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| Abstract

Lasers are widely used in physics laboratories for e.q. cooling atoms and
manipulating atoms. To isolate these lasers from their applications, to improve
beam quality and to deliver the light where it is needed they are often placed
separately. Often the laser beam is at some point coupled into an optical fibre
such that the laser beam is transported to where it is needed. The coupling
into an optical fibre can be a difficult and tedious work when the coupling
efficiency needs to be high. Over time the coupling efficiency drops due to
e.g. temperature changes in the mirrors used to couple the laser beam into the
optical fibre. This leads to the need for recouple the laser beam often which
takes time. This process can be automated if motors are installed on the mirror
mounts. There already exist commercial solutions to install motors on the
mirror mounts however, the high price of these solutions does not allow them
to be installed when many fibres are required. This thesis provide a much
cheaper solution to the problem of coupling the laser beam into the optical
fibre and maintaining a high coupling efficiency.

Within this thesis I present my realization of an automated kinematic
mirror mount where the mirror mount is designed and 3D printed. The mirror
mount uses cheap step motors which are controlled by software that I have
developed through my work.

First, I present the different mirror mount designs that I have developed
and tested through my work. I argue that two of my designs can be used for
realizing an automated kinematic mirror mount whereas the last designs have
issues that do not make them sufficiently reliable in the present state.

Secondly, I present the two algorithms that I have designed such that the
automated kinematic mirror mounts are able to couple the laser beam into the
optical fibre with a high efficiency and then maintain the high efficiency over
time. This is achieved with two different algorithms that are programmed
on an ”Arduino” microcontroller which controls the mirror mounts. I also
developed an interface to make it easy to control the mirror mounts manually
and activate the two algorithms when needed without the use of a computer.

Finally, I present the testing of the two algorithms and the results from
these. The results shows that the algorithms are able to achieve a high coupling
efficiency in most of the cases and that the efficiency can be maintained over a
longer period than if the algorithm was not activated.






| Resumé

Lasere bruges meget udbredt i fysiklaboratorier til fx at kele og manipulere
atomer. For atisolere laserne fra deres eksperimenter, for at forbedre kvaliteten
og for at kunne levere laserstrdlen, hvor den skal bruges er laseren ofte placeret
seperat. Ofte bliver laserne pa et tidspunkt koblet ind i en optisk fiber sa
laserstralen transporteres derhen, hvor den skal anvendes. Koblingen ind i
den optiske fiber kan veere et sveert og besveerligt arbejde, nar der skal opnds
en hoj koblingseffektivitet. Over tid falder koblingseffektiviteten pa grund
af fx temperaturaendringer i spejlene, der bruges til at koble laserstralen ind
i fiberen. Dette medforer, at laserstralen skal rekobles ofte hvilket tager tid.
Denne proces kan automatiseres, hvis der installeres motorer pd spejlene. Der
findes allerede kommercielle losninger, hvor motorer installeres pa spejlene,
men den hgje pris pa disse lesninger gor at det ikke er muligt at anvende, nar
der kraeves mange optiske fibre. Denne afthandling kommer med en meget
billigere losning pd, hvordan koblingen af laserstralen ind i en optisk fiber
kan automatiseres og derefter bibeholde en hej koblingseffektivitet.

I denne afhandling praesenterer jeg min realisation af en automatiseret
kinematisk spejlholder, hvor spejlholderen er designet og 3D printet. Spejl-
holderen bruger billige stepmotorer, som styres af software jeg har udviklet
under mit arbejde.

Forst preesenterer jeg de forskellige design af spejlholdere, som jeg har
udviklet og testet under mit arbejde. Jeg argumenterer for, at to af mine
designs kan bruges til at realisere en automatiseret kinematiske spejlholder,
hvorimod de sidste designs har problemer, som gor at de ikke er tilstraekkelige
stabile i deres nuveerende tilstand.

Derncest praesenterer jeg de to algoritmer, som jeg har designet sadan, at
den automatiserede kinematiske spejlholder kan koble laserstralen ind i den
optiske fiber med en hgj effektivitet og dernaest bibeholder den hgje intensitet
over tid. Dette opnds med to forskellige algoritmer, som er programmeret pa
Arduinoen, der styrer spejlholderne. Jeg har ogsa udviklet en brugerflade,
for at gore det nemmere at styre spejlholderne manuelt og aktivere de to
algoritmer, nar det er nedvendigt, uden brug af en computer.

Til sidst preesenterer jeg testene af de to algoritmer og resultaterne fra
disse. Resultaterne viser at algoritmerne kan opnd en hgj koblingseffektivitet
i de fleste tilfeelde og at effektiviteten kan bibeholdes over leengere tid end,
hvis algoritmen ikke var aktiveret.
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1 | Introduction

The realization of the laser in 1960 by Theodore H. Maiman led to new ways
of doing experiments and unlocked numerous possibilities to examine new
theories. Along with the development of optical elements to control the laser
beam, the laser has been used extensively in experimental setups and the
optical elements are necessary such that the laser beam can be manipulated in
any way scientists wants to do. Laser beams are both useful and powerful and
therefore they can be very dangerous to work with. Therefore, in these cases
an optical fibre to transport the laser beam, to where it is needed, is desirable.
This leads to the complication of coupling the laser beam into the optical fibre.
The coupling is very sensitive to misalignment in both angle and position as
shown by Wagner and Tomlinson in 1981 [1]. To control this there is a need
for using mirrors to secure that the laser beam couples into the optical fibre.

In the past decade 3D printing technology has advanced to be a fast and
cheap technique to use when developing new instruments, which has made
the research in the field of laser physics more available to the communities
in the developing world [2]. With the increase in precision in 3D printing it
has got the interest of scientists because it allows for easy and quick access
to develop and testing new designs or even print spare parts [3]. This has
allowed for the development for making scientific instruments like colorime-
ters [4], smartphone spectrometers [5] and syringe pumps [6] available to a
wider audience. It has also triggered a development in 3D printed optome-
chanical elements with an on-line database of files available [7]. When a part
is needed the file can be downloaded and printed thus saving time waiting on
commercial parts being delivered.

Scientists in laser laboratories have been interested in developing 3D
printed optical translation stages, optical choppers [7], polarimeters [8] and
kinematic mirror mounts [9]. Zhang et al. (2013) have designed and 3D
printed a variety of optomechanical components and finds that they have
good performance and they have a cost save of 83 % to 99 % as compared to
their commercial counterparts. In recent years the precision in 3D printing
has made it possible to use 3D parts when working with ultra cold quantum
gases [10], where an atom chamber is developed. Also the precision along
with high costs have led to the interest in developing a cheap Arduino-based
automated kinematic mirror mount based on existing commercial kinematic
mirror mounts [11].

The Ultracold Quantum Gases group uses lasers and mirrors to cool and
manipulate atoms in all their experiments and a typical experiment involve
hundreds of mirrors thus 3D printing offers cost and time saving for the group.
The group prepares lasers on one table and transfers the beams through optical
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fibres to where they are needed which means the group spends lots of time
coupling lasers into optical fibres.

This project aims to develop a 3D printed automated kinematic mirror
mount based on the previous work of R.Norup who was a former bachelor
student in the group working on developing 3D printed kinematic mirror
mounts [12]. The project should develop an automated kinematic mirror
mount that can be used for optimising the coupling of a laser beam into an
optical fibre and maintain a high coupling efficiency over time. Scientists in
the group often need to realign the coupling and therefore this project will
free up time and show that it can be done at a low cost as compared to the
commercial systems.

The thesis is structured as follows:

e In chapter 2 the experimental apparatus and the setup for this project is
explained.

e Chapter 3 describes the development of the various versions of the
3D printed models for the automated kinematic mirror mounts. This
includes measures of basic performance and difficulties.

o Chapter 4 explains the development of the necessary software for mak-
ing the automated kinematic mirror mount with the desired abilities.
This include the development of programs in both the LabVIEW and
Arduino software.

o Chapter 5 describes the experiments made with the automated kine-
matic mirror mount to investigate the ability to achieve high coupling
efficiency and maintaining it, and the results are presented and dis-
cussed.

¢ A conclusion of my work developing the automated kinematic mirror
mount is given in chapter 6 along with an outlook.



2 | Experimental setup

The work done towards this thesis was carried out in the preparation lab of
the Ultracold Quantum Gases group where all the needed equipment was
already set up including a functioning laser system that could provide the
needed beam. Therefore, the aim of this chapter is to give an introduction to
the equipment used and an explanation of the laser system.

The chapter is structured as the following. First, a presentation and an
explanation of the existing laser system that provided the laser beam for
the work done towards this thesis is presented in section 2.1. Subsequently,
the optical components used to manipulate the laser beam are described in
section 2.2. Then the isolator and the issues with it are described in section 2.3.
Finally, the experimental setup used for the work of this thesis is described in
section 2.4.

2.1 Laser

The laser beam needed in this project was delivered from an existing laser
setup that delivers laser beams for three different experimental setups via
optical fibres. The laser is based on a commercial laser diode that is optically
stabilized by feedback from a diffraction grating like the system described by
Ricci et al. (1995) [13]. The laser was built by Henrik Kjeer Andersen in his
bachelor thesis [14] within the group and the schematics of the mechanical
setup is shown in fig. 2.1.

A diode laser is a semiconductor with a p-n junction in which a laser beam
is formed. By applying voltage across the laser diode recombination between
electrons and holes is allowed which results in emitting a photon. This photon
can cause stimulated emission and if the diode is designed properly the gain,
when the photons travels around inside the diode, will be greater than the
losses due to absorption and incomplete reflection. If the gain is greater than
the loss, then the diode starts to lase. The geometry of the optical cavity that
surrounds the gain region determines the properties of the laser diode. Many
diode lasers have an optical cavity that supports lasing in multi-mode to
ensure high power output. If the diode laser is connected to an external cavity
new features are possible. The external cavity can reduce the linewidth of the
laser, tune the wavelength and be used for mode locking.

The diode laser used to build the laser shown in fig. 2.1 was a 785nm,
90mW, @5.6 mm diode laser from Thorlabs. This diode laser operates at a
wavelength in the interval A = 775nm — 795nm at a temperature of T =
25°C.
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Figure 2.1: Schematics of the mechanical setup of the grating-stabilized diode
laser system. The laser was previously designed in the Aarhus group by H.K.
Andersen. The figure is from the bachelor thesis [14] and the details of the
numbers can be found there.

The grating in fig. 2.1 and the rear back of the diode laser forms an external
cavity that is optically coupled to the laser diode cavity. The grating is used
to single out the desired operating wavelength of the laser system and make
the linewidth narrower. The grating is placed in an external cavity Littrow
configuration. The diffraction from a grating is given by:

d (sin6; —sinb,,) = mA (2.1)

Here d is the diffraction constant, 6; is the angle of the incident beam and 6, is
the angle of the m’th order reflected beam. The grating is placed such that the
zeroth order is coupled out at an angle of 90° as compared to the incoming
beam giving 6; + 0y ~ 90. The first order reflected beam is used as feedback
into the diode laser which led to §; = —6;. Then according to eq. (2.1) to get a
wavelength of A ~ 780 nm a diffraction constant of d = 135 is chosen.

The temperature poses as a threat to get stabilized laser operation since
temperature fluctuations will result in cavity length fluctuations, which then
will lead to changes in operating wavelength. That is why a temperature
control system was developed to keep the temperature constant [14].

The outcome of the described laser system is a 780 nm laser beam that can
be used for experiments. This laser beam is then manipulated with different
optical components and then coupled into three different optical fibres. Some
of these optical components will be described in the following section.



2.2 Optical components

Mirrors

To be able to control the laser beam it is necessary to use mirrors. It takes two
mirrors to control the four degrees of freedom (x, y, 6x, 6, ), that a propagating
laser beam has. The mirrors used are dielectric mirrors made for a wavelength
of 780 nm.

Dielectric mirrors consist of multiple thin layers of dielectric material,
see fig. 2.2. If the type and thickness of the layers are chosen carefully the
mirror will have a reflectivity of R > 99 % for specific wavelengths. The
functioning of the mirrors is based on the interference of light reflected from
the different layers of dielectric material with different refractive index. The
law of reflection is:

0; =6, (2.2)

Where 6; and 0, are the angle of the incoming and reflected beam. Since the
laser beam is also transmitted and this happens in a different media Snell’s
law gives the relationship between the angle of the incoming and transmitted
beam.

nq sin6; = n; sin 6; (2.3)

The electric field of a laser beam can far from the source be described as plane
waves, where the field is given by

(7,t) = Eze/(F7-<1) (2.4)

i

For a dielectric material the reflection coefficients for s- and p-polarized light
can be calculated from the Fresnel equations [15] giving;:

ny cos 6; — ny cos b,

11 cos 0; + np cos 0;
Ny cos 6; — nqy cos b;

ry = (2.5)
1, cos 0; + nq cos 0;

The thickness of the different layers are chosen to optimise the reflectivity thus
giving such a high performance. This is done to make sure that the reflected
beams are in phase when interfering with each other. This is achieved by
having the path length differences for reflections from different high index
layers being equal to an integer multiple of the wavelength wanted. The
thickness of the low index layers should ensure that the path length difference
for reflections from different low index layers is equal to half a wavelength.
This is only half a wavelength since reflections from a low-to-high boundary
suffer a 180° phase shift compared to reflections from high-to-low boundaries
which can be seen from from eq. (2.5). So the path length difference of half a
wavelength ensures that the beams are in phase when interfering.
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Figure 2.2: Schematics of how the dielectric mirrors work.

Sampler

Another optical component that is based on the Fresnel reflection and is used
in this experiment is the optical sampler. The ones used are from Thorlabs with
fused silica substrate. The sampler is made such that it only reflects a small
portion of the laser beam by taking advantage of eq. (2.5) and eq. (2.3). By
using these two formulas and calculating the reflectivity for different incident
angles, 6;, one can see how the optic sampler reflects at different angles. The
calculations are done with #; = 1 and 1, = 1.4585 which represents air and
silica, and the results are shown in fig. 2.3.

From the results shown in fig. 2.3 it is easy to see that for an incident angle
of 45° less than 10 % of the laser beam will be reflected by the sampler. This
allows for selecting a small sample of the beam and use it for other things.

Optical fibre

To transport the laser beam to the experiment used in this project an optical
fibre is used. Optical fibres offers a good way to transport the laser beam to
where it is needed without posing a danger to the scientists working in the
laboratory. The optical fibre used in this project is a single-mode polarizing
maintaining optical fibre from Thorlabs.
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Figure 2.3: Calculations of the reflectivity of the sampler from Thorlabs for
different incident angles.

Coupling into optical fibres always exhibits loss due to aberrations and
misalignment [1] and therefore one will always loose some of the laser beam
in the progress. Linear and angular misalignment leads to rapid losses in
coupling efficiency as shown in fig. 2.4 which is from Tomlinson et al. (1981) [1].
The results shown in fig. 2.4 clearly shows that the coupling of a laser beam
into an optical fibre is a sensitive task since the efficiency rapidly decrease
with both linear and angular misalignment. This shows the premise for the
work done in this project and why this can be important work.

2.3 Optical isolator

The last optical component described here is the optical isolator which is a
component that only allows transmission of light in one direction. This is used
to prevent unwanted feedback into the laser, which would give rise to noise
in the signal because it would interfere with the feedback system explained in
section 2.1.

The isolators used in this project are polarization dependent isolators
which works by utilizing the Faraday effect. The Faraday effect is an inter-
action between light and the magnetic field in a medium which causes the
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Figure 2.4: How the coupling efficiency of an optical fibre decrease with (a)
linear defocus and (b) angular misalignment. The figure is from Tomlinson
et al. (1981) [1]. ¢ in both figures represents the mismatch between the sizes
of the laser beam and the optical fibre. W5y represents wave-front aberra-
tions occurring from focal shift and field curvature. AX'/h, represents the
lateral shift of the laser beam distribution occurring when there is an angular
misalignment.

polarization of the light to rotate. This happens because left and right hand
circular polarized light propagates with slightly different speeds in certain
media. Linear polarized light can be decomposed in those two components,
thus it is always relevant to look at these components. So the phase shift
between these components resulting from the different speeds gives rise to
a rotation of polarization. The angle of rotation that the light experiences is
given by:

g =VBd (2.6)

Where S is the angle of rotation, V is the Verdet constant which is a property
of the material, B is the magnetic field and d is the length of the medium.
The polarizing dependent isolator is build up of three different parts; an
input polarizer, a Farady rotator and an output polarizer. The input polarizer
makes sure that incoming light is polarized vertically (chosen for simplicity).
The Faraday rotator is a medium that rotates the polarization as described
above. The length and material of the rotator are chosen such that the po-
larization of the light is rotated 45°. The output polarizer is placed with its
transmission axis with an angle of 45° with the vertical axis, thus ensuring that
the forward going light is transmitted. This means that if light is coming back
into the isolator the output polarizer ensures that the polarization is at 45°.
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Figure 2.5: The experimental setup for testing and doing experiments with
the automated kinematic mirror mounts.
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Then the rotator rotates the polarization 45° more, such that the polarization
is now horizontal. So when the backward going light hits the input polarizer
none of the light is transmitted through. This way the isolator ensures that no
feedback is coming through.

2.4 The final setup

The experimental setup for testing and developing the motorized mirror
mounts and algorithms is presented in fig. 2.5. The setup is designed such
that the laser arrives from an optical fibre to two commercial mirror mounts
before arriving at the two automated kinematic mirror mounts. Then it
is sent through an optical fibre before reaching a photo sensor. The two
commercial mirror mounts are used to control the laser beam before the
automated kinematic mirror mounts and the photo sensor works as the source
for feedback to the automated kinematic mirror mounts.

During the work of this project there were a lot of noise on the laser signal
and it was first late in the process that we were able to find the source of this
noise. We found that there were some back reflection from the optical fibres
which went back into the laser causing noise on the signal. So to try and fix
this we changed the isolator in the existing laser setup, because it was not
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Figure 2.6: Two different measurements which show the improvement made
to reduce the noise in the signal.

doing a perfect job securing that no light got back into the laser and disturbing
the signal. This helped a little but there were still some noise. Since it was not
completely clear were this remaining noise came from I tried to work around
this by installing an optical sampler and an extra photo sensor in my setup
which is shown in fig. 2.5. As explained in section 2.2 the sampler reflects
only a small portion of the laser beam into the photo sensor. By doing this
I'was able to correct the fluctuations measured on the second photo sensor
for fluctuations in the laser beam coming into my setup. This was achieved
by dividing the two signals measured. The reduction in the signal noise due
to these improvements is shown in fig. 2.6 which shows two measurements
taken at different times in the process.

The desire for the implementation of the automated kinematic mirror
mounts led to the use of an Arduino as will be explained in chapter 4. This
enabled the automation of the mirror mounts without having a computer allo-
cated to this purpose. The motors on the mirror mounts came with ULN2003
driver boards which made the motors easy to control. The driver boards took
each four digital inputs, which in total gave a requirement for at least 16 digital
outputs on the Arduino. There was also a need for digital outputs to control
different buttons, so the requirement was at least 20 digital outputs. To ensure
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Figure 2.7: How the Arduino was connected to the automated kinematic
mirror mounts through the ULN2033 driver boards.

good conditions for the algorithms the Arduino needs to have an "Analog
to Digital Converter’ (ADC) with sufficient bits such that the resolution is
high enough. These requirements led to the choice of using an Arduino Mega
which has 54 digital outputs and a 10-bit ADC with a working range of 0-5V
which gives a power resolution of ~ 4.9mV. The Arduino is connected to the
automated kinematic mirror mounts through the driver boards as shown in
fig. 2.7.






3 Automated kinematic
mirror mounts

This chapter starts with giving an overview of the process of 3D printing. In
section 3.1 the prototype developed by former bachelor student R. Norup is
described, tested and further developed. In section 3.2 the first new design
developed in this project is described and various tests are performed to
investigate its performance. This leads to the design of a new type of an
automated kinematic mirror mount in section 3.3. Finally, this chapter is
concluded in section 3.4 with the description of the automated mirror box
which is the dream design in this project.

The automated kinematic mirror mounts developed in this project was 3D-
printed using a MakerBot Replicator 2 3D printer. It uses the Fused Filament
Fabrication (FFF) method where a long plastic filament, 1.75 mm in diameter,
is fed through a nozzle with a motor. This small system is called the extruder
and it is preheated to 250 °C before it is able to print models. The extruder
is connected to rods which are driven by motors such that the extruder can
move only in the horizontal plane. The model is printed on a base plated that
is able to move up and down. The basic idea is that the extruder liquefy the
plastic and prints a layer on the base plate. When one layer is finished the
base plate is lowered and the extruder now prints a new layer. In this way the
model is built up from below one layer at a time.

The 3D models are designed in a computer-aided design (CAD) program.
CAD programs are vector based design tools that allow one to make 3D
objects from 2D sketches. There exist many different CAD programs but in
this project the Autodesk Inventor was used. To create a 3D object one first
draws a 2D sketch from geometric shapes and then extrudes or rotates the
sketch into a 3D obejct. The object can then be modified in various ways
to look exactly like wanted. After the model is finished it is converted to
a format that the MakerBot printer understands using the MakerBot Print
software. Finally this file is transferred to the 3D printer using a SD card. As a
default the MakerBot Print software converts solid objects into a shell with a
honeycomb structure inside it to save both weight, plastic and printing time.
The size of the hexagons can be changed or removed in the program. In this
project the default setting in the program was used. The material used in this
project was polylactic acid (PLA) which is a type of plastic.

13
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Figure 3.1: The first version of a automated kinematic mirror mount developed
by Rasmus Norup [12].

3.1 Prototype mirror mount

The starting point for my work in developing 3D-printed mirror mounts was
the previous work of a former bachelor student in the group. In his bachelor
project he developed a prototype [12] for a 3D-printed automated kinematic
mirror mount using two motors to control the position of the mirror. This
design was used as a first version for my work and it is shown in fig. 3.1.

The screws and bushings chosen are ones where the screw travels in the
bushing when turned. Thus this automated kinematic mirror mount have the
motors hanging on small metal rods so that they are able to move back and
forth as the screw travels in and out when the motors are turned. The motors
are attached to the screws with some simple adaptors which can be seen in
fig. 3.2. The small hole in the adaptor makes it possible to put in a small screw
to tighten the grip on the screw that adjust the mirror.

Since the mount was printed in PLA it is possible to mount the mirror
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Figure 3.2: The adaptor to the motors such that they are able to turn the screws
and thereby changing the position of the mirror.
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Figure 3.3: The hysteresis for the first version of the automated kinematic
mirror mount. (a) The hysteresis in the x-direction for the horizontal motor.
(b) The hysteresis in the y-direction for the vertical motor.

between two plates of PLA without scratching the mirror. To hold the mirror
tight three M4 nuts and bolts are used as seen in fig. 3.6. The mirror is then
attached on the front of the mount with two springes holding it in place.

I started with testing this prototype to find areas of improvement. The
first thing I examined was the hysteresis when using the motors to change the
position of the mirror. This was done by sending a laser beam onto the mirror
on the automated kinematic mirror mount and then onto a CCD camera with
a laser beam profiler program such that I was able to measure the laser beam’s
position on the camera. By turning the motor two steps, measuring the beam
position and continuing this for both directions on the motor the hysteresis
was measured as shown in fig. 3.3. The errorbars on the data points represent
the statistical uncertainty with one ¢ significance level. which was found
by measuring the beam position on the camera 10 times without changing
anything in between the measurements.

As seen in fig. 3.3 there was hysteresis when using the automated kine-
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matic mirror mount. Additionally, in fig. 3.3a it seemed like there was also a
risk of having plastic deformation since the curve did not come back on itself.
These issues were a difficulty when writing the optimising software.

During the initial testing and use of this automated kinematic mirror
mount I observed a lot of noise on the signal through the optical fibre that was
largest when the motors were changing direction. This led to the thought that
the motors were maybe not fastened tightly enough to the mirror mount so
that movement of the motor led to vibrations in the whole mount which then
led to noise on the signal. If the motors were touched one could easily feel
that the metal rods and the attachment holes in the motors did not fit exactly
which allowed the motors to move a little sideways especially when changing
direction. One way to fix this could be to glue the motors to the metal rods
such that there was not any movement but that could potentially give rise to
another problem since the screws travel when turned. To investigate if this
would be a problem a test to see the step sensitivity of the fibre were made.
This was done by finding the mirror position which gave maximum power
through the fibre and then turning one of the motors in one direction few
steps at a time and measure the power through the fibre to see how quickly
the power fell off. This was done for both motors with a distance between the
mirror and fibre of (27.5 & 0.5) cm and the result can be seen in fig. 3.4. These
results shows that there was no need to use more than around 30 steps in each
direction for each motor. There is a slight asymmetry between the two axis
which did not matter much to this project. So to see if these results indicated a
problem to the solution of gluing the motors to the metal rods, one needed to
know how far the screw would travel when the motor went from one extreme
to the other. The screws used in the prototype had 100 threads/inch and the
way the program rotates the 28BY]J-48 stepper motors, that are used here,
gives the motors 512 steps/rev. It is possible to have higher resolution since
one step in the program consists of eight steps where voltage is put on the
different coils inside the motor. By doing it this why it is assured that the state
of the coils is the same before and after the program has made a step. This
means that the screw travels (0.50 & 0.04) pm/step. To have a small buffer in
the system there should be room for the screw to travel 50 pm which is not
much. Within the motor itself the shaft can go in and out a little and the screw
can travel within the motor adaptor so this should not be an issue.

Based on these measurements, it was decided to glue the motors to the
metal rods. This removed a lot of the noise from the signal but also meant that
the motors could not come off the mount again and be reused for something
else. Because all this happened so early in the process of developing designs
I did not take any data to show the noise or the improvement of gluing the
motors since the focus was on getting the automated kinematic mirror mount
to work properly.

During use of this version of the automated kinematic mirror mount the
plastic around the pivot point suffered too high pressure and broke as seen in
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Figure 3.4: The step sensitivity of the fibre with a distance between the mirror
and fibre of (27.5£0.5) cm

fig. 3.5a. This issue was fixed by ensuring that the density of plastic in this
area was increased. This was done by making small holes in the model which
makes the printer use more plastic in the area, see fig. 3.5b. I did a small test to
see how much pressure the area was able to take in the new form. The small
metal ball that was used as the pivot point was placed as when the mirror
mount was assembled. Then heavy lead bricks were placed upon the ball.
After experiencing the force from (33 + 2) kg the plastic was still intact and
the test was stopped. The force that the pivot point experienced from two
fully extended springs were ~ 10N [12] which corresponds to the force from
~ 1kg. This was much less than what the new design could suffice.

3.2 Second version of the automated kinematic mirror
mount

Since the motors were glued to the metal rods to minimize vibrations from the
motors and were no longer able to move back and forth there were no good
arguments for not trying to make the mirror mount better.

There were several considerations to take into account when designing
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Figure 3.5: (a) Place where the plastic broke around the pivot point and (b)
CAD drawing illustrating how this issue was fixed by ensuring higher density
of plastic in the area.

the new automated kinematic mirror mount. First, it needed to be small so it
could fit into an experimental setup. Second, it should give a good angular
resolution when turning the mirror. Third, the motors should be able to move
with the screw when turning but be limited to other movements. Fourth, it
should endure the force applied by the springs.

The mirror plates along with the length of the screws used and the length
of the motors limited the minimal size of the whole mount. The distance
between the front and back plates of the mirror mount should be great enough
to enable the screw to get in the bushing. Since the front plate has a certain
thickness it was necessary to develop an adaptor to the motor such that it
could rotate the screw. The 3D design drawings of the required parts can be
seen in fig. 3.6a and an assembly of the finished mirror mount is shown in
fig. 3.6b.

As pivot point a small metal ball was located on a washer in the big hole of
the front plate seen in fig. 3.6a. To get a high angular resolution as compared
with the size of an optical fibre the screws were placed far enough from the
pivot point to achieve this.

Since the screws travel as they are turned the design should take this into
account. The way this is achieved is two fold. The back plate which hold
the motors is thin enough to bend a little which enable the motors to follow
the screws as they travel. Furthermore, the adaptor to the motor gives the
screw the possibility to slide back and forth while turning. These two features
ensured that the screws can travel as they are turned in the required range.
The motors are fastened by bolts and nuts to the back plate to limit other
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Figure 3.6: (a) Engineering drawing and (b) The printed and assembled
version of the second version of the automated kinematic mirror mount.

movements than the required ones.

The screws that were used in this design were taken from old ‘Radiant
Dyes’ mirror mounts and have 100 threads/inch. To ensure that the screws
can be adjusted when the springs are fully extended the motors need to apply
a torque of at least 33 mN m [12]. To meet this requirement 28BYJ-48 stepper
motors were chosen. They apply a torque of 34.3 mN m. These motors have
512 steps/rev which in this design results in a minimal step size of 3.42”. One
downside of choosing these motors is the fact that they loose steps when
switching direction [12]. This means that when the motor is rotating in one
direction and the direction is reversed it takes a few steps before the motor
is actually rotating again. This had to be compensated for when designing
software.

Now that a smaller automated kinematic mirror mount was designed it
needed to be tested to see if it worked. The first test made was to measure
the hysteresis of this new design and compare it with the old. The hysteresis
was measured the same way as described in section 3.1 and the results are
shown in fig. 3.7. The hysteresis measurements showed that the hysteresis
was worse for the new design than for the prototype and it was worst when
using the vertical motor but this design was considerably smaller than the
prototype and it was now possible to disassemble and reuse the motors. It
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Figure 3.7: Comparison of the hysteresis for the two current mirror mount
designs. (a) The hysteresis in the x-direction for the horizontal motor for the
two designs. (b)The hysteresis in the y-direction for the vertical motor for the
two designs.

0.1 0.15
~ 008 —_
£ £ o1
E oo £
c &
0.05
2 o4 9
2 2
& oz g o
x x
0
2 2 005
o -0.02 =
Q jo]
01
¥ 5o o
p ERER
0.06 01

5
-30 -20 -10 0 10 20 30 -50 40 -30 20 -10 0 10 20 30 40 50

Motor position (Steps) Motor position (Steps)

(@) (b)

Figure 3.8: Comparison the hysteresis in the x-direction for the horizontal
motor when turning the motor different amounts in the different directions.
In (a) the motor is only turned 30 steps in each direction whereas in (b) the
motor is turned 50 steps in each direction.

was then worth testing how the hysteresis looked like if the motors were not
turned as much. Therefore the test was repeated with the motors not turned
so far in each direction. The results are shown in fig. 3.8. If the motors are
limited to move around 30 steps in each direction the hysteresis is nice and
there are not any plastic deformations. This gives a limit which had to be
taken into account when the software was developed. With this in mind it was
reasonable to continue working with this version of the automated kinematic
mirror mount.
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Figure 3.9: Temperature dependence of the mirror position for the automated
kinematic mirror mount when it is heated and the cooled back down.

To further test the performance of the automated kinematic mirror mount it
was interesting to see how well it handled temperature changes to understand
how important a factor that would be when using the mount in a experimental
setup. In particular, since PLA is a soft material compared to metal it was
reasonable to expect a higher temperature dependence. To test this the mount
was placed inside a small-home made oven which was made by the former
bachelor student that had being working on this project [12]. The oven had
two small holes for the incoming and outgoing laser beam. The outgoing
laser beam was directed onto a CCD camera with a beam profiling program.
In this way it was possible to measure the movement of the beam when the
temperature changed which could be translated to changes in the mirror
position.

Figure 3.9 shows that the angular change in the mirror position was large
for even small temperature changes. As the temperature rose beyond ~
36 °C the angular temperature dependence became even greater and it did
not recover its original position when cooled back down. This indicates
that there was some sort of temperature hysteresis as well. These results
points to the importance of having a stable temperature when using this
automated kinematic mirror mount in experimental setups. If compared with
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Figure 3.10: The power trace measured by the Arduino through the optical
fibre by a first simple program for finding a maximum.

the results of temperature dependence measurements of a Thorlabs KM100
mirror mounts [12], the dependence found in fig. 3.9 were much greater.

To test if this version was able to actually optimise the incoupling of a
laser beam into an optical fibre a simple program was developed and used as
a test. The program scan a motor for a maximum power through the fibre and
stops near it and then does the same for the second motor. The result of this
small test is shown in fig. 3.10 where it is seen that it was possible to make
this simple optimisation. This showed that it was worth it to continue with
development of software with more advanced optimisation schemes.

3.3 Automated vertical mirror mount

Because the second version of the automated kinematic mirror mount is still
large compared with commercial mirrors it was interesting to see if it could
be made even smaller and maybe even as small as the commercial ones. Then
it would really be of great interest to use in many optics laboratories. To make
a new version of the automated kinematic mirror mount that was in about the
same size as the commercial kinematic mirrors brought up difficulties because
the motors themselves takes up a lot of space. In developing what I call
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Figure 3.11: The backplate of the plates holding the mirror for the automated
vertical mirror mount.

the automated vertical mirror mount I looked at commercial vertical mirror
mounts and got inspiration from them. If the screws can be placed vertically
and the motors attached on top, which is above the normal mirror height,
they do not take up space on the optics tables. That was the starting point
for developing the automated vertical mirror mount. To place the screws in a
vertical position means that they can not push directly on the mirror holder so
another solution had to be developed. The solution chosen for this problem
was to have the screws push a ball down a slide that is placed on the backplate
of the mirror. The slides on the backplate can be seen in fig. 3.11.

To design the rest of the mount was relatively simple when the decision
on how to change the mirror position was made. The design is made such
that the mirror is attached in the same way as the previous models. The big
difference to this model is that there needs to be some holes where the metal
balls can lie and where the slides on the backplate go in. This resulted in the
design shown in fig. 3.12.

To assemble the mirror mount the metal balls are placed in the two holes
and then the bushings and the screws are inserted in the two holes on top.
Then the mirror is attached with two springs and the motors are attached to
the screws. To avoid that motors and not the screws turn when applying the
program a device to hold the motors together was designed. The idea was to
make some new small adaptors for the motors and then a small plate holding
both motors such that when one motor was turning the other motor ensures
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Figure 3.12: The design of the first version of the automated vertical mirror
mount.

that it was the screw that was rotating. Figure 3.13 shows the adaptor and the
plate holding the motors in place.

When doing some initial test I observed that the hysteresis was worse
than the previous models, it experienced plastic deformation, and when the
screws travelled up and down the plate holding the motors twisted causing
changes and vibrations of the whole mount. This was most noticeable when
the motors reversed the direction of rotation.

To really see how the automated vertical mirror mount performed the
hysteresis was measured in the same way as previously done with just a small
change. For the vertical mount one step of the motor results in a smaller
adjustment of the mirror than for the other models, and the range used in
measuring the hysteresis was increased accordingly. The difference in range
arise because for the vertical mount the screw does not push directly to the
mirror, so a smaller travel of the screw results in an even smaller adjustment
of the mirror, while there is a 1 : 1 relationship for the other designs. The
results of the hysteresis measurements are shown in fig. 3.14 where it is clear
that the hysteresis is worse if compared with fig. 3.7. The results also indicated
that there was plastic deformation when using the automated vertical mirror
mount. This constitutes an even bigger challenge if it is used for optimisation.

To try and fix the problem of the movement and vibrations caused by
the plate holding the motors a new version of the automated vertical mirror
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Figure 3.13: (a) Motor adaptor. (b) The plate holding the motors in place for
the automated vertical mirror mount.
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Figure 3.14: The hysteresis for the first version of the automated vertical mirror
mount where (a) is the hysteresis in the x-direction for the horizontal motor
and (b) is the hysteresis in the y-direction for the vertical motor.
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Figure 3.15: The design of the second version of the automated vertical mirror
mount.

mount was developed. This version is seen in fig. 3.15 where the difference
from the previous version is the pole on top of the mount. The idea with this
pole is to create some stabilization to the plate.

Unfortunately the changes to the automated vertical mirror mount did not
have the desired effect. The plate holding the motors still twists and moves
causing difficulties. This led to the conclusion that the motors somehow needs
to be fastened better and probably to the mount itself to give the best possible
stability and reduce the movement of the motors. So the design had to be
rethought and redesigned to somehow attach the motors to the mount. This
was achieved by building up three pillars on top of the existing mount and
then create a small add on to fasten the motors. The need for the add on was
due to the way the mount was printed, so it was easier to develop this than
make some really difficult changes to the mount. If the add on should be
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Figure 3.16: (a) The add on to the mirror mount to hold the motors in place
and (b) the assembled third version of the automated vertical mirror mount.

an integrated part of the mount the 3D printer would have needed to built
up support to make it possible. The add on to hold the motors in place and
an assembled version of the automated vertical mirror mount are shown in
fig. 3.16.

To test how well this third version of the automated vertical mirror mount
performed the hysteresis was measured to see how difficult a task it would be
to use this mount for optimisation and the results are shown in fig. 3.17. It is
clear that some improvements have been made compared to the hysteresis
found in fig. 3.14. In particular, the plastic deformation is not observed.

To further test this version of the automated vertical mirror mount it was
used for an optimisation like the one in section 3.2. Since only one of these
mounts were printed it was used in combination with one of the previous
models, which were not a vertical mirror mount design. The power trace
through the optical fibre for this simple optimisation is shown in fig. 3.18
where the data shows that the automated vertical mirror mount has had
difficulties getting high power. Especially if one looks at the peak after around
5s where the power is much lower than for the peak before and after. This
could very well be explained by the large hysteresis shown in fig. 3.17 which
means that the mirror could not trace back the way it already had gone and
therefore never reached as high power as before. This points to the difficulty
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Figure 3.17: Hysteresis for the third version of the automated vertical mirror
mount where (a) is the hysteresis in the x-direction for the horizontal motor
and (b) is the hysteresis in the y-direction for the vertical motor.

in using this mount further on. During the tests it was seen that the automated
vertical mirror mount failed more than half the times it tried to do the simple
optimisation. Additionally, the power could drop dramatically when the
motors changed direction of rotation which was likely caused by vibration
of the motor. The reason why it is more clear for the vertical version of the
automated kinematic mirror mount is probably because of the design. The
vertical version is thinner and probably more unstable and since the motors
are on top and vibrating it affects the whole mount more than for the other
models. This led to the conclusion that the automated vertical mirror mount
was not reliable enough in this state to continue with in the rest of the project.
Since there was not enough time to further develop the idea of the automated
vertical mirror mount no more versions were further developed.

The best working model to continue with in this project turned out to be
the one from section 3.2 and was the one that was used in the remainder of
the project.

3.4 Automated mirror box

As a small side project when waiting for the different mounts to be printed or
when there were problems with the laser a new model was designed that was
hoped to be a final dream version of this project. The idea is to have a small
box containing two mirrors inside. With two holes one can send the laser
beam into the box and then it comes out aligned on the other side. This way it
is possible to make the optimisation setup compact and aesthetic. The box was
designed around the same time as the first version of the automated vertical
mirror mount so it took its design from that version which later was shown to
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Figure 3.18: The power trace measured by the Arduino through the optical
fibre by a first simple program for finding a maximum using one vertical
mount and one regular mount.

be sub-optimal for been automatised. A printed and nearly assembled version
of the automated mirror box is shown in fig. 3.19. On top of this box four
motors were supposed to be attached and do the optimisation, but as shown
in section 3.3 that has proven difficult to achieve. Manually one are able to
use the mirrors nicely but it was never tried to use it for optimisation since it
did not work for the automated vertical mirror mount. Still this shows that it
is possible to 3D print a compact setup containing two mirrors that does not
takes up significantly more space than commercial mirrors.
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Figure 3.19: The first version of a compact double-mirror mount. It is a small
box with two mirrors that can be used for optimisation.



4 | Controlling software and
hardware

This chapter starts with a brief introduction to why the algorithms needed in
this project were developed. The chapter then continues in section 4.1.1 with
the development of the first algorithm using the LabVIEW language and an
experiment to use as proof of concept. This leads to the programming on the
Arduino in section 4.1.2. The algorithms are described in detail in section 4.2
and section 4.3. Finally, section 4.4 explains the interface developed for this
project including the design of the menu structure.

To secure a high fibre coupling efficiency in an experimental setup there is
a need for two algorithms. First, there is a need for an algorithm which starts
out with low power through the optical fibre and then optimises the fibre
coupling efficiency. This algorithm do the job of beam walking. Second, an
algorithm to maintain a high fibre coupling efficiency over time is preferable.
This algorithm needs to be activated when the power through the fibre falls
below some desired value and then optimises the fibre coupling until an
acceptable value is reached. Since this project aims to fabricate automated
kinematic mirror mounts there is a need for developing controlling software.
This software should control all the possible variables for the kinematic mirror
mounts. Also the software needs to have all the desired functions that is
wanted for the automated kinematic mirror mount. Within the group a lot of
the existing software is developed in LabVIEW and because this is already
widely used, this was the starting point for me to develop the software for the
automated kinematic mirror mount. Since I had no previous experience in
programming in LabVIEW I had to start from scratch.

4.1 Programming

41.1 Labview

LabVIEW is a platform for designing systems using a visual programming
language which is named “G” [16]. Normally LabVIEW is used for data
acquisition, instrumental control and automation which is exactly what I need
to do. The programming language, "G”, is based on data availability and is
dataflow programming, which means that if enough data is available for the
functions they will execute and the execution flows through the program as the
data needed is becoming available. LabVIEW uses graphical programming
where functions, data structures etc. have a pictorial representation. To
program in this language is to drag and drop the pictures of the things needed

31
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Figure 4.1: How programming in LabVIEW looks like.

and then connect the different parts by drawing wires between them. The
wires represent the dataflow between the different parts of the program. This
means that data is only available to a function if there is a wire connected
which transfers the needed data from a previous section in the program. To
better understand how this look see fig. 4.1. A not too detailed explanation of
what is shown on fig. 4.1 comes here: The small program shown on fig. 4.1
rotates a motor five steps while measuring the power for each step. After
the five steps the program takes the average of the measured power and
then compares this power to the previous highest measured power. It then
remembers the one that is highest. This small program is one of the basic
parts of making a beam walk algorithm, because this small part will work
as a scanning program that scans the motor for finding the highest possible
power through the fibre. A more detailed explanation of how the beam walk
algorithm is achieved in LabVIEW will follow in section 4.1.1.

One of the benefits of using LabVIEW is that it is intuitively to use when
using it for the first time. Another benefit is that when programming you
automatically develop an interface to control the program which ease the
controlling of the software. As seen from fig. 4.2 the interface can consist of
different indicators where parameters can be set and results are shown. Also
the interface can include graphical representation of desired data. The white
displays on the left in fig. 4.2 are the inputs one must give the program to
be able to run and this is also where different parameters can be changed.
The grey displays will show the chosen results when the program is finished
and also the data chosen for a graphical representation will be shown. It is
not possible to follow the development of the program on the screen while
it is running. A downside of programming in LabVIEW is that when the
programs get more complicated than the one shown in fig. 4.1, then it gets
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Figure 4.2: How the interface in LabVIEW looks like.

complicated to follow what is going on. This also makes maintenance and
further development more difficult. As an example look at fig. 4.3.

Proof of concept

To prove that it is possible to make automated kinematic mirror mounts
that can optimise the coupling into an optical fibre I started writing a first
simple version of a beam walk algorithm. Since this is what the project is
all about, this needs to be possible to continue with the work. The first
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hurdle to write a beam walk algorithm was to figure out a way to find the
maximum power through the fibre. The solution chosen in this project is
based on the assumption that there has to be some power through the fibre
before the algorithm starts. Another assumption is that the program does
not know anything about where the maximum is or how it looks. These
assumption were made because the program should be as basic as possible to
hopefully work in as many situations as possible and also the program needed
something to start with, such that it did not search in the dark which could
take forever. A criteria for the program is that it should be fast and not use
much more time than a human will. With these assumptions and criteria the
program was started to be written. As mentioned above, the first hurdle was
to find a maximum. The solution based on the above assumptions is to chose a
motor and let it rotate in one direction while measuring the power through the
fibre. For simplicity let us make it specific. First, the horizontal motor rotates
left for a given amount of steps while measuring the power and remembering
the highest one. Then, the motor starts turning right for a number of steps,
that are twice the steps it turned left while still measuring the power and
remembering the highest measured power. This is done because there is the
assumption that the program does not know where the maximum is, so it has
to scan in both directions to be sure that it at some point passes the maximum.
When this scanning left and right is finished the program is to the right of
the maximum, which make it relatively easy to write the part of the program,
that make the program stop at the maximum. I write relatively easy because
this proved to be more difficult than expected. To stop at the maximum, the
program needs to turn the motor left and stop near the already measured
maximum value. This is where the difficulties start. Because how close should
the program come to the maximum before it stops? Since this is a program to
make a proof of concept test the chosen limit is 95 %. As shown in chapter 3
the automated kinematic mirror mounts have hysteresis which proved, a
problem which sat a limit on how high the stopping limit can be put. It was
observed many times that when the program tried to stop near the maximum
it did not reach high enough power to come above the stopping limit. That is
why a limit of 95 % is chosen. This gives a high chance of succeeding. These
experiments are done with the first version of the prototype of the automated
kinematic mirror mount shown in section 3.1 and there are a lot of noise on the
signal though the fibre. To make it a little smoother the program was changed
such that the motor rotated 5 steps and averaging the power. This gives a less
noisy signal but it also reduces the resolution of the power measurements. In
the end it gave better results.

Now the program can take a motor and find the position with maximum
power through the fibre, so to complete the beam walk algorithm, the other
mirror has to be ‘'walked’. The final version of the beam walk algorithm is
shown in fig. 4.3. The first part of the final program is optimising both motors
on the second mirror as described above. The second part is that it starts with



35

sty il
3
T S S

Figure 4.3: Beam walk algorithm in the LabVIEW language.

Forste speil Max Value LeftRight MaxValue Up/Down
o | 011230 o113
Current value after Lef/Right Current value after Up/Down

dste pell
eid e 010742 0106445

[ comz

S limit LefyRight

g Finalvalue Time elspsed in milseconds
% lmit Up/Dovin 015 osaist

Finding maximum Left/Right Piot0 B | optimizin g Left/Right again _Pioto Y
011 o125+
o1

g oa15-|

01
40m
2o £ on]

<007 5

006: 01+

005 0095

6 o5 i 15 2 25 3 o o3 o5 o 1 1k 15
Time Time

Finding maximum Up/Down Plot0 B | optimizing Up/Down again Ploto EAM
011+ 0126~

0124-}

Figure 4.4: Result of the LabVIEW beam walk algorithm where the second
part was done twice.

the horizontal motor on the first mirror and moves 10 steps to the left and
then optimises the horizontal motor on the second mirror. If this yields a
higher value, the motor on the first mirror rotates 10 steps left again. If not,
the motor rotates 10 steps right. This is continued 10 times before the same is
done for the two vertical motors. The limit of 10 times is set to reduce the risk
of the algorithm to fail and also reduce the time it takes. This is done because
the results first appears when the program is finished. The program has the
option to put a number of repeats on the second part of the program to see if
it improves with more attempts. The results of one of the initial experiments
are shown in fig. 4.4 where the second part of the algorithm is repeated twice.

To understand the results shown in fig. 4.4 it is best to look at the graphs.
The two to the left show how the power develops when the horizontal motor
scans left and right in the first part of the algorithm. The next two graphs
show the same but for the vertical motor. The next two graphs show how
the power developes when the motors in the first part tries to stop near the
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maximum. This is shown such that one is able to see how this part of the
process went, which helps pinpointing issues. The two graphs to the far right
are the most interesting ones. These are the ones showing how the beam
walking went. The white curve is for the first run of the second part in the
program and the red is the second run of the second part. The data shown
in these are the maximum measured values for each beam walking step in
the second part, which was moving the first motor and then optimising the
second motor. For the algorithm to succeed, the power should increase for
each step in this progress. Over time there is a small increase in power but the
largest improvement happens between the two runs of the second part. This
can be explained by the lack of decoupling between the axis on the automated
mirror mount, meaning that when turning the horizontal motor it might affect
the vertical position as well. All in all these results clearly proves that it is
possible to make automated kinematic mirror mounts that can optimise the
coupling into an optical fibre.

There were also things that I found very complicated to do. When using
many case-structures such as if- while- and for-loops things got very compli-
cated to navigate in in LabVIEW. In these cases I found that LabVIEW seemd
very rigid to work with and it was difficult to follow the dataflow which
made it very hard to maintain. Another issue with using LabVIEW was that
it was very slow because the runtime environment had to be opened every
time which was a large and slow task. The results shown in fig. 4.4 show
that the program took ~ 16.5 min which is a long time. One final issue that
I found using LabVIEW was that to run the programs, I needed to have a
computer connected to the Arduino that supported the mirror mounts. This
is not a flexible solution, so after taking these things into account I chose to go
in another direction. Since I already used an Arduino for the setup I looked
into how it was possible to write code directly to the Arduino which could be
saved directly on the Arduinos memory.

4.1.2 Arduino programming

The Arduino has 256KB flash memory to store and run code and it uses a
C/C++ based language which make it easy to programme [17]. Since I had
no previous experience in programming in either C og C++ I had to learn a
new programming language and syntax. Both the C and C++ language are
text based programming languages which allows for creating functions and
using logical statements. One of the differences between C and C++ is that in
C++ there is the possibility to write programs as object oriented programming
which enables the creation of classes [18]. This relates to the language of JAVA
which I have a little previous experience in writing. For me to be able to write
programs to the Arduino I had to learn some new stuff but not start from
scratch. To get an idea of how to write functions and see the syntax for the
Arduino code see fig. 4.5.
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-ccursive function to stop near a maximum.

nt maxSteps, maxLimit, float turnLimit, int direction2, int depth) {

for (int t = 0; t < maxSteps; t++) {

move (direction2);
if (Tt > 5) {
currentValue = getInput():
if (currentValue > maxLimit * maxValue) {

if {currentValue < turnLimit * maxValue) {
return stopMaximum (maxSteps, (maxLimit — 0.02), (turnLimit - 0.05), (direction2 * -1), (depth - 1)};

return stopMaximum(maxSteps, (maxLimit - 0.02), (turnLimit - 0.05), (direction2 * -1), (depth - 1)})};

Figure 4.5: Small example from the code written for the Arduino.

Table 4.1: Most basic functions used in creating the Arduino algorithms.

Basic programming functions
move(direction)
getInput()
findMaximum(...)

To develop the two needed algorithms for this project some basic functions
has to be developed, which are the foundation for the algorithms. Those
functions can be seen in table 4.1.

Because it has already been proved that it is possible to make some algo-
rithms that can optimise the coupling into the fibre, this time the algorithms
needs to be more sophisticated. The idea of how to do this in C/C++ is to
create a ‘Motor Class” with the functions mentioned in table 4.1 along with
some other support-functions. This way the functions become simpler and
the functions are encapsulated. One of the benefits of doing it this way is
that the four motors can be created as objects and then easily manipulated
individually.

To describe how the two algorithms work the basic functions need to
be addressed first. The first function gives the ability to move the desired
motor in the chosen direction. The second function tells the Arduino to
measure the power from the photo sensor after the optical fibre. It does
this by measuring the power 100 times with 1 ms delay in between and then
taking the average. This is chosen to compensate for small and fast oscillating
disturbances in the signal and since measuring the power takes on the ps
level it is extremely fast compared with during it in LabVIEW. This allow
the program to maintain the full power and step resolution and still smooth
out the power. The third function is the most complicated of the three and
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is pretty similar to the one described in section 4.1.1 with the same basic
assumptions but there are important differences. This function uses one motor
to find the best possible position for this motor. As shown in fig. 3.8 and
fig. 3.9 the hysteresis and temperature dependence makes this a more difficult
task. As stated before, the motors looses steps when switching direction
of rotation. The function needs to work around these obstacles to be able
to succeed in finding the best position for the motor. There are some basic
assumptions behind this function. First, there has to be a signal through the
fibre such that the function has something to start with. The signal has to have
a sufficiently high signal /noise ratio such that noise does not interfere with
the algorithms ability to perform. Second, the function assume that the motor
is not able to back trace the beam position when switching direction due to the
hysteresis. This together with the loss of steps does that the function cannot
just remember its position for the highest measured value and then returning
to this when it does not find any position that is better. So to overcome
these difficulties the function works like this: First, the motor rotates in one
direction and always stores the highest measured power. It keeps moving
until the power falls below 70 % of the maximum measured value. This is to
save time compared with the version written in LabVIEW. Then, the motor
starts rotating in the other direction while it always measures the power and
checks whether the power is higher than the previous highest measured. It
always remembers the highest power measured. The motor again continues
until the power falls below 70 % of the maximum measured power. Every
time the motor switches direction it does not measure the power for the first
five steps, because when the motor switches direction it causes vibrations
and it looses steps, so this tries to compensates for this and secure that the
program does not get ‘'wrong” measurements that are influenced by too much
noise. Now the program knows how high power it is capable of achieving
and the function now tries to get close to this value. The motor changes
direction again and continues until the power is above 98 % of the maximum
measured power. If this never happens because of hysteresis and the power
starts dropping way below the maximum measured value, the motor changes
direction and try to find the maximum again. But now the requirement to stop
is lowered to 96 %. If it again fails, it changes direction again but now with
94 %. This continues for several tries where the requirement is lowered 2 %
for each time. The requirement is lowered to compensate for the risk that the
hysteresis and deformation makes it impossible to reach the same power as in
the beginning. The way this is written in code can be seen in fig. 4.5 where the
stopMaximum(...) function is the one trying to stop near the maximum. This
is a recursive function that calls itself with lower limits if it fails in stopping
near the maximum. As a parameter it, as an example, takes the first stopping
limit but also how many tries it should maximum use before giving up.
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4.2 Beam walk algorithm

Now that the basic functions are clear the algorithms can be explained. The
BeamWalk algorithm is created to optimise the fibre coupling efficiency by
doing a beam walk like the ones usually performed in laboratories. The
algorithm falls in four stages where in the first stage the algorithm optimises
in the horizontal plane. In the second stage the algorithm optimises in the
vertical plane. These two stages are repeated as stage three and four. Each
stage consist of five steps explained here and shown in fig. 4.6. The first
step is to optimise mirror 2 using the findMaximum(...) function explained
earlier. The maximum value measured when using the function is stored in a
variable called “previousValue’. Then, in the second step mirror 1 is turned
until the power falls below 90 % of the maximum measured value in step
one. In the third step mirror 2 is again optimised using the findMaximum(...)
function. In the fourth step the maximum measured value in step three is
compared against the value stored in previousValue. After the comparison
the maximum value measured in step 3 is now stored in previousValue. Step
five is the most complicated part of the algorithm since it is here the decisions
are made. The decision process is as follows and is also shown in fig. 4.6. If
the maximum measured value in step three was equal to the value stored in
previousValue the algorithm is finished with this stage and continues with the
next stage. If the maximum measured value in step three was higher than the
value stored in previousValue mirror 1 has turned in the correct direction and
the algorithm remembers this by setting a variable called ‘Correct direction’
as true. Then steps 2-5 is repeated. If the maximum measured value in step
three was lower than the value stored in previousValue then two things can
happen. The first thing is if mirror 1 has already turned in the correct direction,
because this means that the algorithm has turned mirror 1 past the optimal
position and therefore the algorithm needs to stop this stage and continue
with the next stage. The second thing is if mirror 1 has not already turned in
the correct direction. Then the direction of rotation is reversed for mirror 1 and
the algorithm has a counter that is counted up once. Then step 2-5 is repeated.
If the counter reaches five the algorithm stops this stage and continues with
the next stage. This is done because the algorithm and mirrors can experience
a situation where the maximum measured value in step three is still lower
than the previous measured maximum value even though mirror 1 is rotated
in the opposite direction. To make sure that the algorithm does not continue
with something that is going in the wrong direction it stops. These situations
occur because of the hysteresis and deformation explained earlier.
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Figure 4.6: The five steps in each stage of the beam walk algorithm.

4.3 Constant power algorithm

The second algorithm developed in this project is called the Constant power
algorithm. This algorithm aims to maintain a high power through the fibre.
To use this algorithm the fibre coupling efficiency already needs to be high
and a certain target value has to be set. The target value is the power the
algorithm should try to maintain within the limits of the algorithm which is
described in the following. When the target value is set and the algorithm
is activated, the algorithm always observe the power through the fibre. If
the power falls below 95 % of the target value the algorithm starts to make
corrections to the mirrors positions. The algorithm does this by optimising
the position of one of the mirrors by using the findMaximum(...) function on
both the horizontal and vertical motor of the mirror. When the chosen mirror
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J/This method tries to maintain-.a high intensity
i constantIntensity()

oolean startCorrection = false;

t startValue = Hl.getInput():

HoHOOR

loat previousValue = startValue;
if (startValue < targetValue * 0.595) {
startCorrection = trus;
while (startCorrection) {
switch (mirrorCount) {

cagse Ul

H2 ., findMaximum {30, 0.7, 0.7):
previousValue = V2.findMaximum (30, 0.7, 0.7):
break;
= -
Hl.findMaximum(30, 0.7, 0.7):
previousValue = V1.findMaximom (30, 0.7, 0.7);

cage

break:

updateMirrorCount () ;
if (previousValue > 0.9& * targetValue) {
startCorrection = false;

Figure 4.7: Code of the "Constant power” algorithm

is optimised the algorithm checks if the power is above 96 %. If this is the
case then the algorithm is finished with making corrections and goes back
to observing the power. If the power is not above 96 % then the algorithm
tries to optimise the other mirror and then checks if it is then good enough.
It continues in this way until the power is above 96 %. The code for this
algorithm is simple and is shown in fig. 4.7.

4.4 Interface

To be able to use the two different algorithms easily, along with the desire to be
able to manually adjust the mirrors as well, there are a need for some kind of
interface to achieve this. For the beam walk algorithm the only thing needed
is some way to activate this algorithm. The constant power algorithm has
greater demands. For this algorithm to work it should be possible to set the
target value, activate the algorithm and deactivate the algorithm. To manually
move the mirrors by using the motors it should be possible to chose in which
direction the motors should turn. To handle all these desires an interface with
a LCD-display along with four buttons (up, down, select and back) will be
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oid inicHenu() (
initMenuElement (émainMenu, menuTypeMenu, "Main menu",
initMenuElement (emainMenu->menuf0], menuTypeMe
initMenuElement {émainMenu->menu[0]->menu[0], menuTypeFunc,

initMenuElement (EmainMenu->menu[l], menulypeMenu, "Const )i
initMenuElement (fmainMenu->menu[l]->menu[0], menuTypeFunc, mainMenu->menu[l], setTargetValue):
initMenuElement (&mainMenu->menu[l]->menu[l], menuTypeFunc, snu[l], activateConstantI):

L >menufl], deactivateConstantI):

initMenuElement (&mainhs >menu[l]->menu[2], menuType
initMenuElement (&mainMent a
inicMenuElement (emainMenu->ment

initMenuElement (&mainMenu->menu[2] nu[2]->menu{0], manualMove);

initMenuElement {&fmainMenu->

initMenuElement (&mainMenu—> ienu [0], menuTyp nu[2]->menn(l], manualMove):

initMenuElement (fmainMenu-—>

menuTypsMenu, "Mot

initMenuElement {smainMenu->menu[2]->mem smenu[0], menuTypeFunc, mainMenu->menu[2]->menu{2], manualMove):

)i
inictMenuElement (cmainMenu->menu[2]->menu[3]->menu[0], menuTypeFunc, "Push Up/Down”, mainMenu->menu[2]->menu[3], manualMove):

initMenuElement {émainMenu->menu[2]->menu[3], menuTypeMenu, "Motor menu[2], N

menuActual = mainMenu;

void printMenu() {

=():

0z

T {menuActual->
(@, 1)

© (menuActual->menu [menuhctual->index]—>n

Figure 4.8: Code that creates the menu and displaying it as described by the
flow diagram in fig. 4.9a.

sufficient. To develop this interface an electronic box containing the Arduino,
driver boards, the electronics and the LCD-display is developed. With the
LCD-display it is possible to develop a menu structure where the buttons
can be used to navigate and select the desired functions. A flow diagram
showing the intended menu structure of all the desired functions are shown
in fig. 4.9a. The way this menu structure is written in code is to use the “struct’
type in C/C++ to create a main menu with three sub menus. Each sub menu
containing different functions to call. The code to create the main manu along
with the sub menus and functions is shown in fig. 4.8 along with the code that
display the menu on the LCD-display.

Inside the electronic box are the Arduino connected to the driver boards
that control the motors, the input of the power through the fibre, the LCD-
display, the four buttons and the power supply. To make all this work there
are some connectors into the electronic box. There is a BNC plug for getting
the power measure available to the Arduino, a 12V power supply, a USB plug
for connecting a computer to the Arduino and four plugs for the motors which
are labelled such that the motors are correctly connected to the Arduino. Most
of this can be seen from fig. 4.9b. Inside the box are also the electronics that
tells the Arduino if a button is pushed and the electronics that ensure power
for the motors and the Arduino.
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Figure 4.9: (a) Flow diagram of the menu structure for the interface and (b)
shows the final electronic box.






5 | Experimental results

This chapter describes how the two algorithms developed in chapter 4 were
tested. First, testing of the beam walk algorithm is described in section 5.1
along with the results of this experiment. Then section 5.2 describes the testing
of the constant power algorithm along with the result from this test.

Now that the automated kinematic mirror mount and the two algorithms
have been developed it was time for them to be tested in an experimental
setup to see if they were capable of optimising the coupling of a laser beam
into an optical fibre and maintain a high coupling efficiency. The experimental
setup was as described in chapter 2 where the second version of the automated
kinematic mirror mount was used as argued in chapter 3.

5.1 Beam walk

To illustrate how the algorithm works fig. 5.1 shows one stage of the beam
walk algorithm. Figure 5.1a shows how the power through the fibre developed
as the motors were turning. Figure 5.1b and fig. 5.1c show the motor position
of the "V1-motor” and "V2-motor’ respectively. The "V1-motor” was turned in
one direction which is then followed by the "V2-motor” finding the maximum
power just as described earlier in section 4.2. To clearly see how the algorithm
works one can see that the first motor changes position while the power drops.
The motor then stops and the second motor starts turning in one direction
until the power reaches a minimum. The motor then reverses direction and
turns while the power rises and falls again until the motor stops. Finally the
motor reverses direction again and continues until the power comes close
to the maximum. This is continued until it stopped at one of the different
possible situations described in section 4.2 ia met.

To test how well the beam walk algorithm performed there was a need
to develop some sort of standard way of testing this. The way this was
done in this experiment was to develop a new algorithm that misaligned in
some 'standard” way such that the results were comparable. The algorithm to
achieve this picked one motor randomly and turned it in a random direction
until the power dropped below 95 % of the initial power. Then the algorithm
picked another motor randomly and turned it in a random direction until the
power dropped below 95 % of the power before that motor started turning.
This was continued until the power dropped below 30 % of the power before
the algorithm started. Thus the mirrors were misaligned in a random way
each time but the power was always below 30 %, so the starting point for
comparing each run of the beam walk algorithm was similar. This was chosen
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Figure 5.1: Single step of the beam walk algorithm along with the motor
positions. (a) How the power developed as the motors were turned and (b)
and (c) show the motor position for the vertical motor on mirror one and two
respectively.

to try to simulate the situations in real experimental setups where a laser
beam is coupled into an optical fibre. As explained in chapter 4 the algorithm
needed enough power so that the signal/noise ratio was high enough and
hence 30 % was chosen. The code for the misalign algorithm is shown in
fig. 5.2.

The way the algorithm was tested was to manually beam walk the laser
beam using the commercial mirrors in the setup until finding the maximum
power. This power was then measured as a reference point for the algorithm
and used to normalize the data. Then the misaligning algorithm was run
before the beam walk algorithm was activated. This was done multiple times
to obtain a large amount of data. The results are shown in fig. 5.3 where each
single run and a histogram of the final intensities are shown. As seen from
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vold misalign{} {
float startValue = Hl.getInput{):
int dir = 1;
thile [(Hl.getInput{) > 0.3 * startValue) {
randomSeed {analogRead (input) ) ;
int mobtor = random{0, <);
int seed = random (0, 2);
if {seed — 0} {
dir = 1;
else {
dir ==~k
misAlignMotor (motor, dir):;
1

Figure 5.2: Code for the misalign algorithm that was used to test the beam
walk algorithm.

fig. 5.3a the algorithm in most cases quickly obtains an power above 80 % and
thereafter the improvement was more slow. The blue lines represents the runs
where the final power was above 90 % and the red ones are the ones where
the final power was below 90 % In most of the cases the intensities increased
to above 90 % but in some cases the intensities dropped below again and did
not recover. In these cases it was most likely deformation or vibrations from
the motors that resulted in the lack of ability to recover intensities above 90 %
again. Figure 5.3b summarizes the final intensities of the runs in fig. 5.3a. It is
clearly shown that in most cases the power was above 90 % and this showed
that the algorithm was capable of securing a high coupling efficiency. In few
cases the power exceeded 100 % but when looking at the data they were less
than 1 % above. This was likely due to the human optimisation that was not
completely optimal or small changes in the power in the system during the
collection of the data. As described in chapter 3 the automated kinematic
mirror mount had problems with hysteresis and deformations and that was
why the tests sometimes failed. This was also the case with the beam walk
algorithm, so the data shown in fig. 5.3 does not indicate all the runs taken. In
around 20 % of the runs the algorithm failed and all signal through the optical
fibre was lost. This often happened when a new motor should start turning
which probably resulted in vibrations and then signal loss. So there is room
for improvement to achieve a higher stability for the algorithm.
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Figure 5.3: Performance of the beam walk algorithm where (a) shows the
single runs and how the power through the fibre developed over time and (b)
shows a histogram over the final intensities of the runs measured.

5.2 Constant power

To test how well the constant power algorithm performed the system was
optimised and then the target value was set. The algorithm was then activated
and the algorithm was adjusted so it checked the power once every minute.
Then the data was recorded for a period of around 18 h. To see if the power had
a different development when the algorithm was not activated, the power was
measured without the algorithm as well. The results of these measurements
are shown in fig. 5.4 where the power developments with and without the
algorithm are shown in fig. 5.4a and a histogram of the measured intensities
in the period where the algorithm was activated is shown in fig. 5.4b. It is
clear from the figures that the algorithm was able to maintain a higher and
more stable power over time since fig. 5.4a clearly shows that the power
decays over time when the algorithm was not activated. The power with the
algorithm activated suffers from large power fluctuations over time which are
probably caused by the temperature fluctuations in the room which as shown
in section 3.2 had an impact on the positioning of the mirrors. From fig. 5.4b it
is clear that with the algorithm activated the power lies above 97 % for most
of the time. The black circle in fig. 5.4a represents the time were the algorithm
made corrections to the mirrors. This was done once during the 18 h and the
correction took ~ 7s. These results show that the algorithm did what it was
intended to do and that it kept the coupling efficiency high while it only took
few seconds to make corrections to the mirrors when necessary.
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Figure 5.4: Ability of the algorithm to retain a certain value.






6 | Conclusion and outlook

The main result within this thesis is the realization of a 3D printed automated
kinematic mirror mount with two different algorithms that are able to first
obtain a high coupling efficiency through an optical fibre and second an
algorithm that maintain a high coupling efficiency over time.

During the work towards this thesis multiple versions of the automated
kinematic mirror mount were developed and chapter 3 presented the design
and performance of the different versions. Chapter 3 also showed that the
first two versions were the ones that were most reliable whereas the vertical
mirror mount suffers too much from hysteresis and plastic deformation to be
used in the optimisation process.

Chapter 4 presented the algorithms to realize the automated kinematic
mirror mount. A proof of concept was written in LabVIEW that showed that
it was possible to automated the coupling into an optical fibre. However, the
process was slow and problematic. The beam walk algorithm took several
minutes and it needed a computer to run the algorithm. This led to the
development of algorithms written directly to the Arduino that supported the
mirror mounts. This reduced the time to around a minute and opened up for a
variety of options. Thus it was possible for me to develop an interface for the
whole system which included a LCD-display that show the menu structure of
the interface.

Finally chapter 5 showed the experiments to test how well the algorithms
worked in an experimental setup. The results showed that the beam walk
algorithm was able to achieve a high coupling efficiency in most of the cases.
However, sometimes the algorithm failed and the power dropped without
that the algorithm was able to correct this. This shows that there is still work
to be done to secure higher reliability. The results for the constant power
algorithm showed that it was able to maintain a high coupling efficiency
over a long period as compared to the situation where the algorithm was not
activated. This was achieved while only small corrections was made by the
algorithm. Since the group often need to realign their coupling into optical
fibres this could save them for some tedious work.

As presented in this thesis there is still a lot of work that can be done
in the future to improve this field. I have presented the idea for a vertical
mirror mount and the idea to create a small box containing two mirrors in a
compact way. These two solutions need some work to reduce the hysteresis
and plastic deformation such that they become more reliable and can be used
for automated coupling. In my opinion this needs to be done if 3D printed
automated mirror mounts should get at place in real experimental setups.

As future work it would be interesting to test the mirror mount solution

51



52

presented by Salazar et al. (2018) [11] with the algorithms developed in this
thesis. Since the solution is based on commercial mirror mounts the hys-
teresis is better and the risk of deformation is minimal. This could lead to
improvements in the algorithms that I have written since they are limited by
the hysteresis and risk of deformation. The use of the automated kinematic
mirror mount presented in this thesis is not limited to coupling into an optical
fibre but can also be used for controlling laser beams positions in other situ-
ations. This is an area that can pursued in future work as well. Thus work
automated kinematic mirror mount could hopefully be more widely used in
experiments since the solution presented in this thesis is much cheaper than
the commercial solutions available.
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A | Appendix

The complete programming code is presented here:

// include the library code:
finclude <LiquidCrystal.h>

// initialize the library by associating any needed LCD interface pin
// with the arduino pin number it is connected to

const int rs = 22, en = 24, d4 = 26, d5 = 27, d6 = 28, d7 = 29;
LiquidCrystal lcd(rs, en, d4, d5, de, d7);

// Define the buttons used
#define downButton 48
#define upButton 49
#define selectButton 47
#define backButton 46

// Define the analog input channel
#define input 0

// Define some menu types
#define menuTypeFunc '
#define menuTypeMenu 'M'

struct menu_s *menuActual;

float targetValue;

float wvalueAfterOptimization;
int motorCount;

boolean activateConstantIntensity;
int direction;

int directionl;

int direction2;

float currentValue;

float maxValueAfterOptimization;
int count;

boolean doBeamWalk;

boolean motorMove;

int mirrorCount;

// Define a Motor class.
class Motor
{
// Class memeber variables
int chal;
int cha2;
int cha3;
int cha4;
int pause;
float maxValue;
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// Constructor
public:
Motor (int pinl, int pin2, int pin3, int pin4, int wait)
{
chal = pinl;
cha2 = pin2;
cha3 = pin3;
chad4 = pin4;
pause = wait;
maxValue = 0;

// Class methods:

// This method moves the motor one step in the specified direction.
void move (int dir)
{
int IN1;
int IN2;
int IN3;
int IN4;
if (dir < 0) {
IN1 = chal;
IN2 = cha2;
IN3 = cha3;
IN4 = chaid;
}
else if (dir > 0) {

IN1 = chad4;
IN2 = cha3;
IN3 = cha2;
IN4 = chal;

}
for (int 1 = 0; 1 < 9; i++) {
switch (1) {
case 0O:

digitalWrite (IN1, LOW
digitalWrite (IN2, LOW
digitalWrite (IN3, LOW
digitalWrite (IN4, HIG
break;

o= ==

case 1:
digitalWrite (IN1, LOW);
digitalWrite (IN2, LOW);
digitalWrite (IN3, HIGH);



}

digitalWrite (IN4,
break;

case 2:
digitalWrite (IN1,
digitalWrite (IN2,
digitalWrite (IN3,
digitalWrite (IN4,
break;

case 3:
digitalWrite (IN1,
digitalWrite (IN2,
digitalWrite (IN3,
digitalWrite (IN4,
break;

case 4:
digitalWrite (IN1,
digitalWrite (INZ2,
digitalWrite (IN3,
digitalWrite (IN4,
break;

case 5:
digitalWrite (IN1,
digitalWrite (IN2,
digitalWrite (IN3,
digitalWrite (IN4,
break;

case 6:
digitalWrite (IN1,
digitalWrite (IN2,
digitalWrite (IN3,
digitalWrite (IN4,
break;

case 7:
digitalWrite (IN1,
digitalWrite (IN2,
digitalWrite (IN3,
digitalWrite (IN4,
break;

default:
digitalWrite (IN1,
digitalWrite (IN2,
digitalWrite (IN3,
digitalWrite (IN4,
break;

delay (pause) ;

HIGH) ;

LOW) ;
LOW) ;
HIGH) ;
LOW) ;

LOW) ;
HIGH) ;
HIGH) ;
LOW) ;

LOW) ;
HIGH) ;
LOW) ;
LOW) ;

HIGH) ;
HIGH) ;
LOW) ;
LOW) ;

HIGH) ;
LOW) ;
LOW) ;
LOW) ;

HIGH) ;
LOW) ;
LOW) ;
HIGH) ;

LOwW
LOwW
Low
LOwW



// This method updates the maxValue if the given value is higher than

the previous.
void updateMaxValue(float value) {
if (value > maxValue) {
maxValue = value;

// This method returns the maxValue obtained
float getMaxValue() {
return maxValue;

// This method reads the analog input averaged over 100 measurements.

float getInput() {

float total = 0;

for (int i = 0; i < 100; i++) {
total += analogRead(input);
delay(1);

}

total /= 100;

return total;

// This method resets the maxValue.
void resetMaxValue () {
maxValue = 0;

// This method is a recursive function to stop near a maximum.

boolean stopMaximum(int maxSteps, float maxLimit, float turnlLimit,

direction2, int depth) {
if (depth == 0) {
return false;
}
for (int t = 0;
if (t < 10) {
delay (20);

t < maxSteps; t++) {

}
move (direction2);
if (£ > 5) |
currentValue = getlInput();
if (currentValue > maxLimit * maxValue) {

int



return true;
}
if (currentValue < turnLimit * maxValue) {

return stopMaximum(maxSteps, (maxLimit - 0.02), (turnLimit - 0
05), (direction2 * =-1), (depth - 1));
}

}
return stopMaximum(maxSteps, (maxLimit - 0.02), (turnLimit - 0.05),
(direction2 * -1), (depth - 1));
}

// This method finds the maximum and stops near it.
float findMaximum(int maxSteps, float leftCutoff, float rightCutoff) {
boolean findMaximum = false;
boolean activatelimit = false;
currentValue = getInput();
updateMaxValue (currentValue) ;

direction2 = -1 * directionl;
for (int i = 0; 1 < maxSteps; i++) {
if (1 < 10) {
delay(20);

}

move (direction2);

currentValue = getlInput();

updateMaxValue (currentValue) ;

if (currentValue < leftCutoff * maxValue) {
break;

}
direction2 *= -1;
for (int 1 = 0;
if (1 < 10) |
delay(20);

i < 2 * maxSteps; i++) {

}

move (direction2);

currentValue = getlInput();

if (currentValue > 0.7 * maxValue) {
updateMaxValue (currentValue) ;
activatelLimit = true;

if (activatelimit) {
if (currentValue < rightCutoff * maxValue) {
break;



}

direction2 *= -1;

if (stopMaximum(maxSteps, 0.98, 0.6, direction2, 8)) {
return currentValue;

}

else {
return 0;

bi

// Create the 4 Motor objects.
Motor H1(37, 36, 35, 34, 3);

Motor V2 (41, 40, 39, 38, 3);
Motor H2 (45, 44, 43, 42, 3);
Motor V1(33, 32, 31, 30, 3);

// Initialize the menu structure
struct menu_s {

struct menu_s *menul4];

int index;

char type;

struct menu_s *menuParrent;

char name[20];

void (*func) ();

bi

// Function to initialize menu elements
void initMenuElement (struct menu s **menu, char type, char* name, struct
menu_s *menuParrent, void*func) {

*menu = malloc(sizeof (struct menu_s));

memset (*menu, 0, sizeof(struct menu_s));

(*menu) ->type = type;

strcpy ( (*menu)->name , name);

(*menu)->index = 0;
(*menu)->menuParrent = menuParrent;
(*menu) ->func = func;

struct menu_s *mainMenu;

// This method optimizes the intensity by doing a beam walk



void beamWalk() {

01

valueAfterOptimization = 0;

float maxValueOptimizing = 0;
float valueOptimizingBefore = 0;
boolean optimize = true;

boolean correctDirection = false;
int count = 0;

int correctCount = 0;

;

Hl.resetMaxValue ()
Vl1.resetMaxValue();
H2.resetMaxValue();
V2.resetMaxValue ()
H2.findMaximum (40, 0.7, 0.7);

maxValueOptimizing = H2.getMaxValue();

;

valueOptimizingBefore = H2.getMaxValue();
while (optimize) {
while (Hl.getInput() > 0.90 * maxValueOptimizing)
Hl.move (directionl);
}
H2.resetMaxValue () ;
H2.findMaximum (40, 0.7, 0.7);
if (H2.getMaxValue() < maxValueOptimizing) {
if (correctDirection) {
if (correctCount > 0) {
optimize = false;

}
if (H2.getMaxValue() < valueOptimizingBefore) {

directionl *= -1;
}
count++;
if (count == 5) {
optimize = false;

}

{

else if (H2.getMaxValue() > 1.01 * maxValueOptimizing) {

maxValueOptimizing = H2.getMaxValue();
}
else if (H2.getMaxValue() > maxValueOptimizing &&
* maxValueOptimizing) {
optimize = true;
maxValueOptimizing = H2.getMaxValue();
}
else 1if (H2.getMaxValue() == maxValueOptimizing) {
optimize = false;

H2.getMaxValue() <=



if (H2.getMaxValue() > valueOptimizingBefore) {
correctDirection = true;
correctCount++;

valueOptimizingBefore = H2.getMaxValue();
}
optimize = true;
correctDirection = false;
count = 0;
correctCount = 0;
V2.resetMaxValue () ;
V2. findMaximum (40, 0.7, 0.7);
valueOptimizingBefore = V2.getMaxValue();
maxValueOptimizing = V2.getMaxValue();
while (optimize) {

while (V1.getInput() > 0.90 * maxValueOptimizing) {

V1.move (directionl);

}

V2.resetMaxValue();

V2.findMaximum (40, 0.7, 0.7);

if (V2.getMaxValue() < maxValueOptimizing) {

if (correctDirection) {
if (correctCount > 0) {
optimize = false;

}
if (V2.getMaxValue() < valueOptimizingBefore) {

directionl *= -1;
}
count++;
if (count == 5) {
optimize = false;

}
else 1if (V2.getMaxValue() > 1.01 * maxValueOptimizing) {
maxValueOptimizing = V2.getMaxValue();
}
else if (V2.getMaxValue() > maxValueOptimizing && V2.getMaxValue() <=
* maxValueOptimizing) {
optimize = true;
maxValueOptimizing = V2.getMaxValue();
}
else if (V2.getMaxValue() == maxValueOptimizing) {
optimize = false;
}
if (V2.getMaxValue() > valueOptimizingBefore) {



correctDirection = true;
correctCount++;
}
valueOptimizingBefore = V2.getMaxValue();
}
optimize = true;
correctDirection = false;
count = 0;
correctCount = 0;
H2.resetMaxValue();
H2.findMaximum (40, 0.7, 0.7);
valueOptimizingBefore = H2.getMaxValue();
maxValueOptimizing = H2.getMaxValue();
while (optimize) {
while (Hl.getInput() > 0.90 * maxValueOptimizing)
Hl.move (directionl);
}
H2.resetMaxValue();
H2.findMaximum (40, 0.7, 0.7);
if (H2.getMaxValue() < maxValueOptimizing) {
if (correctDirection) {
if (correctCount > 0) {
optimize = false;

}
if (H2.getMaxValue() < valueOptimizingBefore) {

directionl *= -1;
}
count++;
if (count == 5) {
optimize = false;

}

else if (H2.getMaxValue() > 1.01 * maxValueOptimizing)

maxValueOptimizing = H2.getMaxValue();
}

else if (H2.getMaxValue() > maxValueOptimizing && H2.getMaxValue()

01 * maxValueOptimizing) {

optimize = true;
maxValueOptimizing = H2.getMaxValue();

}

else if (H2.getMaxValue() == maxValueOptimizing)
optimize = false;

}

if (H2.getMaxValue() > valueOptimizingBefore) {
correctDirection

true;



01

correctCount++;
}
valueOptimizingBefore

H2.getMaxValue () ;
}
optimize = true;
correctDirection = false;
count = 0;
correctCount = 0;
V2.resetMaxValue () ;
V2.findMaximum (40, 0.7, 0.7);
valueOptimizingBefore = V2.getMaxValue();
maxValueOptimizing = V2.getMaxValue();
while (optimize) {

while (V1.getInput() > 0.90 * maxValueOptimizing)

V1.move (directionl);

}

V2.resetMaxValue();

V2.findMaximum (40, 0.7, 0.7);

if (V2.getMaxValue() < maxValueOptimizing) {

if (correctDirection) {
if (correctCount > 0) {
optimize = false;

}

if (V2.getMaxValue() < valueOptimizingBefore) {
directionl *= -1;

}

count++;

if (count == 5) {
optimize = false;

}

{

else if (V2.getMaxValue() > 1.01 * maxValueOptimizing) {

maxValueOptimizing = V2.getMaxValue();
}

else if (V2.getMaxValue() > maxValueOptimizing && V2.getMaxValue() <=

* maxValueOptimizing) {
optimize = true;
maxValueOptimizing = V2.getMaxValue();
}
else if (V2.getMaxValue() == maxValueOptimizing)
optimize = false;
}
if (V2.getMaxValue() > valueOptimizingBefore) {
correctDirection = true;
correctCount++;



}
valueOptimizingBefore = V2.getMaxValue();

// This method resets the count
void resetCount() {
count = 0;

// This method sets the target value
void setTargetValue() {
targetValue = Hl.getInput() * 0.90;

// This method clears the target value
void clearTargetValue() {
targetValue = 0;

// This method activates the constant intensity function
void activateConstantI() {
activateConstantIntensity = true;

// This method deactivates the constant intensity function
void deactivateConstantI() {
activateConstantIntensity = false;

// This method updates the motor count
void updateMotorCount () {
motorCount = (motorCount + 1) % 4;

// This method updates the mirror count
void updateMirrorCount () {
mirrorCount = (mirrorCount + 1) % 2;

//This method tries to maintain a high intensity
void constantIntensity() {

boolean startCorrection = false;

float startValue = Hl.getInput();

float previousValue = startValue;

if (startValue < targetValue * 0.95) {



startCorrection = true;
while (startCorrection) {
switch (mirrorCount) {
case 0O:
H2.findMaximum (30, 0.7, 0.7);
previousValue = V2.findMaximum(30, 0.7, 0.7);
break;
case 1:
H1.findMaximum(30, 0.7, 0.7);
previousValue = V1.findMaximum(30, 0.7, 0.7);
break;
}
updateMirrorCount () ;
if (previousValue > 0.96 * targetValue) {
startCorrection = false;

// This method enables us to move the laserbeam manually by using 2 button:
for direction

void manuallMove () {

int i = menuActual->menuParrent->index;

int dir = 0;

if (digitalRead(downButton) == HIGH) {
dir = 1;

}

else if (digitalRead(upButton) == HIGH) {
dir = -1;

}

else if (dir == 0) {
return;

}

if (1 == 0) |
Hl.move (dir);

}

else if (1 == 1) {
V2.move (dir);

else if (i == 2) {
H2.move (dir) ;

else if (i == 3) {
V1.move (dir) ;



// This method creates the menu
void initMenu() {
initMenuElement (&mainMenu, menuTypeMenu, "Main menu", NULL, NULL);

initMenuElement (&mainMenu->menu[0], menuTypeMenu, "Beam Walk", mainMenu,
NULL) ;

initMenuElement (¢mainMenu->menu[0]->menu[0], menuTypeFunc, "Activate",
mainMenu->menu[0], beamWalk);

initMenuElement (&émainMenu->menu[l], menuTypeMenu, "ConstantI", mainMenu,
NULL) ;

initMenuElement (&mainMenu->menu[l]->menul[0], menuTypeFunc, "Set target",
mainMenu->menu[l], setTargetValue);

initMenuElement (&mainMenu->menu[l]->menu(l], menuTypeFunc, "Activate",
mainMenu->menu([l], activateConstantI);

initMenuElement (&mainMenu->menu[l]->menul2], menuTypeFunc, "Deactivate",
mainMenu->menu[l], deactivateConstantI);

initMenuElement (&émainMenu->menu(2], menuTypeMenu, "Manual move",
mainMenu, NULL);

initMenuElement (&mainMenu->menu[2]->menu[0], menuTypeMenu, "Motor HI1",
mainMenu->menu[2], NULL);

initMenuElement (&mainMenu->menu([2]->menu([0]->menu[0], menuTypeFunc, "Pus
Up/Down", mainMenu->menu(2]->menu([0], manualMove);

initMenuElement (&mainMenu->menu[2]->menu[l], menuTypeMenu, "Motor V2",
mainMenu->menu[2], NULL);

initMenuElement (&mainMenu->menu(2]->menu[l]->menu(0], menuTypeFunc, "Pus
Up/Down", mainMenu->menu(2]->menu(l], manualMove);

initMenuElement (&mainMenu->menu[2]->menu[2], menuTypeMenu, "Motor H2",
mainMenu->menu[2], NULL);

initMenuElement (&mainMenu->menu(2]->menu(2]->menu[0], menuTypeFunc, "Pus
Up/Down", mainMenu->menu(2]->menu(2], manualMove);

initMenuElement (&mainMenu->menu[2]->menu[3], menuTypeMenu, "Motor V1",
mainMenu->menu[2], NULL);

initMenuElement (&mainMenu->menu(2]->menu(3]->menu[0], menuTypeFunc, "Pus
Up/Down", mainMenu->menu(2]->menu([3], manualMove);

menuActual = mainMenu;

// This method prints the menu to the LCD-display
void printMenu() {
lcd.clear();
lcd.home () ;
lcd.print (menuActual->name) ;
lcd.setCursor (0, 1);
lcd.print (menuActual->menu[menuActual->index]->name) ;



void setup() {
pinMode (30, OUTPUT);

pinMode (31, OUTPUT);
pinMode (32, OUTPUT);
pinMode (33, OUTPUT);
pinMode (34, OUTPUT);
pinMode (35, OUTPUT);
pinMode (36, OUTPUT);
pinMode (37, OUTPUT);
pinMode (38, OUTPUT);
pinMode (39, OUTPUT);
pinMode (40, OUTPUT);
pinMode (41, OUTPUT) ;
pinMode (42, OUTPUT);
pinMode (43, OUTPUT);
pinMode (44, OUTPUT);
pinMode (45, OUTPUT);
pinMode (46, INPUT);
pinMode (47, INPUT);
pinMode (48 INPUT) ;
pinMode (49, INPUT);
initMenu();

// set up the LCD's number of columns and rows:
lcd.begin(l6, 2);

printMenu () ;
Serial.begin(115200);

// Define initial values
targetValue = 0;
activateConstantIntensity = false;
motorCount = 0;

direction = 1

;
directionl = 1;
direction2 = 1;
currentValue = 0;
valueAfterOptimization = 0;
maxValueAfterOptimization = 0;
count = 0;
doBeamWalk = false;
motorMove = false;

mirrorCount = 0;



void loop() {
if (digitalRead(backButton)) {

if (menuActual->menuParrent != NULL) {
menuActual = menuActual->menuParrent;
printMenu() ;
}
}
else if (!strncmp(menuActual->name, "Motor", 5)) {

manualMove () ;
motorMove = true;
}
else if (digitalRead(downButton)) {
do {
menuActual->indesx++;
menuActual->index $= 4;
}
while (menuActual->menu[menulActual->index] == NULL);
printMenu();

else if (digitalRead(upButton)) {
do {
if (--menuActual->index < 0) {
menuActual->index += 4;

}
while (menuActual->menu[menuActual->index] == NULL);
printMenu () ;
}
else if (digitalRead(selectButton)) {
if (menuActual->menu[menuActual->index]->type == menuTypeFunc)
menuActual->menu[menulctual->index]->func();
}
else {
menuActual = menuActual->menu[menuActual->index];
printMenu () ;

}

if (activateConstantIntensity) {
constantIntensity();

}

if (!motorMove) ({
delay(100);

}

motorMove = false;



