρ̃eg
dt

= dw
dt

= 0, using this in Eq. (2.58) and isolating

ρ̃eg gives,

ρ̃eg =
iΩ

2(Γ/2− i∆)
w. (2.60)

To determine the steady-state w we first solve, (Ω∗ρ̃− Ωρ̃)/w,

Ω∗ρ̃− Ωρ̃∗

w
=

iΩ∗Ω

2(Γ/2− i∆)
+

iΩ∗Ω

2(Γ/2 + i∆)

=
i|Ω|2

2

(Γ/2 + i∆) + (Γ/2− i∆)

(Γ/2 + i∆)(Γ/2− i∆)

=
i|Ω|2

2

Γ

(Γ/2)2 + ∆2

= i
2|Ω|2

Γ2

Γ

1 +
(

2∆
Γ

)2

= is0
Γ

1 +
(

2∆
Γ

)2 = iΓs(∆).

Here we have introduced the saturation parameter, which is given as,

s(∆) =
s0

1 +
(

2∆
Γ

)2 , (2.61)
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where the on resonance saturation parameter is s0 = 2|Ω|2/Γ2. Using this in Eq.

(2.59) with the steady-state condition, yields a new expression for the population

difference,

w =
−1

1 + s(∆)
. (2.62)

The intensity of the light interacting with the atom can be written as,

I =
ε0cE

2
0

2
. (2.63)

Because both the intensity and the Rabi frequency, |Ω|2 (Eq. (2.51)) can be described

with the strength of the electric field of the light, the Rabi frequency can be rewritten

in terms of the intensity,

|Ω|2 =
2I

ε0c~2
(〈e| r · Ê |g〉)2, (2.64)

which means the on-resonance saturation parameter also can be written as,

s0 =
4I

ε0c~2Γ2
(〈e| r · Ê |g〉)2 =

I

Is
, (2.65)

where Is is what we call the saturation intensity and is given as,

Is =
ε0c~2Γ2

4(〈e| r · Ê |g〉)2
. (2.66)

In the experiment we use circularly polarised light, this means we can write it as [14],

Is,circ =
~ω3

0Γ

12πc2
, (2.67)

for the rest of this thesis we will assume Is = Is,circ.

In steady state the excitation rate and the decay rate are equal and since the

population in the excited state decays at a rate Γ, the total photon scattering rate

R can be given as [20],

R = Γρee =
Γ

2

s0

1 + s− 0 +
(

2∆
Γ

)2 =
Γ

2

I/Is

1 + I/Is +
(

2∆
Γ

)2 . (2.68)

The amount of scattered power per unit of volume is given as ~ωLnR, which means

we can describe the attenuation of the laser as,

dI ′

dz
= −~ωLRn = −σnI ′, (2.69)

where σ is the the cross-section and is given as,

σ =
~ωLΓ

2Is

1

1 + I/Is +
(

2∆
Γ

)2 =
σ0

1 + I/Is +
(

2∆
Γ

)2 , (2.70)

where,

σ0 =
~ωLΓ

2Is
, (2.71)

which is the on-resonance cross section.
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2.3 Absorption imaging

In order to do any real science, measurements are essential. So in order to use the

results of Section 2.1, we will have to find a way to see the spatial distributions

described here. This can be done through absorption imaging. The first thing to

consider, is that an atomic cloud is of course a three-dimensional object, but as it

often happens, such things can be put down to 2D, this is done through what we

call column density,

ñ(x, y) =

∫
n(x, y, z)dz, (2.72)

Then the differential equation, Eq. (2.69), can be solved, yielding,

OD = σ0

∫ ∞
0

n dz = σ0ñ =

(
1 +

(
2∆

Γ

)2
)

ln

(
I0

I

)
+
I0 − I
Is

(2.73)

where OD is the optical depth, I and I0 are the intensities of the laser in the image

with and without atoms, respectively. As both I and I0 are measurable quantities

and with the relation between the optical depth and the column density, it is then

straightforward to get information about the atomic cloud.

2.3.1 Imaging corrections

Eq. (2.73) is an expression of the ideal case, as this thesis is built on experimental

work, some corrections have to be made in order to get Eq. (2.73) to match with

the actual experimental results. The first wrong assumption in Eq. (2.73) is that

the only light in the image is the laser light. Another assumption is in regard to the

saturation intensity, Is, as this is a quantity for the ideal two-level case, which is not

really the case in reality. In the scattering rate, Γ, there is also the assumption of no

collisions, which again, is not entirely true.

The first correction, corrects the assumption that the only light in the image is

the laser light. The laser light is by far the strongest source of intensity, but there

might still be some light pollution from other sources. This could make the OD of

the cloud higher than it actually is. This can easily be remedied by taking another

image, this time without both laser light and atoms. This is done twice, with the

same time separation as the atom and beam image, this way eventual camera effects

will be accounted for. This leads to

I = Iatom − Iatom,bias and I0 = Ibeam − Ibeam,bias. (2.74)

To summarise, when doing an experimental procedure there is first taken an image

with a laser beam and an atomic cloud (Iatom), then when the atoms are gone,
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another image is taken (Ibeam) and then lastly the laser is turned off and the two

bias images are taken (Iatom,bias and Iatom,bias). An example of these three can be

seen on Figure 2.1.

(a) Iatom (b) Ibeam (c) Ibias

Figure 2.1: The raw images of the 76th run taken in the Lattice lab the 4th of March

2019, showing how the atom, beam and the atom bias images look. The beam bias

is not shown here, as it is not possible to discern any differences between the two

bias images, if the same color scale are to be used as for the atom and beam images.

The light on the bias image, (c), can be hard to discern, but there is a few photons

measured.

The next correction is to the assumption of the ideal two-level case. The method

that builds up to Eq. (2.73) assumes the ideal two-level case, which is not necessary

the case. Following the initial proposition in [15], we introduce Ieff
s = α∗Is, where

alpha is a dimensionless constant, which serves to model implications such as impure

light polarization, structure of the excited state and the different Zeeman sub-level

populations of the degenerate ground state [15]. This also means σeff
0 = σ0/α

∗. This

new α∗-parameter rewrites the optical depth to,

σ0

α∗
ñ =

(
1 +

(
2∆

Γ

)2
)

ln

(
I0

I

)
+
I0 − I
α∗Is

⇒ (2.75)

OD = σ0ñ = α∗

(
1 +

(
2∆

Γ

)2
)

ln

(
I0

I

)
+
I0 − I
Is

. (2.76)

The introduction of the α∗-parameter cannot possibly do anything to the actual

density distribution and only introduce a correction to the measurements. This stems

from the logical argument, that for any intensity, the amount of atoms should not

change. A calibration of this can be done following the methods shown in Eq. [15]

and our work regarding this is discussed in more detail in Chapter 5, where I will

also expand the ideas proposed in [15].



18 CHAPTER 2. UNDERSTANDING BEC MEASUREMENTS

For the correction of the scattering rate, we define a new scattering rate where

the collisions are included as Γbroad = βΓ, which we introduce to correct systematic

discrepancies of the scattering cross section from the theoretical assumptions. This

leads Eq. (2.67) to become,

I∗s =
ε0ω

3
0Γbroad

12πc2
= βIs. (2.77)

This saturation intensity leads to,

OD = α∗

(
1 +

(
2∆

Γ

)2
)

ln

(
I0

I

)
+
I0 − I
βIs

=
1

β

[
α

(
1 +

(
2∆

Γ

)2
)

ln

(
I0

I

)
+
I0 − I
Is

]
,

(2.78)

where α = α∗β. The β parameter can then be found if there is some other property

that tells us something about the OD or atom number. In Eq. (2.41), it is seen

that the radius of a BEC depends on the number of BEC atoms. The radius of the

BEC is independent of the imaging and therefore we now have two different ways to

measure the atom number, the calibration of this parameter is seen in Chapter 6.

2.4 Measuring atomic properties

With the theoretical framework of both thermal and BEC atoms established and

experimental method to measure spatial density distribution, these two things only

need to come together in order to finding the different properties of the atomic clouds,

e.g. atom number and sizes, by utilising,

OD(x, y) = σ0

∫ ∞
0

n(x, y, z) dz . (2.79)

For the Bose-enhanced fit, we assume z̃ ≈ 1, as this is the case at T = Tc and

we correct for the center of the cloud not necessary being at 0, which leads to the

expression for thermal Bose-Enhanced cloud seen in Eq. (2.32) to become,

ODbose(x, y) =
Nthermal

2πwxwyζ(3)
g2

[
exp

(
−(x− x0)2

2w2
x

− ((y − y0)2

2wy

)]
, (2.80)

where x0 and y0 are the center of the cloud. This expression is then ready to be

fitted.

For hot thermal atoms, we assume that z̃ � 1, which leads Eq. (2.32) to become,

ODMB(x, y) =
Nthermal

2πwxwy
exp

(
−(x− x0)2

2w2
x

− ((y − y0)2

2wy

)
. (2.81)
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Lastly for BECs the expression in Eq. (2.40) is only for µ− U(r) > 0, otherwise

it is zero. This can be fixed with always choosing the higher number of 0 and the

expression in Eq. Eq. (2.40), this together with Eq. (2.79) yields,

ODBEC(x, y) =
5NBEC

2πRxRy

max

(
0,

(x− x0)2

R2
x

− (y − y0)2

R2
y

)3/2

. (2.82)

Armed with these three equations it is now possible to couple the experimental

measurements from the absorption imaging together with the theory. One is almost

tempted to make an evaluation program on the basis of this, just like it is seen in

Chapter 4.
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Chapter 3

Experimental overview

The first section of this chapter briefly describes how the experiment is producing

Bose-Einstein Condensates. Some of these steps I have been involved in optimising,

when this is the case I will describe that step and how it have been optimised in

Section 3.3.

3.1 Experimental sequence

MOT chamber

Rb dispenser
science chamber

MOT beams

MOT coils

cross

transport coils

static QP coils

Iof e coil
x-axis

y-axis

z-axis dif erential
pumping hole

Figure 3.1: Overview of the physical experiment. Reproduced from [16].

The word ”run” is used to denote one run-through of the following sequence:

1. Magneto-optical trap (MOT): First the experiment loads atoms into a magneto

optical trap (MOT). This is done by having a 87Rb dispenser pumping out

atoms at a constant rate, then these are immersed in red detuned light from all

spatial directions, seen on Figure 3.1 as the 5 red beams called MOT beams,

where the 6th is not visible on Fig. 3.1. This near resonant light coupled with a

magnetic quadrupole field makes the atoms resonant with the light if it moves

away from the center, due to the Zeeman effect. By absorbing a photon the

21



22 CHAPTER 3. EXPERIMENTAL OVERVIEW

atom is pushed back towards the center of the trap. In order for the atom to

distinguish between the pair of counter-propagating beams hitting it, the two

beams are given opposite circular polarisations, so that the atom will always

be pushed toward the center [16]. By having a photo detector measuring the

fluorescence from the atoms confined in the trap, it is possible to a measure of

the amount of atoms confined in the trap, so when the voltage on this detector

reached an amount specified in the Experimental Control System (ECS), it

triggers the next phase of the experiment.

2. Optical pumping : After the atoms are loaded and cooled, we optically pump

the cloud in order to get the atoms into |F = 2,mF = +2〉. This magnetic

sub-state is trappable in the magnetic trap described in step 4.

3. Transportation: The moveable transport coils are turned on over the MOT

chamber, creating another quadrupole field holding the atoms, while the MOT

coils are turned off. The MOT chamber have an low pressure, but not low

enough, as we are constantly pumping 87Rb atoms into this chamber. Therefore

we move the atoms into what is called the science chamber, where the pressure

is lower. These two chamber are connected by a narrow tube, making it possible

to have different pressures and transport the atoms between these different

pressurised chambers.

4. Loading in science chamber : When the atoms are moved into the science

chamber, the QUIC trap is turned on, while the quadrupole transport coils

are turned off. While we are in the science chamber, we also uses 3 sets of

Helmholtz coils, that we call shim coils.

5. Evaporative cooling : When atoms arrive in the science chamber and is trans-

ferred to the QUIC trap, we start on the evaporative cooling of the atoms. This

part is the most time consuming part, taking up to a whole minute in each

run. How this works and a re-optimisation can be seen in Subsection 3.3.2.

While we are doing the evaporative cooling we are also interested in the

amount of atoms trapped. Measuring the florescence as is done in the MOT

does not give a very accurate measure of the atom number, as there are too

many parameters influencing this. For there to be the same amount of atoms

for each experiment a more accurate measurement is needed. However the

imaging method used can not be absorption imaging, as this is a destructive

measurement and would therefore ruin the experiment. Instead the imaging is
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done by so called Faraday imaging. The Faraday imaging system was set up

before I joined the work in the lab and it have worked for all the time I was

in the group, therefore I will not touch the subject of how Faraday Imaging

works, but for the purpose of this thesis, it is non-destructive imaging that

gives an estimate of the atom number with near shot noise precision (1/
√
N).

For greater detail it is described in [11] and [17], with mind on the actual

experiment. After the first 3 steps of evaporation, a series of Faraday images

are taken to get a measure of the atom number. Then we do the stabilisation,

where the goal is to remove atoms until a wished atom number is reached,

while not changing the temperature. If we look at the Maxwell Boltzmann

distribution, the only place where we can remove atoms without changing the

temperature, is at the mean velocity. This is done by finding the correct cut

depth, as described in subsection 3.3.4. The cut depth decides at which energies

the atoms are removed, but it does not say anything about the amount. The

amount of atoms is decided by the amount of RF pulses made on the cloud and

this found through feedback stabilisation, which is described in more detail in

subsection 3.3.3. After the stabilisation and the next evaporation step, a new

set of images are taken, this time to measure the success of the stabilisation.

6. Hold time: After we have evaporated down to the desired energy we hold the

BEC and/or thermal cloud confined for a certain amount of time, in order to

get it to rethermalise, otherwise the cloud is not in thermal equilibrium and

we would not see the density profile the theory predicts.

7. Time of flight : Time of flight starts from the moment the trap is turned off

and the atomic cloud is then falling down towards the center of Earth’s gravity.

However it might be worth noting that there are in fact still magnetic fields

in play here, as it is only the QUIC trap that is turned off, there is still a

magnetic field from our shim coils, in the case of the y- and z-shim coils it

is to counter balance the natural background so the resulting field in those

directions are zero. For the x field the field is not aimed at getting a resulting

null-field, as we are not interested in having B = 0, as this can make the atoms

do a spin-flip, which we are not interested in and is explained in Section 3.2.

After the specified time of flight the absorption images - described in section

2.3 - are taken and the data can be extracted.
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3.2 Magnetic trapping

In order to be able to make a BEC in a dilute gas, we need the atoms cooled,

compressed and isolated [10].The compression and isolation of the atoms is up to

the trapping, while the cooling of the atoms is a job for electro-magnetic radiation.

As the atoms used are without any resulting charge, there are two ways to confine

them, either with an optical dipole trap or through magnetic trapping. As the title

of this section suggests, the trapping method used in this thesis work is the magnetic

trapping method and the optical dipole traps will not be described in this thesis.

In order to trap the atoms, a potential well of some kind is required. This can in

principle be achieved by either weak-field seeking atomic states or high-field seeking

states. However a theorem based on Maxwells equations state [18]: ”In a region

devoid of charges and currents, the strength of a quasistatic electric or magnetic

field can have local minima but not local maxima”.This implies that only weak-field

seeking states that can be trapped by a magnetic field. The potential the atom feels

can be described as,

V (r) = −µ ·B(r), (3.1)

where |µ| = mFgFµB. One way to trap the atoms are through a symmetric trap,

which can be delivered with one of the simplest field setups, the two-coil quadrupole

trap. This trap is build by two coils with 1.25 times their radius between them [14]

and with opposite running currents. It can easily be seen that in the center of the

trap the magnetic field is zero. With the zero point established the rest of the trap

can be described as[14],

B =∇B
√
ρ2 + 4z2 (3.2)

where ρ2 = x2 + y2. In order for the atoms to be confined and feel the right potential

it requires the magnetic moments orientation to be the same with respect to the

magnetic field as the atoms move, otherwise they will become ejected from the trap.

This first and foremost requires the atoms to be slow enough as to ensure that the

interaction between the magnetic moment and the magnetic field happens adiabatic.

This is especially important if the atoms passes through an area where the magnetic

field is small, leading to small separation between the Zeeman sub-levels, where these

other sub-levels most likely will be untrapped or anti-trapped states. This can in

essence be written as [14], ∣∣∣∣dB

dt

1

B

∣∣∣∣� ωL =
µ|B|
~

, (3.3)
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Figure 3.2: Schematic over the two different coil-setups in question. In the top we

have the quadrupole trap configuration and its potential. In the lower half we have

the QUIC-setup, where an Ioffe-coil have been added to make the potential have a

non-zero center. The z-axis is going through the center of the Ioffe coil. Reproduced

from [11].

where ωL is the Larmor precession rate. It can easily be seen that this adiabatic

condition is violated in regions with a very small magnetic field, especially if |B| → 0.

This introduces a hole in the trap where the atomic spin might flip, called Majorana

spin flip [14]. In the production of BEC, this is problematic as it is the atoms with

the lowest energy we are interested in and these are spatially around the zero point.

Therefore another trap is required. There are a number of solutions to this, but

the one used in the work of this thesis is the Quadrupole Ioffe Configuration (QUIC)

trap. This trap consists of a quadrupole coil pair with an additional third coil called

the Ioffe coil, as can be seen on Fig. 3.2.

The QUIC trap is in essence a trap with tries to emulate the Ioffe-Pritchard trap.

For all intents and purposes the QUIC trap can be described with the same magnetic
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field as the Ioffe-Pritchard trap, which is given as [10],

B = B0


0

0

1

+B′


x

−y
0

+
B′′

2


−xy
−yz

z2 − 1
2
(x2 + y2)

. (3.4)

This means the field strength of the magnetic field is given as,

|B(r)| =

√(
B′x− B′

2
xz

)2

+

(
−B′y − B′′

2
yz

)2

+

(
B0 +

B′′

2
z2 − B′′

4
(x2 + y2)

)2

.

(3.5)

This trap solves the problem with spin flips, by having a non-zero magnetic field

everywhere. That this is zero everywhere is perhaps not trivial and it depends on

the values of B0, B
′ and B′′. One argument for it being non-zero everywhere, can

be seen by considering the point r = (0, 0, 0) where |B| 6= 0. By going back to the

previous statement about no local maxima in a region devoid of charges and currents,

we can then see if we somehow can get a magnetic that is lower by going in any

direction. If the magnetic field rises in all directions, then there would have to be

maximum If we make a small change in any direction and this increases the magnetic

field, then for a point where the magnetic field is lower than r = (0, 0, 0) to exist,

will require a local maxima and that cannot exist.

From Eq. (3.5) we can see if B′(rx,y − rx,yz/2) � B′′r2
x,y is the case, then

r = (0, 0, 0) is the trap minimum. for small perturbations this is always the case, as

we are talking small perturbations to the spatial coordinates, making ri � rirj. As

our trap is measured in µm, this means in the radial directions, the linear confinement

is stronger than the harmonic component, while the axial direction (z) is only trapped

by the harmonic component, leading to a prolated trap. This can be taken one step

further, where the bias field is also ignored, as it is only the change in position that

we are interested in,

|B(r)| ≈

√
(B′ρ)2 +

(
B′′

2

)2

z4. (3.6)

In the limit of a cold cloud, we can then use the standard binomial approximation

(1 + x)n ≈ (1 + nx) for small x,

|B| ≈ B0 +
ρ2

2

(
B′2

B0

− B′′

2

)
+
B′′

2
z2. (3.7)

Recalling equation (3.1) and then recognising that this is a harmonic oscillator,

the potential can be written as,

U(r) = µB0 +
1

2
mω2

ρρ
2 +

1

2
mω2

zz
2, (3.8)
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where m is the mass of the atom in question, and

ω2
ρ =

µ

m

(
B′2

B0

− B′′

2

)
and ω2

z =
µ

m
B′′. (3.9)

From this it can be seen that if the bias field in the z-axis is increased, then the

radial frequencies will change but the axial will remain unchanged.

3.2.1 Decay of the magnetic field

Ordinarily in BEC experiments measurements are taken after time of flight, which

means the trap needs to be turned off. But it is not possible to turn off a current

instantaneously. The decay of the current can be determined starting from Faraday’s

law [19],

E = −dΦ

dt
, (3.10)

where E is the electromotive force and can be rewritten as E = RI, and Φ is the flux.

Under the assumption of magnetostatics (which holds throughout the turn-off under

the assumption of quasistatic currents) the magnetic field is given as [19],

B(r) =
µ0

4π
I

∮
dI× r̂

r2
, (3.11)

which says that the magnetic field from any part of the coil is directly proportional

to the current. This implies that, the magnetic flux, Φ, is also directly proportional

to the current, and enables us to define Φ = LI, where L is the inductance of the

coil. Thus we can rewrite equation (3.10) as,

RI = L
dI

dt
⇒ R

L
dt =

1

I
dI ⇒ I(t) = I0e

−R
L
t = I0e

−t/τ , (3.12)

given the proportionality between the magnetic field and current, this means the

magnetic field decays exponentially when the trap is turned off.

3.3 Maintenance measurements

Some parameters change over time and needs to be measured and readjusted from

time to time, in this section I will explain more in-depth some of this maintenance

measurements I have worked on.

3.3.1 Life time

At the beginning of my time on the Lattice experiment we experienced trouble with

the atom numbers in our trap being a lot lower than expected. This was due to
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Figure 3.3: Picture of a atomic cloud with two minima, with each of its two axes

integrated and shown on the sides. The small image in the upper right corner is

the shadow picture, where it can be seen that the atoms cast a shadow in the laser

beam, seen from the camera. This image is taken at a early state of the evaporation

and in-trap with our secondary camera.

our trap having not one, but two points where the magnetic field was zero leading

to Majorana spin flips, an image from that time is seen on Figure 3.3. This led us

to investigate the lifetime for different bias fields. This was investigated for a huge

thermal cloud without stabilisation. The images are taken in-trap after the first few

evaporation steps. These measurements are taken by simply varying the hold time

and then fitting to an exponential decay, this is then done with a magnetic field of

IzShim = −0.136 71 A and again for IzShim = 2 A. The idea behind this investigation

is, if somehow we have a negative magnetic at the center, we would also have two

point where |B| = 0, by increasing the shim current, we increase the magnetic bias

field and would no longer have a magnetic zero point. The result of this investigation

can be seen on Fig. 3.4.

It can then clearly be seen on Fig. 3.4, that whether the field have two magnetic

null point or none, makes a difference. We can therefore conclude that atoms are

leaving the trap more rapidly if we have two holes in the trap, which is consistent

with our expectation from Section 3.2.
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Figure 3.4: The decay of the normalised atom number in the QUIC trap with

Ishim, z = −0.136 71 A( ) and Ishim, z = 2 A( ), giving lifetimes of τ = 53(16) s and

τ = 697(519) s, respectively. Each data point is one measurement. Note that these

lifetimes are for a thermal cloud without any evaporation and therefore only reflect

the natural decay. Each data point holds only one measurement.

3.3.2 Evaporative ramp

In order to achieve Bose-Einstein condensates, it is important to have an effective

cooling, for this we use evaporative cooling in the Lattice laboratory. The overall goal

that evaporative cooling have to satisfy is to get as many atoms as possible with the

lowest temperature possible. This is a bit tricky, as the general idea of evaporative

cooling is to remove the most energetic atoms in order to lower the temperature,

which means the more atoms, the higher temperature. But we can quantify the

requirement by using phase-space density, seen in Eq. (2.7), reproduced here,

ρps = nλ3
dB = n

(
2π~2

mkbT

)3/2

(3.13)

where n is the particle density, m is the mass of the atom and λdB is the de Broglie

wavelength. Doing most of the evaporation the atoms have not made the transition

to a BEC, therefore this description is adequate. By utilising the kinetic energy from

the temperature of the cloud is equal to the confinement at the edge of the cloud,
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the volume can be written as,

V =

(
2πkbT

m

)3/2
1

ωxωyωz
, (3.14)

which means we can describe the phase space density as,

ρ = N~3ωxωyωz
(kbT )3

, (3.15)

which is then a measurable quantity, as both the atom number, N , and temperature,

T , are measurable quantities.

As it was established in equation (3.8), the potential of the atoms is an harmonic

oscillator, then imagine some thermal atoms in this potential, as is schematically

shown on Fig. 3.5. A sort of cartoonish way to understand this is, if one makes a

”hole” in the potential, then only atoms with that energy corresponding to the hole

can escape the trap. Then if we then move this ”hole” down, we will keep removing

atoms. Physically what happens, is an utilisation of the Zeeman splitting, where the

atoms with the highest energy is able to reach farther out, where the field is higher,

this also means their resonance frequency also will be a bit higher making it possible

to tune a radio frequency source to resonate with the atoms and then making then

change from the bound |F = 2,mF = 2〉 to |F = 2,mF = −2〉 which is repelled from

the trap minimum [9].

If we just remove all atoms too energetic, it does not cool down the rest of the

atoms, which is what is wanted in the end. As previously stated, the atoms during

most of the evaporative cooling can be regarded as thermal atoms, and thus we can

describe the atoms with Maxwell Boltzmann statistics, the idea is to remove the tail

of the Maxwell-Boltzmann distribution and then let the cloud rethermalise through

collisions. This is done in a number of steps, until the desired temperature is reached.

Each step have a chosen RF frequency and an associated time, generally the more

time, the higher phase space density. However there are of course also some loss

mechanisms, like collisions with the background, inelastic and three-body collisions,

which means the desired time is an optimum between good evaporation and loss. For

an experimental realisation this means we have to find the optimal trade-off between

atom number and phase space density, which is not necessary straightforward, but

an example can be seen on Figure 3.6. Here the evaporation frequency was constant

and the time of which this evaporation was made over was varied, in order to find

the time that best matches the chosen frequency, 4.5 s was chosen as the best as it

shows a good combination of phase space density and atom number. 5.5 s could also

have been chosen. By doing this for all steps but the last, as this one we change the
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(a) (b)

Figure 3.5: The idea behind evaporation cooling. Dots represent atoms.(a) natural

potential around the center of the QUIC trap. (b) The potential but with a radio

frequency knife utilised, effectively lowering the trap. If done correctly, all atoms

above fknife is no longer bound in the trap as they are in untrapped or antitrapped

states and thus no longer confined the magnetic field.

last very often in order to control the final temperature therefore an optimisation is

redundant. We therefore arrive at Figure 3.7, which shows how our RF frequency

changes over time.

3.3.3 Feedback stabilisation

The Lattice experiment uses atom stabilisation, this requires feedback stabilisation

now and then. This is something that is done quite often, when the experiment is

running optimally it is usually done once a week at the least. The purpose of the

feedback stabilisation is in the end to ensure that the correct amount of atoms are in

the trap after a given evaporation step (usually the fourth). This is done by applying

RF pulses that remove atoms with the mean velocity, but as this mean velocity is

already found (see subsection 3.3.4), the purpose of feedback stabilisation is in more

practically terms, to find how many pulses are needed to achieve the correct atom

number. This is done by first taking a set of runs for reference, this is the so called

reference runs. These reference runs have not been exposed to any loss pulses, they

therefore represent the natural spread of atom numbers. Then from the reference

runs and the run that we wish to stabilise, a quantity we call error is calculated as

[11];
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Figure 3.6: The amount of (fitted) thermal atoms versus Phase space density in the

y direction, this is directional as the found temperature from the evaluations is not

necessarily the same in both directions, see section 4. The numbers denote the time

associated with every mean time. 4.5 s is the chosen value here.

EREF
1 =

SF1

〈SREF
F1 〉

− 1 and EREF
2 =

SF2

〈SREF
F2 〉

− 1, (3.16)

where S is the signal, the subscript denotes if it is before the stabilisation, F1, or

after, F2. The loss of the atoms should follow the amount of pulses exponentially

[11]. However, due to technical limitations we are approximating it with a quadratic

polynomial[11],

Npulses = gEREF
1 (1 + qEREF

1 ) + dpulses, (3.17)

where g and q are the linear and quadratic gain terms, respectively. dpulses is the loss

at EREF
1 = 0 also known as where the stabilised signal is equal to the mean of the

signals from the reference runs. These feedback parameters are often chosen through

an iterative process, by putting in a guess for these parameters some atoms will be

removed according to equation (3.17), however the aim is to get EREF
2 to lie on a

horizontal line, for all runs, and thus stabilising the error, which means the atom

number is stabilised. An example of a feedback calibration can be seen on Fig. 3.8,

on this figure, the signal of the points with loss clearly follows another trend than

the reference runs, however the signal - and therefore also the atom number - is not

stable from run to run. However we have an evaluation program which are able to

predict what parameters are better in order to achieve the target EREF
2 wanted, this
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Figure 3.7: Evaporation ramp for the experiment.

is the black line shown on Fig. 3.8.
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Figure 3.8: An example of how Feedback stabilisation is made, the ideal case is if

stabilised points lie on a horizontal line. Reference runs are from the 20th of March,

2019 and the stabilised points are from the 21th of March 2019.

3.3.4 Cut depth

When doing atom number stabilisation it is desirable to change only the atom number

without influencing the temperature. For a thermal cloud, the energy distribution

of the atoms is given by the Maxwell-Boltzmann distribution. By removing the

most energetic atoms, the cloud will cool down, while removing the least energetic
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atoms will of course heat up the cloud after a rethermalisation. If we remove the

atoms with the mean energy, the temperature will remain unchanged. We thus need

to determine the appropriate radio frequency for the loss that achieve this. This

frequency is between the evaporation frequency fknife and the trap bottom fbottom

and can be specified through a cut depth, D, given by,

f〈E〉 = D(fknife − fbottom), (3.18)

where D is a number between 0 and 1. The cut depth can be determined, by using

the property that only for the correct value of D the temperature of the sample is

independent of the induced loss during feedback. By using equation (3.17)’s dpulses

and set g = q = 0, it is possible to change the amount of lost atoms for each cut

depth easily. This is shown in Fig. 3.9, where a 1st order polynomial fit have been

applied to the temperature as a function of the lost fraction. The goal is then to

find the fit where there is no slope. By fitting a spline to the slope as a function of

cut depth the zero-crossing corresponding to the optimal cut depth is found to be

D = 0.085.
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Figure 3.9: Result from the cut depth investigation. (a) The temperature as a

function of how large a fraction of the atoms have been lost, fitted to a first order

polynomial, for different cut depths. Each data point consists of at least 3 runs. (b)

Left axis: The blue circles denote the linear coefficients from (a) for each investigated

cut depth. A spline function have been used to determine where the coefficient is

zero and the temperature is unchanged. Right axis: The red squares denotes the max

fraction that can be removed. This is fitted to a Maxwell-Boltzmann distribution

and are shown as a sanity check and illustrate that the more atoms we are resonant

with, the higher loss we induce.
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3.3.5 Trap frequencies

As was seen in Eq. (3.8), the trap frequency stems from Hooke’s law and tells us

how tight the trap confines the atomic cloud. This means the width of the cloud

before the magnetic field is turned off, depends on these frequencies, it can therefore

be important to know what trap frequencies the cloud experiences.

The trap frequencies can be measured by giving the cloud a ”kick” that makes the

cloud move in the trap, given that the magnetic field from the QUIC-trap is harmonic

around the minimum point, we expect it to move like an harmonic oscillator. By

holding the cloud for variable time duration before it is released into time of flight, we

can measure the periodicity of its in-trap oscillations, by seeing it moving sinusoidal

in both directions of the picture.

In my time on the experiment this ”kick” have been initiated in a number of ways.

This ”kick” needs to be strong enough to make the atoms oscillate in both directions

with an amplitude, large enough to be clearly distinguishable, which proved to be a

challenge.
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Figure 3.10: Displacement of the center of a BEC under trap frequency measurement,

where the oscillation is started by lowering the QUIC current in short period of time.

Each point represent one run. Note, there are more runs with the same hold time.

Perhaps the simplest way to start the ”kick” is to just ramp the shim coils up for

a short time, thus changing the position of the minimum point. This works great for

the radial direction, but it proved hard do a good oscillation in the axial z-direction.

We had a bit more success with ramping the QUIC current down for a short time,

but this had small oscillations in the axial direction of about 3-5 pixels, which makes

it possible to observe an oscillation, but hard to get a good measure of, making the
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Figure 3.11: Schematic of the little circuit built in order to Bypass one of the

quadrupole coils in or z-shim coil. The diodes are built into the MOSFETs. The

TTL is a digital channel we can control from the Experimental Control System

(ECS).

fit rather hard, as can be seen on Figure 3.10, where the trap frequency is estimated

to ωa = 2π× 17.85(19) Hz.

The last method, which also proved to be the best, was to bypass one of the

quadrupole coils in our z-shim configuration. This was experimentally done, by

constructing the circuit seen on Fig. 3.11 and then when we want to start the

oscillation, we send a 5V signal through to TTL and thus closing both MOSFETs

so that the current can run through the MOSFETs. We build the circuit seen on

Fig. 3.11 with two MOSFETs as this system also should be able to handle negative

current and the built-in diodes in these MOSFETs were the diodes with the lowest

resistance we could find. And the resistance needs to be low for there to run a

considerable current through the bypass, as Coil 2 have a resistance of ∼ 1.2Ω.

The result of a oscillation with this bypass can be seen on Figure 3.12, this have

clearly improved our trap measurement capabilities, as we can now be more certain

of the fit than before and have yielded ωa = 2π × 17.72(1) Hz it have lowered the

uncertainty by a whole order of magnitude.
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Figure 3.12: Displacement of the center of a BEC under trap frequency measurement,

with the oscillation started by bypassing one of the shim coils. Each point represent

one run. Note, there are more runs with the same hold time.
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Chapter 4

Evaluation program, SkyFit

This code is made with the goal to be able to evaluate absorption imaging pictures

of Bose-Einstein Condensates. SkyFit was developed with a few goals in mind. First

and foremost it was to replace the old program ”Perfectfit”.

The goal behind this replacement was to get a code that was more up-to-date

with the tools provided by Matlab and to do 2D evaluations of the images, where

Perfectfit only did 1D fits. Another goal that was quickly set for SkyFit was also

to put the three associated laboratories onto the same program. Previously, all

three laboratories had their own version of Perfectfit, and if one laboratory wanted

implement improvements of the program, it would not be easily transferred to the

other laboratories. During development, a few new features was also thought off,

some of them in order to be more precise with the evaluations, other because it would

make the day-to-day work in the laboratories easier. Lastly SkyFit was also meant

to be an easily editable program, such that if someone thought of a new feature or

simply only wanted a part of the code, a new developer should be able to implement

these features somewhat easily.

This chapter is mostly based on what SkyFit will do in an ”ordinary” run, i.e. a

run with a good amount of thermal and BEC atoms, as this described the most general

case. In the event of a run with only thermal or BEC atoms all parts containing the

other can simply be disregarded, as both parts are somewhat independent.

An image of the Graphical User Interface for SkyFit after an evaluation can be

seen on Fig. 4.1, with many of its possible settings seen. The settings that are not

shown are general settings, like the camera and experimental parameters, that you

usually do not wish to change very often.

39
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Figure 4.1: An image of SkyFit after an evaluation. It can be seen there are quite a

few bottoms and check boxes. Only the ones with physic relevance will be explained.

In short the settings tab that can be seen in the upper left corner is not shown here,

but it contains all settings related to parameters that are dependant on the camera

and the actually experimental set up (like camera calibration, time of flight and trap

frequencies). On the page shown here, the top of the left ”column” is where all the

evaluation options are shown. Below these options, the raw atom and beam images

can be switched between which one a want to see, which are the same images as

seen in Fig. 2.1. The upper right ”column” is where it is specified which image to

load. The large image in the middle shows the OD at the different pixels, where the

blue circle in the image shows the edge of the cloud RoI, this is an evaluation of Fig.

2.1. This image is flanked by by an integration of this image in the two directions,

where the red curve shows the thermal fit, the green the BEC and the purple show

the sum of these two.



4.1. IMAGE LOADING 41

4.1 Image loading

The first thing to do in order to evaluate an image is of course to load the image.

However, defining the OD as was stated in Section 2.3, we are waiting for till later, as

we need the define the Regions of Interest first, for reasons that will become obvious.

Based on Sec. 2.3, I(x, y) and I0(x, y) are found by using the signal on each pixel,

through,

I(x, y) = Ccam
Satom(x, y)− Sbias(x, y)

tdetection
, I0(x, y) = Ccam

Sbeam(x, y)− Sbias(x, y)

tdetection
,

(4.1)

where the S denote the signal in pixel x, y in the given image, which corresponds to

the amount of counts in the image. tdetection is the detection time, this is important

as an image is integrated over the time it takes to take the image. Lastly, Ccam is

what we call the camera calibration, which is a calibrated quantity that makes it

possible to translate the amount of counts in a pixel to intensity and has units of

[Ccam] = Is · µs/counts, which also means all intensities in this chapter are already

divided with Is.

4.2 Region of interest (RoI)

Before anything can be done, a user needs to define a number of region of interest to

work with. These are the BEC-, thermal-, cloud- and reference-RoIs, which can be

seen on Fig. 4.2. This section explains how to find these.

4.2.1 Cloud RoI

The first RoI that we need to find, is the cloud RoI. This can be found in two ways,

either through the ”Manual” method, where the user simply defines the RoI by using

Matlabs built-in ”Imellipse” function, that lets the user define an ellipse by hand.

The other way to define the Cloud-RoI is by using the ”Auto” method. This method

normalises the picture to the maximum value found inside the Cloud-RoI from the

two intensities as,

odnorm(x, y) = ln

(
I0(x, y)

I(x, y)

)
1

max
(

ln
(
I0(x,y)
I(x,y)

)) . (4.2)

Then SkyFit finds the center by using a threshold value, all values above this is

used to find a center. This is done by making a mask consisting of all pixels with a
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Figure 4.2: Figure of an evaluated atomic cloud with a BEC, the magenta dash-dotted

line shows the bounds of the BEC RoI. The red dashed line shows the bounds of the

Cloud RoI. Everything outside of the green ring and inside of the green square is the

reference RoI. This is the evaluation of Figure 2.1.

normalised OD higher than the threshold,

M(x, y) = odnorm(x, y) > threshold. (4.3)

The mask is then a 2D logical array that is 1 in each pixel with an normalized OD

higher than the threshold and 0 if it is not.

When looking for the center, the interesting point is the pixel in which the center

is located, so the goal is the find the x and y positions of the center. This is calculated

as the center-of-mass of the image by,

xcenter =
Σ x(M)odnorm(M)

Σ odnorm(M)
. (4.4)

The same is then done in the y-direction.

After finding the center there are two options, either a user can define a fixed

radius, where a radius in both the x- and y-directions are chosen and the RoI is

found by the center and these numbers. The other options is to calculate the radius.

For this solution Eq. (4.3) is used again, but with a somewhat arbitrary threshold of

0.1, where everything above is calculated as being pixels containing atoms. This is

of course dependant on the signal to noise ratio in the picture, but for most images

this should be okay. The cloud is most often an ellipse, but the mean radius can be
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found using,

r =

√
A

π
=

√∑
x,yM(x, y)

π
, (4.5)

where A is the area. A and r are in units of pixels. Then the ratio between the

two axes of the ellipse is found,

ε =
mean(|X − xcenter|)
mean(|Y − ycenter|)

, (4.6)

where X and Y are all x and y pixels that are inside the mask (M(X, Y ) = 1). Then

the radius in both the x- and y-direction are found,

rx = xcenter + rε, ry = ycenter +
r

ε
, (4.7)

with these values known, an ellipse can be created and the cloud RoI defined through

the ”auto” method.

By finding the radii of the RoI through the auto method, the radii can differ

from image to image and it can depend on what type of cloud is investigated, as a

thermal cloud ordinary would have a lower OD. This is why fixed radii can be useful,

under the right circumstances.

When the cloud RoI is defined we can also define what we call the ”reference”

RoI, which is confined by an inner radius of RrefRoI = 1.3RcloudRoI and the edges of

the image. This RoI is made with the goal of having no atoms in it and thus only

background. The reason why we define this RoI becomes obvious in Section 4.3.

4.2.2 BEC and thermal RoIs

With the general region of interest defined, the next thing is to define in which pixels

the BEC is located. In Section 4.4 we wish to fit the part of the cloud that only

includes thermal atoms and no BEC atoms. In order to do this we define two regions

of interest, a BEC RoI, which define where the BEC atoms are and a thermal RoI,

defining where there are no BEC atoms. This is done by finding the BEC RoI, as

both of these RoIs are defined from where the BEC atoms are.

Again there are two solutions, the first is simply to use the same BEC RoI as was

used in the previous run. The other solution is by making a 1D fit to the density,

in order to find the width of the BEC. First, the center of the cloud is to be found.

It is important that this value is precise, as the BEC is approximately symmetric

around the x- and y-axes. As this is important a good start guess can be important.

This is done by making a Gaussian fit;

f(x) = Age
− (x−xc)

2

2c2 , (4.8)
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where Ag is the amplitude, xc is the center point and c is a measure for the width of

the Gaussian. It is only the center, xc that is interesting here. This fit is of course not

a good fit to the data if there are BEC atoms present as is the case here, otherwise

we would not make a BEC RoI. However it does not have to as it is only the center

that we wish to find. Other methods might have been used, but this method seems

more robust to noise.

The BEC RoI is defined by making a combined Gaussian and Thomas Fermi

fit. But in this fit it is preferable if noise plays a small part as possible, but we also

want to be able to see the structure, we therefore take a 3 pixel mean around each

axis that crosses the previously established center. This means there is a cross in

the picture where the two axes are 3 pixels wide and meet in the center. This could

in principle be higher than 3 pixels, but we let it stay here as to still be able to

distinguish the BEC and if a single pixel is extremely high because of some fault in

the imaging, then it might not diverge the fit as much.

Worth noting is also that the program is made with a max OD setting, which

means ODs of higher than this amount (often set to 4.5) will not be a data point in

this fit or any other fit.

As an example of mean method, Figure 4.3 shows three different pixel amounts

for the same cloud under 10 ms of time of flight. As it is seen the 3 pixels seems to

be a little bit more smooth than the 1 pixel mean, while the 100 is certainly more

smooth, however this comes with a cost, as the OD is much smaller, it might still be

able to give us the answers we seek, as it can clearly be seen that there are still two

functions at play. On the other hand, the OD is taken over so many pixels that it is

no longer just a BEC we are looking at, as some pixels which contains only thermal

atoms are meaned over now, which is not ideal.

When the data points are prepared a fit is made in both the x and y direction

individually to the function,

f1D(x) = ABEC·max

[
0,

(
1−

(
x− xc
rx,BEC

)2
)]3/2

+At·exp

(
− (x− xc)2

2(C + rx,BEC)2

)
, (4.9)

where ABEC and At are the amplitudes of the BEC and thermal cloud respectively,

and C + rx,BEC is the width of the thermal cloud. This is done in the form of

C + rx,BEC in order to restrain the width of the thermal cloud to be larger than the

width of the BEC. Same equation also holds for the y-direction and the same is done

there. The only parameters needed for the further evaluation are the center and the

BEC radius, as these two allows the program to make a mask for the BEC and thus

a BEC RoI is made.
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Figure 4.3: Three slices of the x axis at y = yc, with the mean value taken over 1, 3

and a 100 pixels.

With a BEC RoI available a RoI for the thermal cloud is straight forward. The

program takes the original defined Cloud RoI and takes all pixels that are not used

in the BEC RoI and puts them in the thermal RoI.

4.3 OD calculation

With the regions of interest found we can correct for another experimental source of

error. If somehow the laser or the background light changes in between the atom

and beam image, this can result in a wrong OD for the image. We therefore wish to

find the general ratio between the incoming intensity in the two images.

This ratio we can of course not gain from the atomic cloud, as the difference

between the two images are exactly what we are looking for. Usually the atomic

cloud fills only a small fraction of the total picture, the rest are just ”empty” pixels.

However these pixels does very rarely have OD = 0 and are a perfect way to find the

offset between the two images. This is where we use the reference RoI defined earlier

and it is therefore we require that there is no atoms in this RoI, as this would give a

wrong ratio. This ratio is found as,

ratio =
mean(Iatom(x, y ∈ RoIreference))

mean(Ibeam(x, y ∈ RoIreference))
, (4.10)

SkyFit is now ready to define an optical depth, using a modified version Eq.
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(2.76),

OD(x, y) = α ln

(
I0(x, y) · ratio

I(x, y)

)
+
I0(x, y) · ratio− I(x, y)

Is
, (4.11)

where

α = α∗

(
1 +

(
2∆

Γ

)2
)
, (4.12)

where α∗ is the one defined in Eq. (2.76). Eq. (4.12) is due to us not having defined

a detuning in our evaluation method and due to the requirements of α, the detuning

can still be included. α is known number from a previous calibration. Note that this

is the expression for only the old α∗, calculated with the method shown in [15], as we

have not yet implemented a spatial α calibration nor a β calibration for that matter.

4.4 Fitting routines

There are a number of different fits that can be done in SkyFit, which can be chosen

in the ”Model” radio button group in the middle of the left column on Fig. 4.1. The

choice of button tells SkyFit which kind of fitting routine to do, whether it should

do a Gaussian fit, a Bose-enhanced or a BEC fit and in what combination.

By choosing ”Thermal”, SkyFit only does a Gaussian fit. By selecting ”BE

Thermal”, only a Bose-enhanced Gaussian fit is made. If ”Bimodal” is chosen, both

a Bose-enhanced Gaussian and a BEC fit is made, And for ”Pure BEC” only a BEC

fit is made. The last two options, ”None” and ”Cold bimodal”, are extra features

and will therefore be covered in Section 4.6.

This section explains the sequence of how SkyFit’s fitting routines. Each time

a fit is made and checks with what fitting model is used, to discern whether the

present fit are to be made or not.

In the event that there are both thermal and BEC atoms in the cloud, SkyFit

have to separate the two, this can become problematic as there are often both thermal

and BEC atoms in the pixels. Therefore it is necessary to get a number on how

many thermal atoms are overlapping with the BEC. This is done by first doing the

thermal fit in the thermal RoI, where there are no BEC atoms.

The way the thermal fit is done, is by making a fit to either a Bose-enhanced

Gaussian (”BE Thermal” and ”Bimodal” buttons) or a normal Gaussian (”Thermal”

button). This depends on the temperature of the cloud, if we are close to the

critical temperature or below it, a Bose-enhanced describes the atoms best. The

Bose-enhanced is based on Eq. (2.80), but modified in order to correct between our
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experimental images and the theoretical prediction,

fthermal(x, y) = fBE(x, y) =
Cthermal

2πwxwyζ(3)
g2

[
exp

(
−(x− xc)2

2w2
x

− (y − yc)2

2w2
y

)]
+ c,

(4.13)

while the normal Gaussian fit that will be done if ”Thermal” is chosen, is based on

Eq. (2.81) and again modified here,

fthermal(x, y) = fGauss(x, y) =
Cthermal

2πwxwy
exp

(
−(x− xc)2

2w2
x

− (y − yc)2

2w2
y

)
+ c. (4.14)

Both fits are made through a non-linear regression model. Where c is a constant

offset. c should be zero due to the ratio we found in Eq. (4.10). However this seems

not to be true in all pictures. Whether to have c be in the evaluation or not, can

be chosen in the GUI with the check box ”Thermal fit offset”. lastly Cthermal is an

amplitude that relate closely to the atom number, but as our data are measured in

optical depths and on a pixel, we have to translate it to an atom number by taking

the cross section and area of a pixel into account,

Nthermal = Cthermal
Ap
σ0

, (4.15)

where Ap is the area of a pixel.

Note that by using the option ”Center Boundness”, a user decides whether xc and

yc are fitting parameters by choosing ”Fitted” or if they are defined earlier through

the BEC RoI calculations, by choosing ”Bound”. This option is available as in the

event of few atoms, the evaluation might find the center of the thermal cloud a few

tens of pixels away from the center of the BEC. Fits that gives that kind of result

should be wrong, as both the BEC and the thermal cloud, feel the same potential

and therefore should also feel the same minimum. It is therefore a physical relevant

assumption to make. However the center calculated earlier is of course not infinitely

precise and the 2D fitting routines should give a better result, so if possible, ”Fitted”

is the better option.

The BEC fit is done pretty much the same way, but with the thermal contribution

subtracted from the raw data for all pixels inside the BEC RoI. The function fitted

to is Eq. (2.82), reproduced here;

fBEC(x, y) = OD(x, y)− fBE(x, y)

=
5CBEC

2πRxRy

max

[
1−

(
x− xc
R2
x

)2

−
(
y − yc
R2
y

)2

, 0

]3/2

,
(4.16)

note that it is the Bose-Enhanced thermal fit that is subtracted, as at temperatures

T < TC , this function describes the thermal atoms seen in the image best.
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4.5 Evaluation results

SkyFit gives some notably results after an evaluation. Firstly it counts how many

atoms are inside the Cloud RoI, the optical density is converted to an atom number

by

Nsum =
∑

x,y∈RoIcloud

(OD(x, y)− c)Ap
σ0

. (4.17)

This sum is the only number which can be found without any fitting routines, in the

event of no systematic offset in the pictures. That this number does not depend on

any fitting methods, makes it a good number for a lot of applications. One just have

to bear in mind that it depends on the cloud RoI.

With the fits done in Eqs. (4.13)-(4.16), the easiest result to extract is the amount

of both thermal and BEC atoms, as these are just,

Nthermal = Cthermal
Ap
σ0

, NBEC = CBEC
Ap
σ0

. (4.18)

Another way to find the amount of BEC atoms is also to take sum of the OD

inside the BEC RoI and subtract the thermal contribution,

NBECSum =
[
OD(x, y ∈ RoIBEC)− fBE(x, y ∈ RoIBEC)

]Ap
σ
, (4.19)

this number is a good sanity check when compared with NBEC, as these two should

give roughly the same number, but done through two different methods.

With all different kinds of atom numbers accounted for, the next interesting thing

is the temperature. The temperature is calculated in both directions as;

Tx = w2
xAp

m

kb(1/ω2
x + t2ToF)

, Ty = w2
yAp

m

kb(1/ω2
y + t2ToF)

(4.20)

where m is the mass of the atomic species used, ωi is the trap frequency in the given

direction, tToF is the time-of-flight and wi is the thermal width in the given direction.

This means that even for a cloud below the critical temperature, we need a

thermal cloud in order to measure the temperature, making a pure BEC fit unable

to give a temperature. The temperature in both directions should in theory be the

same value, however they seem to differ a bit, but again this can be used as a sanity

check if they are too far apart.

The temperature in kelvin is not always the best to get an idea of how cold the

atomic cloud is, therefore skyFit also calculates the critical temperature and gives

the temperature in terms of the critical temperature, given as

Tc = ~(ωxωyωz)
1/3 Nsum

kbζ(3)1/3
. (4.21)
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SkyFit also gives the position of the center and the width of both the BEC and

thermal cloud, which comes directly from the fits in Eqs. (4.13)-(4.16), and are

therefore in the unit of pixels. Knowing the pixel sizes makes it easy to convert it to

a real length scale, however I find it more intuitive to have the numbers that are

seen in the on the image.

For the optimisation mentioned in subsection 3.3.2 we found it useful to also

calculate the phase space density which is calculated in both the x- and y-direction

as the temperature in these directions might differ,

nλ3
dB,i =

Nthermal~3ωxωyωz
(kbTi)2

. (4.22)

The next result SkyFit delivers the intensity, which is found by,

I = mean[I0(x, y ∈ RoIcloud)], (4.23)

and is therefore the mean intensity in the part of the image that contains atoms, in

the event of a non-uniform beam this means that the cloud RoI could have a great

influence on this number.

For the work done in Chapter 5 it was important to see how many photons and

how many absorbed photons there were in the image. The amount of photons in the

image is found as,

Nγ =
CcamAp
Eγ

∑
x,y∈RoIcloud

Sbeam(x, y), (4.24)

and

Nγ,abs =
CcamAp
Eγ

∑
x,y∈RoIcloud

(ratio · Sbeam(x, y)− Satom(x, y)), (4.25)

where Eγ = 2π~c/λ and is the energy of a photon. Lastly SkyFit gives out the sum

of squared errors of prediction (SSE) for both fits done.

4.6 Extra features

By now a ”standard” run have been explained, however there are still a few other

features that can be used in an evaluation. Of these extra feature a handful hold

relevance to the physics in play and I will cover these here.

It can be useful to set the RoI check box off. This would define the cloud RoI

as the whole image and therefore we would have no reference RoI. This means we

can’t find the ratio between the atom and beam image as described in Eq. (4.10),

therefore we skip this step when calculating the OD. This is useful for very large
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clouds, where defining a reference would either contain atoms or are so small that it

would not be possible to give a good statistical measure for the ratio.

In Sec. 4.4 I covered four of the six buttons in the ”Model” radio button group,

shown in Figure 4.1. The first one skipped is ”None”, which is just an evaluation

done without any fits. This will still give the sum, as it can be taken independently

of any fits. Note, that this means the sum is calculated with c = 0.

If ”Cold bimodal” is chosen, the BEC RoI is found by only fitting a BEC fit,

meaning the second term in Eq. (4.9) is omitted. However for the 2D fits done in

Sec. 4.4, this is the completely same fitting methods as ”Bimodal”. By choosing this

option, a very cold cloud might be easier to evaluate correctly, as a low thermal signal

might confuse the fit and make the RoI too big. This will then lead to the few pixels

that only contain thermal atoms, becomes even fewer and a proper thermal fit might

not be possible. An example of this can be seen on Fig. 4.4, where it can be seen

that for low temperatures (T/Tc . 0.75), the ”Cold Bimodal” data point seems to

be more consistent, while for T/Tc > 0.8, ”Cold bimodal” seems to be less consistent.

This clearly indicates that this new feature can indeed improve our precision for

low temperatures. However one thing that can also be seen on Fig. 4.4, is that the

”Cold Bimodal” measurements is seen to generally have higher temperatures, which

could be due to generally creating larger BEC RoIs and somehow makes the constant

offset, c, larger, which in turn would lower Nsum

The method for finding the BEC RoI is built on the assumption that the symmetry

axes of the elliptic cloud are aligned along the x- and y- axis in the image. However

this is not always the case of all laboratories. If this is the case, SkyFit have a

built-in image rotation, that rotates the image, a user defined number of degrees.

There are a few more features, but none of them hold any real significance in

regard to the physics.

4.7 Correct usage of SkyFit

The program is made with a lot of different possibilities for evaluation. They idea

is that depending on what kind of picture is used, different evaluations might be

needed. If the picture that wish to be evaluated is for instance cold then the ”Bimodal”

method might have produce a bad BEC RoI and on the other hand if the temperature

is close to the critical temperature, ”Cold bimodal” might also produce a bad BEC

RoI.

Under use of the program it was also found that for pictures taken in the Mixture
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Figure 4.4: Comparison between the ”Bimodal” fit option ( ) and the ”Cold bimodal”

fit option ( ) for T definitely below Tc. The same data have been evaluated for both

methods, under the same conditions, except the BEC roi method. ( ) shows the

condensate fraction (Eq. (2.10)) without interactions and ( ) shows the condensate

fraction with the correction due to interactions (Eq. (2.28)).

laboratory, a large RoI can lead to a significant offset and calculating without the

offset might lead to a temperature too high. We have observed evaluations with

temperatures a good amount over TC but still clearly with BEC atoms, thus the

evaluation must be wrong. On the other hand if a fit offset is used for cold ensembles,

this might give the function too much freedom, and fits almost all thermal atoms to

be a fit offset and thus getting a clearly wrong estimate of the temperature.

These are examples of situations where SkyFit is able to actually do the job

even better than using the old method where there is no fit offset nor an option like

”Cold bimodal”, but it might as well do it worse. SkyFit is therefore a tool with the

possibilities to go even further than before, but only if the user takes care to choose

the settings that best describes the situation. However it is still possible to make it

easy for the user and just do the old method, if this is to be desired.
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4.8 Evaluation of SkyFit

At its current state, SkyFit is able to do the required evaluations and to the best of

my knowledge all three laboratories are at least trying to out-phase Perfectfit. With

program being Git-controlled, some measure of streamlining should be achievable, so

that all three laboratories are using the exact same program.

SkyFit should also be somewhat editable as of yet. Put all of this does not really

matter if the evaluations are wrong, or at least not as wrong as evaluations of the

same images, but with the old program.

It is not an easy thing to test whether we have improved the accuracy compared to

Perfectfit, but we can look at the condensate fraction as it is described in Eqs. (2.10)

and (2.28), but one must bear in mind that these are both approximate expressions

and therefore our measurements should not necessary coincide, but the general trend

should be somewhat the same. This can be seen on Figure 4.5. First and foremost it

should be said that Perfectfit does not make a Bose-Enhanced thermal fit as seen

in Eq. (4.13), but instead fits the thermal atoms to a Gaussian 1D fit as seen in

Eq. (4.8). This would give another width, but it could also mean that the difference

between the more peaked Bose-Enhanced fit and the pure Gaussian would wrongly

be fitted as a BEC.

With the comparison seen in Fig. 4.5, SkyFit seems to have a few advantages

over Perfectfit. Firstly it seems to be able to get more correct temperature. It is also

clearly better to distinguish small BECs, as the SkyFit points shows a systematic

start around the same point as the full black line have start havingNBEC/N 6= 0. If

one ignores the weird outliers, it also seems like SkyFit is a bit more precise, if not

by much, especially at low temperatures, where Perfectfit seems to almost explode.

On two points does SkyFit seem to fail, firstly some fractions are negative, which

is of course impossible and extremely high fractions around T/Tc = 1. Both are due

to SkyFit evaluated the images with its ”Bimodal” setting, through all these runs,

which means it will always fit to a BEC and if there are no BEC, then this will be

problematic and can give wrong fits. In the case of negative fractions, this is however

not a purely negative thing as it clearly shows a user that the ”Thermal” or ”BE

Thermal” fit-option was the better solution. This could be remedied by putting a

lower bounds on the BEC fit, but as the thermal fit is done first, a negative BEC

means this one failed, which would be done to a wrongly estimated BEC RoI, so

removing the BEC RoI would give the most correct answer, so by not having a lower

bound for the fit, it is a lot easier to sort these wrong evaluations away.
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Figure 4.5: Comparison between SkyFit doing a ”Bimodal” fit ( ) and Perfectfit

( ) evaluations. No sorting in the data have been used and all SkyFit evaluations

are done under the same conditions, the same is true for Perfectfit evaluations.

The summed atom number from the two programs are close to each other. ( )

shows the condensate fraction (Eq. (2.10)) without interactions and ( ) shows the

condensate fraction with the correction due to interactions (Eq. (2.28)).
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Chapter 5

Spatial α Calibration

5.1 Introduction

This chapter describes the work done in our investigation of the spatial dependence

of the calibration parameter, α∗. This is still a work in progress, and we are currently

drafting an article. The work here was done in close collaboration with Mick A.

Kristensen and Mikkel B. Christensen, where my primary contribution was taking

the data.

5.2 Old calibration method

As it was described in Sec. 2.3, there are a few corrections to the ideal imaging

system. The α correction outlined in [15], which can be seen in Eq. (2.76), states

an correction to the imaging saturation in order to take impure light polarisation

and Zeeman sub-level populations into account. A method to correct for this is

shown in [15], which is the article we based our old calibration method on. The

method described here, utilises the fact that the atomic density does not depend on

the intensity of the incoming light. In practice this is done by simply varying the

intensity and then try for different α∗ values, in order to see which α∗ gives constant

optical density, when using Eq. (2.76), where the optical density is extracted from

the point containing the highest OD. This method uses a constant incident photon

numbers, which is held constant by changing the duration of the laser pulse, as the

intensity is changed. An example of a calibration is seen in Figure 5.1, where the

black line shows the best line.

In [15] this is done for low absorbed photon numbers per atom (Nγ,a/N ∼ 5),

as absorption of a photon might lead to pushing and heating of the cloud, which

55
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Figure 5.1: Using the method described in [15], images are taken at different intensities

of the laser beam (I0) and 5 different α∗ values are chosen to see what they give.

The black line show the best behaviour and the α∗-value corresponding to this, is

the best one.

might lead to changes in the imaging conditions, which will be presented in the next

section. This is also why the incident photon number is held constant, in order to

suppress the amount of absorbed photons.

5.3 Photon effects

In our experiments we try to have as precise measurements as possible and this

requires a high signal-to-noise ratio, which means we usually do not have only 5

photons absorbed per atom, but a lot more.

Absorption will lead to heating, pushing and other more complicated effects. As

the number of absorbed photons per atoms does not follow the amount of incident

photons in case of saturation effects, this means, if we keep our incident photon

number constant, by finding the right combination of intensity and detection time,

the absorbed photon number will change throughout a dataset. How great of an

influence this causes can be calculated to some extent by doing a back-of-the-envelope

calculation for the Doppler detuning, ∆D, each absorbed photon makes. For our

absorption images we use the D2 line in 87Rb and we can assume our laser frequency
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is at the natural frequencies of our atoms, giving,

∆D = ω′0 − ωL = ω0 − ωL +
ω0∆v

c
=
ω0∆v

c
=

2π∆p

mλ
=

2πpγ
mλ

=
(2π)2~
mλ2

= 2π× 7.536kHz,

(5.1)

where ∆v, ∆p are the change in velocity and momentum of the atom, m mass of

the atom and pγ is the momentum of a photon. From [21], the natural linewidth

is Γ = 2π× 6.065(9)MHz. For our experiment we wish a high signal-to-noise ratio,

which means we generally require Nγ,a/N & 100, we can therefore calculate the

Doppler shift for 100 Nγ,a/N ,

4

(
100∆D

Γ

)2

= 6.2%, (5.2)

indicating that for Nγ,a ≥ 100, the Doppler shift plays a significant role. The method

discussed in the previous section seems to be good enough for low absorbed photon

numbers per atom, however for experiments with Nγ,a/N on the order of 100 this is

no longer expected to be the case.

It is therefore possible that the direct method described in [15], is not viable

for our case. Therefore our idea is to still use the general method outlined in [15],

after all, the requirement that the intensity does not change the atom number must

hold. But our first idea is to use a constant Nγ,a/N instead, thus having the same

effect from absorption in all images. This is however not as easy to accomplish as

constant incident photon numbers, mostly because it does not scale linearly with

pulse duration or intensity, due to saturation effects.

But before we do any measurements, lets look at the limitations we have when

doing a calibration. The intensity is in principle limited by both the available

incoming beam intensity and the saturation of the camera. In reality the camera sets

the limitations on the intensity, as it saturates at intensities lower than the physical

range of intensities at our disposal. A loose requirement is also that the intensity

must be large enough to shine through dense clouds, but we do not want it so large

that all atoms are saturated. This makes it favourable to use thermal atoms, instead

of BEC atoms. In regard to the resolution we can achieve, when the comes to control

of the intensity, we have inserted a half-wave plate and a polarising beam cube in

the imaging path and are therefore able to fine-tune the intensity to a reasonable

resolution. There are still small changes in the intensity, but they are on the order

of 1% from run to run.

The other available control parameter we can change to see the wished number

of incident and absorbed photons is the pulse duration. The upper limit of the pulse
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time are imposed by the effects of the cloud during time of flight, we do not wish the

pulse to be so long that the atoms have time to fall significantly during imaging, we

take our images after 12 ms of time of flight, and we can calculate that for t < 32 µs,

the cloud moves less than one vertical pixel. The lower bound is set by our set-up,

where a acoustic optical modulator that we use to or imaging beam on and off, is able

to give square pulses for t < 1µs. As was seen in Sec. 2.2, a crucial assumption for

the absorption imaging is to be in the steady-state, this can be assumed to hold for

t� 1/Γ = 165 ns. In regard to the resolution of the pulse length, it is set digitally

in units of 1µs, this would limit our control of the pulse duration significantly, so we

decided to circumvent this by using an external signal generator, making it possible

to produce imaging pulses with control of the time length on the order of ns. This

makes us able to have a precise control of incident photon number and thus also the

absorbed photon number.

Given that we are using atom number stabilisation, we are also able to keep the

atom number constant, then by doing a qualified guess on what intensities and pulse

duration give a given Nγ,a/N and then iterate until we are at a wished Nγ,a/N , we

are able to do a calibration, based on constant Nγ,a/N , instead of constant incident

photons.

With a theoretical prediction and the technical capabilities record clouds over

large spans of incident intensities, while keeping the number of absorbed photons

constant, we can try to test how constant incident photon numbers compare to

constant absorbed photons per atom. This can be done by doing the α calibration

as outlined in the previous section, for a few different constant photon numbers

and then a few different constant absorbed photon numbers. This is done with all

clouds of equal stabilised atom number and at low densities, for reasons that will

be apparent in the next Section. The result of this can be seen on Fig. 5.2, where

we see how an α-calibration depends on both the incident photon number and the

absorbed photons per atom number.

The analysis of Fig. 5.2 gives a clear indication that for high incident photon

numbers, α depends on the amount of incident photons, while the dependence seems

a lot less outspoken if we calibrate after constant absorbed photons per atom.

This shows quite good agreement with our initial guess based on Eq. (5.2), while

also being in agreement with [15], as this article works in the regime of low incident

photon numbers, where they seem to have about the same α. But for higher incident

photons, it gives a completely different α value. Whereas the absorbed photon

number per atoms, seems a lot more constant. However it is still not perfect and it
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shows there still might be effects unaccounted for, but for now, this figure gives a

clear indication, that absorbed photons per atoms gives a more general estimate of

α, even if not a perfect new estimate.

Figure 5.2: Comparison between the two different calibration schemes. For all

measurements, the method shown in Fig. 5.1 are used. On the left side I0 and the

pulse duration are chosen, such that the amount of incident photons are constant.

On the right, I0 and the pulse duration are chosen, such that the amount of absorbed

photons per atom is constant. The values of these two parts correspond somewhat,

meaning the highest in both parts share one combination of pulse duration and I0.

5.4 Spatial α calibration

As it is now shown the amount of absorbed photons per atom is a better calibration

parameter at low densities, where effects from the atoms themselves are insignificant.

However, as it is shown the amount of absorbed photons per atom makes a difference,

the atoms density might also make a difference, for instance, the center atoms of the

cloud where density is high will absorb on average less photons than the outer region

due to screening and therefore receive a lower momentum kick during an imaging

pulse and thus a lower Doppler shift. We therefore investigate how the α calibration

might change, as the density changes. This we can do by dividing the cloud into

a number of different rings, where each ring are chosen to yield equal intervals of

ln(I0/I).
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O
D

Figure 5.3: Example of how we slices up a atomic cloud for the spatial α calibration.

Figure 5.4: The calibration is done for different rings of the same cloud, each with

different σ0ñ. The black lines correspond to the optimal α.

As it was shown in the previous Section, the α calibration depends on the detuning,

which depends on the amount of photons absorbed by each atom. This can differ

spatially, if the beam is inhomogeneous. The density of the cloud also plays a role, as

the atoms that the laser beam hits first might screen for the atoms further along the

beam path. An atom can also decay and send a photon in a random direction that

can get reabsorbed, this is ordinary not a problem, unless this leads to saturation,

which would also depend on the atomic density.

We can check for these effects by looking at the different rings and see how the

α calibration might look. This is done in Fig. 5.4, where the α calibration is done

for three different rings, where it is easily seen that ñσ0 is different for the three

different rings, indicating that we have a spatial dependence.

With it now established that the old α-calibration does not correct for all effects

at high Nγ,a/N , it is therefore necessary fir an α that depends on the atomic density.

This is what is tried and shown in Figure 5.5. Here it can be seen that a spatial
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dependence is definitely better, than a constant α, for our measurements. Even

though there are some points that seem to be a bit off. Especially the lowest one,

but this is properly due to our beam being inhomogeneous and falls off about 20%

in intensity from the center to the edge of the cloud. Because of the Gaussian

profile of the beam and the outer ring having the highest area, these effects are more

pronounced here.

By looking at the inlay, we can also see that this method is not perfect, as the fit

slope changes for different constant Nγ,a/N . Based on Fig. 5.2, it still seems to be a

better calibration, than if constant incident photon numbers were used.

Figure 5.5: α-calibration done for different ñσ0, then fitted to a linear curve, in order

to get an expression for α. The inlay shows how the slope of this curve looks for

other constant absorbed photons per atom measurements.

By taking a look at Fig. 5.4 again, one can see that the curve seems to have a

more curved structure as ñσ0 is higher, investigation can be expanded to include

more rings, a result of this is seen on Fig. 5.6, where the whole image have been

divided into ten sections, and all rings are displayed. What Fig. 5.4 illustrate is

for low ln(I0/I), a line corresponds very good to the data points, while for higher

ln(I0/I), the data point are no longer on the line. Indicating that there might be

some other effects at high densities, that we do not correct for as of yet.
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Figure 5.6: The images have been split up into 10 rings and each ring have been

calibrated using the method seen on Fig. 5.1, we look at how the two terms in Eq.

(2.76), correspond to each other. α correspond to the inverted line slopes. The slope

and α increase for inner rings, with the inner most ring corresponding to large yellow

line on this figure.

5.5 Discussion

Our investigation definitely shows that absorbed photons per atom is a better number

to use than incident photon number, in the sense that it the α-coefficient varies less,

as Nγ,a/N is varied. This shows that the method previously outlined in [15] can not

be directly transferred into higher photon number regimes.

We also present data that gives a clear indication on how the α-coefficient changes

for different atomic densities. This we also show a way to correct for, where the

fitted line on Fig. 5.5, clearly shows a non-zero slope, with good correspondence

between data points and fits, except in the start and end.

Our new methods clearly strengthen the accuracy we are able to achieve, but

this investigation also shows that there are still effects we are not correcting for and

thus our calibration is not a complete answer in order to get the measured densities

to be independent of the intensities, but it is a step in the right direction and can

still improve our the accuracy.



Chapter 6

β calibrations

This chapter presents my work on calibrating the β parameter in the Lattice exper-

iment. This work was mainly done in collaboration with Mick Kristensen, but of

course the whole Lattice group was involved through discussions. Unfortunately this

proved to be a task more complicated than first anticipated and we therefore decided

there were other and more productive things to investigate in the experiment. This

work was therefore not continued beyond what is presented in the present chapter.

6.1 Calibration procedure

The α constant was discussed in section 2.3 as a dimensionless constant correcting

Is not being ideally as the theory suggest. The β parameter does much of the same,

except it is to correct for the scattering rate, Γ. The idea of this measurement is to

correct the OD, by using that the width of the condensate, depends on the number

of BEC atoms as seen in Eq. (2.41), and can be determined independent of the

errors of the optical density. By comparing the measured width of the BEC with

the theoretical value from (2.41), we can get a measure of the β-parameter. This is

then done for different time of flight. By doing this for a few different BEC numbers,

which are controlled by the final evaporation frequency and the hold time of the

BEC, we should be able to get a general measure for β.

This experiment utilises our Faraday stabilisation, such that the atom number can

be regarded as the same from run to run, as long as the final evaporation frequency

and BEC hold time is the same. As it can be seen on Figure 6.1, this is of course

not entirely true, as the atom number seems to fluctuate a bit. However in regards

to atom number, all measurements below 10ms can be disregarded as the cloud is

too dense to get a good estimate of the atom number. However the radial expansion

63
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seems to quite consistent.
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Figure 6.1: Example of a dataset with the ”same atom number”. Worth noting is

that this is the dataset with the lowest atom number.

Figures looking like Figure 6.1 was made for 5 other mean atom numbers, ranging

from ∼ 9 103 to ∼ 1.1 105 BEC atoms.

These results are compared to a numeric solution of equation (2.38), with the

assumption that the trap turns off instantaneously. This is used in equation (2.41),

but with the β value in front of the BEC number,

wj =

(
15~2aω̄3βNBEC

ωj

)2/5
λj
m2/5

, (6.1)

where NBEC is the mean atom number for all runs with a time of flight greater

than 10 ms. By taking the data for all the different atom numbers for time of flight

ranging from 0 to 42 ms and fitting to Eq. (6.1), Fig. 6.2 appears. This gives a fit

of β = 1.7208, which is larger than expected. By a closer look at Fig. 6.2 two new

problems presents themselves. First, for both curves, the lowest points seem to be

quite off. Second in the radial direction it seems like the data points are on point or

a bit above the theoretical line. However, in the axial direction, if we disregard all

points lower than tToF < 5 ms, then the data points are systematically lower than

the theoretical prediction.

This we can explain by the assumption, that the trap turns of instantaneously.

This is a bad assumption as we are using a magnetic trap with 300A sent through it.

First and foremost turning off that high a current takes time, in the current set-up
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(a) Radial expansion, instant turnoff

0 5 10 15 20 25 30 35 40 45

Time of Flight (ms)

20

30

40

50

60

70

80

90

100

110

A
x
ia

l 
B

E
C

 r
a
d
iu

s
  
(µ

m
)

Axial BEC expansion in time of flight

data points for ~93 103 BEC atoms

theoretical curve for  ~93 103 BEC atoms

data points for ~111 103 BEC atoms

theoretical curve for  ~111 103 BEC atoms

data points for ~67 103 BEC atoms

theoretical curve for  ~67 103 BEC atoms

data points for ~31 103 BEC atoms

theoretical curve for  ~31 103 BEC atoms

data points for ~28 103 BEC atoms

theoretical curve for  ~28 103 BEC atoms

data points for ~9 103 BEC atoms

theoretical curve for  ~9 103 BEC atoms

(b) Axial expansion, instant turnoff

Figure 6.2: Expansion of the BEC for the 6 different atom numbers for both the

axial (a) and the radial (b) direction. The trap turn-off is regarded as instantaneous.

For the BEC atom numbers stated, the mean is taken for all runs with time of flight

greater than 10ms. Each point holds at least 3 different measurements. This yields

β = 1.7208.
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we are using an IGBT to turn off the current faster than the power supply can, but

due to the inductance of the wires, it still takes about 100µs to turn it off, as can

be seen on Fig. 6.3. Secondly turning off a magnetic field will also induce Eddy

currents, which in turn would make the magnetic field turn off slower.
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Figure 6.3: Turn off time of the current measured with a Hall-probe over a wire

going to the QUIC setup. Note that this only measures the current through the

wire at a certain point and with the IGBT closed, which means any Eddy currents

induced are not shown here.

If we look at equation (2.42), it can be seen that it is only the trap frequencies

and the expansion parameter that decides the aspect ratio. As the decay of the trap

frequencies are parameters in equation (2.38), we should be able to fit for the decay

of the current by fitting to the aspect ratio, under the assumption that, the current

have an exponential decay, as seen in equation (3.12). The differential equation for

the scaling parameter then becomes,

λ̈j =
ω2
j (0)

λjλ1λ2λ3

− ωj(0)e−t/τλj (j = 1, 2, 3). (6.2)

This is then plotted a few decay constants in Figure 6.4, where it is seen that

no matter what τ is chosen, it will only lower the curve and therefore move our

simulated curve away from the data.

The reasons behind the dicrepencies between data and theory, could be due to

phase fluctuations, which we observed as stribes in our images of the BECs. This

could have messed up our data, so we decided to take a more spherical trap, as these

are better at suppressing phase fluctuations [22].

This we can investigate by changing the background field (B0 in Eq. (3.9)) and

taking a few measurements. By increasing the z-shim current from 0.05 A to 4A,



6.1. CALIBRATION PROCEDURE 67

0 5 10 15 20 25 30 35 40

ToF (ms)

0

1

2

3

4

w
r/
w
a

Data

= 0 ms

= 0.2 ms

= 0.4 ms

= 0.6 ms

= 0.8 ms

Figure 6.4: Aspect ratio simulated with different decay constants. Each data point

is made from around 18 measurements.

we only lower the radial trapping frequency, which makes the trap more spherical.

This gives trap frequencies of ωr = 2π · 96.670(13) Hz and ωa = 2π · 17.739(5) Hz.

Then we took images at 5 different high time of flight. The aspect ratio for this

decompressed trap is seen on Figure 6.5, where the theory and our measurements

still does not seem to correspond. This lead us to the investigate whether the two

trap frequencies have the same lifetime.

6.1.1 Trap frequency decay investigation

If we take a look at equation (3.9) and use the linearity between the magnetic field

and the current, we can be write the trap frequencies as,

ω2
ρ =

µ

M

(
(c′I)2

c0I +BshimZ

− c′′I

2

)
and ω2

z =
µ

M
c′′I, (6.3)

where the c’s denote the constants needed to give the corresponding B (e.g. c0I = B0).

It is then easily seen that ωz ∝
√
I, while this is not the case for the radial frequencies,

as long as there is a bias field.

This lead us to investigate this further trying to simulate our trap, where the

magnetic field is given by the Ioffe-Pritchard trap as seen in equation (3.4). This

time B0 includes both the bias field from the QUIC trap itself and the field from the

z-shim coil.

The frequencies are given by equation (6.3), where the contribution from the

z-shim coil is known by an old calibration. This means that if BQUIC
0 and the trap

frequencies are known, then both B′ and B′′ can be found through the expressions



68 CHAPTER 6. β CALIBRATIONS

28.5 29 29.5 30 30.5 31 31.5 32 32.5 33

ToF (ms)

1.7

1.8

1.9

2

2.1

2.2

 w
r
/w

a

Data

tau =0 ms

tau =0.2 ms

tau =0.4 ms

tau =0.6 ms

tau =0.8 ms

tau =1 ms

Figure 6.5: Aspect ratio simulated with different decay constants, this time for

the decompressed trap, made by setting the z-shim current to 4A. It have trap

frequencies of ωr = 2π · 96.670(13)Hz and ωa = 2π · 17.739(5)Hz. each point is made

from 3 measurements.

seen in equation (6.3).

B0 is found through the following equation,

BQUIC
0 =

~ωbottom

gfµB
, (6.4)

where ωbottom is the lowest frequency that can remove atoms. This frequency

corresponds to the energy of the atoms with the lowest energy, due to Zeeman

splitting, which are confined at the magnetic field minimum of the trap. B′ and B′′

can then be found through Eq. (6.3), when the trap frequencies known.

With the field in all directions clearly defined, a few points around the center is

calculated and then fitted to Hooke’s law,

U(r) =
1

2
k(r− r0) + U0, (6.5)

where k is the spring constant and gives us the trap frequency by,

fi =
1

2π

√
ki
m

(i = x, y, z). (6.6)

This of course only holds if the trap is an harmonic oscillator, which the trap

fulfils, as seen in Figure 6.6. Here, the magnetic field is simulated for I = 300A and

IzShim = 4A.

Armed with a tool able to calculate both trap frequencies for all different currents,

it is then possible to simulate how both trap frequencies decay. We didn’t have any
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Figure 6.6: Magnetic field at IQUIC = 300A, around the center of the trap in both

the radial-direction and axial-direction.( ) shows the fitted curve to the simulated

data.

theoretical expression to fit to, which lead us to fit to a general case, ωi(I) = aiI
bi .

This can definitely describe the axial decay, and as seen in Fig. 6.7 it also holds

very nicely for the radial part. This result shows us that the two trap frequencies

definitely decay differently and that it should be possible to fit the decay as a power

function.

The simulations can then be verified by experimental measurements. We measure

the decay of the trap frequencies by making a BEC, then during the BEC hold time,

we lower the current to the current we want to measure the trap frequencies at, here

it will oscillate for at least 1 period before we turn off the trap. Then we will look at

the oscillations as described in subsection 3.3.5.

We start the oscillations either by the method described in subsection 3.3.5, just

before we lower the current, or the oscillations are started by the current lowering,

this depends on how far the current is lowered. If the oscillations are started by

lowering the current, the oscillations are started because the center of the trap

moves, this gives close to no contribution for the currents of 200A or higher, but for

especially for 50A this is all that is needed, with oscillations of around 40 pixels in

both directions.

The result of these measurements can be seen on Figure 6.8 with decays of

br = 1.01(7) and ba = 0.53(6). The only point that is problematic here, is the point

for I = 50A, which seems a bit off compared to the rest and this might suggest that

something else is interfering with our experiment, when the confinement is weak, or
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Figure 6.7: Simulation data of the trap frequency decay for IzShim = 4A, fitted to

ωi(I) = aiI
bi . Where the axial decay ( ) gives ba = 0.050 and the radial decay ( )

gives br = 1.49.

that the QUIC trap is not described by the equations for the Ioffe Pritchard trap at

low currents.

For the axial decay, all methods seems to be in agreement, the analytical, the

simulations and the experimental result all say ba = 0.5 is well within the uncertainty.

For the radial direction the fit seems rather good, but the value is only around 2/3 of

the predicted value from the simulation. This again might suggest there is something

else happening we are not aware of. Worth noting is perhaps also, that neither the

simulation nor these decay measurements does account for induced Eddy currents.

We then define a general lifetime τ , where τa = 0.5τ , and τr is either 1τ or 1.5τ

for the decompressed trap we can try to fit both possible τr in order to find the decay

constant. The result of this can be seen on Figure 6.9, which actually seems to fit

with a relative good precision. However keep in mind this is to a incomplete dataset

and the points for the same time of flight on Fig. 6.4 also seems to correspond

decently with τ = 0.

These data are therefore still inconclusive, especially because it seemed like if

the fit is raised in one part of the fit, then it is lowered at the other part and vice

versa and therefore making it hard to generally raise the line. Therefore it is entirely

within reason that if we completed the data set and took some measurements for

low time of flight, then it would not look as promising any more. It might have been



6.1. CALIBRATION PROCEDURE 71

0 100 200 300

0

20

40

60

80

100

0 100 200 300

0

2

4

6

8

10

12

14

16

18

Figure 6.8: Experimental measurement of the ”decay” of the trap frequencies at

IzShim = 4A, with br = 1.0091± 0.0709 and ba = 0.5278± 0.0642.

enlightening to see what would happen and seeing how the individual widths would

compare to the theoretical prediction, but unfortunately this is where we decided

that we had spent enough time with these calibrations. Worth noting is also that

Figure 6.9 was first produced after we finished the hunt for the β-calibration and we

didn’t have anything that looked quite as promising back then.

This still leaves some open questions. We still do not know why the simulations

of the trap frequencies and the measurements are so different. We also don’t really

know the true extent of the influence from the eddy currents nor do we know the

magnetic field the cloud feels during time of flight. Previously the shim coils were

used to cancel the background field in all directions. However, this might have

changed since the last calibration that was done years ago. Finding these null field

currents would be the next logical step, but they were first done after I left active

laboratory work.
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Figure 6.9: Aspect ratio for the decompressed trap with different trap decay parame-

ters. For all lines τa = 0.5τ . Each data point include 3 runs.



Chapter 7

Conclusion and outlook

7.1 SkyFit

SkyFit is clearly working and able to give results that are closer to the theoretical

predictions than its predecessor, increasing the accuracy of our measurements and

making it a tool possible to use in the laboratories. With its extra features, SkyFit

can hopefully allow us to get results requiring even higher precision in the future.

SkyFit can at its present state, do what is necessary in order to do evaluations,

however as with most programs, there is always more things to be done. Doing the

time of writing this, we are still working on the spatial α-calibrations and when these

are done and well understood, SkyFit should be able to use these calibrations, as of

the moment of writing, there is a framework that should make it easy to implement.

While this is written SkyFit is only able to do thermal atoms at T . Tc (Bose-

enhanced Gaussian) and at T � Tc (pure Gaussian fit), but the in-between area the

results might not yield the correct results. At some point the group might investigate

the fugacity, and in that event this should also be implemented in SkyFit. Again,

the framework is there, waiting for the results.

7.2 Spatial α calibration

The α calibration have been improved by our work, before the method used in [15]

was fine with low photon numbers, but with our work, we can extend it to higher

photon numbers, by using the absorbed amount per atom, instead of the total photon

number. Making α depend on the atomic density, is also be a step in the right

direction. Even if our work indicate there are still other effects that could influence
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the imaging process, that are still unaccounted for.

Our work are able to improve our own accuracy when looking at absorption

imaging and our methods are also applicable to other experiments, making it a

successful investigation, even if we are not able to account for everything.

7.3 β calibration

The β calibration proved harder to make than we initially anticipated and the work

is therefore left unfinished. We might have found a solution if we had continued the

work, but it could have been time consuming, too much compared to the relative

small gain, when other and more interesting experiments can be done, it is after all

only a calibration and does not bring more physics with it. But we did learn that

the axial and radial trap frequencies decay at different rates and that these rates are

quite different. For this investigation we also developed a program able to simulate

our magnetic trap, which is a tool that might come in handy at some later time.
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