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Abstract

Within this thesis I have performed the initial investigations into spinor dynamics in an
optical lattice and investigated the properties of a dark field Faraday imaging system.

As a prerequisite to these experiments the creation of a Bose-Einstein condensate in a
1D optical lattice was investigated to pave the way for investigations of spinor dynamics.
Moreover the control of magnetic fields and microwave radiation was realised for the state
preparation scheme. These mechanisms were investigated in detail to give the best possible
starting point for the investigation of spinor dynamics.

It was thus possible to load a Bose-Einstein condensate of 5.5(6) ·104 atoms at a purity
of 60(6)% into the optical lattice and prepare the |F = 2,mF = 0〉 state containing 99% of
the atoms. The initial investigation of spinor dynamics in this configuration are presented.
The first results indicate the need for better comparison with theory and the need for more
investigations. The future prospects of this research are discussed and evaluated in the
context of the creation of EPR pairs to be used in quantum communication protocols.

The dark field Faraday imaging system is explained and characterised. It is shown to be
a reliable method for in situ investigation of ultra-cold atomic ensembles. The destructive-
ness of the method is investigated showing that it can reliably probe thermal clouds multiple
times without significantly heating the system. A first investigation of Bose-Einstein con-
densates using this method is presented highlighting the limitations of the system and illus-
trating future improvements to be made. A number of applications of the Faraday technique
are presented, showing applications in imaging system calibration, trap characterisation and
magnetometry. Future applications are discussed for the implementation of feedback in the
system and for imaging Bose-Einstein condensates.

The investigations has been performed in the Ultra-Cold Quantum Gasses group at
Aarhus University.
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1. Introduction

The experimental realisation of gaseous Bose-Einstein condensates in 1995 [1, 2, 3] un-
locked the door to a new field in modern physics. Weakly interacting condensates have
spurred investigations in many directions related to fields such as solid state, atomic, nu-
clear and condensed matter physics. They have also become viable candidates for quantum
information, computing and simulation routines. In this context the internal degrees of
freedom of a Bose-Einstein condensate become very interesting since they unlock more
dynamics for investigation.

Spin dynamics in an optical lattice may allow for the production of Einstein, Podol-
sky and Rosen (EPR) pairs of atoms in higher lattice bands [4]. In the context of quantum
computing and information. Quantum non-demolition measurements of Bose-Einstein con-
densates may allow for feedback into and extraction of information from quantum system
with minimal perturbation of the operator under investigation.

Gaseous alkali Bose-Einstein condensates are an ensemble of neutral atoms confined
to the single particle ground state as a result of Bose-Einstein statistics. The condensate
thus forms a coherent atomic ensemble which allows for the realisation of coherent atomic
physics. The low density and weak interaction of the condensate allow it to function as a
model system for many other quantum systems of interest [5].

The first experimental realisation of gaseous Bose-Einstein condensates was in 1995 but
the field of quantum gasses has its origin in 1924 with Satyendra Nath Bose’s description of
photon statistics [6]. Bose’s work on photons was applied by Albert Einstein to massive par-
ticles [7]. A consequence of Einstein’s work on non-interacting particles was a macroscopic
occupation of the single particle ground state below a certain temperature. The theory ne-
glected interactions between atoms and was a purely statistical phenomena. It was initially
thought that interactions excluded the possibility of creating a Bose-Einstein condensate
since they would lead to the formation of solids. In 1938 the observation of super-fluid he-
lium became the first example of a Bose-Einstein condensed system [8, 9]. The connection
between Bose-Einstein condensation and super-fluid helium was made by Fritz London that
same year [10]. Thus there was one example of a Bose-Einstein condensed system though
no substance was a viable candidate for a pure Bose-Einstein condensate. In super-fluid he-
lium there are strong interactions unlike the condensation phenomena discussed by Einstein
which was independent of interactions. The strong interactions in super-fluid helium lead
to a small population in the zero momentum state, because of depletion by interactions.

In 1959 Hecht suggested that spin polarised hydrogen would stay a gaseous down to
zero temperature [11]. It still took almost twenty years before real experimental work
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2 CHAPTER 1. INTRODUCTION

towards Bose-Einstein condensation in spin polarised hydrogen began. This work was
triggered by confirmation of Hecht’s prediction through numerical simulation [12]. Spin
polarised hydrogen was not the first gaseous condensate but it provided important steps to-
wards the production of a gaseous condensate. Many techniques developed for trapping and
cooling spin polarised hydrogen, such as magnetic traps and evaporative cooling, were in-
dispensable for creating the first gaseous Bose-Einstein condensates. In 1998 a condensate
of spin polarised hydrogen was finally realised by the group of Thomas Greytak at MIT
[13].

Spin polarised hydrogen might have been the first candidate for the creation of a gaseous
Bose-Einstein condensate but it was not the first actual condensate since alkali atoms can
be optically cooled. With the advent of evaporative cooling the road to Bose-Einstein con-
densates was clear and in 1995 both the MIT, JILA and Rise groups reported the first obser-
vation of Bose-Einstein condensates [1, 2, 3]. After the realisation of the first condensates
the field quickly expanded with many more atomic species shown to undergo Bose-Einstein
condensation. Not only have more species been added, Bose-Einstein condensed molecules
and degenerate Fermi gasses has also been created [14, 15, 16, 17].

Bose-Einstein condensates provide a macroscopic quantum system which can be ma-
nipulated and probed using electric and magnetic fields. The success of the field reflects
itself in the many branches of research in which ultra-cold atomic physics has found appli-
cations. Moreover Bose-Einstein condensation and the properties of condensates provide an
interesting field in itself. These properties include vortices, interference, solitons and low
temperature phenomena [18, 19]. Ultra-cold atomic physics, including degenerate Fermi-
gasses and Bose-Einstein condensation of molecules, are useful for simulating condensed
matter physics, high energy and low dimensional physics. Many of the atomic species that
have been Bose-Einstein condensed have tunable interactions. Feshbach resonances have
increased the applications of Bose-Einstein condensates to the investigation phenomena
such as molecular physics [20]. The existence of Feshbach resonances also allow the inter-
action to be turned off and study the ideal non-interacting system as described by Einstein.

The Spin degree of freedom is another avenue of investigation which allow for the
observation of even more complex dynamics, than the scalar condensates. The field of
multi-component dynamics was triggered by the production of multi-component conden-
sates [21, 22]. Later the realisation of true spinor condensates were realised by the optical
confinements of ultra-cold atoms. In the case of alkali atoms the spinors take the form of the
Zeeman sub-levels of the ground-state hyperfine manifolds. The first optical confinement of
neutral atoms was achieved by the MIT group trapping sodium in an optical dipole trap in
1998 [23]. The early experimental and theoretical investigations were into the ground state
properties, dynamics of the systems and domain formation [24, 25, 26, 27, 28]. Later the
effects of the magnetic field on the dynamics gained interest [29]. The effect of a quantum
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phase transitions by quenching of condensates from high to low magnetic fields initiating
spinor dynamics were investigated [30]. It was possible to tune the linear and quadratic Zee-
man energy to investigate dynamics and observe the amplification of vacuum fluctuations
[31, 32, 33]. The dynamics of spinor condensates in optical lattices were also investigated
[34]. These investigations allowed for great control of the dynamics by working in the Mott
insulating phase with a site occupation of 2. The effects of the trap and later the orientation
of the magnetic field are also areas of investigation [35, 36, 37].

Within this thesis the combination of optical lattice properties coupled with excitations
caused by spin changing collisions are under investigation. One goal of these investigations
is the creation of Einstein, Podolsky and Rosen pairs propagating in an optical lattice.

Back action from measurements has been a part of quantum mechanics since its incep-
tion. By measuring an operator the uncertainty of this operator is decreased leading to an
increase in the uncertainty of another non-commuting operator, for example the position
and momentum operators. This leads to the concept of back action which make it difficult
to probe a system more than once, without affecting the outcome of subsequent measure-
ments. As an answer to this the concept of a quantum non-demolition measurement was
introduced in the 1970’s. The idea is to perform the measurement in such a way that the
increase in uncertainty is applied to an operator that does not couple back into the originally
observed operator. These quantum non-demolition techniques were first discussed in the
context of gravitational wave measurements in the 1970’s [38, 39, 40, 41].

In the 1980’s the the field of quantum optics became an interesting area for quantum
non-demolition measurements [42, 43, 44]. This field was promising for performing high
quality measurements because of the high sensitivity of optical sources and sensors allowing
for detection of fluctuations below the shot noise level. Early experimental investigations
were done using cavity quantum electro dynamics where the light interacts with a few or
a single atom and this atom is strongly coupled to the cavity [45, 46, 47, 48]. Later the
coupling of an atomic ensemble and quantum light was investigated [49].

For non-destructive imaging of a spatially inhomogeneous sample such as an ultra-cold
cloud there are multiple methods available, such as phase-contrast imaging [50], diffraction
techniques [51] and Faraday rotation [52]. All these techniques use off resonant light to
probe the atomic cloud. The light is affected by the cloud leading to phase shifts, diffrac-
tion or polarisation rotations depending on the method used. Further development of such
quantum non-demolition measurements is of great interest in regards to quantum informa-
tion and quantum computing. Today phase-contrast imaging is the preferred method for
non-destructive probing of ultra-cold atomic clouds. It is usually applied to samples with
small line density where it has better signal to noise ratio than other non-destructive meth-
ods [50]. Depending on the strength of the interaction between the atomic cloud and the
probe light a specific method may be favourable.

In addition Faraday rotation provides a source of entanglement between the atoms and
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the light, thereby offering more possibilities for quantum systems [53]. Spatially resolved
Faraday imaging has been performed by the Copenhagen group [54]. In this thesis a differ-
ent method for performing non-destructive Faraday imaging is presented and investigated.
We call it dark field Faraday imaging, since the light that has interacted with the atoms is
transmitted on the dark port of a polarising beam splitter. I present a characterisation of the
imaging system and cover some applications of the Faraday system.

This thesis is structured as follows: A theoretical chapter covers the interaction of atoms
and off-resonant light and the spinor dynamics. This is followed by a description of the
experimental setup and some characterisation measurements in chapter thee. In chapters
four and five the results of the spinor and Faraday work are presented. The thesis ends with
a summary and outlook of future experiments to be performed in both research directions.



2. Theoretical Background

2.1 Atom – Light Interaction

The experiments presented in this thesis rely on the interaction of off-resonant light with
atoms. This interaction is well described using the dressed state picture [55, 56]. In this
section I derive an effective Hamiltonian which illustrates the trapping potential of the op-
tical lattice and the Faraday effect. A further description of these interactions follows and
the section ends with a discussion of heating due to spontaneous emission.

To describe the atom we use the coherence operator σ̂i j = |i〉〈 j|, for i = j it corresponds
to the population operator of the state i and in the case i 6= j the coupling between the two
states. The light field is described by the creation and annihilation operators (â† and â) and
nph = â†â is the photon number operator.

In the dressed state picture the full Hamiltonian contains the atomic Hamiltonian HA =
h̄ωAσee and the light Hamiltonian HL = h̄ωLa†a, where ωA and ωL are the atomic transition
frequency and the laser frequency respectively. These are free space Hamiltonians and de-
scribe a system with no interaction, see figure 2.1(a) [55, 56]. Including interactions causes

e,n

g,n
e,n-1

g,n+1

(a) (b)

		1

		3 		4

 

		2

 

+

 

-

mF	=	-1/2																1/2 

(c)

Figure 2.1: Energy diagrams of the dressed state picture (a) without and (b) with the
interaction term. The splittings are the detuning ∆ and the effective Rabi frequency
Ω = h̄g2d2nph/∆. (c) The state diagram for a doubly degenerate two level system used
in illustrating the Faraday effect. The state |1〉 and |3〉 are in the mF =−1/2 manifold while
the states |2〉 and |4〉 are in the mF = 1/2 manifold. The transitions are coupled by σ±

polarised light.
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6 CHAPTER 2. THEORETICAL BACKGROUND

an energy shift in the coupled system compared to the non-interacting system, figure 2.1(b).
The interaction term can be considered as the coupling between the ground and excited state
dressed by a photon of a given detuning.

The interaction is given by

Hint =−h̄gd
(
σ̂egâe−iωLt + â†eiωLt

σ̂ge
)

(2.1)

where g =
√

ωL
2h̄ε0V , d = 〈i|er| j〉 is the dipole matrix element of the atomic transition, ε0

is the vacuum permittivity and V the volume of the light field [55, 56]. This interaction
Hamiltonian assumes the dipole approximation [55] where the atom is considered to be
small compared to the length scale of the laser wavelength. Because of this the effective
laser field can be assumed to be uniform across the atom. Another assumption of the in-
teraction Hamiltonian is the rotating wave approximation [55]. The result is an effective
Hamiltonian that scales as 1

ωL−ωA
, without the rotating wave approximation another term

involving 1
ωL+ωA

would also contribute. For small detuning (∆ = ωL−ωA) the second term
can be neglected, see section 2.1 for more on the effects of this on the lattice depth.

The model system is based on a two level atom interacting with linearly polarized light,
it follows the derivations of Duan et. al. [57]. In the absence of a magnetic field the energy
levels of the atom are doubly degenerate, the ground and excited states each correspond to
a spin 1/2 system. The ground lower manifold consists of the states |1〉 and |2〉 and the
excited manifold the states |3〉 and |4〉, having spin −1/2 and +1/2 respectively along the
quantisation axis, see figure 2.1(c). Linearly polarised light traveling along the quantisation
axis can only drive σ± transitions, form selection rules. These transitions are the |1〉 to |4〉
and |2〉 to |3〉 transitions respectively. Leading to a Hamiltonian for two seperate two level
system.

Ĥ = h̄ωLâ†
+â+ + h̄ωAσ̂44− h̄gd

(
σ̂41â+e−iωLt + â†

+eiωLt
σ̂14

)
+ h̄ωLâ†

−â−+ h̄ωAσ̂33− h̄gd
(

σ̂32â−e−iωLt + â†
−eiωLt

σ̂23

)
.

(2.2)

It is possible to eliminate the coupling operators between the ground and excited states
leaving a Hamiltonian only dependent on the population in the ground states and the photon
number operators for the σ± components. To get there a slowly varying operator1 is intro-
duced σ̃23 = σ̂23eiωLt . Using the Heisenberg equation of motion, the time evolution of σ̃23

and σ̃14 can be found

dσ̃23

dt
= σ̂23

d
dt

eiωLt +
dσ̂23

dt
eiωLt =

(
iωLσ̂23 +

1
ih̄

[
σ̂23, Ĥ

])
eiωLt

= ieiωLt
(

σ̂23ωL− σ̂23ωA +gd
(

â−e−iωLt [σ̂23, σ̂32]+ â†
−eiωLt [σ̂23, σ̂23]

))
= +i(∆σ̃23 +gdâ− (σ̂22− σ̂33)) .

(2.3)

1σ̂23 oscillates at the atomic frequency while σ̃23 oscillates with the detuning.
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Because the light is far detuned the excited state population is very small, meaning dσ̃23
dt ≈

i(∆σ̃23 +gdâ−σ̂22). Thinking about the timescales involved2 we see that σ̃23 varies consid-
erably faster than the ground state population σ̂22. Whenever the ground state changes the
coherence term quickly swings into equilibrium. To good approximation the steady state
solution can be used

σ̃23 =
−gdâ−σ̂22

∆
σ̃14 =

−gdâ+σ̂11

∆
. (2.4)

This procedure can of course also be applied to σ̃14 giving the above result.
With these operators the effective Hamiltonian, ignoring the free space terms, becomes

Ĥe f f =−h̄gd
(

σ̂41â+e−iωLt + â†
+eiωLt

σ̂14

)
− h̄gd

(
σ̂32â−e−iωLt + â†

−eiωLt
σ̂23

)
=−h̄gd

(
σ̃

†
14â+ + â†

+σ̃14

)
− h̄gd

(
σ̃

†
23â−+ â†

−σ̃23

)
=

2h̄g2d2

∆

(
σ̂11â†

+â+ + σ̂22â†
−â−

)
=− h̄g2d2

∆

(
(σ̂22− σ̂11)(â†

+â+− â†
−â−)− (â†

+â+ + â†
−â−)(σ̂11 + σ̂22)

)
=− h̄g2d2

∆

(
(σ̂22− σ̂11)(n+−n−)−nphnat

)
(2.5)

n± is the photon number operator for the σ± polarised light and nat is the atom number.
The first term in the effective Hamiltonian describes the Faraday rotation. If the sample
is magnetically oriented the sign difference between the σ± components gives rise to a
phase shift between the two components of the light. This is interperted as a rotation of
the polarisation. The second term is the AC-Stark shift which is an energy shift dependent
on the local number of photons an atom interacts with [56]. This is used in deriving the
equations for the dipole trapping potential, the subject of the next section.

Optical Lattices

To describe an optical lattice we consider the second term of the effective Hamiltonian. This
term is spin independent and an interpretation of this term is that it provides a shift in the
eigenenergies of the dressed atom-light diagram dependent on the intensity of the light. It
is the inhomogeneity of the trapping laser that creates the trapping potential.

Consider a single atom interacting with a far-detuned linearly polarised high intensity
laser. The first term in equation 2.5 becomes negligible because nph� n+−n− leading to

Ĥe f f =− h̄g2d2

∆
nph =− ωLd2

2ε0V ∆
nph→

d2|E0|2

h̄∆
, (2.6)

the final term appears because the classical field amplitude is related to the quantum by

E0↔−
√

2h̄ωL
ε0V nph[55, 56].

2The oscillation frequency of σ̃23 (the detuning) and the rate of population oscillations of the ground state.



8 CHAPTER 2. THEORETICAL BACKGROUND

The effective Hamiltonian corresponds to a shift in the eigenenergies of the dressed
states dependent on the magnitude of the electric field ∆Eg = d2|E0|2

h̄∆
. The excited state

experiences an opposite shift in its eigenenergy. Red detuned light (∆ < 0) causes the ground
state to be shifted down in energy while blue detuned light (∆ > 0) shifts the ground state
energy up. If the atom is considered semi-classically, this energy shift leads to a confining
potential in the case of a red detuned laser where the atom seek high intensity, i.e. the focus
of the beam [56, 58].

The dipole matrix element is related to the line width of the transition, which is well
known for rubidium 87,

Γ =
ω3

0
3πε0h̄c3 d2. (2.7)

Leading to a trapping potential

Udip(z,r) =
3πc2

2ω3
0

ΓI(z,r)
∆

(2.8)

where z is the propagation axis of the laser while r is the radial coordinate.
The spatial dependence is the intensity, which is the source of the confining potential.

The electric field of a linearly polarised Gaussian beam traveling along the Z-axis is given
as [5, 58, 59]

E(z,r) = E0ε̂
w0

w(z)
eikze−r2/w(z)2

, (2.9)

where ε̂ is the polarisation vector, E0 the field amplitude, w(z) = W0

√
1+
(

z
zR

)2
the beam

waist at z, w0 the beam waist at the focus and zR = πw2
0/λ the Rayleigh length.

An optical lattice is formed by two counter-propagating laser beams, each described by
equation 2.9, with parallel polarisation. The electric fields of the two beams are added to
obtain

E(z,r) = E0ε̂
w0

w(z)
e−r2/w(z)2

(
eikz + e−ikz

)
= 2E0ε̂

w0

w(z)
e−r2/w(z)2

cos(kz). (2.10)

The intensity is proportional to the squared electric field I = 2ε0c|E|2

I(z,r) = 4I0

(
w0

w(z)

)
e−2r2/w(z)2

cos2(kz) (2.11)

where I0 = 2P
πw2

0
is the intensity of one beam in its focus [59], P is the power of the laser

I(z,r) =
8P

πw0

(
w0

w(z)

)
e−2r2/w(z)2

cos2(kz). (2.12)

To obtain a better description of the trapping potential, the simple model described
above has to be modified. Two factors are important for a better model for the optical lattice.
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First, the multilevel structure of rubidium 87 has to be taken into account and secondly the
use of the rotating wave approximation is not exactly valid for our lattice.

The multilevel structure of rubidium 87 is due to the two excited states. Transitions
from 52S1/2 to both 52P1/2 and 52P3/2 contribute to the trapping potential. Equation 2.8
becomes [58]

Udip(z,r) =
3πc2

2

(
2Γ2

∆2ω3
2

+
Γ1

∆1ω3
1

)
I(z,r) (2.13)

where ∆i, ωi and Γi are the detuning, frequency and line-width of the D1 and D2 transitions.
If the rotating wave approximation is not applied, the effective Hamiltonian has to be

modified. Luckily this modification is only the inclusion of a second term [5]

1
∆
→ 1

∆
+

1
ωL +ωA

. (2.14)

The validity of the rotating wave approximation depends on the ratio of the two terms. For
our lattice the correction is around 8% which is not ignorable. Without the rotating wave
approximation the potential is

Udip(z,r) =
3πc2

2

(
2Γ2

∆2ω3
2

+
2Γ2

(ω2 +ωL)ω3
2

+
Γ1

∆1ω3
1

+
Γ1

(ω1 +ωL)ω3
1

)
I(z,r). (2.15)

When working with an optical lattice the quantity of interest is the lattice depth given
as the depth of the potential in the center of the lattice

U0 = Udip(0,0) =
3πc2

2

(
2Γ2

∆2ω3
2

+
2Γ2

(ω2 +ωL)ω3
2

+
Γ1

∆1ω3
1

+
Γ1

(ω1 +ωL)ω3
1

)
8P

πw0
. (2.16)

The depth of the lattice is measured in recoil energy Erec = (h̄k)2

2mRb
, where k is the photon wave

number [5, 56] and is given by s = U0/Erec for the one dimensional lattice.
For Bose-Einstein condensates in an optical lattice there are two relevant regimes. If

the lattice depth is small, typically below 5 Erec, the lattice is said to be in the super-fluid
regime while deep lattices, typically above 10 Erec, are said to be in the isolating regime.
The exact depth at which the transition between the two regimes occur is dependent on the
actual lattice.

All spinor work presented in this thesis has been performed at a lattice depth of 16 Erec,
well within the isolating regime. Because of this relatively deep lattice, properties such
as band structure and tunneling between lattice sites, know from solid state physics, can
be ignored. The combination of lattice and spinor dynamics will be the subject of further
investigations. In the work presented here these lower lattices have not been investigated
and each lattice site is considered an individual trap.

If each lattice site can be considered an individual trapping potential it can be well
approximated by a harmonic potential. For a harmonic trap the trapping frequencies are
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Figure 2.2: Equipotential surface of the lattice. This illustrate the pancake structure of the
lattice and how deep lattice can be considered individual traps. Figure from [77]

given by the characteristic lengths of the trap. For the lattice these lengths are the beam waist
and the wave-length of the lattice laser, for the radial and axial frequencies respectively

ω⊥ =

√
4U0

mRbw2
0

ω‖ =
√

2U0

mRb
k2. (2.17)

Each lattice site has a pancake shape due to the large difference in the characteristic lengths.
The lattice can be seen as a number of pancakes lying on top of each other, see figure 2.2.
There is a separate condensate in each lattice site, with its own atom number and density.

Because the lattice is formew by a focused beam, the trap depths vary along the axial
direction. The largest clouds we load into the lattice have an extent of 20 sites around the
focus. The Rayleigh length of the lattice is on the order of centimeters so these twenty sites
have very similar trapping parameters.

The Faraday Effect

The second subject of my masters work is the characterisation of Faraday non-destructive
imaging. I describe the theory for the atom-light interaction starting from the effective
Hamiltonian, equation 2.5. It is worth noting that this model is not fully realistic. In the
experiment work is performed with atoms in the |2,2〉 state and we drive the D2 transition
off-resonantly. The complication in this case is again due to the multilevel structure of
Rubidium 87. The multilevel structure of the atom was taken into account in [60] for the
general case, in [61] in the case of rubidium. In the case of alkali atoms the polarisability of
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the atom can be described as a tensor consisting of a scalar α(0), a vector α(1) and a tensor
term α(2). The interaction Hamiltonian can be expressed as a linear combination of these
three [62]

ĤI = Ĥ(0)
I + Ĥ(1)

I + Ĥ(2)
I

Ĥ(0)
I =

h̄g2

3
α

(0)natnph

Ĥ(1)
I = h̄g2

α
(1)F̂zŜz

Ĥ(2)
I = h̄g2

α
(2)
(

(F̂ 2
x − F̂ 2

y )Ŝx +(F̂xF̂y + F̂yF̂x)Ŝy + Ŝ0(F̂ 2
z −

1
3
F̂ 2)

) (2.18)

F̂i and Ŝi are collective spin operators for the cloud and elements of the stokes vector
respectively, see [63, 64]. In this section it is assumed that the laser intensity can be con-
sidered constant across the whole cloud. This assumption is reasonably well fulfilled in our
experiment where the waist of the collimated beam is on the order of millimeters while the
cloud is around 20 µm wide. The first two terms correspond to equation 2.5 while the ten-
sor term is new. For now Ĥ(0)

I can be ignored since it only introduces an overall phase-shift
which affects the σ± polarisations equally [60]. For an atom in the |2,2〉 ground state the
vector and tensor polarisability, following [61] and [52], become

α
(1) =−α0

(
− 1

20
D21−

1
12

D22 +
7
15

D23

)
(2.19)

α
(2) =−α0

(
1
60

D21−
1

12
D22 +

1
15

D23

)
(2.20)

where α0 = 3ε0h̄Γλ 3

8π2 , Γ is the natural linewidth of the D2 transition and λ the laser wave-

length. Di j = ∆i j

∆2
i j+Γ2/4 are relative detunings for the transition |F = i〉 to |F ′ = j〉.

In the case of large detuning3 ∆� Γ, Di j→ 1
∆

meaning α(2) ≈ 0. Only the vector term
remains

Ĥint = Ĥ(1)
int =− h̄g2α0

3∆e f f
F̂zŜz,

1
∆e f f

=
1
20

(−3D2,1−5D2,2 +28D2,3) . (2.21)

This Hamiltonian is used to determine the evolution of the Stokes vector which in turn
gives the Faraday rotation angle, the quantity of interest. The effective detuning takes the
different hyperfine manifolds into account. They were set equal in the argument for elimi-
nating α(2) this does not cause a problem for large detuning. The effects close to resonance
have also been examined, where the contribution from the different hyperfine transitions
have to be taken into account. It is therefore simpler to use the effective detuning. Around
the resonances, the approximation of α(2) = 0 is no longer valid. In the case of a cloud

3Normally ∆ > 100Γ in our experiments
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that is spin polarised along the Z-axis, the X and Y components of the spin operator are
negligible. To a first approximation H(2)

I in equation 2.18 becomes

Ĥ(2)
I ≈ h̄g2

α
(2)Ŝ0(F̂ 2

z −
1
3
F̂ 2). (2.22)

[Ŝi,Ŝ0] = 0 for i = {x,y,z} [63, 64]. So as a first approximation the inclusion of α(2) should
not affect the evolution of the Stokes vector and therefore not affect the Faraday rotation.
Even close to resonance equation 2.21 is still valid.

To find the evolution of the Stokes vector we look at the time derivative of its compo-
nents

dŜx

dt
=

1
ih̄

[
Ŝx, Ĥint

]
=− gα0

∆e f f h̄
F̂zŜy

dŜy

dt
=

1
ih̄

[
Ŝy, Ĥint

]
=− gα0

∆e f f h̄
F̂zŜx

dŜz

dt
=

1
ih̄

[
Ŝz, Ĥint

]
= 0

dŜ0

dt
=

1
ih̄

[
Ŝ0, Ĥint

]
= 0

(2.23)

because
[
Ŝi,Ŝ j

]
= iεi jkŜk. If we look at the second derivative of Ŝx we see that this is a

rotation around the Z-axis.

d2Ŝx

dt2 =− gα0

∆e f f h̄
F̂z

dŜy

dt
=−

(
gα0

∆e f f h̄
F̂z

)2

Ŝx =−ω
2
SŜx (2.24)

A similar equation can of course be derived for Ŝy giving harmonic equations correspond-
ing to a rotation around the Z-axis. The total rotation is then

θ =
1
2

ωSτ, (2.25)

where τ = L
c is the light-atom interaction time, L being the length of the sample and c the

speed of light.
In the experiments all the atoms are oriented along the Z-axis, meaning the macroscopic

angular momentum is oriented along the Z-axis. This allow us to replace the macroscopic
spin operator with its expectation value F̂z → 〈F̂z〉 = V ρ〈F̂z〉 [60] and the angle is given
by [61]

θ =
Γλ 2〈F̂z〉L

16π

ρ(r)
∆

(2.26)

where ρ is the density of the gas. This is fine in the case of a sample that has the same
length everywhere. To apply it to our atomic cloud we have to integrate each column, as
seen from the camera, and then arrive at an effective density for each pixel [65]

θ =
Γλ 2〈F̂z〉

16π∆

∫
dzρ(r) =

Γλ 2〈F̂z〉
16π∆

ρ̃(x,y) = cF ρ̃(x,y) (2.27)
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cF being the Faraday coefficient. The effective density is a measure of how many atoms the
light hitting a particular pixel has interacted with. Thus the total atom number of the cloud
can be found by integrating over the whole chip N f ar =

∫
chip dxdyθ(x,y) 1

cF

It is not possible to probe the cloud by light without affecting the cloud itself. The first
effect of the off-resonant probing is a rotation of the atomic spin around the Z-axis. We are
not sensitive to this rotation in our probing and therefore this does not affect the evolution
we can observe. Secondly the cloud will get heated due to spontaneous emission of photons.

Atom Light Scattering

In the beginning of this chapter the interaction of atoms and light was derived in the case of
a two-level atom. In this derivation the spontaneous emission was ignored so only stimu-
lated processes contributed. In the realistic case spontaneous emission have to be included.
Spontaneous emission can be included by considering lower lying empty modes. The tran-
sition from the state of an excited atom and nph laser photons to the state of a ground state
atom and nph laser photons [56]. This is a lower lying mode compared to the ground state
atoms and nph +1 laser photons by an energy h̄ωL.

To take the spontaneous emission into account a term −1
2 Γσeg have to be included in

the evolution of the two level system, we ignore spin for now. The equations of motion for
the coherence operators then become.

dσ̂gg

dt
=−igd

(
â†

σ̂geeiωLt − âσ̂ege−iωLt)−Γσ̂ee

dσ̂ee

dt
=−igd

(
âσ̂ege−iωLt − â†

σ̂egeiωLt)−Γσ̂ee

dσ̃eg

dt
=−i(∆σ̃eg +gdâ(σ̂gg− σ̂ee))−

Γ

2
σ̂eg

(2.28)

where the slowly varying coherence operator is used again. This can be used to calculate a
scattering rate [58]

Γsc =
3πc2

2h̄ω3
0

(
Γ

∆

)2

I(r) (2.29)

The important thing to note is that the scattering falls off as 1/∆2 while both the depth
of the trapping potential and the Faraday signal drop off as 1/∆. The destructiveness can be
reduced by going to larger detuning in the case of Faraday imaging. For the lattice a lower
heating rate for the same lattice depth can be achieved by going to larger detuning and more
power.

Each scattering event of an off resonant photon can be considered as a heating event of
the cloud. If an excited atom spontaneously emits a photon, the atom will, by conservation
of momentum, receive a kick in the opposite direction, this is the recoil energy. First the
atom absorbs an off-resonant photon entering its excited state and then this is re-emitted in
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any spatial direction. This means that the atoms pick up 2Erec for each scattering event[58,
59].

2.2 Spinor Condensates

Spinors are Bose-Einstein condensates with their spin degree of freedom unlocked. To
investigate spinor dynamics the atoms have to be in the ground state of the system. If
the same investigation was performed on a thermal cloud of atoms the spinor dynamics
would be dominated by thermal effects [66]. In this section the basic concepts behind Bose-
Einstein condensation in a dilute gas are introduced. These are used to describe spinor
condensates and find the instability rates investigated in the experiments.

Bose-Einstein Condensation

A gas of bosons obey Bose-Einstein statistics. From this formalism Bose-Einstein con-
densation occurs as a natural phenomena at high phase-space density. A system is Bose-
Einstein condensed if the single particle ground state is macroscopically occupied. The
mean occupation of a single-particle state, ν , is given by the Bose distribution function
[5, 67]

n̄(εν) =
1

e(εν−µ)/kBT −1
. (2.30)

Here εν is the energy of the state ν and µ is the chemical potential.
The internal structure of the atoms can be ignored in a first treatment. For rubidium 87

the internal structure is in the form of the hyperfine splitting of the 52S1/2 ground-state. Here
the F = 1 and F = 2 hyperfine manifolds are split by 6834.682 MHz which is equivalent to
a temperature of around 0.3 K. The relevant temperatures for condensates are a few hundred
nanoKelvin. The Zeeman splitting of the F = 2 hyperfine manifold is not considered here
because it is frozen out during the condensation phase, see section 3.1. There are also two
orders of magnitude between the condensation temperature and our trap bottom of 400kHz
≈ 20 µK.4

As discussed above the individual sites of the lattice can be considered individual har-
monic trapping potentials

V =
1
2

m(ω2
x x2 +ω

2
y y2 +ω

2
z z2) (2.31)

where ωi is the trapping frequency in the i’th direction. In this harmonic case the energy
levels are given by

ε(νx,νy,νz) = (
1
2

+νx)h̄ωx +(
1
2

+νy)h̄ωy +(
1
2

+νz)h̄ωz (2.32)

4The lowest Zeeman splitting to occur in the magnetic trap.
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If εmin is the lowest energy level equation 2.30 makes it clear that µ ≤ εmin. Otherwise
the mean occupation of a single particle state can become negative which is unphysical.
From now on all states that are not the single particle ground state are referred to as excited
states. By looking at the Bose distribution function of the excited states and the fact that
µ ≤ εmin, for T → 0 K the mean occupation of the excited states will go to zero. If the mean
occupation of all the higher lying states goes to zero they have to condense into the ground
state of the system. The ground state can have an arbitrarily large mean occupation number
and the system has Bose-Einstein condensed [5].

The condensation temperature (TC) is the temperature where the mean occupation of the
ground state becomes non-zero. The total number of particles in the ensemble must be a
sum over all the individual distribution functions.

N = ∑
1

e(εν−µ)/kBT −1
(2.33)

The number of particles in the excited states, must be the integral over the density of
states weighted by the distribution function [5]

Nex =
∫

∞

0
dε n̄(ε) f (ε) (2.34)

Now by considering this equation in the limit of µ = 0 it is possible to arrive at an equation
for the transition temperature given as

kBTC = 0.94h̄ω̄N1/3 (2.35)

where ω̄ = (ωxωyωz)1/3 is the mean frequency of the three axis of the harmonic trap.
Because all the particles in the condensate are in the same state they must also be de-

scribed by the same wave-function. The total condensate wave-function can be considered
the product of N0 single-particle wave-functions

Ψ(r1,r2, ...,rN0) =
N0

∏
i

ψ(ri). (2.36)

Another effect of all the particles in the condensate being in the single particle ground-
state is that the density profile of the condensate is

n(r) = N0|ψ0(r)|2. (2.37)

For a condensate in a harmonic trap the ground-state wave-function is [5]

ψ0(r) =
1

π3/4(axayaz)1/2 e−x2/2a2
x e−y2/2a2

y e−z2/2a2
z (2.38)

where ai =
√

h̄
mωi

is the oscillator length in the i’th direction. The oscillator length deter-
mine the relevant length scales of the magnetic trap.
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The non-interacting condensate was as mentioned first described by Einstein in the case
of massive particles. Interaction is a prerequisite for the experimental realisation of Bose-
Einstein condensates. Without interactions the atoms would not rethermalise during evapo-
rative cooling. In spinor condensates the spin dynamics are driven by atomic collisions.

When considering interactions in a Bose-Einstein condensate it is enough to consider
two body collisions. In a typical alkali gas condensate the inter-particle separation is on
the order of 100 nm [5]. This is an order of magnitude larger then the length scale of the
interaction. In the case of the alkali atoms the lowest order van der Waals interaction is
the dominant interaction between two atoms, it falls off as r−6 [5]. In the condensate the
thermal energy of the atoms is very small compared to the characteristic energy of the van
der Waals interaction (Ec). Because of this interactions between atoms in anything other
than the ground state can be ignored and also that the relative angular momentum of two
colliding atoms can be set to zero. Therefore it is reasonable to restrict our treatment to
s-wave scattering where all interaction is point interaction between two particles [5, 68].

In the case of s-wave scattering the only free parameter is the s-wave scattering length
(as), it describes the relevant length scale for atomic interactions. For Rubidium 87 all scat-
tering length are of comparable size around 100a0 [5]. The scattering length is large on an
atomic scales but small compared to other relevant length scales of the condensate. These
could be the inter-particle spacing and the thermal de Broglie wavelength, for rubidium at
200 nK λdB =

√
kBT mRb ≈ 1 µm. The sign of the scattering length determines if the inter-

action between the two particles is repulsive or attractive, positive and negative respectively
[5, 68].

In the case of low energy s-wave scattering the inter-atomic potential can be approxi-
mated by a point like interaction [5, 68]

U0(r1− r2) =
4πash̄2

m
δ (r1− r2) (2.39)

where r is the inter-particle distance. This approximation is valid for cold indistinguish-
able particles[5, 68].

An interacting condensate is described by a many-body mean field approximation lead-
ing to the Gross-Pitaevskii equation [5, 68]

− h̄2

2m
∇

2
Ψ(r)+Vext(r)Ψ(r)+U0(r)|Ψ(r)|2Ψ(r) = µΨ(r) (2.40)

Ψ(r) being the order parameter given above. The interaction term describes the potential
seen by one particle produced by all the other particles in the mean field approximation. In
this approximation it is assumed that all particles are in the ground-state of the system. The
interactions will lead to a depletion of the condensate, i.e. some atoms will be in excited
states. For a normal alkali atom condensate the depletion is usually on the order of one
percent, this can be ignored in our description [5, 50, 68].
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To extract information from the Gross-Pitaevskii equation we make the Thomas-Fermi
approximation. In the Thomas-Fermi approximation the kinetic energy term, h̄2/(2m)∇2Ψ(r),
is neglected. This approximation is valid when the energy available from interactions, given
by asN0 is large compared to the energy of the trap given by aosc [5, 68]. The approximation
is only valid for the bulk condensate whereas the surface of the condensate has to be treated
independently. In the case of spinor work the primary interest is the bulk condensate more
than the surface and therefore I will not treat the surface here.

By applying the the Thomas-Fermi approximation to the Gross-Pitaevskii equation it
can be recast as [5, 50, 68].

n(r) = |Ψ(r)|2 =
1

U0
(µ−Vext(r)) (2.41)

the density profile of the condensate. From the density profile important properties such as
the peak density and Thomas-Fermi radius can be extracted. The peak density occur at the
minimum of the external potential. The minimum of the external potential for the harmonic
trap is zero so the peak density is n0 = µ/U0. The density cannot be negative meaning that
the external potential have to less than or equal to the chemical potential. For Vext = µ the
condensate has to disappear. From the shape of the potential this happens at

RT F,i ≡

√
2µ

mω2
i

(2.42)

Under the Thomas-Fermi approximation the chemical potential is

µ =
152/5

2

(
Nas

āosc

)2/3

h̄ω̄ (2.43)

Where āosc and ω̄ are the mean oscillator length and trapping frequency respectively.

Spinor Dynamics

As mentioned in the introduction optical trapping allow the atomic spin degree of freedom
to be unlocked. The effect of the Zeeman splitting on the optical confinement is negligible
as discussed above.

The F = 2 hyperfine manifold of rubidium 87 has five Zeeman sub-levels denoted mF =
{−2,−1,0,1,2}. It is this internal degree of freedom that is liberated in the optical trap.
If no magnetic field is present the different Zeeman sub-levels are degenerate. With the
application of a magnetic field this degeneracy is lifted and small energy differences, on
the kHz scale, appear between the different sub-levels. Similar to the scalar condensate
the macroscopic order parameter is useful notation. Here the order parameter is a vector
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comprised of 2F +1 components [69, 70]

~ψ(r) =


ψ2(r)
ψ1(r)
ψ0(r)

ψ−1(r)
ψ−2(r)

 . (2.44)

where ψi(r) is the order parameter for the i’th Zeeman sub-level.
For spinor condensates the Hamiltonian can be split into an interacting and a non-

interacting part [37]
Ĥ = Ĥ0 + Ĥint (2.45)

The non-interacting Hamiltonian takes single particle effects into account: kinetic energy,
the confining potential, the chemical potential and the Zeeman energy. The Zeeman energy
is the shift of the individual Zeeman sub-level due to a magnetic field EZ = −mF p + m2

Fq
where p = gF µBB and q = µ2

BB2/(8Ch f s) are the linear and quadratic Zeeman energies
respectively. gF is the Landé g-factor, µB the Bohr magneton, B the magnetic field and Ch f s

the hyperfine coupling strength [37]. The non-interacting Hamiltonian is

Ĥ0 =
∫ 3

r∑
mF

ψ̂
†
mF

(
− h̄2

2mRb
∇

2 +Vext +EZ,mF −µ

)
ψ̂mF (2.46)

The interaction Hamiltonian takes interactions between two particles into consideration,
assuming higher order interactions can be ignored. Two atoms in the |m f 〉 and |m′f 〉 states
collide producing atoms in the |mF〉 and |m′F〉 states [37]

Ĥint =
∫ 3

r ∑
mF ,m′F ,m f ,m′f

ψ̂
†
mF

ψ̂
†
m′F

UmF ,m′F ,m f ,m′f
ψ̂m f ψ̂m′f

. (2.47)

Interaction in spinor condensates is still in the form of s-wave scattering, as in the scalar
condensate. Unlike the scalar condensate there are multiple scattering channels that allow
the colliding atoms to change their Zeeman sub-level. The interaction is still determined
by the s-wave scattering length between the two colliding atoms. When multiple hyperfine
components are available the scattering length depend on the total angular momentum of
the interacting atoms. The total angular momentum is comprised of the relative angular
momentum between the two atoms and their internal spin. First assume the internal and
orbital angular momentum are separately conserved, ignoring spin-orbit coupling. Secondly
assume hyperfine relaxation can be ignored5. With these assumptions the total spin of the
scattering channel has to be even in the case of Bosons [24, 66, 69]. For F = 2 the total spin
of the scattering channel can be 0,2 and 4.

5Collisions relaxing atoms in the F = 2 hyperfine manifold to the F = 1 manifold.
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The s-wave scattering can still be described by a contact interaction where

Û(r1− r2) = δ (r1− r2)UmF ,m′F ,m f ,m′f
= δ (r1− r2) ∑

S=0,2,4
gSP̂S (2.48)

where gS = 4π h̄2aS/mRb is the interaction strength of the channel and P̂S is the projection
operator onto the total spin subspace. UmF ,m′F ,m f ,m′f

is the non spatial part of Û(r1− r2)[70,
71]

UmF ,m′F ,m f ,m′f
= U0δmF ,m f δm′F ,m′f

+U1F1 ·F2 +5U2P0 (2.49)

where F1 ·F2 = (F2
tot −F2

1 −F2
2 )/2, P0 is the projection onto the total spin zero state and

U0 =
4g2 +3g4

7

U1 =−g2−g4

7

U2 =
g0−g4

5
− 2(g2−g4)

7
.

(2.50)

U0, U1 and U2 are the interaction coefficients that change the spin of the interacting atoms
by ∆mF = {0,1,2}.

When the dynamics of the condensate are of interest further approximations has to be
made. Because it is the initial dynamics that are of interest it can be assumed that the initial
state has not changed much. We approximate the time evolution as a linear perturbation of
the initial state. For now we only consider small deviations from the the initial state

Ψ(r, t) =




ψ2(r,0)
ψ1(r,0)
ψ0(r,0)

ψ−1(r,0)
ψ−2(r,0)

+


δψ2(r)
δψ1(r)
δψ0(r)

δψ−1(r)
δψ−2(r)



e−iµt . (2.51)

Initially only the |0〉 state is populated and the | ± 2〉 components can be ignored. The
process |2,0〉+ |2,0〉 → |2,2〉+ |2,−2〉 is much suppressed compared to the process which
populate the | ± 1〉 states, due to the difference in U1 and U2. Finally we assume there is
no depletion of the condensate, i.e. ignore the evolution of the |0〉 component because any
decrease in its population will be small compared to the number of atoms in the |0〉 state.
With these approximations

Ψ(r, t) =


 0√

n0(r)
0

+

 δψ1(r)
0

δψ−1(r)


e−iµt (2.52)

Now there is only one scattering channel available for spin changing collisions, UmF ,m′F ,m f ,m′f
=

U1,−1,0,0 ≡U1. There are three spin preserving collisions: between a |0〉 atom and either a
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|−1〉, |0〉 or |1〉 atom. These interactions are described by U1,0 ≡U0,1,0,1, U0 ≡U0,0,0,0 and
U0,−1 ≡U0,−1,0,−1. From [72] it can be seen that U1,0 = U−1,0 = U1 +U0.

With these approximations it is possible to arrive at a Hamiltonian for the dynamics [36]

H =
∫

d3r ∑
mF=±1

δψ̂
†
mF

(
− h̄2

2mRb
∇

2 +Ve f f (r)+q
)

δψ̂mF

+Ωe f f

(
δψ̂

†
1 δψ̂

†
−1 +δψ̂1δψ̂−1

)
.

(2.53)

Second quantized notation is used meaning that δψ̂mF (δψ̂†
mF

) are the annihilation (creation)
operators for the mF state. The first term is an effective eigenstate of the system with spin
preserving interactions. The second term describe the spin changing collisions, its strength
is given by the effective interaction of the spin changing collisions Ωe f f = U1n0(r).

The effective eigenstate takes the effect of the magnetic field into account through the
Zeeman energy. The linear Zeeman energy (p) is of no interest since it is the same for the
|± 1〉 states, not changing the eigenstate because of equal |± 1〉 population in this model.
It is the q dependence of the effective eigenstate that causes the spin changing resonances
investigated.

The effective potential is not dependent on the population of the |±1〉 states. By tuning
the magnetic field it is possible to find a resonance between the energy gained by a spin
changing collision and an excitation in the effective potential. The effective potential is

Ve f f (r) = Vext(r)+(U0 +U1)n0(r)+ µ (2.54)

The next step towards finding the spin changing resonances is to approximate the effec-
tive potential by a box potential. The allowed states of a box potential are Bessel modes and
it is these Bessel modes that determine the energy of the resonances. Below the approxima-
tion will first be justified and afterward the solution of the effective eigenstate operator will
be given.

It is reasonable to ignore the U1 term in equation 2.54 because U0�U1. The effective
potential is now the effective potential of a single component condensate [31, 73]. The
density profile can in this case found by solving the Gross-Pitaevski equation using the
eigenstate Hamiltonian giving.

n0(r) =

{
1

U0
(µ−Vext(r)) µ > Vext(r)

0 else.
(2.55)

The atoms exist at the bottom of the potential and are not able to penetrate beyond the
point where Vext(r) = µ . At this position the atoms see a very steep potential wall due to the
external potential. It is important to think of the potential seen by the |±1〉 atoms and not
the |0〉 atoms. It is this potential that is relevant for determining the excitation resonances.
There is a repulsive interaction between the |0〉 and the |±1〉 states meaning that atoms in
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the |± 1〉 states will not experience a harmonic potential but instead something more akin
to a flat potential for Ve f f (r) < µ [35]. Because of this the dynamics are investigated using
a square well potential with infinite sides

Ve f f (r)≈

{
0 r < RT F

∞ else.
(2.56)

In our experiment the trap is considered a two dimensional confining potential and the
structure of the last direction is frozen out in this first approximation because the energies
needed to drive excitations are very large. In the case of an infinite spherical well the
solutions to the Schrödinger equation is given in terms of Bessel functions [35, 74]

φnl(r,θ) =
1√

πRT FJl+1(βnl)
Jl

(
βnl

r
RT F

)
eilθ (2.57)

with eigenenergies

εnl =
h̄2

β 2
nl

2mRbR2
T F

(2.58)

The resonance appear when the energy that can be gained through the spin changing
collision is equal to the energy needed to excite two atoms into the higher lying Bessel
mode. Therefore the energy distribution will show resonances given by the energy of the
Bessel modes.

This results in final Hamiltonian for the spin changing collisions as [35]

Ĥn,|l| = (εnl +q) ∑
l=±|l|

(
â†

n,l ân,l + b̂†
n,l b̂n,l

)
+Ωe f f

(
â†

n,l b̂
†
n,−l + ân,l b̂n,−l + â†

n,−l b̂
†
n,l + ân,−l b̂n,l

) (2.59)

where â†
n,l (b̂†

n,l) and ân,l (b̂n,l) are the creation and anihilation operators for the n’th trap
mode of Zeeman sub-level mF = +1 (−1).

By the introduction of the quadratures [55]

X̂ (1)
n,l,1 =

eiθn,l ân,l + e−iθn,l b̂†
n,−l√

2sin(2θn,l)

X̂ (2)
n,l,1 =

e−iθn,l â†
n,l + eiθn,l b̂n,−l√

2sin(2θn,l)

(2.60)

the Hamiltonian (2.59) can be rewritten

Ĥn,|l| =
En,l

2 ∑
mF ,l=±|l|

(
X̂ (1)

n,l,mF
X̂ (2)

n,l,mF
+ X̂ (2)

n,l,mF
X̂ (1)

n,l,mF

)
(2.61)
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where En,l =
√

(εn,l +q)2−Ω2
e f f is the eigenenergy of the full system. Two regimes occur

if εn,l +q > Ωe f f the eigenenergy is real and the system is stable, the atoms will remain in
the mF = 0 state. If εn,l +q < Ωe f f the eigenenergy is imaginary and the system is inherently
unstable.

To investigate the instability consider the evolution of the quadratures. Using the Heisen-
berg equation of motion

ih̄
d
dt

X̂ (1,2)
n,l,mF

=
[
X̂ (1,2)

n,l,mF
, Ĥn,l

]
= iEn,lX̂

(1,2)
n,l,mF

. (2.62)

From this it is possible to derive the time evolution of the mF =±1 population expectation
value. In the final form the expectation becomes [75]

〈n±1(t)〉= ∑
n,l
|φn,l|2

Ω2
e f f

|En,l|2
sinh

(
|En,l|t

h̄

)
≈ |φmax|2

Ω2
e f f

|Emax|2
e2|Emax|t/h̄ (2.63)

where the last approximation assume that the evolution time t is larger than |Emax|/h̄. Be-
cause of the exponential evolution only the maximal Bessel mode contributes because it
dominates the other modes.

Figure 2.3(a) show the instability rate as a function of q. The instability rate is the rate
at which the process occur, in this case En,l/h̄. The different curves are individual Bessel
modes. On the right the population after 10 (dashed) and 50 (solid) ms evolution time is
shown, illustrating the dominance of certain modes as the system is allowed to evolve for a
long time. After 10 ms evolution there are many peaks whereas the spectrum have smoothed
out after 50 ms.
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(a) (b)

Figure 2.3: (a) The instability rate as a function of the quadratic Zeeman energy. The differ-
ent curves are resonances at different excitations of the effective trap. (b) The population of
the mF =±1 states after 10 (dashed)and 50 (solid) ms spinor evolution starting from 15000
atoms in the central site of our lattice. The two are scaled curves meaning the peak popu-
lation at 50 ms is order of magnitude larger than after 10 ms. These figures were created
using code provided by the group of L. Santos, Hannover.





3. Experimental Setup

3.1 Creating a Bose-Einstein Condensate

Figure 3.1 illustrates the vacuum chamber with the most relevant sections marked. The
chamber is comprised of two sections, the MOT chamber and the science chamber. Orig-
inally the experiment was designed to allow for the inclusion of a second atomic species.
The design called for two separate MOT areas, to be combined at the cross. To make room
for the optics, the three chambers of the experiment were designed with large distances be-
tween the different chambers. The second species was never incorporated and the MIX lab
next door is a multi-species experiment.

Each sequence is started by collecting thermal rubidium atoms in a magneto-optical trap
(MOT) [76]. The trap catches rubidium atoms from a background pressure of 1.3 · 10−10

torr. The MOT is comprised of a pair of anti-Helmholtz coils and six counter-propagating
laser beams. To have reproducible condensate atom numbers a cloud of the same size has
to be collected in the MOT for each experiment. This is ensured by a photo detector placed
next to the MOT glass cell that measure the fluorescence signal from the cloud. When the
signal reaches a preset level the sequence is triggered. The current in the MOT coils is
ramped to 300 A and the lasers are turned off. Collecting a cloud of the desired size takes
between 3 and 15 seconds depending on how well the system is running. The size of the
final condensate has not been observed to depend on the time used to collect the atoms.

In the final stage of the MOT the atoms are optically pumped using σ+ light into the
|2,2〉 hyperfine state [50]. They are maintained in this state because they are only able to do

Figure 3.1: An illustration of vacuum chamber with the MOT cell and the science chamber.
The image is taken from [77].
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QUIC Fast_Off (Digital)
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Figure 3.2: The experimental sequence to the point where a Bose-Einstein condensate is
created in the magnetic trap. The amplitudes in the illustration are relative to maximal
points and digital channels are either open or closed.

Majorana spin flips in the center of the quadrupole magnetic field created by the MOT coils
[78].

The transfer from the MOT chamber to the science chamber is done by moving the MOT
coils, they are mounted on a computer controlled translation stage. Between the glass cell
where the atoms are collected and the cross (see figure 3.1) there is a differential pumping
stage. This is a small diameter steel tube that allow us to maintain a pressure difference
of two orders of magnitude between the MOT and science chambers. The low pressure is
necessary to create a Bose-Einstein condensate. At the cross the atoms are loaded into a
second set of coils, similar to the MOT coils, which transport the atoms from the cross to
the science chamber. In our normal sequence we transfer 2 ·108 atoms at around 70 µK to
the science chamber.

In the science chamber the atoms are cooled by forced evaporation, the hottest atoms are
removed lowering the mean temperature of the atoms. To remove the hottest atoms radio-
frequency radiation is used to drive transitions between the Zeeman sub-levels of the F = 2
hyperfine manifold. In the magnetic trap the atoms are in the linear Zeeman regime, so
transition frequencies between the different Zeeman sub-levels are equal. The evaporation
drive the transitions with ∆mF =−1 so |2,2〉→ |2,1〉→ ... The goal of this is to change the
Zeeman sub-level from a low field seeker to a high field seeker. These high field seekers are
expelled from the trap [50].

Because the magnetic field in the trap is spatially dependent the trapping potential ex-
perienced by an atom in the |2,2〉 state will grow as it moves away from the center of the
trap. Atoms with higher kinetic energy can get further away from the minimum experienc-
ing higher fields. The further away from the minimum the bigger the energy split between
the Zeeman sub-levels become.By sweeping a narrow band RF source from high to low fre-
quency it is possible to remove the hottest atoms in the trap. If this is done too quickly the
remaining atoms are not able to rethermalise and cutting too slowly will lead to inefficient
evaporation due to the background pressure [50].
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Evaporative cooling is initiated in the transport coils which produces a linear magnetic
field gradient. This provides efficient evaporation for a hot atomic cloud. As the temperature
is lowered atoms spend more and more time in the center of the trap. In the center they can
undergo Majorana spin flips which mean the coldest atoms are lost [50]. Because of this
we transfer the atoms to a quadrupole Ioffe configuration (QUIC) trap after 12 seconds
evaporation in the transport coils [79].

In the QUIC trap the Bose-Einstein condensate is created by a further 45 seconds of
evaporation. The QUIC trap does not have a zero crossing in the center of the trap due to
the Ioffe coil producing a gradient magnetic field along the Z-axis of the trap. This lowers
the trapping frequency along the axis of the Ioffe coil but it produces a finite magnetic field
in the center of the trap [79]. During the time I spent with the group different configurations
of the QUIC trap were used to produce condensates and thermal clouds with the desired
properties. This lead to a number of different configurations which will be discussed in
each section as we go along. The most efficient evaporation is achieved using a QUIC trap
where 300 A is run through the quadrupole and Ioffe coils. A bias field of −110 mG is
provided along the Z-axis. The axial and radial trapping frequencies of this trap are 17.5(7)
and 353(2) Hz respectively. It produce a pure condensate of 1.8(2)105 atoms with a 1/e
lifetime of 119(10) ms and will be referred to as the tight trap throughout this thesis.

Other than the trapping coils there are three sets of bias coils used to create magnetic
fields along the three directions of the experiment. These are the shim coils and are used to
maintain spin orientation in the lattice, provide an offset in the magnetic field and tune the
magnetic field used in the spinor studies. The shim coils will be discussed in section 3.5.

Absorption Imaging

To image the condensate our standard sequence uses absorption images, these are taken
using the method described in [80]. From time of flight absorption images information can
be gained about the momentum distribution of the sample.

The atomic cloud is dropped from the magnetic trap or optical lattice. After turning off
the trap the atoms do a free fall for a variable amount of time between 0 and 18 ms. When
desired a laser resonant with the F = 2→ F ′ = 3 transition is shone onto the atoms. The
atoms absorb the light from the laser leaving a dark spot in the further propagating laser
light. This dark spot is imaged using an Andor Xion 885 camera along the X-axis of the
system, an Andor Xion 888 along the Z-axis of the system1 and a DTA Chroma C3 along
the Y-axis.

For absorption imaging four pictures are taken. First a picture of the cloud and shortly
after a picture of the laser beam itself. A couple of seconds later two bias images are
taken, these are without laser light and used to subtract background light and camera noise.

1The same camera used in the Faraday imaging system.
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Figure 3.3: The raw absorption images with (a) and without (b) atoms and the subtracted
signal (c). It is clear that the structure of the imaging beam is suppressed in the subtracted
picture.

Figures 3.3(a) and 3.3(b) illustrate the two beam pictures. From each of these an unexposed
image is subtracted and the ratio of the two gives information about the cloud, figure 3.3(c).

The method used by Reinaudi et. al. uses σ+ polarised light for imaging only driving
one transition on the D2 line. This allow for the use of well known imaging parameters
which should give improved image quality and allow for reliable imaging of dense clouds
with high intensity light. When it is know that the light have the proper polarisation the
calibration boils down to the determination of the factor α used to scale the effective satu-
ration intensity Ie f f

sat = αIsat . The calibration of α is performed in section 5.3 with the aid of
Faraday imaging. The effective saturation intensity takes corrections from different Zeeman
sub-levels, imperfect polarisation of the imaging beam and the structure of the excited state
[80]. The subtraction of the two images is done by

OD0(x,y) =−α ln
(

I f (x,y)
Ii(x,y)

)
+

Ii(x,y)− I f (x,y)
Isat

(3.1)

where I f is the image of the cloud with drak counts subtracted, Ii is the image of the beam
with dark counts subtracted, Isat = h̄γ/πσ0 is the resonant saturation intensity and σ0 is the
resonant absorption cross section.

Two methods are used to measure the properties of the cloud dropping from an optical
lattice. The first is projection measurements, the lattice is turned off suddenly to reveal
information about the momentum distribution of the condensate. In time of flight the con-
densates from different lattice sites will interfere and give rise to an interference pattern as
seen in figure 3.4(a). This interference pattern provide information about the reciprocal lat-
tice, similar to Bragg scattering known from solid state physics. The central peak is atoms
with zero momentum while the two peaks correspond to atoms with momentum ±2h̄k, in a
deeper lattice more peaks would appear [81]. Since this is an interference phenomena the
visibility of these Bragg peaks give information about the coherence between different lat-
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Figure 3.4: Evaluated images of projection (a and b) and band mapping (c) measurements.
The visibility of the projection peaks are a measure of the inter-site coherence of the lattice.

tice sites. If the inter-site coherence is bad the peaks will be less visible as in figure 3.4(b).
Here the visibility of the Bragg peaks is very low meaning low inter-site coherence.

Band-mapping is performed by turning off the lattice slowly compared to single particle
timescales, but fast compared to the time scales of many body-interactions. This allow for
a measurement of the population of the different energy bands. This method was only used
to ensure that we only populated the lowest band when loading the lattice.

3.2 Faraday Imaging

The Faraday imaging system uses linearly polarised ligh detuned from the D2 transition
on the order of one gigahertz. The light is produced on the laser table where an extended
cavity diode laser is offset locked to the experimental master laser. The Faraday system is
described in detail in appendix A of interest here are the offset lock and the acousto-optic
modulator.

The offset lock recieve a signal from a fast photo detector (PD2 in figure 3.5(a)) which
is mixed with a voltage controlled oscillator. The signal from the fast photo detector is the
beat signal of the master and Faraday laser. These two have been combined on a 50:50 beam
splitter (S2 in figure 3.5(a)). The speed of the diode makes it act like a low pass filter for
the signal, only the beat signal and not the original or added signals are seen. The voltage
controlled oscillator can produce a frequency between 400 and 1300 MHz. We can sweep
the frequency through 900 MHz by tuning the voltage on the oscillator. The laser frequency
is locked to the oscillator using an offset lock. By tuning the oscillator we are able to change
the frequency of the laser.

An Acousto-optic modulator is used to determine the length of the pulses. The modula-
tor is double passed (figure 3.5(a)). Double passing the AOM improves the signal to noise
ratio of Faraday images and reduces heating by stray light. The suppression of the modu-
lator is three orders of magnitude . The pulses are microseconds long while the cycle time
of the imaging system is on the order of milliseconds. If the modulator was only passed
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Figure 3.5: (a) The Faraday laser system with the Faraday laser and the beating of the two
lasers. The signal from PD2 is sent to the offset lock which determine the frequency of the
laser. (b) The Faraday system on the experimental table illustrating the beam path.

once the stray light and image signal would be of comparable magnitude. The modulator is
turned on and off by a digital switch, controlled by an Agilent 33522A wave form generator
. This provide very sharp pulses with a stable amplitude set in the experimental program.
The wave form generator is used to determine the length and timing of the pulses. It is
programmed by the camera software which calculates the cycle time of the imaging pulses
based on frame size and readout speed. The imaging process is triggered by the experi-
mental control system which triggers the camera and the Agilent independently so timings
match. The imaging intensity is also set in the experimental control system.

In the experiment each axis have parallel propagating lattice and imaging beams. In
figure 3.5(b) the experimental side of the Faraday setup is illustrated. To allow for the
easiest possible implementation of Faraday imaging the Faraday light is coupled into the
absorption imaging fiber. Switching between absorption and Faraday light is a matter of
moving the beam block inserted in the absorption beam. On the experiment table the light
is sent through a polarising beam splitter (PBS1) meant to combine the imaging and lattice
light. The light passes through the chamber interacting with the cloud. After the chamber
a lens (L1 in figure 3.5(b)) collimates the light scattered by the atoms. The scattered light
is passed through another polarising beam splitter (PBS2) which separate the imaging and
lattice light. The imaging light is transmitted on the cube going onto the camera for imaging.
The lattice light hit the retro–reflector and is passed back through the chamber creating an
optical lattice in the Z-axis.
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Figure 3.6: The interaction with the atoms and how the rotated light is passed through the
polarising beam splitter and the non-rotated light is reflected. The black arrows indicate
total polarisation of the light, before the beam splitter the combination of the rotated and
non-rotated light.

For Faraday imaging the non-rotated light need to be maximally suppressed on the
camera. To do this a half-wave plate was inserted after the first polarising beam splitter. This
turn the polarisation 90◦ meaning that the image light would be reflected and the lattice light
transmitted on the second cube. Because of this simultaneous Z-axis lattice and Faraday
imaging is not possible2. To restore absorption imaging the half-wave plate should be turned
so the imaging light is transmitted on the second beam splitter

In the chamber linearly polarised light interacts with the cloud, the interaction rotates the
polarisation of the light as described in section 2.1. The light passing through the polarising
beam splitter is transmitted or reflected depending on if it interacted with the atoms. The
reflected light is sent onto a photo detector while the transmitted light is imaged on the
camera. The beam splitter is not perfect so a small fraction of the non-rotated light will be
transmitted. The transmitted intensity of the non–rotated light is used to extract information
about the intensity of the imaging light at the atoms. This proportionality is expressed as
the cube suppression. How the cube suppression is applied in the analysis is discussed in
section 5.1.

To measure the cube suppression the maximum and minimum transmission of the cube
is measured. First an image is taken with the half-wave plate set for maximum transmission
on the cube, using a 2 µs pulse. The next measurement is made with the light polarised so
that it is maximally suppressed on the cube, using a 1 ms pulse. To have a measure of the
dark counts a region of the chip is blacked out, these dark counts are subtracted from the
measurements before they are compared. Different pulse durations are used because a high
photon count increases the signal to noise ratio of the measurement. The cube suppression
of our system is

Ξ =
Pmin

Pmax
=

Imin/Tmin

Imax/Tmax
= 1.48(3)10−3 (3.2)

Where Pmin/max is the minimum and maximum transmitted power on the cube, Imin/max the

2This is only the case due to the original construction of the experiment and could of course be avoided by
designing an experiment with Faraday imaging from the start.
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mean intensity on the camera, Tmin/max the duration of the high and low intensity pulses
respectively.

Looking at figure 3.6 the light scattered by the atoms is collimated by the lens L1. It
propagates through a polarising beam splitter and is focused onto the CCD chip by the lens
L2 and the camera optics. In the image plane between the L2 lens and the camera optics a
mask have been placed. This is used to prevent light from hitting areas of the CCD chip, we
do not want to expose. The system magnifies the image 4.85 times, a combination of the
camera optics and the two external lenses. If the system had no magnification the pixel size
would be the physical size of each pixel3. With our magnification each pixel corresponds to
2.68(6)×2.68(6) µm2 at the position of the atoms.

EMCCD Camera

The main advantage of our system is the spatial resolution. Working at low intensities
means extra care have to be taken with the images. The electron multiplying register and
effects of the CCD chip caused a number of complications which had to be understood.

The camera read out pixels one at a time using a readout node. The image is shifted
to this node by shifting down a row of pixels to the register and then reading these out
horizontally. The cameras maximum horizontal readout speed is 10 MHz, limiting the speed
at which images can be taken continuously. To gain speed it is possible to crop the camera
chip. Only the region specified is read out instead of the whole chip giving a lower cycle
time. This mode is illustrated in figure 3.7(b) and allows higher speed of the camera because
fewer pixels have to be read for each image. In figure 3.7(b) one problem of this method
becomes clear from exposure to exposure charge builds up on the pixels that have not been
read off. In a regular Faraday image there might be a mean background intensity around
500 counts per pixel while the signal from the cloud give a pixel count around 5000. Due
to the low signal the effect of these multiple exposures become very relevant compared to
an image where the signal to noise might be 10000:1. To avoid this effect a mask have been
placed in the image plane between the L2 lens and the camera optics blocking light from
the rest of the chip, see figure 3.5(b). The effect of the mask is illustrated in figure 3.7(c)
where it can be seen that charge is not build up on the pixels.

To overcome the low signal to noise ratio an electron-multiplying charge coupled device
(EMCCD) camera amplifies the signal before the readout node. The electron-multiplying
register allow us to use short low intensity pulses of light limiting the destructiveness of
the measurement. Without the electron-multiplying register imaging pulses of 50-100 µs
would be needed to get the same signal 1-4 µs pulses provide with the register.

The quality of the Faraday image is expressed as the ratio of the signal to noise ratio of
the image. In a regular charge coupled device (CCD) camera there are two sources of noise.

3The camera used for the Faraday system is a Andor iXon 888 EMCCD camera with 1024x1024 pixels
each 13×13 µm2.
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Figure 3.7: (a) On the edge of the specified frame negative effects of the camera become
clear. On the upper and right edge there are rows/columns of pixels that are corrupted while
intensity gradients show themselves at the lower and left edge of the frame. On the right
pictures taken in cropped mode with (b) and without (c) the mask. Each row represent four
images taken one after the other. On the top there is no mask meaning the whole chip is
exposed in each image, because the whole chip is not read out for each image charge will
build up on the pixels that have not been read out. This show itself as a darkening of the chip
meaning higher charge on the chip. On the bottom the light is blocked from hitting the chip
because of the mask making sure no charge build up on the chip and thereby eliminating
the problem.

Noise of the detected signal itself and readout noise. The readout noise is independent of
the signal while the inherent signal noise scales with the signal. It is possible to suppress the
readout noise by amplifying the signal before the readout node. This is the purpose of the
electron multiplying register where signal to noise ratio is improved by suppression of the
readout noise. There is a limit at which the readout noise is so well suppressed, compared
to the signal size, that higher gain does not improve the signal to noise ratio. In our system
this limit is reached at a gain of 150-200.

Working with high magnification makes the images very susceptible to dark counts.
Minimising dark counts is one way to increase the signal to noise ratio. Dark counts come
from thermal effects in the CCD chip where stray electrons are released by thermal energy.
Cooling the camera lowers the energy available thereby lowering the dark counts per second.
The camera is cooled to -40◦C. Cooling below this gives no improvements in the rate of dark
counts for our typical expositions.

Using these methods to improve our images, introduce new unwanted effects. Cropping
the image frame causes a number of rows and columns in the top and the right side of the
frame to become corrupted. This corruption shows itself as an artificially high intensity as
can be seen in figure 3.7(a). The number of corrupted rows (columns) depends on the width
(height) of the frame. The wider the frame the fewer rows are corrupted in the top of the
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image. The corrupted frames are there, even if the camera shutter is closed. It can not be
a charge buildup since there is no light. These two effects points to it being an artifact of
the cropping done in the camera. This is an unfortunate effect which we have not been able
to get rid of it. The corrupted rows and columns are taken into account during the image
analysis.

Using the electron-multiplying register also have some unfortunate effects. Many of
these were discovered while aligning the imaging system. First the register distorts the
images elongating the cloud in the horizontal direction. This show itself as a mismatch of
the cloud temperature in the horizontal and vertical directions. The blurring comes from
charge building up in the register when reading out the pixels. This is supported by the
fact that changing the gain, the light intensity, pre–amplification, pulse duration or vertical
shifting speed does not affect the clouds aspect ratio. The only way to change the aspect
ratio of the cloud is by changing the horizontal readout speed of the camera. This along with
the cloud being round when the electron-multiplying is turned off and on absorption images
along the Z-axis, indicate the distortion being an effect of the electron multiplying register.
The elongation of the cloud can be removed by using a 5 instead of 10 MHz horizontal shift
speed. The EMCCD also amplify intensity gradients at the edge of the chip. This effect
is due to the chip not having an even response over the whole surface. The gradients at
the edge of the chip are there with and without the electron multiplier, it is amplified by
the register making it more visible, see figure 3.7(a). It is worth remembering that these
limitations come from our camera and could possibly be avoided with a different camera.
These effects are not a problem with the technique but limitations of our system which can
be overcome in the analysis and by limiting our ambition for how much we can do at one
time.

3.3 Optical Lattice Characterisation

The optical lattice used in these experiments is directed along the Y-axis. We also have
lattice capability along the Z- and X-axis. This would allow us to perform measurements
in a 3D lattice configuration. For the spinor experiments we are interested in bulk sys-
tems and how the trapping potential influence the spin mixing dynamics. A 3D lattice give
high trapping frequencies in all directions, freezing out the influence of the trap on spinor
dynamics.

The lattice light is produced on the laser table, an extended cavity diode laser is used to
produce light at 914 nm. The laser is not locked but an optical cavity is used to ensure that
it is single mode. We have the option of locking it to the cavity but it have not been deemed
necessary because small drifts of the lattice frequency is not a problem. There are two
lasers: the lattice master and the lattice slave. The master laser is used for the Y-axis lattice
while the slave laser is used for the X- and Z-axis. For each axis of the lattice a tapered
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amplifier (TA) is used to increase the power. In the case of the master laser the TA is seeded
with 54 mW and produce up to 900 mW of power. A tapered amplifier is a laser diode
without the cavity meant to amplify a laser signal. The semiconductor chip is tapered to
allow for large amplification, spreading the power over a larger area. The tapering makes it
very susceptible to back scattered lightsince this is also amplified. In the opposite direction
the cross-sectional area of the diode decreases along the length of the chip, this can lead to
a breakdown of the chip.

After the amplifier the light passes a cylindrical lens (L1 in figure 3.8). An optical
isolator is used to ensure that no light is reflected back into the amplifier. To control the am-
plitude and also be able to cut off the lattice quickly an acousto-optic modulator is inserted
before the light is coupled into the fiber. The modulator is regulated by a control circuit
receiving a signal from a photo detector on the experiment table (PD in figure 3.9). The
lattice power fluctuates by less than 0.5%, peak to peak, of the total power.

On the experimental table the lattice beam is passed through an optical isolator, this
prevents reflected light from coupling back into the fiber. Afterward a small fraction is
split off by the S1 splitter and to provide the feedback signal to the AOM. The light passes
through a telescope comprised of lenses L1 and L2 in figure 3.9 widening the lattice beam
by a factor of 10 : 3. The waist of the lattice beam is increased to allow for a tighter focus
on the atoms. In Gaussian optics the waist of a focused beam is [59]

w′0 ≈
λ f
πw0

(3.3)

where w0 is the waist before the lens of focal length f and w′0 is the new waist at the focus of
the beam after the lens. The lattice beam is focused on the position of the atoms by the L3
lens after which it passes through the polarising beam splitter PBS1 combining the lattice
and imaging light. After the chamber the lattice light is collimated again by the L4 lens and
split from the imaging light by PBS2. The lattice is reflected on a retro-reflector and passed

Optical Isolator

Lattice Master Laser

To Slave

HWP

TA
Photo detector

L1(100mm) L2 (60mm)

L3 (30mm)

AOMTo Fiber

Figure 3.8: An illustration of the Y-axis lattice laser system, the illustration is not exact but
include the most important elements.
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Figure 3.9: An illustration of the beam path of the Y-lattice on the experiment table.

back through the chamber.
In figure 3.10(a) the profile of the lattice beam is illustrated. The calculation was per-

formed using Gaussian optics. The input parameters are the beam waist before the L3 lens
(1.43(17) mm) and the focal length of 500 mm. The waist was measured by cutting into the
lattice beam after the telescope with a sharp plane, while measuring the remaining power
with a powermeter. The power in the beam correspond to the integral of a Gaussian and
by cutting into the beam with the razor we effectively change the integration limits. This
method can be used to find the width of the Gaussian. The measured and calculated waist
of the dipole beam are in good agreement and the large Rayleigh length, 3.51 cm, needed
to make the assumptions of identical lattice sites in section 2.1 is fulfilled. To measure the
beam profile of the lattice the polarisation of the lattice light was turned so it passed through
PBS1. It was measured using a small CCD camera moved along the lattice beam. The beam
waist was extracted from the profile pictures taken with the camera. An image of the lattice
beam is shown in figure 3.10(b).

A power callibration of the lattice is seen in figure 3.11(a) where the horizontal axis is
the set voltage on the AOM. As seen the AOM has a linear response up to 4 V. Above the 4
V set point the system can not reliably deliver enough power. The calibration of the lattice
waist and power enable us to calculate the expected lattice depth.

After the chamber the lattice is directed onto the retro-reflector by a polarising beam
splitter. This is by no means perfect and therefore there is quite a big loss of power on this,
dashed line in figure 3.11(a). Assuming a similar loss to occur each time it passes the beam
splitter an effective depth of the lattice can be found. Instead of (2E0)2 we have (1.79E0)2

because of this loss when calculating the lattice depth.
The transverse trapping frequency can be used to determine the trap depth, it was de-

termined by observing transverse oscillations, stemming from the loading sequence, with
the Faraday imaging system. More on the frequency measurement can be found in chap-
ter 5. The result of the measurement for multiple lattice depths can be seen in figure 3.11(b)
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Figure 3.10: (a) Calculated and measured beam profile of the lattice (b) picture of the lattice
illustrating the nice Gaussian profile of the beam.

where the trap depth extracted from transverse oscillations marked is with diamonds. The
lines are the expected trap depth case of a perfect lattice (solid) and taking the power loss
into account (dashed), based on equation 2.16. For the measured points the frequency have
been determined with a sinusoidal fit to the measured oscillations and the lattice depth de-
termined from equation 2.17. The power was determined from the calibration of the AOM
shown above.

In the axial direction the lattice depth is determined using loss spectroscopy. The lat-
tice depth is modulated with an AC signal which is applied to the AOM. This amplitude
modulation can drive excitation to higher bands [81]. Amplitude modulation can only drive
transitions between bands of the same parity. If the modulation drive transitions to bands
that are in the continuum of states atoms are lost from the trap. This loss is the signal we
are looking for, from the frequency at which the loss occur the depth of the lattice can be
calculated. The lattice depth as a function of power can be seen in figure 3.11(b) (circles).
For both measurements our theoretical result over estimate the lattice depth compared to
the measured depths. The measurements give good agreement with eachother leading us to
assume a will known trap depth.

If the lattice is not aligned atoms will be lost during the loading and the cloud will start
oscillating. The lattice is aligned by the use of absorption images and alignment has to be
performed on both transverse directions individually.

The alignment start with the dipole beam and afterward the retro-reflector is aligned
to give an optical lattice. Alignment is done by perturbing the condensate with the dipole
beam. A condensate is created in the magnetic trap and released for imaging, usually with
15 ms time of flight. When the atoms are released from the trap the dipole beam is turned
on for 2 milliseconds. The light affect the atoms with a force proportional to the transverse
intensity gradient. A misaligned dipole beam will accelerate the atoms towards its center.
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Figure 3.11: (a) Power calibration curve of the lattice as a function of set voltage. The solid
line is the power entering the science chamber and the dashed line is the power after the
beam splitter cube. (b) The expected and measured lattice depth as a function of the lattice
power. The solid curve illustrate ideal lattice where power isn’t lost while the dashed curve
include the measured power loss.

When the atoms are allowed a time of flight before images are taken the effect show itself
as a displacement which is proportional to the alignment of the lattice. This can be seen in
figure 3.12.

The displacement is caused by the light acting on the atoms with a force proportional
to the lattice gradient. This has been illustrated in figure 3.12 showing good qualitative
correspondence with the measured dispersion. The zero crossing in the middle correspond
to an aligned lattice. When aligned the lattice does not exert a force on the atoms in the
magnetic trap. For each point in figure 3.12 an experiment has been performed, afterward
the motorised mirror in figure 3.9 is moved which changes the position of the incoming
beam relative to the atoms. The motorised mirror is controlled by the computer and moved
in steps. Each step is equivalent of turning the screw on the mirror a tiny amount. The
graphs use these steps as position axis since it have not been deemed relevant to calibrate
the absolute value of a step. There is no interest in partially aligned lattices. This is also
why there is only qualitative agreement with the derivative of the Gaussian.

The alignment is performed along both transverse lattice axes and the retro–reflector
is aligned using the same approach. The alignment is performed often because a small
misalignment causes inefficient loading of the lattice.

3.4 State Preparation

To allow for the observation of spinor dynamics we have to prepare the atoms in the desired
state. In our experiment this is the |2,0〉 state from which we observe spin changing col-
lisions populating the |2,±1〉 states. State preparation is performed using two microwave
pulses, where the first drives the transition from the |2,2〉 to |1,1〉 and the second drives the
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Figure 3.12: Dispersion curve illustrating the alignment procedure of the lattice. The hori-
zontal axis illustrate the steps the lattice is moved which corresponds to an angle and not a
length. The solid line is meant as a guide to the eye. It is the gradient of a Gaussian scaled
to coincide with the measurements.

transition from the |1,1〉 to |2,0〉 state.
The state preparation is performed between the hyperfine manifolds of the 52S1/2 elec-

tronic state. Transitions within an electronic state are driven by the magnetic dipole oper-
ator, unlike optical transitions discussed in section 2.1. The electric dipole operator van-
ishes for transitions inside an electronic state and therefore the magnetic dipole moment
is addressed. For optical transitions the electric dipole moment dominates the magnetic
dipole-moment [82].

The state preparation is done using microwave pulses of specific frequency and duration.
At first the plan was to use microwave frequency sweeps to perform the state preparation.
This turned out not to be reliable leading us to use microwave pulses for state preparation
instead of sweeps.

In the case of zero magnetic field the hyperfine splitting is 6834.683 MHz [83]. Ap-
plying a magnetic bias field breaks the degeneracy of the hyperfine manifolds. The linear
Zeeman splitting for both manifolds is gFmF µBB = ±0.7mF MHz/G for the F = 2 and
F = 1 manifolds respectively [83]. The resonance frequency of the first and second tran-
sitions change by 2.1 and 0.7 MHz/G with the application of a magnetic field respectively.
This field dependence was used to calibrate the shim coils and cancel background fields,
see section 3.5.

The natural line-width of the transition should be quite narrow, compared for example
with the D2 line-width, because it is a magnetic dipole transition. The transfer is done on
resonance, so the atoms perform Rabi-oscillations between the F = 1 and F = 2 manifolds.
For magnetic dipole interactions the probability of the atom being in the excited state is
given by

Pe(t) ∝
V 2

ΩR(∆)2h̄2 sin2 (ΩR(∆)t/2) (3.4)

where ΩR(∆) =
√

(∆2 +V 2)/h̄2 and V 2 is proportional to the intensity of the radiation
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Figure 3.13: (a) Scan of the resonance with a regular state preparation pulse. (b) Power
broadening, the dotted line is twice the power of the solid line. The plot show expected
transfer versus detuning, with an arbitrary scaling of the detuning.

field and the magnetic dipole moment [55].
The microwave resonance is illustrated in figure 3.13(a). The width of this resonance is

attributed to three factors; power broadening, Fourier broadening and magnetic field noise.
Power broadening is illustrated by figure 3.13(b). The solid line correspond to twice the
power of the dashed line, the detuning is in arbitrary units. The pulse durations are different
for the two resonances shown in the figure so that both are π-pulses. The Fourier broaden-
ing is due to the finite duration of the pulse, leading to a brocading of the pulse in frequency
space. The width of a square pulse in frequency space scales as 1/τ , where τ is the pulse
duration. For very short pulses as used in our experiment this leads to a considerable broad-
ening. The final broadening term is the magnetic field noise. There are two relevant time
scales for magnetic field fluctuations first there are fluctuations on time scales much shorter
than the microwave pulse and secondly there are fluctuations on a time-scale longer than
the microwave pulse. The fast fluctuations are the source of the resonance broadening noise
while slow changes (on the time-scale of the microwave pulse) in magnetic field are seen as
drifts of the magnetic field.

The broadening of the resonance from power and finite pulse length is not a problem
in our experiment while magnetic field noise can be. The slow changes in magnetic field
can lead to unstable state preparation, moving on and off resonance from run to run. If this
instability was large we would not be able to consistently prepare a condensate in the |2,0〉
state. More on magnetic noise and its influence on the microwave transfer can be found in
section 3.5.

The Rabi-oscillations of the two level system is illustrated figure 3.14(a). The detuning
can be seen to increase the Rabi-frequency as is also obvious from the above discussion.
At the same time a dephasing of the oscillation is illustrated. The dephasing is caused by
not all the atoms seeing the same trapping potential. If two atoms are at different position
in the potential they will have a very slight change of resonance. In our case the dephasing
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Figure 3.14: (a) A calculation of the Rabi-oscillation in arbitrary units. The dephasing in
this plot is exaggerated to illustrate that in time the oscillation will die out and the population
of the two states will be even. (b) Long duration Rabi oscillation, this show the actual
dephasing of the Rabi-oscillations in the experiment. The 1/e time of the oscillation is 2.2
ms.

of the Rabi-oscillation is very small as can be seen in figure 3.14(b) where we see that the
oscillation dies out on time-scales of milliseconds while a π-pulse is on the order of tens of
microseconds. If the dampening was comparable to the time needed to make a π-pulse it
would not be possible to do the state preparation using microwave pulses.

Microwave Setup

The microwave setup has been a continually evolving system. With time we became aware
of problems with the system and found ways of improving it. Both transfer pulses used to
be provided by one microwave synthesizer. Quick state preparation was desired because of
limited condensate lifetime in the optical lattice. Using one synthesizer limited the speed
at which the microwave pulses could be applied. The synthesizer had to be reprogrammed
which takes 15 ms. To gain speed we incorporated a second synthesizer to provide the
second pulse. The final setup with the two synthesizers is illustrated figure 3.15

The two synthesizers are a Wiltron 6722B and a Marconi 2024. The Wiltron is able
to produce microwave radiation between 10 MHz and 12.4 GHz while the Marconi syn-
thesizer provide frequencies between 9 kHz and 2.4 GHz. The Marconi synthesizer has its
output frequency tripled by a semiconductor diode. The signals from the two synthesizers
are combined using a microwave switch controlled by a digital channel. Between the two
microwave pulses this is switched by opening the channel that was previously suppressed.
After the switch the signal is amplified 28 dB by a microwave amplifier. This allow us to
change the microwave power from 25 to 45 dBm.

Since the Marconi synthesizer is not able to provide the desired frequencies a tripler
diode is used. This works in the same way as frequency doubling in quantum optics [59].
Providing a microwave input of 2 GHz the diode produce higher harmonics such as 4, 6



42 CHAPTER 3. EXPERIMENTAL SETUP

Switch	Trigger	

68xx	MHz68xx	MHz Marconi	2024 Wiltron	6722B

MW1	Trigger

	

MW2	Trigger

Amplifier	28	dB

Amplifier
Tripler	Diode

Switch	

Switch

Switch

Figure 3.15: An illustration of the microwave setup used to perform the state preparation.
The microwave signals are combined using a microwave switch and sent to the antenna
which is located inside the chamber. The signal from the Marconi synthesizer is tripled in
frequency and amplified before it is combined with the signal from the Wiltron syntheziser.

and 8 GHz, this component has been produced with high and low pass filters removing
components other than the third harmonic.

The lengths of the microwave pulses are controlled by the experimental control system.
The Wiltron has a digital channel which allow for easy control of the pulse length. In the
case of the Marconi this is not possible because its response is highly unreliable when pulse
lengths are programmed into the synthesizer. Instead the synthesizer is kept running in a
constant mode and the signal is suppressed by two microwave switches in series. These are
similar to the one used to combine the two microwave signals. Each suppress the signal
around 43 dB at the used frequecy, which is more than enough because there is a lowest
signal needed to get a response out of the tripler diode.

The major problem of this system is that the response of the tripler diode is non-linear.
This means that the intensity of the tripled signal does not scale linearly with the input
intensity, instead it scales as I3

ω0
[59]. We always work with the same settings producing

similar intensity. The tripler diode does not have an immediate response to a signal but a
small delay. Despite of this it was decided it was preferable to have the switches before the
tripler instead of having the tripler running with a continues input and afterwards switching
it on and off. This decision was made because the switches are meant to work in the fre-
quency range 0.5 to 6 GHz therefore giving better suppression in this region. Operating the
combining switch at 6.8 GHz has not seemed to cause any problems but unlike the other two
switches it is not used to terminate a signal. The signal is amplified by a second microwave
amplifier before the combining switch.
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X-axis Y-axis Z-axis
Windings 208 64 208
Resistance (Ω) 4.4 1.1 4.2
Inductance (mH) 9.75 0.18 9.0
Coil Calibration (G/A) 3.24(9) 1.720(14) 3.10(1)
Compensation Current (mA) 45 -254 -75
Gradient (G/cm) <0.005 < 0.02 < 0.01

Table 3.1: Parameters of the shim coils and our field calibrations.

3.5 Magnetic Field Control

Controlling the magnetic fields in the experiment is of great importance to our measure-
ments. The dynamics depend on the quadratic Zeeman shift and the state preparation re-
quires stable magnetic fields. The results of this section are listed in table 3.1.

Magnetic Coils

The shim coils allow us to produce an offset magnetic field along any axis of the experiment.
Their configuration is a matter of what is deemed advantageous. The QUIC trap and Stern-
Gerlach pulse, used to separate the different mF states, produce magnetic fields along the
Z-axis of the experiment. To avoid any complications that might arise from turning the spin
orientation, the first attempt was made with both the X- and Y-directions set to their com-
pensation values and any changes in the magnetic field applied along the Z-axis. Therefore
the Z-axis was driven by a Danfysik System 7000 which is faster than the Knürr-Heinzinger
PTN 32-10 used on the X- and Y-directions.

The Heinzinger power supplies were selected because they were available and very
stable. As a first investigation a current transducer, Danfysik S200, was used to investigate
the response of the coils to changes in the set current. First thing to note is the current
noise being indistinguisable from inherent noise in the transducer. This high stability had
the disadvantage that the Heinzinger supplies have a very slow response to a change in the
set value. The 10-90% rise-time was on the order of 280 and 95 ms for the X- and Y-
direction respectively. The difference in the rise time of the two come from the much lower
inductance of the Y-shim. Because of this very slow response they were set to compensation
in the beginning of an experiment and kept there during the full cycle.

The Z-shim had to respond quickly to any desired change in magnetic field. The mag-
netic field had to be changed quickly after the spin preparation to the desired spin evolution
value. The other option was to perform state preparation at the final field for each experi-
ment, meaning a different microwave frequency for every data point. We were interested in
performing the state preparation at a fixed field and afterwards changing the field to some-
where between 0 and 3 G. After state preparation the magnetic field has to settle at the
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Figure 3.16: The induced field produced by the Danfysik power supply. As can be seen the
field goes to zero and then rise to around 7% of the initial field. The inset is a measurement
of the decaying field using microwave transitions, the line is an exponential fit.

desired value quickly to ensure a constant magnetic field during spin evolution. The Z-shim
had to settle into the desired evolution field in one millisecond, which is based on experince
from the Hanover group [36].

The response of the Danfysik power supply is much faster than the Heinzingers. The
slew rate of the Danfysik supply is 400 A/s, much faster than we need, the power supply
have an unfortunate effect which is illustrated in figure 3.16 where the current in the Z-shim
coils is shown as a response to a 100 µs step from 1 to 0 A. The initial response is quite
good, going to zero in less than 3 milliseconds, but a current is induced in the coil. The
induced current, it turns out, is not a product of the coils inductance but the power supply.
From table 3.1 it can be calculated that the 1/e time of any induced current should be 2.1
ms, for an RL circuit τ = L/R [84]. The inset in figure 3.16 show the induced current
measured with microwaves. These give a 1/e time 31.4(6) ms which is much slower than
what would be expected from the coils. The Danfysik supply also show a similar response
when driving a pure resistor. The induced current is 6-7% of the initial current and it has
not been possible to get rid of this behaviour.

Because the desired behavior could not be achieved with the Danfysik supply it was
decided to purchase two HighFinesse current supplies. They have superior response time
and should provide good current stability. Because the calculated response of the Z-coils
was too slow for spinor work, two supplies were ordered. One was to drive the Z-shim and
the other for the Y-shim, with a response time of 164 µs.

Magnetic Field Calibration

To precisely control the magnetic field our shim coils had to be calibrated. The calibration
give information about the magnetic fields produced by the shim coils and background
magnetic fields. Calibration was performed with microwave transitions from the |2,2〉 to
|1,1〉 state.
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Figure 3.17: Nulling of the magnetic field along the three axis of the experiment. From
left to right are the Y, X and Z axis. Each point is extracted from a fit to a scan across the
resonance at that specific magnetic field. Any uncertainty would be from this fit which is
very small.

The calibration is done one axis at a time, after an axis have been calibrated it is set to
the compensation value, i.e. the field minimum along that axis. For each axis the microwave
resonance is found for multiple set currents, preferably on both sides of the field minimum.
Finding the resonance at one field requires a scan of the frequency, a microwave π-pulse
is scanned across the resonance as in figure 3.13(a). From the resonance frequency the
magnetic field can be found by

B( f ) =
2( f − f0)
µB∆mF

(3.5)

where f is the frequency of the transition, f0 the hyperfine splitting at zero field and ∆mF

the effective difference in the Zeeman sub-level taking the sign of the Landé g-factor into
account, in this case ∆mF = 3.

For each axis a fit was performed using

|B(I)|=
√

(a(I− I0))2 +B2
0 (3.6)

the fitting parameters a, I0 and B0 are the calibration of the coil, the compensation current
and the residual field respectively. Using this method the coil calibrations seen in table 3.1
are found. The calibration is illustrated in figure 3.17 where a residual field around 50 mG
remains. This was subsequently reduced to less than 5 mG in the present experiment with
the values given in table 3.1.

Magnetic Field Noise and Gradients

As mentioned above there are two sources of magnetic noise. The high frequency noise is
not much of a problem, it introduces a minimum accuracy of our magnetic field, this can be
measured using microwave transitions. In figure 3.18(a) the measurement is illustrated, it
is clear that the width of this resonance is smaller than the one illustrated in figure 3.13(a).
The difference comes from the use of a 5 ms low power microwave pulses. In this case the
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Fourier broadening is less than 1 kHz and the power broadening will also be very small.
The full width of this peak is 12.2 kHz which, attributing the full width to magnetic noise,
translate into a high frequency noise less than 6 mG. This is in good agreement with the
remaining field we observe from the nulling measurements.

Beside the high frequency noise there are slow changes in the magnetic field. These can
cause problems with the state preparation because they will shift the resonance from run to
run. Slowly changing magnetic fields can be from external sources or because the experi-
ment change as it is run continuously. No evidence of this has been seen when performing
state preparation along the Z-axis. Along the Y-axis there are fluctuations so we are not
able to perform state preparation along this axis. In this case the state preparation is very
unstable which show itself in drifts of the resonance on half an hour time scales. Therefore
we can not turn the field along the Y-axis, perform state preparation and then change to the
desired evolution field. This would have been preferable to our current method but because
of this external instability it is not possible.

It is important that we have no magnetic field gradients in our experiment this would
affect the spinor dynamics [37]. To ensure that no gradients are present in the chamber time
of flight measurements were used. The atoms were loaded into the lattice and either kept
in the |2,2〉 state or prepared in the |1,1〉 state, a low and high field seeker respectively.
Time of flight measurements were performed along the two horizontal axis if there were no
magnetic gradients the acceleration of the two state would be the same. From the position
at different times of flight the acceleration along all axis can be extracted. The difference
in the acceleration of the two states is proportional to the gradient along the measured axis.
From the Breit-Rabi formula the force on the atoms is

F = gIµBmF∇B (3.7)

Remembering that F = ma and that effectively there are three Zeeman sub-levels between
the two states, opposite sign of the Landé g-factor, the gradient is

∇B =
2mRb∆a

3µB
(3.8)

where ∆a is the difference in the acceleration. The upper limit of the gradients along the
three axis is listed in table 3.1. These measurements were made with compensation current
applied to the X- and Y-axis and a small field along the Z-axis. If we applied a large field
along the Z-axis we would also have larger gradients because the shim coils are not aligned
with the atoms. The atoms are a little bit off center of the Z-shim coils which could result
in gradients of 0.12G/cm for 1 A current in the coils.

Stern-Gerlach Pulse

To distinguish the different mF components of the condensate a magnetic gradient is ap-
plied along the Z-axis during time of flight. This gradient field is produced by the Ioffe
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Figure 3.18: (a) Scan across the microwave resonance on the |2,2〉 → |1,1〉 transition using
low microwave power and long pulses. The maximum transfer is only 50% due to dephasing
of the Rabi-oscillaitons. (b) The spinor condensate after time of flight expansion using a
Stern-Gerlach pulse. The central peak is the mF = 0 component while the four others are
the mF = {−2,−1,1,2} compoenents from left to right, these have been produced by spin
changing collisions.

coil running 30 A for 5 ms. The atoms interact for the first few milliseconds after being
released and afterwards it can be considered free expansion [85]. Figure 3.18(b) illustrate
the different states after the Stern-Gerlach pulse. Pictures like figure 3.18(b) can be used to
determine the mean gradient produced by the Ioffe coil during the pulse. The acceleration
can be found by considering a system that is first accelerated by a for a time τ1 and then let
fly freely for a time τ2, the position at time τ1 + τ2, x(τ1 + τ2) give an acceleration

a =
x(τ1 + τ2)
1
2 τ2

1 + τ1τ2
. (3.9)

In our case after a total 15 ms time of flight of which the first 5 ms had the Stern-Gerlach
pulse on lead to a splitting between the different Zeeman sub-levels of 226(2) µm based on
the distance from the mF = 0 to the mF =±1 peaks of 7 measurements. Using equation 3.8
gives a mean gradient of 3.34(3) G/cm.





4. Spinor Dynamics

The initial investigations of spinor dynamics are limited to confirming that the spinors be-
have as expected. We have ensured that we load a condensate into the optical lattice and
performed initial investigations of spinor dynamics. We have investigated the time evolution
and made first investigations of resonances looking for trap excitations.

4.1 Loading the Optical Lattice

The first step towards observing spinor dynamics was to obtain a condensate in the optical
lattice. Different methods of loading and evaporation in the lattice were tested in search
of a method that provided satisfactory results. A discussion of different attempted loading
procedures can be found in appendix B.

When loading the lattice we have a number of different evaluation points to determine
the quality of the loading: first the size and purity of the condensate, secondly minimisation
of spatial modes, oscillations or breathing, and finally the coherence between different lat-
tice sites. This last criteria has not been a priority for the investigations presented here. It
may become relevant for the investigation of band excitations.

The size of the condensate (atom number) is important because the instability rate scales
as the square root of the condensate size, see section 2.2. The larger the condensate the
higher instability rates achievable. Higher instability rates and in general higher atom num-
ber give better statistics on a single measurement. Higher atom number also decreases the
relative importance of atom number fluctuations because of the square root dependence.
If the condensate atom number is low, small atom number fluctuations lead to significant
changes in the instability rates.

The purity of the condensate has not been a high priority since spin-changing collisions
has not been observed in thermal clouds. The only cause for concern is that previously spin
domain formation has been shown to be affected by the thermal components [86]. This is
not our primary concern and it has been of secondary interest compared to loading large
condensates.

When loading a condensate from a cigar shaped trap with its axis of symmetry along
the Z-axis to a 1D lattice oriented along the Y-axis avoiding spatial excitations is difficult.
The large difference in trapping geometries can induce breathing modes in the condensate
and spatial misalignment of the lattice and magnetic trap cause oscillations along the weak
trapping directions of the lattice. These effects should be minimised because the kinetic
energy available in this spatial motion can lead to excitations in the trap. Since the spinor
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dynamics rely on trap excitations this could blur possible resonances of instability rates.

Previously the experiment was used to investigate wave-packets [87]. Here a condensate
of around 3 · 105 atoms1 was created in the magnetic trap which was relaxed by lowering
the current on the QUIC coils and increasing the bias field. This relaxation was performed
in 500 ms resulting in a trap with ωz = 12 Hz and ω⊥ = 40 Hz. Around this trap the optical
lattice was ramped to a depth of 12Erec. It was under these conditions that the wave-packet
work was performed. To observe spinor dynamics the magnetic trap has to be turned off so
the different mF states experience similar trapping potentials. This turn off unfortunately
destroyed the condensate leaving a thermal cloud in the lattice.

It was later discovered that our method for turning off the magnetic trap caused the con-
densate to disappear. The magnetic trap was turned off with the digital suppression switch
on the Ioffe branch of the magnetic coils (T2 in figure 4.1(b)). We have later discovered
that this method kick the cloud unless the current in the QUIC trap has already gone to zero.
The decompression was not tried again after this discovery because it induced oscillations
in the trap, making it unlikely to give better results than the method used at the time.

From this point there were two proposed paths to achieving a condensate in the optical
lattice. The first was to load the condensate from the compressed trap thereby avoiding
the heating and induced oscillations from the decompression and the second to test the
possibility of creating a condensate in the lattice, as done by the Munich group [88]. A
discussion of this investigation can be found in appendix B. The final lattice loading and
state preparation sequence is illustrated in figure 4.1(a). The evolution time is measured
from the end of the second microwave pulse.

The lattice is loaded with a 100 ms simultaneous ramp of the QUIC current and lat-
tice intensity. The ramp is compensated by the transistors T2 and T3, see discussion in
appendix B, giving a smooth change of the trap. The QUIC is forced off before the ramp is
completely finished and 2 ms later the first microwave pulse is applied, with a power of 40
dBm and a duration of 23 µs. This pulse is produced by the Marconi synthesizer. The digi-
tal switch is given two milliseconds to switch to the other branch while the remaining atoms
in the F = 2 manifold are removed by an imaging pulse 20 µs long. Two milliseconds later
the Wiltron synthesizer provide the second pulse of 70 µs at the same power as the first one.
In total from the end of the evaporation ramp to the start of spinor evolution takes 103 ms.
The result is a condensate in the |2,0〉 state of 5.5(6) · 104 atoms with a purity of 60(6)%.
This is a lower estimate based on the atom number, in all Zeeman sub-levels, after spinor
evolution. The efficiency of both microwave pulses has been measured to be 99(1)% from
20 measurements. We see changes in the final condensate, these are ascribed to drifts of the
magnetic field.

No matter which method was used for turning off the QUIC it has not been possible
to remove the oscillations from the lattice. They have been reduced as much as thought

1These measurements were performed before the experiment was moved to its current place.
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Figure 4.1: The control circuit for the QUIC trap. This circuit allow us to regulate the cur-
rent in the Ioffe and quadrupole branches seperately thereby changing the trapping parame-
ters. An illustration of the lattice loading and state preparation from the end of evaporation
to images have been taken, the time axis is not to scale and channels are normalised to their
maximum value.

possible, the upper estimate is 8(1) µm peak to peak in the trap. This should be compared
with the transverse trapping frequency of 37.8 Hz for the lattice used for spinor dynamics.
The energy available from the oscillation can be calculated from U = 1

2 mRbω2x2 giving 16
Hz. This should be low enough that we do not excite spatial modes in the trap.

The imaging pulse used to clear away the atoms remaining in the upper hyperfine state
has not been observed to have a pronounced effect as long as the transfer of the first mi-
crowave pulse is above 95%. If it gets below this the F = 2 atoms leaving the trap will heat
the remaining atoms. The atoms in the lower hyperfine manifold are not cleared away, as
we do not expect them to contribute to the spinor dynamics.

Lattice Distribution

When the atoms are loaded into the lattice, the magnetic trap is relaxed while turning up the
lattice intensity as discussed. The magnetic trap is slowly relaxed until the confinement of
the lattice becomes dominant. When taking images of the atoms in the lattice their extent
along the Y-axis is 7 µm, so fifteen lattice sites are populated as each site is λ/2 = 456 nm.
In the magnetic trap the atoms are distributed according to Thomas-Fermi statistics, leading
to a different population in each lattice site after loading. When the atoms are loaded into
the lattice the Thomas-Fermi profile is sliced into sections with a length of one lattice site,
see figure 4.2. The figure is not to scale but an illustration of the different atom number
in different sites. As a first approximation we assume that condensate fraction is the same
in all the sites. It seem more reasonable that the thermal fraction arises when the lattice
is dominant since we are able to decompress the magnetic trap without creating a large
thermal fraction.
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Figure 4.2: Simulation of the distribution of atoms in the lattice. The illustration is not
accurate but illustrate a Thomas-Fermi distribution devided between lattice sites.

Different populations of each lattice site is one of the complications of working with
a lattice instead of a dipole trap. Because of the different atom number in each site the
eigenenergies of the Bessel modes will vary from site to site. This means that a certain
magnetic field will be on resonance with one site while not the other. This may lead to no
particular mode becoming dominant. Any such problem might be solved with sufficient
evolution time, longer evolution time bring other problems such as the break down of the
theoretical approximations and saturation of the spin dynamics.

4.2 Time Evolution

As with parametric amplification in quantum optics the spin changing collisions are driven
by a seed, either classical or quantum [55, 33]. This initial seed is exponentially amplified
until a saturation value is reached. In these initial investigations we have not spend much
energy investigating the nature of the seed. There should be no atoms in the | ± 1〉 states
when spinor evolution is initiated because of the cleanup pulse that has been applied.

If the evolution is initiated by quantum fluctuations there is a spread in time when the
evolution is started. Because of the exponential population growth small fluctuations in the
seed can lead to large fluctuations in the observed dynamics. These fluctuations will of
course decrease again when saturation is reached. The Exponential growth is very clear in
figure 4.3(a). It is also clear that large uncertainties for the points on the exponential gets
smaller after saturation have set in.

The condensate was produced as described above and state preparation was performed
at the value of the evolution field 870 mG. This is not a peak in the instability rate but should
be just above the initial peak.

The relative population of the | ± 1〉 components seems to decrease quickly after the
initial rise in population. This is not spin oscillations but due to thermalisation of the con-
densate. The relative purity of the condensates in the | ± 1〉 components decrease as the
condensate is allowed to evolve. For the first 20 ms the condensate is almost completely
pure but then a small thermal fraction start appearing and after 40 ms the condensate have
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Figure 4.3: (a) Time evolution of the condensate in the optical lattice. The exponential rise
in the beginning is clear and so the saturation of the dynamics. (b) Total population in the
| ± 1〉 components from the same measurements as (a). The two components are shown
separately to illustrate the even population. The uncertainties are standard deviations of 6
measurements.

disappeared.2 This process is ascribed to thermalisation because we have seen no evidence
that thermal atoms performing spin changing collisions. Instead of looking only at the con-
densate fraction we can include the thermal components. Looking at the total population in
the |±1〉 components, figure 4.3(b), the decrease in population no longer occur. This also
explain the increase in the uncertainties again when thermilisation begins to take hold. This
indicate that the condensate life-time is on the time scales investigated in our experiments.
Increasing the lifetime in the lattice is not the main priority currently because the evolution
times we investigate, below 20 ms this is not a problem.

4.3 Magnetic Field Resonances

The goal of the spinor dynamics is to drive trap excitations by tuning the quadratic Zeeman
energy. These trap excitations can be used to produce EPR pairs in untrapped states. Here
the initial results are presented and a qualitative comparison with theory made.

Initially the plan was to keep the magnetic field oriented along the Z-axis of the exper-
iment. As discussed above this was not possible due to the response time of the Z-shim
coil. It was decided to align the spin along the Y-axis during spin evolution. After working
with this system for a few weeks we decided to investigate if turning the spin orientation
had an effect. The investigation was performed with the a bias field of 675 mG for the state
preparation. After the second microwave pulse the Z or Y- shim coils were set to the desired
current while the other was kept at its compensation value. A spinor evolution time of 12

2This time is taken from a different set of data which showed similar tendencies but the scan was conducted
to longer times.
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ms was used and measurements were made with 15 ms time of flight. The result of the
investigation is illustrated in figures 4.4(a) and 4.4(b).

The overall structure of the two graphs show similar trends where the atom number
in the |± 1〉 components show a steep increase for q below 30 Hz. For q above 75 Hz the
structure is again similar with the instability rate falling off as q increases which is consistent
with the theory where smaller overlap between the excited state and the ground-state will
lead to a smaller probability of excitation decreasing the instability rate. Around the peak
of the spectrum there is a difference where the evolution along Z-axis show a flat peak the
other show one point above the others. Since these measurements are preliminary results
clear conclusions cannot be drawn from this.

In the measurements performed with the spin orientation along the Z-axis population
|±2〉 components was observed. When the orientation was turned along the Y-axis no such
population occurred. This could be an indication that turning the spin orientation affect
the observed spin dynamics. This is discussed by Deuretzbacher et. al. where the relative
orientation of the magnetic field the trap influence the spinor dynamics [37]. It is also not
certain that the reorientation of the spin maintaining field is slow enough for the atoms to
follow adiabatically.

The production of |± 2〉 states indicate that our theoretical approximation may not be
applicable. It does not seem like ignoring the |± 2〉 components is a good approximation
even though the dynamics should be on a much slower time-scale than the production of
|± 1〉 components. To understand how this population occur we can compare the relative
population of the plus and minus components. If the populations occurred due to collisions
of two mF = 0 atoms the relative population is the same. If the atoms occurring in the
stretched states are due to collisions of two atoms in the |−1〉 (|1〉) states collide populating
the 0 and -2 (2) states the relative population can be different. Examining the measurements
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Figure 4.4: The magnetic field dependence of the spinor dynamics for a magnetic field
along the Z-axis (a) and along the Y-axis (b). The uncertainties are standard deviations of 8
measurements.
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where atoms appear in the stretched states we have not seen any uneven distribution indicat-
ing they are produced by collisions between |0〉 atoms. The uncertainties are so large that it
can not be eliminated that both processes contribute.

As hinted in section 3.5 our shim coils are less than perfect. Ideally they would be
Helmholtz coils centered on the position of the cloud. At 1 ampere the Z-shim coils should,
according to calculations, produce a gradient of 0.12 G/cm at the atoms. The center of the
Z-shim coils are not at the position of the atoms. The Y-shim coils are much better centered
on the atoms and closer to a Helmholtz configuration. This means that the two scans of the
resonances have seen very different fields where one will se an almost homogenous field
(Y-orientation) the other will experience a sizable gradient. Magnetic gradients displace the
equilibrium position of the different mF components. This can severely affect the dynamics
of the system affecting the observed spinor dynamics [37].

The fact that we do not observe any clear resonances can be due to the very weak
confinement in the transverse direction. In the Hanover experiment the trap had higher
trapping frequencies in all three directions (176, 132, 46 Hz)[33, 35, 36]. They observed
resonances in the tight trapping directions and therefore more energy was needed to couple
the higher trap modes leading to greater spacing of the Bessel modes. This can be the reason
for our unresolved spectrum.





5. Faraday Imaging System

First I discuss our evaluation method, calibrations of the Faraday system and finally appli-
cations of a working system. A discussion of the importance of an aligned Faraday system
can be found in appendix C

The original faraday system was built by Nityanand Sharma. Later the Faraday system
was implemented and configured with the experiment by Miroslav Gajdacz. I have worked
with Miroslav to characterise the interaction of light and atoms, not a characterisation of the
laser system itself.

5.1 Image Evaluation

In figure 5.1(a) a regular Faraday image with evaluation regions marked is presented. The
analysis uses the ratio of the signal to the background intensity to determine the rotation
angle. The rotation angle can be used to determine the atom number using equation 2.26.
The method discussed below is designed for reliable extraction information from thermal
clouds. Other methods are used to extract information from condensates and evaluation
using the FPGA module for feedback.

Looking at the raw image there is no light on the right most area (region (I) in fig-
ure 5.1(a)). The light is blocked by the mask mentioned above. The dark region is used to
determine the dark counts produced by the camera. These are subtracted from the signal
and the background intensity before the angles are evaluated.

The imaging beam is structured due to optical elements in the imaging path. To take this
structure into account a number of images are taken after the cloud have been released from
the trap. An average of these beam images is shown in figure 5.1(b). Here the structure
of the beam is clear, the region shown corresponds to region (II) in figure 5.1(a). The
beam structure is scaled for each cloud image and subtracted to reduce its influence on the
evaluation. From the transmitted light it is possible to extract the intensity at the atoms

Itot =
Imin

Ξ
(5.1)

where Imin is the background intensity.
The rotation angle is found by evaluating the cloud profile (region (II) in figure 5.1(a)).

The atoms rotate the field polarisation by an angle but the overall field amplitude must be
the same. Therefore the intensity as a function of rotation angle is

I(θ) =
Imin

Ξ

(
Ξcos2(θ)+ sin2(θ)

)
. (5.2)
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Figure 5.1: (a) The raw Faraday image, the marked regions are of interest in the evaluation.
(b) The beam structure in region (II), a smoothed average of multiple pictures. (c) An
evaluated image of the cloud where the colour bar shows the rotation angle in degrees.

It is the electric field and not the intensity that is rotated while the cube suppression is
derived from intensity measurements. If the electric field is rotated by an angle θ the field is
given as E2 =

(
cos2(θ)+ sin2(θ)

)
E2 when this passes through the beam splitter the non-

rotated component is suppressed by the beam splitter giving the above expression. From
equation 5.2 the rotation angle is

sin2(θ) =
(

I
Imin−1

)(
Ξ

1−Ξ

)
. (5.3)

The line density ρ̃(x,y) is proportional to the density profile in the trap, for a thermal
cloud this is a Gaussian. A fit is made directly to the intensity profile instead of evaluating
the angle for each pixel individually. The fit is made by using the right hand side of equa-
tion 5.3 giving the sine squared of the rotation angle. The fit is performed in two dimensions
and the maximum rotation angle, Gaussian widths and cloud position are extracted from
this. These values are used in determination of the atom number and temperature.

The atom number is extracted from the 2D integrated Faraday rotation θsum px2
size =

θmax2πσxσy this is devided by equation 2.27 which gives the atom number as

N f ar = θmax2πσxσy
16π∆e f f

Γλ 2〈F̂z〉ρ̃(x,y)
(5.4)

where σi is the width of the Gaussian in the i’th direction and θmax is the maximum rotation
angle in radians.

The temperature is given by the width of the cloud in the trap given as [5]

Tf ar,i = mRb
(ωiσi)2

kB
(5.5)

The intensity profile is fitted directly instead of first taking the square-root and arcus sinus
because negative pixel counts can occur once the mean background have been subtracted.
The noise in the signal is considerable, if the square-root was taken first and afterward a fit
was applied the noise would be relatively bigger, due to the steep slope of the square-root
function around zero.
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There are some limitations to our imaging method. The first limitation is that we are not
able to tell the sign of the rotation. A cloud in the |2,2〉 and |2,−2〉 states look the same.
Secondly we are not able to evaluate rotation angles above 90◦. A pixel where the rotation
is 70◦ and one where the rotation is 110◦ give the same signal. They show the same rotation
angle but it is possible to tell the difference between the two due the shape of the cloud. The
110◦ rotation shows itself as a donuts contour where the highest angle is not in the middle
but instead a ring around the middle.

5.2 Characterisation

Destructiveness

The destructiveness of Faraday measurements determine how many times we can probe the
cloud without significantly altering it. The photon scattering rate is the measure used to
determine the destructiveness. The primary effect of these scattering events are a heating of
the cloud, we define a mean heating per scattering event. The observed heating is converted
to scattering rate using this heating per event. The scattering rate fall off as 1/∆2 as can be
seen in figure 5.2(b).

To calibrate the destructiveness a cloud of 1.6(2) ·106 atoms at 1.35(11) µK is prepared
in the tight magnetic trap. The cloud is held in the trap for 3 seconds and in this time a vary-
ing number of Faraday imaging pulses are applied. These pulses have a duration of 4 µs and
a power of 275(5) mW. This enable us to determine the heating rate independent of the heat-
ing caused by the trap. One complication to this measurement was caused by the magnetic
trap. From run to run the cloud temperature is very stable but over time the temperature
changes on timescales of half an hour, as illustrated by the large temperature uncertainty.
To overcome this changing of the system every second experiment was performed without
Faraday light. These were used to correct for any drift in the temperature that might occur.
The heating rate per pulse at a detuning of 500 MHz is illustrated in figure 5.2(a) giving a
rate of 310(20) µK/s.

For each scattering event the atoms pick up an energy of 2Erec, see section 2.1. This
energy is converted into heating per scattering event using the heat capacity of the atom
( 3

2 kB). The heating per scattering is then

Trec =
4
3

Erec

kB
(5.6)

in combination with the heating rate give a scattering rate of

Γsc =
310(20) µK/s

Trec
= 1208(102) photons/s. (5.7)
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Figure 5.2: (a) Heating rate versus pulse duration, the points are single measurements. (b)
Destructiveness of the Faraday measurement, the uncertainties are fitting uncertainties of the
the heating measurements, the fitted curve (dashed) and the theoretical prediction (shaded
area) show good agreement. The theoretical uncertainty is due to uncertainty in the power
used.

Equation 2.29 gives the theoretical scattering rate

Γsc =
3πc2

2h̄ω3
0

(
Γ

∆

)2 2P
πRxRy

, (5.8)

Ri is the width of the beam in the i’th direction, Rx = 1096(4) µm and Ry = 1195(5) µm.
The detuning is an effective detuning from the F = 2 to F ′ = {1,2,3} transitions. All three
transitions can be driven by the σ− coupling of the light while the σ+ component can only
drive transitions to f ′ = 3. Taking the widths of the different transitions into account [83]
the detuning becomes

1
∆2 =

1√
2∆2

2,3

+
1√

30∆2
2,3

+
1√

12∆2
2,2

+
1√

20∆2
2,1

, (5.9)

∆F,F ′ is the detuning from the transition from the F hyperfine manifold in the S1/2 state to
the F ′ hyperfine manifold in the P3/2.

At a detuning of 500 MHz from the F = 2 to F ′ = 3 line the theoretical scattering rate
is 1032(97) photons/s. The uncertainty in this number arise from uncertainty in the power
and beam waist.

In figure 5.2(b) the scattering rate at four different detunings have been measured. A fit
to these give the dashed line while the shaded area is the theoretical scattering rate during
our Faraday measurement. The agreement of the measurement and the theoretical prediction
is within 15%.

Faraday Coefficient

Like the destructiveness the Faraday coefficient, given by equation 2.27, is dependent on the
detuning. To investigate this detuning dependence of the Faraday coefficient the detuning
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Figure 5.3: Faraday coefficient of blue (a) and red (b) detuned Faraday imaging away from
resonance. The theoretical curves (dash-dotted) have been rescaled by and overall factor of
0.635 and 0.786 for the blue and red detuning respectively. The shaded regions represent
standard deviations of three measurements.

is changed while taking images. The detuning is swept by changing the set voltage of
the voltage controlled oscillator. 50 images with a cycle-time of 4.7 ms are taken using
imaging pulses of 1 µs with a power around 350 mW, detuned 750 MHz from the F = 2→
F ′ = 3 line. With these settings the atom number does not change significantly during a
measurement.

The experimental value of the Faraday coefficient is given as cF = θsum/Nabs, where
θsum is the integral over the 2D Gaussian we have fitted to the intensity profile. We see that
the signal fall off as 1/∆ for both the blue and red detuned probing, figures 5.3(a) and 5.3(b)
respectively. Unfortunately there is an overall discrepancy between the theoretical (dash-
dotted line) and measured (shaded region) Faraday coefficient. The theoretical curves have
been scaled to coincide with the measured Faraday coefficient. The rescaling of the red and
blue detunings are 0.786 and 0.635 respectively.

In the single particle picture there is no difference between red and blue detuning. To
explain the different scaling molecular formation on the red detuned side has to be taken
into account [54]. Kaminski et. al. measured on the red detuned side where they saw
a signal higher than expected from the single atoms model, discussed in section 2.1. This
correlates well with our measurement of a higher relative signal on the red detuned side. In a
dense atomic gas the single particle picture is no longer valid. The dipole-dipole interaction
between two atoms close to each-other have to be taken into account. The electronic energy
levels of two such atoms are shifted, leading to light induced resonances [82]. This leads to
molecular formations which increase the rotation angle. We are still trying to understand the
overall scaling coefficient and it will be discussed later in combination with atom number
and temperature measurements. For now it is worth noting the overall detuning dependence
is as expected and the discrepancy between the two sides can be attributed to an increased
signal on the red detuned side due to molecular formation.
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Figure 5.4: (a) Density dependence of the Faraday coefficient on the red detuned side, a
clear dependence of the density is visible. (b) Resolving the zero-crossings using Faraday
imaging, the measurement show good agreement with theory.

The formation of molecular rubidium is density dependent while the Faraday coeffi-
cient is not. A measurement was made of the Faraday coefficient at varying density, see
figure 5.4(a). As a function of density the Faraday coefficient rises with the density ex-
pected from two-body effects. This effect is not observed on the blue detuned side, see next
section, which supports molecular formations as the source of the discrepancy.

Finally behaviour of the Faraday coefficient close to resonance was investigated. The
actual resonances are at ∆ = {0,−266.65,−423.597 MHz}. The Faraday imaging have
been used to examine the regions between the resonances. The fact that multiple hyper-
fine levels contribute to the signal also contribute to the splitting. At certain frequencies
the contribution from all three lines combined will add to zero rotation meaning the signal
disappear. This happens at two points, which we have resolved with the Faraday imaging
system as illustrated in figure 5.4(b). The figure show the norm of the Faraday coefficient
because we are not sensitive to the sign of the rotation only the magnitude. The interesting
point is how well we can resolve the zero crossing, if our frequency was wrong the error
would be most obvious at the zero crossing. There is good agreement of the Faraday coef-
ficient around the zero crossings except for the overall scaling of 0.786 applied because we
are working on the red detuned side.

Atom Number and Temperature

This section is focused on the blue detuned interaction, this avoids the complications of
molecular formation. Our investigation show that the Faraday imaging is able to reliably
extract temperature and atom number data from thermal clouds.

Above it is discussed that the Faraday atom number is given by the Faraday coefficient
times the total rotation of the light. This ratio should be valid no matter the cloud, no
assumptions about density or temperature have been made in the derivation of the Faraday
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effect. The agreement of Faraday and absorption images for varying density, atom number
and temperature is a good check of the validity of our imaging method.

The atom number and temperature measurement was performed using thermal clouds,
varying from 1.5 ·107 to 1.6 ·106 atoms at 30 to 1 µK in a weak trap, 191.7(1) and 17.5(6)
Hz in the radial and axial directions respectively. The investigation spans three orders of
magnitude in phase-space density as shown in figure 5.5(b). The Faraday probing was done
with 6 pulses of 1 µs each with a cycle time of 4.69 ms. The imaging light was detuned 750
MHz from resonance and the camera amplified the signal using an EM-gain of 50. After
the initial 6 pictures the cloud was released and the absorption image was taken. After the
release from the trap another 14 Faraday pulses were shone onto the camera. These pulses
were used to eliminate any structure in the beam. The cloud was exposed to additional
Faraday light in time of flight, which could minimally distort the absorption image and the
heating is on the order of 2 nK. This effect is ignored because it is less than our sensitivity.
The trap used is not capable of producing condensates1, but provides a better spatial profile
of the cloud than the tight trap. In the tight trap a cold thermal could have a width around
10 µm or 4 by 4 pixels on the camera. This give bigger uncertainties in the fitting routine
and therefore the weaker trap was used.

The ratio between absorption and Faraday temperature and atom number, see figure 5.5,
is constant over three orders of magnitude in phase-space density. This indicate that Faraday
images are a reliable source for extracting both atom number and temperature information
from a thermal cloud. The atom number measurement show a ratio of 0.65(3) which is the
same ratio as was found for the Faraday coefficient. This coefficient therefore indicate an
inefficiency in our Faraday detection system or an evaluation error in our Absorption atom
number. This contribution is independent of atom number, detuning and density and does
not agree with the observation made by Kaminski et. al. who observed a signal higher than
theory [54]. This indicate it being a problem with our system and not the overall method.

The temperature have been extracted using equation 5.5 where the width have been
extracted from the fits used to find the atom number. The evaluation gives a ratio of the
temperatures extracted from Faraday and absorption images of 0.82(9). Within the precision
of our absorption measurement uncertainty this can be considered a good agreement.

Condensate Formation

All experiments discussed above were conducted using thermal clouds. It was decided
that thermal clouds were preferable to the condensate because the Faraday signal dropped
drastically around the condensation point, see figure 5.6(a). The figures on the top are
Faraday images of the cloud along the evaporation ramp. As can be seen there is a steady
deterioration of the signal as the condensation point is crossed. The Faraday image only
have one pixel with high intensity and the rest are very low. Along with this the peak

1the evaporation efficiency is too low.
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(a) (b)

Figure 5.5: Temperature and atom number comparrison between Faraday and absorption
imaging showing good agreement (blue). Shown is also the absolute temperature and atom
number extracted from absorption images (red).

rotation caused by the condensate is less than 10 degrees making the measurements very
susceptible to noise. The noise is also more clear in the condensate image than the two
images of thermal clouds where it is almost indistinguishable.

The measurement was taken with the same Faraday parameters used to measure the
thermal and atom number ratios for thermal clouds and the method of taking pictures is also
the same. The magnetic trap used is the decompressed trap discussed in section 4.1 creating
a condensate of 1.3 ·105 atoms. In this trap the Thomas-Fermi radius is 6.9 µm so the whole
cloud is only 5 pixels across which agree well with the image in figure 5.6(a). Because of
the tight confinement in both directions we can not hope to resolve any bimodal structure
as we can with absorption imaging along the X-axis. A thermal cloud in the same trap at
1 µK have a width of 7 µm, using equation 5.5. At condensation the temperature is on the
order of 100 nK meaning the cloud is even smaller.

We are not able to gain much by higher magnification, the diffraction limit for our sys-
tem is 2.66 µm [59]. So the effective pixel size is already at the diffraction limit. Higher
magnification gives a smoother distribution on the camera but the resolution is not im-
proved.

Because the cloud is so small and the shape of the condensate in the trap is not a Gaus-
sian, a different evaluation method was used. For each pixel the rotation angle was extracted
and the total rotation angle, and thereby the atom number, is the sum of the rotation over the
whole image. The agreement between this method and the absorption images is illustrated
in figure 5.6(a). The scaling factor is different from the thermal cloud measurement, this is
attributed to a different evaluation method. The rise in the ratio for the condensate can be
ascribed to a noise. The dash-dotted line is the condensate fraction and is there to show the
onset of condensation.

In figures 5.6(b) the absolute Faraday atom number and maximum rotation angle are
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Figure 5.6: (a) Faraday vs. absorption atom number (dashed) for evaporation across the
BEC transition, the the condensate fraction (dash-dotted) illustrate the onset of condensa-
tion. The fluctuations are an indication of the worse signal and evaluation method used in
this experiment. The figures on the top are Faraday images taken 0, 30 and 60 kHz above
the trap bottom. (b) On the top total Faraday atom number and on the bottom the the peak
rotation angle vs. absorption atom number.

illustrated. Looking at these there is not clear indication of the condensation. This along
with the unlikeliness of a bimodal distribution we presently do not have any indication that
the cloud is Bose-Einstein condensed.

5.3 Applications

There are a number of applications for the Faraday imaging system. Some applications de-
crease the time needed to performcalibrations of the system. Others are interesting because
they allow us to monitor something we haven’t been able to monitor before or allow us an
extra check of our methods.

Absorption Image Calibration

One really useful application of the Faraday imaging method is to speed up absorption
imaging calibration. A description of the absorption imaging system and image evaluation
can be found in section 3.1 [80]. It is the determination of α that can be speed up by the use
of Faraday imaging by eliminating atom number fluctuations from run to run.

The method used by Reinaudi et. al. rely on doing absorption images at multiple
different imaging intensities, keeping the photon count constant. The higher the intensity
the shorter the pulse, our measurement of α spans two orders of magnitude in imaging
intensity (0.4 to 9 Isat) while the pulse duration is varied from 1000 to 9 µs giving an
average pixel count of 2.65(14)·103. For each chosen intensity multiple absorption images
are taken in order to eliminate shot to shot atom number fluctuations. The optical depth as a



66 CHAPTER 5. FARADAY IMAGING SYSTEM

0.1 1 10
0.8

1

1.2

1.4

1.6

1.8

2

2.2
x 10

5

Intensity (I
sat

)

od

1 1.5 2
0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

α

st
d(

od
)

(a)

2 4 6 8 10

1.3

1.4

1.5

1.6

1.7

Number of Intensity Points

α

 

 

(b)

Figure 5.7: (a) The standard α determination introduced by Reinaudi et. al. where the
optical density as a function of intensity for different values of α are illustrated. On the
right the standard deviation of the optical density as a function of alpha. (b) An illustration
of the advantage provided by normalisation using Faraday images.

function of the intensity has been plotted for a number of different α values in figure 5.7(a).
The correct α minimises the variations of the optical depth over the whole intensity range.
This minimisation is shown on the right side of figure 5.7(a) giving α = 1.50(7).

In our method we remove shot to shot fluctuations of the atom number by taking 10
Faraday pictures each run. Each Faraday pulse is 2 µs long amplified using an EM-gain of
200 and the cycle time is 2.437 ms. Unlike the absorption images the Faraday parameters are
not changed from run to run. The Faraday images scale the absorption images, eliminating
run to run atom number fluctuations. It is irrelevant that the Faraday and absorption atom
number does not correspond exactly since there is just a scaling factor between them.

We are able to achieve a good alpha calibration by only taking the points of highest and
lowest intensity. An interesting way of illustrating the advantages of Faraday scaled absorp-
tion image calibration can be seen in figure 5.7(b). Here the α is shown as a function of
how many different intensity points are used. With Faraday rescaling using two intensities
give a resonable measurement of α while using two intensities give large uncertainties in
the pure absorption method. From figure 5.7(b) we arrive at α = 1.50(3).

Using this fast α-calibration method allows us to quickly investigate the effect of chang-
ing absorption imaging parameters. α was measured for a number of different pulse dura-
tions, both high and low intensity pulses were scaled accordingly. This showed a tendency
of α to reach a minimum at a mean pixel count of 2000. In figure 5.8(a) α as a function
of the mean pixel count is shown. This indicates a dependence of α on the overall photon
count, the imaging system have to be re-calibrated whenever such a change is made. The
interpretation of this is that the effective saturation intensity changes with the overall photon
count, warranting further investigation. It is not clear why the effective saturation intensity
depends on the overall photon count.
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Figure 5.8: (a) Measurement of α vs. overall photon count, this show a clear dependense
of α on the photon count.

Trap Characterisation

The Faraday imaging system has been used to monitor the cloud in the magnetic trap. We
have investigated trapping frequencies, stopped deterministic oscillations and monitored
the trap decompression online measuring the changing trapping frequency in a single run.
This makes the Faraday imaging system very useful in determining trapping parameters and
monitoring the trap characteristics.

When working with trapped ultra-cold gasses one of the most important parameters to
know is the trapping frequency. The trapping frequencies are used to extract information
from cloud images and determine relevant timescales for atomic dynamics. The trapping
frequency can be determined in multiple ways such as: cloud oscillations, parametric heat-
ing and expansion of a thermal cloud. All of these measurement require multiple iterations
of the experiment and all are sensitive to fluctuations from iteration to iteration.

With the Faraday system we are able to take up to 2000 images of the cloud in a single
run and thereby determine oscillations in one run instead of 20-30 runs meaning we are not
sensitive to fluctuations from iteration to iteration. The technique also allows for a quick
measurement of trapping frequencies if the parameters of the trap have been changed. Both
of these points have been a great help when trying new trap configurations or changing
the system in some other way. It also allowed a measurement of the transverse trapping
frequency of our optical lattice which was not possible with absorption images due to non-
deterministic oscillations.

A measurement of the trapping frequency is shown in figure 5.9(a) where the frequency
is determined as 222.44(7) Hz in a single run. The cloud is set oscillating by turning off
the trap for a short time (70 µs) with the digital off switch discussed in section 4.1. The
imaging is started before the cloud is set oscillating. With our current setup we are only
able to determine the transverse trapping frequencies of the magnetic trap because Faraday
images are taken along the axis of the QUIC trap. The points in figure 5.9(a) were taken
with imaging pulses of 1 µs with a cycle-time of 0.401 ms. To achieve this high speed we
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Figure 5.9: (a) The first 60 ms of the cloud oscillating in the trap. (b) Full oscillation
sequence showing the dampening of the oscillation.

use a horizontal shift speed of 10 MHz thereby blurring the cloud, a very small frame of 80
by 18 pixels is used making accurate fits difficult. This is an unfortunate limitation of our
system but is only relevant when we are trying to achieve very high speed. The high speed
was determined necessary to get a good frequency measurement.

Looking at figure 5.9(b) the whole sequence is resolved, figure 5.9(a) are the first 60 ms
of the oscillation. The oscillation is dampened out with a 1/e time of 213.5(15) ms. This
dampening is ascribed to the trap not being a perfect harmonic potential. The dampening
correlate to an increase in temperature because the spatial motion is transferred to heating
of the atoms. Due to the high imaging frequency we can not reliably extract the absolute
temperature of the atoms. It is possible to monitor the heating rate because the blurring
seems to be a factor of two on the cloud size. This is illustrated in figure 5.10(a) where the
the temperatures extracted from the Faraday images are shown. Both of these have been
fitted with an exponential giving 1/e time of 190(2) and 190.0(14) ms for the Y- and X-
axes respectively. The higher heating rate compared to the dampening can be explained by
heating from the Faraday pulses. The heating rate is 153(19) µK/s at a detuning of 750
MHz, which has to be taken into consideration.

Before the kick the cloud is already oscillating, see figure 5.9(a). The goal of the spatial
motion measurements is to allow the Faraday system to identify oscillations inherent to the
trap and stop these. That we are able to resolve these small oscillations is encouraging
for this long term goal. As a first step towards stopping such oscillations an atomic cloud
was set oscillating and after a number of oscillation cycles it was stopped again. How the
actual implementation will be done is not finalised but one method is to use the Faraday
imaging to determine frequency, amplitude and phase of the oscillation, then stopping it by
a perturbation of the trapping potential of a proper size, direction and timing.

As a demonstration of the feasibility of this method we performed a stoppage of deter-
ministic oscillations. The oscillation is started by turning off the magnetic trap for 70 µs at
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Figure 5.10: (a) Heating of the cloud during the oscillation measurement. As can be seen
the initial temperature of the two directions disagree but they give the same heating rate. (b)
Illustrating our ability to stop start and stop spatial motion.

time t = 0 s, as done above for the trap frequency measurement. In figure 5.10(b) the cloud
is then stopped after five and a half oscillations by turning off the trap for 70 µs again. The
Faraday and trapping parameters are the same as for the trapping frequency measurement.
In this measurement we demonstrate that we are able to measure the frequency and phase
well enough from Faraday images to stop the oscillation again. Because we use the same
kick for starting and stopping the oscillation we are not sensitive to the amplitude of the
oscillations. We are able to determine the timing of a new perturbation to stop the cloud at
a different time. Our method only allows the so called bang bang stoppages but the hope is
that in the future we will be able to install an FPGA to provide on line analysis and feedback
to the system.

We are able to decompress the trap by lowering the current in the Ioffe and quadrupole
coils. This relaxation changes trapping frequency and the cloud sags due to gravity. We
can measure the change in trapping frequency during the decompression with the Faraday
system allowing us to monitor the change of the trap as we change the current. This is very
useful in trying to reach shortcuts to adiabatic decompression as attempted by J. F. Schaff
et. al. [89]. They calculate how the trapping frequencies change during the decompression
and then try to reconstruct this using their magnetic trap. They need to perform multiple
measurements to establish that the frequency changes as they expect it to. With the Faraday
imaging system we are able to determine the trapping frequency during the whole decom-
pression in a single run where they just sampled certain points in the decompression. This
allows for a fine-tuning of the decompression and the possibility of achieving even better
results than they did.

The measurement of the oscillations was performed in a similar manner to the trapping
frequency measurement. A larger frame, 80 by 50 pixels, was used to allow for the sag of the
cloud. Again the could was set oscillating by forcing the magnetic trap off for 70 µs. 60 ms
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(a) (b)

Figure 5.11: (a) An illustration of the position of the cloud along the vertical axis of the
experiment during the decompression. It is clear that the frequency changes during the de-
compression and the change in position can be ascribed to gravitational sag and a movement
of the magnetic field minimum. (b) The frequency along the decompression extracted from
figure (a). It also show the fitted frequencies for three points along the decompression.

after the kick the decompression starts. The decompression is a linear ramp of the current
in the QUIC trap from 300 to 200 A in 500 ms. At the same time the current in the Z-axis
bias coils is raised from -0.945 to 1 A. During the decompression the central position of the
cloud moves and the oscillation frequency changes, figure 5.11(a). This change in frequency
is evaluated by fitting small sections of the oscillation at a time, 5 periods, moving over 1
period and performing a new fit. This chirped fitting allow us to determine the frequency
of the oscillation through out the decompression. This is illustrated in figure 5.11(b) where
the frequency vs. time is plotted. The figure includes uncertainties which is a testament
to how accurate these fits can be made by using only a few periods. The red markings
along the decompression are the time periods whose oscillations are plotted in the inset of
figure 5.11(b). These show a closeup of the frequency during the decompression where the
different frequencies become very apparent.

Investigations in an Optical Lattice

Since the central point of our experiment is the optical lattice we tried imaging a thermal
cloud in the lattice. The outcome of this was a magnetic field nulling method that allow for
a calibration of the magnetic fields in far fewer runs then the method used in section 3.5.
The Faraday imaging was also used to determine the trapping frequency in the lattice as de-
scribed in section 3.3. This method used the same principles as discussed for the frequency
measurement in the magnetic trap, except we didn’t have to initiate oscillations.

First there was an investigation of the alignment of the lattice where we used the Faraday
imaging to monitor the lattice loading and the checking for oscillations after the lattice have
been loaded. The lattice alignment does not benefit from the use of Faraday images in our
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current system since we are unable to move the mirrors directing the lattice beam together
with running the experiment. If such a turn was possible we could turn the incoming lattice
beam while imaging the cloud. We would be able to see the alignment of the lattice by
the effect it has on the cloud in the trap. If the equilibrium position of the magnetic trap is
known, the incoming or reflected lattice beam could be swept through this position while
taking images with the Faraday camera. After the sweep the mirror could be turned to the
position where the lattice beam was in the equilibrium position during the sequence. This
requires a major change to our system and have not been investigated because we have
problems with the motorised mirrors.

The transverse trapping frequency of the lattice was measured for multiple lattice set-
tings by Faraday imaging. This was done because we were not able to perform a measure-
ment using absorption images. Non-deterministic fluctuations in the turn off of the mag-
netic trap caused oscillations which did not seem reproducible. This allowed us to measure
the transverse trapping frequency and from it extract the lattice depth as discussed in sec-
tion 3.3. The final application of Faraday Imaging is magnetometry. The Faraday rotation is

proportional to the expectation value of the collective atomic spin operator along the imag-
ing axis 〈Fz〉. If we now orient the magnetic field along a direction that is transverse to the
Z-axis, the Faraday signal go to zero, provided the atomic spins follow the field direction
adiabatically. This can be exploited to calibrate the magnetic fields along the two transverse
directions and find the zero point along the imaging axis. The field is rotated by applying a
static bias field along the Y-axis and sweeping the Z-field through the zero point.

Ignoring field gradients the and assuming the field along the X-axis to be zero the total
magnetic field is

~B(t) =
√

Bz(t)2 +B2
y (5.10)

the magnetic field along the Z-axis is assumed to change in time. The expectation value
of the Z-axis spin operator is proportional to the relative projection of the field along the
Z-axis, i.e.

〈Fz〉 ∝
Bz(t)
B(t)

. (5.11)

In our measurements we apply a field along the Y-axis and set our X-axis to its com-
pensation value. The current in the Z-axis bias coils is swept from 300 mA in 30 ms. While
sweeping the field 50 Faraday images are taken with a cycle time of 1.4 ms. This allow each
Faraday picture to be assigned to a magnetic field value, each experiment produce a curve
like figure 5.12(a). At zero field the signal disapear, the width of the dip depends on the
transverse field. The dashed line in figure 5.12(a) is a fit to the measured data from which
the transverse field and the zero point of the Z-field can be determined. This fit predicates
the knowledge of the calibration of one of the magnetic fields. In our case we assume to
know the calibration of the Z-field and therefore the we only gain information about the
transverse field. If the transverse field was know a calibration of the Z-field is possible. The
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Figure 5.12: (a) The magnetic field is swept across the zero point along the imaging di-
rection leading to a drop in the faraday signal which depends on the transverse field. The
dashed line is a fit using equation 5.12. (b) Field nulling performed using Faraday measure-
ments instead of microwaves. Uncertainties are from fitting. (c) The position of the field
zero along the imaging axis, as extracted from the fitting routine deviates from the zero
point found by microwave calibration (solid line).

reason both can not be determined in this method is because both Bz and By can be scaled
without changing the signal.

The fitting is done with

e−β t |Bz(t)−Bz0|
|~B(t)|

(5.12)

the exponential decay takes loss of atoms into account. This loss is both from the destruc-
tiveness of the measurement and atom loss from the lattice. By setting different transverse
fields it is possible to calibrate the transverse shim coils. Figure 5.12(b) show the magnetic
field extracted from Faraday images plotted against the set transverse field. The dotted line
is a fit of the kind performed in section 3.5. It gives a calibration of the Y-shim of 1.7(2)
G/A, in good agreement with the microwave calibration performed in section 3.5. The field
zeroing is not as accurate with an uncertainty three times the actual value. This could have
been fixed better by going to opposite polarity on the Y-shim to achieve a better calibration.
This was not done since it is only a proof of principle measurement.

We also look at the zero point determined from the individual measurements. This can
be seen in figure 5.12(c) where the zero point as determined by microwave calibration is
presented as the dotted line. This shows that we underestimate the field zero along the
Z-axis and that this is not a very accurate measure. The measurement is very sensitive to
fluctuations because a few points around the zero point, where the noise is already most
significant, can change the position of the zero point. This do not affect the curvature of the
fit which determines the transverse field.



6. Conclusion and Outlook

Both investigations presented here show encouraging results prompting further investiga-
tions. In the future the goal is to pursue both research direction in parallel.

The progress towards observing trap induced spin changing collisions in an optical lat-
tice have progressed at a steady pace. We are able to currently reliably prepare the atoms
in the |2,0〉 state and accurately control the magnetic field. Problems identified and to be
improved upon include fluctuations in magnetic field along the Y-axis and short condensate
lifetimes in the optical lattice. Having observed spin changing collisions with the expected
signature is encouraging. The agreement with theory is one of the current directions of
investigation. There are a number of elements we still need to understand for an accurate
comparison with theory. The theory is based on programs developed by the Group of Luis
Santos. These programs are based on the theory covered in the beginning of the thesis and
therefore are only applicable in the linear regime where changes in the |0〉 state population
are negligible. In the currently experimentally achievable region the theory dos not show
any clear resonances, we may not be able to observe well resolved resonances as done by
Klempt et. al. [36, 33]. There are also experimental imperfections, already discussed, that
can be the cause of not observing resonances.

One goal is an increased resolution of the magnetic field resonances in an attempt to
observe their structure. To achieve this experiments with lower atom number are an option,
the widths of the instability modes decrease and the energy between the modes increase.
Next efforts will be towards providing better input parameters to the theory in an attempt to
increase the correspondence with the most recent measurements.

Currently work is progressing towards imaging the spatial structure of the excited modes.
This is to investigate if we populate the Bessel modes as done in [35]. Because multiple
lattice sites are populated we can only hope to resolve modes with l = 0. Phase differences
between lattice sites would blur modes of higher l. Based on theory the first mode we can
resolve is the n = 3 mode. The n = 1 mode is almost indistinguishable from the Thomas-
Fermi profile and the instability rate of the n = 2 mode is dominated by the n = 1 mode.
These measurements will also benefit from a better correlation between theory and mea-
surements because they allow us to determine what modes we are looking for at a specific
field.

The long term goal is to reach the limit where lattice structure and even super-fluid
properties affect the spinor dynamics. The first experiments will investigate the excitation of
atom pairs to higher lattice bands and another is the effect of the lattice on the dynamics. The
next important experimental step to observing these excitations is to produce large enough

73
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magnetic fields to give the required Zeeman energy. Driving these excitations would require
a magnetic field on the order of 15 G. In this region we should have a number of resonances
available in the transverse direction. This would lead to a resonances structure similar to
the one at low fields. To produce this field the current plan is to use the transport coils in
a Helmholtz configuration. In the long term the deep lattice regime provides an interesting
setting for investigating two dimensional dynamics. The shallow lattice would unlock the
band structure of the lattice allowing for the production of EPR pairs and the investigation
of spinors in even more complex geometry where the different lattice sites interact through
tunneling. As with the two dimensional case this regime has not yet been explored.

Faraday imaging has been demonstrated to be a reliable method for extracting informa-
tion about the cloud and also a useful tool in our everyday lab work. We have been able
to demonstrate the properties of our imaging system and learned its limitations. The cali-
bration of the Faraday system shows that we have a reliable method for imaging a thermal
atomic cloud. For a Bose-Einstein condensate the atom number can still be reliably ex-
tracted while more precise evaluation is difficult due to the small size of the clouds. We also
observe that the Faraday system behaves as expected in regards to detuning and destructive-
ness of the light. Numerous applications of the Faraday system have been shown. Some
mimic the properties of regular absorption imaging while others are not even possible with
absorption imaging. It has been shown that Faraday imaging improves the calibration of ab-
sorption imaging systems, allows for monitoring trapping parameters and their change due
to perturbations. The Faraday imaging technique also has applications in magnetometry.

There are two planned directions of future work: online feedback and examination of
a Bose-Einstein condensate. Both of these require further improvements to our system. To
observe a condensate in the trap we may have to increase the atom number and improve
the resolution of the imaging system. The feedback work is currently in its preparatory
phase, where an FPGA module is being programmed to read images from the camera, eval-
uate these and provide a feedback to the atoms during the experiment. This should allow
for feedback to our evaporation sequence and also to minimise trap oscillations. The first
goal is to provide feedback to the evaporation cycle. The goal is to remove atom number
fluctuations in the final condensate with this method.

In conclusion both subjects of my thesis show promising first results and indicate the
prospect of future research in both directions. The initial spinor results encourage further
theoretical and experimental work. The speed and reliability of the Faraday system encour-
age future work in this direction.
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A. Laser Systems

There are three different laser system in the experiment, these are: the rubidium laser sys-
tem, lattice lasers and the Faraday laser. Below are descriptions of the rubibium and Faraday
laser setups, their locking schemes and the use of the light. The lattice laser is adequately
described in chapter 3.1.

A.1 Rubidium Laser System

A detailed description of the rubidium system can be found in the Ph.D. thesis of Jes-
per Fevre Bertelsen [90] and Henrik Kjær Andersen [77]. The description given here fol-
lows these thesis. The rubidium system consists of the master, the cooler and the repump
lasers. The master and repump lasers are locked by Doppler free saturated absorption spec-
troscopy to the F = 2→ F ′ = 1/3 transition and F = 1→ F ′ = 2 transitions of the D2
line respectively. The cooler laser is offset locked from the master laser 22 MHz below
the F = 2→ F ′ = 2 transition. All lasers used in the experiment are home built and are
Littrow configuration extended cavity diode laser [91]. They are very stable and except for
the repump laser will usually stay locked all day.

The laser is illustrated in figure A.1(a). The diode is mounted onto a good thermal
conductor from which heat is removed or added by a peltier element. The peltier crystal
uses the aluminum base of the laser as a reservoir for temperature stabalisation. The light
emitted by the diode hit a diffraction grating which reflect the first order diffracted light back
into the diode setting the frequency. By changing the angle of the grating the frequency is
changed allowing us to fine tune the frequency. A piezo crystal is used to fine tune the
frequency to keep the laser locked [91].

As mentioned the lasers are locked to rubidium 87 using saturated absorption spec-
troscopy. A high intensity laser beam, well above the saturation intensity, is passed through
a glass cell with rubidium at room temperature. The atoms are moving leading to Doppler
broadening of the absorption peak. The Doppler broadening at room temperature smear out
the hyperfine structure of the excited state. To resolve the hyperfine structure and lock the
laser to a specific transition a second "‘probe"’ beam is sent through the cell traveling in the
opposite direction. If an atom is resonant with both pump and probe beam the atoms will
already be in the excited states. This will show itself as a higher signal on the probe beam
which is illustrated in figure A.1(b). Both the pump and probe beams are resonant with
stationary atoms, which resolve the hyperfine manifold. The lasers also become resonant if
the Doppler shift is equal to half the hyperfine splitting. This gives rise to 1/3, 1/2 and 2/3
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(a) (b)

Figure A.1: (a) The home-built laser system with the diode on the right and the grating on
the left. The peltier crystal is mounted on the left end of the pivot. (b) Saturated absorption
(top) and locking signal (bottom) for the D2 transition in rubidium 87. The numbers denote
the hyperfine manifold which is resonant there. Both figures taken from [90].

lines in figure A.1(b).
By modulating the current on the laser diode at 10 MHz we are able to produce a dis-

persion signal to be used for locking. The laser is locked and the piezo crystal makes sure
the proper frequency is selected. The dispersion curve is also shown in figure A.1(b) and
the servo which drive the piezo is locked to zero-crossings in this dispersion.

The rubidium laser system is used to produce light for the magneto optical trap and
for absorption imaging. The locking points of the lasers are illustrated in figure A.2 and
the layout of the whole system can be seen in figure A.3. The MOT uses three types of
off-resonant light: cooling, repumping and optical pumping light. The atoms are trapped
and cooled by the combination of the magnetic field gradients and the cooling light. The
cooling light is red-detuned from the F = 2 to F ′ = 2 transition. Due to the Doppler shift
atoms moving opposite the propagation direction of a red detuned laser will experience the
light closer to resonance than atoms moving in the direction of the laser light. Two counter
propagating beams create a trapping potential. The atom will feel a force from the laser it is
moving towards that is greater than the one it is moving away from, creating a cooling effect
because the atoms are continually slowed. Unless the laser beams are very well matched
this focus may not be very tight. To increase the tightness of the confinement a magnetic
quadrupole field is added to the mix and σ± light is used to cool the atoms. Because of this
different mF states in the excited hyperfine manifold are addressed by the two beams so on
one side of the magnetic field minimum the atom see the one laser as the strongest while on
the other the other laser. This means the atoms are trapped in the magnetic field minimum.
The MOT light is provided by the cooler laser. In each branch of MOT light 14-16 mW of
power is needed.

When cooling the atoms we address a cyclic transition in the level scheme of rubidium.
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Figure A.2: An illustration of the locking scheme of the rubidium laser system. The blue
lines are the locking points of the lasers and the red lines are the frequencies of the light
after modulators. The figure is taken from [77]

Even though we are driving a cyclic transition in rubidium atoms can decay into the F = 1
manifold. In this case they have to be transferred back into the cyclic transition. This is
done with the repump laser, resonant with the F = 1 to F ′ = 2 transition. By driving this
transition along with the cooling light the capture of atoms is much more efficient because
the main source of loss have been eliminated from the trap.

The final stage of the trapping is the optical pumping of the atoms into the |2,2〉 state.
This ensures a large portion of the trapped and cooled atoms also stay in the trap when the
MOT light is turned off. Only the |2,1〉 and |2,2〉 states are trappable which is why σ+ light
is used to drive transitions with ∆mF = +1. The pump light is produced by the master laser
and is shifted on resonances with the F = 2 to F ′ = 2 transition by the AOM.

The imaging light is resonant with the F = 2 to F ′ = 3 transition. This resonances is
fine-tuned by an AOM which allow us to change the frequency of the imaging light when
changing magnetic fields.

The master and repump lasers are both locked to transitions in rubidium while the cooler
laser is offset locked from the master laser. A small amount of light is split off from the
master laser and is mixed with light from the cooler laser. This mixed signal is sent onto
the a photo-detector with a bandwidth of 300 MHz. The photo detector can only resolve the
beat signal which is used for locking the cooler laser.

The cooler laser is amplified by a tapered amplifier to deliver power enough to build the
MOT. It is then split into three branches of even power each feeding into a fiber. The fibers
go to the experiment table and is used for the MOT. Each fiber is split in two and provide
equal power for the counter-propagating beams of the MOT.

The master laser is first split in two, the optical pumping and imaging branches. They
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Figure A.3: An illustration of the locking scheme of the rubidium laser system. The master
laser is locked at the The figure is taken from [90]
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each have an individual AOM which allow fine tuning of the frequencies individually. The
imaging light is split in three to provide imaging light for all three axis.

The repumper light is split in two where one part is mixed with the cooling light on a
beam splitter and is sent into one axis of the MOT. There are not very stringent requirements
on the MOT repump light as long as a around 1 mW of power gets to the experimental
table. The other branch of repump light is combined with the imaging light and sent into
the imaging system when we are interested in imaging the F = 1.

A.2 Faraday Imaging Laser

The Faraday laser is of the same design as the rubidium lasers. The locking scheme is
different because we use a tunable offset lock unlike the cooler laser which is locked to a
fixed frequency. The locking scheme is based on the scheme developed by Schünemann et.
al. [92]. As mentioned the original Faraday system was built by Nityanand Sharma and a
detailed description of the system and analysis can be found in his masters thesis [93]. An
illustration of the offset locking circuit can be seen in figure A.4.

In the Faraday system the beat frequency of the master and Faraday lasers are converted
into an electronic signal by a fast photo diode. The manipulation of this electronic signal
is what allow us to tune the laser frequency over a 900 MHz range. The beat signal has
frequency ωB = ωL−ωFar, the difference between the master and Faraday laser. The beat
signal is mixed with the output of a voltage controlled oscillator at frequency ωO. High
frequency components are removed and the signal is amplified before it is split in two. The
signals will now propagate through cables of different lengths before they are recombined.
High frequency components are again removed with a low pass filter. The signal is used to
lock the Faraday laser to master laser by driving a servo amplifier.

The signals of the system start with the signal of the photo detector EB(t) and the signal
of the voltage controlled oscillator EO(t)

EB(t) = E0,B cos(ωBt +φB)

EO(t) = E0,O cos(ωOt +φO)
(A.1)

where E0,i and φi (i = {B,O}) are the amplitude and phase of the signals from the photo
detector and oscillator respectively. These are mixed producing a product signal. High
frequency components are removed with a low pass filter leaving

Emix(t) =
E0,BE0,O

2
cos((ωB−ωO)t +(φB−φO)) . (A.2)

This signal is split in two and allowed to propagate in cables of different length. After the
propagation they are recombined with another mixer. The two branches have evolved for
different times τ1 and τ2. Combining the signals the difference in time can be experessed as
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Figure A.4: The tunable offset lock used for the Faraday laser. The circuit is built of mini-
circuit microwave parts.

a relative pahse. The relative phase is the frequency times the difference in evolution time

Φ = (ωB−ωO)(τ2− τ1) . (A.3)

The mixed signal after recombination is

Edelay(t) =
E2

0,BE2
0,O

8
(cos(Φ)+ cos(2(ωB−ωO)t +2(φB−φO)+Φ)) . (A.4)

The second term is removed with a low pass filter leaving only a dependence on the rela-
tive phase. For the frequency range under investigation the signal propagates at the same
speed in the cables so the relative propagation time will always be the same leaving only a
dependence on the relative frequency.

The delay signal is used to drive the servo-amplifier which lock the frequency of the
Faraday laser with respect to the master laser. The Servo-amplifier uses the signal from the
locking circuit where it is locked to a zero-crossing.



B. Lattice Loading

This section is included to illustrate the different methods tried for loading the lattice. To
argue why we ended with our current loading method. When it was realised that loading
from the decompressed trap did not result in a condensate in the lattice, two approaches
were taken towards the creation of a condensate. The first was by evaporating in the lattice
because it was hoped that it could produce condensates that did not oscillate. Oscillations
are to be expected from the loading procedure as discussed. Evaporating in the lattice was
thought to reduce these oscillations because of the three second evaporation after loading the
lattice. The second method, which proved the most successful, was to load the condensate
directly from the tight magnetic trap.

B.1 Lattice Evaporation

The Munich group used a magnetic gradient along the axis of the optical lattice to create a
condensate of a few thousand atoms in their experiment. In our experiment we also used a
magnetic gradient, in the transverse direction, to create the condensate. With this method
we were able to create condensates of 1.4 ·104 atoms with a purity of 34%.

First the cloud loading was optimised, here a large cloud was decided to be more im-
portant than a very cold cloud. If we created a very cold cloud and loaded it into the lattice
it would be heated by the act of loading. When loading a hotter and larger cloud it would be
easier to overcome the heating caused by the transfer. The temperature increase should be
proportionally smaller for the hot than the cold cloud. The largest clouds the lattice could
hold were 106 atoms at a temperature around 1 µK. It did not matter if the depth of the
lattice was 16 or 32 Erec indicating that a larger cloud is bigger than the waist of the lattice.

First evaporation was attempted without a magnetic gradient which did not yield any
condensate fraction results. The lattice depth was lowered from 32 to 8 Erec in 3 seconds
using multiple linear ramps. To increase the evaporation efficiency a magnetic gradient was
introduced. In an optical lattice you relax the trap while lowering the lattice depth, i.e. the
cloud has to be colder or larger to condense than the shallower the lattice. By applying a
gradient we are able to lower the side of the lattice without relaxing the trap giving a higher
condensation temperature. This is caused by the Zeeman energy changing the potential seen
by the atoms. In our case it could be described as lowering one side of the trap.

The gradient was produced by the Ioffe coil. This was less than ideal, we only evapo-
rated on one side of the cloud. Ideally the magnetic gradient would be along the axis of the
lattice, allowing evaporation along both weak directions of the lattice. As a first attempt at
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Figure B.1: Position of the condensate along the weak direction of the trap as the QUIC
trap is turned off without (solid) and with (dashed) the quadrupole compensation ramp.

introducing lattice evaporation the Ioffe coil was a straight forward implementation com-
pared to constructing a gradient coil along the lattice axis. It was tried to use both a constant
gradient while lowering the lattice depth and also raising the gradient while having a con-
stant lattice depth. Both methods worked equally well creating the condensates as discussed
above.

At the end of evaporation the gradient had to be turned off to allow for spinor dynamics.
This set the cloud oscillating eliminating what was thought to be the biggest advantage of
this method. It was assumed that this oscillation would not disappear by using a gradient
coil along the axis of the lattice. The waist of the lattice is 101 µm, The lattice and gradient
coil would have to be aligned to higher precision than this to avoid oscillations. Because of
the oscillations and large variations in the condensate atom number further work on lattice
evaporation was dropped in favour of optimising the loading of a condensate into the lattice.

B.2 Loading Condensates into the Lattice

Loading a condensate directly from the tight trap was investigated because it was not possi-
ble to create a condensate of satisfying quality in the lattice. The idea was to slowly turn the
lattice on around the magnetic trap and then slowly turn off the magnetic trap. Turning off
the magnetic trap caused the cloud to displace along the weak axis of the QUIC trap. Fig-
ure B.1(a) (solid line) illustrate the position of the cloud along the weak axis during turnoff,
with no lattice. This movement indicate non-ideal behavior of the QUIC trap, either uneven
current sharing or misaligned coils. To overcome this misalignment current is purposefully
directed around the quadrupole coils by lowering the resistance in a parallel branch, T3
transistor in figure 4.1(b). By empirically optimising the bypass current the dashed line in
figure B.1(a) can be produced. Similar behavior was not observed along the tight axis, here
the balancing of the Ioffe and quadrupole coils are not as important because of the higher
trapping frequency.
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Figure B.2: (a) The size of condensates loaded from the tight (diamonds) and weak
(squares) traps versus ramp time. (b) The purity of the condensate versus ramp time for
the tight and weak trap. The uncertainties are standard deviations of 5 measurements.

After the introduction of the bypass ramp the cloud was stationary in the QUIC trap,
except for gravitational sag, when the lattice was off. When the lattice is turned on strong
oscillations are induced at the end of the loading. The oscillation is believed to be started by
residual current in the Ioffe coil, observed with the H2 current transducer in figure 4.1(b). It
was believed that the digital switch did not completely close the Ioffe branch. To avoid this
spike it is enough to delay the digital switch by 5 ms, at which point the residual current is
so small that it no longer show a noticeable effect. This loading method performed well and
was used for the first spinor measurements.

During our initial investigation of spinor dynamics we observed a short lifetime of the
condensate in the optical lattice. This prompted us to decompress the condensate before
loading into the lattice. Instead of going back to a decompression followed by lattice loading
we attempted to create a condensate in a weaker trap and also attempted to decompress and
load the lattice simultaneous. Both methods seemed preferable compared to the original
decompression scheme because of the oscillations this started. First it was attempted to
load the lattice by simultaneously turning down the current of the QUIC and turning on the
lattice. This is effectively a decompression, for the first part of the loading the magnetic
trap is dominant which is relaxed, when the lattice becomes dominant the atoms are more
decompressed than in the previous scheme. This showed an immediate improvement by
just moving the turn on of the lattice back and ramping it in 70 ms instead of 100 ms. This
resulted in 7.3(4) · 104 atoms at a purity around 50% compared to the previous method
producing condensates of 4.3(7) ·104 atoms with a purity around 25%.

A parallel approach was adopted looking both at loading from the thight and a relaxed
trap simultaneously. The relaxed magnetic trap produce smaller condensates of 1.3(4) ·105

atoms but has a transverse trapping frequency of 222.9(2) Hz. When loading from the
weak trap the shape of the trapping potential is changed less, relative to the tight trap. The
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hope was that it would result in a purer condensate in the lattice. Figures B.2 show the
condensate size and purity versus the loading time, for both the tight (diamonds) and weak
trap (squares). As can be seen both traps have an optimal loading time of 100 ms above
which no improvement is seen. At the same time it can be seen that loading from the tight
trap produce lower quality condensates, purity wise, but the atom number is more stable as
indicated by the uncertainties. Since overall atom number stability has been deemed more
important than condensate purity it was decided to work further with the tight trap. It is
worth noting that these measurements were performed without the quadrupole bypass ramp
and therefore the results cannot be directly compared with the numbers mentioned above.

Optimising this loading comprised of tweaking timings further and the introduction a
an empirically calibrated change of the T2 transistor, amplitude, timing and duration. This
step on the T2 was introduced as a replacement for the wait used as the original workaround.
Applying this step allowed for the tweaking of the turnoff and thereby minimising the os-
cillations. This turned out to improve the lattice loading dramatically and was kept because
of this. The result of the optimisation is the loading of condensates around 9(1) ·104 atoms
with a condensate fraction of 60 %.



C. Faraday Imaging Alignment

This is a description of the method used to align the Faraday imaging system. This is meant
as an illustration of approach we took. It doesn’t present any interesting physics but is an
argument for the Faraday imaging system being aligned. Before it was know that the camera
caused the cloud to be elongated a lot of effort was put into aligning the incoming imaging
beam and the image plane with the orientation of the atomic cloud.

Alignment was triggered by the observation that the cloud was diagonal in the Faraday
images, see figure C.1(a). The Z-axis is the QUIC traps axis of symmetry, i.e. the cloud
should be round on Faraday images. The cloud being diagonal was taken as an indication
that the incoming imaging beam was not aligned. Figure C.1(b) illustrates the projection of
the cloud onto the image-plane in the case of a misaligned incoming beam. When the cloud
is aligned with the imaging system the cloud looks round in the images. When the two are
misaligned one axis seems elongated, in our case both axis were misaligned.

First the image-plane needed to be aligned with the cloud, this was done using absorp-
tion imaging. We move the L2 lens (figure 3.5(b)) using a micrometer which moves the
position of the image plane in the chamber. When focusing the imaging system pictures
are taken of the cloud in the trap. By moving the image plane we focus our imaging on the
position of the cloud. It can also be used to check if the imaging system, after the chamber,
is aligned with the axis of the cloud. If the image plane is not perpendicular to the axis of
the cloud, it moves as the L2 lens is moved. If the imaging system is not aligned the first
mirror after the chamber have to be adjusted until this stops. This method is not dependent
on the alignment of the incoming beam.

Next the incoming beam was aligned. This was first done using Faraday images and
afterward a more precise method was discovered while focusing the imaging system as de-
scribed above. The initial alignment was performed by taking a Faraday image and moving
the incoming beam. This was done iteratively until the cloud was round on the Faraday im-
ages. We switched to absorption imaging to make sure the camera was still focused. In the
absorption images there are diffraction fringes around the cloud and we take a minimisation
of these fringes to mean the camera is focused. When we switched to absorption imaging
after the initial alignment of the incoming beam we saw these diffraction fringes were not
symmetric around the cloud as expected of an aligned system. The shape of the fringes
depended on the alignment of the incoming light. The incoming light is diffracted by the
cloud, this diffraction is not even if the incoming beam and the cloud are not aligned.

After all these fine–tunings of the system we had a round cloud in the absorption images
and the diffraction fringes were minimised. Using the Faraday system this was no longer

91



92 APPENDIX C. FARADAY IMAGING ALIGNMENT

 

 

(a) (b)

950 1000 1050 1100
0

20

40

60

80

RF freq (kHz)

P
ea

k 
A

ng
le

 (
de

gr
ee

)

(c)

Figure C.1: (a) The diagonal cloud in this image illustrate how the alignment of the incom-
ing beam have an effect. This effect of the incoming beam is also illustrated in figure (b)
where the projection on the image plane is illustrated. (c) The lowering of the intensity by
cutting the collimated light with an iris showing the size of the collimated beam. The iris
aperture is 50 (solid), 23 (dashed), 16 (dotted) and 9 mm (dot-dashed).

the case, now the cloud was still elongated. We therefore investigated if the polarisation,
focus and aspect ratio of the incoming light had an effect on the observed aspect ratio of the
cloud. This was not expected to have an effect on the observed signal and it turned out that
it didn’t. After this we were very sure that the imaging system worked as well as possible.
This initiated the investigations into the effects of the camera and the electron-multiplying
register on the clouds aspect ratio as discussed above.

The final check of the imaging system was performed to make sure no signal was lost
because light scattered by the atoms hit something before being collimated. If the diffraction
from the cloud was so great that light hit the chamber before the L1 lens it show itself in
the radius of the collimated beam. If the collimated beam is much smaller then the aperture
of the optics we can conclude there is no signal lost before the light is collimated. To check
this an iris was inserted before PBS2 (figure 3.5(b)), the aperture of this iris was changed to
determine the width of the collimated beam. As seen from figure C.1(c) power is not lost at
an iris aperture of 23 mm while at 16 mm aperature only a slight loss is seen. The aperture
of all the optics on the back side of chamber is 50 mm, therefore losses due to this effect
can be excluded.


