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Abstract

The field of ultracold atomic gases provides a new opportunity for the
investigation of the quantum properties of matter. The rapid progress of
both experimental and theoretical research in the past three decades has
facilitated an astonishing insight at the level of few atoms as well as large
ensembles.

This thesis examines the usage of dispersive, magnetically sensitive, op-
tical probing for high resolution detection of the cold atomic clouds. This
minimally destructive online measurement technique is utilized in a feedback
scheme, which can actively stabilize the sample production to the level of
atom shot noise. In addition, experiments with spinor condensates in a one
dimensional vertical optical lattice are presented, where spin changing colli-
sions generating wave packet like excitations with anti-correlated momenta
are observed.

The theoretical part of the thesis considers a proposal for a two-qubit
quantum gate (controlled-NOT) operating on motional degrees of freedom
of atoms trapped in a super-lattice potential. In analogy to the transistor,
the gate controls the flux of one atomic species trough interaction with a
second species of atoms that intermediately occupies the same region in
space. Applying the gate principle to a pair of atomic condensates can yield
an atomtronic device.

Finally, the limits of time evolution of quantum systems are studied
in the theoretical framework of Hilbert space geometry. It is shown that
in order to reach a given target state in the fastest way, the direct Hilbert
velocity has to be optimized, which can be effectively achieved with common
Optimal Control algorithms. Notably, a necessary criterion for convergence
of these algorithms is derived from the time dependence of the direct Hilbert
velocity.
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Resumé

Forskning i ultrakolde kvantegasser har åbnet for nye muligheder for at
undersøge kvanteegenskaberne af stof. De hurtige fremskridt indenfor både
eksperimentel såvel som teoretisk forskning i de sidste tre årtier har medført
en fantastisk indsigt i både systemer med få atomer og såvel som store
samlinger af atomer.

Denne afhandling behandler anvendelsen af dispersiv, magnetisk følsom,
optisk probing til højt-opløst detektion af kolde atomare skyer. Denne mini-
malt destruktive målingsteknik bliver udnyttet til løbende målinger i en
feedback-protokol, der aktivt kan stabilisere produktionen af atomare skyer
til niveauet for den atomare shot støj. I tillæg til dette præsenteres ekspe-
rimenter med spinor-kondensater i endimensionelle optiske gitre, hvor spin-
ændrende kollisioner, der skaber bølgepakker i form af excitationer med
antikorreleret impuls, observeres.

I den teoretiske del af afhandlingen præsenteres et forslag til en 2-qubit
kvante-gate (kontrolleret inverter, CNOT), der opererer på bevægelsesfri-
hedsgraderne af atomer fanget i et supergitter-potentiale. I analogi med
transistoren kontrollerer gaten gennemstrømningen af en type atomer ved
hjælp af vekselvirkninger med en anden type af atomer, der intermediært
optager det samme område i rummet. Anvendelse af gaten på et par af
atomare kondensater kan give et atomtronisk apparat.

Endeligt undersøges grænserne for tidsudviklingen af et kvantesystem
indenfor de teoretiske rammer af Hilbertrum-geometri. Det bliver vist, at for
at opnå en ønsket sluttilstand hurtigst muligt er det nødvendigt at optimere
den direkte Hilbert-hastighed, hvilket kan opnås med almindelige optimal
styrings algoritmer. Værd at bemærke er, at et nødvendigt kriterium for
konvergensen af disse algoritmer bliver udledt ud fra tidsafhængigheden af
den direkte Hilbert-hastighed.
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Preface

The work presented in this thesis was carried out during my PhD studies at the
Institute for Physics and Astronomy at Aarhus University. I have been enrolled
in an experimental project aimed at non-destructive Faraday imaging [1,2] and
spinor dynamics in optical lattices [3]. My focus was on the Faraday project,
whereas my fellow PhD student Poul Lindholm Pedersen focused on the spinor
project. Nevertheless we were working together on both, sometimes in parallel,
sometimes focusing on a single project for a period of time to complete the data
acquisition, evaluation and publications. First part of my thesis presents our most
important experimental results from these two fields.

During my studies I was also involved in theoretical projects which originated
from an extended collaboration with my bachelor thesis supervisor Prof. Tomáš
Opatrný from Palacký University Olomouc in the Czech Republic and Prof. Kunal
K. Das from Kutztown University of Pennsylvania in United States of America.
This work first examined the possibility of utilizing motional eigenstates of trapped
cold atoms as a resource for quantum computation [4], and later analysed the prob-
lem of the quantum speed limit in the framework of Hilbert space geometry [5].
The latter was carried out in collaboration with my supervisors at Aarhus Univer-
sity Prof. Jan Arlt and Prof. Jacob Sherson. These results are presented in the
second part of my thesis.

My work in the Ultracold Quantum Gases Group at Aarhus University started
in January 2011, when I was enrolled as a masters student on a Lindhard Scholar-
ship. At that point the experiment had recently been moved to its present location,
so we had to rebuild it in the new facilities. The first experiments were devoted to
the study of wave packet dynamics in optical lattices, work initiated by Sung Jong
Park and Sune Mai. Together with Poul and another PhD student, Nils Winter,
we extended this work, which led to two publications [6,7]. Since Poul and Nils
described these experiments extensively in their PhD theses, I have not included
them here.

During the time of my scholarship, I had a few months of overlap with Nityanand
Sharma, an Indian masters student, who built a Faraday laser system for measure-
ments on a room temperature rubidium gas cell. I helped with the measurements
and analysis of the Faraday effect and when Nitya left, I took over the Faraday
project. Since the laser system was built on a ‘bread board’, it was possible to place
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it on our laser table and quickly integrate it into the existing apparatus. From that
point, the Faraday project started to run in parallel with the wave packet investi-
gations, sharing the same experimental system. The wave packet project was later
replaced by an investigation of spin changing collisions in optical lattices, which
has thus far yielded one publication [3].

The Faraday experiments were also very fruitful. We have published an intro-
ductory paper on the dark field Faraday imaging applied to the ultracold atomic
clouds [1], where we also present practical applications of the non-destructive mea-
surements. Since then, we have made a considerable progress on the high precision
non-destructive atom number measurement and stabilisation with feedback, which
will soon be submitted for publication [2].
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Part I

Cold atom experiments
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Chapter 1

Introduction

The atom, an indivisible building block of matter postulated by the ancient Greeks,
turned out to be consisting of yet smaller parts. In 1897, the electron was discov-
ered by John. J. Thomson [1], and a decade later, Ernst Rutherford concluded
from his scattering experiments, that most of the atomic volume is actually empty
and all the remaining matter is concentrated in a nucleus [2]. For most practical
purposes, however, atoms are indeed indivisible, since the electrons are bound to
the core with a strong electric attraction. Still, the electrons can occupy different
motional states, which gives a rise to a rich structure inside the atom, and effec-
tively determines properties of all common matter, including that of our living
bodies. Surprisingly though, all the atomic interactions are mediated by a single
force: electro-magnetism.

Naturally, as all matter is made of atoms, many different aspects of their be-
haviour have been studies in great detail. The field of ultracold atoms is focusing
on the investigation of atomic properties in the gas phase, the most dilute form
of matter, where atoms ‘fly’ freely in space undisturbed by each other’s fields, in-
teracting only briefly during collisions. In the past three decades, research in this
field has provided insight into many fundamental properties of matter. Phenomena
such as quantum indistinguishability and the interference of particles have been
demonstrated experimentally with both bosonic [3] and fermionic atoms [4]. Great
control over all atomic degrees of freedom has facilitated astonishing precision in
the measurements of external fields [5], as well as time and space [6]. However, our
knowledge of the quantum mechanical properties of the atoms and the techniques
for handling and utilizing them still have a large potential for improvement.

A gas in a container evolves through inter-atomic collisions into a state with
maximal entropy, called thermal equilibrium. When cooling a gas of bosonic par-
ticles1 below a certain critical temperature (typically < 1µK), it is favourable to

1Bosons are particles with integer angular momentum.

3



4 Chapter 1. Introduction

distribute the thermal energy of the system among a finite fraction of the particles,
while placing the rest in a zero entropy state: the ground state of the confining
potential. Quite counterintuitively, such a configuration can carry more entropy.
The macroscopic ensemble of indistinguishable particles (≈ 104 − 107 atoms), all
in the same quantum state, is called a Bose-Einstein condensate (BEC) [7]. At
absolute zero temperature, the entire cloud forms a pure condensate, described by
a single wavefunction, which can be viewed as a single macro-particle.

As outlined above, atomic clouds can only be manipulated via electromagnetic
fields. The palette of the available techniques is, however, very rich. Most atoms
respond both to static magnetic fields and to radio frequency radiation, which
couple to their internal degrees of freedom of the atom. Also, scattering of light
at frequencies close to the internal atomic transitions can act on the atoms with a
strong force, and is utilized in the laser cooling and trapping techniques. An intense
off-resonant light can, in turn, develop a strong conservative force through the so
called dipole interaction, with only a small amount of spontaneously scattered
photons.

The spatial density distribution of the cloud is the main source of information
about the cloud dynamics, e.g., a colder cloud occupies a smaller volume in the
confining potential. The density distribution can be extracted most conveniently
by optical imaging techniques. A commonly used technique for precise ultracold
cloud imaging, so-called absorption imaging, is based on incoherent light scattering
and obtains the cloud shape from a shadow cast by the atoms on a resonant
imaging beam. However, the method can only reliably resolve optical densities
of the order of one. Since the typical in-trap density of an ultracold cloud is two
orders of magnitude larger, the cloud has to be released from the trap, whereupon
it expands in free fall. The in-trap distribution can be reconstructed from the time-
of-flight image, provided the expansion mechanism is known. The large number of
spontaneously scattered photons required for high sensitivity imaging immediately
destroys the cloud, allowing only for a single image of a given sample.

Non-destructive imaging and feedback
Many experiments involve monitoring some dynamical process. In this case, the
sequence has to be repeated many times, where a destructive image is acquired at
different points in time. Such a measurement is not only time consuming, but also
susceptible to run-to-run fluctuations and drifts in the experimental apparatus,
which cause scatter in the data. Being able to measure the atomic distribution
repeatedly in a single run virtually eliminates these problems. In addition, feedback
to the experimental apparatus can be applied, since the state of the atomic system
can be monitored in real-time, and the evolution of the cloud can be driven towards
a desired state.

Non-destructive measurements of atomic ensembles have been realized using
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several dispersive techniques, such as phase contrast imaging (PCI) and dark fields
scalar imaging (DFSI) [7] utilizing the polarization independent phase shift, as well
as polarization resolved techniques based on Faraday rotation (FR) [8, 9]. Further,
the non-dectrustive detection was facilitated by diffractive techniques [10], and
most recently, partial-transfer absorption imaging [11]. The achievable signal-
to-noise ratio in all of these approaches is similar [12], hence the experimental
requirements typically prescribe the method of choice.

The quantum non-demolition (QND) measurements based on FR in room tem-
perature atomic ensembles have been used to demonstrate entanglement [13], quan-
tum memory [14], and quantum teleportation [15]. In the regime of ultracold
atoms [16, 17], this approach has yielded spectacular results including spin squeez-
ing [18], magnetometry [5], and the observation of many-body dynamics [19].

In this work, we have adapted the Faraday imaging method for fast and re-
liable measurement of ultracold atomic clouds. Faraday imaging is based on the
polarization rotation that occurs when light passes through a spin-polarized atomic
sample. In our approach, the spatially dependent angle of rotation is detected by
measuring the intensity of rotated light transmitted through a polariser onto a
camera. The method can thus be regarded as a form of dark field imaging [7]
and we refer to it as dark field Faraday imaging (DFFI). Provided one can gener-
ate imaging light that is detuned from an atomic resonance by 10 to 100 natural
linewidths, the method can be realized by inserting a single polariser in a standard
absorption imaging set-up and is thus considerably simpler to implement than PCI
or dual-port homodyne detection schemes [17].

We have calibrated the DFFI technique relative to the absorption imaging and
brought its precision to the photon shot noise limit. We use the method in several
experiments, such as monitoring of in-trap cloud oscillations or magnetic field
detection, but most importantly, we have achieved a high precision online atom
number stabilization by providing feedback to the experimental sequence.

Correlated wave packet generation
Spinor condensates, large ensembles of coherent particles with a variable spin de-
gree of freedom, were first investigated in early BEC experiments with rubid-
ium [20, 21] and sodium [22]. Since then, this research has brought considerable
insight into quantum magnetism and numerous interesting effects, such as spon-
taneous symmetry breaking [23] or parametric amplification of vacuum fluctua-
tions [24].

A BEC in a trapped dilute gas typically occupies the lowest vibrational state,
yielding a high density sample with a small velocity spread. In a collision process,
particles can exchange energy and momentum, which can lead to a change of
their state, however the total energy and momentum has to be conserved. If
two ‘colliding’ particles are initially at rest, they will emerge in anti-correlated
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quantum states: one with momentum p, the other with −p. This is an example
of a so called Einstein-Podolsky-Rosen (EPR) pair [25] which exhibits the non-
locality of quantum mechanics [26]. The two particles are said to be entangled: a
measurement of particle A immediately influences the quantum state of particle B.
Although no classical information can travel in this way, the subsequent evolution
of the state B will depend on the outcome of measurement A, irrespective of the
particles’ separation. This ‘action at a distance’ is one of the most puzzling features
of quantum mechanics [27, 28].

Apart from momentum, colliding atoms can also exchange quanta of their in-
ternal angular momentum, that is change their spin. Since the total spin must
be preserved, equal numbers of particles with increased and decreased spin, N+
and N−, are generated. This is analogous to two-mode squeezing in spontaneous
parametric down-conversion, where a high energy photon is converted into two
lower energy photons in a non-linear optical medium [29]. The squeezing of the
number difference N+−N− below the atom shot noise limit

√
〈N〉 in spontaneous

spin changing collisions has been observed [30, 31], and can potentially be used to
enhance the sensitivity of atom based interferometers.

The energy of the spin components depends on the external magnetic field,
and therefore a change of the spin states in a collision can yield an excess energy,
which has to be accommodated in the motional degrees of freedom. When the
excess energy is small, only the ground motional state is populated, permitting
the use of a single-spatial-mode approximation. Coherent oscillations between the
spin components has been observed both in bosonic [32, 33] and fermionic [34]
systems.

Once the excess energy is high enough to populate excited motional states, the
evolution scenario depends on the separation of the eigenenergies, determined by
the confinement of the gas. A tight trap with a large energy spacing between the
eigenstates allows to populate individual excited modes [35]. The spatial structure
of these modes can be imaged using the time-of-flight technique [36]. First exper-
iments employed a rotationally symmetric trap, and the observed Bessel modes
demonstrated spontaneous spatial symmetry breaking [37].

In our experiments, we observe spin changing collisions in a one-dimensional
vertical optical lattice generated by a retro-reflected red-detuned Gaussian beam.
The high lattice depth does not allow for tunnelling between neighbouring lattice
sites, and thus each site is populated with an individual BEC in the ground state of
that well. The atoms are weakly confined in the radial direction by the cylindrically
symmetric potential of the lattice beam, and the transverse modes are excited in
the spin changing collisions. The high mode density nearly forms a continuum,
thus individual stationary states cannot be addressed.

We observe that the spinor excitations have a wave packet like character. The
velocity of these wave packets is set by the bias magnetic field (the excess scattering
energy), while the direction of propagation in the 2D plane is chosen randomly—
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though in anti-correlated directions—in the two spin components.

Structure of part I
The first part of the thesis is organized as follows:

• Chapter 2 provides an overview of the atom-light interaction and Bose-
Einstein condensation. Moreover it outlines essential experimental tech-
niques for cooling and trapping of atomic gases.

• Chapter 3 discusses our results on the spin changing collisions in a 1D optical
lattice.

• Chapter 4 characterizes the method of dark field Faraday imaging and presents
some of its applications.

• Chapter 5 examines the high precision regime of non-destructive measure-
ments and the application of feedback to the experimental sequence.

• Chapter 6 summarizes the most important results and discusses further ex-
perimental perspectives.
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Chapter 2

Trapping and cooling neutral
atoms

Our goal is to investigate properties of cold and dense atomic gas samples. On
the way from the room temperature 300K to the ultracold ∼ 100nK regime a
multitude of techniques must to be utilized, in order to span such tremendous
difference of physical conditions. An ultra high vacuum is a must. Next comes
a cooling and confinement by a laser light, followed by a compression and an
evaporative cooling in a conservative trap, which finally yields a Bose-Einstein
condensate in the ground state of the well. In this chapter we will review the
physical principles of the essential experimental techniques required to reach the
quantum degeneracy.

2.1 Cooling and trapping by laser light
The 1997 Nobel Prize in Physics was awarded to Steven Chu, Claude Cohen-
Tannoudji and William D. Phillips for ‘development of methods to cool and trap
atoms with laser light’ [38]. These methods were first implemented in 1985, and
within a decade, temperatures below 1µK were reached, surpassing both the
Doppler limit and the recoil limit [39, 40].

Optical molasses
To cool down a physical system, its entropy has to be transferred to an external
reservoir. In the Doppler cooling scheme, the reservoir is a coherent laser light.
Photons with a very well defined propagation direction get scattered into random
directions, their entropy increases, but the entropy of the atoms can be reduced.

9



10 Chapter 2. Trapping and cooling neutral atoms

An atom can undergo transition into different electronic state by absorption
or emission of photons, provided the photon energy is close to the energy of an
atomic transition. Each photon carries energy E = hν and momentum p = E/c,
where ν is frequency of the light1. The photon momentum is transferred into the
translational motion of the atom. The rate of momentum exchange is then the
origin of an external force F = dp/dt.

When the atoms are illuminated with a red detuned light2 in all directions3,
the Doppler shift brings the photons propagating against the motion of each atom
closer on resonance, resulting in a higher absorption rate. Subsequently the pho-
tons are emitted in a random direction, hence, in total, this causes a net force
against the motion of the atoms, which reduces their kinetic energy.

Weak magnetic field interaction
Since neutral atoms do not posses a net electric charge, they do not interact with
weak electrostatic fields4, however they do interact with low magnetic fields by
means of the magnetic dipole moment.

In analogy with a current loop, the angular motion of the electric charge induces
a magnetic dipole moment

µ̂ = −µB

~
gF F̂, (2.1)

where µB is the Bohr magneton, and gF is the hyperfine Landé g-factor representing
the distribution of the charge [41]. Interaction with the magnetic field −µ̂ · B
removes the energetic degeneracy of the hyperfine states |F,mF 〉 due to the linear
Zeeman effect

∆E(mF ) = µBgFmFBz, (2.2)

where the quantization axis z is aligned with the magnetic field.

Magneto-optical trap
The laser cooling mechanism by itself does not confine the gas, however, a confining
effect can arise when the atomic transition energy is spatially dependent. Such
shifts of the resonance can be obtained by combining the laser field of an optical
molasses with a weak magnetic QP-field (see Eq. (2.4) and Fig. 2.2), which create
a so called magneto-optical trap (MOT) [39, 40].

1 h is the Planck constant and c is the speed of light.
2The light frequency is lower than the atomic transition.
3Two counter-propagating beams per each axis.
4Strong electrostatic field can induce an electric dipole moment: the dc Stark effect.
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Figure 2.1: Schematics of the confining action of the MOT.

Figure 2.1 shows schematically an action of a restoring force for an atom that
has been displaced downwards from the centre of the trap. The black arrows on the
left represent the growth of the magnetic field with the displacement, which brings
the atom (yellow particle) closer on resonance with the σ− polarized beam (orange)
propagating upwards. This increases the scattering rate on the σ− transition, which
pushes the atom back into the centre. For an upward displacement, the orientation
of the local magnetic field would be opposite, bringing on resonance the downwards
propagating beam (blue), and restoring the position again. Interestingly, it is
always the σ− transition that scatters the most photons. Similar restoring effects
can occur in the two horizontal directions, provided the polarisation of the laser
beams is chosen appropriately.

Often the ground state manifold of the atom has more than one state, which
causes scattering on multiple distinct transitions, however, the operating principle
of the MOT remains the same. The first MOT was constructed by Steven Chu
and co-workers in 1987, and was operating with sodium atoms [42].

2.2 Conservative traps for atoms

To study atoms without the presence of spontaneous photon scattering, the cloud
can be trapped in a conservative potential. The potential can be engineered either
by a static magnetic fields or ‘dressing’ of an electronic transition with far a detuned
time varying field. The later can be achieved by using micro-wave (MW) [43, 44]
or optical transitions. In the following we will discuss the magnetic and optical
trapping techniques.
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Magnetic field trapping
In an inhomogeneous field, the magnitude and orientation of the magnetic field
vector B is spatially varying. An atom in motion experiences a time varying field,
however, it remains in an immediate eigenstate |F,mF 〉 with respect to the local
field, provided the change in the field is adiabatic, that is slow compared to the
Zeeman level separation. The spatially varying energy is in fact a potential energy

U(r) = µBgFmF |B(r)|, (2.3)

which can generate a confinement for selected |F,mF 〉 states in certain magnetic
field configurations.

The simplest implementation of a magnetic trap is a quadrupole (QP) field

BQP(x, y, z) = B′QP

 x
−2y
z

 (2.4)

generated by pair of parallel coils with electric currents flowing in opposite direc-
tions, the so called anti-Helmholtz configuration. The gradient B′QP is proportional
to the current and determines magnitude of the restoring force. The trapping oc-
curs for states with gFmF > 0. The corresponding potential is cone like, rotation-
ally symmetric in the xz-plane with a twice as strong gradient along the symmetry
axis y, see Fig. 2.2.
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Figure 2.2: Illustration of a quadrupole magnetic field. The arrows show direction
of the field, the colour encodes the field magnitude. The gradient constant was
chosen B′QP = 133 G/cm, to represent a typical QP-trap.

For a typical gradient B′QP ∼ 150 G/cm, the QP-field can be used for trapping
thermal clouds with temperatures above ∼ 10µK. As the cloud gets colder, atomic
density in the region with zero magnetic field increases, and the atoms are more
likely to undergo transition into un-trapped magnetic states, an effect known as
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Majorana losses. Therefore, to hold a Bose-Einstein condensate in a magnetic trap,
a different field configuration is required.

The so called Ioffe-Pritchard trap provides a non-zero bias field in the trap
centre preventing the Majorana spin flips. In our experiment this is achieved by
placing an additional coil (Ioffe coil) at z = −d (oriented along the z-axis), which
creates a field

BI(x, y, z) ≈ BI(z)

 x
y
−2z

 (2.5)

with a decaying magnitude BI(z) ∝ 1/(z2 + d2). The minimum of the combined
potential occurs at a position where the field gradient from the Ioffe coil cancels
the gradient of the QP-field in the z-direction. Consequently the gradient in the
y-direction is now reduced to 75%, while the gradient along the x-direction is
increased by 50%, making the two directions equally strong. The combined field
can be expressed as

BIP(x, y, z) =

 0
0
B0

+B′

 x
−y
0

+ B′′

2

 −xz
−yz

z2 − (x2 + y2)/2

 , (2.6)

which gives rise to a harmonic trapping in all three directions. The trap is cylin-
drically symmetric and elongated in the z-direction, see Fig. 2.3.
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Figure 2.3: Illustration of the Ioffe-Pritchard trap. The arrows show direction of
the field, the colour encodes the field magnitude. The parameters are B0 = 1G,
B′ = 200G/cm and B′′ = 200G/cm2. The trapping along the z-axis is a factor of
10 weaker than in the x and y directions.
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Optical dipole trap
Magnetic traps allow to trap only certain magnetic sub-states, and the potential
strength depends on the magnetic number mF . An equally strong confinement of
all the mF components can be accomplished by a purely optical trap using off-
resonant forward scattering. This regime requires a light with large detuning and
consequently high power. Due to presence of the electric field interaction −eE(t)r̂,
the stationary states of the atom are modified, now being a superposition of the
bare ground |g〉 and excited |e〉 state. The energy of the new ground state is shifted
by

∆Eg = I

(ν − ν0)
e2

2hcε0
|〈g|x̂|e〉|2, (2.7)

where ν and ν0 are the laser and atomic transition frequencies, I is the light
intensity and 〈g|x̂|e〉 is the dipole matrix element5 [39].

As the atoms move across regions of spatially varying light intensity, they
remain adiabatically in the immediate ground state and thus experience a potential
energy U(r) ∝ I(r). In general, red detuned light (ν < ν0) produces an attractive
potential, while blue detuned light (ν > ν0) is repulsive.

Optical lattice
Overlapped coherent laser beams can create standing wave patterns, which form
a periodic potential for the atoms. This is similar to the crystal lattice potential
experienced by electrons in a solid state of matter, hence the term optical lat-
tice [45]. Similarly to the solid state, motional eigenstates of the trapped atoms
organize into a band structure.

The potential in the lattice direction (denoted by y for later convenience) can
be written as

V (y) = sER sin2(ky), (2.8)

where s is the dimensionless lattice depth in units of photon recoil energy ER =
~2k2/(2m), k = 2π/λ is the wave-number and m is the atomic mass. Around the
minimum of an individual well, the potential can be expressed as

V (y) ≈ sERk
2y2 = s~2k4

2m y2, (2.9)

which after comparison with a harmonic potential 1
2mωy

2y2 yields the trapping
frequency of the well as

ωy = ~k2

m

√
s. (2.10)

5The polarization of the light was assumed to be linear: along the x-axis. The constants e
and ε0 are the elementary charge and the vacuum permitivity.
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Typically, the trapping frequency is of the order of ∼ 10 kHz.

2.3 Evaporative cooling and Bose-Einstein con-
densation

The laser cooling techniques alone can not produce a BEC [40]. In rough terms,
this is caused by the discreteness of the spontaneous photon scattering. Since every
absorbed photon has to be emitted, the associated recoil is unlikely to leave the
atom completely at rest. To reach the motional degeneracy, evaporative cooling
has to be employed.

Atoms in a gas phase exchange momentum and kinetic energy by collisions.
Since this process is stochastic, the particles do not emerge from the collision with
an equal share of energy. Some collisions can generate atoms with kinetic energy
high above the average. If those are eliminated from the cloud, the remaining
particles will be colder.

A direct way to remove the hot atoms is to engineer a finite trap depth. Only
the atoms reaching a certain potential energy can leave the trap. When the trap
depth is decreased slowly compared to the rethermalisation rate, a continuous atom
loss and cooling occurs. An optical dipole trap has by construction always a finite
depth. Evaporation can hence be introduced by ramping down the trapping beam
intensity or application of external magnetic field gradient pulling the atoms out
of the trap.

A magnetic field can not be shaped so easily, however, the strength and sign of
the potential depends on the magnetic sub-state. By applying a radio-frequency
(RF) radiation6 resonant with the Zeeman level splitting, the atoms can be trans-
ferred into untrapped states. This technique is called RF evaporation. Since the
Zeeman energy is spatially varying, only a certain spatial shell is addressed with
a chosen RF frequency, see Figs. 2.2 and 2.3. A continuous evaporation can be
accomplished by a slow sweep down of the RF frequency.

Bose-Einstein condensation
A Bose-Einstein condensate (BEC) is achieved when a single quantum state is
populated with a large number of particles. When a cloud of bosonic particles is
cooled below a certain critical temperature, Bose statistics implies much higher
population probability for the energy ground state then for the remaining states.
The reduced effective kinetic energy EK = πkBT leads to an increase of the de
Broglie wavelength λdB = h/

√
2mEK , which can span the size of the sample. Thus

6Evaporation can also be carried out by a transfer to a different hyperfine ground manifold,
which might require a micro-wave radiation.



16 Chapter 2. Trapping and cooling neutral atoms

when the number of particles per volume λdB
3—the so called phase space density—

exceeds one, Bose-Einstein condensation can occur. This process was extensively
described in many textbooks [46] and review articles [40].

Figure 2.4: Example of 87Rb BEC formation for decreasing end evaporation fre-
quency in a magnetic trap. The absorption imaging pictures were taken in time-
of-flight (15ms). The upper captions show the atom number and temperature of
the cloud. The two later pictures show a BEC condensate in the centre.

An important property of a trapped interacting BEC is the vanishing kinetic
energy compared to the energy shift due to the density of the gas—the mean field
energy. The density distribution of the lowest energy state than acquires the shape
of the potential in a fluid like fashion: e.g. a harmonic trap produces a cloud in
the shape of an inverted parabola.

When the BEC is abruptly released from the trap, the mean field energy initi-
ates expansion of the cloud. The expansion velocity depends on the gradient of the
density, thus a more tightly confined dimensions expand faster. In an asymmetric
trap, this leads to the inversion of the aspect ratio in a long time-of-flight.

Unlike a BEC, a thermal cloud always acquires a round shape when expanding
freely, since the size of the cloud after expansion is a measure of the in-trap velocity
distribution, which is given by the could temperature. The spatial distribution is
well described by a Gaussian function.

The atomic density distribution can be probed conveniently by absorption
imaging. A resonant laser beam is shone through the vacuum chamber and im-
aged on a CCD camera. The spontaneous photon scattering removes light from
the beam proportionally to the local atomic density. The atomic density can thus
be reconstructed from the shadow, provided the atomic scattering cross-section is
known. Figure 2.4 shows examples of evaluated absorption images. The images are
typically taken after 15 ms expansion time to resolve the variations in the atomic
density.
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2.4 Experiment overview
The first ultracold atom apparatus at Aarhus University produced the fists BECs
in 2006, and since than has carried out a wide range of experiments involving
both magnetic and optical traps. The experiment uses 87Rb atoms, one of the
most common species for ultracold gas experiments [47]. The technical imple-
mentations were extensively described in the PhD theses of P. Pedersen [48] and
H. K.Andersen [49]. Here only an overview of its characteristic features is provided.

MOT 

10^(-10)mbar 

10^(-12)mbar SC 

Figure 2.5: 3D model of the vacuum chamber and the transport coil system. The
transport consists of two sequential moves (denoted with the green arrows).

The experimental apparatus is divided into two vacuum chambers: the MOT
chamber with 10−10 mbar pressure and the science chamber (SC) with 10−12 mbar
pressure, separated by a differential pumping stage. First, the atoms are loaded
from the background gas and cooled in a 3D MOT, then the cloud is transferred
by a mechanical motion of the trapping coils to the science chamber, where it can
be evaporatively cooled until a BEC is formed. The cloud can also be loaded into
an optical trap for further experiments.

In our MOT, we obtain a cloud of ∼ 109 atoms at a temperature ∼ 50 µK. The
MOT phase concludes by state preparation via optical pumping, which transfers
the atoms into |F = 2,mF = 2〉 state (see the level structure in appendix A). This
state experiences a positive Zeeman shift and can be trapped by the magnetic
potential of the MOT-coils when the current is ramped up. Once the cloud is
trapped and compressed, a mechanic motion of the trapping coils translates the
atoms over a differential pumping stage into the science chamber (SC). At the end
of the transport, the cloud temperature is about 150µK.

Due to a very low pressure in SC, the lifetime of the cloud is extended to about
60 s. Here, the atoms can be cooled by forced RF evaporation, first in a QP-
field and later in a Ioffe-Pritchard trap. The transverse trapping frequency can be
adjusted by the choice of the z-axis bias field in range from 80Hz to 360Hz, while
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the weak longitudinal trapping frequency remains ∼ 17.5 Hz.
The cloud sags slightly in the magnetic trap, such that the vertical field gra-

dient compensates the gravitational force. This gives a rise to a non-zero vertical
component of the magnetic field. In our trap, however, the magnetic field tilt due
to the sag is less than a percent.



Chapter 3

Correlated wave packet
generation by spin changing

collisions

This chapter presents our results on spin changing collisions in a one-dimensional
optical lattice, where we observe wave packet like excitations in the weekly trap-
ping, transverse degrees of freedom. The material was to a large extent presented
in our publication [50], where the mechanism of excitations was analysed in the
Bessel mode basis—the spectrum of cylindrical box eigenstates. In the paper, we
arrived at a conclusion that multiple modes are excited simultaneously due their
small energy spacing compared to the magnitude of the instability rate.

Here, we analyse the problem in the position and momentum space, which
highlights the wave packet character of these excitations, predicts their spatial
width and offers a complementary model for the time-of-flight size of the clouds.
In addition, we provide arguments supporting generation of a single anti-correlated
wave packet pair per lattice site. Only the essential characteristics of the experi-
mental system are provided. More details about the technical implementation and
magnetic field calibration can be found in the PhD thesis of Poul L. Pedersen [48].

3.1 Experimental system

Single site atomic density
The BEC is trapped in a red-detuned vertical optical lattice along the y-axis with
wavelength λ = 914nm, created by a retro-reflected beam. For our default lat-
tice depth, s = 18, Eq. (2.10) yields a trapping frequency ωy ≈ 2π × 23.4kHz
in the lattice direction. The transverse trapping frequency was measured to be

19
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ωρ ≈ 2π × 50Hz, which justifies the assumption that the longitudinal degrees of
freedom (along the lattice) are ‘frozen’ and the system is effectively two dimen-
sional.

Each lattice site contains an individual BEC. For a large number of particles,
the condensate can be described by a single wavefunction governed by the Gross-
Pitaevskii equation [46][

− ~2

2m∇
2 + V (r) + U0|ψ(r)|2

]
ψ(r) = µψ(r), (3.1)

where µ is the chemical potential and U0 = 4π~2a/m is the strength of the inter-
action given by the s-wave scattering length a. The chemical potential is chosen
such that the wavefunction is normalized to the particle number N =

∫
dr|ψ(r)|2.

The energy associated with the lattice trapping frequency is much higher than
the interaction energy ∼ h× 1kHz, thus the y-dimension can be described by the
ground state of a harmonic potential

φ(y) = 1√
ly
√
π

exp
(
− y2

2ly2

)
, (3.2)

with a harmonic oscillator length ly =
√
~/mωy. Substituting the factorized wave-

function ψ(r) = φ(y)ψ(ρ) into Eq. (3.1), multiplying from the left by φ∗(y) and
integrating over y yields a two dimensional Gross-Pitaevskii equation[

− ~2

2m∇
2 + V (ρ) + Ũ0|ψ(ρ)|2

]
ψ(ρ) = µ̃ψ(ρ), (3.3)

where the 2D interaction strength is

Ũ0 = U0

∫
dy|φ(y)|4 = U0

ly
√

2π
, (3.4)

and the effective chemical potential is µ̃ = µ− ~ωy/2.
To obtain the transverse distribution, we can apply the Thomas-Fermi approx-

imation and neglect the kinetic energy term in Eq. (3.3). The resulting 2D density
is

|ψ(ρ)|2 = max
(

0, µ̃− V (ρ)
Ũ0

)
. (3.5)

The density goes to zero at the Thomas-Fermi radius ρ0, when µ̃ = V (ρ), which
for a harmonic potential implies µ̃ = 1

2mωρ
2ρ0

2. For |ρ| = ρ < ρ0 we can thus
write V (ρ) = µ̃

(
ρ
ρ0

)2
and

|ψ(ρ)|2 = µ̃

Ũ0

1−
(
ρ

ρ0

)2
 . (3.6)
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To obtain the 2D chemical potential, we can verify the normalization

N =
∫ 2π

0

∫ ρ0

0
ρdρ|ψ(ρ)|2 = 2πµ̃ρ0

2

Ũ0

∫ 1

0
dww(1− w2) = πµ̃2

Ũ0mωρ2
, (3.7)

which gives

µ̃ = ωρ

√
NŨ0m

π
. (3.8)

Lattice loading
To find the number of particles in each lattice site, we need to know the atomic
density at the moment of loading into the lattice. The loading procedure involves
decompressing the magnetic trap while the lattice is being ramped up. We estimate
that the density along the lattice dimension becomes fixed at a lattice depth s = 10,
at which point the magnetic trapping frequencies are ω̄x = ω̄y ≈ 2π × 200Hz
and ω̄z = 2π × 17.5Hz. The total number of atoms in the BEC is on average
NBEC = 4.2(7) · 104.

The density in the magnetic trap can also be approximated with a Thomas-
Fermi profile

n′(r) = max
(

0, µ
′

U0

[
1− x2

x02 −
y2

y02 −
z2

z02

])
, (3.9)

where the chemical potential is [46]

µ′ = 152/5

2

(
aNBEC

l′

)2/5
~ω′ ≈ h× 1.08kHz. (3.10)

The geometric mean trapping frequency is ω′ = (ω̄xω̄yω̄z)1/3 ≈ 2π×88.8Hz and the
effective oscillator length is l′ =

√
~/mω′ ≈ 1.16µm. The background scattering

length is a = 100aB [51], where aB is the Bohr radius. The resulting Thomas-
Fermi radii are x0 = y0 = 2.51µm and z0 = 28.7µm. Denoting the lattice constant
as b = λ/2 ≈ 0.46µm, we see that the BEC in the magnetic trap extends over
2y0/b ≈ 11 lattice sites.

We can now find the density distribution along the lattice direction by inte-
grating Eq. (3.9) along x = ux0 and z = vz0

n′(y) = µ′x0z0

U0

∫ ∫
dudv

[
1− u2 − v2 − y2

y02

]

= 2πµ′x0z0

U0

∫ √1− y2
y02

0
dww

[
1− w2 − y2

y02

]

= πµ′x0z0

2U0

[
1− y2

y02

]2

. (3.11)
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Figure 3.1: Illustration of the lattice loading. The atomic density in the magnetic
trap Eq. (3.11) is shown with black dotted line and the density in the lattice
Eq. (3.13) is shown with black solid line. The red solid line shows the lattice
potential referring to the right hand vertical axis.

The number of particles Nj in the j-th lattice site, centred at y = jb, can be
found by integration over the extent of a single site

Nj =
∫ +b/2

−b/2
n′(y − jb)dy ≈ n′(jb)b = πµ′x0z0b

2U0

1−
(
jb

y0

)2
2

, (3.12)

where we have assumed that n′(y) is a slowly varying function and can be approx-
imated with its value at the centre of each site. The resulting atomic density in
the lattice

n(y) =
5∑

j=−5
Nj|φ(y − jb)|2 (3.13)

employing Eq. (3.2) is shown in Fig. 3.1.
In the central lattice site, the number of atoms is N0 ≈ 7180, the chemical

potential based on Eq. (3.8) is µ̃ ≈ h × 1.44kHz and the Thomas-Fermi radius is
ρ0 ≈ 11.6µm.

3.2 Theory of 2D wave packet excitations

Control of excitations
The individual spin components of the condensate can have different potential en-
ergy due to interaction with external fields. Change of the spin state in a scattering
process may therefore require to deliver or dissipate energy, depending on the sign
of the interaction. Since the total spin has to be conserved, the spin change in a
two particle collision process is always opposite.
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The liner Zeeman shift does not influence the energy balance, since the energy
change for the spin increased component E+ −E0 exactly cancels the one for spin
decrease E− −E0. The next order, quadratic, correction is due to breaking of the
hyperfine manifold into the fine structure [41]. Taking energy of the mF = 0 state
as a reference, the quadratic Zeeman shift for J = 1/2 can be expressed as [52]

Eq(mF ) = (−1)F+1 (gJ − gI)2(µBmFBz)2

∆EHFS(2I + 1)2 ≡ qmF
2, (3.14)

where gJ and gI are g-factors for the electron and nuclear angular momentum and
∆EHFS is the separation of the hyperfine ground states. For 87Rb in the F = 2
manifold this gives

q = −h× 71.83Hz/G2 ×Bz
2. (3.15)

Since this quantity is negative, a condensate prepared inmF = 0 state will generate
pairs of mF = 1 and mF = −1 atoms while releasing energy (−q) per particle. The
choice of magnetic field determines the magnitude of this excess scattering energy
and selects the motional states that are populated in the scattering process.

In a similar fashion, microwave dressing applied on the hyperfine transition can
alter the potential energy of a single mF component [53]. In this way, a collisional
excess energy can be created even in a hyperfine manifold with a positive quadratic
Zeeman shift, such as F = 1 in 87Rb [54].

Field Hamiltonian
In our experiments, the cloud is initially prepared in the state |F = 2,mF = 0〉 ≡
|mF = 0〉. For short evolution times, only a single scattering channel

2× |mF = 0〉 ↔ |mF = 1〉+ |mF = −1〉 (3.16)

needs to be considered. The scattering process

2× |mF = 0〉 ↔ |mF = 2〉+ |mF = −2〉 (3.17)

has a negligible rate due to vanishing Clebsh-Gordan coefficients [37], and the
process

2× |mF = ±1〉 ↔ |mF = ±2〉+ |mF = 0〉 (3.18)

is neglected due to low population in |mF = ±1〉. We further assume that the
depletion of the main condensate can be neglected, and the main cloud can be
described by a wavefunction ψ0(ρ, t) =

√
n0(ρ)e−µt, where n0(ρ) is the 2D ground

state density from Eq. (3.5). The |mF = ±1〉 components have to be described by
quantum fields ψ̂±1.
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The field Hamiltonian describing the three dimensional excitations [37] can be
reduced to two dimensions in a fashion similar to Eq. (3.3), which gives

Ĥ = ĤI +
∑

mF=±1
ĤmF , (3.19)

ĤI =
∫
dρŨ1n0(ρ)[ψ̂†1ψ̂†−1 + ψ̂1ψ̂−1] (3.20)

ĤmF =
∫
dρψ̂†mF

[
Ĥeff + q

]
ψ̂mF (3.21)

where the effective Hamiltonian of the motional energy is

Ĥeff = − ~2

2m∇
2 + V (ρ) + (Ũ0 + Ũ1)n0(ρ)− µ̃ (3.22)

and (−q) is the excess scattering energy due to the quadratic Zeeman shift. Similar
to Eq. (3.4), the 2D interaction strengths (j = 0, 1) are

Ũj = Uj

lz
√

2π
= 4π~2aj

m

1
lz
√

2π
(3.23)

with the s-wave scattering lengths1 a0 = 96.9aB and a1 = 3.97aB.

Position space picture
The interaction term (3.20) represents the scattering process (3.16). Particles in
the mF = ±1 fields are either simultaneously created or annihilated. If this term
alone was determining the evolution, fields at different points in space would be
independent of each other and an analytic solution could be found. This type of
system is usually solved by a Bogoliubov transformation [46, 37]. However, when
only the Hamiltonian ĤI is present, the solution can also be guessed.

Assuming that the field operators at equal times fulfil the commutation rela-
tions

[ψ̂j(ρ), ψ̂†k(ρ′)] = δjkδ(ρ− ρ′) (3.24)

for j, k = ±1, the time evolution in the Heisenberg picture is given by

i~
∂ψ̂j(ρ)
∂t

= [ψ̂j(ρ), ĤI ]

=
∫
dρ′Ũ1n0(ρ′)[ψ̂j(ρ), ψ̂†1(ρ′)ψ̂−1 † (ρ′)]

=
∫
dρ′Ũ1n0(ρ′)ψ̂†−j(ρ′)δ(ρ− ρ′)

= Ũ1n0(ρ)ψ̂†−j(ρ). (3.25)
1The constants a0 = (7a′0 + 10a′2 + 18a′4)/35 and a1 = (−7a′0 − 5a′2 + 12a′4)/35 were derived

in ref. [37]. The s-wave scattering lengths a′F of the channel with total spin F can be found in
ref. [55]; a′0 = 88.2aB, a′2 = 93.7aB and a′4 = 102.1aB.
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Therefore, the operator ψ̂1(ρ) couples only to ψ̂†−1(ρ), while ψ̂−1(ρ) couples to
ψ̂†1(ρ). It can be easily verified that the solution to the above is

ψ̂j(ρ, t) = ψ̂j(ρ, 0) cos (iω̃(ρ)t)− ψ̂†−j(ρ, 0) sin (iω̃(ρ)t) , (3.26)

where ω̃(ρ) = Ũ1n0(ρ)/~. With both fields prepared in the vacuum state |0〉, the
time dependent particle density in the field is

n±1(ρ, t) = 〈0|ψ̂†j(ρ, t)ψ̂j(ρ, t)|0〉
= − sin2(iω̃(ρ)t)〈0|ψ̂−j(ρ, 0)ψ̂†−j(ρ, 0)|0〉
= sinh2(ω̃(ρ)t) (3.27)

For long times, the growth of density would be exponential with a time constant
τ(ρ) = 1

2ω̃(ρ) . For short evolution times we can approximate sinhφ ≈ φ and write

n±1(ρ, t) ≈
(
Ũ1t

~

)2

n0
2(ρ). (3.28)

We could now proceed and substitute for n0(ρ) from our previous result (3.6),
however, we only wish to point out here that due to the second power on n0(ρ),
the characteristic width of the excitations can be approximated as 2

σ±1 ≈ σ0/
√

2, (3.29)

where σ0 ≡
√
〈x2〉 is the characteristic width of the main cloud distribution n0(ρ),

which can be estimated3 by σ0 ≈ 0.41ρ0.

Momentum space picture
The evolution due to the interaction Hamiltonian (3.20) can also be anlysed in the
momentum space. Decomposing the field on its Fourier components

ψ̂j(ρ) =
∫
dkeikρâjk, (3.30)

where âjk annihilates particles with momentum ~k in the spinor component mF =
j, and substituting into Eq. (3.20), we can write

ĤI = Ũ1

∫∫∫
dkdk′dρn0(ρ)[e−i(k+k′)ρâ†1kâ

†
−1k′ + h.c.]

= Ũ1

∫∫
dkdk′[ñ0(k + k′)â†1kâ

†
−1k′ + h.c.], (3.31)

2This relation is true exactly when n0(ρ) is a Gaussian.
3This was done by evaluating standard deviation for the marginal distribution n0(x) =∫
n0(x, z)dz for density from Eq. (3.6).
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where h.c. denotes hermitian conjugate of the preceding term, and the density
Fourier transform image is

ñ0(k) = 1
(2π)2

∫
dρe−ikρn0(ρ). (3.32)

If n0(ρ) was a Gaussian with variance σ0
2, its Fourier transform would also be

a Gaussian, located at k = 0 and having a variance σk2 = 1/σ0
2. In consequence,

the interaction term (3.31) implies that the momenta of the scattered particles
are anti-correlated k ≈ −k′ with uncertainty ∼ σk/

√
2 ≈ 1/

√
2σ0, where we have

assumed that, similar to Eq. (3.28), the scattering is proportional to |ñ0(k)|2. Once
an mF = 1 particle with momentum k is detected, there exists a wave packet of
mF = −1 particle with mean momentum −k and spread ∼ 1/

√
2σ0.

The individual wave packets also have to obey an uncertainty relation ∆x∆k ≥
1/2 which from Eq. (3.28) implies

σ±1k ≥
1

2σ±1
≈ 1√

2σ0
≈ 1

0.41
√

2ρ0
(3.33)

for their spread in the k-space.

Kinetic evolution
The Hamiltonian (3.22) describes the kinetic and potential energy of the field. The
potential energy terms can be cast into

Veff(ρ) = V (ρ) + (Ũ0 + Ũ1)n0(ρ)− µ̃. (3.34)

Inserting for n0(ρ) from (3.6), we obtain

Veff(ρ) = µ̃

1−
(
ρ

ρ0

)2
× { Ũ1

Ũ0
, ρ ≤ ρ0

−1, ρ > ρ0
(3.35)

Since Ũ1
Ũ0
≈ 4.1% is small, the potential is nearly flat in the range ρ ≤ ρ0 and can be

approximated with a box or a hard wall cylinder, where the motional eigenstates
are Bessel functions [37]. The quality of this approximation can be verified by
numerical diagonalisation of the Hamiltonian (3.22). Figure 3.2 shows the energy
of the eigenstates obtained by diagonalisation of the Hamiltonian on a finite point
grid in space4 for the central lattice site (µ̃ = h×1.44kHz). We see that until mode
number n ∼ 300, the total energy grows roughly linearly with ∼ 1.3Hz per mode
spacing. The kinetic energy clearly dominates over the potential energy, which
justifies the cylindrical box approximation.

4The kinetic term ∇2ψ was approximated as [−4ψjk + ψj+1k + ψj−1k + ψjk+1 + ψjk−1] /d2,
where d is the grid constant and j, k are the 2D grid indexes.
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The right side of Fig 3.2 shows position and momentum space probability dis-
tributions for few selected eigenstates. Interestingly, the first 11 modes populate
only the outer rim in the space due to repulsion of the main condensate. These
states correspond to a standing waves on a ring distinguished by a different number
of nodes along the circumference. The low density overlap with the main cloud
will cause relatively weak scattering into those states.
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Figure 3.2: Eigenstates of the motional Hamiltonian (3.22) for the central lattice
site. The left graph shows the total, kinetic and potential energy of the eigen-
states with blue, green and red curve respectively. The images on the right show
the probability distribution in position and momentum space for three selected
eigenstates.

The Hamiltonian (3.21) influences which modes are excited. Since Ĥeff does
not contain time varying terms, the mean energy of the system has to remain zero,
and the scattering can occur only to motional modes whose energy is close to (−q).
To see this, we can approximate n0(ρ) in Eq. (3.20) with its average

Ũ1n0(ρ)→ Ũ1n̄0 = Ũ1

πρ02

∫
dρn0(ρ) = Ũ1N0

πρ02 ≡ Ω̃, (3.36)

which introduces an effective scattering rate Ω̃. The field can be expanded on the
motional eigenstate basis

Ĥeffφm(ρ) = εmφm(ρ), (3.37)
ψ̂j(ρ) =

∑
m

âjmφm(ρ), (3.38)
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where âjm annihilates particle with spin mF = j in the eigenmode m. Provided
that the states φm(ρ) are chosen to be real, their orthonormality allows us to write
Eq. (3.19) in the form

Ĥ =
∑
m

(
Ω̃[â†1mâ†−1m + â1mâ−1m] + (εm + q)[â†1mâ1m + â†−1mâ−1m]

)
. (3.39)

In this approximation, each mode is independent and the Heisenberg equation of
motion for the creation and annihilation operators is

i~
d

dt

(
â1m

â†−1m

)
=
(

(εm + q) Ω̃
−Ω̃ −(εm + q)

)(
â1m

â†−1m

)
. (3.40)

For εm + q < Ω̃, the eigenvalues of this system,

Em = ±
√

(εm + q)2 − Ω̃2, (3.41)

are imaginary, and an exponential growth of population in the mode m ensues5,
see Eq. (3.27). Since the growth is maximal for εm = −q, the choice of the external
field q selects the total energy of the modes (potential plus kinetic).

Provided the spatial density of the wave packets can be approximated by
Eq. (3.28) (irrespective of their momenta), the expectation value of the poten-
tial energy per particle is

〈V̂eff〉 = 1
N±1

∫
dρVeff(ρ)n±1(ρ) ≈ h× 44.3Hz, (3.42)

here evaluated for the central lattice site. Therefore, the mean kinetic energy of
the wave packets should be

EK = p2/2m = max[0, (−q)− 〈V̂eff〉]. (3.43)

This implies that there is a cut-off in (−q) below which the wave packets do not
move.

The wave packet population is amplified only if all its composite modes are
simultaneously resonant, implying that the wavepacket’s energy uncertainty should
be smaller than Ω̃. Through error propagation, we can determine the energy
uncertainty

∆EK = ∆p p
m

= ~∆k

√
−2(q + 〈V̂eff〉)

m
. (3.44)

Inserting ∆k from Eq. (3.33), and using a typical experimental value (−q)/h =
300Hz, we obtain ∆EK = h × 36.5Hz in the central lattice site, which is of the
same order as Ω̃ = h× 29.6Hz.

5Assuming that the fields are initialised in the vacuum state.
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3.3 Observation of spinor wave packets

Experimental sequence
We prepare a BEC in a magnetic trap by a forced RF evaporative cooling and
load the atoms into the optical lattice by a simultaneous ramp-down of the mag-
netic trap and a ramp up of the lattice over 110ms. This is performed in the
|F = 2,mF = 2〉 state. Once the BEC is optically trapped, a bias magnetic field
Bz = 285mG is applied, and the atoms are transferred into |F = 2,mF = 0〉
using two microwave pulses6. Immediately afterwards, a bias magnetic field along
the y-axis is applied using a liner ramp lasting 1ms, which produces the target
quadratic Zeeman shift and initiates the spin changing collisions.

The evolution time was chosen to be 8 ms, which is just before the growth of
population ceases to be exponential and depletion of the main condensate starts
to play a role [50]. The lattice is turned off abruptly initiating a 20 ms time-of-
flight. In the first 5 ms, a Stern-Gerlach (SG) pulse of inhomogeneous magnetic
field is applied in the z-direction using the Ioffe coil. This provides the magnetic
components with a different momentum impulse and leads to their separation in
free fall.

The spin components are imaged along the y-direction, that is along the lat-
tice, using standard absorption imaging. This allows us to probe the momentum
distribution in the transverse degrees of freedom. Along the lattice direction, the
clouds from the individual sites expand very fast, which on a microsecond time
scale7 overlaps their densities and washes out all information about the site origin
of the atoms. We can therefore measure only the combined density of all lattice
sites.

Spinor populations
Figure 3.3 shows the average population fraction in the mF = ±1 components as a
function of the excess scattering energy (−q). We see that the two populations are
very well correlated, in accordance with our expectation of equal number scattering
into the opposite mF states. The residual discrepancy can be attributed to the
measurement precision and to systematic effects due to spatial inhomogeneity of
the imaging beam arising from light interference on the optical elements of the
imaging system.

The populations first saturate around (−q)/h ≈ 50Hz, which corresponds well
with the mean potential energy from Eq. (3.42). Below this value a reduced fraction

6First going to |F = 1,mF = 1〉 with 12µs pulse and then to |F = 2,mF = 0〉 with 20µs
pulse. The residual population in |F = 2,mF = 0〉 is pushed our of the view a resonant light
along the z-axis between the two microwave pulses.

7For a harmonic ground state, the average velocity is v̄ = h
√
s

2mλ ≈ 10.6µm
ms based on 1

2mv̄
2 =

1
4~ωy.
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Figure 3.3: Average population fraction in the mF = −1 (full circles) and mF = 1
(empty circles) components over ∼ 6 experimental repetitions as a function of the
excess scattering energy (−q).

of atoms is addressed: the scattering is resonant only in the outer regions of the
main cloud. As the scattering energy is further increased, the excited wave packets
gain kinetic energy and begin to translate during the spinor evolution time. This
can deplete the region with the maximal excitation rate, and therefore reduce
the bosonic enhancement of the spin changing collisions. Likely, this caused the
decrease of the spinor population with a growing value of (−q).

Time-of-flight images
Figure 3.4 shows examples of time-of-flight images for few chosen values of the
excess scattering energy. The upper image demonstrates that at a low value of
(−q), the scattered spinor components do not have any excess kinetic energy and
their spatial distribution copies the shape of the main cloud in agreement with
Eq. (3.28). We observe that from run to run, the shape of the main cloud varies
slightly, possibly depending on the performance of the loading procedure8. A
picture with a particularly asymmetric main cloud was chosen to demonstrate the
correlation.

The lower section of Fig. 3.4 shows examples of mF = ±1 clouds with inter-
mediate excess scattering energies ∼ h × 330Hz. Here the anti-correlation of the
wave packet momenta is very obvious. In time-of-flight, the initial velocity of the
wave packets transforms into position, therefore presence of a ‘blob’ on one side
of a spinor cloud implies the existence of a ‘blob’ on the opposite side (centrally
symmetric) in the other spinor component. Since all the wave packets have similar
kinetic energy, the density forms a ring structure whose radius grows with (−q).

8For example, a variable heating of the magnetic trap coils can misalign the trap slightly
producing an out of equilibrium distribution in the transverse trapping directions of the lattice.
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Figure 3.4: Images of spinor wave packets after time-of-flight. Colour encodes the
optical density. The upper image demonstrates the Stern-Gerlach separation of
the mF = −1, 0, 1 components (left to right) taken at low value of (−q)/h = 23Hz.
The pairs of images show the anti-correlated wave packets in the mF = −1, 1
components (left, right) for several (−q)/h values (stated above).

Cloud size

The clouds were fitted with a torus-like density distribution

ntor(x, z) = A exp

−
[√

(x− x0)2 + (z − z0)2 − r0
]2

2σtor2

 , (3.45)

where r0 is the radius, σtor is the Gaussian width of the torus and x0, z0 are the
coordinates of its centre. The fit results for r0 and σtor are shown in Fig. 3.5 as
a function of (−q). Also shown is a simple expectation of the ring size based on
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Eq. (3.43) according to which the wave packet position should be

r0 = tTOFv = tTOF

√
2EK
m

= tTOF

√
2×max[0, (−q)− 〈V̂eff〉]

m
, (3.46)

where tTOF = 20 ms is the time-of-flight, and 〈V̂eff〉 = h × 44.3 Hz was set to the
central lattice site value.
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Figure 3.5: Size of the spinor clouds in time-of-flight. Figure shows the fitted values
of r0 (red) and σtor (black) from Eq. (3.45) as a function of the excess scattering
energy (−q). The error bars denote the standard deviation of the mean taken over
∼ 6 experimental realizations and both mF = ±1 clouds. Shown with a blue solid
curve is the expectation of r0 based on Eq. (3.46).

Taking into account the following consideration, the theory curve is in good
agreement with the experiment. When the radius of the torus is smaller than its
width, it cannot be resolved by the fit, however we can see an increase in σtor when
r0 becomes comparable. Once r0 grows above σtor, the two parameters can again
be clearly distinguished, and the width of the torus drops to back to ∼ 10µm. For
chosen value of tTOF, the ring structure emerges around (−q)/h = 200Hz.

At high values of (−q), we can see a slight discrepancy: the rings are bigger than
the theory curve. Perhaps this could be caused by an additional impulse due to
mean field expansion immediately after the release from the lattice, or the fact that
the wave packets are already displaced from the centre before the release: ∼ 1ms
increase in the effective tTOF would explain the discrepancy (5% error relative to
tTOF). To illustrate the fit results, the torus radii were drawn as black circles in
Fig. 3.4.
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Number of wave packets
From the toroidal fit we also obtain coordinates of the cloud centre (x0, z0), which
allows us to define a polar coordinates system (r, θ) centred at this point and
extract the angular distribution

n(θ)±1 =
∫ r0+σtor

0
n±1(r, θ)rdr. (3.47)

Figure 3.6 shows an example of the angular distributions, here taken for the low
left corner image pair in Fig. 3.3, (−q)/h = 338Hz. The distribution for mF = 1
(red dotted line) was rotated by π to highlight the correlation with the mF = −1
distribution (black solid line).
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Figure 3.6: Example of angular distribution from Eq. (3.47) evaluated for the low
left corner image pair in Fig. 3.3, (−q)/h = 338Hz. The black solid line shows
the distribution for mF = −1, the red dotted line shows distribution for mF = 1
rotated by π. The blue solid line shows an example of a Gaussian fit to a wave
packet in mF = −1.

For each run we make Gaussian fits to the peaks in both mF = ±1. Starting
from the highest peak, we iteratively subtract the current fit and make a fit to
the next highest peak. We than count how many peaks have an amplitude higher
than a threshold set by the average height of the highest peaks from mF = ±1,
separately for individual run.

The results of the wave packet counting are shown in Fig. 3.7 for (−q)/h >
200Hz, where the ring structure is clear. In the range 300Hz < (−q)/h < 500Hz,
both the number of wave packets and their width seem to be constant, with an
average occurrence of 5.1 wave packet having 15.1µm width (2σ). Below 300Hz the
wave packets appear to have a slightly bigger size and also seem to have a lower
occurrence, which might be caused by a higher probability of wave packet overlap.

The overlap probability can be estimated by

Pover(k) = 1−
k−1∏
j=1

(
1− j 2σ

2πr0

)
, (3.48)
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Figure 3.7: Wave packet counting. The upper plot shows the mean number of wave
packets with height at least that of the average highest peak frommF = ±1 in each
individual run. The lower plot shows the mean angular width (2σ) of those wave
packets converted into size by the effective radius of the cloud. Both parameters
are plotted as a function of the excess scattering energy (−q). The error bars show
the standard error of the mean.

where the term in the brackets is the probability that (j + 1)-th wave packet hits
an ‘empty’ space. For (−q)/h = 200Hz and wave packet width 2σ = 15.1µm, the
overlap probability is Pover(5) ≈ 70%, while at (−q)/h = 400Hz it is ∼ 52%. Above
500Hz the wave packet number indicates growth to about 7, but it is difficult to
assign a physical relevance to it, because the density of the scattered spin com-
ponents is very low, and the fits might be misinterpreting residual fringe patterns
from the imaging beam.

The observed position uncertainty of the wave packets, σ = 7.5µm, can now be
compared with the theoretical estimates. From Eq. (3.29), we would expect σ±1 =
0.41ρ0/

√
2 ≈ 3.35µm for the in-trap size, while the to momentum uncertainty

implies expansion of the cloud by σTOF ≡ ~σ±ktTOF/m ≈ 2.19µm, where σ±k is
taken from Eq. (3.33). Additionally, the imaging system has a finite resolution
evaluated experimentally by measuring the width of 0.5µm aperture inserted into
the imaging plane, which yielded a point spread function with Gaussian width
σimg = 2.02µm. Adding these quantities in quadrature we arrive at a minimum
size of the wave packet

σmin =
√
σ±12 + σTOF2 + σimg2 ≈ 4.48µm. (3.49)

Although the order of magnitude is correct, this estimate is still considerably lower
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than the observed size. One possible cause could be a mean field expansion of the
wave packets due to overlap with the highly repulsive main cloud immediately after
the release. Another reason could be that the peak fit function does not include an
additive offset parameter, and therefore any background density lifting the wave
packets will artificially broaden their size.

Spontaneous symmetry breaking
Since the lattice sites are well isolated, each wave packet must originate from a
single lattice site. Referring to Eq. (3.13) and Fig. 3.1, we see that only about 5
lattice sites are populated with an atom number higher than half of the maximum.
This implies that each lattice site generates on average one wave packet. Since
all directions of scattering are equally likely, a symmetry breaking has to occur in
order to amplify population in a wave packet with a particular momentum.

Reference [37] provides arguments for spontaneous symmetry breaking of the
cylindrical eigenstate phase and observed randomly chosen orientations of the
spinor clouds in the excited motional states. The scattered spinor population is in
a two mode squeezed state and measuring the orientation of one mF component
collapses the other into the opposite direction.

An analogous mechanism should be present for wave packet excitations. Be-
fore the measurement, the spinor components are in a superposition of many wave
packets in all possible directions of the 2D space and only the final measurement
collapses the state into a particular direction. This would be true exactly if only
one atom was excited into a wave packet. In a condensate, we scatter many atoms,
and bosonic stimulation [56] ‘encourages’ the particles to scatter into already pop-
ulated modes. In the formalism of two mode vacuum squeezed states, the number
of particles is highly uncertain in each possible direction of the wave packet propa-
gation. Once the momentum is measured, it is very probable that a single direction
will have much higher population than others, which would appear as a single wave
packet.

Angular correlations
To quantify the correlation of the wave packet momenta, we have repeated the
experiment 54 times at (−q)/h = 300Hz and evaluated the correlation function

C(θ) ≡
∫
dφn1(φ)n−1(φ− θ)

N1N−1
(3.50)

for each run, where N±1 =
∫
dφn±1(φ) is the number of particles in the mF = ±1

components.
Figure 3.8 shows the value of the correlation function obtained by a weighted
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Figure 3.8: Correlation of angular distributions, Eq. (3.50). The black solid line
shows the mean correlation of the opposite spin components, and the blue dotted
line is its Gaussian fit. The dashed red line is a mean self-correlation function. The
green solid line is a mean correlation of the spin components between successive
runs.

average over all runs9 (black solid line). In accordance with our expectations, the
function peaks at θ = π. From a Gaussian fit we obtain an angular uncertainty
∆θ = 0.010π, which translates into spatial uncertainty σcor = 10.5µm.

To find out how strong the correlation could be, we also evaluate a mean self-
correlation10 for the mF = ±1 components (red dashed line). Position uncertainty
of this function, σself = 7.41µm, indicates the mean width of the peak like features
in the angular distribution. The self-correlation is effectively a convolution of the
function with itself. In case of Gaussian peaks, the width would be broadened by
a factor of

√
2. This implies that the position uncertainty for the wave packets is

σwp = σself/
√

2 = 5.24µm, which is close to the theoretical limit set by Eq (3.49).
Finally, an important property to note is that there is only a single peak in both

the correlation and self-correlation function implying that the distribution of the
wave packets along the circumference is not periodic. To find out if there is some
preferred direction for the wave packet emission, we also evaluated the correlation
function individually for mF = ±1 on pairs of successive runs. The result, plotted
in Fig. 3.8 with green solid curve, does not show any signs of correlation, and we
can therefore conclude that the wave packets are emitted in random directions.

9The total atom number of scattered atoms N1 +N−1 was used as weight coefficient.
10In this limit the angular distributions for mF = ±1 are identical and rotated by π.



Chapter 4

Non-destructive Faraday imaging

In this chapter, we will review the effect of Faraday rotation and show a simple
implementation of a non-destructive, spatially resolved measurement: the imaging
of cold atomic clouds. We analyse analytically the signal-to-noise ratio for com-
mon dispersive imaging techniques and show that, including our method of Dark
field Faraday imaging (DFFI), all techniques provide a comparable measurement
precision.

We examine the properties of DFFI for a wide range of atom numbers and
temperatures of the cloud, and present applications of the technique for vector
field magnetometry and monitoring of the in-trap cloud motion.

4.1 Faraday rotation
Faraday rotation can be described using a model of the dispersive light-matter
interaction [9, 57]. The effective scattering Hamiltonian Ĥeff = Ĥ(scal) + Ĥ(vec)

consists of a scalar and vector part

Ĥ(scal) = 1
3g
∑
f ′

α
(0)
f,f ′

∆f,f ′
N̂atN̂ ph, (4.1)

Ĥ(vec) = 1
2g
∑
f ′

α
(1)
f,f ′

∆f,f ′
F̂z
(
N̂+ − N̂−

)
, (4.2)

where N̂at and N̂ ph are atom and photon number operators respectively and F̂z
is the component of the collective atomic angular momentum in the direction of
light propagation (defines the z-axis). N̂± are photon number operators for the
two circular polarizations. The field factor is given by g = ω/(2ε0V ), where V is
the light-atom interaction volume.

37
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The scalar and vector polarizabilities α(0)
f,f ′ and α

(1)
f,f ′ characterize the response

of an atom to light of frequency ω detuned from an atomic resonance by ∆f,f ′ =
ω−ωf,f ′ , where f and f ′ denote the initial and final hyperfine states respectively1.
The polarizabilities can be expressed as [57]

α
(k)
f,f ′ = αf

′

f ck
√

3(2f + 1)(2f ′ + 1)
{
f k f
1 f ′ 1

}
, (4.3)

c0 = 1, (4.4)

c1 =
√

2
f(f + 1) , (4.5)

αf
′

f = (−1)1+f+f ′+j+j′+2iα0(2j′ + 1)
{
j′ f ′ i
f j 1

}2

, (4.6)

α0 = 3ε0~Γλ3

8π2 . (4.7)

Provided the atom number Nat is large and all atoms are in the same internal
state with average z-axis projection of the angular momentum 〈f̂z〉, we can treat
the collective angular momentum classically and use F̂z = Nat〈f̂z〉. To account for
the spatial variation of the density, we substitute Nat/V → ρ(r). Under these
assumptions the circularly polarized photons become the eigenstates of the effec-
tive Hamiltonian Ĥeff with energies E±. The Hamiltonian (4.1) induces the scalar
phase shift θs =

∫ 1
2(E+ + E−)dt/~ used in, e.g., phase contrast imaging (PCI).

The rotation of the polarization plane of a linearly polarized beam of light—known
as Faraday rotation—arises from a differential phase shift of the two circular com-
ponents induced by the vector term (4.2) according to θF =

∫ 1
2(E+ − E−)dt/~.

In our experiments, atoms are prepared in the |f = 2,mf = 2〉 state of 87Rb,
and for imaging wavelengths close to the D2 line, the spatially resolved Faraday
angle is given by

θF (x, y) = 〈f̂z〉Γλ
2

16π∆eff

∫
ρ(r)dz = cF (∆eff)ρ̃(x, y), (4.8)

where Γ is the natural linewidth, λ is the wavelength of the imaging light and the
effective detuning is given by

1
∆eff

= 1
20

(
28

∆2,3
− 5

∆2,2
− 3

∆2,1

)
. (4.9)

For later convenience, we write the spatially dependent angle of polarization as
a product of a Faraday coefficient cF (∆eff) and the column density of the sample
ρ̃(x, y).

1In this chapter, we use lower case letters to denote the electronics states of individual atoms.
The upper case letters are used to denote collective quantity.
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4.2 Dark field Faraday imaging

Fig. 4.1 schematically shows the experimental system to measure the angle of
polarization. When a beam of linearly polarized light impinges on a cloud of mag-
netically oriented atoms, a spatial rotation pattern is imprinted on the beam. The
polarization pattern is collimated and the two linear components are subsequently
separated on a polarizing beam splitter (PBS). The polarization of the imaging
beam is chosen such that its transmission through the PBS is minimized in the
absence of atoms. A second lens then forms an image in the detection system,
which contains a mask to allow for partial readout and thereby high frame rates in
an Electron Multiplying Charge Coupled Device (EMCCD) camera. This camera
enables low light intensity imaging and hence reduced measurement destructive-
ness by decreasing sensitivity to the readout noise of the camera. This feature is
crucial for repeated probing and feedback experiments, but comes at the expense
of an amplification of the shot noise of the detected light by a factor of

√
2, which

can be a severe limitation in applications with low signal-to-noise.

Figure 4.1: Sketch of the Faraday imaging system and a resulting image (right) at
T = 1.5µK and N = 106 atoms. The polarization of the light is indicated (top
left) by displaying cross sections of the imaging beam obtained from a rotation
around the dash-dot lines.

The reconstruction of the rotation angle requires knowledge of the intensities
of the incoming and rotated light. In principle this can be achieved by measuring
the intensity of the light reflected by the PBS as well as the transmitted portion.
In our realization, however, we avoid the necessary cross-calibration this would
entail, by making use of the technical imperfection of the PBS, which leads to a
finite transmission of the non-rotated light. Thus, images without atoms can be
used to determine the incoming light intensity and compensate for beam profile
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inhomogeneity. The transmitted light intensity is given by

I(θF ) = I0
sin2 θF + CS cos2 θF

1 + CS , (4.10)

where I0 is the incident intensity on atoms. We measure the cube suppression

CS = I(0)/I(π/2) ≈ 1.5 · 10−3 (4.11)

as the ratio of minimum to maximum light intensity transmitted through the PBS
for a manually scanned polarization angle. The Faraday rotation angle can be
obtained from

sin2 θF =
(
I(θF )
I(0) − 1

)(
CS

1− CS

)
. (4.12)

An absolute light intensity calibration is therefore not required to evaluate the
rotation angle, as long as the EMCCD camera has a linear response.

4.3 Signal-to-noise analysis of dispersive imaging
techniques

In this section we examine the signal-to-noise ratio (SNR) of the four common
dispersive imaging techniques. Two methods use the scalar phase shift θs induced
by the Hamiltonian (4.1), namely dark field scalar imaging (DFSI) and phase
contrast imaging (PCI), and two methods are based on a phase shift θF arising
from the vector Hamiltonian (4.2), namely DFFI and dual port Faraday imaging
(DPFI) [17]. To allow for a generalized treatment, we define a normalized signal
S(θ) ≡ I(θ)/I0, where θ is a phase shift, and I(θ) and I0 are the detected and the
incident light intensities, respectively.

General SNR analysis
The individual pixel values of the acquired image are subject to several sources of
noise. There is technical noise, such as the readout noise of the camera, thermally
induced dark counts, clock induced charges (CIC), and classical noise coming from
unstable light intensity or vibrations of the optical elements. All these sources of
noise depend on the particular implementation and can be minimized by a careful
design of the imaging system. On the other hand, noise coming from the quantum
character of the light (shot noise) cannot be eliminated and often becomes the
main source of noise.

Non-destructive imaging generally requires low light intensities and thus mea-
surement of signals comparable to the readout noise of the camera. The readout
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noise magnitude increases with the readout frequency, a decisive parameter for
the frame rate of continuous acquisition. Preceding the readout amplifier with
an electron multiplying (EM) register amplifies the signal and improves the sen-
sitivity of an EMCCD camera to the single photon level, even using fast readout.
Unfortunately, due to the random sequential character of the EM gain, any noise
already present in the picture (such as the shot noise) will be amplified by about a
factor of

√
2 [58, 59]. The use of EM gain becomes profitable when the number of

electrons Nel accumulated on a given pixel of the CCD is smaller than the readout
noise variance.

For dispersive imaging techniques, the SNR due to shot noise can be calculated
using

Nel = ηNph,0S(θ), (4.13)

where Nph,0 is the number of atom incident photons per physical pixel area, i.e.,
the area of a pixel in the imaging plane. The detection efficiency η takes into
account light losses in the imaging system as well as the quantum efficiency of the
CCD. Assuming poissonian statistics for the signal, (∆Nel)2 = Nel. The signal
error becomes

∆S =
∣∣∣∣∣ dSdNel

∣∣∣∣∣∆N el =

√
ηN ph,0S(θ)
ηN ph,0

=

√√√√ S(θ)
ηN ph,0

. (4.14)

As such, the EM gain
√

2 noise amplification effectively reduces the detection
efficiency η by a factor of 2.

To quantify the destructiveness of the imaging, we relate the number of incident
photons to the photon absorption probability per atom

P abs ≈
N ph,0

A

σ0

δ2 , (4.15)

where A is the physical pixel area and σ0 is the effective scattering cross-section
(for a two level atom, σ0 = 3λ2

2π ). The above equation is valid in the large detuning
limit δ ≡ ∆

Γ/2 � 1, which is often required to reduce diffraction effects. In the
following we assume this regime.

Employing equation (4.15), the error in the measured phase shift becomes

∆θ =
∣∣∣∣∣ dθdS

∣∣∣∣∣∆S =
∣∣∣∣∣ dθdS

∣∣∣∣∣
√
S(θ)

|δ|
√
ηPabsA/σ0

. (4.16)

Using the off-resonant scalar phase shift formula [7]

θs = σ0

2δ ρ̃, (4.17)
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where ρ̃ is the atomic column density (see Eq. (4.8)), we can eliminate the explicit
detuning dependence in Eq. (4.16), casting it into

∆θ =
∣∣∣∣∣ dθdS

∣∣∣∣∣ 2|θs|
√
S(θ)

ρ̃
√
ηPabsAσ0

. (4.18)

Since θ ∝ ρ̃, the atom number measurement precision is determined by the signal-
to-noise ratio in the phase shift

SNRθ = |θ|
∆θ = 1

2

∣∣∣∣∣dSdθ
∣∣∣∣∣ Π√

S(θ)
, (4.19)

where we have defined

Π ≡
∣∣∣∣∣ θθs
∣∣∣∣∣ ρ̃√ηP absAσ0. (4.20)

The factor Π is determined by the properties of the atomic cloud and the light-
atom interaction. It is independent of a chosen phase shift analyzing method and,
as we will show later, it corresponds to the maximum achievable SNRθ in each of
the four analyzed dispersive imaging techniques.

At first glance, increasing the interaction cross-section σ0 or the imaging system
efficiency η is always beneficial. However, an increase in the physical pixel area
A (e.g. via CCD binning before readout) improves SNRθ at the cost of reduced
image resolution. In a natural fashion, the SNRθ is proportional to the atomic
density ρ̃.

The SNRθ square root dependence on P abs quantifies the trade-off between
the signal and destructiveness [11]. Contrary to commonly accepted intuition that
arbitrary degrees of non-destructiveness can be achieved by sufficient detuning in
dispersive measurements, the above equations illustrate that in the off-resonant
regime, the signal-to-noise ratio does not depend directly on the detuning, but
rather on the destructiveness P abs, which is a function of both the detuning and
imaging light intensity.

The phase shift ratio |θ/θs| as a function of detuning is non-trivial only for
vector imaging, and can be found from Hamiltonians (4.1) and (4.2) to be

θF
θs

= 3〈fz〉
2

∑
f ′

α
(1)
f,f ′

∆f,f ′

 ∑
f ′

α
(0)
f,f ′

∆f,f ′

−1

. (4.21)

In table 4.1, we present the far-detuned limit of this ratio for the D transitions in
hydrogen-like atoms with nuclear spin i = 3/2 such as 87Rb, 39K, 23Na, 7Li, and
those with i = 7/2 such as 133Cs. We note that, in these cases, the ratio is always
smaller than or equal to one resulting in a reduced SNRθ for vector compared to
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scalar imaging methods. In our system, at a detuning ∆ = 2π × 1GHz, we expect
|θF/θs| = 0.59. Here, the additional information one obtains in imaging with the
vector part of the atomic polarizability comes at the expense of a reduced SNRθ

compared to the scalar phase shift imaging.

Table 4.1: Far detuned vector to scalar phase shift ratio |θF/θs| for hydrogen like
atoms with nuclear spin i.

i = 3/2 i = 7/2
f D1 line D2 line f D1 line D2 line
1 1/2 1/4 3 3/4 3/8
2 1 1/2 4 1 1/2

Comparison of dispersive imaging methods
To make a fair comparison of different imaging techniques, we first neglect exper-
imental imperfections such as a non-ideal beam block or phase plate placement in
DFSI and PCI respectively, and also omit non-zero cube suppression in DFFI.

Provided the measurement destructiveness Pabs is low, the probe light transmis-
sion coefficient trough the cloud can be set to one, and the detected light intensity
for the two scalar imaging techniques [7] reduces to

I (DFSI) = I0 [2− 2 cos(θs)] , (4.22)
I(PCI) = I0

[
3−
√

8 cos(θs − π/4)
]
. (4.23)

In the DPFI method the probe light is polarized at 45◦ with respect to the PBS
axis. The horizontally and vertically polarized ports are imaged separately on the
camera according to

I
(DPFI)
H = I0 [1 + sin(2θF )] /2, (4.24)
I

(DPFI)
V = I0 [1− sin(2θF )] /2. (4.25)

The signal is obtained from the difference of the two images, however the variance
in such a picture is proportional to the sum of the two variances, making the signal
error independent of the rotation angle ∆S(DPFI) = 1/

√
ηNph,0.

Table 4.2 summarizes the signal function properties and the resulting SNRθ

for the discussed techniques, normalized with respect to the factor Π. Fig. 4.2(a)
displays the SNRθ/Π variation with the respective phase shift θ. In the small
phase shift limit θ � 1 all four techniques offer a signal to noise ratio SNRθ ≈ Π.
At high angles, the sensitivity of first the two Faraday imaging techniques and then
the two scalar ones decreases to zero. This is caused by extremal points in the
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Figure 4.2: Signal to noise ratio in the measured phase shift. (a) SNRθ/Π for
common dispersive imaging techniques (DFSI blue solid; PCI green dashed; DFFI
red dot-dashed; DPFI cyan dotted) as a function of the respective phase shift. (b)
Relative SNRθ ratio for DFFI and DPFI vs. Faraday rotation angle. Non-zero
cube suppression CS was taken into account.

signal function S(θ), when the light noise is amplified by the diverging derivative
|dθ/dS|.

Although in dark field imaging, the signal increases only quadratically with the
phase shift θ, noise in the picture originates only from the signal light. On the
other hand, in PCI or DPFI there is a finite light intensity, and hence shot noise
detected, even when no phase shift occurs. This feature, together with the relative
suppression of noise in the error propagation formula, equalizes the sensitivity of
the above methods for small phase shifts θ.

Fig. 4.2(b) shows a comparison of the two Faraday imaging techniques in a
more realistic model, where the cube suppression is not neglected. We present
the result for our experimental value CS = 0.0015 as well as for a high quality
Glan-Thompson polarizer with CS = 10−5. Although for small angles θF .

√
CS

the DFFI technique offers lower SNRθ, for higher angles it is superior to the dual
port imaging, for which the noise diverges at θF = 45◦; a typical peak angle in our
experiments. As seen from Fig. 4.2 (a), DFFI only reaches zero sensitivity at twice
this angle. To obtain the same sensitivity in the high angle regime, the detuning
in the DPFI method has to be chosen about twice that of DFFI. The absolute
sensitivity SNRθ/Π of our DFFI system peaks at θF ≈ 11◦, when it reaches 96%
of the theoretical maximum.
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Table 4.2: Signal properties of dispersive imaging techniques.

technique S(θ) dS/dθ SNRθ/Π
DFSI 2− 2 cos θs 2 sin θs |cos(θs/2)|
PCI 3−

√
8 cos(θs ± π

4 )
√

8 sin(θs ± π
4 ) |√2 sin(θs±π/4)|√

3−
√

8 cos(θs±π/4)
DFFI sin2 θF sin(2θF ) | cos(θF )|
DPFI sin(2θF ) 2 cos(2θF ) | cos(2θF )|

4.4 Faraday laser system
The off-resonant Faraday light is derived from a home built, external cavity diode
laser in Littrow configuration, which is locked to a master laser via a tunable offset
lock [60]. The master laser is locked to a saturation spectroscopy signal on the
f = 2 to f ′ = 1 and f = 2 to f ′ = 3 crossover, which makes it 212MHz red detuned
from the f = 2 to f ′ = 3 transition. The electronic level structure can be found in
appendix A.
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Figure 4.3: Photo and schematics of the beam path for the Faraday laser system.

A weak master beam from the main laser system is fiber-coupled and delivered
to the Faraday laser ‘bread board’, where it is mode-matched with a fraction of the
Faraday light on a 50/50 beam splitter. The beat-note of the two lasers is recorded
by a fast photo-detector and mixed with a signal from a voltage controlled oscillator
(VCO), to obtain a side band at a difference of the two frequencies. The mixer is
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followed by a low pass filter and an amplifier. Next, the signal is split, one part
of it is delayed by an external cable and mixed again with the non-delayed signal.
The DC component of the result is a measure of a relative phase shift on the delay
line. The spacing and position of nodes during a laser frequency sweep depends
on the delay cable length and the VCO frequency. Using a feedback circuit with
proportional, differential and integral gain (PID), the laser can be locked to a
chosen node and tuned in lock by a VCO frequency adjustment.

Since the f = 2→ f ′ = 3 transition has the highest oscillator strength (see
Eq. (4.9)), we use ∆2,3 ≡ ∆ as a measure of the laser detuning. This system allows
us to lock the laser in the range ∆ = (−1.5, 1.8) GHz and to adjust the detuning
dynamically in a single run within a range of 0.7 GHz. To monitor the detuning,
the system is also equipped with an auxiliary saturation spectroscopy.

The Faraday power is controlled by a double pass acousto-optical modulator
(AOM), which shifts the laser frequency up by two times 200MHz. The imaging
light pulses are typically of 1µs duration. A pair of concave lenses is used to focus
the beam through the AOM. An intermediate fiber is used to guide the light into
the imaging section of the main laser system, where it is overlapped with the beam
path for the z-axis absorption imaging and coupled into an existing imaging fiber.
The imaging fiber delivers the light to the experimental table.

On the experimental table, the light polarization is cleaned by two PBS cubes
followed by a half-wave plate (HWP) for the incident polarization adjustment.
The light is injected into the science chamber through a hole in the Ioffe coil and
propagates along the symmetry axis (z-axis in Fig. 4.1) of the cigar-shaped trap,
corresponding to the magnetic field direction. The imaging beam waist at the cloud
was 2σ = 2.29 mm. After the chamber, the light impinges on a 2′′ PBS, where the
Faraday rotated light is transmitted to the imaging camera and the non-rotated
part is reflected and focused onto a photo-detector to monitor the optical power.

4.5 Atom number and temperature calibration
We first investigate the Faraday coefficient cF as a function of the laser detuning.
Fig. 4.4 (a) shows this dependence, where cF = θsum/Nabs is obtained experimen-
tally by summing θF (obtained from Eq. (4.12)) over all CCD pixels and Nabs is
the atom number obtained from the absorption image. We focus on the charac-
terization of the blue detuned side, to avoid complications arising from molecular
resonances [17]. In each experimental sequence, we prepared a thermal cloud at
3µK and took 35 Faraday images while sweeping the laser detuning over 700MHz.
Each pulse had a rectangular amplitude envelope with duration 1µs, peak power
160µW, and the pulse period was 4.7ms.

The data agrees well with the theoretical value up to an overall scaling factor
of 0.64. We ascribe this discrepancy to the spatial inhomogeneity in the magnetic
potential and systematic calibration effects [61]. Nonetheless, the agreement is
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good in light of previous work [16, 17] and justifies neglecting phase shift from the
tensor atomic polarizability, which would induce detuning dependent corrections.

The destructiveness of DFFI was measured at four different detunings by ex-
posing the cloud to Faraday light for various durations and subsequently measuring
the resulting temperature in absorption images. To obtain the scattering rate from
the cloud temperature, we assume that each scattering event transfers twice the
photon recoil energy and the heat capacity of an atom is 3

2kB. The measured scat-
tering rate shown in Fig. 4.4 (a) is consistent with theory up to 50%. Fig. 4.4 (a)
also illustrates that the scattering rate decays as 1/∆2 whereas the Faraday coef-
ficient falls off as 1/∆.

Figure 4.4: Characterization of DFFI. (a) Faraday coefficient cF and photon scat-
tering rate as a function of the detuning. (b), (c) Temperature and atom number
obtained from DFFI compared to results from absorption imaging. Arrows in the
figures indicate the appropriate axes.

To investigate the measurement accuracy, we employ DFFI at different times in
the evaporation sequence, sampling an atom number range from 1.5 ·107 to 1.6 ·106

and a temperature range from 30µK to 1µK. The upper and lower limits of this
range are set by the EMCCD size and the magnification of the detection system. In
each experimental sequence, 20 Faraday images are taken, from which the first six
contain atoms and an average of the rest provides the intensity reference I(θ = 0).
The pulse parameters correspond to those in Fig. 4.4 (a) at detuning +750MHz,
leading to an absorption probability per DFFI pulse of 6 · 10−4.

To verify the accuracy of these measurements, we have taken a calibrated ab-
sorption image [62] at the end of each experimental sequence. This provides an
independent measurement of the number of atoms and the temperature of the
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cloud. The measured temperatures and atom numbers are shown in Fig. 4.4 (b)
and (c) as a function of phase space density. In both cases, DFFI allows for precise
measurements over the entire parameter range, despite the fact that atom number
and temperature are changed dramatically. Fig. 4.4 (b) and (c) show that the pro-
portionality factor between the two methods is essentially constant: it is 0.82(9) for
the temperature, and, consistent with the results in Fig. 4.4 (a), the atom number
proportionality factor is 0.65(3). This result confirms that DFFI provides precise
non-destructive measurements and good accuracy can be obtained by appropriate
scaling of the results.

4.6 Monitoring system dynamics

Vector field magnetometry
Due to the magnetic field dependence of the Faraday effect, DFFI also allows
for new avenues in magnetometry. Vapor cell optical magnetometers [63] based
on the Faraday effect have been extremely successful. They reach sensitivities
competitive with state-of-the-art SQUID magnetometers (superconducting quan-
tum interference device) and allow for both spatial resolution [64] and vector field
magnetometry [65]. However, in this method, due to atomic motion, the spatial
resolution is typically limited to millimetre length scales. For this reason, magne-
tometry based on ultracold atoms holds promise for orders of magnitude higher
precision due to the reduced thermal motion. Spatially resolved magnetometry
has been realized in, e.g., dark optical tweezers [66] and Bose-Einstein conden-
sates [67, 5]. Furthermore, vector magnetometers were recently realized [68] by
combining Faraday rotation in one iteration with a measurement using the tensor
part on another sample and in ref. [69] using spatially resolved absorption imaging
of a precessing collective spin after variable evolution times. To date, however, all
realizations have been limited in interrogation time and to resolutions of the order
of tens of microns due to residual motion along a weakly confining trap axis.

In this work, we take an important conceptual step towards higher spatial
resolution by realizing a single shot vector magnetometer based on ultracold atoms
in an optical lattice. The method is an adaptation of a standard strategy of vapour
cell magnetometers [65] relying on time-dependent control of additional magnetic
bias fields to determine the magnetic field components. In principle, our approach
allows for spatially resolved magnetometry down to the scale of a single lattice site
(≈ 0.5 µm).

To realize this lattice magnetometer, the atomic cloud is transferred into a 1D
vertical lattice at a wavelength of 914 nm, whereupon we sweep the magnitude of
an additional magnetic field applied along the z-axis. During this sweep, 50 DFFI
images are taken to obtain the integrated Faraday signal at each applied magnetic
field Bz as shown in Fig. 4.5 for two values of the transverse magnetic field. The
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data was normalized and fitted with e−κt|Bz − Bz0|/|B|, where the modulus is
taken because our method is not sensitive to the sign of the Faraday rotation. The
fit yields the offset field in the z-direction Bz0 and the magnitude of the transverse
field |Br|. The exponential factor in the fit function accounts for atom loss during
the sweep.

Figure 4.5: Single-run magnetometry in an optical lattice. DFFI signal as a func-
tion of the applied magnetic field along the z-axis. Open circles: Magnetic field
sweep over 0.93 G at |Br| = 0.053 G. Full dots: Magnetic field sweep over 6.2 G at
|Br| = 1.03 G. The inset shows the sensitivity of the offset field extraction for the
two realizations as a function of number of data included points (centered around
the signal minimum). The sensitivity is estimated as the error of the fit times the
square root of time taken to record the included data points.

In a first approach, to quantify the sensitivity of such a time dependent vec-
tor magnetometer, the precision of extracting Bz0 was evaluated as a function
of the number of included data points (Fig. 4.5 inset) yielding best values of
0.6 · 10−7 T/

√
Hz for the smaller sweep. The sweeps yield an offset field Bz0 =

−0.252(13)G, which is within the uncertainty in agreement with our microwave
calibration technique. This demonstration shows new avenues for magnetometry
with DFFI, which could be better exploited with an optimized magnetometry se-
quence.
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Spatially resolved cloud dynamics
DFFI allows for the non-destructive investigation of spatial dynamics. We demon-
strate this by monitoring the position of the atomic cloud as it oscillates in a
harmonic potential. Since a single cloud can be probed repeatedly, one can map
its trajectory in a single experimental run. This has previously been realized with-
out spatial resolution to monitor breathing [70] and center-of-mass oscillations [71];
however, this approach fails for more complicated trajectories, e.g., when the po-
sition of the trapping potential is dynamically varied during the oscillation.

Figure 4.6: Monitoring of spatial dynamics. (a) Non-destructive measurement of
the cloud position during a damped oscillation. (b) Non-destructive measurement
of the cloud position during a decompression of the magnetic trap. The cloud
position and oscillation frequency are shown within three time intervals during the
decompression.

Fig. 4.6 (a) shows the position of the cloud recorded in a single experiment by
acquiring a total of 2000 images at intervals of 0.402ms. Initially, a cloud of about
106 atoms at 1µK was created in a magnetic trap and the imaging was started.
Shortly afterwards (t = 0), the magnetic trap was turned off for a duration of
70µs, which initiated a strong vertical oscillation.

The initial part of the oscillation was fitted to obtain the trapping frequency
of 222.44(6)Hz as shown in the inset of Fig. 4.6 (a). The residual anharmonicity
of the trap makes the system ergodic and slowly transfers the collective motion
of the atoms into thermal energy. This results in a decrease of the oscillation
amplitude and heating of the cloud, which can be extracted from the DFFI pictures
simultaneously.
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The continuous probing of the spatial dynamics enables us to monitor dynamic
changes of the system in a single sequence. To demonstrate this, we have observed
an oscillating cloud during a decompression of the trap. Again, we prepared a cold
cloud in a magnetic trap and started the acquisition of 750 images at intervals of
0.89ms. The oscillations were initiated at time t = 0 and after a hold time of
60ms we began to decrease the current of the magnetic trap and simultaneously
increase the bias field. The resulting decrease in the trapping frequency caused
the cloud to sag due to gravity while it continued to oscillate.

The final displacement of the equilibrium position was 65µm: about four times
the cloud size. By subtracting the shift of the equilibrium we obtained the chirped
oscillations; these oscillations were fitted within short time intervals to extract
the time dependent trapping frequency, as shown in Fig. 4.6 (b). This example
highlights the advantages of spatially resolved non-destructive probing, since the
temperature and the in-trap equilibrium position cannot be extracted from non-
spatially resolved dispersive methods [70, 71].

To investigate the option of providing feedback to the in-trap cloud motion, we
have attempted to extinguish the oscillation after few cycles. This was done by
using the same trap turn-off pulse applied again after a half integer multiple of the
oscillation period.
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Figure 4.7: Non-destructive monitoring of controlled excitation and de-excitation
of in-trap oscillations with cold thermal cloud.

Figure 4.7 shows the result of an experiment where the oscillation was stopped
after 5.5 periods of oscillation. The precise delay between the two control pulses
was adjusted empirically to yield the best result. Physically, the process can be
visualised as follows. The first trap turn-off allows the cloud to fall briefly, which
puts it out of equilibrium. Once the trap is on again, the cloud begins to oscillate.
The second turn-off pulse is applied when the cloud is moving upwards. Removal
of the potential, causes the cloud to slow down and captures it again once it reaches
rest in the equilibrium position.
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Chapter 5

Actively stabilized preparation of
atomic clouds

This chapter presents our results on high precision Faraday measurements and
feedback. The method was improved to achieve a photon shot noise limited de-
tection, which allows to resolve the stochastic character of atom number loss in
an RF cut. Fast on-line evaluation of the Faraday images allows to control the
applied loss with feedback and produce atomic samples with highly reduced atom
number fluctuations.

Introduction
A non-destructive measurement allows to extract information about a system,
without significantly disturbing its state. Such knowledge can be used to customize
the ‘treatment’ of the system, making it evolve into a desired state.

Feedback can be defined as a measurement dependent action on a system. In
our case, the system is an atomic cloud in a magnetic trap and the measurement is
the Faraday image of the cloud. According to the thermal state of the cloud, we can
divide the feedback into quasi-equilibrium and out-of-equilibrium cases: a cloud in
a thermal equilibrium is fully characterized by a temperature and the number of
atoms, whereas an out-of-equilibrium cloud can have a density distribution with
time varying spatial moments; the mean and the variance being the first two. A
quasi-equilibrium feedback acts on the temperature and/or the atom number and
the feedback loop frequency has to be lower than the rethermalization rate. In
contrast to that, the out-of-equilibrium feedback, such as the control of in-trap
cloud oscillations, requires a fast response time, on the order of milliseconds in the
magnetic trap.

As we have shown in the previous chapter, the DFFI method provides a fast
and precise measurement of the atomic cloud properties. We have observed large

53
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natural fluctuations of the atom number due to the irreproducibility of initial
conditions in the evaporation sequence. We now want to measure these deviations
and apply an active stabilization at a later point in the evaporative sequence.
This should facilitate a stable production of ultracold thermal clouds and BECs,
providing reproducible starting conditions for other experiments. Later, we want
to apply feedback to the position of the cloud and eliminate the in-trap oscillations
generated, e.g., by a non-adiabatic trap transformation.

5.1 Online image analysis

Real-time data processing hardware
To be able to cover both types of the feedback, we need to implement fast, real-
time image evaluation. Although the traditional computer data processing does not
meet these criteria, equipping the computer with a field programmable gate array
(FPGA) allows one to encode an algorithm directly into an electronic hardware
design featuring fast and deterministic execution. Since the information processing
resources are to a large degree independent of each other, the architecture can
perform several tasks in parallel, such as capture and evaluate an image, while
controlling other experimental equipment in real time. To simplify the task of
designing a complex hardware program, we decided to use a National Instruments
FPGA (NI PCIe-7852R), which can be programmed by LabVIEW, a high level
graphical programing language widely used for the control of scientific instruments.

The acquisition properties of the camera (Andor iXon DU-888) have to be set
up from a computer. Nevertheless, the acquisition can be triggered by external
hardware, and the captured image can be read out in parallel by the FPGA. As
soon as the image exposure is complete, the individual pixels are digitized with
14 bit resolution and transferred at 10MHz rate into the computer. A digital
repeater installed on the computer line for cable extension purposes allows to split
the data transfer and feed it into the FPGA via a couple of parallel TTL channels.
Together with the 14 data lines, the data clock, frame, fire and armed channels
are provided. The last two channels signal, respectively, that the exposure is in
progress and that the camera is ready for the next exposure.

The data acquisition on the FPGA is performed in a 40MHz loop. The pixel
values are read out on a rising edge of the data clock provided the frame channel
is high. Not all pixel values have to be processed: only three preselected regions
of interest (ROI) are monitored. These correspond to signal (the area of the
cloud), reference (an area surrounding the atoms used for light intensity scaling)
and baseline (a masked area of the picture used for background light and electronic
offset subtraction); these regions are shown in Figure 5.1. Pixel sums of the three
ROIs are accumulated already during the image readout. Only the signal ROI raw
image is saved into the FPGA RAM memory. The entire frame is always captured
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Figure 5.1: Example of rescaled Faraday image I(θF )/I(0) ∝ S. The left image
shows the full 220 × 200 pixel frame. The right image is a zoom to the signal
ROI marked with the red solid line, 29 × 29 pixels. The area between the two
black dotted rectangles is used for estimation of the reference intensity I(0) from
the leaked light. The mean pixel count from the green dashed rectangle (baseline
ROI) is used for electronic offset subtraction on the masked part of the CCD.

by the camera computer, allowing for post evaluation.
By default, we are using 220 × 200 pixel frame and we mask the upper 50

rows with a razor blade in the intermediate image plane. With this frame size,
the maximal continuous imaging rate is 7ms per picture—limited by the camera
readout speed.

Thermal cloud temperature and atom number
In principle, a relative measure of the atom number can be obtained very ‘eas-
ily’ by summing the Faraday angle θF over the signal ROI. However, this would
require knowledge of the rotation angle for each pixel, which means calculating
arcsin

√
S(θF )− S(0). Since the dimensionless signal function S(θF ) involves a

subtraction of the baseline and scaling with the reference light intensity, the rota-
tion angle can be evaluated only after the whole picture has been read out. The
non-trivial conversion function requires a couple of clock cycles to evaluate and
would have to be applied in a loop, pixel by pixel. The image evaluation would
thus take an amount of time equivalent to the image readout time (typically on
the order of milliseconds).

The main problem, however, lies in applying the square root to the image
S(θF )−S(0), which contains negative values due to the noise in the light intensity.
Furthermore, when an argument of a square root function approaches zero, its
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derivative grows to infinity and thereby amplifies the noise significantly. The area
with low mean rotation angles would thus induce most of the noise in the integrated
rotation angle.

These problems can be bypassed by working directly with the signal sum

ΣS ≡
∑
i,j

Sij, (5.1)

carried out over a finite area containing the cloud (the indices on S denote pixel
coordinates). Here, the dominant contribution to the uncertainty comes from
photon shot noise of the rotated light, which scales ∝

√
Sij. The signal sum

depends both on the atom number and temperature, and we will now investigate
this dependence analytically.

Due to the equality of the two transverse trapping frequencies ω⊥ = ωx = ωy,
the cloud profile is expected to be radially symmetric. Assuming that the in-trap
thermal cloud has a Gaussian density distribution, the atom number proportion-
ality reads

N ∝ Σθ ≡
∫
rdφdrθF (r) = 2πθmax

∫ ∞
0

rdr exp
(
− r2

2σ2

)
= 2πσ2θmax, (5.2)

where θmax is the peak rotation angle and the Gaussian width σ is related to the
temperature of the cloud through the equipartition theorem

1
2kBT = 1

2mω
2
⊥σ

2. (5.3)

The two above equations imply a useful relation for the peak rotation angle

θmax ∝
N

T
. (5.4)

Up to an offset, the raw image sum is proportional to

ΣS =
∫
rdφdr sin2 θF (r) = 2π

∫ ∞
0

rdr sin2
[
θmax exp

(
− r2

2σ2

)]
. (5.5)

Making the substitution θ = θmax exp
(
− r2

2σ2

)
and using the result (5.2), we can

express the above as

ΣS = −2πσ2
∫ 0

θmax

dθ sin2 θ

θ
= Σθβ(θmax), (5.6)

where we have defined

β(θ) ≡ 1
θ

∫ θ

0

dθ′ sin2 θ′

θ′
. (5.7)
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This integral does not have an analytic solution, because it requires knowledge
of the so called cosine integral function. Since the DFFI method is limited by
θmax < π/2, a Taylor expansion of the sinus function provides a high precision in
a couple of terms, and the integration can be carried out explicitly, yielding

β(θ) = θ

2 −
θ3

12 + θ5

135 −
θ7

2520 + ... (5.8)

This is a simple polynomial function, which can be evaluated quickly on the FPGA.
The relative atom number and temperature measures are then given by

N ∝ Σθ = ΣS

β(θmax) , (5.9)

T ∝ 2πσ2 = Σθ

θmax
= ΣS

θmaxβ(θmax) . (5.10)

A cloud in a thermal equilibrium is fully specified by N and T , meaning that
the signal sum is also a function of these two quantities ΣS ≡ ΣS(N, T ). For small
rotation angles, we can approximate β(θ) ≈ θ/2 and from Eqs. (5.4) and (5.6)
write

ΣS ∝ Nθmax ∝
N2

T
. (5.11)

Due to the second power dependence on N , the signal sum is about factor of
two more sensitive to relative deviations in the atom number. This can be seen
more explicitly by expanding the relative error in signal sum ES ≡ ∆ΣS/〈ΣS〉 as a
function of the relative deviations in atom number EN ≡ ∆N/〈N〉 and temperature
ET ≡ ∆T/〈T 〉

ES =
∂ΣS
∂N

∆N + ∂ΣS
∂T

∆T
〈ΣS〉

= ∂ΣS

∂N

〈N〉
〈ΣS〉

EN + ∂ΣS

∂T

〈T 〉
〈ΣS〉

ET ≡ γNEN + γTET , (5.12)

where in the last equality we have defined error propagation coefficients γN and
γT . Equation (5.11) implies γN = 2 and γT = −1. Later we will calibrate these
two coefficients experimentally.

Finally, we outline the technicalities connected with evaluating Eqs. (5.9) and
(5.10) efficiently on the FPGA. Since all arithmetic operations on the FPGA are
carried out using a fixed point data type (constant absolute error), the relative
error scales inversely-proportional to the magnitude of the represented number.
Given the same resources, it turns out to be more precise to evaluate the factor
1/β from an analytical expression and multiply by it, rather than divide ΣS directly
with β. Expressing 1/β as an expansion ∑∞k=−1 akθ

k, one can find the coefficients
ak by minimizing the relative error

ε(θ) = 1− β · (1/β) = 1− β
∞∑

k=−1
akθ

k. (5.13)



58 Chapter 5. Actively stabilized preparation of atomic clouds

Substituting for β from (5.8), multiplying the two polynomials and nulling all the
coefficients on the right hand side yields a set of linear equations for the expansion
coefficients ak. We obtain an expression for 1/β in the form

1
β(θ) = 2

θ
+ θ

3 + 7θ3

270 + 11θ5

22680 + ... (5.14)

To achieve the required precision in our applications, it is sufficient to use only
the first three terms of this expansion. The error of the truncated expansion can
be distributed more evenly over the interval θ ∈ (0, π/2), by adjusting the last
coefficient. Allowing a3 to vary, we find that the standard deviation of the error
(5.13) on the interval 〈0, π/2〉 is minimized for a3 ≈ 1/36, when it acquires a value
2.7 · 10−4. For the analytical result a3 = 7/270 ≈ 1/38.57 the standard deviation
is 14.5 · 10−4, about five times larger due to the growing standart deviation in the
high angle regime.

To reduce the number of division operations, we first evaluate the temperature

T (FPGA) ≡ ΣS

θmaxβ(θmax) ≈ ΣS

[
2

(θmax)2 + 1
3 + (θmax)2

36

]
(5.15)

and then multiply by θmax to obtain the atom number

N (FPGA) ≡ ΣS

β(θmax) = θmaxT
(FPGA). (5.16)

Peak rotation angle and cloud position
It is now clear that the peak rotation angle θmax is an essential parameter for a
quick temperature and atom number evaluation. It also determines the sensitivity
of the imaging method as discussed in Chapter 1. The peak angle can be evaluated
from

θmax = arcsin
√
Smax = 1

2

[
arcsin(2Smax − 1) + π

2

]
, (5.17)

Smax ≡ S(θmax)− S(0), (5.18)

S(θF ) = I(DFFI)(θF )
I0

= CSI(DFFI)(θF )
Iref

, (5.19)

where we have defined the peak signal Smax such that it represents only the rotated
light intensity. The reference light intensity Iref is a mean over the reference ROI.
The peak signal cannot simply be calculated as a mean of the few highest pixel
values, because in the low angle regime it is often the image noise that determines
the sorting. To average out the noise, the mean has to be taken over a uniform
area that is still small in size compared to the cloud, in order to include only the
peak angles.
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To locate the peak area, that is to find the cloud’s position, a non-weighted
average over the coordinates of the maximum values is taken. The maximum values
are found already during the picture readout. Since divisions of a fixed point binary
numbers with powers of 2 require no processing (fixed point translation), we choose
to take the mean over 8 maximum values yielding a cloud position resolution of
0.125px. The cloud position is then rounded to the nearest integer to locate the
peak area.

The peak area was chosen to be a 3×3 square, however, to obtain the mean peak
signal, the values are not weighted equally, in order to favor the central pixels when
the cloud size is small. The central pixel has a weight of 4, its side-neighboring
pixels are weighted with 2 and the corner ones with 1 implying that the weighted
sum should be divided by 16. Using only the powers of 2 for the multiplication and
division, the number of operations is reduced significantly, while the computation
itself is precise and without cost.

The conversion function (5.17) cannot be evaluated directly, because the Lab-
VIEW FPGA module does not provide an arcsin function. The function also
cannot be well approximated by a single polynomial series because all its deriva-
tives diverge at the end points of the definition interval Smax = 〈0, 1〉. The simplest
solution seems to be to use a linear interpolation between a couple of pre-calculated
points. Realizing that the arcsin has odd parity, it is enough to implement the
interpolation only for positive values and then correct it with a sign of the argu-
ment. In our implementation we use 32 points at 32 bit precision, distributed such
that the standard deviation is minimized. This requires a higher density of points
closer to the end points of the interval, because the first derivative grows quickly
there. The final FPGA implementation of the function (5.17) yields a standard
deviation of the relative precision of 2.5 · 10−4.

5.2 Active experiment control
In the first set of experiments, our goal is to provide feedback to the RF evaporation
sequence, that is to obtain a cloud with a predefined atom number and temperature
free of fun-to-run fluctuations.

In the first approximation, the cloud temperature is proportional to the trap
depth. In the magnetic trap, this corresponds to the distance of the RF knife from
the trap bottom. Since the RF frequency is controlled very precisely, the trap
depth varies mainly due to drifts of the magnetic field. The drifts play a role only
in the last stages of the evaporation, when their size becomes comparable to the
trap depth. Consequently, the temperature is well defined by the RF level for most
of the time, and therefore does not require active stabilization. Although we might
come back to the temperature feedback later, at the moment we will neglect the
trap bottom drifts and focus on atom number stabilization.

During the planning phase, we considered the option of inducing atom losses via
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optical heating of the cloud using the Faraday beam. One must however consider
that it is not very safe to operate the EMCCD camera in the presence of long,
powerful heating pulses in between the exposures. Though it might be possible
to use a different heating source, we decided to abandon this idea and to control
directly the RF frequency instead. The RF can be set digitally, which offers better
reproducibility and higher precision. Additionally, we can possibly devise more
sophisticated feedback schemes by controlling both the power and frequency of the
RF knife.

The triggering of the camera and the generation of the imaging pulses is also
performed by the FPGA. Thus the imaging can be easily synchronized with the
evaporative sequence. Controlling the RF with FPGA also offer the possibility of
adjusting the end evaporation level in the individual runs, in case we later decide
to correct the trap bottom fluctuations.

The two mechanical shutters involved in the Faraday detection (probing light
and CCD) are still controlled by the Experimental Control System (ECS). Al-
though the shutter control was implemented on the FPGA as well, operating the
shutters with ECS turned out to be more convenient.

Online DDS programing via FPGA
In our experiment, the RF evaporation frequency is generated by a Direct Digital
Synthesizer (DDS), which is programmed by the ECS via a serial port. For ECS,
the entire experimental sequence must be compiled and loaded into a data buffer
before an experimental run can begin. This prohibits adjustments of the sequence
during the run, and therefore requires a full time control of the DDS chip by the
FPGA.

We have settled for a 5MHz serial programing rate, which is 1/5 of the max-
imum rate specified by the DDS manufacturer. The speed is limited by the rise
time of the digital drivers used to amplify the current from the FPGA in order
to drive the optocouplers at the DDS interface. The speed might be increased by
using better drivers, however, for the present purpose this time scale is sufficient.
Updating the DDS frequency takes 42 bits (8 bit instruction, 32 bit frequency and
2 bit update), which means that the frequency can be updated every 8.4µs. This
provides enough resolution for all the evaporation sweeps (e.g., ramp 1MHz/s can
be swept with 8.4Hz steps).

The control of the RF can be defined entirely in terms of linear ramps. For
instance, a single ‘large’ frequency step can also be represented by a frequency
sweep with the maximum ramping speed. In our system, the evaporation consists
of 6 linear ramps, which approximate an exponential—the standard form of an
evaporation ramp [72]. Each linear ramp is defined by a ramping speed and an
end frequency. To maintain synchronous execution with the rest of the experiment,
the FPGA initiates each ramp upon receiving a trigger from ECS. The ramping
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speed is defined by a frequency step size per update period 8.4µs. When an end
frequency is reached, it is held until the trigger is set high again. If the trigger is
set high before a sweep is finished, the FPGA executes the next sweep immediately
after the current sweep finishes. Once we calibrated the clock of the FPGA with
the ECS computer (a constants relative correction of the order 10−6), it turned
out to be sufficient to set the trigger high at the first sweep, and let the FPGA
evaporate at its own pace.

The sweep parameters (end frequencies and sweep durations) are read out from
the current ECS file by a host LabVIEW program (running on the FPGA host
computer). The host simply waits for the ECS file to be saved on the experiment
computer and then formats the relevant data into a sequence of sweep rates and end
frequencies and sends it to the FPGA. The sweeps are divided into sub-sweeps with
the possibility of making a single Faraday image at the end of each sub-sweep. An
imaging sequence with n successive images can be accomplished by programming a
sweep (with possibly static RF frequency) consisting of n sub-sweeps and enabled
imaging.

The FPGA RF control implementation has been tested with atoms on a BEC
sequence, which yielded results equivalent to the original RF control.

Imaging power stabilization
The light from the Faraday laser is coupled into two fibres before it arrives at the
experimental table. This makes it prone to power drifts and fluctuations. If we
define destructivity as the lost fraction of atoms due to photon scattering, then
1% uncertainty on a 10 % atom loss would induce a relative error ∼ 10−3 on the
final atom number. Since the atom number can be measured with an order of
magnitude higher precision, it is critical to actively stabilize the imaging power.

We have implemented the probe power stabilization on the FPGA as a small
program that runs in parallel with the image evaluation and RF control. An
amplified photo-detector (50 dB) is placed on the reflection of the polarization
analysing PBS (see Fig. 4.1) and collects effectively all probing light after it has
passed the science chamber. The detector is connected to an analog input on the
FPGA.

The power is controlled by a double pass AOM driven by a homebuilt RF driver
consisting of a voltage controlled oscillator, a voltage controlled attenuator, a fast
RF switch and an RF amplifier. The pulses are made with the RF switch at a fixed
duration, while the power is controlled by a feedback loop. On the FPGA, a free
running ∼ 10 MHz loop compares the photo-detector value with a set point and,
adjusts the AOM power proportionally to the error via tunable gain. The power
is stabilised only when the RF switch is on to ensure that the detector reading is
valid. The response time of the AOM driver is on the order of 10µs, so we begin
to regulate when the pulse has been engaged at least 16µs. Once an imaging pulse
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has ended, the last power setting is applied in the beginning of the next pulse.
The regulation reaches the set point in ∼ 25µs and improves the immediate power
stability from about 5 % to 1 %.

It is the integrated power (number of photons per pulse), that is important for
a reproducible destructivity. The imaging pulses are usually 660µs long and the
relative integrated photon number stability is 3.9 ·10−3 per pulse, as judged by the
stability of the reference light recorded by the camera.

5.3 Measurement precision and destructivity

Single pixel noise

We want to achieve a measurement limited by the photon shot noise due to the
rotated light. This requires that the technical noise of the camera such as the
readout noise is suppressed. This type of noise always contributes with the same
absolute magnitude irrespective of the amount of light detected on the camera.
The technical noise can be effectively suppressed by distributing the same number
of photons Nph,0 over multiple images, based on the following argument.

When the shot noise is the only source of noise, the overall precision in n images
is preserved, because the relative precision of a single image is σ1 ∝ 1/

√
Nph,0/n,

and the uncertainty of the mean is σn = σ1/
√
n ∝ 1/

√
Nph,0. Acquiring more

images with consistently less photons per picture, requires a higher EM gain to
make use of the dynamical range of the camera and keep the absolute number of
pixel counts the same (close to maximum). Thus the relative size of the readout
noise and the classical noise—noise proportional to the light intensity—stays the
same, while the shot noise uncertainty σ1 grows, and eventually dominates over
the technical noise, for high enough n.

It is essential that the ROIs for baseline and reference are sufficiently large,
such that the error on estimation of the reference light I(0) is small compared
to the error of the signal sum. The single pixel noise due to readout at 10MHz
has standard deviation of ∼ 5 digital counts, while the mean count level in the
reference light area is ∼ 150. Average over baseline area 37× 212 pixels therefore
induces a relative error (5/150)/

√
37× 212 = 3.74 · 10−4 in the estimation of the

reference light intensity.
Single pixel noise in the reference light area is ∼ 18 counts, while the area

contains 25323 pixels producing a relative error (18/150)/
√

25323 = 7.5 · 10−4. As
we will show later (Eq. (5.21)), the signal sum ΣS is measured with a relative error
σΣS = 3.57 · 10−3 in a single picture, which is about an order of magnitude larger.
This implies that the measurement is limited by the noise in the signal area.
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Shot noise limited detection
To examine the scaling of precision with the amount of probing light, we performed
a sequence of 50 Faraday images on a cloud with ∼ 5.5·106 atoms at a temperature
18µK. The run was repeated 10 times for 8 different probe pulse durations, with
the EM-gain adjusted as to use the full dynamical range of the camera. To measure
the imaging induced losses, we evaluate the atom number by fitting sin2 [θg(x, y)]
to the signal image S(θF )− S(0), where θg(x, y) is a Gaussian distribution for the
rotation angles which depends on the atom number and temperature, see Eqs. (5.4),
(5.3).
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Figure 5.2: Dependence of the destructivity and measurement precision on the
probe pulse duration. (a) Example traces of atom number obtained from a 2D fit
to the signal images (one for each pulse duration), rescaled with the first image.
(b) The lost fraction of atoms as a function of the integrated probing time. The
black solid line is an exponential fit to the data. (c) The signal-to-noise ratio for
signal sum evaluated on a single image as a function of the imaging pulse length.
The errorbars show uncertainty of the mean based on 10 repeated experiments.
The black solid line is a single parameter fit ∝

√
Nph to the five least destructive

data points.

Example ‘traces’ of the atom number for each probe duration are shown in
Figure 5.2(a). The traces were rescaled with atom number in the first picture.
We see that more probing light induces higher losses, but also produces a smother
trace (higher measurement precision). The lost fraction of atoms during the 50
images is plotted as a function of the total probing time in Fig. 5.2(b). In the
absence of imaging, the in-trap decay is 3.3 % due to residual rethermalisation of
the cloud.

To obtain the measurement precision, traces in the signal sum were fitted with
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an exponential function individually for each run. The fits were subtracted from
the data giving a deviation ∆ΣSj for each image j. First, we want to obtain the
precision of individual images, therefore we need to evaluate correlation in pairs
of successive measurements (taken on approximately the same cloud). The Allan
deviation (two sample deviation) in the signal sum is

σΣS ≡

√√√√√ 1
2(M − 1)

M−1∑
j=1

(∆ΣSj+1 −∆ΣSj)2, (5.20)

where M is the number of images.
The resulting signal-to-noise ratio in the signal sum SNRΣS = 〈ΣSj〉/σΣS is

plotted in Figure 5.2(c) as a function of the probe pulse duration. We see that
initially SNRS rises with a square root dependence on the number of photons, in
accordance with the scaling of the light shot noise. A single parameter square root
fit to the first five data points was included as a guide for eyes. As the amount of
light per picture is increased, and the consequently the EM gain is reduced, the
detection becomes influenced by other sources of noise, such as the CCD readout,
which hinders the growth of the SNR.

Per default, we use 0.66 ms pulse duration, which appears to be well in the shot
noise limited regime, and gives relative uncertainty of the signal sum per single
image

σ′ΣS = 1
SNRΣS

= (3.57± 0.18) · 10−3. (5.21)

Light induced atom loss
The observed loss of atoms due to imaging is caused by spontaneous photon scat-
tering. Two main processes might be involved: recoil heating inducing loss due to
finite trap depth, and decay into untrapped states. To determine the magnitude
of these contributions, we first need to estimate the number of scattered photons
per atom.

Since the bias magnetic field is oriented along the probing direction, the linearly
polarized light is a superposition of σ+ and σ− circular polarizations. Scattering
photons on the σ+ transition does not lead to a state change, since by selection
rules, the atoms must decay back into |F = 2,mF = 2〉. The scattering rate on
this cycling transition may be calculated as

Rscat,+ = Γ
2

I+/Isat

1 + 4(∆2,3/Γ)2 + I+/Isat
, (5.22)

where Γ = 2π × 6.07 MHz is the natural line width, Isat = 1.669 mW/cm2 is the
saturation intensity and ∆2,3 = 2π×1200 MHz is the detuning of the light from the
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F = 2 → F ′ = 3 transition. The light intensity of the σ+ polarized light is I+ =
I0/2, where the total light intensity used in our experiment is I0 = 0.489 mW/cm2.
For the total probing time τ = 33 ms (50 images), we calculate the number of
scattered σ+ photons per atom

Nph,+ = τRscat,+ ≈ 0.59. (5.23)

If the number of σ− scattered photons is of comparable magnitude, the total num-
ber of scattered photons is of the order of one. Each scattering event heats up
the atom by the recoil temperature TR ≈ 0.36µK, which is small compared to the
cloud temperature (∼ 18µK). It is therefore unlikely that the observed 11.0 %
atom loss in the experiment (see Fig. 5.2(b)) is caused solely by the recoil heating.

We will now estimate the loss due to state transfer. The σ− polarized light
can transfer the atoms into three possible excited states |F ′ = j,mF = 1〉, j =
1, 2, 3. From these states a decay can occur into both F = 1 and F = 2 ground
state manifolds. The decay probabilities Pj,k for the k = 1, ..., 5 final states are
proportional to the square of the transition matrix element [41]

Pj,k ∝



F ′ = j
k 1 2 3
1 |F = 1,mF = 0〉 5/24 1/8 0
2 |F = 1,mF = 1〉 5/24 1/8 0
3 |F = 2,mF = 0〉 1/120 1/8 1/5
4 |F = 2,mF = 1〉 1/40 1/24 4/15
5 |F = 2,mF = 2〉 1/20 1/12 1/30


. (5.24)

In this notation, the strength of the σ+ transition is P+ ∝ 1/2.
To estimate the number of photons scattered on the individual σ− transitions,

Nph,j, we also need to take into account the detuning. In the off-resonant limit
([∆/Γ]2 � 1), we can approximate

Nph,j ≈ Nph,+

(
∆2,3

∆2,j

)2
Pj,5
P+

. (5.25)

The total number of photons scattered on the σ− transition is then

Nph,− =
3∑
j=1

Nph,j ≈ 0.032 + 0.066 + 0.039 = 0.137, (5.26)

which is about factor of four lower than Nph,+, see Eq. (5.23). Finally, considering
that a decay into any state but |F = 2,mF = 2〉 leads to an atom loss, the number
of scattering events leading to the loss can be estimated as

Nph,−,loss ≡
3∑
j=1

Nph,j

∑4
k=1 Pj,k∑5
k=1 Pj,k

≈ 0.120. (5.27)
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This result is very close to the observed loss (∼ 11%), which leads us to conclude
that the main destructive effect of the imaging is the spontaneous scattering into
untrapped states.

Uncertainty in a stochastic loss process
The atom loss due to spontaneous scattering is an example of a single body stochas-
tic loss process, where the loss event for each atom occurs only with a certain
probability and independently of other atoms. Such a random process applied
to a sample with an exactly known number of particles generates uncertainty in
the number of ‘survived’ particles. We will now construct a simple model for the
stochastically induced uncertainty.

Let us denote the survival probability p and the initial number of particles
N0. The probability that exactly N atoms will survive is given by the binomial
distribution

P (N) =
(
N0

N

)
pN(1− p)N0−N , (5.28)

because there is
(
N0
N

)
ways of randomly picking N atoms out of N0, and once

those atoms survive with probability pN , the other N0−N atoms will be lost with
probability (1− p)N0−N .

The mean and variance of the binomial distribution are

〈N〉 = N0p (5.29)
σN

2 = N0p(1− p), (5.30)

which implies a relative atom number uncertainty

σ′N ≡
σN
〈N〉

=
√

1− p
〈N〉

=
√

d

〈N〉
, (5.31)

where in the last equality we have introduced destructivity d ≡ 1− p. For a van-
ishing survival probability p� 1, the stochastic uncertainty approaches 1/

√
〈N〉,

which is sometimes called the ‘atom shot noise’ limit.

Multi-image detection
For the chosen imaging conditions, the single image induced loss is d = 2.2 · 10−3,
which for 〈N〉 ≈ 5.5 · 106 implies a relative uncertainty σ′N = 2 · 10−5. This value
is about two orders of magnitude smaller than the single image precision (5.21),
however, when averaging over a series of n images, the measurement uncertainty
decreases proportionally to 1/

√
n while the stochastic noise grows as

√
n. There-

fore, the two errors become comparable for n ∼ 100.



5.3. Measurement precision and destructivity 67

To quantify this trade-off, we need to consider the fact that losses occur contin-
uously throughout the imaging sequence, and therefore each image is separated by
a different loss from the final atom number. We will now try to calculate more pre-
cisely the contribution of stochastic noise to the measurement precision in sequence
of images. To isolate the stochastic noise contribution, assume for a moment that
the individual images are infinitely precise. Provided the initial atom number is
N0, the mean atom number measured in the k-th image is

〈Nk〉 = N0p
k = N0(1− d)k. (5.32)

For a given run, we can define a relative atom number error in the k-th image

Ek = Nk

〈Nk〉
− 1. (5.33)

By definition E0 = 0, and in the absence of stochastic noise also Ek = 0 for all k.
When the noise is present the error evolves as

Ek+1 = Ek + ∆Ek+1 =
k+1∑
i=1

∆Ei, (5.34)

where ∆Ek are normally distributed (for large N0) random variables with standard
deviation

Std(∆Ek) =
√

d

〈Nk〉
. (5.35)

The simplest measure of the initial atom number N0 (or the initial error E0) is
the mean atom number error over all images

Ē = 1
n

n∑
i=1

Ei = 1
n

n∑
i=1

i∑
j=1

∆Ej. (5.36)

The order of the two summations can be swapped by realizing that j ≤ n and
i ≥ j, and the summation over i can be performed

Ē =
n∑
j=1

∆Ej
n∑
i=j

1
n

=
n∑
j=1

∆Ej(n+ 1− j)/n. (5.37)

To obtain the measurement uncertainty of the initial atom number, we find the
variance of Ē with respect to the initial error E0.

Var
(
Ē − E0

)
= Var

(
Ē
)

=
n∑
j=1

(
n+ 1− j

n

)2
Var(∆Ej)

=
n∑
j=1

d

〈Nj〉

(
n+ 1− j

n

)2
. (5.38)
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Using Eq. (5.32), we can approximate to a linear order in d� 1

1
〈Nj〉

= (1− d)−j
N0

≈ 1 + jd

N0
, (5.39)

and making the substitution k = n+ 1− j we can write Eq. (5.38) as

VarĒ = d

N0n2

n∑
k=1

[1 + d(n+ 1− k)] k2

= d

N0n2

{
[1 + d(n+ 1)]

n∑
k=1

k2 − d
n∑
k=1

k3
}
. (5.40)

The two sums are found to be
n∑
k=1

k2 = n(n+ 1)(2n+ 1)
6 , (5.41)

n∑
k=1

k3 =
(
n(n+ 1)

2

)2

, (5.42)

which gives the final result

VarĒ = d(n+ 1)2

6N0n

(
2n+ 1
n+ 1 + d(n+ 2)

2

)
. (5.43)

For n� 1 and the combined destructivity D ≡ dn, this expression becomes

VarĒ = D(1 +D/4)
3N0

. (5.44)

Identifying N0/(1 + D/4) ≈ 〈Nn/4〉, we obtain the initial atom number measure-
ment uncertainty

Std(Ē − E0) ≈

√√√√ D/3
〈Nn/4〉

. (5.45)

In a similar fashion we can obtain uncertainty of the final atom number mea-
surement. We start by evaluating the variance

Var
(
Ē − En

)
= Var

 n∑
j=1

(
n+ 1− j

n
− 1

)
∆Ej

 (5.46)

=
n∑
j=1

d

〈Nj〉

(
j − 1
n

)2
(5.47)

≈ d

N0n2

n−1∑
k=1

k2[1 + (k + 1)d], (5.48)
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where we have used Eqs. (5.34), (5.37), (5.35), (5.39) and made the substitution
k = j − 1. Employing further Eqs. (5.41), (5.42) and neglecting d compared to
one, we arrive at

Var
(
Ē − En

)
= d(n− 1)

N0

[
2n− 1

6n + d(n− 1)
4

]
. (5.49)

In the large n limit we obtain

Var
(
Ē − En

)
= D(1 + 3D/4)

3N0
, (5.50)

and for the final atom number measurement uncertainty we can write

Std(Ē − En) ≈

√√√√ D/3
〈N3n/4〉

. (5.51)

Equations (5.45) and (5.51) demonstrate that due to the averaging, the stochastic
uncertainty in sequence of images is equivalent to a noise induced by 1/3 of the
total loss.
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Figure 5.3: Scaling of the atom number measurement precision with the number of
images. The total precision of an imaging sequence from Eq. (5.52) is shown with
a black solid line. The stochastic noise contribution is shown with a red dotted
line, while the photon shot noise contribution is plotted with a blue dashed line.

Finally we want to combine the photon shot noise and the stochastic noise, and
search for the optimal number of images. Provided that the temperature of the
cloud is well defined, we can set ET = 0 in Eq. (5.12), and approximate the single
image sensitivity to the atom number fluctuations by σ′N,ph = σ′ΣS/2 ≈ 1.79 · 10−3,
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where we have used input from Eq. (5.21). The final atom number measurement
uncertainty can than be estimated by

σ̃′N(n) =

√√√√(σ′N,ph)2

n
+ d(n− 1)

N0

[
2n− 1

6n + d(n− 1)
4

]
, (5.52)

where we have used the full expression for the stochastic contribution from Eq. (5.49).
The above expression and its constituting terms were evaluated in Fig. 5.3. There
we can see that the precision is optimal for ∼ 130 images, giving σ̃′N ≈ 2.13 · 10−4

at a cost of ≈ 28.6% lost atoms, which is below the ‘atom shot noise’ limit
1/
√
N0 ≈ 4.26 · 10−4.

5.4 Shot noise limited sample preparation
We now want to investigate experimentally the correlation between two measure-
ments separated by a controlled loss process. We induce the loss by ‘RF pulses’,
that is brief repetitive reduction of the RF knife frequency. The pulse duration is
8.4µs (set by the DDS programming rate), and the pulse separation was chosen to
be 6×8.4µs, which ensures that the cloud rethermalises with respect to the upper
RF frequency.
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Figure 5.4: Experimental sequence schematics. The red line represents time vari-
ation of the RF cut frequency. F1 and F2 are the Faraday imaging series.

For simplicity, the RF power was hold constant for the whole experimental
sequence. To achieve fine control over the applied loss, the RF frequency was
reduced to 95% of the trap depth, which produces atom loss ∼ 10% with 104

pulses and thus allows us to control the lost fraction with resolution 10−5. This
shallow cut method is generally addressing hot atoms, and therefore we observe
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a cooling effect growing with the number of applied pulses. For a given amount
of loss, this feature systematically reproduces the same effect and therefore is not
detrimental to the correlation experiment.

The experimental sequence is outlined in Fig. 5.4. Forced RF evaporation is
employed in the magnetic trap until the beginning of the first Faraday imaging
series, ‘F1’, consisting of 50 images. At this point, the cloud contains on average
6.7 × 106 atoms at 18µK. With the exception of the applied loss pulses, the RF
frequency is held at a constant value of 1900 kHz for the remainder of the exper-
iment; this leads to an effective trap depth of U0 = 1340 kHz (64.3µK). The loss
pulses are applied immediately after F1. To allow time for the loss pulses to be
applied and for the cloud to thermalize, there is a 10 s delay between the end of
F1 and the second set of Faraday images, ‘F2’, consisting of 100 images. In the
absence of applied loss, the cloud contains on average 3.5 × 106 atoms at 9µK
after F2. To provide a cross-check of the prepared atom number, the magnetic
trap is extinguished (after F2) and the atoms are absorption imaged after 10ms
time-of-flight.

Fixed applied loss
In the first experiment, we apply a fixed number of loss pulses. We have collected
∼ 50 experimental runs for 13 different values of loss, including three data sets
where the default in-trap loss was reduced by shortening the 10 s delay between
F1 and F2. The final atom number and temperature obtained by the absorption
imaging, as well as the mean signal in F2, are shown in Fig. 5.5. We observe
∼ 10 % fluctuations in the atom number, and correlated ∼ 1 % fluctuation in the
temperature, caused mainly by fluctuations and drifts in the efficiency of laser
cooling and transport in the beginning of the experiment.

To quantify the degree of correlation between the F1 and F2 measurements,
we look at the correlation of mean signal sum in the two imaging series. Examples
of signal sum traces for a few runs are shown in Fig 5.6 for a data set with a 10 s
hold and no applied RF loss. We denote the mean signal sum in the k-th Faraday
series (k = 1, 2) and j-th run by Sk,j and define a dimensionless signal error

Ek,j = Sk,j
〈Sk,j〉runs

− 1, (5.53)

where the brackets denote the mean value over all runs in a given data set. As
shown in Fig. 5.6, the two errors are nearly linearly correlated. The solid red line
shows a second order polynomial fit to E2,j as a function of E1,j: E ′2,j ≡ E2,j(E1,j).
Note that the relative variation in signal sum is ∼ 20%, that is about factor of two
larger than the variation in the atom number (see Eq. (5.12)).

To quantify the amount of correlation in a single run, we evaluate Allan devia-
tion of ∆E2,j ≡ E2,j −E ′2,j over successive runs (see Eq. (5.20)). This reduces the
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Figure 5.5: Atom number and temperature from absorption imaging and the mean
signal sum in F2 for the 13 data sets with a fixed value of loss, distinguished with
different colours. The black solid line in the left frame is a fourth order polynomial
fit to the mean temperature and atom number in each data set.
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Figure 5.6: Example of the signal sum traces for few experimental runs (left) and
correlation of signal sum error (right). The solid line is a quadratic fit to the
correlation of E1,j and E2,j. The data corresponds to the zero applied RF loss and
10 s hold between F1 and F2.

contribution of slow drifts in the trap parameters, e.g. due to variation in the bias
magnetic field.

The evaluated correlation of the signal for all the 13 data sets is shown in
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Figure 5.7: Fluctuations in the signal sum for the fixed (full black squares) and
feedback controlled loss (red circles). The full red circles show the Allan deviation
of the signal sum (over successive runs), while the empty circles show the standard
deviation. The blue diamonds show the measurement uncertainty due to photon
shot noise, and the blue dashed line is a 1/N type fit to the data (see text). The
expected stochastic noise is plotted with black dash dotted line, while the ‘atom
shot noise’ limit 1/

√
〈N〉 is plotted with red dotted line. The stochastic noise and

the measurement precision are combined in quadrature and plotted with the black
solid line. The errorbars were obtained by bootstrapping (see text).

Fig. 5.7 with black squares. The error bars were obtained by bootstrapping the
Allan deviation, that is sampling with replacement 50 elements from the set of the
observed two sample differences. The graph contains also curves for model of the
expected correlation, which we discuss later.

Loss controlled with an online feedback
In a second experiment, we controlled the applied RF loss with feedback based on
the F1 measurement. Specifically, the number of applied loss pulses NRF,j in each
run j was determined by a feedback function

NRF,j = gE1,j
[
1 + qE1,j + c(E1,j)2

]
+ dRF, (5.54)

where g, q and c are the linear, quadratic and cubic gain respectively, and dRF is
the default loss. The feedback parameters were chosen so as to produce a stable
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value of signal sum in F2, that is set E2,j = const. For the application of loss, the
value of E1,j is evaluated with respect to a mean signal sum from a reference data
set. Alternatively, the feedback could also be defined directly as a function of S1,j,
but we find working with a normalized quantity more convenient.

The feedback parameters are optimized iteratively. First the feedback param-
eters are guessed, and a trial data set is acquired. The naturally fluctuating E1,j
samples a range of applied pulse numbers. Comparing the obtained atom numbers
in F2 with a reference sequence where no loss was applied, we calculate the lost
fraction of atoms as a function of NRF, thereby obtaining a calibration of the loss.
For the trial set of E1,j we can then find the ideal lost fraction (if the goal was
met), and by inverting the calibration find the ideal applied loss N I

RF,j for each run.
Finally we fit the function (5.54) to the set E1,j, N I

RF,j and obtain an improved
guess of the feedback parameters. The process is repeated until the results are
satisfactory, that is the residual deviation from a cubic fit to the obtained error
E2,j is close to the standard deviation of E2,j.

In practice, the gain optimization algorithm is not autonomous, and requires
significant amount of human supervision. Due to technical problems with the sta-
bility of the ‘house’ cooling water, which cools the coils that generate the magnetic
trap, and positioning of the MOT translation stage, the mean atom number can
easily drift by 50% over the course of a day. We therefore have to ensure that the
sampled atom numbers are within an admissible range |E1,j| < 0.5, by occasion-
ally adjusting the MOT loading level. We also observe slow drifts in the survived
fraction of atoms, which we attribute to the changing parameters of the trap. This
conclusion is based on the observed coinciding drifts in the cooling water tempera-
ture. Such technical imperfections occasionally demand a few additional iterations
on the feedback optimization or slight manual adjustment of the gain parameters
in order to reach the ‘physical’ limits of the system.

The feedback gain was optimized for 5 data sets with a variable amount of
mean applied loss. The resulting absorption atom numbers and temperatures are
shown in Fig. 5.8. Also shown are the values of the mean signal sum at F2 as
a function of the atom number (compare with Fig. 5.5). The application of the
feedback produces a stable signal for a wide range of initial atom numbers. The
final atom number is not stable, because the same value of signal can be obtained
by simultaneous adjustment of N and T , since ΣS ≈ N2/T (see Eq. (5.11)). In
this experiment, larger initial atom numbers produce lower final atom numbers in
order to counteract the increase in signal sum due to loss-induced cooling.

Figure 5.9 shows the value of E2,j as a function of E1,j for the feedback data set
with a mean final atom number 2.48 · 106 (shown with green in Fig. 5.8). Here the
errors are defined again in the sense of Eq. (5.53). For this data set, the feedback
parameters were: g = 22949, q = −0.224, c = −0.00945 and dRF = 10071. The
values of E2,j were also plotted as a function of the run number to demonstrate the
magnitude of the drifts in the trap parameters. Without any fitting involved, the
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Figure 5.8: Atom number and temperature from absorption imaging and the mean
signal sum in F2 for the 5 data sets with feedback stabilized signal sum, distin-
guished with different colours (compare with Fig. 5.5).
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Figure 5.9: Example of a signal sum in F2 stabilized with RF loss controlled by
feedback based on the signal sum at F1 (left). Demonstration of slow drift in the
signal signal sum error E2,j as a function of the run number (right). The data
corresponds to the data set with a mean final atom number 2.48 · 106 (shown with
green in Fig. 5.8).

Allan deviation over the runs and the standard deviation of E2,j were evaluated
and plotted in Fig. 5.7 with full and empty red circles respectively. Both quantities
are comparable in size, however the additional noise due to slow drifts is detectable.
Apart from the lowest atom number point, the Allan deviation for the feedback runs
has the same value (within the errorbars) as the Allan deviation in the correlation
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experiment, from which we conclude, that the feedback mechanism itself does not
introduce any additional uncertainty.

Correlation noise model
The correlation of the F1 and F2 measurements is limited by two fundamental
sources of noise: the signal sum measurement precision and stochasticity of the
loss process separating the two measurements. To simplify the analysis, we assume
that the atom loss present during the F1 and F2 imaging series is a part of the
intermediate loss process. Based on Eq. (5.31), the expected amount of stochastic
noise is approximated as

σ′N ≈

√√√√1− 〈N2〉/〈N1〉
〈N2〉

, (5.55)

where 〈Nk〉 is the mean atom number in the Fk imaging sequence.
The contribution of the measurement error is estimated from the single image

precision in F1 and F2, evaluated for each run with Eq. (5.20) and rescaled with
the factor 1/√nk—accounting for the uncertainty of averaging over nk images.
The average measurement uncertainties of the F1 and F2 series were added in
quadrature and plotted in Fig. 5.7 with blue diamond symbols (for the 13 fixed loss
data sets). The blue dashed curve is a three parameter fit to the data: a/(N−b)+c,
with a = 870, b = 9.3 · 105 and c = 3.8 · 10−4. The measurement error grows with
decreasing atomic density in the F2 imaging series, see Eq. (4.20).

According to Eq. (5.12), the atom number fluctuations (5.55) propagate into
the signal sum as

σ′ΣS = γNσ
′
N = ∂ΣS

∂N

〈N〉
〈ΣS〉

σ′N . (5.56)

The temperature can also vary from run to run, but we assume that between the
two measurements it follows a deterministic trend given by the initial condition at
F1 (N and T ) and the current trap depth, and therefore does not contribute to
the noise in the correlation of the signal sum.

To complete the stochastic noise model for Fig. 5.7, we have to find the coeffi-
cient γN as a function of 〈N2〉. The required knowledge of the function ΣS(N, T )
can be obtained from the data in Fig. 5.5 (fixed loss data sets), by fitting the signal
sum at F2 as a function of N and T obtained from absorption images

ΣS(N, T ) = a1
(N − a5)a2

T a3
+ a4, (5.57)

which was inspired by Eq. (5.11). The resulting surface is shown Fig. 5.10, where
a1 = (18.3 ± 1.6) · 10−18, a2 = 1.82 ± 0.03, a3 = 1.51 ± 0.03, a4 = 0.12 ± 0.05
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Figure 5.10: Characterisation of the signal sum function ΣS ≡ ΣS(N, T ) (left).
The atom number N and the cloud temperature T were extracted from absorption
images (red dots) for the 13 data sets with fixed applied loss, see Fig. 5.5. The
surface mesh is a fit to the data with Eq. (5.57). The right frame shows the
corresponding error propagation coefficient evaluated with Eq. (5.59) along the
trajectory of mean temperature and atom number.

and a5 = (8.0 ± 0.7) · 105. The above expression was chosen for its simplicity,
because the exact functional dependence is complex (see Eq. (5.6)), and we only
need to extract local properties of the function (∂ΣS/∂N). The error propagation
coefficient can then be obtained as

γN(N, T ) = ∂ΣS

∂N

N

ΣS

= a2a1
(N − a5)a2−1

T a3

N

ΣS

(5.58)

= a2

(
1− a4

ΣS(N, T )

)/(
1− a5

N

)
. (5.59)

In the next step, we fit the mean temperature for each fixed loss data set as
a fourth order polynomial of the mean atom number to obtain the trajectory in
the (N, T ) space along which we evaluate Eq. (5.59). The trajectory is shown in
Fig. 5.5 with a black solid line, and the resulting error propagation coefficient γN
is shown in Fig. 5.10(right) as a function of atom number at F2. We see that for
higher atom numbers (and higher temperatures), γN indeed approaches ∼ 2.

Finally, we plot the relative signal uncertainty from Eq. (5.56) for both the
expected stochastic noise (black dash dotted line; Eq. (5.55)) and the limiting case
of ‘atom shot noise’ 1/

√
〈N2〉 (red dotted line) in Fig. 5.7. Also shown is the

combination of the stochastic noise with the detection noise (added in quadrature;
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black solid line), which constitutes the total expected scatter in the correlation of
the signal sum. Within the errorbars, the data is in a very good agreement with
the model. At final atom numbers ∼ 4 · 106, the experimentally observed scatter
even reaches values below the atom shot noise limit. Importantly, the signal sum
can also be stabilized with a feedback to the level of the atom shot noise.

5.5 Stable sample production
In the preceding experiment, we have chosen to stabilize the signal sum, because
this quantity is the most sensitive to the atom number fluctuations in a stochastic
loss process. We have established that the precision of the feedback is limited
only by the measurement precision and the stochasticity of the RF loss. Another
important goal in our project is to enable a repeatable production of clouds with
predefined properties, that is to stabilize the atom number and temperature. Si-
multaneous stabilization of N and T is required specifically in cases when the
evaporative cooling is continued after the feedback, since the two parameters are
coupled through the process of rethermalization; higher atomic density increases
the rethermalization rate, and an increased temperature induces atom loss.
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Figure 5.11: Relative deviation of temperature as a function of the relative atom
number deviation evaluated from F2 for the fixed loss data set in Fig. 5.6 (no
applied loss, 10 s hold between F1 and F2). The black solid line is a second order
polynomial fit.

We observe that the initial evaporative process produces clouds with tempera-
ture dependent on the number of atoms. This can be seen best by extracting N and
T from the Faraday images with a sin2(θg) fit to the signal image S(x, y), where
θg ≡ θg(x, y) is a gaussian distribution for the Faraday rotation angles dependent
on N and T . This procedure yields the two parameters with relative precision
σ′N ≈ 4.7 · 10−4 and σ′T ≈ 6.8 · 10−4 for N ∼ 4 · 106 and T ∼ 10µK. Figure 5.11
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shows the relative deviation of temperature as a function of the relative atom num-
ber deviation with respect to the mean evaluated from F2 for the fixed loss data
set in Fig. 5.6 (no applied loss, 10 s hold between F1 and F2). We see that the
number fluctuations are about an order of magnitude larger than the fluctuations
of temperature, but the two quantities are very well correlated.

The functional relation between N and T is caused by the preceding evapo-
rative process: a colder cloud can contain more atoms for a given depth of the
trapping potential. The cloud variation is resulting from a different number of
atoms initially loaded into the trap. At that point, both T and N can be in-
dependently uncertain. Once an evaporation has been performed, T becomes a
function of N , and the uncertainty is essentially one-dimensional. The value of
ΣS(N, T (N)) ≡ ΣS(N) therefore unambiguously determines the cloud properties,
provided that the derivative of ΣS(N) is non-zero. For our conditions this is indeed
the case, as seen from Fig. 5.5. Importantly, if we continue to evaporate after the
application of the feedback, we can chose the feedback parameters such that the
signal sum is constant at a later point in the evaporation sequence, where the cloud
is again rethermalized. Stable ΣS(N, T (N)) will also imply a fixed atom number
and temperature.

Atom number stabilization
In the above feedback experiment, the trap depth was kept constant. The applied
RF cuts were very shallow (95 % of trap depth), which induced a cooling effect
proportional to the number of loss pulses (removing hot atoms). Although the
value of ΣS was stable, N and T varied largely (in a correlated manner). In the
following experiment, we have eliminated the cooling effect by setting the RF cut
depth to 23 % (found experimentally). The feedback function was optimized to
produce a stable atom number, while the temperature should continue to fluctuate
by ∼ 1 %. In order to roughly maintain the same loss effect (10 % with 104 pulses),
we reduce the RF power during the application of the feedback to a fixed low value:
∼ −30 dB compared to the default power during the evaporation.

Figure 5.12 shows the results of the experiment with a stabilized atom number.
The feedback parameters were optimized iteratively in a fashion similar to the
stabilization of the signal, that is by extracting the calibration of loss from trial
runs with guessed feedback parameters. Figure 5.12(a) shows the atom number
evaluated from the absorption images as a function of the signal sum error in F1.
The blue squares show the data from reference runs (without applied RF loss),
while the red circles are resulting from the stabilization. The solid curves show
third order fits to the data. Figures 5.12 (b) and (c) show the relative stability of
temperature and atom number (from absorption images) as a function of the signal
sum error at F1. In accordance with our expectation, the temperature fluctuates
by ≈ 1.4%. The atom number stability was 4.78 · 10−3, implying that the natural
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Figure 5.12: (a) Absorption atom number in a series of ∼ 50 runs with (red circles)
and without (blue squares) online stabilization, shown as a function of signal sum
error at F1 (relative to the mean signal in the non-feedback runs). (b) shows
absorption temperature error in the feedback runs relative to the mean, and (c)
shows the relative atom number stability, both as a function of the signal sum
error at F1. The black solid lines in all sub-figures are third order polynomial fits
to the data.

atom number fluctuations (∼ 11 %) were reduced by a factor of 20. It appears
that the feedback parameters could have been chosen still more optimally, since
the residual deviation from the fit is 3.2 · 10−3. It is so, because this data set
samples a wider range of atom numbers then the trial data set (not shown) used
to calibrate the loss response.

Finally, we comment on the precision of the absorption imaging. Before con-
ducting this experiment, we have improved our implementation of this technique
by installing a new camera (Andor iXon 897), which has a factor of two better
quantum efficiency and better readout noise characteristics than the previously
used model (iXon 885). We have also shortened the time between the two ‘ab-
sorption’ images (atoms and reference), which reduces noise due to low frequency
vibrations of the optical elements. In a fashion similar to the Faraday detection,
we have also implemented an active stabilization of the absorption imaging power
on the FPGA (feedback loop with a proportional gain). Overall, we have improved
the imaging precision by factor of six, and it is now ≈ 3.5 · 10−3. We estimate that
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the precision is further limited by the stability of the imaging laser frequency.
The goal of this experiment was to show that the Faraday signal can be used

for high precision stabilization of the atomic clouds. This was verified by an
independent measurement technique, the absorption imaging, where the achieved
atom number stability was brought to the level of the measurement precision.

Detection of trapping potential variations
We have demonstrated that the thermal clouds can be stabilized with very high
precision, even without application of subsequent evaporative cooling. The main
goal, however, is to stabilize the result of the evaporation, that is produce a well
defined Bose-Einstein condensate. Since the evaporation is a stochastic process
similar to the examined RF pulse loss, we expect it also leads to atom number
uncertainty of the order 1/

√
N , where N is the final number of atoms. Practically,

however, the most likely limit for a reliable production the ultracold clouds will
now be the stability of the trapping potential.

As mentioned before, the magnetic trap is prone to trap bottom drifts inducing
change of the well depth for a fixed end evaporation frequency. This can cause
large fluctuations in the cloud temperature, atom number and consistently also
the BEC fraction. The drifts are caused mainly by a varying bias magnetic field
and/or a displacement of the coils due to thermal expansion.

The following experiment was carried out to investigate how well we can detect
the trap variations. We apply the RF loss with a feedback based on F1 at RF
= 1900 kHz and continue to evaporate towards the BEC in a usual manner until
we reach a trap depth ∼ 20kHz (RF = 550 kHz). This produces a cloud with
N ≈ 3.73 · 105 and T ≈ 297 nK, which has ∼ 12% of atoms in the BEC. The
final clouds were detected in time-of-flight with the absorption imaging. At first,
the F2 imaging was applied at RF = 1100 kHz in order to optimize the feedback
parameters such that a stable signal sum is produced (also stable N and T ). The
RF cut was performed at 95% of the trap depth. In a subsequent experiment, F2
was moved to RF = 650 kHz, that is, 120 kHz above the trap bottom (∼ 1s before
the BEC formation), in order to enhance the sensitivity to the trap bottom drifts.
Here the previously optimized feedback parameters were utilized.

The results of 21 experimental repetitions are shown in Fig. 5.13. The sub-
figure (a) shows that the error of the signal sum at F2 (E2,j) was decoupled from
the influence of the initial atom number fluctuation detectable at F1. Any residual
deviations of E2,j therefore must have been caused by effects not detectable/present
in the F1 measurement, such as the exact position of the trap bottom. The sub-
figures (b), (c) and (d) show the final temperature, the BEC fraction and the atom
number extracted from the absorption images plotted as a function of E2,j.

The behaviour is generally consistent with the effects of trap bottom drift. As
opposed to Fig. 5.11, T and N are now positively correlated (simultaneous growth
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Figure 5.13: Detection of trap bottom drift. (a) shows the signal sum error at F2
(E2,j) relative to the mean as a function of the signal sum error at F1. (b),(c) and
(d) show the temperature, the BEC fraction and the atom number, respectively,
evaluated from the absorption images and plotted as a function of E2,j. The black
solid curves are linear fits to the data. The fit parameters are shown above each
plot.

with E2,j): a deeper trap can hold bigger and hotter clouds. The atom number
fluctuated by 7.0 % while the temperature changed only by 4.6 %, which explains
why the correlation of T with E2,j has a positive slope (ΣS ≈ N2/T ). Remarkably,
E2,j has the most precise correlation with the fraction of atoms condensed, see
Fig. 5.11(c). The equations above each sub-figure show the fit parameters of the
respective linear correlation functions (plotted with solid black lines). The residual
relative deviation from the fit was 1.5 % for the temperature and 1.8 % for the atom
number. The BEC fraction was ‘predicted’ with precision 5.8·10−3. The sign of the
BEC fraction correlation is consistent with the trap bottom drift effects: shallower
trap implies higher condensed fraction.

To find the sensitivity to the trap bottom position, we have raised the end
evaporation frequency by 30 kHz (in a different experiment), which led to a tem-
perature increase ≈ 310 nK. Assuming that the temperature is proportional to the
trap depth, this implies calibration 92Hz/nK. In the above experiment, the tem-
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perature varied by 53 nK (peak to peak), which implies change of the trap bottom
by 5.1 kHz. Also, the temperature was resolved with 4.4 nK precision, implying
0.43 kHz resolution in the trap bottom detection. We conclude that the Faraday
detection scheme resolves the variations of the trapping potential with very high
precision.

To stabilize the trap bottom with a feedback, we can either actively alter the
external bias field or change the end evaporation frequency as a function of E2,j.
The second option seems to be simpler to implement, since we already control the
RF with the FPGA.
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Chapter 6

Conclusion and Outlook

The first part of this thesis, analysed the use of the Faraday effect as a non-
destructive spatially resolved method for the interrogation of ultracold atomic
clouds. In particular, dark field Faraday imaging (DFFI) was described and char-
acterized, and compared with other non-destructive imaging methods. The work
shows experimental applications of the method and presents its use in feedback
experiments.

In an analytic approach, a framework for the signal-to-noise ratio of a general
imaging technique was derived and related to the level of destructiveness. The
analysis was applied to four common dispersive imaging methods including DFFI,
which revealed, surprisingly, that in a low angle regime, the four methods provide
effectively the same signal-to-noise ratio.

The precision of DFFI was evaluated in a broad range of atom numbers and
temperatures, and it was shown that DFFI can facilitate a fast and precise non-
destructive measurement of atomic cloud properties. Among the many practical
applications, magnetometry and monitoring of in-trap oscillations were presented.

Fast online image evaluation on an FPGA was implemented, which provides a
tunable feedback to the RF evaporation sequence and facilitates a reliable produc-
tion of ultracold atomic clouds. The shochasticity of the controlled loss process was
investigated in detail and was resolved with precision below the atom shot noise
level. We have also developed a method to observe the effects of the trap bot-
tom drift in a magnetic potential, which in further experiments can be stabilised.
Importantly, the improved control, active stabilization and precise measurement
techniques constitute a versatile toolbox for other experiments.

Non-destructive imaging perspectives
One of the future experiments will be a study of the spontaneous onset of the BEC
formation, when the ground state population grows exponentially due to bosonic
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stimulation once it has been seeded by vacuum fluctuations. An interesting path-
way for extending the feedback applications would be high resolution monitoring
and control of the in-trap cloud oscillations. The position of the could be detected
very precisely by ‘dividing’ the CCD into quadrants centred on the cloud. The
measurement could be carried out on a small chip area, thus enhancing the sam-
pling rate. As the cloud moves, the amount of light rotated by the cloud in the
up-down and left-right frames will become uneven, which can be translated into
displacement through a calibration function. Parametric feedback to the external
bias field in the xy-plane could then be used to stabilize or amplify the oscillation,
or drive a non-harmonic motion.

Spinor dynamics perspectives
In the project of spinor dynamics we have demonstrated creation of correlated wave
packets due to spin changing collisions in a two-dimensional trapping geometry. In
this thesis, I have presented an analytical study of the system supporting the wave
packet like mechanism of the spinor excitations. It now remains to be verified
experimentally that each lattice site of the 1D vertical lattice generates exactly
one pair of wave packets due to bosonic stimulation and spontaneous symmetry
breaking. Further progress could be achieved by isolating a single lattice site,
which could be done with microwave addressing in the presence of a magnetic field
gradient. It may also be interesting to investigate the influence of the condensate
phase coherence, searching for a difference in the spinor dynamics in a superfluid
and a Mott insulator state.



Part II

Quantum gates and Optimal
Control
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Chapter 7

Introduction

The history of computing machines dates back to 2400BC when Babylonians in-
vented the abacus. Since then, many different mechanical and electronic comput-
ing devices have aided humans in keeping track of their complex models of reality.
The search for the most powerful and efficient computing architecture has so far
converged on silicon based semiconductors. The transistor was invented by John
Bardeen, Walter H. Brattain and William B. Shockley at Bell Labs in 1947 [73].
Within ten years, the device effectively replaced all other computational hardware,
and since then has transformed our lives like no other human invention.

A new shift of paradigm may be on the horizon: Quantum Information Process-
ing. As the theoretical and practical knowledge of quantum mechanics improves,
quantum systems start to be used as computation devices. Essentially, the initial
state of the system encodes the input information and the interaction of the differ-
ent degrees of freedom in time evolves or processes the information. The result of
the computation is then read out by a final measurement of the state. For certain
problems, quantum computers have the potential to outperform the conventional
computers.

In computer science, problems are classified according to their complexity, that
is scaling of the computational time (or number of operations) with the number of
input bits n. The complexity of problems that are considered to be ’simple’ scales
polynomially with n. These problems belong to a class called P. On the other
hand, hard problems require an exponentially growing computation time [74].

Finding a solution to a given problem is generally harder than verifying that
a given solution solves the problem. Problems whose solution can be verified in a
polynomial time are called NP. For example, it is believed that factorising a big
integer number k into prime numbers is not a P problem, however checking whether
a given number divides k can be found easily, and therefore number factorisation
is an NP problem.
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Factorising large numbers is one of the tasks which can be solved with a quan-
tum computer in a polynomial time. Number factorization or similarly complex
problems form the base of commonly used public key encryption systems, such as
the Rivest-Shamir-Adleman (RSA) algorithm. In these protocols, the receiver of
the message publishes a key, which can be freely used to encrypt messages. The
messages can be decrypted only with a secret key (known solely to the receiver)
analogous to a large prime factor of the public key. If a quantum computer could
find the private key in a polynomial time, it would pose a serious threat to the
security.

Apart from number factorization, there are only few other known problems
that can in principle be solved faster with a quantum computer. An unstructured
database with n entries can be searched for an element matching a certain condition
with

√
n queries by means of the Grover search algorithm [75]. Compared to

conventional computers, which use on the order of n queries, the speed up is only
quadratic. Nevertheless, for a large database this could make a practical difference.

Due to the non-intuitive character of quantum mechanics, it is generally hard
to find quantum algorithms that outperform the classical computers. All classi-
cally solvable problems can also be solved on a quantum computer, but gaining
an advantage requires the use of some purely quantum effects, which are poorly
captured by our intuition.

A more direct application of quantum computers is the simulation of other
quantum systems. This task becomes quickly intractable with classical computers,
since the number of memory registers required just to hold the state of a quantum
system grows exponentially with the number of degrees of freedom, that is the
number of particles. The rapid progress experienced currently in the information
technologies originates mainly from the miniaturisation of elementary electronic
components. As these active parts become smaller, eventually quantum mechanical
phenomena begin to play a role and quantum mechanics has to be taken into
account in their design. Being able to simulate complex quantum system is thus
of paramount importance.

Quantum gates
In analogy to classical bits, quantum computers operate on quantum bits or qubits,
which are carried by two level quantum systems prepared generally in a superpo-
sition

|φ〉 = c1|0〉+ c2|1〉. (7.1)

Single qubit quantum gates are essentially unitary operations, which can be repre-

sented by two-dimensional matrices operating on the vector
(
c1
c2

)
. For example,
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a quantum NOT gate is represented by

X ≡
(

0 1
1 0

)
, (7.2)

and swaps the coefficients c1 and c2. Another important gate is the Hadamard
gate

H ≡ 1√
2

(
1 1
1 −1

)
, (7.3)

which transforms the states |0〉 and |1〉 into the basis

|+〉 ≡ 1√
2(|0〉+ |1〉),

|−〉 ≡ 1√
2(|0〉 − |1〉). (7.4)

An essential requirement for computation is conditional execution or the inter-
action of qubits. Most simply, this can be achieved with two-qubit gates which
operate on the four dimensional vector space

|φ〉 = c1|00〉+ c2|01〉+ c3|10〉+ c4|11〉. (7.5)

A prototypical two-qubit gate is the controlled-NOT or CNOT gate, which in the
matrix formalism can be represented by the unitary matrix

UCX ≡


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (7.6)

The state of the second qubit (called target) is negated

|0〉 ↔ |1〉 (7.7)

when the input state of the first qubit (called control) is |1〉 and remains unchanged
for control |0〉. The CNOT gate is an equivalent of the universal logic NAND gate
in that: Any multiple qubit logic gate may be composed from CNOT and single
qubit gates [74].

Quantum computation has not yet found the winning physical architecture.
Research is carried out in many areas, with the most prominent candidates based
on trapped ions [76], quantum dots [77], superconductors [78], neutral atoms in
optical lattices [79] and nuclear magnetic resonance [80], to name a few. In all
cases, the research is still at the level of development of elementary quantum gates
that could form the basis for a scalable quantum computer.
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In the first part of my thesis, I described experiments aimed at the robust
production of cold atomic gas samples. When further cooled those produce an
ultracold gas, where the motional degrees of freedom have to be described by
quantum mechanics. Many experiments have been carried out to demonstrate the
matter wave properties of both condensates [81] and atoms trapped in an external
potential [45]. In the following we consider a proposal for a quantum CNOT
gate operating on qubits encoded in the motional degrees of freedom of individual
trapped atoms.

Spatial mode encoding has primarily been used in optical qubits, in the context
of continuous variable quantum computation [82], or in dual-rail schemes [83].
Certain clever proposals for realizing phase gates in double-well potentials [84, 85,
86] have also employed vibrational modes of trapped atoms. However, the gate
outcome is contained in the phase of the states and readout was shown to require
intermediate encoding on internal atomic states [87]. In contrast, we encode qubits
in the population distribution of atoms in a triple-well potential, and readout
simply involves determining the presence or absence of atoms in specific wells,
possible even for single atoms by direct imaging methods [88].

The CNOT gate design is further generalised to perform an atomtronics tran-
sistor function [89, 90, 91], where the flow of one BEC can be directly controlled
by a presence of another species BEC. Existing designs are based on manipulating
resonant coupling of lattice sites by adjusting the chemical potential or external
bias fields [89, 90, 92]; or on manipulating atomic internal states to transport holes
[93], or spin [94].

Optimal control and the quantum speed limit
The main task in implementing efficient quantum gates is to drive a given sys-
tem by a time varying control from a certain initial state to a given target state.
Often the time dependence of the control is chosen heuristically, which does not
yield a sufficiently high fidelity required for scalable quantum computing. How-
ever the performance of the gate can be further improved by optimizing the control
numerically.

Generally, many quantum processes intended for practical applications involve
elaborate models, where the final fidelity can only be determined in a simulation,
and manually choosing an efficient control is very difficult. The theory of optimum
control [95] provides means for improving the fidelity for a given process duration
or even shortening the process at the expense of some loss of fidelity, which may
ultimately become advantageous due to the increased repetition rate and reduced
decoherence.

As realized by Mandelstam and Tamm [96], the time-energy analogue of the
quantum mechanical uncertainty principle provides a general limit for the time
evolution of observables. This principle led Bhattacharyya [97] to the formulation
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of the ‘Quantum Speed Limit’ (QSL), which asserts that a system evolving from
|ψi〉 to |ψf〉 in time T must fulfil ∆E × T ≥ arccos(|〈ψi|ψf〉|), where ∆E is the
energy uncertainty of the system. Aharonov and Anandan [98] later identified∫ T

0 ∆Edt with the path length of the trajectory in Hilbert space, and showed that
its value is limited by arccos(|〈ψi|ψf〉|). This geometrical interpretation of the
QSL motivated Carlini et al. [99] to search for the optimal path in Hilbert space.
Recently, Caneva et al. [100] demonstrated the existence of the QSL based on the
convergence of an Optimum Control (OC) algorithm.

The quantum speed limit is often stated in terms of the minimum time T =
TQSL required to obtain complete transfer into a given target state. At durations
shorter than TQSL, the target state cannot be fully reached and the high operation
speed comes at the expense of a fidelity lower than one. The standard QSL pro-
vides only a lower bound for TQSL, which can be reached by an ideal Hamiltonian
driving the system along a geodesic in Hilbert space. In most systems, however,
such a Hamiltonian is not available and the actual TQSL is substantially larger
than that lower bound. The time-fidelity trade-off—a particular case of Pareto
optimization [101]—has previously been evaluated for specific quantum systems
using mainly numerical means [102, 103, 104]. The derivative of fidelity with re-
spect to process duration was also obtained analytically for a uniform extension of
the process [105, 106]. However, an intuitive interpretation of the trade-off as well
as a treatment of non-uniform time variations has been missing.

In the following we address the problem of quantum speed limit in the frame-
work of Hilbert space geometry offering an intuitive interpretation of optimal con-
trol algorithms. This approach is applied to non-uniform time variations, which
yields the time fidelity trade-off expressed in terms of the direct Hilbert velocity
and provides a robust prediction of the quantum speed limit.

Structure of part II
The second part of the thesis is organized as follows:
• Chapter 8 presents a theoretical proposal for the implementation of a quan-

tum CNOT gate operating on the spatial degrees of freedom of atoms trapped
in a triple well potential. The design is further generalized to provide a
transistor-like action with two interacting Bose-Einstein condensates.

• Chapter 9 analyses the problem of quantum speed limit and optimum control
in the framework of Hilbert space geometry. The trade-off is quantified in
terms of a direct Hilbert velocity, which closely ties to the notion of geodesics.
We also provide a numerical example applying the formalism to a multi-
particle system generating entanglement through a Rydberg blockade.

• Chapter 10 summarizes our theoretical results and outlines interesting path-
ways for extending this work.
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Chapter 8

An atomtronics transistor for
quantum gates

8.1 Static operation scheme

Quantum Gate
We consider two independently controlled orthogonal triple wells that can be
switched between two ‘T-shaped’ configurations, shown in Fig. 8.1(a,b), contain-
ing two mutually-interacting species, each free to move only along one direction.
Single qubits are encoded in the spatial degrees of freedom of the two species, with
|0〉 and |1〉 corresponding to localizations in the respective extreme wells. In any
given operation cycle, the motion of one species is kept frozen by deep potentials,
so only one spatial dimension (1D) needs to be considered at a time. Without loss
of generality we refer to the active species as A and the passive as B.

Along the active direction, we label the wells left, central, right, with effective
qubit definitions [Fig. 8.1(d,e)]: Qubit A is in state |0〉 or |1〉 if species A is localized
in the left or right well respectively; Qubit B is in state |0〉 or |1〉 when species B
is absent or present in the central well, with ‘absent’ corresponding to localization
in the extreme transverse well. A two-qubit CNOT gate can be then designed
[Fig. 8.1 (f)] such that after a set time T , qubit A is negated if qubit B is in |1〉,
but is unchanged if qubit B is in |0〉. Notably, such a configuration allows for
simple scalability since the roles (‘control’ or ‘controlled’) of the two species can
be switched in different cycles.

We first consider a static triple-well potential to describe the gate operation
principle, which involves the three lowest eigenstates φ0, φ1 and φ2 for species A
in the triple-well, with eigenenergies E0 < E1 < E2. The potential is symmetric
about the central well minimum [Fig. 8.2], so φ1 has its node there while φ0 and
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Figure 8.1: (a)-(b) Interchangeable gate configurations where role of A and B can
be swapped; (c) Transistor configuration connected to reservoirs. (d)-(e) Effective
qubit definitions in a specific cycle; (f) CNOT quantum gate operation.

φ2 have anti-nodes. Therefore, when species B is present in the central well, the
repulsive A-B interaction VAB will shift up the energies E0 and E2, but hardly
affect E1. A class of potentials exists where the presence of atom B will raise
E0 and E2 by the same amount, thus leaving ∆E2 = E2 − E0 unchanged while
decreasing ∆E1 = E1 − E0.

Species A is prepared in a state |ψA(t = 0)〉 localized in one of the two extreme
wells. Even though we choose this state to simply be a Gaussian with minimized
energy, it is almost completely superpostion of only the three lowest eigenstates.
The initial phase relations among the eigenstates, shown in Fig. 8.2(a,b), are such
that φ0(0) and φ2(0) add up constructively with φ1(0) in one extreme well and
destructively in the other. If present, |ψB(0)〉 is a minimum energy Gaussian
localized in the central well. The process can work starting from either extreme
well due to the bilateral symmetry of the potential.

We adjust four degrees of freedom of the system: position, width and height of
the two barriers, and VAB. By simple reparametrization [107], two are degrees of



8.1. Static operation scheme 97

2

0

-2

630-3-6

1

0.5

   0

-0.5
630-3-6

distance (l)

A
m

pl
itu

de
 (

1/
√l

)

Species B absent Species B present

E0

E1

E2

E0

E1

E2
B

B

B E
ne

rg
y 

(ε
)

0.5

   0

-0.5

2

0

-2

φ0
B

φ1
Bφ2

B

φ0

φ2 φ1

403020100 403020100

1

0.5

0Po
pu

la
tio

n 
in

 w
el

ls

Time (τ) Time (τ)

right

leftcentral

left

right central

distance (l)

(c) (d)

(a) (b)

(e) (f)

Figure 8.2: Static potential: Species B absent (left), present (right): (a, b) The
three lowest eigenstates and (c,d) corresponding eigenenergies of species A in the
triple-well. The dotted lines show the potential from Eq. (8.4), which generally
matches a lattice potential (solid line in (c,d)) created with three harmonics. With
B absent, ∆E2 = 2 × ∆E1 but with B present, ∆EB

2 = 4 × ∆EB
1 . (e,f) The

single-well occupation versus time for species A, with species B absent/present.
The units are defined in table 8.2.

freedom used to fix the time scale of operation, and to set the condition that with
species B absent, the energy separations satisfy ∆E2 = 2×∆E1 so that after time
T = h/∆E1, the dynamical phases acquired by the three eigenstates are offset by
multiples of 2π leading to the revival of the initial state in the initially occupied
extreme well. The remaining two parameters are set to ensure that with species B
present ∆EB

2 = ∆E2 remains unaltered while ∆EB
1 = ∆E1/2 is halved, as seen in

Fig. 8.2, so that now ∆EB
2 = 4×∆EB

1 .
The antisymmetric state φ1 evolves at half the rate than without B, hence after

the same time of evolution T it has an opposite phase, or π offset, relative to the
symmetric states. This results in localization of the species A in the initially empty
extreme well. Thus, the presence or absence of the species B leads to the revival
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of species A in the original well or transfer to the other extreme well after a set
time T , implementing the CNOT gate.

Cold atom transistor

The gate operation described above is the specific case, of fixed VAB, of a general
transistor mechanism in which species B is used to precisely control the flow of
species A between the extreme wells. A schematic of operation as an atomtronics
transistor is shown in Fig. 8.1 (c), where the left and right wells of the triple-well
system are coupled to two reservoirs of species A, while the central well is coupled
transversely to a reservoir for species B. Since VAB directly affects the dynamic
evolution of species A it controls the transfer rate from the left well to the right
well.

A range of interaction strengths can be found for feasible parameters where
we can smoothly adjust ∆E1 which fixes the period for a gate cycle T = h/∆E1.
Therefore, if we instead fix the period of each cycle at T and vary VAB, the transfer
per cycle can be controlled; the fraction of species A transferred varies smoothly
from zero to complete transfer (inset of Fig. 8.3(a)). Since VAB depends on the
interaction strength gAB and the density |ψB|2 of species B, for large gAB small
variations in |ψB|2 can be used to control a large flux of species A, creating an
amplification effect. As VAB is further increased, transfer of species A is eventually
blocked.

8.2 Physical models: Single atoms and Dual species
condensates

During operation the dynamics is kept 1D along the active direction, with trans-
verse motion suppressed by tight harmonic potentials, taken to be cylindrical with
angular frequency ω⊥. We propose implementation in two distinct systems of
ultracold atoms:

(i) Single atom per species in triple-well optical superlattices, described by an
effective Hamiltonian, with 1D hard-core bosonic inter-species interaction strength
gAB,

Ĥ =
∑

j=A,B

[
−~2

2mj

∂2

∂x2
j

+ Vj(xj, t)
]

+ gABδ(xA − xB). (8.1)

This is obtained from the 3D Hamiltonian by integrating out the transverse de-
grees of freedom [108]. The potential for each species Vj(xj, t) is formed with three
harmonics, with the third harmonic generated by counter-propagating beams with
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wavelength λ and the two lower harmonics obtained using the same light intersect-
ing at angles to increase the spatial periodicity of their interference pattern along
the triple-well direction.

(ii) Coupled BEC’s in optical dipole traps described by

i~∂tψA = (− ~
2mA∂xx + VA + gAB|ψB|2)ψA (8.2)

i~∂tψB = (− ~2

2mB ∂xx + VB + gBA|ψA|2 + gBB|ψB|2)ψB. (8.3)

To ensure linear dynamics, species A has no self-interaction (possible with Feshbach
resonance [109]). The triple wells are created with blue-detuned laser barriers in
a harmonic well of angular frequency ω:

VA(x, t) = 1
2mAωAx

2 + U [e−
(x−d)2

2σ2 + e−
(x+d)2

2σ2 ]. (8.4)

In simulations we assume the same potential (8.4) for species B but magnified VB =
20×VA to keep it localized even when the potential varies (as in the dynamical case
described next). In practice, VB can be smaller since localization along the active
direction can be done by a separate potential that provides the lateral confinement
for the passive direction (Fig. 8.1(a,b)).

Both systems have similar outcomes, because the lattice potential in Eq. (8.1)
can be made almost identical to Eq. (8.4) by suitable choice of parameters as
shown in Fig. 8.2(c,d). The time-evolution is then similar for both models, because
due to strong confinement the self-interaction of species B has little effect on the
dynamics – which justifies the factorization of the two-component wavefunction
|ψAB〉 = |ψA〉|ψB〉 so that Eqs. (8.2) (apart from the self-interaction term for B)
can be derived as the equations of motion for the Hamiltonian (8.1) by taking the
projections 〈ψB|Ĥ|ψAB〉 and 〈ψA|Ĥ|ψAB〉.

Thus here we display simulations that combine features from these almost
equivalent scenarios, using potential (8.4) in the Hamiltonian (8.1). We time-
evolve by a split-operator method applied to a 2D wavefunction of the two species.
The evolution of the population of species A (initially in the left well), in the static
triple-well during a gate cycle, is shown in Fig. 8.2 (e,f). The populations in the
wells are computed by integrating |ψA(x, t)|2 over the intervals (∞,−D), (−D,D)
and (D,∞), where ±D are the coordinates of the barrier maxima—different than
the barrier positions d.

8.3 Dynamic gate and Transistor
The static Hamiltonian demonstrates that both gate and transistor mechanism
operate by evolution of dynamical phases. But, to put this in practice, two issues
need to be addressed: (i) preparation and readout of the quantum bits and (ii)
initiation and termination of each operation cycle. Both goals can be achieved if
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Figure 8.3: Dynamic potential: (a) Populations in left and right wells after one
period t = T , as functions of VAB; (inset) similar behavior is seen in the static
potential. (b) Smooth time evolution of the dynamical parameters: barrier position
d and barrier amplitude U ; also shown are the energy separations with species
B absent (∆EB

1 ,∆EB
2 , dotted lines) and present (∆EB

1 ,∆EB
2 ). The single-well

occupation versus time for species A, when species B is (c) absent and (d) present.

the initial and final states of species A are the ground state of a single, isolated
well.

The initial state is kept localized by suppressing the tunneling, that is making
the barriers high and the central well shallower than the extreme wells. This
ensures ∆E2 � ∆E1 so that φ2 is unoccupied and the state is a superposition
of the almost degenerate φ0 and φ1. The gate operation is initiated by an abrupt
decrease of the central well, to set ∆E2 = 2×∆E1. The state is now a superpostion
of the three lowest eigenstates, and population begins to flow due to the evolution
of their phases. To speed up the tunneling rate, ∆E1 and ∆E2 are increased, while
maintaining ∆E2 = 2×∆E1. This is done via a smooth decrease of U(t) and d(t),
as shown in Fig. 8.3(b).

The potential energy variation induces a non-adiabatic coupling

Akn = i~〈φk|∂tĤ|φn〉
(Ek − En)2 , (8.5)

which may drive some population exchange between the immediate eigenstates
of the Hamiltonian. Since the Hamiltonian is kept bilaterally symmetric, such
coupling occurs only between states of the same parity. In our simulations, the
net population in the three lowest eigenstates is conserved by setting the strongest
out-coupling A13 to a low value 0.07, which determines the speed of variation of the
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Figure 8.4: Snapshots of population density in a gate cycle of period T (time units
of τ) corresponding to Fig. 8.3 (c) and (d): upper panels: Density (left axis) of
species A when species B is absent; the potential is shown as blue lines (right axis);
lower panels: Joint density of species A (horizontal axis) and species B (vertical
axis) when species B is present. The units are defined in table 8.2.

potential through Eq. (8.5). The path selecting algorithm stops when the phase
difference of the states φ0 and φ1 is π, that is half of the revival; the second half is
just a mirror image in time.

The parametric paths, shown in Fig. 8.3(b), are determined from the properties
of the potential with species B absent. We ensure that with species B present,
exactly the same path leads to species A localizing in the opposite well, by tuning
VAB to maximize gate fidelity, measured by the probability of the projection of the
final state at t = T on the desired gate outcome.
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8.4 Feasibility analysis
In this section, we demonstrate the feasibility for both individual atoms and BEC
by showing that our assumptions can be met by currently available physical sys-
tems. We indicate the active direction by coordinate x and assume cylindrical
symmetry in transverse directions, denoted by ‘⊥’.

Individual atoms in a Lattice

For lattice implementation we consider 23Na and 87Rb as the two species, in orthog-
onal triple-wells created by λ = 600nm and 800 nm along their active directions.
With D1, D2 lines for 23Na, ' 589 nm and D1 = 795nm, D2 = 780nm for 87Rb,
this ensures that each species is red-detuned by about 10 nm from its trapping
frequency, but far off-resonant from that of the other. Since the species are held
by separate lasers, the passive species will be naturally unaffected by the transfer
cycle.

Transverse trapping for both species can be achieved with a laser at 1064nm.
We use the wavelength for the active species to set our length unit, and the recoil
energy ER as the energy unit ε. The effective transverse trap frequency is ω⊥ =
(2π/λ)

√
2V⊥/m; and in these units the oscillator length l⊥ =

√
~/(mω⊥) and the

confinement energy 2~ω⊥ are fixed by depth of the potential, which we take to
be V⊥ = 80 ε. The effective 1D interspecies interaction strength takes the form
gAB = a/(π2l2⊥A), where scattering length a = 103aB for the 23Na-87Rb [110].
Along the direction of the triple-wells, the well depths never exceed Vz = 20 ε. The
resulting estimates for our units and parameters are summarized in table 8.1.

Table 8.1: Units and parameters for lattice implementation with 87Rb or 23Na
atoms.

Units and Parameters 87Rb active 23Na active
Length unit l = λ 800 nm 600 nm
Energy unit ε = ER = h2/(2mAλ

2) 2.36× 10−30 J 1.6× 10−30 J
Time unit τ = ~/ε 4.47× 10−5 s 6.7× 10−6 s
Transverse trap freq. ω⊥ 4.0× 105 Hz 2.7× 105 Hz
Int. strength gAB 0.244 ε · l 0.325 ε · l
Transverse Osc. Length l⊥ 0.053 l 0.053 l
Transverse energy 2~ω⊥ 36 ε 36 ε
Int. energy g1D/lz 3.24 ε 4.3 ε

These estimates meet the main assumptions of our model and simulations:
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1. The values of the interspecies interaction in our estimates are close to that
used in our simulation g1D = 0.26 ε · l with the units defined here.

2. The time scale for operation is about 11.9 τ which corresponds to 0.53 ×
10−3s for active 23Rb and 0.079× 10−3s for active 23Na, implying sub-millisecond
operation time scales, competitive with most proposals for quantum gates.

3. Effective 1D dynamics of the active species is justified: the transverse con-
finement energy 2~ω⊥ = 36 ε is much higher than the sum of the longitudinal
kinetic energy ∼ ε and interaction energy gAB/lz ' 4ε. The latter is estimated
by the product of the interaction strength and 1D particle density ∼ N/L ' 1/lz
with N ∼ 1 since we consider single particle of each species; the extent of the
density overlap of the particles during evolution is estimated by the effective lon-
gitudinal oscillator length lz =

√
~/(mAωz) where ωz = (2π/λ)

√
2Vz/mA and we

take Vz = 20 ε as the upper limit of the longitudinal depth of the wells.

BECs in a Triple-well potential
In order to implement the prosed quantum gate with BECs, the triple well struc-
ture can be designed such that the two Gaussian barriers are felt only by the
active species (A), possible by keeping their laser frequencies far off-resonant with
respect to the passive species (B) which is therefore not affected by the variation
of the barriers. In optical dipole traps, the self-interaction in the species A can be
suppressed by Feshbach resonance.

To demonstrate feasibility, we choose 7Li and 87Rb as species A and B. Exper-
iments [111] show 7Li in |F = 1,mF = 1〉 state has a very weak scattering length
a = −1 aB at 560G, changes sign and goes up to a = 10 aB at 630G, implying
zero scattering length at 566G (by linear interpolation). The inter-species s-wave
scattering length between 7Li in |F = 1,mF = 1〉 and 87Rb in |F = 1,mF = 1〉 has
been computed [109] to be zero at 438G and positive above that hitting resonance
at 566G (coincidentally). That coincidence means that the field cannot be at 566
G necessary for a = 0 for Lithium, but we can tune the interspecies scattering to
about a = +100 aB at 560G by being close but not quite at the resonance while
having the species A scattering length of the order of a = −1 aB, low enough to
have negligible effect on the dynamics or eigenstates of species A.

We consider NA = NB = 1000 atoms, large enough to justify using mean field
theory [112]. Both species are confined in a cigar-shaped optical dipole trap by the
same laser of 1064 nm wavelength in the axial (direction of transport), but they
experience different axial trap frequencies due to different detuning and masses.
For species B, the axial (z) and transverse (⊥) trap frequencies are chosen to be
ωBz = 2π×10Hz and ωB⊥ = 2π×100Hz; and for species A ωA⊥ = 2π×1000Hz, and
its axial frequency is fixed by ωAz = ωBz /ηz where ηz =

√
δAz
δBz

mAz
mBz

= 0.36, on using
δA

δB
= 1.6 for the ratio of detuning for the two species in the common axial field.
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The tight transverse confinement implies a Gaussian shape transverse profile
for both species : Φi(ri, zi) =

√
2βie−βir

2/2ψi(zi) with (i =A,B). Integrating out the
transverse direction we get the coupled 1D Gross-Pitaevskii equations in Eq. (8.2).
We define units based on the axial trap frequency ωAz for species A, shown in
table 8.2, along with the resulting expressions for some of the relevant parameters
like mean field interaction strengths gij. The mass ratios are denoted by µAB =
mAB/mA, µB = mB/mA with mAB being the reduced mass of species A and B;
and aij are the s-wave scattering lengths.

Following Ref. [112], we assume a Thomas-Fermi profile in the axial direction
justified because of weak trapping: ψ(zB) =

√
3/(4d3

B)
√
d2
B − z2

B, where zB ∈
[−dB, dB]. We determine the values of the physical parameters, summarized in
table 8.2, by minimizing with respect to parameters βB and dB the resulting energy
functional corresponding to GP equation for species B.

E[ΦB]
ηzNB

=
[

1
2µBηz

(
βB + (µBηzγB)2

βB

)
+ µBηz

d2
B

10 + 1
µBηz

3NBaBBβB
5dB

]
(8.6)

where ηz = ωBz /ω
A
z and γB = ωB⊥/ω

B
z .

Table 8.2: Units and parameters for two-species BEC in triple-well.

Units and Parameters Numerical Values
Energy unit ε = ~ωAz 1.8× 10−32 J
Length unit l =

√
~

mAωAz
7.2× 10−6 m

Time unit τ = (ωAz )−1 5.7× 10−3s
Transverse size of B is lB⊥ =

√
1/βB βB = 35.85 ' 36 ⇒ lB⊥ = 0.17 l

Transverse size of A is lA⊥ =
√

1/βA βA = 35.97 ' 36 ⇒ lA⊥ = 0.17 l
Longitudinal size of B dB = 1.58 l
Longitudinal size of A lAz = 1 l (by choice of units)
Chemical-potential of B 5.7 ε (less than 2~ωB⊥ = 7.2 ε)
Self-interaction strength of B gBB = 2aBBNBβB

µB
= 4.2 ε · l

Cross-interaction strength for A gAB = aABNBβB
µAB

= 28.6 ' 29ε · l
Cross-interaction strength for B gBA = aABNAβA

µAB
= 28.7 ' 29ε · l

Notably, we decoupled the energy functional by neglecting the inter-species in-
teraction assuming it to be small relative to its self-interaction for species B. But
as we see from table 8.2, it is quite the opposite. Likewise the cross-interaction for
species A is two orders of magnitude higher than is assumed in our simulations.
This can be rectified by adding a novel design feature that creates a slight trans-
verse offset of the longitudinal axes to reduce the overlap of the two species. Since
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the radial profiles are seen to be identical for the two species βA ' βB ' 36 = β,
the geometric factor due to the reduced overlap is given by the integral:

I =
∫∞
−∞ dye

−βy2 ×
[∫ b/2
−∞ dxe

−β(x−b)2 +
∫∞
b/2 dxe

−βx2
]

= π
β
Erfc[b

√
β/2] (8.7)

which is an Error-Function and where the line of intersection of the surfaces is
found by setting x2 = (x − b)2 ⇒ 2x = b for positive offset b. Using the inter-
species interaction strength of 29ε · l for full overlap we solve 29 × I(b) = 0.5 to
find that a small offset of b = 0.30l reduces that interaction strength to 0.5ε · l as
used in our simulations.

We summarize how these estimates satisfy the assumptions of our model:
1. Our use of g1D = 0.5 ε · l for the inter-species interaction can be realized by

a small transverse offset of the two species.
2. Even though the species B does not ‘see’ the Gaussian barriers creating the

triple well, its extent in the dynamical direction is 2dB ' 3 l, localized within the
size 2d ' 4 l of the central well measured as the separation between the peaks of
the barriers.

3. The dynamics in the active direction is effectively 1D since the chemical
potential of even species B (which has self-interaction) is 5.69 ε which is less than
the energy required for exciting the first transverse excited state 7.2 ε.

4. During evolution of species A, species B remains well-localized since it does
not feel the time-varying potential and its overlap and interaction with species A
remains relatively small.

8.5 Fidelity and noise
We obtained gate fidelities of 98% for both static and dynamic potentials, com-
puted as the probability of finding atom A in a localised Gaussian state. The main
source of infidelity was projection on φi>3 of the initial Gaussian for the static case
and residual non-adiabatic coupling to φi>3 for the dynamic case.

The primary noise sources are fluctuations of the potentials, and of T and VAB.
High frequency fluctuations >kHz cause heating with negligible impact (∼ 10−4

change in fidelity) in the lattice where the cycle time ∼ 10−4 s � 10 s durations of
stable trapping of single atoms [113]. Heating effects are more significant for BECs
with cycle time ∼ 0.25 s, but long lifetimes ≥ 10 s can compensate for that [114].
In the lattice, due to fast cycle time, low frequency noise ≤ 100Hz can be treated
as static deviations of the physical parameters. Given that our mechanism is
an interference effect of the lowest three eigenstates, its fidelity goes as sin2 ∆θ,
where ∆θ is the eigenstate phase difference, which depends linearly on potential
variations. Thus, for small fluctuations, the infidelity ' ∆θ2 implying a quadratic
dependence on fluctuations of the physical parameters. The combined impact of
0.1% variations in potential parameters leads to a fidelity loss of about 3× 10−4.
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Snapshots of gate operation shown in Fig. 8.4 confirm that: (i) species B re-
mains localized unaffected by the evolution of species A, (ii) species A is delocalized
during transit (iii) dynamics with Eq. (8.1) and Eq. (8.2) is indistinguishable on
plot-scale.

After a gate cycle, the reduced density matrix ρA(t) = TrB|ψAB(t)〉〈ψAB(t)|,
gives 1−Trρ2

A(T ) = 4.4×10−4, indicating a pure state. The von Neumann entropy
S(T ) = −Tr[ρA(T ) ln(ρA(T )] = 2.3×10−3, with S(t) < 4.0×10−3 during the cycle
for the dynamic potential and S(t) < 12 × 10−3 for the static. These justify the
factorization of |ψAB〉 and show the absence of significant entanglement between
the species. The gate fidelity can be arbitrarily improved to limits ∼ 99.97% set
by noise, by using optimal control methods [115], since the mechanism has well-
defined initial and target states and a highly optimal initial path. This design can
implement a universal set of gates, since single qubit gates, like a Hadamard gate,
can be implemented by adjusting ∆E1, with species B absent, for desired partial
transfer in a cycle.



Chapter 9

Hilbert space geometry and the
quantum speed limit

In this chapter, we investigate the optimality of time limited dynamics within the
framework of Hilbert space geometry, where the time evolution is represented as
a trajectory and the optimized quantity is the final distance from some target
state. After introducing the basic geometrical concepts in Hilbert space, we de-
rive a simple optimization procedure equivalent to the standard optimum control
(OC) algorithms. We then examine the effect of independent local time variations,
yielding a quantitative measure of process optimality, which allows to asses the
convergence of OC algorithms.

We express the exact time fidelity trade-off in an integral form and argue for
its broad applicability in the estimation of TQSL. This result can also be employed
in reaching a desired fidelity in a minimal time below TQSL. Finally, we show
the existence of multiple locally optimal solutions in a system with a constrained
Hamiltonian, and verify the validity of the analytical results numerically.

9.1 Hilbert space geometry
Consider a system characterized by a state vector |ψ〉 ≡ |ψ(t)〉 evolving in time via
the Schrödinger equation |ψ̇〉 = −iĤ|ψ〉, where Ĥ is the time dependent Hamilto-
nian of the system and ~ = 1.

The time derivative of the state can be interpreted as the velocity in the Hilbert
space. Generally, the parallel Hilbert velocity defined by

|ψ̇‖〉 ≡ |ψ〉〈ψ|ψ̇〉 = −i|ψ〉〈ψ|Ĥ|ψ〉 ≡ −iE|ψ〉, (9.1)

107
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merely evolves the phase of the current state, while the perpendicular Hilbert ve-
locity

|ψ̇⊥〉 ≡ |ψ̇〉 − |ψ̇‖〉, (9.2)

|ψ̇⊥| ≡
√
〈ψ̇⊥|ψ̇⊥〉 =

√
|ψ̇|2 − |ψ̇‖|2 =

√
〈Ĥ2〉 − 〈Ĥ〉2 ≡ ∆E, (9.3)

induces motion in the Hilbert space.
This can be seen explicitly by decomposing the state in a fixed orthonormal

basis |φj〉,

|ψ〉 =
∑
j

aje
−ibj |φj〉, (9.4)

where a ≡ (a1, a2, ...) and b ≡ (b1, b2, ...) are real vectors, and |a|2 = ∑
j a

2
j = 1.

The Hilbert velocity is

|ψ̇〉 =
∑
j

(ȧj − iaj ḃj)e−ibj |φj〉. (9.5)

At a given instant, the particular choice of basis |φ1〉 = |ψ〉 ensures ak = 0 for
k > 1 and ȧ1 = 0 (since d

dt
|a| = 0). Thus, a non-zero perpendicular Hilbert

velocity component

〈φk|ψ̇〉 =
∑
j

(ȧj − iaj ḃj)e−ibj〈φk|φj〉 = ȧke
−ibk (9.6)

implies a time variation of the coefficient ak leading to motion in Hilbert space.
In a general basis, one finds that |ψ̇|2 = |ȧ|2 + 〈ḃ2〉 and |ψ̇‖| = 〈ḃ〉, where the

notation 〈c〉 ≡ ∑
j a

2
jcj was used. The speed of motion can then be expressed as

|ψ̇⊥| =
√
|ȧ|2 + (∆ḃ)2, where ∆ḃ ≡

√
〈ḃ2〉 − 〈ḃ〉2. The trajectory length can be

defined for any |ψ(t)〉, t ∈ 〈0, T 〉 as

C ≡
∫ T

0
|ψ̇⊥|dt =

∫ T

0
∆E(t)dt, (9.7)

which is the Aharonov-Anandan geometrical distance [98].
The distance in Hilbert space D(α, β) between states |α〉 and |β〉 is the length of

the shortest trajectory connecting them. The functional (9.7) attains an extremal
value when its integrand fulfills the Euler-Lagrange equations. Since |ψ̇⊥|(ȧ, a, ḃ)
does not depend on b, the generalized momenta

Πj ≡
∂|ψ̇⊥|
∂ḃj

=

(
ḃj − 〈ḃ〉

)
aj

2

|ψ̇⊥|
= const. (9.8)

are conserved. Without loss of generality, we can choose |φ1〉 = |α〉 in the state
expansion implying a1(t = 0) = 1 and Πj = 0 for all j. At any later time, non-
zero aj requires ḃj = 〈ḃ〉 and consequently ∆ḃ = 0. In this case, |ψ̇⊥| = |ȧ| for all
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Figure 9.1: Schematic illustration of the distance of states from equation (9.9) and
the distance inequality (9.20).

times, and the shortest trajectory is a geodesic on a hypersphere in the space of
parameter a defined by |a| = 1. Identifying |β〉 with |ψ(T )〉, in the chosen basis
a1(T ) = |〈φ1|ψ(T )〉| = |〈α|β〉|. Thus the distance of states is

D(α, β) = arccos (|〈α|β〉|) , (9.9)

which is equivalent to the Wootters distance [116, 117, 118], and attains a maxi-
mum value π/2 for a pair of orthogonal states, see Fig. 9.1. Since C ≥ D, we arrive
at the integral form of the QSL inequality∫ T

0
∆Edt ≥ arccos (|〈ψ(T )|ψ(0)〉|) . (9.10)

For a constant ∆E we recover the Bhattacharyya bound

∆E × T ≥ arccos (|〈ψ(T )|ψ(0)〉|) . (9.11)

9.2 Relative motion
In general, optimum control algorithms aim to drive the system into a certain
predefined state by dynamically varying its Hamiltonian. It is thus of special
interest to evaluate the relative motion in the subspace spanned by the current
state |ψ〉 and some fixed target state |χ〉. Let |ν〉 be another fixed state forming an
orthonormal basis with |χ〉 in this subspace at a given instant. The current state
can then be expressed as

|ψ〉 = a1e
−ib1|χ〉+ a2e

−ib2|ν〉, (9.12)

and the motion in the subspace is induced by a component of the perpendicular
Hilbert velocity along a state

|ξ〉 = a2e
−ib1|χ〉 − a1e

−ib2|ν〉 (9.13)
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(orthogonal to |ψ〉, determined up to a phase). Defining the fidelity F ≡ |〈χ|ψ〉|2 =
cos2 [D(χ, ψ)], we can obtain this state from

|ξ〉 = |χ〉〈χ| − F√
F (1− F )

|ψ〉. (9.14)

The states |ψ〉 and |ξ〉 also form an orthonormal basis in the subspace, hence

|χ〉 = eib1 (a1|ψ〉+ a2|ξ〉) , (9.15)

implying that |ξ〉 represents the part of |χ〉 which is not present in |ψ〉.
Using the expansion for Hilbert velocity from Eq. (9.5) with |φ1〉 = |χ〉 and

|φ2〉 = |ν〉, we can express the perpendicular Hilbert velocity in the subspace as

|ψ̇⊥,χ〉 ≡ |ξ〉〈ξ|ψ̇〉 = |ξ〉
[
ȧ1

a2
+ i(ḃ2 − ḃ1)a1a2

]
, (9.16)

where we have also used Eq. (9.13) and the normalization condition a1
2 + a2

2 = 1.
Denoting the immediate distance from |χ〉 as Dχ(t) ≡ D(χ, ψ(t)) = arccos(a1), we
see that the real part of 〈ξ|ψ̇〉 corresponds to the direct motion towards the state
|χ〉

Ḋχ(t) = d

dt
arccos(a1) = − ȧ1

a2
= −Re〈ξ|ψ̇〉. (9.17)

On a Bloch sphere with |χ〉 and |ν〉 on the poles this corresponds to a motion along
a meridian. Similarly, the imaginary part

|Im〈ξ|ψ̇〉| = |(ḃ2 − ḃ1)a1a2| =
√
〈ḃ2〉 − 〈ḃ〉2 ≡ ∆ḃ (9.18)

represents a motion along the parallels on the sphere preserving the distance from
the poles.

When |χ〉 is orthogonal to |ψ〉, we have a1 = 0 and |ξ〉 = e−ib1 |χ〉, with an
arbitrary phase b1. The imaginary part of 〈ξ|ψ̇〉 becomes zero due to vanish-
ing frequency uncertainty ∆ḃ = 0 and the direct velocity towards |χ〉 becomes
Ḋχ(t) = −|〈χ|ψ̇〉|.

For a general trajectory |ψ(t)〉, where t ∈ 〈0, T 〉, we can obtain the distance of
its end point from the target by integrating Eq. (9.17)

Dχ(T ) = Dχ(0)−
∫ T

0
Re〈ξ(t)|ψ̇〉dt, (9.19)

where the time dependence of |ξ〉 was shown explicitly. Since 〈ξ|ψ̇〉 is only one
component of the transverse Hilbert velocity, it directly follows

Dχ(T ) ≥ Dχ(0)−
∫ T

0
∆Edt, (9.20)
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which can also be seen by realizing that the hypothetical trajectory C + Dχ(T )
connecting |ψ(0)〉 and |χ〉 is necessarily longer or equal to the distance of the two
states Dχ(0), see Fig. 9.1. The above expression sets a limit on how quickly a
target state can be approached as opposed to Eq. (9.10), which sets a limit on how
quickly a system can leave an initial state.

9.3 Optimal navigation
Just like it often pays off to take a slightly longer path to avoid an obstacle on
the way to our goal, it may not be optimal to maximize the direct Hilbert velocity
towards the target at all times. Taking a longer path at higher speed may produce
a better result. What is important is the final proximity to the target achieved in
the specified time, rather than the actual traveled distance.

In the following we will consider a case when the Hamiltonian of the system
depends on time via a vector of control parameters u(t), that is Ĥ ≡ Ĥ(u(t)).
Suppose the initial state |ψ(0)〉 is fixed and we have some guess for the control
u(t), t ∈ 〈0, T 〉. To obtain the final distance from the target Dχ(T ), we first need to
calculate the full time evolution of the initial state. How will Dχ(T ) change when
we arbitrarily alter the control on some short time interval within the process?

Thanks to unitarity of the quantum time evolution we do not have to calculate
the whole trajectory again: For any two trajectories |ψ1(t)〉 and |ψ2(t)〉 governed
by the same Hamiltonian and having generally different starting points |ψ1(0)〉 and
|ψ2(0)〉, the immediate distance D (ψ1(t), ψ2(t)) is preserved for all times t. This
follows from the time invariance of the scalar product

d

dt
〈ψ1|ψ2〉 = 〈ψ̇1|ψ2〉+ 〈ψ1|ψ̇2〉

= i〈ψ1|Ĥ|ψ2〉 − i〈ψ1|Ĥ|ψ2〉 = 0. (9.21)

For convenience of notation we will rename the target state χ → χ(T ) and
denote its backwards evolved trajectory as |χ(t)〉. The final distance from the
target is then equal to the immediate distance of the trajectories |ψ(t)〉 and |χ(t)〉

Dχ(T ) ≡ D (χ(T ), ψ(T )) = D (χ(t), ψ(t)) (9.22)

for any point in time. Utilizing the result (9.19) for infinitesimal integration bound-
aries 〈t− dt, t〉, we can write

Dχ(T ) = D (χ(t), ψ(t− dt))−Q(t)dt, (9.23)

where we have introduced a new notation for the direct Hilbert velocity

Q(t) ≡ Re〈ξ(t)|ψ̇〉 = Im〈ξ(t)|Ĥ(t)|ψ(t)〉. (9.24)
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Note that the state |ξ(t)〉 is now computed with respect to the backwards evolved
target state |χ(t)〉. As before, the direct Hilbert velocity is bounded from above
by

Q ≡ Re〈ξ|ψ̇〉 = Re〈ξ|ψ̇⊥〉 ≤ |ψ̇⊥| = ∆E. (9.25)

The equality occurs when the motion in the Hilbert space is along a geodesic
towards |χ(t)〉.

Figure 9.2: Schematic interpretation of the direct Hilbert velocity Q as a compo-
nent of the perpendicular Hilbert velocity |ψ̇⊥〉 which corresponds to the shortening
rate of the distance D(ψ, χ), see Eq. (9.23). We have omitted the explicit time
dependence of the forward evolved initial state |ψ〉 ≡ |ψ(t)〉, as well as the back-
wards evolved target state |χ〉 ≡ |χ(t)〉. Subscripts on ψ and χ denote points in
time.

Equation (9.23) shows that in order to minimize the final distance from the
target, we have to maximize the direct Hilbert velocity Q(t) at each point in time.
The simplest local optimization algorithm can vary the control proportionally to
the gradient of Q(t)

δu(t) = α · ∂Q(t)
∂u

= α · Im
〈
ξ(t)

∣∣∣∣∣∂Ĥ∂u
∣∣∣∣∣ψ(t)

〉
, (9.26)

with some step size α. An improved convergence can be achieved by employing
higher derivatives with respect to the control [119]. Once the control has been
altered on some finite time interval, one can update the time evolution of |ψ(t)〉
and |χ(t)〉 on that interval and proceed by optimizing a neighboring interval (pre-
ceding or following in time) [120]. One iteration of the algorithm would then be
understood as a sweep over the whole process duration.

Such an optimization is in fact equivalent to the Krotov algorithm [115, 121]
which follows from the Pontryagin maximum principle [122, 95] as well as alter-
native approaches [123, 124]. In the Krotov algorithm the optimized quantity is
fidelity and the improvement of the control is found by maximization of the Pon-
tryagin Hamiltonian H(t, ψ,u, χ) ≡ 2Im

[
〈χ|Ĥ|ψ〉〈ψ|χ〉

]
. Inserting for |χ〉 from
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Eq. (9.15), we see that this function is in fact proportional to the direct Hilbert
velocity

H(t, ψ,u, χ) = 2
√
F (1− F )×Q(t). (9.27)

Thus our result provides an interpretation of optimum control theory in terms of
Hilbert space geometry. As shown below it also offers an intuitive framework for
the understanding of time optimization.

9.4 Time fidelity trade-off
We now turn to the question of trade-off between the duration of the process
and the achievable proximity of the target state. To our knowledge, this problem
has only been studied for uniform extensions of the process [101, 105, 102, 103,
106, 104]. In the following we consider a more general case of non-uniform time
variations.

Assume the process can be divided into N small but finite time intervals ∆tj,
connected at points in time tj = ∑j

k=1 ∆tk. At each interval the Hamiltonian is
constant and determined uniquely by the value of the control parameter uj, thus
the set {uj,∆tj; j = 1, 2, ..., N}, together with the initial condition for |ψ(0)〉,
completely defines the process.

When treating ∆tj as independent parameters, the process duration T is also
allowed to vary, however both |ψ(0)〉 and |χ(T )〉 remain fixed. A general variation
of the time intervals can be written in the form δ∆tj = µj∆tj, where all |µj| � 1.
To the first order in ∆tj we can approximate Eq. (9.23) as

Dχ(T ) ≈ D (χ(tj), ψ(tj−1))−Qj∆tj, (9.28)

with Qj ≡ Q(tj). The induced variations of T and Dχ(T ) then are

δT =
N∑
j=1

δ∆tj =
N∑
j=1

µj∆tj = T 〈µ〉T , (9.29)

δDχ(T ) =
N∑
j=1

∂Dχ(T )
∂∆tj

δ∆tj = −T 〈Qµ〉T , (9.30)

where we have defined the time average

〈f〉T ≡
1
T

N∑
j=1

fj∆tj →
1
T

∫ T

0
f(t)dt. (9.31)

For the case of an uncorrelated adjustment µj, fulfilling

Cov (Q, µ) ≡ 〈Qµ〉T − 〈Q〉T 〈µ〉T = 0, (9.32)
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the variation of the distance is simply

δDχ(T ) = −〈Q〉T δT. (9.33)

A trivial example fulfilling condition (9.32) is a uniform extension of the process
δ∆tj = κ∆tj, with a small constant κ = δT/T . This case was considered among
others by Mishima et al. [105] arriving at an equivalent time fidelity trade-off,
which in our notation can be expressed as

dF

dT
= 1
T

∫ T

0
2Im

[
〈χ|Ĥ|ψ〉〈ψ|χ〉

]
dt (9.34)

= 2
√
F (1− F )× 〈Q〉T , (9.35)

where the |χ〉 decomposition (9.15) was utilized.
Let us now consider a generally non-uniform adjustment of the time intervals

which preserves the total duration T . Such a redistribution must be of the form
µj = ε [νj − 〈ν〉T ], where νj ≡ ν(tj) is an arbitrary function of time, and ε is a
small scaling factor. Using Eq. (9.30), the corresponding change in the distance is

δDεχ(T ) = −εT Cov (Q, ν) , (9.36)

which is extremal for νj = Qj. Comparing this with the distance variation δDκχ(T )
induced by a uniform extension of the process with an equivalent mean adjustment

κ =
√
〈µ2〉T = ε

√
〈(Q− 〈Q〉T )2〉T ≡ ε Std (Q) , (9.37)

we obtain a measure of the process optimality

σQ ≡
δDεχ(T )
δDκχ(T ) = Cov (Q,Q)

Std (Q) 〈Q〉T
= Std (Q)
〈Q〉T

. (9.38)

For a sufficiently fine discretization of time, any process optimal with respect to
uj is necessarily extremal with respect to any variation of ∆tj which preserves T ,
implying δDεχ(T )→ 0. Thus σQ → 0 is a necessary criterion for process optimality,
and can be used for quantifying the convergence of OC algorithms. Additionally
σQ = 0 implies Q(t) = 〈Q〉T for all points in time, which via Cov (Q, µ) = 0
guarantees validity of Eq. (9.33) for any time adjustment µj of an optimal process.

For further discussion it is useful to introduce a classification scheme of the con-
trol sequences based on their optimality. Since the optimizing algorithm searches
for local optima, the optimization result can depend on the initial choice of the
control u(t). We define an optimum class as a continuous T transformation of op-
timal control parameters uopt(T, t) ≡ uopt,T (t). A set of initial control parameters
yielding upon optimization a solution in a certain optimum class will be called a
control family.
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If we denote the direct Hilbert velocity within an optimum class by Qopt(T ),
we can write the time distance trade-off (9.33) in an integral form

Dχ(T2) = Dχ(T1)−
∫ T2

T1
Qopt(T )dT. (9.39)

For an optimum class extending from zero to some finite duration T , the above
equation quantifies the speed limit exactly as opposed to Eq. (9.20), which merely
provides a lower bound. In terms of fidelity the above can be written as[

arcsin
(√

F
)]F2

F1
=
∫ T2

T1
Qopt(T )dT. (9.40)

Usually the convergence of OC algorithms becomes slower as T approaches the
quantum speed limit TQSL from below. Interestingly for many systems Qopt(T ) is
constant or a slowly varying function of T in that regime. The value of TQSL can
thus be predicted well even for moderate values of fidelity (F ≈ 0.9, T < TQSL) by
approximating the integrand in Eq. (9.40) with a constant. Note that Eq. (9.34) is
not very suitable for linear extrapolation of the fidelity, since the right hand side
varies quickly when F → 1 and thus cannot be approximated with a constant.

Caneva et al. [103] observed the relation F = sin2
(
π
2T/TQSL

)
arising from a

numerical optimization of multiple physical systems, and attributed this behavior
to the motion along geodesics in Hilbert space. In general, Eq. (9.40) implies
F = sin2

(∫ T
0 Qopt(T ′)dT ′

)
for an optimum class with F (T = 0) = 0. The sin2

dependence thus occurs whenever Qopt(T ) is independent of T , even if the motion
is not along a geodesic. Unit fidelity is then reached in time TQSL = π/(2Qopt).

Equation (9.40) also allows an OC algorithm to search for a process yielding
a certain predefined fidelity while having the shortest possible duration within a
given control family. After the default OC algorithm has converged to some fidelity
F1 for a given initial duration T1, we can estimate the time T2 required to obtain
fidelity F2 by setting Qopt(T ) constant in Eq. (9.40), that is

T2 = T1 +
[
arcsin

(√
F
)]F2

F1

/
Qopt(T1). (9.41)

Re-optimizing the process with uniformly extended control to T = T2 and repeat-
ing the estimate of T2 converges upon the process with the desired fidelity F2 in few
iterations. When Qopt(T ) is a varying function, we can improve the convergence
by employing its derivatives in the expansion of the integrand in Eq. (9.40).

9.5 Entanglement generation in a multilevel sys-
tem

To provide a non-trivial example of our time optimal control, we optimize entan-
glement generation in an atomic system with Rydberg excitation blockade [125].
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The system consists of N indistinguishable atoms, each having two ground states
|1〉 and |2〉, and a highly excited Rydberg state |r〉. The ground states are coupled
by a resonant external field with a Rabi frequency Ω1(t) = Ωmaxu1(t), and similarly
the states |2〉 and |r〉 are coupled by Ωr(t) = Ωmaxur(t), with the control parame-
ters limited by 0 ≤ ui ≤ 1 and Ωmax = 2π× 10MHz. Due to a large electric dipole
moment, a single Rydberg excitation will render Ωr off-resonant for the remaining
atoms, thus permitting only one Rydberg excitation at a time. Consequently, the
system is closed in the 2N + 1 dimensional Hilbert space with a symmetric basis
|n1, n2, nr〉, where ni is the number of atoms in the state |i〉, and n1 +n2 +nr = N ,
nr ≤ 1. The Hamiltonian is H = HJx +HJC with

HJx(t) ≡ Ω1(t)Jx = Ω1(t)1
2
(
a†1a2 + a1a

†
2

)
, (9.42)

HJC(t) ≡ Ωr(t)
1
2
(
a†2σ

− + a2σ
+
)
, (9.43)

where ai (a†i ) are the conventional annihilation (creation) operators, Jx is the
pseudo-spin operator and σ± are the Pauli matrices denoting the transfer between
the states with 0 and 1 Rydberg excitation.

Initially the system is prepared in |ψ(0)〉 = |N, 0, 0〉. Motivated by Ref. [125],
we aim to prepare the maximally entangled state

|χ(T )〉 =
{
|Jx = 0〉 if N is even
(|Jx = 0〉 ⊗ |r〉)sym if N is odd , (9.44)

where (·)sym denotes symmetrization with respect to all atoms. To have a simple
but non-trivial system with 〈ψ(0)|χ(T )〉 = 0, we have chosen N = 3.

To classify the control sequences as outlined above, we initially choose constant
control parameters u1(t) = ur(t) = 1 and evolve the states ψ and χ in time (forward
and backward respectively) for a variable total duration T . The resulting fidelities
F (T ) and the values of 〈Q〉T are shown in Fig.9.3(a,b). Note that Q does not
depend on t since H is constant and thus commutes with the evolution operator.
The examined range of T is divided into several sections by discontinuities in Q(T )
where F → 0 and Q(T ) changes sign.

To identify the associated control families we perform control optimization for
initial parameters ui chosen from each of these sections. Once the control has been
optimized, an element in the optimum class is found and the whole class can be
mapped out by allowing the process duration to vary trough Eq. (9.41), where the
target fidelity is adjusted in small steps. Different initial conditions converging
into the same optimum class then belong to the same control family. The division
of our initial controls into control families is denoted by roman numbering i - vi.
Note that initial control parameters from different sections can belong to the same
control family as illustrated by family iii. Moreover the transition to a different
control family can occur at non-zero fidelity, illustrated by family v.
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Figure 9.3: (a,b) The evolution of the direct Hilbert speed Q and fidelity F are
shown for constant control u1(t) = ur(t) = 1 as a function of the process duration
T . Note the discontinuities in Q(T ) separating the control families i - vi. (c,d)
The values of Q and F for the optimum solutions (classes) are shown as a function
of the process duration T . The horizontal dotted lines in (d) represent the slip
transitions (see text).

Figure 9.3(c,d) shows the fidelity Fopt(T ) and Qopt(T ) for the six optimum
classes. Each class is shown within the relevant region in T where 0 < F < 1 and
Qopt(T ) > 0. The first two classes do not reach F = 1, because the OC algorithm
fails to improve when Qopt(T ) → 0. Interestingly, the remaining optimal classes
slip into a lower class before reaching F = 0 (denoted by vertical dotted lines in
Fig.9.3(d)).

These slip transitions are very sudden due to the use of the modified OC al-
gorithm aiming for some predefined fidelity. A slight decrease of the target F at
the slip point allows to shorten T substantially by falling into a different control
family and converging towards an optimal solution there. We never observe such
transitions while increasing the target F , just as it is not possible to find the up-
per optimum class when extending the duration in fixed steps and optimizing the
control.

Within the numerical precision of our model, all curves in Fig. 9.3 are consistent
with Eq. (9.40). A very important feature is the slow variation of Qopt as F → 1.
This property allows us to extrapolate the fidelity in a wide range of durations and
to predict the value of TQSL using equation (9.40). Thus the time fidelity trade-off
can be quantified even for moderately optimized processes.

Figure 9.4 presents the optimal control sequences for the relevant range of
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Figure 9.4: Time dependence of the control parameters within the optimal classes
i, ii and iii referenced in Fig. 9.3. The images show values of the control parameters
u1 and ur at each instant along the process t/T (horizontal axis) for each process
duration T (vertical axis). Shading encodes the value. A horizontal cross section
corresponds to a single optimum control sequence.

process durations in the optimum classes i, ii and iii referenced in Fig. 9.3. Note
that the function uopt(T, t) is pulse-like but continuous in both dimensions. This
demonstrates that for small time variations the process remains close to optimal.
Although some optimum classes overlap in time, they are clearly using different
strategies to approach the target.

The presented optimum classes are not the only possible solutions to the prob-
lem, but they provide very efficient processes reaching perfect fidelity in TQSL =
0.2204µs for the iii class (on the order of the coupling period 2π/Ωmax = 0.1µs).
Nevertheless, the motion in the Hilbert space is most certainly not along a geodesic,
since the corresponding path length C =

∫ T
0 ∆Edt = 10.16 is much longer than the

distance of states D(ψ(0), χ(T )) = π/2. This is due to the character of the Hamil-
tonians (9.42) and (9.43), which do not provide the ideal driving of the system.

Although this numerical example considers a finite dimensional system, the
formalism is universal and applicable to any quantum system for which the state
evolution can be computed.
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Conclusion and Outlook

We have presented a proposal for a two qubit quantum gate, which can be im-
plemented with ultracold atoms trapped in a species selective potentials. In the
simplest case, the gate operation does not require manipulation of the potentials,
since it is based on the interference of freely evolving energy eigenstates, which
makes it robust against technical noise. The design was generalized for operation
with coherent atomic ensembles, where the action can be compared to a transistor
like effect. The gate was not subjected to numerical optimization, mainly because
we focused on characterising the natural robustness of the physical process. Cer-
tainly, the performance could be improved by usage of Optimum Control (OC)
algorithms.

We have derived a simple algorithm for optimization of quantum system evo-
lution based on Hilbert space velocity analysis. We have demonstrated its equiva-
lence with standard OC algorithms and quantified the trade-off between the fidelity
and the duration. Its was shown that the time variation of the direct Hilbert veloc-
ity has to be diminished in order to obtain an optimum trajectory, which provides
a necessary convergence criterion applicable to local OC algorithms. Not least, the
presented formulation of the quantum speed limit (QSL) allows to calculate the
value of the shortest time TQSL required to reach a given target state by extrapola-
tion from an optimal processes at T < TQSL. The developed formalism has broad
applicability to quantum optimization problems; we illustrate this by applying it
to a multilevel system with a constrained Hamiltonian, for which we present and
classify a number of different optimal solutions.

Quantum gate perspectives
The project of quantum information processing with motional degrees of freedom
can be further developed by designing more single qubit and two qubit gates, and
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searching for the most suitable architecture for an experimental implementation.
For the latter, we might find inspiration in the currently developed techniques for
manipulation of atoms, such as the use of spatial light modulators or micro-lens
arrays for construction of tunable multi-well trapping potentials. A worthwhile
avenue to explore might be the utilization of microwave-dressed state-selective
potentials [126], which might allow to use a single atomic species and to swap the
role of control and target qubits via state preparation.

Optimum control perspectives
In the optimum control project, the next step will be to apply the Hilbert ve-
locity formalism in well-known quantum processes, such as parametric amplifica-
tion [127], transport of spin [100] or stimulated emission rapid adiabatic passage
(STIRAP) [128], to deepen their understanding and examine the limits. Applica-
tion to ‘new’ systems is, however, equally interesting.
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87Rb D2 line and the Faraday
laser
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State diagram of the hyperfine structure. A master laser is locked to the F ′ =
1&3 crossover (−212MHz from F ′ = 3). The Faraday laser is locked with an offset
lock to the master laser and is shifted +2 × 200MHz with a double pass AOM.
Data taken from: Daniel A. Stleck, "Rubidium 87 D Line Data," available online
at http://steck.us/alkalidata (revision 2.0.1,2 May 2008).
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