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ABSTRACT
Ultracold atomic gases have been the subject of intense experimental
and theoretical interest for the past 25 years and have allowed for invest-
igations of the quantum properties of matter. Accumulation of ultracold
atoms in a single quantum state, known as a Bose-Einstein condensate,
has opened the door for several research avenues in the pursuit of under-
standing complicated quantum systems. A quantum system consisting
of an impurity interacting with a surrounding medium, where the in-
teraction strength can be tuned using magnetic fields, is one example
of ongoing investigations. The results of such an investigation heavily
rely on the methods for storage and trapping of atoms and typically is it
desirable to use optical trapping potentials to confine the atoms.

This thesis presents the experimental realization of a blue-detuned
ring beam that can be used as a repulsive optical dipole potential. Due to
the design of the trap, which involves three axicons, a box potential with
steep inner walls is demonstrated, allowing for a homogeneous distribu-
tion of atoms inside the trap. Two setups with different combinations of
lenses and axicons are characterized and compared, based on laboratory
results and ray tracing simulations. Finally, an imaging system used to
project the ring onto the atoms is presented.

The experimental product of this thesis will serve as an extension to
the current experimental apparatus used in MIX lab at Aarhus University,
with the goal of replacing the current attractive crossed dipole trap. Thus,
it will contribute to improving results in the study of impurity dynamics
in Bose-Einstein condensates.
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RESUMÉ
DANISH ABSTRACT

Ultrakolde atomare gasser har været et emne med intens eksperimen-
tel og teoretisk interesse de sidste 25 år, og har tilladt undersøgelser af
kvantemekaniske egenskaber af stof. Ophobning af ultrakolde atomer
i en enkelt kvantetilstand, kendt som et Bose-Einstein kondensat, har
åbnet døren for adskillige forskningsveje i forfølgelsen for at forstå kom-
plicerede kvantesystemer. Et kvantesystem bestående af en urenhed der
interagerer med det omkringliggende miljø, hvor interaktionsstyrken kan
blive reguleret ved brug af magnetfelter, er et eksempel på igangværende
undersøgelser. Et sådant studie afhænger kraftigt af metoderne brugt til
at opbevare og fange atomer, og typisk er det ønskeligt at have optiske
fældepotentialer til at begænse atomerne.

Denne afhandling præsenterer en eksperimentel realisering af en
blå-detuned ring stråle der kan blive brugt som en frastødende optisk
dipolpotential. Grundet designet af fælden, som involverer tre axicons,
så vil et box potentiale med stejle indre mure blive demonstreret, som vil
kunne tillade en homogen fordeling af atomer inde i fælden. To opstillin-
ger med forskellige kombinationer af linser og axicons karakteriseres og
sammenlignes, baseret på laboratorieresultater og ray-tracing simulerin-
ger. Til sidst vil et billeddannelsessystem, brugt til at projicere ringen ned
på atomerne, blive præsenteret.

Det eksperimentelle produkt af denne afhandling vil tjene som en
udvidelse til det nuværende eksperimentelle apparatur brugt i MIX lab på
Aarhus universitet, med målet om at erstatte den nuværende attraktive
krydsende dipolfælde. Dermed vil det bidrage til at forbedre resultater i
forbindelse med studiet af urenheds dynamik i Bose-Einstein kondensa-
ter.
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1
INTRODUCTION

At the beginning of the 20th century, the theory of quantum mechanics
started to emerge and paved the way for what we now consider to be
a central part of modern physics. Although it was hard to accept, to
begin with, because of its non-intuitive way of thinking compared to
classical physics, it is today considered to be one of the most successful
theories ever formulated, if not the most successful. The sovereignty of
quantum mechanics comes to light when studying systems at the atomic-
and subatomic level. However, macroscopic manifestations of quantum
effects, e.g. superconductivity [1] and the quantum Hall effect [2], can be
directly observed on much larger length scales.

It can often be challenging to investigate quantum effects since it
requires a model system where the experimental parameters can be care-
fully controlled. Nevertheless, it is possible to construct such systems,
and ultracold atomic gases are excellent candidates to fulfill this require-
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1. INTRODUCTION

ment. When a dilute cloud of atoms is cooled below a certain threshold
temperature, the cloud itself undergoes a phase-transition where a ma-
jority of the atoms occupy the lowest possible quantum state. When this
happens, one has created a Bose-Einstein Condensate (BEC). Ultracold
atoms and in particular BECs have been a subject of interest for about
a century. The first predictions of BECs were made in 1924-1925 by Al-
bert Einstein [3] following the pioneering work done by Satyendra Nath
Bose on Bose statistics [4]. Because of the extremely low temperature
requirement for a BEC to form, i.e. around a few hundred nanokelvin,
experimental realizations have not been demonstrated until fairly re-
cently. In 1995 it was demonstrated by Anderson et al.[5] that a BEC of
rubidium-87 atoms can be attained using first laser cooling and then
magnetic fields together with evaporative cooling. This procedure of cool-
ing bosons has been the go-to method ever since to reach temperature in
the micro kelvin region.

A lot of research has been conducted to investigate the properties
of a BEC. This has led to the experimental observation of superfluidity
through the formation of vortices by stirring the BEC with lasers [6]. Co-
herence is another important property that can be observed when two
clouds of condensed Bose atoms start to overlap, thus creating an inter-
ference pattern where fundamental concepts of wave-like behavior can
be studied [7, 8]. A particularly hot topic at the moment, here at Aarhus
University (AU), is impurity dynamics. When an impurity is immersed in
a BEC, the interaction between the BEC and the impurity can lead to the
formation of quasiparticles termed Bose polarons [9], and bipolarons in
the case where two polarons interact with each other [10].

The main obstacle, related to the ongoing investigations of the Bose
polaron here at AU, is connected to the experimental apparatus being
used. In the current setup (described in [11]), a red-detuned optical di-
pole trap is used to confine the atoms. The generated potential arising
from such a trap is harmonic, resulting in an inhomogeneous density
of the BEC. The non-uniform density leads to spatially varying energies
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which prevent researchers from probing local properties of strongly in-
teracting many-body systems. In particular, the spectroscopic signal
from the Bose polaron depends on the local density in the trap, thus a
harmonic trap leads to broadening effects in the energy spectrum of the
polaron [12].

One way to circumvent this issue is to make a trapping potential that
yields a single density across the trap. In other words, one needs a po-
tential with a flat bottom. The textbook example of such a potential is
the square well characterized by the barriers that confine the particle. In
the finite well, there is a non-zero probability for the particle to be found
outside of the well, even though the potential barrier is higher than the
total energy of the particle. This is another example of a quantum effect
known as tunneling. To design a trap that possesses box-like properties
we thus need not only high repulsive walls to prevent quantum tunnel-
ing, but we also need steep walls in order to achieve a uniform particle
distribution.

So far this has been realized in a number of laboratories. Common
for all setups is the use of a blue-detuned laser such that the atoms
are repelled from the region of high light intensity, instead of attracted
like in the red-detuned case. In Gaunt et al.[13] the trap consists of a
hollow tube beam for radial confinement and two sheet beams for axial
confinement and thus realizes a cylindrical potential for the atoms. The
three trapping beams are created by reflecting a single Gaussian beam off
a phase-imprinting spatial light modulator (SLM). In Mukherjee et al. [14]
a special type of lens called an axicon is used, which alters the geometry of
the incoming Gaussian beam by transforming it into a ring-shaped beam.
To block any undesirable light generated within the ring, an opaque mask
is inserted. This also offers three-dimensional confinement where the
atoms are trapped in the radial direction by the cylinder-shaped beam
and the end caps are created by another laser focused onto the edges of a
rectangular opaque mask. Finally, Hueck et al. [15] use a similar setup but
without introducing an opaque mask. To block the residual light inside
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1. INTRODUCTION

the ring generated by the axicon, they instead use a combination of a lens
and two additional axicons to produce a hollow cylindrical beam.

Within this thesis, a setup similar to the latter is described, construc-
ted and characterized in detail.

1.1 Thesis outline

Chapter 2: Ultracold quantum gases
Some of the key concepts important for ultracold quantum gases are ex-
plored. This includes Bose-Einstein condensation in the non-interacting
and interacting case alongside an introduction to Feshbach resonances.
Then the optical dipole potential is presented before the chapter is con-
cluded with a consideration of the effect of gravity in optical dipole traps.
Chapter 3: Optical Box Potential
A detailed description of the experimental setup to create a hollow ring is
given in this chapter. This includes a discussion of the distances between
some of the optical elements, and how they impact the size and shape of
the ring, based on results from ray tracing simulations.
Chapter 4: Cylindrical Box characterization
This chapter presents the key characteristics of the ring potential for two
different setups. It also presents the imaging system used to project the
ring onto the atoms.
Chapter 5: Conclusion and outlook
The thesis concludes with a summary of the key results obtained and an
outlook for future work.
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2
ULTRACOLD QUANTUM GASES

The focus of this chapter provides the theoretical background related to
the creation and confinement of Bose-Einstein condensates. In Sec. 2.1 a
basic introduction to BECs is given, by first looking at the condensation
of non-interacting bosons and then include inter-atomic interactions
inside a BEC where the Gross-Pitaevskii (GP) equation is introduced. This
is followed by a subsection where the GP equation is solved numerically
in two different trapping potentials, harmonic- and box potential, to
study how the density distribution changes for different numbers of 39K
atoms in the two types of external potentials. It is then shown how the
interaction between different quantum states can be tuned arbitrarily
using the so-called Feshbach resonances presented in Sec. 2.2. The
optical dipole potential that is the confining potential for an optical dipole
trap (ODT), will be derived in Sec. 2.3. Finally, the chapter is concluded
by Sec. 2.4 where the effect of gravity in an ODT is considered.
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2. ULTRACOLD QUANTUM GASES

2.1 Bose-Einstein Condensation

The behavior of integer spin particles called bosons have been extens-
ively investigated ever since the description of Bose-statistics was first
considered back in 1924 by Bose. First massless particles like photons
were treated in the framework of Bose-statistics, and shortly after Einstein
applied it to particles of mass. An interesting prediction came out when
a system of massive bosons was studied at extremely low temperatures,
namely that the system would condensate into what is thought of as a
fifth state of matter and today known as a Bose-Einstein Condensate
(BEC).

2.1.1 Condensation of an ideal bosonic gas

In a system of bosonic particles where the temperature T is well above
absolute zero and quantum effects are negligible, Maxwell-Boltzmann
statistics can be applied. The expected number of particles in a state with
energy εi is then given by

f (εi ) = 1

e(εi−µ)/kB T
,

where kB is the Boltzmann constant andµ is the chemical potential. As we
start to approach absolute zero, the mean occupancy in each quantum
state tends to rise and quantum statistics are needed. This starts to
happen when the de Broglie wavelength becomes comparable with the
inter-particle distance where the particles can no longer be distinguished
from each other. For such a system of non-interacting bosons the aver-
age occupancy of a given state will then be given by the Bose-Einstein
distribution

f (εi ) = 1

e(εi−µ)/kB T −1
. (2.1)

To find the total number of particles N in the system, one must sum over
all possible quantum states. As the temperature is lowered even further,

6



2.1. Bose-Einstein Condensation

i.e. below a critical value TC , there will be a macroscopic occupation of
the lowest single-particle state and a BEC has been achieved. Thus, we
have that N0/N > 0 for N →∞ where N0 is the number of particles we
have in the BEC. The transition temperature TC will ultimately depend
on the trap at which the system is confined, and can be expressed as [16]

kB TC = N 1/α

[CαΓ(α)ζ(α)]1/α
, (2.2)

where Cα is a constant, Γ(α) is the gamma function and ζ(α) is the
Riemann zeta function. The parameter α which appears in every factor
in Eq. (2.2) is trap dependent. For a 3D gas confined by rigid walls (box
potential), α is equal to 3/2 and the constant Cα is related to the density
of states. Thus for a uniform Bose gas, which is a consequence of a box
potential, the critical temperature will be given by

kB TC ≈ 3.31
~n2/3

m
, (2.3)

where ~ is the reduced Planck constant, n is the number density and m is
the mass of the particle. A similar expression exists for the 3D harmonic
oscillator potential given by

kB TC ≈ 0.94~ω̄N 1/3, (2.4)

where ω̄ is the geometric mean of the three oscillator frequencies. Finally,
both Eq. (2.3) and (2.4) can be related to the condensate fraction by the
following formula

N0

N
=

[
1−

(
T

TC

)α]
, (2.5)

where α= 3 for the 3D harmonic oscillator potential, and α= 3/2 for the
box potential. It is important to note that the value of TC does not depend
on the interaction between the particles, which testify that BECs are a
direct consequence of quantum statistics.
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2. ULTRACOLD QUANTUM GASES

2.1.2 The Gross-Pitaevskii equation

In the previous section, we presented one of the key predictions from
Bose-Einstein statistics leading up to the macroscopic quantum phe-
nomenon of BECs. This was done entirely without the consideration
of inter-atomic interactions. In real experiments, interactions between
particles are of course present and should not be swept under the rug.
Although as we will see in Sec. 2.2, it is possible to tune the interaction
strength to be zero, nevertheless interactions are still needed in order to
reach thermal equilibrium. The total Hamiltonian describing a gas of N
interacting atoms is given by

Ĥ =
N∑

i=1

[
− ~2

2m
∇2

i +Vtrap(ri )

]
+

N∑
i , j

V2(ri ,r j )+
N∑

i , j ,k
V3(ri ,r j ,rk )+ ... (2.6)

The first term is the well-known single-particle kinetic energy term, Vtrap

is the external potential due to the confining trap, and the remaining
terms are the interatomic potentials due to the two-body interaction,
V2, three-body interaction, V3, and so on. In general, a Hamiltonian of
this sort can be very challenging to work with thanks to the interaction
terms, and therefore assumptions must be made without losing the abil-
ity to describe the properties of the quantum system. One way to treat
this problem is by going with a mean-field approach, where the many-
body problem reduces to a much simpler two-body problem. The central
assumption will be, that we are working with a dilute cloud at zero temper-
ature, thus the interaction is weak and therefore short-ranged. Collisions
of three and more particles will under this assumption be highly unlikely
and can therefore be neglected. The two-body interaction potential V2

can then be modelled as a simple contact interaction U0δ(r− r′), where
r and r′ are the positions of the two atoms and U0 = 4πa/m where a is
the s-wave scattering length and m is the atom mass. Because we have
T = 0 all the bosons are condensed into the same single particle state
φ(r). Thus it is fair to assume that the wave function of this N -particle
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2.1. Bose-Einstein Condensation

system can be written as a symmetrized product of single-particle wave
functions

Ψ(r1,r2, ....,rN ) =
N∏

i=1
φ(ri ), (2.7)

each having the usual normalization condition∫
d 3r |φ(r)|2 = 1. (2.8)

From this the total density of the gas must then be n(r) = N |φ(r)|2, or if we
introduce the condensate wave function byψ(r) = N 1/2φ(r) the density of
the gas can be expressed as n(r) = |ψ(r)|2. By taking the expectation value
in this state of the simplified version of Eq. (2.6) where terms higher than
the two-body interactions are excluded one can get an expression for the
energy of the gas. Mean-field theory tells us that this energy should be
minimized with respect to ψ(r). A thorough description of this step can
be found in [16], and the outcome is the Gross-Pitaevskii (GP) equation
given by

− ~2

2m
∇2ψ(r)+Vtrap(r)ψ(r)+U0|ψ(r)|2ψ(r) =µψ(r). (2.9)

The GP equation is very much familiar with the Schrödinger equation,
the difference lies in the third non-linear term in (2.9), but also in the
corresponding eigenvalue of the system. In the GP equation the chemical
potential, µ, is the eigenvalue and not the energy per particle.

For most ultracold systems where the number of atoms in the con-
densate is large, the kinetic energy term in Eq. (2.9) can be neglected
under the so-called Thomas-Fermi approximation. The density of the
cloud is then given by a rather simple expression

n(r) = |ψ(r)|2 = µ−Vtrap(r)

U0
, (2.10)
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2. ULTRACOLD QUANTUM GASES

which for a harmonic trap will result in an inverted parabolic density
profile. However, this approximation fails near the edges of the cloud
and would yield a physically unrealistic sharp edge at the surface [17].
To characterize the typical length scale at which the wave function can
change, one can equate the kinetic energy term to the energy scale given
by the chemical potential. From Eq. (2.10) it can be seen, that for a
uniform Bose gas the chemical potential will simply be equal to µ =
U0n(r), thus the characteristic length scale, ξ, at which the wave function
varies, can be found to be

~2

2mξ2
=U0n ⇒ ξ=

√
~2

2mnU0
. (2.11)

This length scale is known as the healing length since it describes the
distance over which the condensate density grows from zero to n. For a
repulsive ODT where the walls are not modelled as infinitely hard, the
healing length is related to the steepness of the potential that the atoms
feel. It also provides the typical size of the core of a vortex when studying
superfluid effects [6].

2.1.3 GPELab simulations

Now that we have established the GP-equation, which we saw as the
governing equation describing the ground state of a quantum system
of identical bosons, it would be interesting to simulate how the wave
function or rather the density of the cloud takes shape in various poten-
tials. This is where GPELab [18], which is a MATLAB toolbox, comes in
handy. GPELab is designed to solve the GP-equation by applying differ-
ent numerical techniques including the Spectral scheme (See [19] for an
in-depth description of the algorithms being used). The resolution of the
simulations depends on the number of grid points you choose, where the
computation time of course rises if the number of grid points increases.
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2.1. Bose-Einstein Condensation

Other input parameters would be the scattering length, a, between the
atoms, the number of atoms and the characteristic trap length which are
all used in defining the non-linear interaction term in Eq. (2.9). Finally,
the external potential must also be provided, before the ground state
wave function of the BEC is extracted from the program.

The following simulations were kindly provided by Andreas M. Mor-
gen who is a ph.D. student in the group. All the simulations are produced
with a constant scattering length of a = 100a0 with a0 being the Bohr
radius. The first round of simulations shows the density of the cloud
along the x-axis of the system for different atom numbers in an isotropic
harmonic oscillator potential, shown in figure 2.1. The characteristic
trap length for this potential is given by the harmonic oscillator length
aho =p

~/(mω) which the x-axis is scaled with. It is clear, as we increase
the number of atoms in the trap, the density distribution starts to deviate
from the ideal gas described by a Gaussian distribution, and approaches
the Thomas-Fermi regime where the condensate resembles that of an
inverted parabolic distribution. Although the atoms are drawn towards
the middle of the trap where the potential is lowest, mutual repulsive
interactions, due to the positive scattering length, prevents the atoms
from piling up at the center.

A more suitable potential for this project, which is also relatively easy
to simulate, is the box potential where the walls are set to be infinitely
high and steep. The wave function for an ideal gas along the x-axis in a
box potential is given by [20]

Ψn(x) =
√

2

Ax
sin

(
nπ

Ax
x

)
, (2.12)

where Ax is the box length in the x-direction and n is an integer number
with n = 1 corresponding to the ground state. The modulus squared of
Eq. (2.12) alongside the GPELab simulations are plotted in figure 2.2
for the same different atom numbers as in the harmonic oscillator case
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N=10
2 N=10

3

N=10
4

N=10
5

Figure 2.1: GPELab simulations of N -particles in an isotropic harmonic
oscillator potential (blue curve). The non-interacting ideal gas described
by a Gaussian function is also plotted (orange curve).

except that N = 100 is substituted with N = 106. The simulations are
executed with a box length of A = 80µm. The x-axis is scaled with the
characteristic trap length which is Ltrap = 10µm. A parallel can be drawn
between the box potential and the harmonic potential; As we increase
the number of atoms in our trap, the distribution tends to flatten out
due to the repulsive interaction between the atoms. Only this time, the
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2.1. Bose-Einstein Condensation

atoms do not feel the force from the external trapping potential until
they reach the boundaries of the trap. This is what creates the uniform
and homogeneous distribution of an atom sample in a box trap. As the
plateau in the density distribution gets broader, due to increasing atom
numbers, the healing length introduced in Eq. (2.11) gets shorter.

N=10
4

N=10
3

N=10
5

N=10
6

Figure 2.2: GPELab simulations of N -particles in a box potential with
infinite high- and steep walls (blue curve). The non-interacting ideal gas
described by the modulus squared of Eq. (2.12) is also plotted (orange
curve). In the bottom plots, a plateau of constant density is visible.
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2. ULTRACOLD QUANTUM GASES

2.2 Feshbach Resonances

Modern investigations of ultracold atomic gases heavily rely on the ex-
traordinary degree of control that such a system has to offer under various
conditions. This is not only limited to atomic and molecular physics but
is also seen in other fields such as condensed matter, few- and many-body
physics. The essential tool for controlling is the so-called Feshbach res-
onances, which is used to precisely tune the interaction between atomic
states in the system, e.g. by applying an external magnetic field. Not all
atomic species possess these resonances, but alkali atoms in particular
like 39K have been studied widely [21] when cooled to low temperatures
where few channels are open. A direct benefit of having low temperatures
is that one can describe the collisions between atoms in the low energy
regime. Assuming elastic scattering and applying the formalism of a par-
tial wave expansion one will only see contributions from the s-wave to
the lowest order. The cross-section σ of such a scattering event can be
written as

lim
k→0

σ= 4πa2, (2.13)

where a is known as the scattering length which can be thought of as
a length at which two atoms see each other. Note that this equation is
only true in the limit where the wavenumber k goes towards zero (low
energies). For a two-body collision between particle A and particle B ,
we can have both open- and closed channel potentials. The open chan-
nel can be considered energetically accessible while the closed channel
is forbidden by energy conservation. The closed channel can e.g. be
thought of as a bound molecular state while the open channel is the back-
ground potential that connects the two atoms. If the energy of the bound
molecular state is equal to the incoming particle energy, the collision
process between the two particles is said to be on “resonance”. In the
case of an ultracold atom system the atom-atom interaction is caused
by the hyperfine interaction which flips the electronic and nuclear spins
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2.3. Optical dipole Potentials

of one of the colliding atoms [22]. This interaction can then be tuned
magnetically, by exploiting the Zeeman effect on the hyperfine states or
by optical methods where the Stark effect is present. In the vicinity of
a magnetically tuned Feshbach resonance, the scattering length can be
expressed as [23]

a(B) = abg

(
1− ∆

B −B0

)
, (2.14)

where∆ is the width of a given resonance, B0 is the field at the center of the
resonance, and abg is the background scattering length, i.e. the scattering
length far away from resonance. From Eq. (2.14) it is evident that both
positive and negative scattering lengths can be achieved corresponding
to repulsive and attractive interactions, respectively.

In this thesis, a particular Feshbach resonance for the 42S1/2 ground
state of 39K is of interest. The interaction between the |F = 1,mF =−1〉
and |F = 1,mF = 0〉 state has a resonance located at around 526G. This
is shown as the red line in figure 2.3. It is worth mentioning that using
a magnetic field in the vicinity of 526G will in practice only vary the
interaction strength of the |1,0〉 + |1,−1〉 coupling while the two other
internal interaction strengths will be held constant. Why this particular
Feshbach resonance is chosen will be explained in Sec. 2.4.2.

2.3 Optical dipole Potentials

Optical trapping potentials have proofed to be excellent tools, especially
when studying impurity dynamics where the magnetic field is needed as a
free parameter, to tune the scattering length in the vicinity of a Feshbach
resonance. This is the main reason why magnetic traps cannot be used:
the effective interaction around the resonance is a strong function of
the magnetic field. It is therefore desirable that the magnetic field is
homogeneous, thus ruling out the possibility of magnetic traps.
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Figure 2.3: Scattering length as a function of applied magnetic field for
interactions within the same hyperfine state F = 1 but for different mF -
states. The Feshbach resonance is present at 526G for the interaction
between the |F = 1,mF = 0〉 state and the |F = 1,mF =−1〉 state (red line).
The two internal interactions of |1,0〉 and |1,−1〉 is also shown (dashed
blue- and dot-dashed yellow line respectively). The black vertical line at
around 506G indicates the zero crossing for the condensate state |1,−1〉.
The gray shaded area shows the interesting region at which impurity
dynamics can be studied.

Generally, one distinguishes between two overall types of optical traps:
charged- and neutral particle traps. For charged particles, one wants to
exploit the Coulomb interactions between the atoms and the external
electric or electromagnetic fields. This kind of trap is known as an ion trap
and can for instance be used to study entangled states of trapped atomic
ions [24]. The other type which is the relevant one for this project is a
trap that can be used to confine neutral atoms. The trapping mechanism
for neutral particles is much weaker than the Coulomb interaction in
the charged particle case. Therefore, one would need a precooled atom
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sample in the microkelvin region for the neutral atom traps to work. The
operation of optical dipole traps relies on the electric dipole interaction
with far-detuned light from the atomic transitions. If one was to operate
the trap close to resonance, one would have a radiation pressure trap that
possess other characteristics. The effects of light on atoms, and more
specifically the dipole potential that will be presented in this section, will
be based on the theory described in [25] and [26]. When a neutral atom is
placed in the presence of light, could be a monochromatic light source
like a laser, an induced dipole moment arises in the atom, due to the
electric field E of the light, that oscillates at the driving frequency ω. The
induced dipole moment will be given by p = αE, where α is defined as
the complex polarizability which describes how easily the field induces
the dipole moment p. In other words, it characterizes the response of the
atom to the applied field. The real part of α is related to the dipole force
and thus the potential energy, while the imaginary part is related to the
absorption and rescattering of the incident light. From a classical point
of view the interaction potential, due to the induced dipole moment, is
then given by

Udip =−1

2
〈pE〉 =− 1

2ε0c
Re(α)I (r). (2.15)

Because the dipole moment is induced, the factor of 1/2 appears which
is not usually present for the dipole energy. If the dipole energy was to be
written out explicitly, there would be terms that oscillate too fast for the
atoms to respond, and therefore these terms can be omitted by taking
the time average, which is denoted by the angular brackets. The field
intensity I is given by I = 2ε0c|E0|2, where E0 is the field amplitude. Since
the dipole force can be considered conservative, the force can be derived
from the dipole potential simply by taking the gradient of Udip

Fdip(r) =−∇Udip(r) = 1

2ε0c
Re(α)∇I (r). (2.16)
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Thus we see that the dipole force is proportional to the real part of the
polarizability and the intensity gradient. The power extracted by the
induced dipole moment can be written as

P = 〈ṗE〉 = ω

ε0c
Im(α)I (r), (2.17)

and will be re-emitted as dipole radiation. If we consider the light to be a
stream of photons each with energy ~ω we can interpret the scattering
rate simply as the absorbed power divided by the photon energy

Γsc = P

~ω
= 1

~ε0c
Im(α)I (r), (2.18)

one can see this scattering of photons as a source of heat generation in
the cloud of atoms.

The classical way to obtain an expression for the polarizability would
be to consider the atom in the Lorentz model, i.e. treat the electron as a
damped harmonic oscillator where the equation of motion is given by

me ẍ+meΓẋ+mω2
0x =−eE(t ). (2.19)

Here E(t ) = ε̂E0e−iωt and the damping term meΓẋ can be interpreted as
the classical analog of spontaneous emission and collisions with other
atoms. By having an ansatz on the form

x(t ) = ε̂x0e−iωt , (2.20)

the solution to Eq. (2.19) can be shown to be

x0 = eE0/m

ω2 −ω2
0 + iΓω

. (2.21)

Now recall that the definition of the dipole moment is given by

p = ex =α(ω)E. (2.22)
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From this we have derived an expression for the polarizability

α(ω) = e2/m

ω2 −ω2
0 + iΓω

, (2.23)

where Γ is the classical damping rate due to the radiative energy loss
given by

Γ= e2ω2

6πε0me c3
. (2.24)

It is worth noting that although this derivation is done all classically, it
still has great precision when calculated on to specific atoms which have
strong dipole allowed transitions. For alkali atoms, which are character-
ized by only having one valence electron, Eq. (2.24) tend to agree with
the true decay rate to within a few percent [25].
A more general approach is to do it semi-classically where we treat the
atom as a two-level quantum system, having a ground state and an ex-
cited state, interacting with a classical light field. Here the damping rate
would depend on the dipole matrix element as follows

Γ= ω2
0

3πε0~c3

∣∣〈e|p · ε̂|g 〉∣∣2 , (2.25)

where |g 〉 is the ground state and |e〉 is the excited state of the atom.
If saturation effect can be neglected, i.e. if the occupation level in the
excited state is negligible, then Eq. (2.24) will be sufficient. This can
be fulfilled by having a dipole trap driven far away from resonance, i.e.
having a laser system that is far-detuned such that the scattering rate is
much lower than the spontaneous decay rate (Γsc ¿ Γ). We are now in a
position where we can write Eq. (2.15) and (2.18) more explicitly by using
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the derived expression of the polarizability in equation (2.23) to get:

Udip(r) =− 3πc2

2ω3
0

(
Γ

ω0 −ω
+ Γ

ω0 +ω
)

I (r),

Γsc(r) = 3πc2

2~ω3
0

(
ω

ω0

)3 (
Γ

ω0 −ω
+ Γ

ω0 +ω
)2

I (r),

which are valid approximations as long as the detuning is large and satur-
ation effects are negligible. Further approximations can be made if the
detuning of the light δ = ω−ω0 is not too large (|δ| ¿ ω0). In this way,
the so-called counter-rotating term Γ/(ω0 +ω) can be neglected since
ω/ω0 ≈ 1. This approximation is known as the rotating-wave approxima-
tion and the above expressions will be simplified to:

Udip(r) =3πc2

2ω3
0

(
Γ

δ

)
I (r), (2.26)

Γsc(r) = 3πc2

2~ω3
0

(
Γ

δ

)2

I (r). (2.27)

It can be seen directly from Eq. (2.26), that depending on which detuning
we are operating the dipole trap at, we have either an attractive or repuls-
ive interaction between the atoms and the electric field. If the detuning
is negative (δ< 0) compared to an atomic transition the interaction can
be considered attractive, i.e. atoms are drawn towards regions of higher
intensity, and we call it a red detuned trap. On the contrary, if the detun-
ing is positive, (δ> 0) the dipole interaction is repelling and atoms will
move towards regions of lower intensity, which we call a blue detuned
trap. Experimentalists will face a trade-off in the desire of having a deep
trap together with a low scattering rate. However, since the potential
scales as I /δ while the scattering rate scales as I /δ2, optical dipole traps
are preferably operated at high intensities and large detunings to keep
the scattering rate as low as possible.
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2.4. Gravitational Potential Compensation

2.4 Gravitational Potential Compensation

The ideal testbed for an optical dipole trap would be in an environment
where no external forces are present, and where the atoms in the trap
only are repelled by the optical dipole force that arises between the atoms
and the blue detuned laser. However, in reality where experiments are
conducted on earth, there will always be an external force acting on the
atoms due to the presence of the earth’s gravitational field. This will
lead to undesired effects in experiments and thus limits the size, shape
and density of the trapped atomic cloud. Nonetheless, it is possible to
compensate for this gravitational potential by turning the attention to
magnetic fields because the atomic states are magnetically sensitive.

The section is structured as follows. First a brief look at the theory of
the Zeeman splitting of hyperfine states and the introduction of the Breit-
Rabi formula which describes the energy splitting at different magnetic
field strengths. Then we will go on to look at the energy splitting of the
42S1/2 ground state of 39K and in particular, investigate the |F = 1,mF =
−1〉 and |F = 1,mF = 0〉behavior in different magnetic field regime, before
we finally will be able to calculate the necessary magnetic field gradient
needed to compensate for the gravitational potential at the Feshbach
resonance close to 526G mentioned in section 2.2.

2.4.1 Zeeman splitting of hyperfine manifold

The Zeeman effect is the splitting of energy levels into sub-levels due
to the atoms magnetic moment interacting with an external magnetic
field. In the hyperfine case where F is a good quantum number, we have
2F +1 magnetic sub-levels labelled by the quantum number mF . These
sub-levels will be degenerate in the absence of an external magnetic field.
However, in the presence of a magnetic field the Zeeman splitting of the
hyperfine manifold can be described in 3 regimes; the low-, intermediate-
and high magnetic field regimes.
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In the case where the hyperfine energy splitting is greater than the
atom’s interaction with the external magnetic field, the interaction Hamilto-
nian will only slightly perturb the hyperfine Hamiltonian, and the result-
ing energy splitting can be described by a simple linear relation. This is
given by [17]

∆EZ =µB gF BextmF , (2.28)

where µB is the Bohr magneton and gF is the Landé g-factor. The lin-
ear relation starts to break down, when the hyperfine energy splitting is
similar to the energy splitting due to the interaction with the external
magnetic field, and the intermediate magnetic field regime is entered.
For intermediate fields where the corresponding interaction Hamiltonian
neither weakly perturbs nor dominates the hyperfine splitting, the res-
ulting energy splitting will be more difficult to calculate. In general, it
requires a diagonalization of the total Hamiltonian numerically, however
an exception can be made in the case where J = 1/2 or I = 1/2. Then the
Zeeman energy splitting can be described by [26]

∆EF=I±1/2 =− h∆W

2(2I +1)
+µN g I mF B ± h∆W

2

√
1+ 2mF x

I +1/2
+x2, (2.29)

where

x ≡ B(µB g J −µN g I )

h∆W
, (2.30)

and

∆W = A

(
I + 1

2

)
. (2.31)

Luckily for us, the atomic species at interest is 39K which has a ground
state where J = 1/2 and I = 3/2 (See figure B.1). What we are interested in
investigating is how the 39K F = 1 and F = 2 hyperfine manifold evolve in
the different field regimes which is described by Eq. (2.29) also known as
the Breit-Rabi formula. This is shown in figure 2.4 for a uniform magnetic
field ranging from 0 to 600G. Highlighted is the energy states of F =
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1,mF =−1 and F = 1,mF = 0, since these two states are the ones used in
the study of impurity dynamics. Two coils in a Helmholtz configuration,
i.e. where the current is running in the same direction in both coils, would
produce a uniform field.

Figure 2.4: Energy levels of 39K atoms in an external magnetic field based
on the Breit-Rabi formula (2.29). F = 1 is the lower manifold, and F = 2 is
the upper manifold. In the weak-field regime, i.e. below 50G the linear
behavior can be sensed. The colored states are mF =−1 and mF = 0.

2.4.2 Magnetic compensation gradient

In the previous section, we saw how a uniform bias field lifted the de-
generacy of the mF states in the hyperfine manifold. The goal of this
section will be to calculate the necessary magnetic field gradient needed
to balance the gravitational potential.

The reason why a magnetic field gradient is needed is because the
gravitational potential will be different for atoms in the top of the trap
relative to the atoms in the bottom of the trap. One way to produce a
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B-field gradient in the laboratory would be to have two coils in an anti-
Helmholtz configuration, i.e. two coils shifted vertically and carrying a
current in opposite directions, producing a quadrupole field.

Assuming our trap has a height of D = 30µm, the gravitational poten-
tial across the trap can be found by the well-known formula

∆Ug = mK g D, (2.32)

where mK is the mass of a single 39K atom and g is the gravitational
acceleration. Inserting numbers yields:

∆Ug = kB ·1.38µK. (2.33)

The required energy to balance this gravitational potential must be given
by

∆B∇B E =∆Ug , (2.34)

where ∆B is the required B-field difference between the top and the bot-
tom of the trap and ∇B E is the gradient of the energy states in figure 2.4.
The gradient of the energy splitting of mF = −1 and mF = 0 states can
be seen in figure 2.5. Finally, we can isolate ∆B in Eq. (2.34) and make a
plot of the required B-field needed to compensate for the gravitational
potential near the Feshbach resonance located at 526G. This is shown
to the left in figure 2.6. In the right panel in figure 2.6 the magnetic field
difference between the top and bottom of the trap is divided by the height
of the trap to get the required magnetic field gradient to counteract the
gravitational potential. A B-field gradient of about 7.23G/cm should suf-
fice for the |1,−1〉 state. The |1,0〉 state will not be compensated correctly,
so atoms in this particular quantum state will tend to drift. The drift can
be calculated to see how far the atoms will travel within a typical experi-
mental time. If we say that the experimental time is t = 10ms, the atoms
in the |1,0〉-state will approximately drift 1.5µm which is a fairly small
distance given the dimensions of the trap. If we were to pick the other
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Figure 2.5: Gradient of the mF = −1 and mF = 0 states from figure 2.4.
Note that the energy gradient is close to being equal and constant for the
two states after 400G. The inset shows the energy gradient of the two
states close to the Feshbach resonance.

Feshbach resonance located at 113.8G, we could expect a drift of the
|1,0〉 state by more than 1.3mm within 10ms of experimental time which
would ruin the measurement. Therefore, one should pick a Feshbach
resonance close to where the gradient of the energy splitting depicted
in figure 2.5 is the same for the two states, which is satisfied at the 526G
resonance.
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2. ULTRACOLD QUANTUM GASES

Figure 2.6: Left: Required magnetic field difference between the top and
the bottom of the trap, near the Feshbach resonance of the |1,−1〉 and
|1,0〉 state. Right: Magnetic field difference divided by the height of the
trap to get the required magnetic field gradient. The dashed line indicates
the center of the Feshbach resonance between the two mF states.
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3
OPTICAL BOX POTENTIAL

In this chapter, the experimental design of a setup used to generate a
hollow cylindrical beam, inspired by the setup in [15], is described. The
hollow ring beam will confine the atoms in the radial direction. Unfor-
tunately, time did not allow for the axial confinement to be constructed
during this project, and the implementation of sharp end caps will be left
as a future prospect.

In the first section, an in-depth look at axicons is given based on
calculations done in the ray tracing software: Optics Software for Lay-
out and Optimization (OSLO). This section is needed to understand the
behavior of light propagating through an axicon which is an essential
piece of equipment in the setup. The full description of the setup is given
in Sec. 3.2 together with an analysis of the various distances between
each optical element after the fiber. The chapter concludes with a brief
description of the evaluation methods in OSLO.
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3.1 Understanding Axicons

The first goal in the process of achieving a repulsive hollow cylinder,
is to create a beam that expands in a cone-like manner. To alter the
geometry of a propagating Gaussian beam coming from an optical fiber,
special types of lenses, called axicons or conical prisms [27], can be used.
An axicon is rotationally symmetric and has one plano surface and one
conical surface. The inclination angle of the conical surface, which we
will define as the axicon angle θ, does not change with increasing distance
from the optical axis. This is different from a regular lens where the angle
continuously changes. When the incident light propagates through the
conic part of the axicon, the light gets refracted at the glass-air transition
(see figure 3.1) and are deviated towards the optical axis. The refracted
light then propagates at a deflection angle φ with respect to the optical
axis, which can be derived directly from Snell’s law. Under the assumption
of a small axicon angle, the deflection angle is approximately given by

φ≈ θ(ng l ass −1),

where ng l ass is the refractive index of the axicon. In the region just after
the axicon tip, an interference pattern emerges due to the part of the
beam above the optical axis, overlapping with the part of the beam below
the optical axis, resulting in a diffraction-free beam. In this region, our
beam is propagating as a Bessel beam because the intensity distribution
closely resembles that of a Bessel distribution. A true Bessel beam would
in principle require an infinite amount of energy to create since each ring
generated has the same power. Therefore, this Bessel beam characteristic
only applies within the axicon’s depth of focus (DOF) [28]. For small
axicon angles the DOF can be estimated by

DOF ≈ R

(ng l ass −1)θ
,
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l

DOF

2R φ

θ

d

Figure 3.1: Ray tracing simulation for an axicon with an incident beam
diameter 2R refracted by an axicon angle of θ = 20◦. Blue rays start on the
outside of the incident beam and end up on the inside after the Bessel
region.

where R is the radius of the incoming beam. From this simple expression
it is clear, that when the axicon angle gets smaller, the DOF, i.e. the
extent of the Bessel region, increases. In the far-field, i.e. after the Bessel
region, the deviated beams ceases to overlap, and the intensity becomes
distributed on a ring with a thickness closely related to the incident beam
radius R. At last, the diameter, d , of the ring can be found by a simple
trigonometric calculation where the expression for the divergence angle
φ was inserted

d = 2l tanφ= 2l tan(θ(ng l ass −1)),

where l is the length shown in figure 3.1. This equation is only valid as
long as l À DOF and d À R.

The behavior of light passing through a single axicon is now known.
The first problem to arise is of course that the beam expands in a cone-
like shape. For a repulsive optical trap to work in practice, some degree
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of collimation is required. The easiest way to achieve a non-divergent
collimated ring is to introduce a second axicon. This can be seen in figure
3.2. It is important, that the axicon angle of both axicons are the same.

θθ

Figure 3.2: Ray tracing simulation of a system of two axicons with the
same axicon angle. The first axicon splits the incident beam into a diver-
ging ring. The second axicon collimates the geometry of the beam and a
cylinder with a constant radius is achieved. By moving the second axicon
to the left (designated by the red arrow above it) will result in a smaller
ring beam diameter. Likewise, if the second axicon is moved to the right
(designated by the green arrow), the ring beam diameter is increased.

Small deviations will lead to either a divergent- or convergent beam. In
addition, the two axicons must have their tips facing each other to achieve
collimation. From the ray tracing sketch in figure 3.2, it can be seen that
the diameter of the collimated ring is governed by the mutual separation
of the axicons. By moving the second axicon to the left will result in a
smaller ring and vice versa.

So far, the geometry of the setup was the main focus and this has
yielded a collimated ring with a hollow center (at least according to the ray
tracing simulation). It is now time to discuss the intensity distribution of
the ring. When we approach the annulus going from the center of the ring,
we would not expect to see a sharp increase in intensity, due to the fact
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that a Gaussian beam is the propagating beam through the first axicon. A
Gaussian beam with the fundamental transverse electromagnetic mode
(TEM00), is characterized by having the highest intensity in the center
compared to the wings of the beam. It is clear from the ray tracing figures
3.1 and 3.2, that the rays closest to the optical axis (the most intense
light for a Gaussian beam) will get refracted in a way such that they
end up on the outside of the beam after the Bessel region. Meanwhile,
the two outermost rays (less intense for a Gaussian beam), which are
blue colored, are now on the inside. This of course leads to a graduate
increase in intensity until we reach the outer region of the annulus where
it suddenly drops fast. In this paper [29] they make a theoretical model
of the transverse intensity amplitude in the far-field region of the first
axicon and compare it with an experimental intensity profile. Here they
demonstrate the influence of an imperfect apex tip of the axicon. They
show, by introducing a bluntness to the axicon tip in the theoretical
model, that they can achieve an almost perfect agreement between theory
and experiment. The tail of residual light does not gradually decrease
towards the center but is rather expressed in form of inner contrasted
secondary rings due to diffraction of the imperfect axicon tip. These inner
rings are not optimal when designing a hollow repulsive optical trap. A
natural way to circumvent this problem, is to place an opaque mask that
blocks all the secondary rings which have been demonstrated both in
[29] and [14]. The price you pay for going with this kind of setup is, that
you cannot be able to change the size of the ring without changing the
aperture size of your mask.

A setup that could somehow invert the ring such that the residual
light is on the outside of the main ring, instead of on the inside, would be
preferable. One would still have the opportunity to change the diameter
of the ring without being concerned about a matching mask. This was
exactly done by a group in Hamburg [15], where a detailed description of
their setup can be found in [30]. A setup of this kind will require not only
three axicons, but also two lenses that all together will invert the ring and
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produce steep inner walls at an intermediate image plane, determined
by the foci of the lenses. When you combine axicons and lenses, it starts
to get a bit more complicated. Although axicons are not supposed to
shift the point of focus, there will always be a small separation between
the focus point of the lens and the actual focus of the ring. This has
been reported in [29] and can also be observed in OSLO by comparing
the paraxial focus with and without axicons inserted. A full description
of the setup will be presented in the next section based on ray tracing
simulations from OSLO.

3.2 Three Axicon setup

The first step would be to simulate the out-put light coming from the
optical fiber being used, which is highly divergent. The single-mode
fiber used in the lab has an operating wavelength from 400 to 680nm,
thus compatible with the laser pointer being used, which is capable of
producing up to 60mW of 532nm light. What characterizes the beam
expansion is the numerical aperture of the fiber. The numerical aperture
(NA) of a fiber is defined as the sine of the largest angle an incident ray
can have for total internal reflectance to occur in the core [31]. For a
single-mode fiber, it is relatively straightforward to determine a fiber’s NA.
This is done simply by measuring the divergence angle of the light cone it
emits. To obtain the divergence angle, a measurement of the beam-width
as a function of z-distance, which is the distance along the optical axis,
must be made. The CMOS camera used is mounted on a translational
stage, controlled by a micrometer screw where the z-distance can be
accurately read. The characteristic beam-width (1/e2) was obtained using
a Gaussian fitting tool in a LABView program. The x and y diameters of
the beam can be seen in figure 3.3. We can obtain the slopes from the
fits, and then simply use trigonometry to get a value for the NA of the
fiber. For the x-direction, the calculated NA will be NAx = 0.0556, and
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Figure 3.3: The beam diameter of light coming out of an optical fiber as a
function of z-distance for both the x- and y direction together with linear
fits. The zero point on the x-axis is just a reference point, and not the
actual distance from the fiber tip.

for the y-direction, the calculated NA is NAy = 0.0570. Taking the mean
of these two numbers gives NA= 0.0563. This value can then be passed
on to OSLO, as our object’s numerical aperture. In principle, the optical
fiber tip can be seen as an object, that we want to transform into a hollow
cylinder. Next up is the out-coupler lens, whose task is to collimate or
focus the light coming out of the fiber. The lens used is an aspheric lens
from Thorlabs with a focal length of f = 4.60mm. Aspheric lenses can be
characterized by several parameters and have a surface profile given by
the aspheric lens design formula [32]:

z = Cr 2

1+
√

1−C 2(1+k)r 2
+ A0 + A1r + A2r 2 + A3r 3 + A4r 4 + ... (3.1)
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Here z is the surface sag, C is the curvature, r is the radial coordinate, k
the conic constant and Ai the coefficients of a correction polynomial that
allows for a higher-order aspheric optical element to be defined. Where
a regular spherical lens can be described by two surfaces, each with its
own curvature and of course the refractive index, an aspheric lens can
be more complex and involve several aspheric coefficients. Luckily, this
information can typically be gathered from the manufacture.

The out-coupler lens and the fiber are put in a cage system configura-
tion, where the distance between the fiber tip and out-coupler lens can
be varied by a z-axis translation mount with micrometer precision. This
degree of freedom turns out to be crucial in the pursue of a sharp thin
inner ring. Increasing the distance between the fiber tip and out-coupler
lens leads to a divergent beam, whereas a decrease leads to a convergent
beam. The next optical element in the line is the first axicon which we
know from Sec. 3.1, transforms a Gaussian beam into a Bessel beam in the
near-field, and in the far-field a divergent ring takes shape. The axicons
in OSLO can be modelled by treating them as aspheric lenses where only
the linear coefficient in Eq. (3.1) is included. The relation between the
axicon angle and the coefficient A1 is simply given by tanθ = A1 [33].
At this point, the residual light is present inside the ring. To make the
optical inversion of the ring, a combination of two optical elements, an
achromatic doublet lens and an axicon, are needed. The achromatic lens
focuses the ring while keeping the effects of spherical and chromatic
aberration at a minimum. The second axicon, which is placed just after
the achromat, inverts the ring and ensures that no residual light remains
on the inside of the ring. After the point of optical inversion, the residual
light resides on the outside of the inner ring. Finally, the now divergent
ring can be collimated, by inserting a third axicon with the correct axicon
angle, which of course must be placed after the point of optical inversion.
Depending on the aspheric out-coupler and achromatic lenses, and their
mutual distance from each other, an intermediate image plane forms.
The intermediate image plane is the plane in space, at which the ring is
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sharpest and has the thinnest inner ring. Ideally, this is located some-
where after the third axicon. A full sketch of how the setup appears on
the optical breadboard in the laboratory, can be seen in figure 3.4.
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Figure 3.4: Full sketch of the setup until arriving at the intermediate image
plane (IIP). A beam of 532nm light goes through a short-pass filter where
light with a wavelength of 550nm or higher gets reflected. A combination
of a λ/2 waveplate and a Polarizing Beamsplitting cube (PBS) makes it
possible to adjust the transmitted intensity through the cube. What is
not transmitted gets directed into a beam dump (BD). After two mirrors,
the beam arrives at an in-coupler lens (L1) that focuses the beam into the
optical fiber, where it meets an out-coupler lens (L2) at the exit. The beam
then gets reflected by two mirrors again and arrives at the first axicon (A1).
The axicon, A1, splits the beam into a ring beam where the combination
of an achromatic lens (L3) and a second axicon (A2) causes the optical
inversion (OI). Finally, the third axicon (A3) collimates the geometry of
the ring, and a camera with a CMOS image sensor chip is placed at the
IIP for image capturing.
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3.2. Three Axicon setup

Two setups with different achromatic lenses, i.e. different focal lengths
and axicon angles, have been studied both in the laboratory and in OSLO.
A table that shows the optical components in each setup is shown in table
3.1. The 200mm setup is self-designed, and the 400mm is similar to that
used in [15] but with another out-coupler lens.

A1[degree] L3[mm] A2[degree] A3[degree]
200mm setup 5 200 10 10
400mm setup 10 400 10 2

Table 3.1: Optical components used in the two configurations which I
have titled the 200mm and 400mm setup.

In the next section, I will discuss what will happen when distances
between each optical element after the fiber are varied based on the
corresponding OSLO simulations for each of the two setups in table 3.1. I
will refer to the abbreviations of each optical element as they appear in
figure 3.4.

3.2.1 Distance analysis

As mentioned earlier, the distance between the fiber tip and L2, which I
will call S1 from now on, seems to play a crucial role in where the position
of the IIP is located. By tuning S1, one can arbitrarily choose where the
focus of the ring will be. If the ring diameter of both setups is kept the
same, and S1 is set such that the initial position of the IIP is right after
A3 in both setups, the influence of a varying S1 on the focus shift can
be studied in OSLO. This variation is exactly shown in figure 3.5. If we
increase the variation distance to 0.1mm the 200mm setup leads to a
focus change of 165mm whereas for the 400mm, it goes to infinity for the
same variation. The 400mm setup in particular, seems to be very sensitive
to this variation, at least when combined with the chosen L2. In addition
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3. OPTICAL BOX POTENTIAL

Figure 3.5: Focus shift as a function of out-coupler lens distance obtained
from ray tracing simulations in OSLO. The starting point of S1 was set
such that both setups have the IIP right after A3. For the 200mm setup the
starting point of S1 = 2.7546mm and for the 400mm setup S1 = 2.711mm.
The matching fits for both setups are also different. For the 200mm a
linear fit is perfect, and for the 400mm a quadratic fit is made.

to the focus shift, S1 also has an impact on the amount of diffraction
that are present in the system. Then there is the distance between L2

and A1, which I will refer to as S2. For the 200mm setup S2 was varied
300mm, and resulted in a focus shift of only 3mm. For the 400mm setup,
a variation of 300mm yielded a focus shift of 73mm, which is still nothing
compared to what we saw with S1. Having this wiggle room is great
for practical purposes, when constructing the setup in the laboratory
knowing that S2 is of minor importance. The next distance is between
A1 and L3, called S3. Obviously, S3 has an impact on the geometry of the
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3.3. Ray tracing simulations

system. It does not change the location of the IIP, but it affects the size of
the ring at the IIP. What is interesting is that the collimation of the ring
beam after A3 is highly dependent on S3. There is a sweet spot for S3

for both setups, at which the ring remains collimated. For the 200mm
setup, S3 = 208(2)mm equivalent to a ring diameter of 16.55mm at the
position of L3. For the 400mm setup, S3 = 81(2)mm equivalent to a ring
diameter of 12.9mm at L3. Increasing S3 beyond this sweet spot leads
to a divergent ring beam at the IIP and vice versa. The next distance,
which is the one between L3 and A2, is of minor concern. The only thing
that happens, is that you push the point of optical inversion by the same
amount you change the distance in the first place. It does not really affect
the collimation nor the location of the IIP. For that reason, A2 is placed
as close to L3 as practically possible. Since the optical elements are in a
cage system configuration in the laboratory, the distance can be reduced
to less than one centimeter. The distance between A2 and A3 determines
the size of the ring. Obviously A3 must be placed after the point of optical
inversion in order to achieve sharp edges on the inside of the ring. Finally,
the distance between A3 and the CMOS camera, can be found using the
paraxial focussing method which will be described in section 3.3.3. A full
spreadsheet containing information about the surface curvature radius,
separation, aperture radius and glass material for each optical element
for the 200mm and 400mm setup, can be found in appendix A.

3.3 Ray tracing simulations

To get a better understanding of how the propagation of light responds,
when different optical elements are inserted in the beam path, a ray
tracing software like OSLO is highly valuable. The whole optical system
can be simulated and drawn simply by providing the radius of curvature,
thickness and refractive index of each surface in your system. The setup
can then be displayed in a 2D or 3D drawing where ray-tracing algorithms
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will show the optical path of light rays through the system. This could
of course be done by hand using a ray transfer matrix analysis, however
using computers to do this for us will save a lot of time. Some of the key
features that will be used in OSLO, are the paraxial focussing method
and spot diagrams described in two separate subsections, but first I will
present descriptions of the two image evaluation methods that OSLO
provides.

3.3.1 Geometrical evaluation

Solving physics problems often involve approximations and optics is no
exception. The main simplification in geometrical optics, is that we can
describe light propagation in terms of rays obeying Fermat’s principle,
and thereby completely ignore the wave nature of light. Optical effects
such as interference and diffraction will be neglected under the geo-
metrical approximation analysis, however for imaging and the study of
aberrations effects, the ray tracing tool is excellent. Diffraction becomes
less significant in the conceptual limit as the wavelength gets much smal-
ler than the physical dimension of the optical system, and an idealized
domain of geometrical optics is achieved [34].

3.3.2 Diffraction evaluation

For wave-like phenomena to be included, like diffraction and interfer-
ence, some kind of wave equation needs to be solved. In general, one
would try to solve Maxwell’s equations, however for most optical design
problems, one can reduce the problem to a scalar wave problem instead
of a vector wave problem [35]. This corresponds to looking for a solution
to the Helmholtz equation given by

∇2 f (x, y, z) =−k2 f (x, y, z). (3.2)
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3.3. Ray tracing simulations

The scalar field f (x, y, z) is approximated by OSLO to be a field described
by a geometrical wavefront, which is a wavefront constructed according
to the laws of geometrical optics. By this construction, a diffraction
analysis can be performed to e.g. give the diffraction-limit of the optical
system. In a geometrical analysis with no aberration, the rays emanating
from an object point going through a lens would converge at a single
image point, but what wave theory predicts is that the image will be of a
finite size, which is called the diffraction limit. Therefore, the resolution
of your image can either be limited by aberration or diffraction effects.

3.3.3 Focussing method

In order to find the image plane at which our image of the object is in
focus, a focussing method in OSLO is used. By solving for an axial ray
height equal to zero for the last surface before the image surface, will
yield the paraxial focus distance of the selected surface thickness [36].
The paraxial focus coincides with the plane at which the ring width is
smallest. This can be used to quickly identify where one would expect
the image plane to be in the laboratory.

3.3.4 Spot diagram

An especially useful feature in OSLO is the spot diagram. The spot dia-
gram shows a map of the pattern of rays incident on the image surface.
In this plot, one can get a good idea of how the image of the object will
look, and easily see how the image changes before and after the focus
plane. It is particularly useful for this project since it also provides the
radius of the object (which in this project is a ring). Furthermore, the
field points created for each traced ray can be easily imported to other
analysis tools such as MATLAB for further investigations. This is exactly
done in figure 3.6, where the spot diagrams of the 200mm and 400mm
setup are shown. These spot diagrams are evaluated at the paraxial focus
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that was just described in the previous subsection. In the spot diagrams,
an estimate of the diffraction limit is given as the radius of an airy disk.
The airy disk, which is imposed by diffraction, is the smallest point to
which a beam of light can be focused. A qualitative comparison can then
be made of the geometric image (spot diagram) to the limiting spot size
(airy disk).

Figure 3.6: Spot diagrams imported from OSLO with 1996 traced rays
evaluated at the paraxial focus. The left figure shows the spot diagram
for the 200mm setup, and the right figure shows the spot diagram for
the 400mm setup. From these diagrams, the width and the diameter of
the ring can easily be extracted. It is important to stress, that the spot
diagrams do not indicate the irradiance in the image as the plot does not
show any weighting of the rays. The blue circle at the center of each plot
shows the corresponding airy disk.

It is clear from figure 3.6 that the diffraction limit is significantly different
for the two setups, in fact they differ with almost one magnitude. This
serves as an early indication of what performance we can expect from
the two setups, with the 200mm being superior to the 400mm setup.
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CHARACTERIZATION

In the following chapter, I present the characteristics of the repulsive
hollow cylinder generated by the setup described in the previous chapter.
This includes both results for the 200mm and 400mm setup. Although,
it was quickly realized that the 400mm setup did not yield what was
expected, it is still included. The chapter has two main sections; Sec. 4.1
is related to the ring characteristics at the intermediate image plane, while
Sec. 4.2 is concerned with the ring at the image plane. The 8-bit images
which are used to evaluate the properties of the ring are taken by an IDS
camera [37]. It has a CMOS sensor type with a Quantum Efficiency of
about 60% in the green light region of the visual spectrum. The resolution
of the camera (horizontal × vertical) is 1280×1024 pixels with a pixel size
of 5.3µm×5.3µm yielding a chip size of 6.784mm×5.427mm where the
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4. CYLINDRICAL BOX CHARACTERIZATION

exposure time can be varied between 0.009ms-2000ms.

4.1 Box characteristics near the intermediate
image plane

In this section, the various characteristics of the ring potential are presen-
ted. This is done at the intermediate image plane, easily accessible for
evaluation.

4.1.1 Wall steepness

Ideally, a box potential of a depth U0, containing atoms with a kinetic
energy of kB T with U0 À kB T , would confine the atoms in a way that
yields a perfect uniform and homogeneous distribution. The perfect box
potential is characterized by having infinite steep walls, however this is
not realizable in practice, so the potential will rise at a finite rate as shown
in the following. The wall steepness is characterized for both the 400mm
and the 200mm setup starting with the former.

400 mm setup

The first setup to be presented is the one with the 400mm achromatic
lens inserted. The raw 8-bit image of the ring taken at the intermediate
image plane (IIP) can be seen on the left panel of figure 4.1. One pixel
can yield values between 0 and 255 depending on the received light
intensity, where 0 corresponds to the black color and 255 corresponds
to white at which saturation is achieved. The light intensity distribution
can be better visualized in the right panel. Here a color bar with the
corresponding pixel values is included. It can be seen that the color bar
only extends to a pixel value of 150, meaning that the picture taken is
far from saturation. The first thing to notice is that the residual light, i.e.
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4.1. Box characteristics near the intermediate image plane

Figure 4.1: Left: Raw grayscale image of the 400mm setup at the IIP, with
pixel number on both axes. The red line is the cut shown in figure 4.2.
Right: Corresponding color image with axes converted to real length
scales and a color bar of pixel values included to distinguish intensity
differences.

the secondary rings, are on the outside of the intense inner ring. This
confirms that the optical inversion has taken place. To check whether this
ring has “box-like” characteristics, an intensity profile of a cut through the
ring can be evaluated. The cut is shown as the red line in figure 4.1, and
the intensity distribution of this cut is shown in figure 4.2. The cut shows
that the ring is close to being hollow, with almost zero residual intensity
in between the two inner peaks in figure 4.2. It was mentioned earlier
that the additional rings generated by the axicons can be attributed to
the imperfections in the tips of the axicons leading to diffraction. This
is however not of great concern as long as they are not present inside
the intense inner ring. The only downside is a loss in power, which can
be circumvented by having a powerful enough laser. To evaluate the
steepness of the wall, a power law of the form I (x) = bxa is fitted to one
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4. CYLINDRICAL BOX CHARACTERIZATION

Figure 4.2: An intensity profile of a cut through the ring of the 400mm
setup corresponding to the red line segment in figure 4.1. The vertical
axis shows the intensity expressed in pixel values. A power law on the
form I (x) = bxa is fitted to one half of the inner ring depicted as the blue
curve.

half of the cut, shown as the blue curve in figure 4.2. The parameters
b and a are used as fitting parameters where in particular a is of great
interest. The resulting fit yields a = 14.91(32) just in between what is
achieved in [13] (a = 13(2)) and [14] (a = 16.2(16)).

Besides the steep inner walls of the ring, it is also critical to have a
uniform intensity distribution around the ring. Therefore, it is important
to investigate other segments of the ring. One can make a simple rotation
around the origin by multiplying the line with a 2D rotation matrix. The
governing angle θ of the rotation matrix can then range from 0◦ to 180◦.
The resulting peak intensity variation around the inner ring can be seen
in figure 4.3. Ideally, the curves in figure 4.3 should be constant, but this
is not realistic in practice. As long as the intensity variations around the
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4.1. Box characteristics near the intermediate image plane

Figure 4.3: Peak intensity as a function of angle around the ring (rotation
direction is anti-clockwise) for the 400mm setup. The red horizontal
line in figure 4.1 corresponds to θ = 0◦. The blue curve shows the peak
intensity of the upper part of the ring, while the orange curve shows the
bottom half. Each data point is taken with an increment of 3◦.

ring are much smaller than the actual peak intensity, the atoms should
not feel any difference.

Now that the peak intensities around the ring have been obtained
and their corresponding x-values, a precise estimate of the diameter
of the ring can be calculated. This is done by taking the point of the
peak intensities for each line segment and calculate their difference. The
diameter of the ring in figure 4.1 is calculated to be dring = 3.944(13)mm.

Finally, the width of the ring was determined by taking the full width
at half maximum (FWHM) for each peak intensity around the ring. This
yielded a width of wring = 238.3(90)µm.
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200 mm setup

We saw with the 400mm setup that it yielded a scaling of I (x) ∝ x14.91(32).
This is still far away from what was achieved in [15] (a = 87(4)) even
though many of the optical components were the same, except for the
out-coupler lens L2. Another setup was tested in the laboratory, where the
400mm lens was substituted with a 200mm achromatic lens instead. The
reasoning for testing this new setup, was because it showed promising
results in OSLO: the sharpness of the ring, the low diffraction limit and
the reduced space it required on the optical breadboard. A captured
image at the IIP can be seen in figure 4.4. Clear differences can be seen

Figure 4.4: Left: Raw grayscale image of the 200mm setup at the IIP, with
pixel number on both axes. The red line corresponds to a cut evaluated
in figure 4.5. Right: Corresponding color image with axes converted to
real length scales and a color bar of pixel values included to distinguish
intensity differences.

when comparing this figure with figure 4.1. It appears that more of the
intensity is in the inner ring, and the diffraction pattern that was visible
in the 400mm setup is no longer directly observable. The raw image
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4.1. Box characteristics near the intermediate image plane

of the ring shows a hard cut-off between the inner ring and the hollow
center. The intensity profile of the indicated red line in figure 4.4 can
be seen in figure 4.5. The obtained power law fit for the 200mm setup

Figure 4.5: Intensity profile of a cut through the ring of the 200mm setup
corresponding to the red line in figure 4.4. The vertical axis shows the
intensity expressed in pixel values. A power law on the form I (x) = bxa is
fitted to one half of the inner ring depicted as the blue curve.

resulted in a scaling of I (x) ∝ x60.3(34) which is significantly higher than
the one achieved with the 400mm setup. Now that the intensity profile
for a single line segment is found, the intensity profile for the rest of
the ring can be evaluated following the same procedure used for the
400mm setup. The different peak intensity values around the ring, can
be seen in figure 4.6. The diameter of the ring at the IIP is estimated
to be dring = 3.033(4)mm and the measured width around the ring is
wring = 51.3(19)µm. The highest intensity variations around the ring
are on the order of 100 pixel values, whereas for the 400mm setup this
number was closer to 50. The high intensity variations around the ring for
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Figure 4.6: Peak intensity as a function of angle around the ring (rotation
direction is anti-clockwise) for the 200mm setup. The red horizontal
line in figure 4.4 corresponds to θ = 0◦. The blue curve shows the peak
intensity of the upper part of the ring, while the orange curve shows the
bottom half. Each data point is taken with an increment of 3◦.

the 200mm setup can be caused by small miss alignments in the beam
path through the optical components. It is important to stress, that we
are approaching a resolution problem of the camera when evaluating the
width of the ring for the 200 mm setup. In fact since we have a pixel size
of 5.3µm and the obtained width of the ring was wring = 51.3(19)µm, we
only have around 10 pixels on average to resolve the width.

4.1.2 Third axicon position variation

To have the degree of freedom to easily change the diameter of the ring
is a unique feature of this setup. It is therefore an interesting property
to study. One way to characterize it, is to see how the diameter of the
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ring changes when the distance between A2 and A3 in figure 3.4 is varied.
This is shown for both the 200mm- and 400mm setup in figure 4.7. In
this figure, the data obtained in the laboratory is also compared to cor-
responding OSLO simulations of the diameter at different A3 positions.
The camera had been placed at the IIP, however for the 400mm setup it
was difficult to say whether the camera was exactly placed in the focus
plane or not. What one can do to make sure that the camera is placed at
the IIP is to check the width of the ring at various points along the optical
axis, this is further studied in the next section. Regardless of the issue

Figure 4.7: Diameter of the ring at the IIP as a function of the position
of A3 for the 200mm (red)- and 400mm (blue) setup. The measurements
done in the laboratory show a clear linear relation between the diameter
of the ring and the position of the third axicon. This is also verified by the
simulations done in OSLO shown as the dashed lines.

related to the image-plane determination of the 400mm setup, figure 4.7
shows a linear relation between the diameter of the ring, and the position
of the third axicon along the z-direction. This is further supported by
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the corresponding OSLO simulation which predicts the same behavior.
Linear fits were made to both data sets (fit not shown in figure 4.7), which
yielded a slope of 0.160(2) for the 200mm setup, and thus for each mm
A3 is moved away from A2, the diameter of the ring at the IIP changes
by 160(2)µm. For the 400mm setup the fit yielded a slope of 0.0319(4)
equivalent to a diameter change of 31.9(4)µm per mm A3 is moved away
from A2. The upper limit on the ring diameter, at which the data in figure
4.7 was gathered, is of course set by the dimensions of the camera chip.
The lower limit is set by the point of optical inversion. Approaching the
point of optical inversion with A3, will result in a distorted ring, which
is highly susceptible to small misalignments in the setup. Therefore, a
lower limit of at least 1mm for the ring diameter at the IIP for both setups
should be maintained.

4.1.3 Wall width

Another important characteristic of the setup to investigate, is how the
width of the inner ring changes along the z-direction. In the effective
focus of the two lenses used in the setup, i.e. at the IIP, the inner ring has
a higher peak intensity, and thus a thinner ring width compared to a ring
away from the IIP. The position of the IIP can be found by plotting the
width as a function of distance along the optical axis. This is done for the
200mm setup in figure 4.8. The width of the ring in OSLO, is obtained
through the spot diagram analysis. Specifically, the widths were extracted
by taking the norm of a ray located on the outer rim of the ring minus the
corresponding ray from the inner rim. One data point in the laboratory
in figure 4.8 is obtained, by taking the mean value of the FWHM of each
peak intensity around the ring. The same procedure is performed for all
the other 206 data points that are presented in the figure. The reason why
there exist gaps in between every 36 data point is because the distance
between two mounting holes on the optical breadboard is 25mm, and
the translational stage where the camera is mounted on top only covers
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Figure 4.8: Width of the ring as a function of z-distance for the 200mm
setup, together with a simulation prediction in OSLO. Both data sets seem
to agree that there exists a linear relation between the width of the ring
and the z-distance before and after the IIP. The inset shows the width of
the ring obtained in the laboratory in the vicinity of the focus plane, i.e.
the IIP. The faint yellow rectangle depicts the area which the inset covers.

18mm per mounting hole, leaving out a gap of 7mm at each sequence.
First to note in figure 4.8, is the extremely high discrepancy between
data obtained in the laboratory and the prediction from OSLO. From the
reference point at z = 0mm, to the minimum at which the IIP is located,
there is little to no agreement. First after the minimum, the two data sets
seem to agree on the width of the ring. The discrepancy can perhaps be
explained by the following: First, the diffraction pattern in the shape of
secondary rings, are only visible right up to the point where we have the
IIP located. At the IIP and beyond, i.e. the last data points in figure 4.8,
the diffraction pattern ceases to exist, and we are left with a faint blurry
outer ring shown in figure 4.4. Now, since this diffraction phenomenon
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does not appear on the spot diagram in OSLO at all due to the nature of
geometrical optics, the way of determining the width of the ring from the
spot diagram, might not be comparable with the data obtained in the
laboratory. However, it is remarkable that the two data sets tend to agree
after the IIP, where no clear diffraction pattern exists. Another thing to
note is the width, predicted by OSLO at the IIP, which is on the order of a
few µm. This is highly idealized and cannot really be compared to what is
seen in the laboratory. To make a real comparison between the laboratory
data and the width predicted by OSLO, one would need to include the
corresponding resolution limit and not just rely on the geometrical optics
prediction.

By using the same images taken to produce what is seen in figure 4.8,
the diameter of the ring can be extracted as well, to study how it changes
as a function of z-distance for the 200mm setup. The result can be seen
in figure 4.9. It appears that the diameter of the ring is not constant
over a distance of 140mm. This means, that the ring beam cannot be
considered fully collimated. It was mentioned in the previous chapter in
Sec. 3.2.1, that the distance between the first axicon and the achromatic
lens (S3) had an influence on the collimation of the ring beam. This poses
the question of whether the correct distance was used in the laboratory.
Since we have what appears to be a converging ring beam, an increase of
the distance S3 could possibly give a less converging ring beam.

4.2 Box potential at the image plane

So far, the generated repulsive hollow beam was characterized at the IIP,
where the diameter of the ring is on the order of millimeters. Such a
trap is far too large to capture the amount of potassium atoms that are
present in a typical experiment in the MIX laboratory. In [11] the size
of the BEC is on the order of 50−65µm after a time of flight period of
18ms depending on the desired scattering length, thus a trap dimension
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Figure 4.9: Diameter of the ring as a function of z-distance for the 200mm
setup. Across a distance of approximately 140mm the ring diameter will
change from 3.75mm to 2.89mm. The gray shaded area indicates the
position of the IIP based on the minimum in figure 4.8.

equivalent to that of [13] should suffice, i.e. a length of 70µm and a
diameter of dring,IP = 35µm. Furthermore, in order to fully characterize
the optical dipole trap and its ability to confine the 39K atoms, a camera
calibration is needed, before an estimate of the trap depth in real units
can be given.

The section is structured as follows. First a description of the camera
calibration. Then a presentation of the different imaging systems, that
were tested in the laboratory, used to achieve the diameter of dring,IP, is
provided. Finally, an estimate of the trap depth for the 200mm-setup is
given, based on the camera calibration and the demagnification of the
imaging system.
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4.2.1 Camera Calibration

Up until now, the depth of the generated ring potential was characterized
by the camera’s pixel values. However, a pixel value is not very telling,
so a conversion is needed in order to get units, which are actual dipole
potential depths that the atoms perceive e.g. in units of trapping temper-
ature. To do this conversion, a camera calibration is needed. The relation
between the total number of pixel count values and power is given by

Ctot = P · texp ·α, (4.1)

where Ctot is the total number of pixel count values, i.e. the sum of each
pixel’s value. P is the power measured by a power meter after the optical
fiber. The exposure time of the camera is texp, corresponding to the time
the CMOS sensor is open for collecting photons. Finally, we have the
conversion factor α, whose units will be in pixel values per Joule, and
constitutes the factor we are looking for. The calibration was done, using
a captured picture of the beam just after the out-coupler lens, seen on
the left in figure 4.10.

To get the best possible calibration, the intensity of the beam is set
such that the camera is not saturated. If a camera calibration is made
with a saturated image, the pixels that are saturated do not yield the true
pixel value and the calibration will be incorrect. This can be prevented
either by turning down the power of the laser, or by dumping some of the
intensity by using the PBS-waveplate configuration as shown in figure 3.4.
The latter option is, without doubt, the best way since the laser operates
in a steady state at the maximum current, and thus intensity fluctuations
can be prevented. The number of pixels as a function of pixel values can
be plotted in a histogram, shown on the right in figure 4.10. With the
histogram at hand, the Ctot value in equation (4.1) can be found by taking
the sum over all pixels. All the known factors can then be inserted in
equation (4.1) and solved for α which yields α= 2.3612×1016 PV/J where
PV stands for pixel value. The α factor is all that is needed, to use the
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Figure 4.10: Left: Captured image of the Gaussian beam right after the
out-coupler lens. Small impurities due to dust particles on the camera
chip can be seen. This calibration image was taken with an exposure
time of texp = 0.1978×10−3 s and a power measured by the power meter
of P = 2.5µW. Right: Histogram showing the pixel distribution of the
calibration image. It is of no surprise, that the majority of the pixels have
a low pixel value since the beam only covers part of the CMOS chip. Also
note, that no pixel value of 255 is present, meaning that the image was
non-saturated.

camera as a power meter, which is the first step in order to get a real
estimate of the generated dipole potential. To test whether our camera
calibration works as intended, several images were taken where the power
obtained from the camera was extracted and compared with the power
meter, which ideally should be the same. The result can be seen in figure
4.11.
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Data

Identity function

Figure 4.11: A plot showing the power obtained from the camera with the
use of α, as a function of power measured by a power meter. The identity
function is also plotted.

4.2.2 Imaging System

The ring-shaped intensity distribution can be imaged onto the atom
sample by various optical setups.

The simplest way would be an imaging system consisting of two lenses
which constitutes a Keplerian telescope. The telescope should then be
orientated, such that the objective, i.e. the lens with the longest focal
length f1, is placed close to the IIP. The objective will then focus the col-
limated ring beam to an intermediary focus point at a distance f1. The
second lens, often called the eyepiece, is placed exactly at its correspond-
ing focal length f2 away from f1, such that the separation between the
two lenses is f1+ f2, creating what is called an afocal system, i.e. a system
without focus and where no net convergence or divergence of the beam
occurs. The magnification, or rather demagnification of the beam in this
case, at the image plane (IP) will then be given by the simple formula
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M = f2
f1

. One of the issues that arise with such an imaging setup, is the
limitation on the magnification. For instance, if we take the diameter
of the ring in the 200mm setup obtained in figure 4.4, which yielded
dring,IIP = 3.033mm, the required demagnification would be about an 80-
fold to get the diameter of dring,IP. To construct a Keplerian telescope with
this magnification power, would not be feasible in practice due to both
aberration and diffraction effects. A setup with a 10-fold demagnification
was tested in the laboratory for understanding purposes. It was realized
by using an objective with f1 = 400mm, and an eyepiece of f2 = 40mm.
Unfortunately, it was challenging to do any data-analysis and ring char-
acterization, due to the relatively large pixel size of the IDS camera. A
visualization of this issue is provided in figure 4.12. Both panels show
a color image of the ring through two different imaging systems. The
one on the left shows the ring through the Keplerian telescope system.
Although the ring is captured in the vicinity of the image plane, it is clear,
that the image is suffering from pixelation. The ring to the right in fig-
ure 4.12 is taken after a telescope-microscope configuration that will be
described now.

A more sophisticated method of imaging would be to use a micro-
scope objective in combination with a telescope. A proper microscope
objective would make it possible to reach the 80-fold demagnification
with reduced aberration and diffraction effects. Different in-house mi-
croscope objectives were tested during this project, and in particular
one from ZEISS with an NA = 0.25 and a focal length of fM,obj = 16.5mm
was of interest. With the known focal length of the microscope object-
ive, the required effective focal length (EFL) of the telescope must be
ftele,EFL = 1320mm, to reach the 80-fold demagnification. OSLO was
used to find the necessary lens combination, that gives this specific
EFL, while making sure that the ring diameter after the telescope did
not exceed the entrance pupil diameter of the microscope objective,
which is given by Ø = 2 ·NA · fM,obj = 8.25mm. These requirements were
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4. CYLINDRICAL BOX CHARACTERIZATION

Figure 4.12: Left: Color image of the ring for the 200mm setup through the
Keplerian telescope with a 10-fold demagnification. Right: Color image
of the ring for the 200mm setup through the telescope - microscope
configuration yielding a demagnification of 80. Note that this image is
not taken at the image plane and therefore an out-of-focus ring is seen.

met by an achromatic doublet, with ftele,1 = 125mm together with an-
other achromatic doublet with ftele,2 = 400mm separated by a distance
of 479mm from each other on the optical axis. After the beam paves
through the microscope objective, an image appears in the vicinity of the
focal plane of the objective. It is however unavoidable to have variations
in the diameter of the ring across the trap length since the beam first
converges and then diverges after the focal point. A sketch of the trap
shape can be seen in figure 4.13, where it is obvious that the trap is not
a perfect cylinder but resembles that of a conical frustum. In the right
panel of figure 4.12 a resolvable color image of the ring captured after the
focal point of the microscope objective can be seen.

Although the ring characteristics cannot be investigated just by pla-
cing the camera at the IP, the diameter variation across the trap can be
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4.2. Box potential at the image plane

10
x/
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Figure 4.13: A ring beam enters the microscope objective and is imaged
onto the atom sample. The inset shows the expected shape of the trap
near the image plane with trapped atoms in it (orange dots).

estimated, by assuming that the ring beam expands linearly after the focal
point. Measurements of the diameter of the ring at different z-positions,
where the ring can be resolved, can be used to determine the divergence
of the ring, and thus give an idea of the diameter variation along the
trap. The linear fit yielded a slope equal to a = 0.4789(17), hence for a
trap length of 70µm the diameter of the ring will vary up to 33.5µm. This
means we can expect almost a doubling of the diameter from one to the
other end of the trap, with this type of microscope objective and imaging
system.

4.2.3 Trap depth

To convert the units in figure 4.5 into units of trapping temperature, a
few more steps need to be taken: First, the intensity in the equation of
the dipole potential (2.26), can be found by converting the pixel values
to a power, and then divided with the area of one pixel which is Apixel =
(5.3µm)2. Secondly, the relevant transition frequency that is needed in
order to calculate the depth of the dipole potential, is given in appendix
B figure B.1 for 39K. Since we are using a laser with a detuning far greater
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4. CYLINDRICAL BOX CHARACTERIZATION

than the fine-structure splitting of the P-state, we can treat the system as
a simple two-level system with an S → P transition and take the transition
frequency to be the mean value of the D1 and D2 line. We are now in a
position where we can calculate the trap depth at the IIP. However, what
is really interesting is the trap depth at the image plane where the atoms
are located. Unfortunately, as mentioned earlier, the camera resolution
is not high enough to resolve the ring at an 80-fold demagnification.
Furthermore, the camera pixels tend to get saturated if a laser power
above 3µW is used in the 200mm-setup. Two assumptions must be made
to work around these issues. We can use the image taken at the IIP, and
simply assume that we can apply an 80-fold demagnification to this image
without losing any intensity. This means, we can divide the values we
have on the x-axis in figure 4.5 with 80, and multiply the intensity with
a factor of 802. In [13] they report that the total laser light reaching the
atoms has a power of 700mW. If we assume that our laser can provide
similar power, we can scale up the power with a factor of 700mW/3µW.
The resulting trap depth is presented in figure 4.14, with a 20-degree
polynomial fit.

If we were to take this potential depth for granted, a trap depth of
150µK would be more than enough to confine the atoms. This would
make evaporative cooling highly suitable by lowering the intensity of the
laser beam, thus letting the hottest atoms escape the trap and effectively
cooling the remaining potassium atoms.

The 20-degree polynomial fit made in figure 4.14, can now be used to
model the potential that the atoms feel. By inserting it into GPELab, we
can simulate how the expected atom density distribution looks like. The
scattering length is set to a = 100a0, and the characteristic trap length
is Ltrap = 1µm. The result can be seen in figure 4.15 for different atom
numbers in the trap, together with a plot of the trapping potential based
on the fit from figure 4.14. Note that the GP Eq. (2.9) was rewritten, such
that it is dimensionless, before it is defined in GPELab. That is why no
units appear on the vertical axis on the plot of the trapping potential.
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4.2. Box potential at the image plane

Figure 4.14: Trap depth profile of the 200mm-setup based on the cut
shown in figure 4.4. Two assumptions have been made to produce this
figure: A demagnification of 80, and a laser power of 700mW. A polyno-
mial fit of degree 20 is fitted to the values in between the two inner peaks
of the potential.

The characteristic plateaus of constant atom densities can be seen for
atom numbers higher than N = 103. Due to the finite steepness of our
potential, the atom density distribution shows longer wings, and thus
longer healing lengths compared to the ideal box potential presented
back in figure 2.2.

63



4. CYLINDRICAL BOX CHARACTERIZATION

N = 10
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Figure 4.15: GPELab simulations of N -particles in a potential based on the
20-degree polynomial fit in figure 4.14. The resulting trapping potential
defined in GPELab is also shown.
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5
CONCLUSION AND OUTLOOK

Within this thesis, the construction and characterization of a repulsive
ring beam has been presented, with the intention of realizing an optical
dipole trap for investigating impurity dynamics of ultracold gases.

At the beginning of my work (September 2020), I spend some time
trying to get familiar with the experimental apparatus in MIX-lab used
to produce 87Rb and 39K BECs. My work then continued in a separate
laboratory where the ultimate goal was to build an optical system that
could deliver a hollow repulsive light beam, and thus realize a blue de-
tuned box potential for the atoms in MIX-lab. This was achieved in two
different setups. First, a lens configuration inspired by the setup in [15]
was realized and named the 400mm setup. Due to poor performance
and large diffraction effects, another setup was designed based on results
from ray tracing simulations. When it comes to diffraction and aberration
effects, the new self-designed system called the 200mm setup showed
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promising results both in the laboratory and in simulations. The primary
evaluation criterion for a repulsive optical dipole trap is the steepness
of the walls when a cross-sectional cut is made. The 200mm setup yiel-
ded a wall intensity that followed a power law given by I (x) ∝ x60.3(34),
thus greatly exceeding what was achieved with the 400mm setup, i.e.
I (x) ∝ x14.91(32). Beside steep walls, one of the main merits of the two
setups was the absent residual light within the ring potential, and thus
not requiring an opaque mask. This allowed for an easy diameter change
of the ring by simply varying the position of the last axicon. Furthermore,
the setups also proved to be extremely power efficient since the major-
ity of the intensity was distributed to the inner ring, and no power was
dumped into an aperture stop. This became clear when the trap depth of
the 200mm setup was presented, yielding a trap depth of approximately
150µK at a total laser power of 700mW. Unfortunately, due to the resolu-
tion limitations of the camera, it was not possible to obtain the real trap
depth through the imaging system, thus assumptions had to be made in
order to calculate the trap depth at the image plane.

5.1 Outlook

Based on the results presented in this thesis, there are still a few things
that need to be addressed before the final repulsive optical dipole trap
can be implemented.

One of the main concerns regarding the imaging system, whose task
is to take the image of the ring at the intermediate image plane and
project it onto the atoms, is the resulting trap shape. A conical frustum
with a diameter difference of 2 from one end to the other is not ideal.
This could possibly be solved by substituting the microscope objective
with an objective of longer focal length, since this would help to reduce
the divergence of the ring after the focal point. Small variations in the
diameter across the trap will however be inevitable using this type of
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imaging system.
In addition to the radial cylinder-shaped trap that was presented,

sharp end cap walls are also needed to confine the atoms in the axial
direction. One way to create these end caps could be by using a spatial
light modulator [13], which shapes the incoming Gaussian beam and
produces two outgoing sheet beams deflected in different directions, and
then redirected onto the atoms orthogonal to the cylinder-shaped beam.

Finally, a proper laser with the capability of delivering high enough
power to yield the necessary trap depth is also on the list of future imple-
mentations. This should however be relatively straightforward to realize
since an AzurLight laser (10W of 532nm) is already bought and ready to
use.

To summarize, the results presented in this thesis open up for in-
triguing opportunities to study quantum impurities without being limited
by broadening effects caused by inhomogeneous atom density distribu-
tions.
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Appendix A

Surface data spreadsheet

The surface data spreadsheet for the 200mm and 400mm setup in OSLO.
All units are in millimeters.

Figure A.1: Surface data for the 200mm setup
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Figure A.2: Surface data for the 400mm setup
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Appendix B

Energy diagram of Potassium-39

Figure B.1: An energy level diagram of the 4S → 4P D lines of 39K. Both the
fine structure- and hyperfine structure splitting are depicted. Reprinted
from [38].
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